

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 October 2006 (26.10.2006)

PCT

(10) International Publication Number
WO 2006/113202 A1

(51) International Patent Classification:
H04N 3/15 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2006/013270

(22) International Filing Date: 10 April 2006 (10.04.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
11/104,434 13 April 2005 (13.04.2005) US

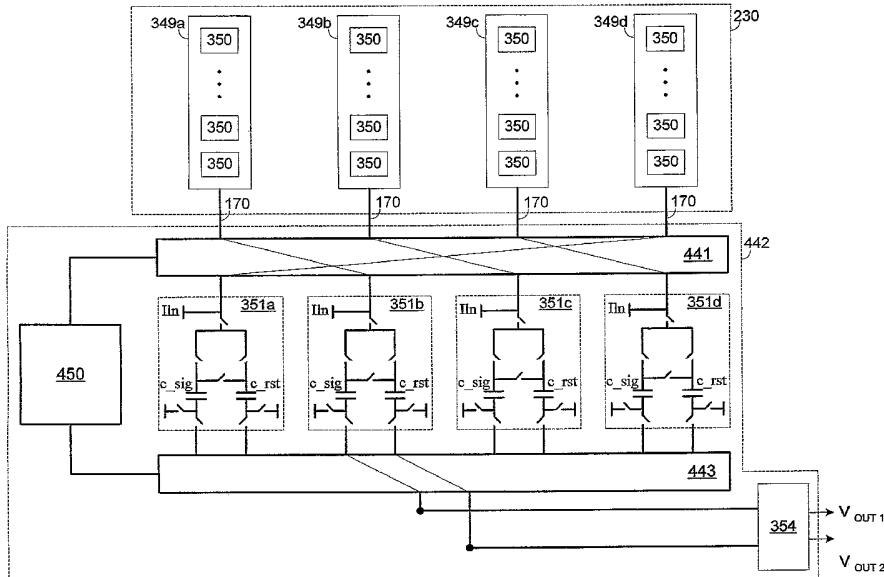
(71) Applicant (for all designated States except US): **MICRON TECHNOLOGY, INC.** [US/US]; 8000 S. Federal Way, Boise, ID 83707-0006 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): **YAN, Hai** [CN/US]; 7136 Elsa Court, Fontana, CA 92336 (US).

(74) Agent: **D'AMICO, Thomas, J.; DICKSTEIN SHAPIRO MORIN & OSHINSKY LLP**, 2101 L Street NW, Washington, DC 20037-1526 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR REDUCTION OF FIXED PATTERN NOISE IN A SOLID STATE IMAGING SENSOR

400

(57) Abstract: An imager having a switching circuit that couples pixel columns to different sample and hold circuits to reduce the noticeability of column-wise fixed pattern noise. A controller randomly couples a pixel column to a sample and hold circuit, therefore fixed pattern noise emanating from a particular sample and hold circuit is not always associated with a single pixel column. Therefore the visual perception of fixed pattern noise associated with a particular sample and hold circuit is reduced.

WO 2006/113202 A1

METHOD AND APPARATUS FOR REDUCTION OF FIXED PATTERN NOISE IN A SOLID STATE IMAGING SENSOR

FIELD OF THE INVENTION

[0001] The invention relates generally to semiconductor imaging devices, and more particularly to reducing the noticeability of fixed pattern noise in a solid state imager.

BACKGROUND OF THE INVENTION

[0002] There is a current interest in CMOS active pixel imagers for use as low cost imaging devices. Active pixel sensors can have one or more active transistors within the pixel unit cell, can be made compatible with CMOS technologies, and promise higher readout rates compared to passive pixel sensors.

[0003] FIG. 1 shows a conventional imager 200 that includes an array of pixels 230 and a timing and control circuit or controller 232 which provides timing and control signals to control the reading out of signals stored in the pixels in a manner commonly known to those skilled in the art. Exemplary arrays have dimensions of M times N pixels, with the size of the array 230 depending on the particular application. The imager is read out a row at a time using a column parallel readout architecture. The controller 232 selects a particular row of pixels in the array 230 by controlling the operation of row addressing circuit 234 and row drivers 240. Charge signals stored in the selected row of pixels are provided on column lines 170 (FIG. 2) to a readout circuit 242 as conventionally known. Referring back to FIG. 1, the pixel signal read from each of the columns can then be read out sequentially using a column addressing circuit 244. Differential pixel signals corresponding to the read out reset signal (Vrst) and integrated charge signal (Vsigt) are provided as respective outputs Vout1, Vout2 of the readout circuit 242.

[0004] FIG. 2 more clearly shows the rows and columns 349 of pixel array 230 and the associated readout circuit 242. Each column 349 includes multiple rows of pixels 350. The readout circuit 242 includes sample and hold circuitry 351 for storing the pixel reset (Vrst) and integrated charge signals (Vsig). Signals from the pixels 350 in a particular column 349 can be read out through a column line 170 to the sample and hold circuit 351 associated with that column. Typically, Vrst is stored in capacitor c_rst and Vsig is stored in capacitor c_sig in the sample and hold circuit 351. The gain of the sample and hold circuit 351 is a function of a biasing current Iln connected to the column line 170.

[0005] Signals stored in the readout circuit 242 can be read out sequentially column-by-column to an output stage 354, which is common to the entire array of pixels 330. Output stage 359 provides two output signals Vout1, Vout2 that correspond to the Vsig, Vrst signals, respectively. The analog output signals Vout1, Vout2 can then be sent, for example, to a differential analog circuit, which subtracts the reset and integrated charge signals and sends the subtracted signal to an analog-to-digital converter (ADC); alternatively, the reset and integrated charge signals can be supplied directly to the analog-to-digital converter.

[0006] During manufacture, each imaging pixel array is usually tested individually. Tests detect defective pixel circuits, pixel signal level, and other array attributes, and the information is stored based on lot and individual device identification numbers. The information developed during testing can be utilized to enhance the operation of the device by, for example, compensating for defective pixels, differing pixel signal levels, and other tested pixel attributes.

[0007] Because variances occur during manufacturing, the capacitance values of capacitors c_rst and c_sig will be different, ideally only slightly different. However, it is not easy or cheap to test the capacitance value of each capacitor c_rst, c_sig and then modify the capacitors to have the same capacitance value. Thus, capacitors c_rst and c_sig of each sample and hold circuit 351 will add a different amount of column-wise fixed pattern noise to the readout process.

[0008] Similarly, the bias current I_{ln} will vary from column to column. Although the difference may not be large, nonetheless, the different I_{ln} current values will add different amounts of gain during read out of each sample and hold circuit 351. Thus, the bias current I_{ln} of each sample and hold circuit 351 will add a different amount of column-wise fixed pattern noise to the relevant process.

[0009] The human eye is sensitive to column-wise noise, which may manifest as a column in an image being different from surrounding columns of the image. Therefore, it is desirable to modify the imager to reduce the visual obviousness of column-wise fixed pattern noise

BRIEF SUMMARY OF THE INVENTION

[0010] An imager is provided in an exemplary embodiment that reduces the visual obviousness of column-wise fixed pattern noise by randomly mixing and applying fixed pattern noise to different columns in the imager's array. In an exemplary embodiment of the invention, signals from the columns of the pixel array are read out to varying sample and hold circuits selected at random. In addition, pixel columns are randomly matched to sample and hold circuits.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the invention will be more readily understood from the following detailed description of the invention which is provided in connection with the accompanying drawings, in which:

[0011] FIG. 1 is a block diagram of a conventional digital system having an active pixel sensor array and associated processing circuitry;

[0012] FIG. 2 is a block diagram showing a portion of the sensor of FIG. 1 in greater detail;

[0013] FIG. 3 is a block diagram of a digital system having an active pixel sensor array and associated processing circuitry in accordance with an exemplary embodiment of the invention; and

[0014] FIG. 4 is a block diagram showing a processor system incorporating at least one imaging device constructed in accordance with an embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] In the following detailed description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific exemplary embodiments of the invention. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to make and use the invention, and it is to be understood that structural, logical or other changes may be made to the specific embodiments disclosed without departing from the spirit and scope of the present invention.

[0016] FIG. 3 depicts a signal processing system 400, which includes an active pixel sensor (“APS”) array 230 and a readout circuit 442 constructed in accordance with an exemplary embodiment of the invention. The signal processing system 400 differs from the system 200 illustrated in FIGs. 1 and 2 in several respects, which are described in greater detail below.

[0017] The illustrated system 400 includes pixel array 230 connected to the readout circuit 442. Readout circuit 442 includes a first switching circuit 441, second switching circuit 443, and a controller 450 for controlling the switching circuits 441, 443. The readout circuit 442 is different from the conventional readout circuit 242 (FIG. 2) in that sample and hold circuits 351a-d of readout circuit 442 are not always associated with the same pixel column 349a-d (explained in more detail below).

[0018] Each pixel column 349a-d is coupled to the first switching circuit 441. The switch setting of the first switching circuit 441 determines which pixel column 349a-d

is selectively coupled to which sample and hold circuit 351a-d. For example, FIG. 3 depicts: the first pixel column 349a coupled through the first switching circuit 441 to the second sample and hold circuit 351b; the second pixel column 349b coupled through the first switching circuit 441 to the third sample and hold circuit 351c; the third pixel column 349c coupled through the first switching circuit 441 to the fourth sample and hold circuit 351d; and the fourth pixel column 349d coupled through the first switching circuit 441 to the first sample and hold circuit 351a. In an exemplary embodiment, the first switching circuit 441 enables each pixel column 349a-d to be substantially simultaneously coupled to an associated selected sample and hold circuit 351a-d. In another aspect, only a single pixel column is coupled to its associated selected sample and hold circuit at a time.

[0019] The controller 450 provides signals to the first switching circuit 441 indicating which pixel column 349a-d is to be coupled to which sample and hold circuit 351a-d. In a preferred embodiment, the controller's 450 matching of pixel columns 349a-d and sample and hold circuits 351a-d is done on a random basis. Although described with respect to a random assignment, the invention is not so limited. For example, the matching may occur in pseudo-random, or any other varying matching fashion.

[0020] In an exemplary embodiment, the controller 450 re-matches, i.e., generates new matches between, pixel columns 349a-d and sample and hold circuits 351a-d before each read out from a row in the pixel array 230. For example, the controller 450 determines a match and then the selected row is readout, then the controller 450 determines a match and the next row is readout. In another aspect, the controller 450 re-matches periodically; that is to say that the time interval between the controller establishing another set of matches is a set time interval. The controller 450 establishes the time interval before reading out from the image array. For example, if the time interval is five, then the controller 450 rematches before each fifth read out from a row in the pixel array 230. In yet another aspect, the controller 450 re-matches at various time intervals, where the time intervals are generated on a varying fashion, ideally in a random fashion. For example, if the time interval to re-match is random, then the controller 450 re-matches before the first, fifth, and thirteenth read outs from rows in the pixel array 230. Although

this invention is described with reference to a conventional readout from an array (e.g., sequentially reading a row from the first column on the left to the last column on the right and then repeating for the next row), the invention is not so limited. For example, the imager may be readout in an interleaved fashion. Additionally, there are times when not all of the rows or columns are read out, e.g., when varying the resolution of the imager.

[0021] The output of each sample and hold circuit 351a-d is coupled to the second switching circuit 443. The selection of the second switching circuit 443 determines which sample and hold circuit 351a-d is coupled to the output stage 354. The controller 450 provides signals to the second switching circuit 443 indicating which sample and hold circuit 351a-d is to be coupled to the output stage 354. The controller 450 provides a signal to the second switching circuit 443 before the read out of a sample and hold circuit 351a-d.

[0022] In a preferred embodiment, the controller's 450 matching of sample and hold circuits 351a-d to output stage 354 is performed based on the current matching of pixel columns 349a-d to sample and hold circuits 351a-d by the controller 450. For example, in conventional systems where a row is read out sequentially, left to right, and the controller matched the first pixel column 349a with the second sample and hold circuit 351b, the second pixel column 349b with the third sample and hold circuit 351c, the third pixel column 349c with the fourth sample and hold circuit 351d, and the fourth pixel column 349d with the first sample and hold circuit 351a, then the first sample and hold circuit to be readout to the output stage 354, is the second sample and hold circuit 351b. Therefore, the controller 450 provides an appropriate signal to the second switching circuit 443 to couple the second sample and hold circuit 351b to the output stage 354. For the next read out, the controller 450 provides an appropriate signal to the second switching circuit 443, to couple the third sample and hold circuit 351c to the output stage 354. For the next read out, the controller 450 provides an appropriate signal to the second switching circuit 443 to couple the fourth sample and hold circuit 351d to the output stage 354. For the next read out, the controller 450 provides an appropriate signal to the second switching circuit 443 to couple the first sample and hold circuit 351a to the output stage 354.

stage 354. In an alternative embodiment, the controller 450 provides a signal to a separate processing circuit (not shown) indicating the match for each row and the sample and hold circuits 351a-d will be read out sequentially left to right (i.e. circuits 351a to 351d). The separate processing circuit coordinates re-ordering the signals from each column such that they are representative of the order in which they originate in the image array. In this aspect of the invention, a second switching circuit 442 is not required as the sample and hold circuits 351a-d are coupled directly to the output stage 354.

[0023] Signals stored in the readout circuits 442 can then be read sequentially column-by-column to the output stage 354, which is common to the entire array of pixels 230. The analog output signals can then be sent, for example, to a differential analog circuit, which subtracts the reset and integrated charge signals and sends the subtracted signal to an analog-to-digital converter (ADC); alternatively, the reset and integrated charge signals can be supplied directly to the analog-to-digital converter.

[0024] Therefore, an imager is provided that reduces the visual obviousness of column-wise fixed pattern noise by randomly mixing and applying fixed pattern noise to different columns of the array. Fixed pattern noise is not necessarily reduced, however, fixed pattern noise from a sample and hold circuit is not always associated with a single pixel column but is instead associated with different pixels. As the noise is applied to different columns, the human eye is less likely to notice the noise.

[0025] FIG. 4 shows system 1100, a typical processor system modified to include an APS System 400 containing the readout system, as exemplified by FIG.3. The system 1100 is exemplary of a system having digital circuits that could include image sensor devices. Without being limiting, such a system could include a computer system, camera system, scanner, machine vision, vehicle navigation, video phone, surveillance system, auto focus system, star tracker system, motion detection system, image stabilization system, and others.

[0026] System 1100, for example a camera system, generally comprises a central processing unit (CPU) 1110, such as a microprocessor, that communicates with an input/output (I/O) device 1150 over a bus 1170. Imaging device 400 also communicates with the CPU 1110 over the bus 1170. The system 1100 also includes random access memory (RAM) 1160, and can include removable memory 1130, such as flash memory, which also communicate with the CPU 1110 over the bus 1170. The imaging device 400 may be combined with a processor, such as a CPU, digital signal processor, or microprocessor, with or without memory storage on a single integrated circuit or on a different chip than the processor.

[0027] It should be appreciated that other embodiments of the invention include a method of manufacturing the circuit 1100. For example, in one exemplary embodiment, a method of manufacturing an CMOS readout circuit includes the steps of providing, over a portion of a substrate corresponding to a single integrated circuit, at least a pixel array and readout circuit of FIGs. 3 an 4 as described above using known semiconductor fabrication techniques. The method of manufacturing the readout circuit includes forming a plurality of sample and hold circuits over said substrate; and forming a switching circuit over said substrate for switchingly coupling one of said plurality of columns of pixels in said pixel array to one of said sample and hold circuits. The method of manufacturing may further include forming a control circuit over said substrate; and forming an electrical pathway for coupling said control circuit to said switching circuit. Additionally, the method of manufacturing may include the step of forming a second switching circuit over said substrate for switchingly coupling one of said sample and hold circuits to said downstream circuit.

[0028] While the invention has been described and illustrated with reference to specific exemplary embodiments, it should be understood that many modifications and substitutions can be made without departing from the spirit and scope of the invention. For example, although the invention is shown with respect to two switching circuits and the associated controller the invention is not meant to be so limiting. The controller functionality can be incorporated into the a controlling circuit already included in

conventional system. Accordingly, the invention is not to be considered as limited by the foregoing description but is only limited by the scope of the claims.

CLAIMS

What is claimed as new and desired to be protected by Letters Patent of the United States is:

1. A readout circuit for an imaging device, comprising:
a switching circuit adapted to selectively couple each of a plurality of columns of a pixel array to one of a plurality of sample-and-hold circuits.
2. A readout circuit as in claim 1, further comprising a controller for generating a match and providing a first control signal to said first switching circuit indicating the results of said match, said first control signal indicating which of said plurality of columns is to be coupled to which one of said sample and hold circuits.
3. A readout circuit as in claim 2, wherein at least two of said plurality of columns are coupled at substantially the same time to at least two of said sample and hold circuits.
4. A readout circuit as in claim 2, wherein one of said plurality of columns is coupled to one of said sample and hold circuits at a time.
5. A readout circuit as in claim 2, further comprising a second switching circuit adapted to selectively couple each of said plurality of sample-and-hold circuits to a downstream circuit.
6. A readout circuit as in claim 5, wherein said controller is adapted to provide a second control signal to said second switching circuit indicating which of said plurality of sample-and hold circuits is to be coupled to said downstream circuit at a time.
7. A readout circuit as in claim 5, wherein said controller is adapted to provide said second control signal to said second switching circuit

such that signals are readout from said sample and hold circuits in an order representative of their location in a row in of an image sensor.

8. A readout circuit as in claim 2, wherein said controller generates a match such that an interval between matching is a random interval.
9. A readout circuit as in claim 2, wherein said controller generates a match such that an interval between matching is a periodic interval.
10. A readout circuit as in claim 9, wherein said periodic interval is before each row.
11. A readout circuit as in claim 8, wherein said controller generates a match such that matching is done randomly.
12. A readout circuit as in claim 8, wherein said controller generates a match such that matching is done pseudo-randomly.
13. A readout circuit as in claim 9, wherein said controller generates a match such that matching is done randomly.
14. A readout circuit as in claim 9, wherein said controller generates a match such that matching is done pseudo-randomly.
15. A method of reading signals from an imaging device, comprising:
selectively coupling through a switching circuit each of a plurality of columns of a pixel array to one of a plurality of sample-and-hold circuits.
16. A method of reading signals from an imaging device as in claim 15, further comprising the step of providing a first control signal to said switching circuit, said first control signal indicating which of said plurality of columns is matched to be coupled to which of said sample and hold circuits.

17. A method of reading signals from an imaging device as in claim 16, further comprising the step of selectively coupling at least two of said plurality of columns at substantially the same time to at least two of said sample and hold circuits.
18. A method of reading signals from an imaging device as in claim 16, further comprising the act of selectively coupling one of said plurality of columns at substantially the same time to one of said sample and hold circuits.
19. A method of reading signals from an imaging device as in claim 16, further comprising the act of selectively coupling in a second switching circuit each of said plurality of sample-and-hold circuits to a downstream circuit.
20. A method of reading signals from an imaging device as in claim 19, further comprising the act of providing a second control signal to said second switching circuit indicating which of said plurality of sample-and hold circuits is selected to be coupled to said downstream circuit.
21. A method of reading signals from an imaging device as in claim 19, further comprising the act of providing a second control signal to said second switching such that signals are readout from said sample and hold circuits in an order representative of their location in a row in of an image sensor.
22. A method of reading signals from an imaging device as in claim 16, further comprising the step of generating new matches on a periodic interval.

23. A method of reading signals from an imaging device as in claim 16, further comprising the step of generating new matches on a random interval.
24. A method of reading signals from an imaging device as in claim 22, wherein matching is done randomly.
25. A method of reading signals from an imaging device as in claim 23, wherein matching is done pseudo-randomly.
26. A method of reading signals from an imaging device as in claim 22, wherein matching is done randomly.
27. A method of reading signals from an imaging device as in claim 23, wherein matching is done pseudo-randomly.
28. A method of reading signals from an imaging device as in claim 16, further comprising the step of generating new matches before the readout of a row pixels of an image sensor.
29. A method of forming a pixel array, comprising the steps of:
 - forming a pixel array having a plurality of columns over a substrate;
 - forming a plurality of sample and hold circuits over said substrate; and
 - forming a switching circuit over said substrate for switchingly coupling one of said plurality of columns of pixels in said pixel array to one of said sample and hold circuits.
30. A method of forming a pixel array as in claim 29, further comprising the steps of:
 - forming a control circuit over said substrate; and

forming a electrical pathway for coupling said control circuit to said switching circuit.

31. A method of forming a pixel array as in claim 30, further comprising the steps of:

forming a downstream circuit; and

forming a electrical pathway for coupling said downstream circuit to said sample and hold circuits.

32. A method of forming a pixel array as in claim 31, further comprising the step of forming a second switching circuit over said substrate for switchingly coupling one of said sample and hold circuits to said downstream circuit.

33. An integrated circuit, comprising:

a pixel array;

a readout circuit coupled to said pixel array, comprising:

a switching circuit adapted to selectively couple each of a plurality of columns of a pixel array to one of a plurality of sample-and-hold circuits.

34. An integrated circuit as in claim 33, further comprising a controller for providing a first control signal to said first switching circuit, said first control signal indicating which of said plurality of columns is to be coupled to which one of said sample and hold circuits.

35. An integrated circuit as in claim 34, wherein at least two of said plurality of columns are coupled at substantially the same time to at least two of said sample and hold circuits.

36. An integrated circuit as in claim 34, wherein one of said plurality of columns is coupled to one of said sample and hold circuits at a time.
37. An integrated circuit as in claim 34, further comprising a second switching circuit adapted to selectively couple each of said plurality of sample-and-hold circuits to a downstream circuit.
38. An integrated circuit as in claim 37, wherein said controller is adapted to provide a second control signal to said second switching circuit indicating which of said plurality of sample-and hold circuits is to be coupled to said downstream circuit at a time.
39. An integrated circuit as in claim 37, wherein said controller is adapted to provide said second control signal to said second switching circuit such that signals are readout from said sample and hold circuits in an order representative of their location in a row in of an image sensor.
40. An integrated circuit as in claim 34, wherein said controller generates a match such that an interval between matching is a random interval.
41. An integrated circuit as in claim 34, wherein said controller generates a match such that an interval between matching is a periodic interval.
42. An integrated circuit as in claim 41, wherein said periodic interval is before each row.
43. An integrated circuit as in claim 40, wherein said controller generates a match such that matching is done randomly.
44. An integrated circuit as in claim 40, wherein said controller generates a match such that matching is done pseudo-randomly.
45. An integrated circuit as in claim 41, wherein said controller generates a match such that matching is done randomly.

46. An integrated circuit as in claim 41, wherein said controller generates a match such that matching is done pseudo-randomly.
47. An imager device, comprising:
 - a pixel array;
 - a readout circuit coupled to said pixel array, comprising:
 - a switching circuit adapted to selectively couple each of a plurality of columns of a pixel array to one of a plurality of sample-and-hold circuits.
48. An imager device as in claim 47, further comprising a controller for providing a first control signal to said first switching circuit, said first control signal indicating which of said plurality of columns is to be coupled to which one of said sample and hold circuits.
49. An imager device as in claim 48, wherein at least two of said plurality of columns are coupled at substantially the same time to at least two of said sample and hold circuits.
50. An imager device as in claim 48, wherein one of said plurality of columns is coupled to one of said sample and hold circuits at a time.
51. An imager device as in claim 48, further comprising a second switching circuit adapted to selectively couple each of said plurality of sample-and-hold circuits to a downstream circuit.
52. An imager device as in claim 51, wherein said controller is adapted to provide a second control signal to said second switching circuit indicating which of said plurality of sample-and hold circuits is to be coupled to said downstream circuit at a time.

53. An imager device as in claim 51, wherein said controller is adapted to provide said second control signal to said second switching circuit such that signals are readout from said sample and hold circuits in an order representative of their location in a row in of an image sensor.
54. An imager device as in claim 48, wherein said controller generates a match such that an interval between matching is a random interval.
55. An imager device as in claim 48, wherein said controller generates a match such that an interval between matching is a periodic interval.
56. An imager device as in claim 55, wherein said periodic interval is before each row.
57. An imager device as in claim 54, wherein said controller generates a match such that matching is done randomly.
58. An imager device as in claim 54, wherein said controller generates a match such that matching is done pseudo-randomly.
59. An imager device as in claim 55, wherein said controller generates a match such that matching is done randomly.
60. An imager device as in claim 55, wherein said controller generates a match such that matching is done pseudo-randomly.
61. A processor system, comprising:
 - a processor; and
 - imager device, comprising:
 - a pixel array;
 - a readout circuit coupled to said pixel array, comprising:

a switching circuit adapted to selectively couple each of a plurality of columns of a pixel array to one of a plurality of sample-and-hold circuits.

62. A processor system as in claim 61, further comprising a controller for providing a first control signal to said first switching circuit, said first control signal indicating which of said plurality of columns is to be coupled to which one of said sample and hold circuits.
63. A processor system as in claim 62, wherein at least two of said plurality of columns are coupled at substantially the same time to at least two of said sample and hold circuits.
64. A processor system as in claim 62, wherein one of said plurality of columns is coupled to one of said sample and hold circuits at a time.
65. A processor system as in claim 62, further comprising a second switching circuit adapted to selectively couple each of said plurality of sample-and-hold circuits to a downstream circuit.
66. A processor system as in claim 65, wherein said controller is adapted to provide a second control signal to said second switching circuit indicating which of said plurality of sample-and hold circuits is to be coupled to said downstream circuit at a time.
67. A processor system as in claim 65, wherein said controller is adapted to provide said second control signal to said second switching circuit such that signals are readout from said sample and hold circuits in an order representative of their location in a row in of an image sensor.
68. A processor system as in claim 62, wherein said controller generates a match such that an interval between matching is a random interval.

69. A processor system as in claim 62, wherein said controller generates a match such that an interval between matching is a periodic interval.
70. A processor system as in claim 69, wherein said periodic interval is before each row.
71. A processor system as in claim 68, wherein said controller generates a match such that matching is done randomly.
72. A processor system as in claim 68, wherein said controller generates a match such that matching is done pseudo-randomly.
73. A processor system as in claim 69, wherein said controller generates a match such that matching is done randomly.
74. A processor system as in claim 69, wherein said controller generates a match such that matching is done pseudo-randomly.

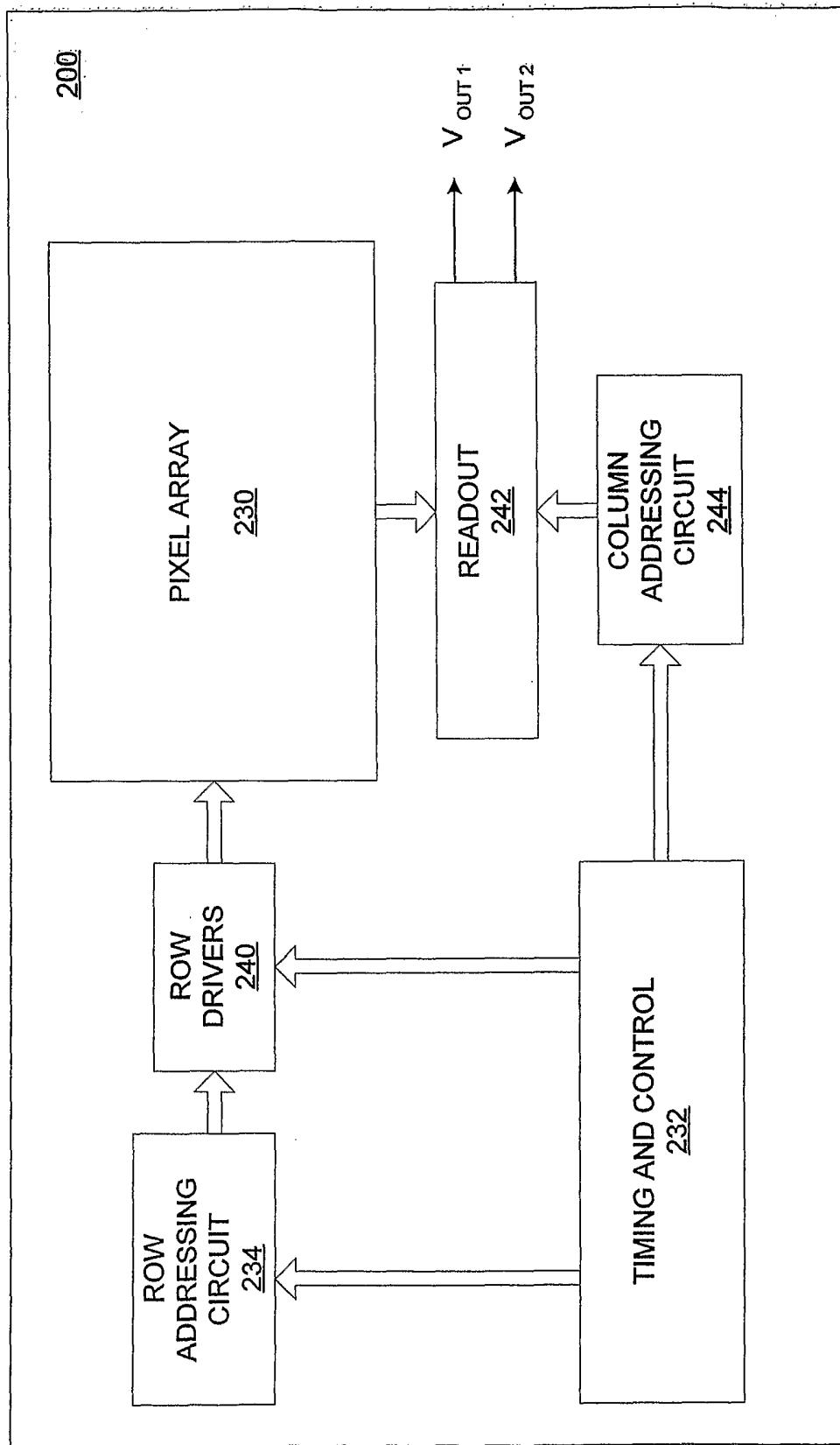


FIG. 1

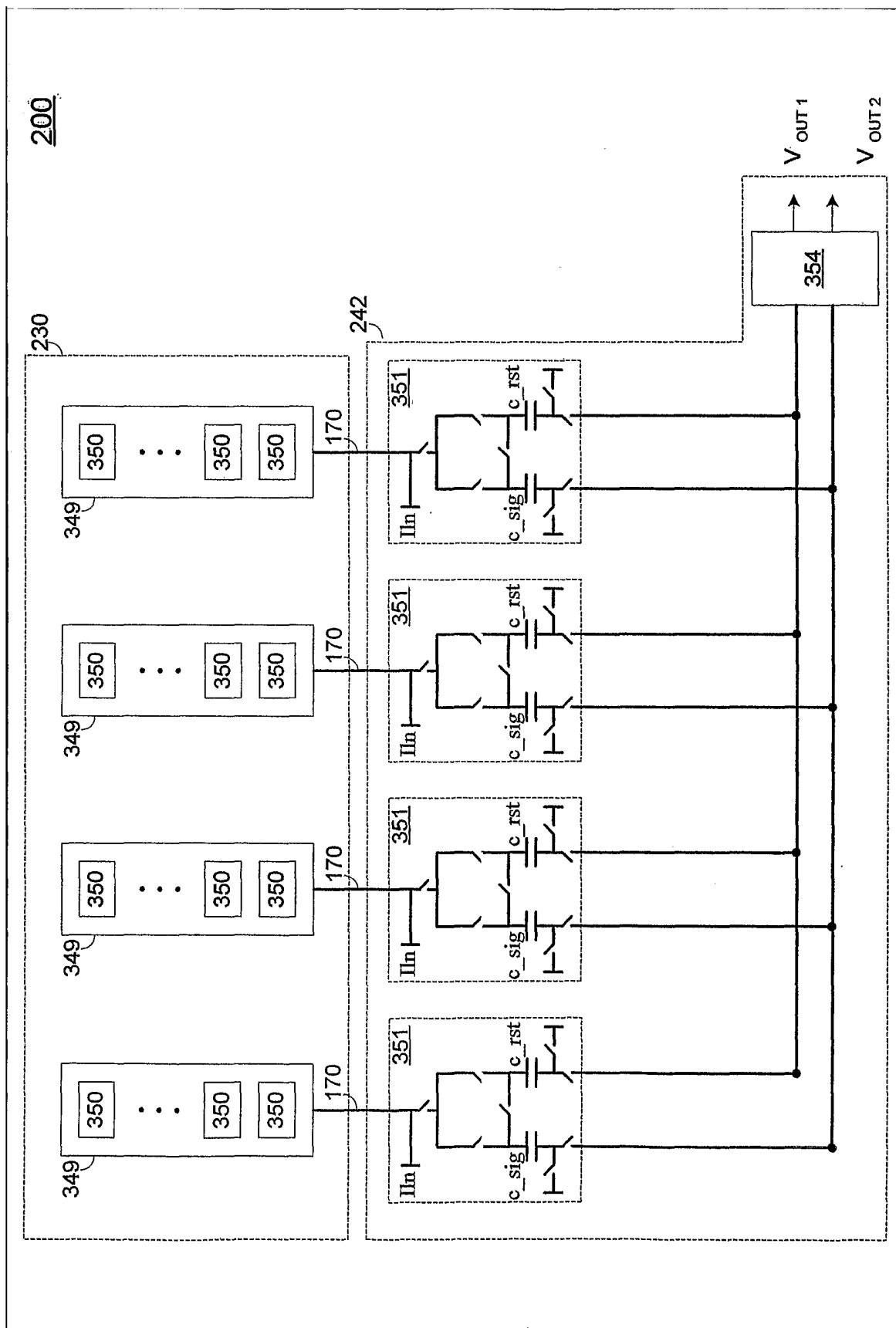


FIG. 2

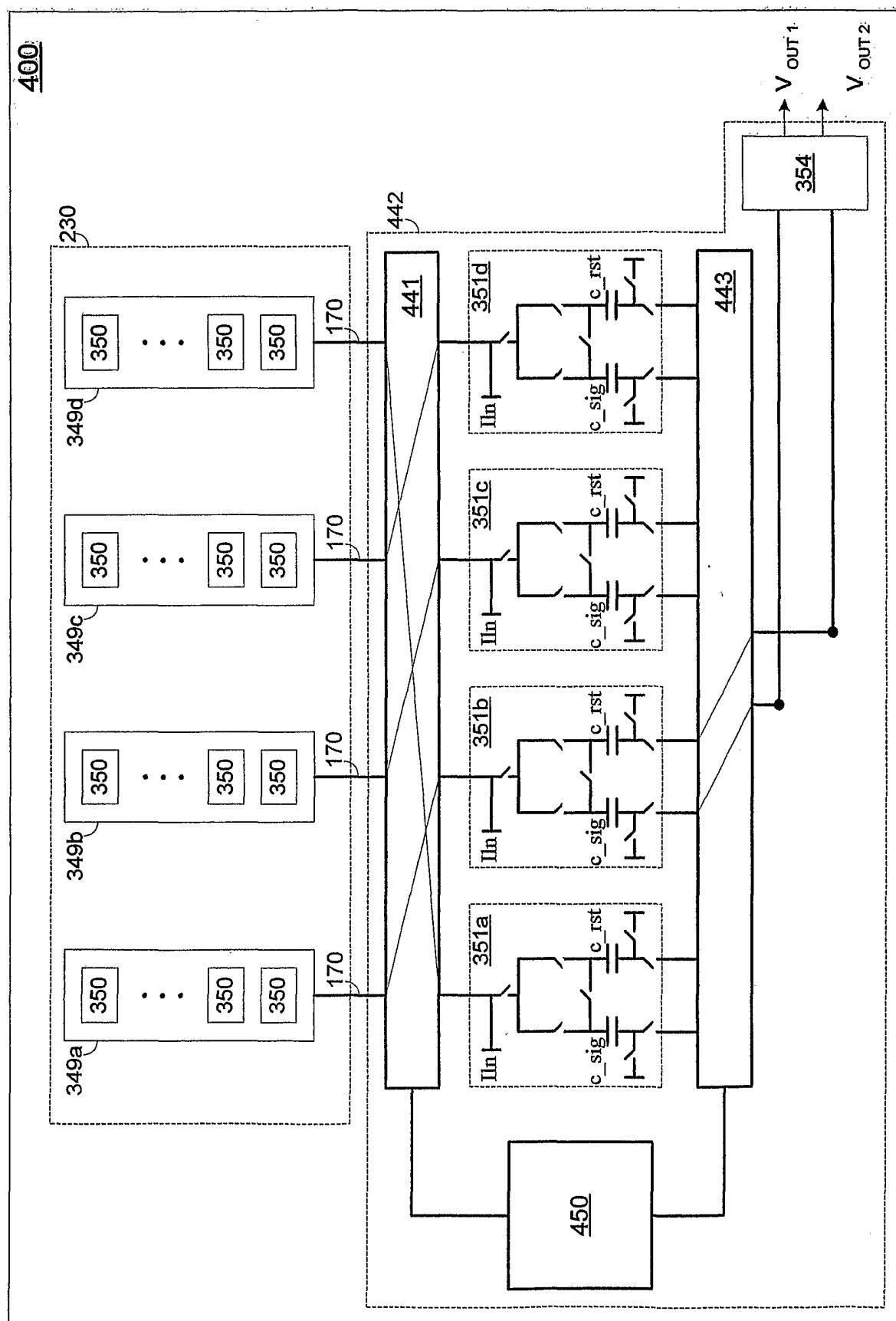


FIG. 3

FIG. 4

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2006/013270

A. CLASSIFICATION OF SUBJECT MATTER
INV. H04N3/15

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>US 5 790 191 A (ZHANG ET AL) 4 August 1998 (1998-08-04)</p> <p>column 1, line 62 - column 2, line 25; figure 2 column 4, line 29 - line 55 column 5, line 46 - line 54 column 6, line 2 - line 24</p> <p>-----</p> <p style="text-align: right;">-/-</p>	<p>1-7, 9, 10, 15-22, 28-39, 41, 42, 47-53, 55, 56, 61-67, 69, 70</p>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
2 August 2006	09/08/2006
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Montanari, M

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2006/013270

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2004/041931 A1 (TU NICK ET AL) 4 March 2004 (2004-03-04) paragraph [0031]; figure 6 -----	1-7, 9, 10, 15-22, 28-39, 41, 42, 47-53, 55, 56, 61-67, 69, 70
A	EP 1 115 244 A (SYMAGERY MICROSYSTEMS INC) 11 July 2001 (2001-07-11) -----	
A	US 2003/133625 A1 (PAIN BEDABRATA ET AL) 17 July 2003 (2003-07-17) -----	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/US2006/013270

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5790191	A 04-08-1998	NONE		
US 2004041931	A1 04-03-2004	NONE		
EP 1115244	A 11-07-2001	JP 2001235794 A	31-08-2001	
		US 6831690 B1	14-12-2004	
		US 2005088554 A1	28-04-2005	
US 2003133625	A1 17-07-2003	US 6519371 B1	11-02-2003	