wo 20107117888 A2 [10K RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intelectual Peoperty Organization. /g3 | AN K 0000 YO O
International Bureau Wi) v
sIMPIS 10) International Publicati
(43) International Publication Date \'{:/_?___/ (10) International Publication Number
14 October 2010 (14.10.2010) PCT WO 2010/117888 A2
(51) International Patent Classification: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
GO6F 15/16 (2006.01) GO6F 13/14 (2006.01) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
HO4L 12/56 (2006.01) GO6F 9/455 (2006.01) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
. L NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(21) International Application Number: SE. SG. SK. SL. SM. ST. SV. SY. TH. TJ. TM. TN. TR
PCT/US2010/029714 TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(22) International Filing Date: . (84) Designated States (unless otherwise indicated, for every
1 April 2010 (01.04.2010) kind of regional protection available). ARIPO (BW, GH,
(25) Filing Language: English GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
Lo . ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(26) Publication Language: English TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(30) Priority Data: ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
12/420,082 8 April 2009 (08.04.2009) Us MC, MK, MT, NL, NO, PL, PT, RO, SE, SL, 8K, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(71) Applicant (for all designated States except US): MI- ML, MR, NE, SN, TD, TG).
CROSOFT CORPORATION [US/US]; One Microsoft .
Way, Redmond, Washington 98052-6399 (US). Declarations under Rule 4.17:

(72) Inventor: UYEDA, Lincoln K.; c/o Microsoft Corpora- 95 [0 applicant’s entitlement to apply for and be granted
tion, International Patents, One Microsoft Way, Red- a patent (Rule 4.17(i1))
mond, Washington 98052-6399 (US). — as to the applicant’s entitlement to claim the priority of

th 1i lication (Rule 4.17(iii
(81) Designated States (unless otherwise indicated, for every ¢ carlier application (Rule (i)

kind of national protection available). AE, AG, AL, AM, Published:
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: OPTIMIZED VIRTUAL MACHINE MIGRATION MECHANISM

(57) Abstract: A virtual machine management system may perform a three
(197 VIRTUALIACHINE MANAGER phase migration analysis to move virtual machines off of less efficient

77777777777 a

| \ hosts to more efficient hosts. In many cases, the migration may allow inet-

| . .

| 132 ficient host devices to be powered down and may reduce overall energy

|

|

|

|

|

|

[

| COMPONENTS . . . L
| forming a first consolidation, a load balancing, and a second consolidation

} when consolidating virtual machines and freeing host devices. The migra-
\ tion analysis may also involve performing a first load balancing, a consoli-
} dation, and a second load balancing when expanding capacity.

—"]
| HARDWARE costs to a datacenter or other user. The migration analysis may involve per-
138 1%
ALERT | |PLACEMENT 130—] NETWORK
SYSTEM SERVICE CONNECTION

<]
=

112 BLADE SERVERS
\ h,

BLADE
ENCLOSURE

M

SERVERS /T |
114

|

VIRTUAL
B MACHINES ||

/

STORAGE 106
16—
POWER
SUPPLY
18 11
RACK
108 —~—
g
.
104 DATA CENTER
k 100
SYSTEM FOR MANAGING
VIRTUAL MACHINES
FIG. 1

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

OPTIMIZED VIRTUAL MACHINE MIGRATION MECHANISM

Background
[0001] Virtual machines are computer software implementations of a computer device,
where the virtual machine may execute programs like a physical computer. Virtual
machines are widely used in data centers where hundreds or thousands of host machines
may be operating. In order to manage the computing resources, many data centers run
server computers as virtual machines because virtual machines can be moved from one
host device to another.
[0002] Many data centers operate on a cyclical basis, where demand may be higher during
certain periods of the day or certain days of the week. During low demand times, virtual
machines may be consolidated to certain host machines so that other host machines may
be turned off or operated in a reduced power mode.
[0003] In many cases, a datacenter may consume large amounts of electricity. As
hardware is turned off during periods of reduced computer load, the datacenter may reduce
its electricity costs substantially.
[0004] The process of placing virtual machines onto host devices may be a complex
packing problem.

Summary

[0005] A virtual machine management system may perform a three phase migration
analysis to move virtual machines off of less efficient hosts to more efficient hosts. In
many cases, the migration may allow inefficient host devices to be powered down and
may reduce overall energy costs to a datacenter or other user. The migration analysis may
involve performing a first consolidation, a load balancing, and a second consolidation
when consolidating virtual machines and freeing host devices. The migration analysis
may also involve performing a first load balancing, a consolidation, and a second load
balancing when expanding capacity.
[0006] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is

it intended to be used to limit the scope of the claimed subject matter.

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

Brief Description of the Drawings
[0007] In the drawings,
[0008] FIGURE 1 is a diagram illustration of an embodiment showing a system for
managing virtual machines.
[0009] FIGURE 2 is a flowchart illustration of an embodiment showing a method for
performing consolidation.
[0010] FIGURE 3 is a flowchart illustration of an embodiment showing a method for
performing load balancing.
[0011] FIGURE 4 is a flowchart illustration of an embodiment showing a method for
gathering data and determining efficiency.
[0012] FIGURE 5 is a flowchart illustration of an embodiment showing a method for
consolidating.
[0013] FIGURE 6 is a flowchart illustration of an embodiment showing a method for load
balancing.

Detailed Description

[0014] An efficiency driven optimization process may perform a three phase migration
analysis for expanding or contracting capacity in a datacenter or other group of host
devices for virtual machines. In many cases, the three phase migration analysis for
consolidating or load balancing virtual machines may cause virtual machines to be moved
from inefficient host devices to more efficient host devices, and may involve turning on a
more efficient host device and turning off an inefficient device.
[0015] The three phase migration analysis may involve gathering data from which
efficiency scores for host devices may be determined. The efficiency scores may be used
to identify candidates for powering down, and virtual machines on said candidates may be
attempted to be moved to other hosts in a first consolidation process. During the first
consolidation process, a high threshold may be used to place virtual machines.
[0016] In a second phase of a consolidation process, a load balancing operation may be
performed for those host devices that are overloaded. In some cases, the load balancing
operation may result in one or more hosts being powered on to accept some of the virtual
machines. The newly powered on hosts may be selected from the more efficient hosts.
[0017] In a third phase of the consolidation process, a second consolidation operation may
be performed to identify any potentially underutilized host devices. In the second
consolidation operation, a lower threshold may be used to place virtual machines so that

host devices are not overloaded.

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

[0018] A load balancing operation may operate in a similar manner as the consolidation
operation. In the first step of a load balancing operation, a low threshold for identifying
host devices on which virtual machines may be placed. Any new host devices may be
selected from the most efficient host devices. The second step may be a consolidation
step, and a third step may be a second load balancing operation with a higher threshold.
[0019] The optimization process may take into account the current state of virtual
machines on the host device and may minimize virtual machine movements or thrashing.
Further, the optimization process may favor moving virtual machines from inefficient host
devices to more efficient host devices.

[0020] Throughout this specification and claims, the term ‘host’ is used to describe a
physical hardware platform on which a virtual machine may be executed. In some
embodiments, a lightweight operating system may run on the host and may support one,
two, or many more virtual machines. In some embodiments, many tens or even hundreds
of virtual machines may be executed on one physical host device.

[0021] The term ‘host’ may be any type of hardware platform on which a virtual machine
may be executed. In some cases, the hardware platform may be a server computer with
specialized processors, memory, disk storage, and network connections that are
specifically designed to run virtual machines. In other cases, the host may be a
conventional desktop or server computer, or may be a portable device such as a mobile
phone, laptop computer, or other device. For the purposes of this specification, many
examples may involve datacenter applications, however, those skilled in the art will
appreciate that many other implementations may be possible.

[0022] Throughout this specification, like reference numbers signify the same elements
throughout the description of the figures.

[0023] When elements are referred to as being “connected” or “coupled,” the elements can
be directly connected or coupled together or one or more intervening elements may also be
present. In contrast, when elements are referred to as being “directly connected” or
“directly coupled,” there are no intervening elements present.

[0024] The subject matter may be embodied as devices, systems, methods, and/or
computer program products. Accordingly, some or all of the subject matter may be
embodied in hardware and/or in software (including firmware, resident software, micro-
code, state machines, gate arrays, etc.) Furthermore, the subject matter may take the form
of a computer program product on a computer-usable or computer-readable storage

medium having computer-usable or computer-readable program code embodied in the

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

medium for use by or in connection with an instruction execution system. In the context
of this document, a computer-usable or computer-readable medium may be any medium
that can contain, store, communicate, propagate, or transport the program for use by or in
connection with the instruction execution system, apparatus, or device.

[0025] The computer-usable or computer-readable medium may be, for example but not
limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or propagation medium. By way of example, and not
limitation, computer readable media may comprise computer storage media and
communication media.

[0026] Computer storage media includes volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of information
such as computer readable instructions, data structures, program modules or other data.
Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired information
and which can accessed by an instruction execution system. Note that the computer-
usable or computer-readable medium could be paper or another suitable medium upon
which the program is printed, as the program can be electronically captured, via, for
instance, optical scanning of the paper or other medium, then compiled, interpreted, of
otherwise processed in a suitable manner, if necessary, and then stored in a computer
memory.

[0027] Communication media typically embodies computer readable instructions, data
structures, program modules or other data in a modulated data signal such as a carrier
wave or other transport mechanism and includes any information delivery media. The
term “modulated data signal” means a signal that has one or more of its characteristics set
or changed in such a manner as to encode information in the signal. By way of example,
and not limitation, communication media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic, RF, infrared and other
wireless media. Combinations of the any of the above should also be included within the
scope of computer readable media.

[0028] When the subject matter is embodied in the general context of computer-executable
instructions, the embodiment may comprise program modules, executed by one or more

systems, computers, or other devices. Generally, program modules include routines,

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

programs, objects, components, resources, data structures, etc. that perform particular
tasks or implement particular abstract data types. Typically, the functionality of the
program modules may be combined or distributed as desired in various embodiments.
[0029] Figure 1 is a diagram of an embodiment 100 showing a system for managing
virtual machines. Embodiment 100 is a simplified example of a system that may manage
virtual machines on several host devices.

[0030] The diagram of Figure 1 illustrates functional components of a system. In some
cases, the component may be a hardware component, a software component, or a
combination of hardware and software. Some of the components may be application level
software, while other components may be operating system level components. In some
cases, the connection of one component to another may be a close connection where two
or more components are operating on a single hardware platform. In other cases, the
connections may be made over network connections spanning long distances. Each
embodiment may use different hardware, software, and interconnection architectures to
achieve the functions described.

[0031] Embodiment 100 is an example of a datacenter that may contain many host
devices, each of which may execute multiple virtual machines. Virtual machines may be a
software version of a device. In a large datacenter environment, server computers may be
implemented as virtual machines. As demand shrinks, virtual machines may be
consolidated onto some host devices so that other hosts may be powered down or operated
in a reduced energy state. As demand rises, hosts may be brought online and virtual
machines may be spread among the available hosts. The process of spreading the virtual
machines to available hosts may be known as load balancing.

[0032] As the overall load of a datacenter diminishes, some host devices may become
underutilized. Underutilized hosts may be consolidated by having the virtual machines on
the host moved to other hosts, then the host may be powered off. Typically, a
consolidation action may occur when several host devices become less than fully utilized.
[0033] When selecting a host to consolidate, an inefficient host may be selected,
regardless of the utilization of the host. Once the virtual machines on the selected host are
moved off of the host, the host may be powered down or operated in a reduced power
mode.

[0034] As the overall load of a datacenter increases, some hosts may become overloaded.
Overloaded hosts may be load balanced by moving virtual machines from the overloaded

host to other operating hosts that are not overloaded. In some cases, no other operating

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

hosts may be capable of accepting a virtual machine without being overloaded itself. In
such a case, a new host may be identified to be turned on and a virtual machine may be
moved to the new host.

[0035] When selecting a host to turn on during load balancing, an efficient host may be
selected.

[0036] The efficiency of a host may be determined by a resource supplied by the host
divided by the power consumed. In many embodiments, the resource may be CPU
capacity, although other embodiments may use different resources.

[0037] In many cases, hosts may have different capabilities and different capacities. The
resources available on a host may be categorized into consumable and non-consumable
resources.

[0038] A consumable resource is one that is consumed by a virtual machine and cannot be
shared with other virtual machines or a host operating system. An example of a
consumable resource may be random access memory (RAM). Each virtual machine may
have a dedicated amount of RAM assigned to the virtual machine, and that RAM may not
be used by other virtual machines. Another example may be disk space or other storage.
[0039] In some cases, a consumable resource may be considered as a summation of
various component resources. For example, a hard disk resource may be considered the
summation of disk read speed, disk write speed, and capacity.

[0040] A non-consumable resource may be a resource that can be shared by virtual
machines or by a host operating system. An example may be a number of processors
available on a host device. Some virtual machines may operate using two, four, or more
processors or cores. Even though a virtual machine uses four processors, other virtual
machines or the host operating system may also use the same processors.

[0041] A binary resource may be a subset of a non-consumable resource. A binary
resource may be a resource that is either present or not on a host. For example, a host may
or may not have a graphics processor or other feature that may be used by a particular
virtual machine.

[0042] The various resources may be discussed in this specification as dimensions for
consideration when placing virtual machines onto hosts. The term ‘dimensions’ is
intended to include resources or any other factor that may be considered when evaluating
the efficiency of a host. In some cases, a dimension may not correspond to a resource

available on a host or used by a virtual machine.

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

[0043] In a datacenter 104, a rack 108 may contain multiple host devices. A typical
datacenter may have racks with blade enclosures 110 that may include multiple blade
servers 112, Some racks may include standalone servers 114, storage devices 116, and
power supplies 118. In many cases, a rack or group of racks may have cooling systems,
power conditioning units, uninterruptible power supplies, and other components. In a
large datacenter, many hundreds or even thousands of racks may be present, many of
which may have different configurations.

[0044] Many resources may be shared across several host devices. When the resources are
shared, the ‘cost’ or power usage of the resources may be divided over multiple hosts, and
the hosts may be very efficient. When very few hosts share the resource, the host may
become much more inefficient. Hosts may become inefficient when other host are
powered off, leaving the few running hosts to consume an otherwise shared resource.
[0045] Using the datacenter as an example, a rack of equipment may have devices that
provide services to an entire rack, such as power supplies, cooling, or other services. Even
if one server is operational in the rack, the rack based services may be turned on. In such a
case, the single server or host device may be quite inefficient as the power consumption of
the rack based power supplies, rack cooling, or other services are not shared across
multiple host devices.

[0046] In another example, a blade enclosure may provide power, network access,
cooling, or other services to multiple blades. A blade enclosure may be fully operational
even to support a single blade server operational in the enclosure. In such a case, the
power consumption of the blade enclosure may be attributed to the operating host device,
making the host inefficient.

[0047] When consolidating virtual machines within a datacenter, inefficient hosts may be
identified for shutting down by moving virtual machines to other devices. When load
balancing, efficient hosts may be considered for bringing online and receiving virtual
machines.

[0048] The efficiency of a host may be determined by dividing a resource provided by the
host by the power consumed by the host. The power consumed by a host may be
approximated as the power consumed by shared devices divided by the number of hosts
that are using the shared devices. In the example above of a blade enclosure, the power
consumed by the blade enclosure may be divided among the blade servers operating in the
enclosure. If the blade enclosure has ten servers and all ten are operating, the power

consumed by the blade enclosure may be divided by ten and attributed to each host. If the

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

same blade enclosure has only one operating server, the entire power consumed by the
blade enclosure can be attributed to the server.

[0049] In many embodiments, the efficiency of a host may be expressed by measuring a
resource by the power consumed by the host. A typical embodiment may divide CPU
capacity by power consumed. The power consumed by the host may include any
consumption attributed to the host by shared devices, such as shared power supplies,
shared cooling resources, or other shared devices.

[0050] In other embodiments, the efficiency of a host may be expressed by measuring
other resources, such as disk capacity, network capacity, or other resources and dividing
by power consumption. Some embodiments may analyze the resources to identify a
scarce resource for determining an efficiency. In such cases, the resource may change
from one analysis to another.

[0051] In some embodiments, many placement scenarios may be simulated and analyzed
to identify a preferred scenario. In such an embodiment, many thousands or millions of
scenarios may be simulated and a score may be assigned to the scenarios. The score may
be used to select a preferred scenario that may be implemented.

[0052] Embodiment 100 is an example of a system for managing virtual machines in a
datacenter environment. The virtual machine manager 102 may be a device that organizes
a datacenter 104, where multiple virtual machines 106 may be executed by various host
devices.

[0053] The virtual machine manager 102 may be an application that operates on a
hardware platform. The virtual machine manager 102 may be comprised of software
components 120 that operate on hardware components 122. The hardware components
122 may include a processor, random access memory 126, disk or other storage 128, and a
network connection 130. In some embodiments, some or all of the hardware components
122 may be virtualized.

[0054] The virtual machine manager 102 may have software components 120 that include
a data gatherer 132, an analysis engine 134, a placement service 136, and an alert system.
The data gatherer 132 may collect status of various dimensions from host devices and
virtual machines. The analysis engine 134 may determine a placement for a set of virtual
machines on the hosts, and the placement service 136 may move the virtual machines to
the designated hosts. The alert system 138 may identify conditions when a consolidation

or load balancing operation may be performed.

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

[0055] The data gatherer 132 may collect data on dimensions or resources supplied by
hosts and demanded by virtual machines. The supply and demand information may be
used to determine scarcity of the various dimensions, which may in turn be used by the
placement manager 134 to determine various placements for virtual machines onto hosts.
[0056] The analysis engine 134 may evaluate many different placement configurations.
Each placement configuration may be a set of specific virtual machines that are executed
on a specific host device. In some embodiments, many thousands, millions, or more
placement configurations may be evaluated. For each placement configuration, a score
may be computed for an optimizing parameter. For example, each configuration may have
a power consumption score from which an optimized configuration may be selected.
[0057] Figure 2 is a flowchart illustration of an embodiment 200 showing a method for
performing consolidation of virtual machines. Embodiment 200 is a simplified example of
a method that may be performed by a virtual machine manager 102 as illustrated in
embodiment 100.

[0058] Other embodiments may use different sequencing, additional or fewer steps, and
different nomenclature or terminology to accomplish similar functions. In some
embodiments, various operations or set of operations may be performed in parallel with
other operations, either in a synchronous or asynchronous manner. The steps selected here
were chosen to illustrate some principles of operations in a simplified form.

[0059] Embodiment 200 illustrates one method for performing a consolidation routine.
Consolidation may be triggered when one or more host devices becomes underutilized,
and the process may move virtual machines from the host device to other devices.

[0060] In many cases, consolidation process may allow one or more host devices to be
powered down. Typically, consolidation may occur when the overall load of a datacenter
is reduced, and in many cases, several host devices may become underutilized.
Underutilization may occur when one or more virtual machines operating on the host are
consuming fewer host resources, leaving much of the host resources unused.

[0061] The consolidation process may perform a first consolidation operation using loose
constraints, then perform a load balancing operation using moderate constraints, and then
perform a second consolidation operation using tighter constraints.

[0062] The constraints may be thresholds or other parameters that indicate a host’s
capacity. For example, a datacenter may typically operate hosts at an 80% capacity. By
selecting an 80% capacity factor, the host may be able to respond to load fluctuations

without being over capacity.

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

[0063] Different datacenters may establish different constraints based on many different
factors. In cases where datacenter loads may be fairly constant and predictable, a typical
capacity factor may be higher, such as 85%, 90%, or even higher. In some cases,
datacenter loads may be volatile, leading an administrator to use a lower capacity factor,
such as 75%, 70%, 60%, or even lower.

[0064] In some embodiments, the capacity factor may be changed due to the time of day
or other factors. For example, a datacenter that sees high loads during the workday hours
may operate at a lower capacity factor so that the datacenter remains responsive. The
same datacenter may be operated with higher capacity factors overnight so that more host
devices may be powered off and when the load on the datacenter is more predictable and
steady.

[0065] In the embodiment 200, a first consolidation may be performed with loose
constraints. In such an operation, virtual machines may be moved from inefficient devices
to more efficient devices such that the efficient devices may be overloaded. The load
balancing operation may move virtual machines from overloaded devices to other devices
or may involve turning on one or more new devices that may receive virtual machines.
When the load balancing operation is performed, devices that are turned on may be
selected from the more efficient devices.

[0066] A second consolidation operation may be performed using tighter constraints,
which may cause some host devices to be unloaded and powered down, but the constraints
may be selected so that an overloaded condition may not occur on other devices.

[0067] The three phase method of embodiment 200 may result in inefficient host devices
being powered down and more efficient hosts being started up. In a typical process,
several inefficient host devices may be powered down and a much smaller number of
more efficient host devices may be powered up.

[0068] Embodiment 200 begins in block 202 by identifying a condition to consolidate.
Different embodiments may have different mechanisms for identifying a condition to
consolidate. In some embodiments, a monitoring system may receive alerts from host
devices that fall below some threshold of capacity. For example, a host device that falls
below 20% utilization of its resources may send an alert to a centralized monitoring
system, such as the alert system 138 of embodiment 100.

[0069] Different embodiments may have a lower limit of utilization that may identify
underutilized hosts. In the example above, a 20% utilization factor is used. Some

embodiments may use a 50%, 40%, 30%, 25%, 15%, 10% or other factors for a lower

10

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

limit of utilization. As discussed above for the upper limit of utilization, the lower limit of
utilization may vary during the course of a day, day or the week, or other secasonal or
periodic basis.

[0070] In some embodiments, a single host device becoming underutilized may trigger the
consolidation operation of embodiment 200. In other embodiments, alerts from a certain
number of devices may be used to trigger a consolidation operation.

[0071] In some embodiments, a condition for consolidation may occur when the overall
load of a datacenter is significantly less than the current capacity of the datacenter. Such
an embodiment may perform a consolidation based on datacenter-wide capacity and load
parameters in addition to or in licu of data for individual host devices.

[0072] In block 204, host and virtual machine data may be gathered. An example of a
method for gathering such data may be illustrated in embodiment 400. The data gathered
for each host and virtual machine may be data that may be used to identify resource usage
as well as power usage. In some embodiments, a scarce resource may be identified and
used to calculate the efficiency of host devices.

[0073] In block 206, the power efficiency of host devices may be determined. The
efficiency of a host device may be determined by dividing a resource by the power
consumed for the host. In a simple example using CPU as a resource, a host’s efficiency
may be measured in CPU capacity divided by watts consumed.

[0074] In block 208, a first consolidation may be performed using loose constraints. An
example of a consolidation method may be illustrated in embodiment 500 illustrated later
in this specification. The consolidation method may identify inefficient host devices and
attempt to move the virtual machines from inefficient host devices to other, more efficient
host devices.

[0075] The first consolidation of block 208 may be performed with loose constraints. A
loose constraint may be one in which hosts may be loaded with virtual machines beyond
their intended capacity. For example, when packing virtual machines onto a host, the
recipient host may be packed with virtual machines that exceed a desired 80% capacity.

In some cases, the loose constraints may allow a recipient host to exceed 90%, 100%,
110%, or even higher capacity.

[0076] The consolidation of block 208 may be performed as a simulated consolidation and
without moving any virtual machines. Throughout the embodiment 200, simulated actions
may be performed to generate a mapping of virtual machines to host devices. After the

mapping is determined, the virtual machines may be moved according to the mapping.

11

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

[0077] The constraints used in block 208 may be two types of constraints. The first
constraint may be an upper capacity limit for hosts that receive virtual machines, as
described above. The second constraint may be a lower capacity limit for those host
devices that are being considered for powering down. A loose constraint may consider a
larger set of host devices for powering down than a tight constraint.

[0078] For example, a loose constraint may consider hosts with 30% or lower capacity for
powering down. A tight constraint may consider only hosts with 10% or lower capacity
for powering down, which may be a much smaller set of host devices.

[0079] After consolidation of block 208, a first intermediate mapping may be created. The
first mapping may be used in block 210 to perform a simulated load balancing using
moderate constraints. An example of a simulated load balancing process may be
illustrated in embodiment 600 presented later in this specification.

[0080] In the simulated load balancing, hosts that exceed a capacity limit may be
examined to move some virtual machines from the host to other hosts. In cases where no
host can accept a virtual machine, a new host may be powered on and may receive the
virtual machine.

[0081] During a load balancing operation, new hosts may be selected from the more
efficient host devices. In many cases, a sorted list of host devices may be created based on
efficiency, and the most efficient hosts may be selected from the top of the list.

[0082] In many embodiments, the moderate constraints of block 210 may be the typical
operating constraints or target constraints for a datacenter. In some embodiments, the
moderate constraints of block 210 may be tighter or looser than the target constraints for
the datacenter.

[0083] The load balancing of block 210 may produce a second mapping of virtual
machines to hosts. The second mapping may be used in block 212 to perform a second
consolidation using tighter constraints and a final mapping.

[0084] The second consolidation of block 212 may be a similar operation to block 208, but
performed with a different set of constraints. In block 212, a tighter set of constraints may
be considered. In block 212, devices with a more restrictive lower capacity limit may be
considered for powering off, and the virtual machines may be moved to hosts with a more
restrictive upper capacity limit.

[0085] In some embodiments, the second consolidation of block 212 may be performed
using the same upper limit constraints as used in block 210 for the load balancing, but with

tighter lower limit constraints.

12

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

[0086] After the second consolidation is performed in block 212, a mapping may be
generated. The mapping may be used in block 214 to actually move some of the virtual
machines to new locations and power off some host devices.

[0087] The analysis of blocks 204 through 212 may be performed many times to generate
many different mappings in some embodiments. Some embodiments may perform
simulations that generate thousands or more mappings, each of which may be scored. One
of the mappings may be selected and implemented in block 214.

[0088] The process of embodiment 200 may produce a consolidated mapping that
maximizes the efficiency of the hosts. Low efficiency hosts may be powered off and, if
new hosts are turned on, the new hosts may be more efficient hosts.

[0089] The process of embodiment 200 allows the first consolidation to occur with loose
constraints. The first consolidation may allow some hosts to become over capacity, but
may maximize the number of inefficient hosts that may be powered down. The load
balancing operation may transfer some of the load from the over capacity host devices to
other hosts, including one or more efficient hosts that may be turned on to receive the
capacity. The second consolidation operation may further consolidate if one or more hosts
are very lightly loaded, but without overloading other hosts.

[0090] The consolidation operations of blocks 208 and 212 may attempt to unload and
power off host devices based on the host’s efficiency, which may not correspond to the
host’s current capacity. In some cases, such hosts may be operating at or above capacity.
The consolidation operation may cause inefficient hosts to be powered off while moving
virtual machines to other, more efficient hosts. The net result may be a considerable
power savings.

[0091] The consolidation process of embodiment 200 may result in some hosts being
turned on. In such a case, the hosts that are turned on may be more efficient than the hosts
that are powered down. In a typical case, fewer hosts may be turned on than those that are
turned off.

[0092] Figure 3 is a flowchart illustration of an embodiment 300 showing a method for
performing load balancing of virtual machines. Embodiment 300 is a simplified example
of a method that may be performed by a virtual machine manager 102 as illustrated in
embodiment 100.

[0093] Other embodiments may use different sequencing, additional or fewer steps, and
different nomenclature or terminology to accomplish similar functions. In some

embodiments, various operations or set of operations may be performed in parallel with

13

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

other operations, either in a synchronous or asynchronous manner. The steps selected here
were chosen to illustrate some principles of operations in a simplified form.

[0094] Embodiment 300 is conceptually similar to the process of embodiment 200, but
performs a load balancing operation rather than a consolidation operation. Embodiment
300 performs a first load balancing process with tight constraints, a consolidation
operation with moderate constraints, and a second load balancing operation with loose
constraints.

[0095] Embodiment 300 attempts to spread out a large number of virtual machines in the
first load balancing operation by using tight constraints. This operation may spread virtual
machines to a large number of host devices, and may cause one or more efficient host
devices to be turned on. The subsequent consolidation operation may attempt to turn off
the more inefficient devices, and the second load balancing operation may clean up any
overloaded devices.

[0096] The net result of embodiment 300 is that the load balancing operation may be
performed while favoring efficient host devices over less efficient host devices. In some
operations, currently operating hosts that are inefficient may be turned off during the
consolidation operation, and the efficient hosts that are turned on during the first load
balancing operation may remain operating. In such a case, a load balancing operation may
result in some host devices being powered off.

[0097] The consolidation operations may attempt to unload host devices based on the
host’s efficiency, which may not correspond to the host’s current capacity. In some cases,
such hosts may be operating at or above capacity. The consolidation operation may cause
inefficient hosts to be powered off while moving virtual machines to other, more efficient
hosts.

[0098] The load balancing operations may attempt to move virtual machines across host
devices that are already powered on. However, if there is no capacity in the currently
powered on hosts, a new host may be powered on and brought on line. Any new host that
is powered on may be selected from the more efficient hosts.

[0099] Embodiment 300 begins in block 302 by identifying a condition to load balance.
Different embodiments may have different mechanisms for identifying a condition to load
balance. In some embodiments, a monitoring system may receive alerts from host devices
that exceed some threshold of capacity. For example, a host device that exceeds 80%
utilization of its resources may send an alert to a centralized monitoring system, such as

the alert system 138 of embodiment 100.

14

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

[00100] In some embodiments, a single host device becoming over utilized may trigger the
load balancing operation of embodiment 300. In other embodiments, alerts from a certain
number of devices may be used to trigger a load balancing operation.

[00101] In some embodiments, a condition for load balancing may occur when the overall
load of a datacenter is significantly greater than the desired capacity of the datacenter.
Such an embodiment may perform a load balancing based on datacenter-wide capacity and
load parameters in addition to or in licu of data for individual host devices.

[00102] In block 304, host and virtual machine data may be gathered. An example of a
method for gathering such data may be illustrated in embodiment 400. The data gathered
for each host and virtual machine may be data that may be used to identify resource usage
as well as power usage. In some embodiments, a scarce resource may be identified and
used to calculate the efficiency of host devices.

[00103] In block 306, the power efficiency of host devices may be determined. The
efficiency of a host device may be determined by dividing a resource by the power
consumed for the host. In a simple example using CPU as a resource, a host’s efficiency
may be measured in CPU processor capacity divided by watts consumed.

[00104] In block 308, a first load balancing operation may be performed using tight
constraints. An example of a load balancing method may be illustrated in embodiment
600 illustrated later in this specification. The load balancing method may push virtual
machines from heavily loaded devices to lightly loaded devices. In some cases, a new
host may be powered on to accept some of the virtual machines. In such a case, the new
host may be selected from a sorted list of efficient hosts.

[00105] The first load balancing of block 308 may be performed with tight constraints. A
tight constraint may be one in which hosts may be unloaded down to a limit lower than
their desired capacity. For example, when moving virtual machines from a host, the host
may be unloaded until the capacity is some capacity less than a desired capacity. For
example, a desired capacity may be 80% but the tight constraint of block 308 may be set
so that the host devices are unloaded to less than 60% capacity.

[00106] The load balancing of block 308 may be performed as a simulated load balancing
and without actually moving virtual machines. Throughout the embodiment 300,
simulated actions may be performed to generate a mapping of virtual machines to host
devices. After the mapping is determined, the virtual machines may be moved according

to the mapping.

15

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

[00107] After load balancing of block 308, a first intermediate mapping may be created.
The first mapping may be used in block 310 to perform a simulated consolidation using
moderate constraints. An example of a simulated consolidation process may be illustrated
in embodiment 600 presented later in this specification.

[00108] In the simulated consolidation of block 310, hosts that fall below a capacity limit
may be examined to move some virtual machines from the host to other hosts. When no
further hosts can be consolidated and powered off, the consolidation operation may stop.
[00109] The constraints used in block 310 may be two types of constraints. The first
constraint may be an upper capacity limit for hosts that receive virtual machines, as
described above. The second constraint may be a lower capacity limit for those host
devices that are being considered for powering down. A loose constraint may consider a
larger set of host devices for powering down than a tight constraint.

[00110] For example, a loose constraint may consider hosts with 30% or lower capacity
for powering down. A tight constraint may consider only hosts with 10% or lower
capacity for powering down, which may be a much smaller set of host devices. During a
load balancing operation, new hosts may be selected from the more efficient host devices.
In many cases, a sorted list of host devices may be created based on efficiency, and the
most efficient hosts may be selected from the top of the list.

[00111] In many embodiments, the moderate constraints of block 310 may be the typical
operating constraints or target constraints for a datacenter. In some embodiments, the
moderate constraints of block 310 may be tighter or looser than the target constraints for
the datacenter.

[00112] The consolidation of block 310 may produce a second mapping of virtual
machines to hosts. The second mapping may be used in block 312 to perform a second
load balancing using loose constraints and a final mapping.

[00113] The second load balancing of block 312 may be a similar operation to block 308,
but performed with a different set of constraints. In block 312, a loose set of constraints
may be considered. In block 312, load balancing may occur for those devices that have
higher usage than may be typically desired. In many cases, the load balancing operation
of embodiment 300 may be performed when a data center is experiencing a rise in
demand. As such, the load balancing of block 312 may be performed such that each host
is being utilized somewhat less than a target utilization because the load on the datacenter

may be expected to rise.

16

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

[00114] In some embodiments, the second load balancing of block 312 may be performed
using the same upper limit constraints as used in block 310 for the consolidation.

[00115] After the second consolidation is performed in block 312, a mapping may be
generated. The mapping may be used in block 314 to actually move some of the virtual
machines to new locations and power off some host devices.

[00116] The analysis of blocks 304 through 312 may be performed many times to generate
many different mappings in some embodiments. Some embodiments may perform
simulations that generate thousands or more mappings, each of which may be scored. One
of the mappings may be selected and implemented in block 314.

[00117] The process of embodiment 300 may produce a consolidated mapping that
maximizes the efficiency of the hosts. Low efficiency hosts may be powered off and, if
new hosts are turned on, the new hosts may be more efficient hosts.

[00118] The process of embodiment 300 allows the first load balancing to occur with tight
constraints. The first load balancing may force virtual machines to new hosts that may be
powered on. The consolidation operation may attempt to unload the inefficient hosts. The
second load balancing operation may spread the virtual machines across the remaining
hosts.

[00119] The load balancing process of embodiment 300 may result in some hosts being
powered down. In such a case, the hosts that are turned on may be more efficient than the
hosts that are powered down. In a typical case, more hosts may be turned on than those
that are turned off.

[00120] Figure 4 is a flowchart illustration of an embodiment 400 showing a method for
gathering supply and demand data. Embodiment 400 is a simplified example of a method
that may be performed by a data gatherer 132 as illustrated in embodiment 100 and by
block 204 in embodiment 200 and by block 304 in embodiment 300.

[00121] Other embodiments may use different sequencing, additional or fewer steps, and
different nomenclature or terminology to accomplish similar functions. In some
embodiments, various operations or set of operations may be performed in parallel with
other operations, either in a synchronous or asynchronous manner. The steps selected here
were chosen to illustrate some principles of operations in a simplified form.

[00122] Embodiment 400 is one method by which supply and demand data may be
gathered. Supply data may relate to resources or other dimensions that are found on host

devices, while demand data may relate to matching resources or dimensions that are used

17

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

by virtual machines. After gathering data, scarcity is determined and a scarcity score may
be determined for each host device. The efficiency of each host may also be determined.
[00123] Embodiment 400 may be performed on a set of host devices with different initial
states. In one scenario, the host devices may be analyzed as if no virtual machines are
currently running. In such a scenario, an optimized placement of virtual machines over an
entire datacenter may be identified. In another scenario, a consolidation or load balancing
may be performed with some other set of initial conditions.

[00124] In block 402, the initial state for analysis is determined.

[00125] In blocks 404 through 408, the demand is determined for each dimension of each
virtual machine. In block 404, each virtual machine is analyzed. For each dimension in
block 406, a demand for the dimension is determined in block 408.

[00126] The dimensions analyzed may vary between embodiments. In many cases, the
dimensions may include consumed resources, non-consumed resources, and binary
resources as well as other dimensions.

[00127] For each host device in block 410, each dimension is analyzed in block 412. The
supply for the dimension is determined in block 414.

[00128] A power consumption may be determined in block 416. The power consumption
of block 416 may include the power consumed by the host itself, along with the host’s
share of devices that may be shared with other hosts. For example, power supplies,
cooling systems, and other devices may be shared between hosts. In cases where very few
hosts are sharing the devices, the power consumption of the shared devices may be
attributed to only those few hosts. In many cases, the efficiency of the host may be
decreased significantly when other hosts that share a device are not powered on.

[00129] In a simple example, a rack of servers may contain fifty servers and may have
cooling systems and power supplies that are shared among the fifty servers when the
servers are all running. When forty nine of the servers are turned off and one server is
operational, the single running server may be attributed all of the power for the rack
cooling and power supply. Such a server may be very inefficient, compared to a case
when all fifty servers are operational and share the power costs of the cooling system and
power supplies.

[00130] For each dimension in block 416, a scarcity is determined in block 418.

18

10

15

20

25

WO 2010/117888 PCT/US2010/029714

[00131] Scarcity may be determined through the following formula:
Z demand

VM

[Z sup ply,. — Z demand dim]

host VM

dim

Scarcity,, =

[00132] For each dimension, scarcity may be computed by dividing the sum of all virtual
machine demand by the difference between the sum of all host supply and the sum of all
virtual machine demand. Scarcity is a dimensionless number for each dimension. A high
scarcity value indicates that the dimension is scarce, while a low scarcity value indicates
that the dimension is plentiful.

[00133] In block 420, each host is analyzed. In block 422, an efficiency for the host is
determined. The efficiency may be calculated by dividing the selected resource by the
consumed power attributed to the host. In some embodiments, a scarce resource may be
used as the selected resource. The scarce resource may be that resource which has the
highest scarcity factor as determined in the above equation.

[00134] In some embodiments, the efficiency of block 422 may be determined using a
predefined resource, such as CPU capacity, disk capacity, or some other resource. In
embodiments where a scarce resource is used, the resource may change from one analysis
to another.

[00135] Figure 5 is a flowchart illustration of an embodiment 500 showing a method for
consolidating. Embodiment 500 is a simplified example of a method that may be
performed by the consolidation operations of blocks 208 and 212 of embodiment 200, as
well as block 310 of embodiment 300.

[00136] Other embodiments may use different sequencing, additional or fewer steps, and
different nomenclature or terminology to accomplish similar functions. In some
embodiments, various operations or set of operations may be performed in parallel with
other operations, either in a synchronous or asynchronous manner. The steps selected here
were chosen to illustrate some principles of operations in a simplified form.

[00137] The operation of embodiment 500 may attempt to place all of the virtual machines
from one host to other hosts. When all of the virtual machines are transferred, the host
may be turned off. Embodiment 500 may perform the operation for many hosts until the

capacity of the recipient hosts is met, at which point the process may end.

19

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

[00138] Embodiment 500 attempts to power off hosts by processing hosts in order of
efficiency, starting with the least efficient hosts first. In some cases, the least efficient
hosts may be hosts that are at or over the host’s capacity limit.

[00139] The starting mapping may be read in block 502. The hosts may be ordered in
increasing efficiency in block 504, and a host may be selected in block 506. The host
selected in block 506 may be the most inefficient host based on the list in block 504.
[00140] For cach virtual machine on the host in block 508, an attempt to place the virtual
machine may be made on other hosts without violating an upper limit constraint on the
recipient host in block 510. For example, when an upper limit constraint is 80% capacity,
a virtual machine may be placed on the host when the addition of that virtual machine
does not cause the recipient host to exceed 80% capacity.

[00141] The process of placing the virtual machine 510 may be performed using any type
of packing algorithm, including worst-fit decreasing algorithms.

[00142] If the placement is successful in block 512, the placement may be added to the
mapping in block 514 and the next virtual machine may be analyzed in block 508.

[00143] If the placement is unsuccessful in block 512, the loop may be exited in block 516
because the host cannot be consolidated. The changes for the current host may be
removed from the mapping in block 518 and the process may end in block 524.

[00144] If all of the virtual machines were successfully placed in block 508, the host may
be marked as turned off in the mapping in block 520. If more hosts are to be analyzed in
block 522, the process may return to block 506 to select the next inefficient host.
Otherwise, the process may end in block 524.

[00145] Figure 6 is a flowchart illustration of an embodiment 600 showing a method for
load balancing. Embodiment 600 is a simplified example of a method that may be
performed by blocks 210 of embodiment 200 and blocks 308 and 312 of embodiment 300.
[00146] Other embodiments may use different sequencing, additional or fewer steps, and
different nomenclature or terminology to accomplish similar functions. In some
embodiments, various operations or set of operations may be performed in parallel with
other operations, either in a synchronous or asynchronous manner. The steps selected here
were chosen to illustrate some principles of operations in a simplified form.

[00147] Embodiment 600 attempts to place virtual machines from overloaded hosts to
non-overloaded hosts. If no non-overloaded hosts exist, a new host may be turned on and
may receive the virtual machine. The new host may be selected from the most efficient

hosts available.

20

10

15

20

25

30

WO 2010/117888 PCT/US2010/029714

[00148] In block 602, a starting mapping may be read.

[00149] In block 604, the turned off hosts may be ordered with decreasing efficiency. The
ordered list of turned off hosts in block 504 may be used to select new hosts that may be
turned on. When a new host is selected, the most efficient host may be selected.

[00150] In block 606, overloaded hosts may be identified by the upper capacity limit
defined for the operation. For example, if the upper capacity limit was 60%, those hosts
with greater than 60% utilization may be selected.

[00151] Each of the overloaded hosts may be analyzed in block 608.

[00152] An attempt to place a virtual machine from the overloaded host may be made in
block 610 without violating the upper capacity limit of other hosts. The placement may be
made to any other host such that the receiving host does not violate the upper capacity
limit.

[00153] If the placement is successful in block 612, the placement may be added to the
mapping in block 614. If the current host is still overloaded in block 615, the process may
return to block 610 to attempt to place another virtual machine. If the current host is no
longer overloaded in block 615, the process may return to block 609 to process another
overloaded host.

[00154] Ifthe placement is not successful in block 612, a new host to turn on may be
identified in block 616. The new host may be selected as the most efficient host that is not
currently turned on from the list generated in block 604.

[00155] The virtual machine may be placed on the new host in block 618 and the new host
may be added to the mapping in block 620. The placement of the virtual machine may be
added to the mapping in block 614 and the process may continue.

[00156] When all of the overloaded hosts are processed in block 608, the process may end
in block 622.

[00157] The foregoing description of the subject matter has been presented for purposes of
illustration and description. It is not intended to be exhaustive or to limit the subject
matter to the precise form disclosed, and other modifications and variations may be
possible in light of the above teachings. The embodiment was chosen and described in
order to best explain the principles of the invention and its practical application to thereby
enable others skilled in the art to best utilize the invention in various embodiments and
various modifications as are suited to the particular use contemplated. It is intended that
the appended claims be construed to include other alternative embodiments except insofar

as limited by the prior art.

21

WO 2010/117888 PCT/US2010/029714

Claims
1. A method of placing a plurality of virtual machines onto a plurality of host devices,
said method comprising;:
performing a first simulated consolidation (208) using a first host capacity limit,
said first simulated consolidation being performed by a method comprising:
identifying a first set of said host devices being powered on host devices
and a second set of said host devices being powered off host devices, each of said
powered on host devices hosting at least one of said plurality of virtual machines;
determining an efficiency for each of said plurality of host devices;
identifying at least one of first set of said host devices being an inefficient
host;
identifying a set of virtual machines being those virtual machines operating
on said at least one of said first set of said host devices;
placing said set of virtual machines on other members of said first set of
host devices to create a first mapping, said placing being performed such that each
of said host devices has a capacity less than said first host capacity;
performing a simulated load balancing (210) operation using said first mapping to
create a second mapping, said simulated load balancing comprising moving at least one
virtual machine such that all of said host devices are below a second host capacity limit;
performing a second simulated consolidation (212) using said second mapping to
create a third mapping, said second simulated consolidation being performed using a third
host capacity limit; and
placing said plurality of virtual machines (214) onto said plurality of host devices
according to said third mapping.
2. The method of claim 1, said efficiency being a power efficiency.
3. The method of claim 2, said power efficiency being determined by dividing a

consumed resource by power consumed.

4. The method of claim 3, said resource being CPU resource.

5. The method of claim 3, said resource being a storage resource.

6. The method of claim 3, said resource being a scarce resource.

7. The method of claim 1, said simulated load balancing comprising identifying a

new host from said second set of host devices and moving at least one of said virtual
machines to said new host.

8. The method of claim 7, said new host being an efficient host.

22

WO 2010/117888 PCT/US2010/029714

9. The method of claim 1, said first capacity limit being higher than said second
capacity limit.

10. The method of claim 9, said second capacity limit being higher than said third
capacity limit.

11. The method of claim 1, said first simulated consolidation being performed for at
least two of said host devices.

12. A system for managing a plurality of host devices and a plurality of virtual
machines operable on said plurality of host devices, said system comprising:

a data gatherer (132) configured to determine data for each of said host devices and
cach of said virtual machines, said data comprising data that may be used to compute
efficiency for each of said host devices;

an analysis engine (134) configured to create a proposed mapping by performing a
method comprising:

performing a first simulated consolidation using a first host capacity limit,
said first simulated consolidation being performed by a method comprising:
identifying a first set of said host devices being powered on host
devices and a second set of said host devices being powered off host
devices, cach of said powered on host devices hosting at least one of said
plurality of virtual machines;
determining an efficiency for each of said plurality of host devices;
identifying at least one of first set of said host devices being an
inefficient host;
identifying a set of virtual machines being those virtual machines
operating on said at least one of said first set of said host devices; and
placing said set of virtual machines on other members of said first
set of host devices to create a first mapping, said placing being performed
such that each of said host devices has a capacity less than said first host
capacity;
performing a simulated load balancing operation using said first mapping to
create a second mapping, said simulated load balancing comprising moving at least
one virtual machine such that all of said host devices are below a second host

capacity limit; and

23

WO 2010/117888 PCT/US2010/029714

performing a second simulated consolidation using said second mapping to

create said proposed mapping, said second simulated consolidation being

performed using a third host capacity limit; and

a virtual machine placement service (136) configured to move at least a portion of
said virtual machines to conform to said proposed mapping.
13. The system of claim 12, said performing a simulated load balancing being
performed by a worst fit decreasing algorithm.
14. The system of claim 12, said analysis engine further configured to:

perform a plurality of mapping scenarios using said method;

scoring each of said plurality of mapping scenarios; and

selecting said proposed mapping from one of said plurality of mapping scenarios.
15. The system of claim 12, said efficiency being calculated using power costs for a

host device, said power costs comprising power supply costs and cooling costs attributable

to said host device.

24

WO 2010/117888 PCT/US2010/029714

1/6

(- 102 VIRTUAL MACHINE MANAGER

_______ 1

| n—
| _| pamA 128 |
| 132 GATHERER STORAGE | -
| | HARDWARE
| ANALYSIS | 134 PROCESSOR 124 | COMPONENTS
| ENGINE < |
| MEMORY| | |
138 136
| ra Tog| |
| ALERT PLACEMENT 130~ _NETWORK |
| SYSTEM SERVICE CONNECTION |
| |

~ 112 BLADE SERVERS
\ N
BLADE
ENCLOSURE
110 ———
SERVERS /T | 4«——_| VIRTUAL
114 MACHINES
STORAGE \- 106
116 ——
POWER
SUPPLY
118 ———
RACK
108 —~
N 104 DATA CENTER A_ 0
SYSTEM FOR MANAGING
VIRTUAL MACHINES

FIG. 1

WO 2010/117888 PCT/US2010/029714

2/6

IDENTIFY A CONDITION TO CONSOLIDATE |~ 202

l

GATHER HOST AND VIRTUAL MACHINE DATA [~ 204

l

DETERMINE EFFICIENCY FOR EACH HOST

206

PERFORM FIRST CONSOLIDATION USING LOOSE CONSTRAINTS I\208

l

PERFORM LOAD BALANCING USING MODERATE CONSTRAINTS I‘ 210

l

PERFORM SECOND CONSOLIDATION USING TIGHTER
CONSTRAINTS TO GENERATE MAPPING

‘ PLACE VIRTUAL MACHINES ACCORDING TO MAPPING I\f 214

k 200

METHOD FOR
PERFORMING CONSOLIDATION

212

FIG. 2

WO 2010/117888 PCT/US2010/029714

3/6

IDENTIFY A CONDITION TO LOAD BALANCE |~ 302

GATHER HOST AND VIRTUAL MACHINE DATA |~ 304

l

DETERMINE EFFICIENCY FOR EACH HOST [306

l

PERFORM FIRST LOAD BALANCING USING TIGHT CONSTRAINTS

308

PERFORM CONSOLIDATION USING MODERATE CONSTRAINTS 310

PERFORM SECOND LOAD BALANCING USING LOOSE
CONSTRAINTS TO GENERATE MAPPING

‘ PLACE VIRTUAL MACHINES ACCORDING TO MAPPING | 31

k 300

METHOD FOR PERFORMING
LOAD BALANCING

312

FIG. 3

WO 2010/117888 PCT/US2010/029714

4/6

DETERMINE INITIAL STATE FOR ANALYSIS |~402

! 404

{ FOR EACH VIRTUAL MACHINE 3
| e
{ FOR EACH DIMENSION
408
DETERMINE DEMAND
l
’ 410
{ FOREACH HOST DEVICE
v
{ FOR EACH DIMENSION)‘_¢
414
DETERMINE SUPPLY
4 |
DETERMINE POWER |-_ 416
CONSUMPTION
4
(_FOR EACH DIMENSION Ll
7
418 40
DETERMINE SCARCITY
L
{ FOREACHHOST
424
DETERMINE EFFICIENCY
|
N
METHOD FOR GATHERING DATA
AND DETERMINING EFFICIENCY

FIG. 4

WO 2010/117888 PCT/US2010/029714

5/6

READ STARTING MAPPING ~ |~902

!

ORDER HOSTS WITH INCREASING EFFICIENCY I'\504

SELECTAHOST |~506
v 508
FOR EACH VIRTUAL
MACHINE ONHOST
l ~ 510
ATTEMPT TO PLACE VIRTUAL
MACHINE ON HOST WITHOUT
VIOLATING CONSTRAINT
Y
MARK HOST AS TURNED 14
OFF IN MAPPING ‘

YES | ADD PLACEMENT
TO MAPPING

EXIT LOOP -

HOST CANNOT BE CONSOLIDATED [21

NO
REMOVE CHANGES FOR CURRENT | 54q
HOST FROM MAPPING
<€
END 524
\ 500
METHOD FOR
CONSOLIDATING

FIG. 5

WO 2010/117888

6/6

PCT/US2010/029714

READ STARTING MAPPING |\
T 602
ORDER TURNED OFF HOSTS
WITH DECREASING EFFICIENCY N_g04
v
IDENTIFY OVERLOADED
HOSTS USING CONSTRAINT [_g06
v
(FOR EACH OVERLOADED HOST ? YES e e
608~
ATTEMPT TO PLACE VIRTUAL
END MACHINE ON ANOTHER HOST
622 WITHOUT VIOLATING CONSTRAINT
6107 .
YES | ADD PLACEMENT
TO MAPPING
NO T \614
616 /1 IDENTIFY A HOiT TO TURN ON
PLACE VIRTUAL MACHINE
6181 ONNEW HOST
v
620 /1.ADD NEW HOST TO MAPPING

600]

METHOD FOR LOAD
BALANCING

FIG. 6

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings

