A load-handling pallet (10) comprises a plurality of separate plastics elements which are connected together to define an upper-load bearing platform (20) with spaced support members (40) therebeneath between which the forks of a fork-lift truck can be located. The boards (20) forming the platform are mounted on transverse stringers (30) which are in turn secured to the top of blocks (40) by respective locator arrangements (32, 41). Base boards (50) are secured to the bottom of the blocks (40) by further respective locator arrangements (52, 57, 152).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom
AU	Australia	GE	Georgia
BB	Barbados	GN	Guinea
BE	Belgium	GR	Greece
BF	Burkina Faso	HU	Hungary
BG	Bulgaria	IE	Ireland
BJ	Benin	IT	Italy
BR	Brazil	JP	Japan
BY	Belarus	KE	Kenya
CA	Canada	KG	Kyrgyzstan
CF	Central African Republic of Korea	KP	Democratic People’s Republic of Korea
CG	Congo	KR	Republic of Korea
CH	Switzerland	KZ	Kazakhstan
CI	Côte d’Ivoire	LI	Liechtenstein
CM	Cameroon	LK	Sri Lanka
CN	China	LU	Luxembourg
CS	Czechoslovakia	LV	Latvia
CZ	Czech Republic	MC	Monaco
DE	Germany	MD	Republic of Moldova
DK	Denmark	MG	Madagascar
ES	Spain	ML	Mali
FI	Finland	MN	Mongolia
FR	France	MR	Mauritania
GA	Gabon	MW	Malawi
NE	Niger	NL	Netherlands
NO	Norway	NZ	New Zealand
PL	Poland	PT	Portugal
RO	Romania	RU	Russian Federation
SD	Sudan	SE	Sweden
SI	Slovenia	SK	Slovakia
SN	Senegal	TD	Chad
TJ	Tajikistan	TT	Trinidad and Tobago
UA	Ukraine	US	United States of America
UZ	Uzbekistan	VN	Viet Nam
A LOAD-HANDLING PALLET AND METHOD OF ASSEMBLY

The present invention relates to a load-handling pallet for use with fork-lift trucks and to a method of assembly thereof.

Conventionally, load-handling pallets are made of wood. However, these are unsuitable for use with foodstuffs as they are unhygienic. To overcome this problem, pallets made from injection moulded plastics have been used but they have the disadvantage that they are expensive to manufacture owing to the high tooling costs involved. One such pallet is described in GB 1575143.

The present invention seeks to provide a pallet made from a hygienic material which overcomes or substantially mitigates the aforementioned disadvantages.

According to a first aspect of the present invention there is provided a load-handling pallet comprising a plurality of separate plastics elements defining at least an upper load-bearing platform with spaced support members therebeneath, between which the forks of a fork-lift truck can be located, characterised in that said plastics elements are releasably connected together.

An advantage of the above arrangement is that the pallet can be dismantled for cleaning and repair, and individual elements can be separately replaced if damaged without the need for the whole pallet to be discarded. Also the components may be transported in compact kit form before assembly, thus saving space and thus transport costs.
According to a second aspect of the present invention there is provided a method of manufacturing a load handling pallet comprising the steps of producing a plurality of separate plastics elements characterised in that the elements are connected together to define at least an upper load-bearing platform with spaced support members therebeneath between which the forks of a fork-lift truck can be located.

In one preferred embodiment of the invention the platform is constituted by a plurality of parallel top boards which are supported on three stringers perpendicular thereto and nine support blocks, to the bottom of which are in turn attached five base boards. The top boards have bevelled sides which engage in corresponding dovetail grooves in the stringers. The stringers have plastics locator elements fixedly attached thereto which engage with respective upper parts of the support blocks. The base boards also have plastics locator elements fixedly attached thereto. Different types of locator element are provided depending on their positions on the base board. Six end locator elements are arranged in two parts which are arranged on different base boards but which are arranged to interengage before being engaged with respective lower parts of the support blocks. Three one-piece locator elements, similar to those on the stringers, are arranged centrally on three of the base boards. The various interconnections may be supplemented by screw, bolt or other connection elements.

Preferably, the plastics elements are made from polyvinyl chloride (PVC) or polypropylene (PP). This means that the pallet can be dismantled and washed down and disinfected to comply with the rigorous regulations
governing the transportation and handling of foodstuffs. The elements are extruded components which are cut to appropriate length to construct the pallet. Some or all of the components, especially the support blocks, may be injection-moulded.

In another embodiment of the invention the plurality of separate plastics elements are connected together predominantly by rustless steel self-locking type bolts or screws located within the central cellular cavities of the upper load-bearing platform boards fixed to purpose-made pre-drilled and threaded stainless steel or polypropylene (PP) elongated locating and fixing straps placed within the centre cavities of each of the upper load-bearing platform boards. The locating straps accommodate a plurality of separate bolts or screws. Alternatively each of the upper load bearing boards may have the central cavities extruded with a solid centre core to accommodate self tapping rustless steel screws or be pre-tapped for rustless steel bolts. The two outer cells of all the upper load bearing platform boards including the supporting stringers may be independently reinforced within themselves by the introduction of purpose made resin bonded "rot-proof" laminated "H section" purpose-designed timber inserts placed in the outer cavities; alternatively polypropylene (PP) inserts can be used and placed within the outer cavities of the cellular load bearing platform boards along with stringer support members therebeneath, under which the forks of a fork lift truck can be located.

The outer corners of the blocks and upper platform boards may be fitted with impact resistant rubber closure caps or alternatively polypropylene cellular board end closure caps may be used.
The blocks are hollow and made by an injection-moulded process. These are secured to the stringer support members by fixing through the sides of the blocks into a plastic locating pad or insert pre-fixed to receive the blocks.

These purpose-designed locating pads serve a dual purpose by allowing positive anchorage of the whole pallet, They also prevent any distortion and keep the pallets true and square when in use. They also allow fast accurate manufacturing of the pallets by use of multi-head robotic machines, facilitating line production methods.

Preferably also, the elements comprise five additional blocks, four located centrally of each of the sides of the pallet respectively between the corner blocks, with the fifth one located at the centre of the pallet. A third cross-member, which is parallel to the other two cross-members and connected to the fifth block and two of the additional four blocks, supports the central region of the top boards. All blocks are fixed to the base boards by rustless fixings direct through and secreted in the foot of the block which, when pallet assembly is completed, creates a bacteria free product allowing easy cleaning.

Preferably also plastic base boards are provided beneath the blocks fixed to the underside of the pallet.

A preferred embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings of which:
Fig. 1 is a partially exploded schematic view of a pallet according to a first embodiment of the present invention;

Fig. 2 is an enlarged sectional view of the pallet of Fig. 1;

Fig. 3 is a further enlarged sectional view of the pallets of Figs. 1 and 2;

Fig. 4 is a top plan view of the pallet of Fig. 1;

Fig. 5 is a cross-section of a pallet in accordance with a second embodiment of the present invention through the top boards thereof;

Fig. 6 is a cross-section perpendicular to that of Fig. 5;

Fig. 7 is an enlarged, perspective and partly-sectioned view of the connection between a top stringer element and a block of the pallet of Fig. 5;

Fig. 8 is a further enlarged view of part of Fig. 7;

Fig. 9 is an underneath view of the base boards of the pallet of Fig. 5;

Fig. 10 is an enlarged, perspective and partly-sectioned view of the connection between two base boards and a block of the pallet of Fig. 5;

Fig. 11 is an enlarged, exploded view of the end of a top board of the pallet;
Fig. 12 is a cross-section of a pallet in accordance with a third embodiment of the present invention;

Fig. 13 is a cross-section of the pallet of Fig. 12 but perpendicular to the cross-section of Fig. 12;

Fig. 14 is an underneath view of the base boards of the pallet of Fig. 12; and

Fig. 15 is a cross-section of a pallet in accordance with a fourth embodiment of the present invention.

Referring to the drawings, Fig. 1 shows a pallet 10 in accordance with the first embodiment comprising a plurality of top boards 20 attached to three top stringers 30. The top boards form a load-bearing platform. The stringers are attached to nine blocks 40 to which are attached five base boards 50.

The stringers have integral locator elements 32 which engage in the open tops of blocks 40. Locator elements 52, 57 integral with base boards 50 engage in the open bottoms of blocks 40. The top and bottom locator elements, and hence the top and bottom decks of the pallet 10, are interconnected via connection elements, e.g. bolts 337.

Locator elements 52 will be described in further detail in connection with the embodiment of Fig. 9. However, it should be noted here that locator elements 52 are in two parts 53, 54 and that, for extra strength, part 53 has fingers 153 which extend into the cavity of the next base board 50 which is integral with the other part 54.
Fig. 3 shows how the top boards 20 have bevelled edges which slide into corresponding dovetail grooves 31 in the top of the stringers 30. Each board is secured to the central stringer 30 by means of a rustless screw, pin or bolt connection element 37, Fig. 4 which is positioned from underneath during assembly. By disconnecting the respective element 37, an individual top board 20 may be slid out of its grooves 31 for repair, replacement or cleaning. Extra measures may be necessary for removing the end ones of the boards 20.

Figs. 5 to 11 show a pallet 510 in accordance with a second embodiment of the present invention.

The connection between a stringer 30 and a block 40 is shown in Fig. 7. At the location of the blocks 40, the stringers have welded, adhered or otherwise fixed thereto substantially rectangular locator members 32 which slide into and are retained by correspondingly shaped recesses 41 in the top of the blocks. The locator members 32 engage corresponding stop surfaces in the recesses to ensure precise positioning. The interconnection is protected against inadvertent disconnection by a ratchet arrangement 42, an enlarged view of which is shown in Fig. 8.

The above arrangement means that for repair, replacement or cleaning purposes, the entire top deck, comprising board 20 and stringers 30, can be removed by simultaneously sliding all nine locator members 32 out of their corresponding recesses 41.

Fig. 9 shows an underneath plan view of the connection between the five base boards 50 and the nine blocks 40. As shown more clearly in the enlarged sectioned view of Fig. 10, the base boards also comprise locator members
52 fixed thereto. As shown in Fig. 9, these members 52 are made up of two interengaging members 53, 54, three members 53 being integral with each of the two end boards 50 and two members 54 being integral with each of the three transverse boards 50. After interconnection of the two base boards 50 by interengaging members 53, 54, a block 40 is attached thereto by means of a clamping piece 45 secured by a locking pin 46.

Three further locator members 57 are one-piece members similar to locator members 32 and integral with the transverse boards 50 at a central region thereof.

The top boards 20, stringers 30 and base boards 50 are all extruded components and are preferably provided with end caps such as 39, Fig. 11 which after location are bonded into position to create hermetically sealed components preventing the ingress of bacteria.

The blocks 40 are also hollow extruded components which are sealed around the locators 32, 52, 57 with a clear silicone vulcanising agent such as RTV 595 which hermetically seals the joints but allows assembly and dismantling of the pallet as required.

The above-described pallet has numerous advantages. It can be assembled, dismantled and repaired without the need for special tools, equipment or skilled labour. For repair purposes, only a limited number of different types of component need to be kept in stock.

Pallets of a varying range of sizes can be made from one set of extrusion dies; the extruded members are easily cut to the required length.
Pallets can be shipped in kit form for manual or automatic assembly by the user. The effective saving on space and transport costs is in the region of 70%.

Various modifications can be made to the above described pallet. For example, the connections between the stringers 30 and the blocks 40 may be supplemented by locking pins etc.; if so, these pins need to be removed before the top deck or platform can be removed as a single unit.

The central stringer 30 and/or the central base board 50 can be omitted if desired. In fact the base boards 50 can be omitted entirely. Of course additional elements may be provided if desired for larger or stronger pallets.

Figs. 12 to 14 show a modified pallet 110 in accordance with a third embodiment of the invention in which blocks 140 are connected by transverse connection elements 137 to projections 136 integral with stringers 30. The bottom of blocks 140 are connected to the base boards 50 by right-angled locator elements 152. In pallets 110 the top deck or platform cannot be removed as a single unit, but the pallet is extremely robust, while still permitting the removal of individual elements, in particular top boards 20.

In another modification, not shown, the locator elements are circular in plan view and are connected to individual stringers and/or base boards, for example, by respective rotating triple-leg engagement means.

In all examples, the base boards 50 and the upper deck comprising top boards 20 and stringers 30 may be secured to each other by rustless pins, bolts, screws
or other connection elements passing through the block 40. These connection elements can be fixed to pre-threaded stringer locator elements 32 to allow complete flexibility for removing individual components.

Fig. 15 shows a fourth embodiment of the present invention with such an arrangement of connection elements. Screw bolts 237 fasten together base boards 250, stringers 230 and top boards 220 by means of a hollow or solid block 240.

Each of the above described embodiments can be modified as appropriate to incorporate one or more features of any of the other embodiments.
11

CLAIMS

1. A load-handling pallet (10) comprising a plurality of separate plastics elements defining at least an upper load-bearing platform (20) with spaced support members (30, 40) therebeneath, between which the forks of a fork-lift truck can be located, characterised in that said plastics elements are releasably connected together.

2. A pallet as claimed in claim 1; wherein the elements comprise a plurality of top boards (20) which make up the platform, at least four blocks (40) for location at the corners of the platform, and at least two parallel cross members (30) each connecting two of the corner blocks and on which the ends of the top boards rest.

3. A pallet as claimed in claim 2, wherein the elements comprise five additional blocks (40), four of which are located centrally of each of the sides of the pallet respectively between the corner blocks, and the fifth one of which is located at the centre of the pallet, and a third cross member (30) which is parallel to the other two cross members and connected to the fifth block and two of the additional four blocks to support the central regions of the top boards (20).

4. A pallet as claimed in any preceding claim, wherein base boards (50) are provided beneath the blocks around the lower edge of the pallet.

5. A pallet as claimed in any preceding claim, wherein the cross members (30) have integral locator elements (32) which slidingly engage with corresponding means (41) at the top of the blocks (40).
6. A pallet as claimed in any preceding claim, wherein the base boards (50), have integral locator elements (52, 57) which are attached to the bottom of the blocks (40) by means of attaching means (45, 46).

7. A pallet according to claim 6 wherein at least some of the locator elements (52) integral with the base boards comprise two parts (53, 54) each integral with a respective base board.

8. A pallet according to any preceding claim wherein at least some of the plastics elements are secured together by separate connection elements (37, 46, 237).

9. A method of manufacturing a load handling pallet (10) comprising the steps of producing a plurality of separate plastics elements characterised in that the elements are connected together to define at least an upper load-bearing platform (20) with spaced support members (30, 40) therebeneath between which the forks of a fork-lift truck can be located.

10. A method according to claim 9 wherein some or all of the plastics elements are produced by an extrusion process and subsequently cut to length.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 5 B65D19/32

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 5 B65D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X CH,A,485 558 (SCHOELLER & CO.) 15 February 1970 see column 3, line 22 - line 39; figures 1-3 1,8,9

Y see column 3, line 63 - column 4, line 8 2-4,10

Y WO,A,91 13810 (COEFI S.R.L.) 19 September 1991 see the whole document 2-4,10

A US,A,5 197 396 (BREEZER ET AL.) 30 March 1993 see column 8, line 39 - column 9, line 29; figures 20-26 1,5-7,9

A US,A,3 878 796 (MORRISON) 22 April 1975 see the whole document 1,9

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance.

"R" earlier document but published on or after the international filing date.

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).

"O" document referring to an oral disclosure, use, exhibition or other means.

"P" document published prior to the international filing date but later than the priority date claimed.

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family.

Date of the actual completion of the international search

22 July 1994

Date of mailing of the international search report

02.08.94

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HZ Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 cpo nl,
Fax (+31-70) 340-3016

Authorized officer

Pernice, C
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FR-A- 1596011</td>
<td>15-06-70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 1756007</td>
<td>19-02-70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 6818438</td>
<td>24-06-69</td>
</tr>
<tr>
<td>US-A-5197396</td>
<td>30-03-93</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US-A-3878796</td>
<td>22-04-75</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>