
(19) United States
(12) Patent Application Publication

Rajaram et al.

US 2005OO10917A9

(10) Pub. No.: US 2005/0010917 A9
(48) Pub. Date: Jan. 13, 2005

CORRECTED PUBLICATION

(54)

(76)

(21)

(22)

(15)

(65)

(63)

SYSTEMAND METHOD FOR EXECUTING
WIRELESS COMMUNICATIONS DEVICE
DYNAMIC INSTRUCTION SETS

Inventors: Gowri Rajaram, San Diego, CA (US);
Diego Kaplan, San Diego, CA (US)

Correspondence Address:
KYOCERAWIRELESS CORP.
P.O. BOX 92.8289
SAN DIEGO, CA 92192-8289 (US)

Appl. No.: 09/927,131

Filed: Aug. 10, 2001

Prior Publication Data

Correction of US 2003/0033599 A1 Feb. 13, 2003
See Related U.S. Application Data.

US 2003/0033599 A1 Feb. 13, 2003

Related U.S. Application Data

Continuation-in-part of application No. 09/917,026,
filed on Jul. 26, 2001.

i.

i.

Continuation-in-part of application No. 09/916,460,
filed on Jul. 26, 2001.
Continuation-in-part of application No. 09/916,900,
filed on Jul. 26, 2001.

Publication Classification

(51) Int. Cl." G06F 9/44; G06F 9/445
(52) U.S. Cl. .. 717/173; 717/178
(57) ABSTRACT
A System and method are provided for executing dynamic
instruction Sets in a wireleSS communications device. The
method comprises: forming the System Software into Symbol
libraries, each Symbol library comprising Symbols having
related functionality; arranging the Symbol libraries into
code Sections in a code Storage Section nonvolatile memory;
executing System Software; receiving a patch manager run
time instruction (PMRTI) or dynamic instruction sets,
including conditional operation code and data items, in a file
System Section nonvolatile memory, calling a run-time
library from a first code Section; processing the patch
manager run time instruction operation code; operating on
System data and System Software, and, in response to oper
ating on the System data and System Software, controlling the
execution of the System Software.

roa, sit at 2 Mafrait'y
- - - - - - - - - - - - - - -axesssss-as-are--... .

US 2005/0010917 A9 Patent Application Publication Jan. 13, 2005 Sheet 1 of 16

US 2005/0010917 A9

.
wis

s
s

a gif

Patent Application Publication Jan. 13, 2005 Sheet 2 of 16

-l www.

Patent Application Publication Jan. 13, 2005 Sheet 3 of 16 US 2005/0010917 A9

x- &M, ----------evro-aer- -
six-as-r-

ge 12 s

ww.w.-- ---ra- (-- w-www.raw 'w - ,

f a tyi C.
t Syria, yev Self

2 is refly is e &
re . . . a- i

f ce. : ? ? Wr
r 3. g i

- ...A. f stres N essary we were tattoai-soo astereases sesswrit is 22 i

Patent Application Publication Jan. 13, 2005 Sheet 4 of 16 US 2005/0010917 A9

-
ls, 11 Prix Q if gee Sec for '77't s
f f ---

ser" saw- --- * -* wrw as Wr v. Mits re- e. | --
f

--- sful 3 h; 7 C Py farm & in Sir all if Self- 2
i

syster at cle section 372. N ----------

r arer arr

orsewaysagasiyaswatsware sixar we was...

i-2- -------- s
Aved ai-p-d airch, ri-Nasi. . , 2 r (d de Sect2 .

riss-vows Na wa 'Y-8w --or-terron-reinvoli
:

---, a; SO // 2 vu a 2 - 2 S 3 girl, a w

Patent Application Publication Jan. 13, 2005 Sheet 5 of 16 US 2005/0010917 A9

R f i
: f 8 i. s y . i r f

ass-- - - - - - - - - or- - -- - a M - W was -

i '; i. 2 & i
E sir Y. a. is ty s "... g. & S. vs.

assist: 1-cr-sw-saw six taxwins tax', 'cris'
its ... , -a-... rer

8 y
g ^ - - - - - w 8. R. '' ; : " : " " (, : *, *,2,...,

US 2005/0010917 A9

:

.
8

?********~~~~. „...
*

~~ ~ ~ ~ ~ ~ ~ ~ ~~~~ ~~~~);…),

Y
:

US 2005/0010917 A9 Patent Application Publication Jan. 13, 2005 Sheet 7 of 16

******--~~~~,~...,

„………--~~~~ ~~~~--~~~~ ~~~~ -… „

l
;

if:

sawsawi. ''

s

worr vs.

ar
f

se

**Electareswarassesses

an:

Patent Application Publication Jan. 13, 2005 Sheet 8 of 16 US 2005/0010917 A9

-----ee-eraweers westware--it - “

- igt last v4 to r 322 47
- - - - - 4.

attamaraserwar sexler- ^ iw Pvrwax- as ity **7irk'3-yess-rr-er-staxsteriassassesses,

-er re."rr " " - as '' -- i.e.

<- law at -2. y
| --- gro" rear ge
-y A st 3. c. It Data i-S

r" - rst- or -o

.
: 2 yrtecite. A 58

i

r “revive assesses.
: ' 'riginal 4.

- lava ": ify, & she 370 rate it in
-- * : *. Sw: 3 x sy's crys --west-s-reens ------xx x ... --

a 3
4.

US 2005/0010917 A9 Patent Application Publication Jan. 13, 2005 Sheet 9 of 16

axxxx

Patent Application Publication Jan. 13, 2005 Sheet 10 of 16 US 2005/0010917 A9

ft. 04 (stage-)-- to do e

- V. . looke
2. t' set Y S Yite ce. S eft Je t'e. to S Y Nool evate g
t swirl Y - 88 . ---, was is “... t \ ...' * * * * NZ ... s.sys sat, W. . . sow r- *S***** revierrer...'

T ississ- ...N.----------r", "gri" ---------

lateaus is trans-Ata ads sistians
&rs was -w- -----Y------ locle

i Svost no code Sections et Sta. A C-2 esse s
. - Ys: (* W & six (-x

overwaxwumste-wiew wriww.irriww.sww.ryx as a
3. ---8-seasex

rosates the CSA v. -r to a i- & e.
- - - 8 (e. I... . . o

ma inte- s ne So fy r
|...----------------Sur- | C2

8- ----- s exer, l, sycia & C-..." & C. -- Y S 2 ra C -A RS I
ea cu-ha YS r f / coa
------ Y s - 2 -
i. ro-------- S. S. feesna 4 year instruction sets ******"ravarreleaseoverserrari

:

it "wis trs is - sisters- - - - -
is

... Cof
Š f Haunch i? a flu e - ire er? re. t" e - Mr. "“remeroessness------ """ vote res.

- - c.
i P &ale SS s al Yairie, ic ?y truction Sgt.

i fee-cline goea attory ce & g
-er rrrx-rr arrow - answerve roarracerss i

-ex. N.--

- - - (CaC2 |s (6(a c.
““-**--"writerase versar-------.

le Catana Synwy (c.
3

Patent Application Publication Jan. 13, 2005 Sheet 11 of 16 US 2005/0010917 A9

“vors vis O 9.
---....Y RS 006b
sys y s26 Uesce a Q- g R Yet to \f ls

100& bi

| S.

S. as - ar. sia-2s. 49ers---iss 'was', ps.

rivettestero-para.

i
asser-swrwr. - ws - * x 'mas. & s

-- rose car-raoros. s.....s.

attalia at lose execute site. ... was . xvi -sands X w. wr-watc.-rris, "serose aversionale worses

r- (CCébts.
c. ... isS. * : * : * ~ * &^^^ wa- --w,

- 4.
J- y r" re--... O C i i (Zy tra rea d ava titles 9 6 bié
... -- or- re-ric - - - - ... cer, “. 4004 bfe.

Ni-----------

- i & &

Co-e ', A levate oc R to 2-ti's

*ressex was "Y" wax-XExses & assic

t da te 'N'N, i Y, ea - or if na
O attoos

Patent Application Publication Jan. 13, 2005 Sheet 12 of 16 US 2005/0010917 A9

() or sins (ycters Softwass Ave Syraba totat's g
... warm-8aar --8 W. **assa.

... ." sour s -- f e ww rear. x --- & - s

attanana Syria, year to to code seek as c | s s: -p *xrve :

(-tar Hil V f f 63a.

--.... . . . ny - - - "---- r

exer"error------...

executive sy?ters. Se executi, YAl3ss is
N- six saw-wow aww.

ife c. e., \} ?ie,
i... - - - - - -r-, - ... ------ wer

g

astruct or sets x 3 &xtr *** *-s cro-tra-se - -it
an SS3

aross-ser:** "", "" tf
& s", & \\ t (, J s - Y, - ena st |- i y /10%
- S - - - - -)

- to sets | Process AA di N (a rate Arve. s ***-rises rear-virgrow.

a co-" --- N.------T, ,
f Age eggi (c. SYS facea, cket & FS.g. s ti sa,
(.--...- ...ish, car. * * * * '" - - - - - - - - - - - - - - -w-sur-vario.

--------N-r- - - is a (, b.
(..A & A y 2, t 6, S. NS if g_re 2 at- i 1062

. -r -l': ' ' ' wex. - ------

far a 2-una - . . CYC terva eave
i & -x, - war -- - - - - -It 123

resor- w

coe rath. & A state. cats ar. ycter,
i t aka. e ... -----er" r" ----------- f

- - --- - - - - - - - - was s r. assrs - . f ti

x ' ' ------- Y - - a st-- - - -v- - - ---over eit * * -------. ... xx - :

f C Y i : & Six 2 C.R.", y S. YS fy S& y ea.

Patent Application Publication Jan. 13, 2005 Sheet 13 of 16 US 2005/0010917 A9

f, I, it is for r (i. , Ye symbol i Seatte
-- a----3&tate.'''

error
t risis ...

f's votina dose & a (e. tootnoy;

r s' f 2.
3. .

Proce (Sera
------metro-is-e-, --- "r “”"

x ra ti- sigs. f 2 SS 4. System eye", is, C SS LS

S -- of f 2pée
re- ". . si, - - - X x - W. “s 3s & W. . at-aak ths t{ al a "g. fit (2 rea, at r

x-crisis
& ... ss -

Patent Application Publication Jan. 13, 2005 Sheet 14 of 16 US 2005/0010917 A9

w ----------

via (3 Oslaru9 II U.
it. teca Na Yitz. try, ge-f es e. (ro Syfy be \ t b% re.

. to code (ca. 1 b '' aty Sy?ts braries no ca's Sectory N w -----ser-wa-no-iwa Y axers trixswer wavrew-users-turrwort 3o a.

- 8 y

i

F--- - , a , i. “r- Steve, cede Settees into nonviolate marty
?toadine, e.g. core list site at attle one rway --
execute sisterra settur re- L. 322 (22 (i. taar. - a --- , -a-...------- r" -- “.

i.e. a tea dynamic tri-, -, (-t-)d Ae &\\ t{\a YaYa c. NS rucker Sets is
- - - - - - , (34

- - - W. M. is re-is a sxswarxiwa-irraw-yilter Y discwarxmeer. xe-sw-ress’ “ixty * eastec-S-- 3 - - - - - --S

& '. si i. : &AW '. f assrs fé'ss failast its date a lease (e. evereoty
7 in 2 - . . . fi -- A. si. i 2x Na. st 2, ify ... • A-, * cat
- --------------- ro-ror

"---------- ----------- r" re-ar-----...-
- is is *. Cre-end J as a 53ry

s N-y - X & Yara “s... ww

3. operate or cycles late Sycare guare
f

a e Kéru's ten

Patent Application Publication Jan. 13, 2005 Sheet 15 of 16 US 2005/0010917 A9

- - | 4 pix
sociews." MorrixtsW!...-a-sissis is a - ww.laws view will stewavasaas. a-24& .

|) ority Sycters, Softwas a late Syrett fore reg
- - - - - - - - - --- &rs, i. . i.e., S. Yeaty \ bta is fe code Seek" () as

- - - is: Ny a 1- -ama - W - Aa. -- . rw

ser esser'" re-v--

... ; ; or is, sa s
S 3.

wx - . . . "Fres--stax-yrsaw

struct or Sgt S.
-- risk obs, ...----, ... * * * r or -e-..... s f *Part-ories:

N

& is

44.
--

aw throws visuse

3, wuk

; ---it x as , r sy 8 r r- “ w “" I sy " ...&\ \e, f : y - eas evy a fé,
is w Y 4 x - - - Y

s
wi' -w-...- -- Ssi-wevar: *rr'' ''

site
8 fi" is 3's "a i Ps 0 (.2 cSt fle, 2\; in five ve

It or voting execurs et systs sea.
-...------- re-us----------- yo (e.

fee Elect AA R21 X tree-yce8', 's eas 6.H
i. s.l..... --roia / Stovacs. sarai'ssia. Atlé. ae 1. is re-siz&sr.

trang ten it the sYS
. 's : : - -31 - a essarasser resea-visors worst" --

war --- it l f \
*- E v. C\{ co Ne e ?t lay e are systist

six-xt & Xs, Xss stras

Satta 6.
X 3 swif

sts...sv sassissilei.

rary, Wis axeta et syster

Patent Application Publication Jan. 13, 2005 Sheet 16 of 16 US 2005/0010917 A9

a kisser

? S. atav -s (5.08. . (5 (sees - (50 rtsixler-waisress-stuiver

- N -------------
r 8 s 3. EN t rtov, St Stee. Saštale into Syme'." is....... -- s. v... -----------" "" y f's

2. ------
hi- is a s , , & E. - (a . 'Sr. & robot lesia Mos y Alo Cole Seakers
- - - - - - - - - - - - - -r r 45 c
------r ee ..., if f l rail Astorina god 2 Seek", 23. n & SS nonvocate togency

--ser-scist seas. seats - - - - - - - ... ---to Y. cross-vs.-a or : " - rears or - --- i.e. i-cis-s-s-s-a sorrors

has

&
i QY, & it tra, S- S to rea se-k{- 3.8%
i. as cer 8 sawMeswaxiwawkww. (5. 36 f

Yor-crux a-rocure -

* . a f. xiii. fecess, dynases. Astruction get 4.

---. e -- a----- n-vors. -- as as . s b C. i

533
(Catal tra Syste. to data and Sys er/
cottak. ... y X is x x - syn wY mas • Mr Kew m Mr strmarrxt/sax -- fS f

www. sur-Yaacx * * ri asser-r
sw: it. i . st ...-- C. 8. fe", a , b \, is a 2-yed title? V ?ysterra r

i
i * :

*::::gs ; Seetafe. --

US 2005/0010917 A9

SYSTEMAND METHOD FOR EXECUTING
WIRELESS COMMUNICATIONS DEVICE

DYNAMIC INSTRUCTION SETS

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 This invention generally relates to wireless com
munications devices and, more particularly, to a System and
method for executing dynamic instructions Sets with the
System Software of a wireleSS communication device in the
field.

0003 2. Description of the Related Art
0004. It is not uncommon to release software updates for
phones that are already in the field. These updates may relate
to problems found in the Software once the phones have been
manufactured and distributed to the public. Some updates
may involve the use of new features on the phone, or
services provided by the service provider. Yet other updates
may involve regional problems, or problems associated with
certain carriers. For example, in certain regions the network
layout of carriers may impose airlink interface conditions on
the handset that cause the handset to demonstrate unex
pected behavior Such as improper channel Searching,
improper call termination, improper audio, or the like.
0005 The traditional approach to such updates has been
to recall the wireleSS communications device, also referred
to herein as a wireless device, phone, telephone, or handset,
to the nearest carrier retail/Service outlet, or to the manu
facturer to process the changes. The costs involved in Such
updates are extensive and eat into the bottom line. Further,
the customer is inconvenienced and likely to be irritated.
Often times, the practical Solution is to issue the customer
new phones.
0006 The wireless devices are used in a number of
environments, with different Subscriber Services, for a num
ber of different customer applications. Therefore, even if the
Software of a wireleSS device can be upgraded to improve
Service, it is unlikely that the upgrade will provide a uniform
improvement for all users.
0007. It would be advantageous if wireless communica
tions device Software could be upgraded cheaply, and with
out inconvenience to the customer.

0008. It would be advantageous if wireless communica
tions device Software could be upgraded without the cus
tomer losing the use of their phones for a significant period
of time.

0009. It would be advantageous if wireless communica
tions device software could be updated with a minimum of
technician Service time, or without the need to Send the
device into a Service facility.
0010. It would be advantageous if the wireless device
System Software could be differentiated into code Sections,
So that only Specific code Sections of System Software would
need to be replaced, to update the System Software. It would
be advantageous if these code Sections could be communi
cated to the wireleSS device via the airlink.

0011. It would be advantageous if the code section
updates could be made uniquely for each wireleSS commu
nications device based upon that device's circumstances.

Jan. 13, 2005

0012. It would be advantageous if the wireless device
could monitor the performance of the wireleSS device System
Software, collect performance data, and transmits the data to
a System central collection depot for analysis.

SUMMARY OF THE INVENTION

0013 Wireless communications device software updates
give customers the best possible product and user experi
ence. An expensive component of the busineSS involves the
recall of handsets to update the Software. These updates may
be necessary to offer the user additional Services or to
address problems discovered in the use of the phone after it
has been manufactured. The present invention makes it
possible to practically upgrade handset Software in the field,
via the airlink interface. More Specifically, the present
invention permits the wireleSS communication device to
execute dynamic instruction Sets. These dynamic instruction
Sets permit the wireleSS device to “intelligently, or condi
tionally upgrade the System Software and System data.
Further, the dynamic instruction Sets permit the wireleSS
device to monitor System Software performance, and trans
mit the performance data for analysis.
0014. Accordingly, a method is provided for executing
dynamic instruction Sets in a wireleSS communications
device. The method comprises: forming the System Software
into Symbol libraries, each Symbol library comprising Sym
bols having related functionality; arranging the Symbol
libraries into code Sections in a code Storage Section non
Volatile memory; executing System Software, receiving a
patch manager run time instruction (PMRTI) or dynamic
instruction Sets, including conditional operation code and
data items, in a file System Section nonvolatile memory;
calling a run-time library from a first code Section; proceSS
ing the patch manager run time instruction operation code;
operating on System data and System Software, and, in
response to operating on the System data and System Soft
ware, controlling the execution of the System Software.

0015 Additional details of the above-described method
for executing dynamic instruction Sets, and a System for
executing dynamic instruction Sets are provided below.

BRIEF DESCRIPTION OF THE DRAWING

0016 FIG. 1 is a schematic block diagram of the overall
wireleSS device Software maintenance System.
0017 FIG. 2 is a schematic block diagram of the soft
ware maintenance System, highlighting the installation of
instruction Sets via the airlink interface.

0018 FIG. 3 is a schematic block diagram illustrating the
present invention System for executing dynamic instruction
Sets in a wireleSS communications device.

0019 FIG. 4 is a schematic block diagram of the wireless
device memory.

0020 FIG. 5 is a table representing the code section
address table of FIG. 3.

0021 FIG. 6 is a detailed depiction of symbol library one
of FIG. 3, with symbols.
0022 FIG. 7 is a table representing the symbol offset
address table of FIG. 3.

US 2005/0010917 A9

0023 FIG. 8 is a depiction of the operation code (op
code) being accessed by the run-time engine.
0024 FIG. 9 is a more detailed depiction of the first
operation code of FIG. 8.
0025 FIGS. 10a and 10b are flowcharts illustrating the
present invention method for executing dynamic instruction
Sets in a wireleSS communications device.

0.026 FIG. 11 is a flowchart illustrating an exemplary
dynamic instruction Set operation.
0.027 FIG. 12 is a flowchart illustrating another exem
plary dynamic instruction Set operation.
0028 FIG. 13 is a flowchart illustrating a third exem
plary dynamic instruction Set operation.
0029 FIG. 14 is a flowchart illustrating a fourth exem
plary dynamic instruction Set operation.
0030 FIG. 15 is a flowchart illustrating a fifth exemplary
dynamic instruction Set operation.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0.031) Some portions of the detailed descriptions that
follow are presented in terms of procedures, Steps, logic
blocks, codes, processing, and other symbolic representa
tions of operations on data bits within a wireleSS device
microprocessor or memory. These descriptions and repre
Sentations are the means used by those skilled in the data
processing arts to most effectively convey the Substance of
their work to otherS Skilled in the art. A procedure, micro
processor executed Step, application, logic block, process,
etc., is here, and generally, conceived to be a Self-consistent
Sequence of Steps or instructions leading to a desired result.
The Steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being Stored, transferred, combined, compared,
and otherwise manipulated in a microprocessor based wire
leSS device. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits,
values, elements, Symbols, characters, terms, numbers, or
the like. Where physical devices, Such as a memory are
mentioned, they are connected to other physical devices
through a bus or other electrical connection. These physical
devices can be considered to interact with logical processes
or applications and, therefore, are “connected to logical
operations. For example, a memory can Store or acceSS code
to further a logical operation, or an application can call a
code Section from memory for execution.
0032. It should be borne in mind, however, that all of
these and Similar terms are to be associated with the appro
priate physical quantities and are merely convenient labels
applied to these quantities. Unless Specifically Stated other
wise as apparent from the following discussions, it is appre
ciated that throughout the present invention, discussions
utilizing terms Such as “processing” or “connecting” or
“translating” or “displaying or “prompting” or “determin
ing” or “displaying or “recognizing” or the like, refer to the
action and processes of in a wireleSS device microprocessor
System that manipulates and transforms data represented as
physical (electronic) quantities within the computer Sys
tem's registers and memories into other data Similarly

Jan. 13, 2005

represented as physical quantities within the wireleSS device
memories or registers or other Such information Storage,
transmission or display devices.
0033 FIG. 1 is a schematic block diagram of the overall
wireless device software maintenance system 100. The
present invention System Software organization is presented
in detail below, following a general overview of the software
maintenance system 100. The general system 100 describes
a process of delivering System Software updates and instruc
tion sets (programs), and installing the delivered Software in
a wireleSS device. System Software updates and patch man
ager run time instructions (PMRTI), that are more generally
known as instruction Sets or dynamic instruction Sets, are
created by the manufacturer of the handsets. The system
Software is organized into symbol libraries. The symbol
libraries are arranged into code Sections. When Symbol
libraries are to be updated, the Software update 102 is
transported as one or more code Sections. The Software
update is broadcast to wireless devices in the field, of which
wireleSS communications device 104 is representative, or
transmitted in Separate communications from a base Station
106 using well known, conventional air, data or message
transport protocols. The invention is not limited to any
particular transportation format, as the wireleSS communi
cations device can be easily modified to proceSS any avail
able over-the-air transport protocol for the purpose of
receiving system software and PMRTI updates.
0034. The system software can be viewed as a collection
of different Subsystems. Code objects can be tightly coupled
into one of these abstract Subsystems and the resulting
collection can be labeled as a symbol library. This provides
a logical breakdown of the code base and Software patches
and fixes can be associated with one of these Symbol
libraries. In most cases, a single update is associated with
one, or at most two, symbol libraries. The rest of the code
base, the other Symbol libraries, remains unchanged.
0035. The notion of symbol libraries provides a mecha
nism to deal with code and constants. The read-write (RW)
data, on the other hand, fits into a unique individual RW
library that contains RAM based data for all libraries.
0036) Once received by the wireless device 104, the
transported code Section must be processed. This wireleSS
device over-writes a specific code Section of nonvolatile
memory 108. The nonvolatile memory 108 includes a file
system section (FSS) 110 and a code storage section 112.
The code Section is typically compressed before transport in
order to minimize occupancy in the FSS 110. Often the
updated code section will be accompanied by its RW data,
which is another kind of symbol library that contains all the
RW data for each symbol library. Although loaded in ran
dom access volatile read-write memory 114 when the system
Software is executing, the RW data always needs to be stored
in the nonvolatile memory 108, so it can be loaded into
random access Volatile read-write memory 114 each time the
wireless device is reset. This includes the first time RW data
is loaded into random acceSS Volatile read-write memory. AS
explained in more detail below, the RW data is typically
arranged with a patch manager code Section.
0037. The system 100 includes the concept of virtual
tables. Using Such tables, Symbol libraries in one code
Section can be patched (replaced), without breaking (replac
ing) other parts of the System Software (other code Sections).

US 2005/0010917 A9

Virtual tables execute from random acceSS Volatile read
write memory 114 for efficiency purposes. A code Section
address table and symbol offset address table are virtual
tables.

0.038. The updated code sections are received by the
wireless device 104 and stored in the FSS 110. A wireless
device user interface (UI) will typically notify the user that
new Software is available. In response to UI prompts the user
acknowledges the notification and Signals the patching or
updating operation. Alternately, the updating operation is
performed automatically. The wireleSS device may be unable
to perform Standard communication tasks as the updating
proceSS is performed. The patch manager code Section
includes a non-volatile read-write driver symbol library that
is also loaded into random access Volatile read-write
memory 114. The non-volatile read-write driver symbol
library causes code Sections to be overwritten with updated
code Sections. The patch manager code Section includes the
read-write data, code Section address table, and Symbol
offset address table, as well a symbol accessor code and the
symbol accessor code address (discussed below). Portions of
this data are invalid when updated code Sections are intro
duced, and an updated patch manager code Sections includes
read-write data, a code Section address table, and a symbol
offset address table valid for the updated code sections. Once
the updated code Sections are loaded into the code Storage
section 112, the wireless device is reset. Following the reset
operation, the wireleSS device can execute the updated
system Software. It should also be understood that the patch
manager code Section may include other Symbol libraries
that have not been discussed above. These other symbol
libraries need not be loaded into read-write volatile memory
114.

0.039 FIG. 2 is a schematic block diagram of the soft
ware maintenance System 100, highlighting the installation
of instruction Sets via the airlink interface. In addition to
updating System Software code Sections, the maintenance
system 100 can download and install dynamic instructions
sets, programs, or patch manager instruction sets (PMIS),
referred to herein as patch manager run time instructions
(PMRTI). The PMRTI code section 200 is transported to the
wireless device 104 in the same manner as the above
described system software code sections. PMRTI code sec
tions are initially stored in the FSS 110. A PMRTI code
Section is typically a binary file that may be visualized as
compiled instructions to the handset. A PMRTI code section
is comprehensive enough to provide for the performance of
basic mathematical operations and the performance of con
ditionally executed operations. For example, an RF calibra
tion PMRTI could perform the following operations:

0040) IF RF CAL ITEM IS LESS THAN X
0041) EXECUTE INSTRUCTION
0.042 ELSE
0043) EXECUTE INSTRUCTION

0044) A PMRTI can support basic mathematical opera
tions, Such as: addition, Subtraction, multiplication, and
division. AS with the System Software code Sections, the
PMRTI code section may be loaded in response to UI
prompts, and the wireleSS device must be reset after the
PMRTI is loaded into code storage section 112. Then the
PMRTI Section can be executed. If the PMRTI code Section

Jan. 13, 2005

is associated with any virtual tables or read-write data, an
updated patch manager code Section will be transported with
the PMRTI for installation in the code storage section 112.
Alternately, the PMRTI can be kept and processed from the
FSS 110. After the handset 104 has executed all the instruc
tions in the PMRTI section, the PMRTI section can be
deleted from the FSS 110. Alternately, the PMRTI is main
tained for future operations. For example, the PMRTI may
be executed every time the WireleSS device is energized.
0045 PMRTI is a very powerful runtime instruction
engine. The handset can execute any instruction delivered to
it through the PMRTI environment. This mechanism may be
used to support RF calibrations. More generally, PMRTI can
be used to remote debug wireleSS device Software when
Software problems are recognized by the manufacturer or
Service provider, typically as the result of user complaints.
PMRTI can also record data needed to diagnose software
problems. PMRTI can launch newly downloaded system
applications for data analysis, debugging, and fixeS. PMRTI
can provide RW databased updates for analysis and possible
Short term fix to a problem in lieu of an updated System
Software code section. PMRTI can provide memory com
paction algorithms for use by the wireleSS device.
0046. In some aspects of the invention, the organization
of the System Software into Symbol libraries may impact the
size of the volatile memory 114 and nonvolatile memory 108
required for execution. This is due to the fact that the code
Sections are typically larger than the Symbol libraries
arranged in the code sections. These larger code sections
exist to accommodate updated code Sections. Organizing the
System Software as a collection of libraries impacts the
nonvolatile memory size requirement. For the Same code
size, the amount of nonvolatile memory used will be higher
due to the fact that code Sections can be sized to be larger
than the Symbol libraries arranged within.
0047 Once software updates have been delivered to the
wireless device, the Software maintenance system 100 Sup
ports memory compaction. Memory compaction is similar to
disk de-fragmentation applications in desktop computers.
The compaction mechanism ensures that memory is opti
mally used and is well balanced for future code Section
updates, where the size of the updated code Sections are
unpredictable. The system 100 analyzes the code storage
section as it is being patched (updated). The system 100
attempts to fit updated code Sections into the memory Space
occupied by the code Section being replaced. If the updated
code Section is larger than the code Section being replaced,
the system 100 compacts the code sections in memory 112.
Alternately, the compaction can be calculated by the manu
facturer or Service provider, and compaction instructions can
be transported to the wireless device 104.
0048 Compaction can be a time consuming process
owing to the complexity of the algorithm and also the vast
Volume of data movement. The compaction algorithm pre
dicts feasibility before it begins any processing. UI prompts
can be used to apply for permission from the user before the
compaction is attempted.
0049. In some aspects of the invention, all the system
Software code Sections can be updated Simultaneously. A
complete System Software upgrade, however, would require
a larger FSS 110.
0050 FIG. 3 is a schematic block diagram illustrating the
present invention dynamic instruction Set execution in a

US 2005/0010917 A9

wireless communications device. The system 300 comprises
a code Storage Section 112 in memory 108 including execut
able wireless device system software differentiated into a
plurality of current code sections. Code section one (302),
code section two (304), code section n (306), and a patch
manager code section 308 are shown. However, the inven
tion is not limited to any particular number of code Sections.
Further, the system 300 further comprises a first plurality of
Symbol libraries arranged into the Second plurality of code
sections. Shown are symbol library one (310) arranged in
code section one (302), symbol libraries two (312) and three
(314) arranged in code section two (304), and symbol library
m (316) arranged in code section n (306). Each library
comprises Symbols having related functionality. For
example, symbol library one (310) may be involved in the
operation of the wireleSS device liquid crystal display
(LCD). Then, the symbols would be associated with display
functions. AS explained in detail below, additional Symbol
libraries are arranged in the patch manger code Section 308.
0051 FIG. 4 is a schematic block diagram of the wireless
device memory. AS Shown, the memory is the code Storage
section 112 of FIG.1. The memory is a writeable, nonvola
tile memory, such as Flash memory. It should be understood
that the code Sections need not necessarily be Stored in the
same memory as the FSS 110. It should also be understood
that the present invention System Software structure could be
enabled with code Sections Stored in a plurality of cooper
ating memories. The code Storage Section 112 includes a
Second plurality of contiguously addressed memory blocks,
where each memory block Stores a corresponding code
Section from the Second plurality of code Sections. Thus,
code section one (302) is stored in a first memory block 400,
code section two (304) in the second memory block 402,
code section n (306) in the nth memory block 404, and the
patch manager code section (308) in the pth memory block
406.

0.052 Contrasting FIGS. 3 and 4, the start of each code
Section is Stored at corresponding Start addresses in memory,
and Symbol libraries are arranged to Start at the Start of code
Sections. That is, each Symbol library begins at a first address
and runs through a range of addresses in Sequence from the
first address. For example, code section one (302) starts at
the first start address 408 (marked with “S”) in code storage
section memory 112. In FIG. 3, symbol library one (310)
starts at the start 318 of the first code section. Likewise code
section two (304) starts at a second start address 410 (FIG.
4), and symbol library two starts at the start 320 of code
section two (FIG. 3). Code section n (306) starts at a third
start address 412 in code storage section memory 112 (FIG.
4), and symbol library m (316) starts at the start of code
section in 322 (FIG. 3). The patch manager code section
Starts at pth start address 414 in code Storage Section
memory 112, and the first symbol library in the patch
manager code section 308 starts at the start 324 of the patch
manager code section. Thus, symbol library one (310) is
ultimately stored in the first memory block 400. If a code
Section includes a plurality of Symbol libraries, Such as code
section two (304), the plurality of symbol libraries are stored
in the corresponding memory block, in this case the Second
memory block 402.
0053. In FIG.3, the system 300 further comprises a code
section address table 326 as a type of symbol included in a
Symbol library arranged in the patch manager code Section

Jan. 13, 2005

308. The code section address table cross-references code
Section identifiers with corresponding code Section Start
addresses in memory.
0054 FIG. 5 is a table representing the code section
address table 326 of FIG. 3. The code section address table
326 is consulted to find the code section start address for a
symbol library. For example, the system 300 seeks code
Section one when a Symbol in Symbol library one is required
for execution. To find the Start address of code Section one,
and therefore locate the symbol in symbol library one, the
code Section address table 326 is consulted. The arrange
ment of Symbol libraries in code Sections, and the tracking
of code Sections with a table permits the code Sections to be
moved or expanded. The expansion or movement operations
may be needed to install upgraded code sections (with
upgraded Symbol libraries).
0055 Returning to FIG. 3, it should be noted that not
every Symbol library necessarily Starts at the Start of a code
Section. As shown, Symbol library three (314) is arranged in
code section two (304), but does not start of the code section
start address 320. Thus, if a symbol in symbol library three
(314) is required for execution, the system 300 consults the
code section address table 326 for the start address of code
section two (304). As explained below, a symbol offset
address table permits the symbols in symbol library three
(314) to be located. It does not matter that the symbols are
Spread acroSS multiple libraries, as long as they are retained
with the same code Section.

0056. As noted above, each symbol library includes
functionally related Symbols. A Symbol is a programmer
defined name for locating and using a routine body, variable,
or data Structure. Thus, a Symbol can be an address or a
value. Symbols can be internal or external. Internal symbols
are not visible beyond the Scope of the current code Section.
More Specifically, they are not Sought by other Symbol
libraries, in other code Sections. External Symbols are used
and invoked acroSS code Sections and are Sought by libraries
in different code sections. The symbol offset address table
typically includes a list of all external Symbols.
0057 For example, symbol library one (310) may gen
erate characters on a wireleSS device display. Symbols in this
library would, in turn, generate telephone numbers, names,
the time, or other display features. Each feature is generated
with routines, referred to herein as a Symbol. For example,
one symbol in symbol library one (310) generates telephone
numbers on the display. This symbol is represented by an
“X”, and is external. When the wireless device receives a
phone call and the caller ID Service is activated, the System
must execute the “X” symbol to generate the number on the
display. Therefore, the system must locate the “X” symbol.
0.058 FIG. 6 is a detailed depiction of symbol library one
(310) of FIG. 3, with symbols. Symbols are arranged to be
offset from respective code Section Start addresses. In many
circumstances, the Start of the Symbol library is the Start of
a code Section, but this is not true if a code Section includes
more than one symbol library. Symbol library one (310)
starts at the start of code section one (see FIG. 3). As shown
in FIG. 6, the “X” symbol is located at an offset of (03) from
the start of the symbol library and the “Y” symbol is located
at an offset of (15). The symbol offset addresses are stored
in a symbol offset address table 328 in the patch manager
code section (see FIG. 3).

US 2005/0010917 A9

0059 FIG. 7 is a table representing the symbol offset
address table 328 of FIG.3. The symbol offset address table
328 cross-references symbol identifiers with corresponding
offset addresses, and with corresponding code Section iden
tifiers in memory. Thus, when the System seeks to execute
the “X” symbol in symbol library one, the symbol offset
address table 328 is consulted to locate the exact address of
the Symbol, with respect to the code Section in which it is
arranged.

0060 Returning to FIG. 3, the first plurality of symbol
libraries typically all include read-write data that must be
consulted or Set in the execution of these Symbol libraries.
For example, a Symbol library may include an operation
dependent upon a conditional Statement. The read-write data
Section is consulted to determine the Status required to
complete the conditional Statement. The present invention
groups the read-write data from all the Symbol libraries into
a shared read-write Section. In Some aspects of the invention,
the read-write data 330 is arranged in the patch manager
code section 308. Alternately (not shown), the read-write
data can be arranged in a different code Section, code Section
n (306), for example.
0061 The first plurality of symbol libraries also includes
Symbol accessor code arranged in a code Section to calculate
the address of a Sought Symbol. The Symbol accessor code
can be arranged and Stored at an address in a separate code
section, code section two (304), for example. However, as
shown, the Symbol accessor code 332 is arranged and Stored
at an address in the patch manager code section 308. The
system 300 further comprises a first location for storage of
the Symbol accessor code address. The first location can be
a code Section in the code Storage Section 112, or in a
Separate memory Section of the wireless device (not shown).
The first location can also be arranged in the Same code
Section as the read-write data. AS shown, the first location
334 is stored in the patch manager code section 308 with the
read-write data 330, the symbol offset address table 328, the
code Section address table 326, and the Symbol accessor
code 332, and the patch library (patch symbol library) 336.

0062) The symbol accessor code accesses the code sec
tion address table and symbol offset address tables to cal
culate, or find the address of a Sought Symbol in memory.
That is, the Symbol accessor code calculates the address of
the Sought Symbol using a corresponding Symbol identifier
and a corresponding code Section identifier. For example, if
the “X” symbol in symbol library one is sought, the symbol
accessor is invoked to seek the symbol identifier (symbol
ID) “X 1", corresponding to the “X” symbol (see FIG. 7).
The symbol accessor code consults the symbol offset
address table to determine that the “X 1” symbol identifier
has an offset of (03) from the start of code section one (see
FIG. 6). The symbol accessor code is invoked to seek the
code Section identifier “CS 1’, corresponding to code Sec
tion one. The Symbol accessor code consults the code
Section address table to determine the Start address associ
ated with code section identifier (code section ID) “CS 1'.
In this manner, the Symbol accessor code determines that the
symbol identifier “X 1” is offset (03) from the address of
(00100), or is located at address (00103).
0.063. The symbol “X” is a reserved name since it is a part
of the actual code. In other words, it has an absolute data
asSociated with it. The data may be an address or a value.

Jan. 13, 2005

The symbol identifier is an alias created to track the symbol.
The symbol offset address table and the code section address
table both work with identifiers to avoid confusion with
reserved symbol and code Section names. It is also possible
that the same Symbol name is used acroSS many Symbol
libraries. The use of identifiers prevents confusion between
these symbols.
0064 Returning to FIG. 1, the system 300 further com
prises a read-write volatile memory 114, typically random
access memory (RAM). The read-write data 330, code
section address table 326, the symbol offset address table
328, the symbol accessor code 332, and the symbol accessor
code address 334 are loaded into the read-write volatile
memory 114 from the patch manager code Section for access
during execution of the System Software. AS is well known,
the access times for code Stored in RAM is significantly leSS
than the access to a nonvolatile memory Such as Flash.
0065 Returning to FIG.3, it can be noted that the symbol
libraries need not necessarily fill the code Sections into
which they are arranged, although the memory blocks are
sized to exactly accommodate the corresponding code Sec
tions Stored within. Alternately Stated, each of the Second
plurality of code Sections has a size in bytes that accommo
dates the arranged symbol libraries, and each of the con
tiguously addressed memory blocks have a size in bytes that
accommodates corresponding code Sections. For example,
code section one (302) may be a 100 byte section to
accommodate a symbol library having a length of 100 bytes.
The first memory block would be 100 bytes to match the
byte size of code section one. However, the symbol library
loaded into code section 1 may be smaller than 100 bytes. As
shown in FIG. 3, code section one (302) has an unused
section 340, as symbol library one (310) is less than 100
bytes. Thus, each of the Second plurality of code Sections
may have a size larger than the size needed to accommodate
the arranged symbol libraries. By “oversizing” the code
Sections, larger updated Symbol libraries can be accommo
dated.

0066 Contiguously addressed memory blocks refers to
partitioning the physical memory Space into logical blockS
of variable size. Code Sections and memory blocks are terms
that are essentially interchangeable when the code Section is
Stored in memory. The concept of a code Section is used to
identify a Section of code that is perhaps larger than the
symbol library, or the collection of symbol libraries in the
code Section as it is moved and manipulated.
0067. As seen in FIG. 3, the system 300 includes a patch
symbol library, which will be referred to herein as patch
library 336, to arrange new code Sections in the code Storage
Section with the current code Sections. The arrangement of
new code Sections with current code Sections in the code
Storage Section forms updated executable System Software.
The patch manager 336 not only arranges new code Sections
in with the current code Sections, it also replaces code
Sections with updated code Sections.
0068. Returning to FIG. 4, the file system section 110 of
memory 108 receives new code Sections, Such as new code
section 450 and updated patch manager code section 452.
The file System Section also receives a first patch manager
run time instruction (PMRTI) 454 including instructions for
arranging the new code Sections with the current code
Sections. As seen in FIG. 1, an airlink interface 150 receives

US 2005/0010917 A9

new, or updated code sections, as well as the first PMRTI.
Although the airlink interface 150 is being represented by an
antenna, it should be understood that the airlink interface
would also include an RF transceiver, baseband circuitry,
and demodulation circuitry (not shown). The file system
Section 110 stores the new code sections received via the
airlink interface 150. The patch library 336, executing from
read-write Volatile memory 114, replaces a first code Section
in the code storage Section, code Section n (306) for
example, with the new, or updated code section 450, in
response to the first PMRTI 454. Typically, the patch man
ager code section 308 is replaced with the updated patch
manager code Section 452. When code Sections are being
replaced, the patch library 336 over-writes the first code
Section, code Section n (306) for example, in the code
Storage Section 112 with the updated code Sections, code
section 450 for example, in the file system section 110. In the
extreme case, all the code Sections in code Storage Section
112 are replaced with updated code sections. That is, the FSS
110 receives a second plurality of updated code Sections (not
shown), and the patch library 336 replaces the second
plurality of code Sections in the code Storage Section 112
with the second plurality of updated code sections. Of
course, the FSS 110 must be large enough to accommodate
the Second plurality of updated code Sections received via
the airlink interface.

0069. As noted above, the updated code sections being
received may include read-write data code Sections, code
Section address table code Sections, Symbol libraries, symbol
offset address table code Sections, Symbol accessor code
Sections, or a code Section with a new patch library. All these
code Sections, with their associated Symbol libraries and
Symbols, may be Stored as distinct and independent code
Sections. Then each of these code Sections would be replaced
with a unique updated code Section. That is, an updated
read-write code section would be received and would
replace the read-write code Section in the code Storage
Section. An updated code Section address table code Section
would be received and would replace the code Section
address table code Section in the code Storage Section. An
updated symbol offset address table code section would be
received and would replace the symbol offset address table
code Section in the code Storage Section. An updated Symbol
accessor code Section would be received and would replace
the Symbol accessor code Section in the code Storage Section.
Likewise, an updated patch manager code Section (with a
patch library) would be received and would replace the
patch manager code Section in the code Storage Section.
0070 However, the above-mentioned code sections are
typically bundled together in the patch manager code Sec
tion. Thus, the read-write code Section in the code Storage
Section is replaced with the updated read-write code Section
from the file system section 110 when the patch manager
code section 308 is replaced with the updated patch manger
code section 450. Likewise, the code section address table,
the symbol offset address table, the symbol accessor code
Sections, as well as the patch library are replaced when the
updated patch manager code section 450 is installed. The
arrangement of the new read-write data, the new code
Section address table, the new Symbol offset address table,
the new Symbol accessor code, and the new patch library as
the updated patch manager code Section 450, together with
the current code Sections in the code Storage Section, forms
updated executable System Software.

Jan. 13, 2005

0.071) When the file system section 10 receives an
updated Symbol accessor code address, the patch manager
replaces the Symbol accessor code address in the first
location in memory with updated Symbol accessor code
address. As noted above, the first location in memory 334 is
typically in the patch manager code Section (see FIG. 3).
0072. As seen in FIG. 3, the patch library 308 is also
includes a compactor, or a compactor Symbol library 342.
The compactor 342 can also be enabled as a distinct and
independent code Section, however as noted above, it is
useful and efficient to bundle the functions associated with
System Software upgrades into a single patch manager code
Section. Generally, the compactor 342 can be said to resize
code Sections, So that new Sections can be arranged with
current code Sections in the code Storage Section 112.
0073 With the organization, downloading, and compac
tion aspects of the invention now established, the following
discussion will center on the wireleSS communications
device dynamic instruction set execution system 300. The
system 300 comprises executable system software and sys
tem data differentiated into code Sections, as discussed in
great detail, above. Further, the system 300 comprises
dynamic instruction Sets for operating on the System data
and the System Software, and controlling the execution of the
System Software. AS Seen in FIG. 4, a dynamic instruction
set 470 is organized into the first PMRTI 454. As seen in
FIG. 3, the System also comprises a run-time engine for
processing the dynamic instruction Sets, enabled as run-time
library 370. As with the compactor library 342 and patch
library 336 mentioned above, the run-time library 370 is
typically located in the patch manager code Section 308.
However, the runtime library 370 could alternately be
located in another code Section, for example the first code
Section 304.

0074 The dynamic instruction sets are a single, or mul
tiple Sets of instructions that include conditional operation
code, and generally include data items. The run-time engine
reads the operation code and determines what operations
need to be performed. Operation code can be conditional,
mathematical, procedural, or logical. The run-time engine,
or run-time library 370 processes the dynamic instruction
Sets to perform operations Such as mathematical or logical
operations. That is, the run-time engine reads the dynamic
instruction Set 470 and performs a Sequence of operations in
response to the operation code. Although the dynamic
instruction Sets are not limited to any particular language,
the operation code is typically a form of machine code, as
the wireleSS device memory is limited and execution Speed
is important. The operation code is considered conditional in
that it analyzes a data item and makes a decision as a result
of the analysis. The run-time engine may also determine that
an operation be performed on data before it is analyzed.
0075 For example, the operation code may specify that
a data item from a wireleSS device memory be compared to
a predetermined value. If the data item is less than the
predetermined value, the data item is left alone, and if the
data item is greater than the predetermined value, it is
replaced with the predetermined value. Alternately, the
operation code may add a Second predetermined value to a
data item from the wireless device memory, before the
above-mentioned comparison operation is performed.
0076. As mentioned above, the file system section non
volatile memory 110 receives the dynamic instruction sets

US 2005/0010917 A9

through an interface such as the airlink 150. As shown in
FIG. 1, the interface can also be radio frequency (RF)
hardline 160. Then, the PMRTI can be received by the FSS
110 without the System Software being operational, Such as
in a factory calibration environment. The PMRTI can also be
received via a logic port interface 162 or an installable
memory module 164. The memory module 164 can be
installed in the wireless device 104 at initial calibration,
installed in the field, or installed during factory recalibration.
Although not specially shown, the PMRTI can be received
via an infrared or Bluetooth interfaces.

0.077 FIG. 8 is a depiction of instructions being accessed
by the run-time engine 370. Shown is a first instruction 800,
a second instruction 802, and a jth instruction 804, however,
the dynamic instruction Set is not limited to any particular
number of instructions. The length of the operation code in
each instruction is fixed. The runtime engine 370 captures
the length of the instruction, as a measure of bytes or bits,
determine if the instruction includes data items. The remain
ing length of the instruction, after the operation code is
Subtracted, includes the data items. The run-time engine
extracts the data items from the instruction. AS shown, the
length 806 of the first instruction 800 is measured and data
items 808 are extracted. Note that not all instructions nec
essary include data items to be extracted. The run-time
engine 370 uses the extracted data 808 in performing the
Sequence of operations responsive to the operation code 810
in instruction 800.

0078 FIG. 9 is a more detailed depiction of the first
instruction 800 of FIG. 8. Using the first instruction 800 as
an example, the instruction includes operation code 810 and
data 808. The instruction, and more specifically, the data
item section 808 includes symbol identifiers, which act as a
link to Symbols in the wireleSS device code Sections. AS
explained in detail above, the Symbol identifiers are used
with the code section address table 326 (see FIG. 5) and the
symbol offset address table 328 (see FIG. 7) to locate the
Symbol corresponding to the Symbol identifier. AS Shown, a
symbol identifier “X 1” is shown in the first instruction
800. The symbol offset address table 328 locates the corre
sponding symbol in a code section with the “CS 1” iden
tifier and an offset of "3”. The code section address table 326
gives the start address of code section one (302). In this
manner, the symbol “X” is found (see FIG. 6).
0079. After the run-time engine locates symbols corre
sponding to the received symbol identifiers using the code
section address table and symbol offset address table, it
extracts data when the located Symbols are data items. For
example, if the symbol “X” is a data item in symbol library
one (310), the run-time engine extracts it. Alternately, the
“X” symbol can be operation code, and the run-time engine
executes the symbol “X” when it is located.

0080 PMRTI can be used to update system data, or
System data items. In Some aspects of the invention System
data is Stored in a code Section in the file System Section 10,
code section 472 for example, see FIG. 4. The run-time
engine accesses System data from code Section 472 and
analyzes the System data. The run-time engine processes the
operation code of the dynamic instruction Sets to perform
mathematical or logical operation on data items, as
described above. After the operation, the run-time engine
processes the instructions to create updated System data.

Jan. 13, 2005

Note that the updated System data may include unchanged
data items in Some circumstances. The System data in the
Second code Section 472 is replaced with the updated System
data in response to the operation code. Thus, by the pro
cessing of instruction by the run-time engine, the System
Software is controlled to execute using the updated System
data in code Section 472. In this manner, Specifically targeted
Symbols in the System Software can be updated, without
replacing entire code Sections. By the same process, the
System data can be replaced in a code Section in the code
Storage Section 112. For example, the System data can be
Stored in the third code Section 344, and the run-time engine
can replace the System data in the third code Section with
updated System data in response to the operation code.

0081 PMRTI can also be used to update data items in
Volatile memory 114. As an example, the Volatile memory
114 accept read-write data 330, see FIG. 1. The read-write
data can be from one, or from a plurality of code Sections in
the code storage section 112 and/or the FSS 110. The
run-time engine accesses the read-write data, analyzes the
read-write data 330, creates updated read-write data, and
replaces the read-write data 330 in the volatile memory 114
with the updated read-write data in response to the operation
code. Then, the System Software is controlled to execute
using the updated read-write data in Volatile memory 114.

0082 In some aspects of the invention, the run-time
engine monitors the execution of the System Software.
Performance monitoring is broadly defined to include a great
number of wireleSS device activities. For example, data Such
as channel parameters, channel characteristics, System Stack,
error conditions, or a record of data items in RAM through
a Sequence of operations leading to a specific failure con
dition or reduced performance condition can be collected. It
is also possible to use dynamic instructions Sets to analyze
collected performance data, provide updated data variants,
and recapture data to Study possible Solutions to the prob
lem. Temporary fixes can also be provisioned using PMRTI
proceSSeS.

0083 More specifically, the run-time engine collects per
formance data, and Stores the performance data in the file
System Section in response to the operation code. Then, the
System Software is controlled to execute by collecting the
performance data for evaluation of the System Software.
Evaluation can occur as a form of analysis performed by
dynamic instruction Set operation code, or it can be per
formed outside the wireleSS device. In Some aspects of the
invention, the run-time engine accesses the performance
data that has been collected from the file System Section and
transmits the performance data via an airlink interface in
response to the operation code. Collecting performance data
from wireleSS devices in the field permits a manufacturer to
thoroughly analyze problems, either locally or globally,
without recalling the devices.

0084. In some aspects of the invention, file system sec
tion 110 receives a patch manager run time instruction
including a new code Section. For example, a new code
section 474 is shown in FIG. 4. Alternately, the new code
section can be independent of the PMRTI, such as new code
section n (450). For example, the new code section n (450)
may have been received in earlier airlink communications,
or have been installed during factory calibration. The run
time engine adds the new code section 474 (450) to the code

US 2005/0010917 A9

Storage Section in response to the operation code. In Some
aspects of the invention, the new code Section is added to an
unused block in the code Storage Section 112. Alternately, a
compaction operation is required. Then, the System Software
is controlled to execute using the new code Section 474
(450). In other aspects of the invention, the PMRTI 454
includes an updated code Section 474. Alternately, the new
code Section 450 is an updated code Section independent of
the PMRTI. The run-time engine replaces a code section in
the code Storage Section, code Section two (304) for an
example, with the updated code section 474 (450) in
response to the operation code. The System Software is
controlled to execute using the updated code Section 474
(450). In Some aspects of the invention a compaction opera
tion is required to accommodate the updated code Section.
Alternately, the updated code Section is added to an unused
or vacant Section of the code Storage Section.
0085. As explained above, the addition of a new code
Section or the updating of a code Section typically requires
the generation of a new code Section address table, as these
operation involve either new and/or changed code Section
Start addresses. Further, a compaction operation also
requires a new code Section address table. The compaction
operations may be a result of the operation of the compactor
342, explained above, or the result of PMRTI instructions
that Supply details as to how the compaction is to occur.
When the PMRTI includes downloading and compaction
instructions, the PMRTI typically also includes a new code
Section address table that becomes valid after the download
ing and compaction operations have been completed.

0.086 FIGS. 10a and 10b are flowcharts illustrating the
present invention method for executing dynamic instruction
Sets in a wireleSS communications device. Although depicted
as a Sequence of numbered Steps for clarity, no order should
be inferred from the numbering (and the numbering in the
methods presented below) unless explicitly stated. The
method starts at Step 1000. Step 1001 a forms the system
Software into symbol libraries, each symbol library com
prising symbols having related functionality. Step 1001b
arranges the symbol libraries into code sections. Step 1002
executes system software. Step 1003 receives the dynamic
instruction Sets. Receiving the dynamic instruction Sets in
Step 1003 includes receiving the dynamic instruction sets
through an interface Selected from the group including
airlink, radio frequency (RF) hardline, installable memory
module, infrared, and logic port interfaces. In Some aspects
of the invention, receiving the dynamic instruction Set in
Step 1003 includes receiving a patch manager run time
instruction (PMRTI) in a file system section nonvolatile
memory.

0.087 Step 1004 launches a run-time engine. Typically,
launching a run-time engine includes invoking a run-time
library from a first code Section. The run-time engine can be
launched from either volatile or nonvolatile memory. Step
1006 processes dynamic instruction sets. Processing
dynamic instruction Sets includes processing instructions in
response to mathematical and logical operations. In Some
aspects of the invention, Step 1007 (not shown), following
the processing of the dynamic instruction Sets, deletes
dynamic instruction sets. Step 1008 operates on system data
and System Software. Step 1010, in response to operating on
the System data and System Software, controls the execution
of the system software.

Jan. 13, 2005

0088 Typically, receiving the patch manager run time
instructions in Step 1003 includes receiving conditional
operation code and data items. Then, processing dynamic
instruction sets in Step 1006 includes substeps. Step 1006a1
uses the run-time engine to read the patch manager run time
instruction operation code. Step 1006b performs a sequence
of operations in response to the operation code.
0089. In some aspects, arranging the symbol libraries into
code sections in Step 1001b includes starting symbol librar
ies at the Start of code Sections and arranging Symbols to be
offset from their respective code Section Start addresses.
Then the method comprises further steps. Step 1001c stores
the Start of code Sections at corresponding Start addresses.
Step 1001d maintains a code section address table (CSAT)
cross-referencing code Section identifiers with correspond
ing start addresses. Step 1001e maintains a symbol offset
address table (SOAT) cross-referencing symbol identifiers
with corresponding offset addresses, and corresponding
code Section identifiers.

0090. In some aspects of the invention, receiving the
patch manager run time instruction in Step 1003 includes
receiving Symbol identifiers. Then, the method comprises a
further step. Step 1006a2 locates symbols corresponding to
the received symbol identifiers by using the code Section
address table and symbol offset address table. Performing a
Sequence of operations in response to the operation code in
Step 1006b includes substeps. Step 1006b1 extracts the data
when the located symbols are data items. Step 1006b2
executes the Symbols when the located Symbols are instruc
tions.

0091. In some aspects of the invention, processing
dynamic instruction sets in Step 1006b1 includes additional
substeps. Step 1006b1a uses the run-time engine to capture
the length of the patch manager run time instruction. Step
1006b1b extracts the data items from the patch manager run
time instruction, in response to the operation code. Step
1006b1c uses the extracted data in performing the sequence
of operations responsive to the operation code.
0092 FIG. 11 is a flowchart illustrating an exemplary
dynamic instruction Set operation. Several of the Steps in
FIG. 11 are the same as in FIG. 10, and are not repeated here
in the interest of brevity. Processing dynamic instruction Sets
in Step 1106 includes substeps. Step 1106a accesses system
data Stored in a Second code Section in the file System
section. Step 1106b analyzes the system data. Step 1106c
creates updated System data. Then, operating on System data
and system software in Step 1108 includes replacing the
System data in the Second Section with the updated System
data, and controlling the execution of the System Software in
Step 1010 includes using the updated system data in the
execution of the System Software.
0093 FIG. 12 is a flowchart illustrating another exem
plary dynamic instruction Set operation. Several of the Steps
in FIG. 12 are the same as in FIG. 10, and are not repeated
here in the interest of brevity. Step 1201c stores a plurality
of code Sections in a code Storage Section nonvolatile
memory. Processing dynamic instruction sets in Step 1206
includes Substeps. Step 1206a accesses System data Stored in
a third code section in the code storage Section (CSS). Step
1206b analyzes the system data. Step 1206c creates updated
System data. Operating on the System data and System
Software in Step 1208 includes replacing the system data in

US 2005/0010917 A9

the third code Section with the updated System data. Con
trolling the execution of the system software in Step 1210
includes using the updated System data in the execution of
the System Software.

0094 FIG. 13 is a flowchart illustrating a third exem
plary dynamic instruction Set operation. Several of the Steps
in FIG. 13 are the same as in FIG. 10, and are not repeated
here in the interest of brevity. Step 1301c stores a plurality
of code Sections in a code Storage Section nonvolatile
memory. Step 1301d loads read-write data into volatile
memory. Processing dynamic instruction sets in Step 1306
includes substeps. Step 1306a accesses the read-write data
in volatile memory. Step 1306b analyzes the read-write data.
Step 1306c creates updated read-write data. Operating on the
system data and system software in Step 1308 includes
replacing the read-write data in Volatile memory with the
updated read-write data. Controlling the execution of the
System Software includes using the updated read-write data
in the execution of the System Software.
0.095 FIG. 14 is a flowchart illustrating a fourth exem
plary dynamic instruction Set operation. Several of the Steps
in FIG. 14 are the same as in FIG. 10, and are not repeated
here in the interest of brevity. Processing dynamic instruc
tion sets includes substeps. Step 1406a, in response to the
operation code, monitors the execution of the System Soft
ware. Step 1406b collects performance data. Step 1406c
stores the performance data. Step 1406d transmits the stored
data via an airlink interface. Operating on the System data
and system software in Step 1408 includes using the per
formance data in the evaluation of System Software.
0096 FIG. 15 is a flowchart illustrating a fifth exemplary
dynamic instruction Set operation. Several of the Steps in
FIG. 15 are the same as in FIG. 10, and are not repeated
here in the interest of brevity. Step 1501c stores a plurality
of code Sections in a code Storage Section nonvolatile
memory. Receiving patch manager run time instructions in
Step 1503 includes receiving a new code section. Operating
on the system data and system software in Step 1508
includes adding the new code Section to the code Storage
Section, and controlling the execution of the System Software
in Step 1510 includes using the new code section in the
execution of the System Software.
0097 Alternately, receiving a new code section in Step
1503 includes receiving an updated code section. Then,
operating on the System data and System Software in Step
1508 includes replacing a fourth code section in the code
Storage Section with the updated code Section.
0098. A system and method have been provided for
executing dynamic instruction Sets in a wireleSS communi
cations device, So as to aid in the process of updating the
Software and monitoring the performance of the Software.
The System is easily updateable because of the arrangement
of Symbol libraries in code Sections, with tables to access the
Start addresses of the code Sections in memory and the offset
addresses of symbols in the symbol libraries. The use on
dynamic instruction Sets permits custom modifications to be
performed to each wireleSS device, based upon Specific
characteristics of that device. A few general examples have
been given illustrating possible uses for the dynamic instruc
tions Sets. However, the present invention is not limited to
just these examples. Other variations and embodiments of
the invention will occur to those skilled in the art.

Jan. 13, 2005

We claim:
1. In a wireleSS communications device, a method for

executing dynamic instruction Sets, the method comprising:
executing System Software;
launching a run-time engine;
processing dynamic instruction Sets;
operating on System data and System Software; and,
in response to operating on the System data and System

Software, controlling the execution of the System Soft
WC.

2. The method of claim 1 further comprising:
following the processing of the dynamic instruction Sets,

deleting dynamic instruction Sets.
3. The method of claim 1 wherein processing dynamic

instruction Sets includes processing instructions in response
to mathematical and logical operations.

4. The method of claim 3 further comprising:
receiving the dynamic instruction Sets.
5. The method of claim 4 wherein receiving the dynamic

instruction Sets includes receiving the dynamic instruction
Sets through an interface Selected from the group including
airlink, radio frequency (RF) hardline, installable memory
module, infrared, and logic port interfaces.

6. The method of claim 5 further comprising:
forming the System Software into Symbol libraries, each

Symbol library comprising Symbols having related
functionality;

arranging the Symbol libraries into code Sections, and,
wherein launching a run-time engine includes invoking a

run-time library from a first code Section.
7. The method of claim 6 wherein receiving the dynamic

instruction Set includes receiving a patch manager run time
instruction (PMRTI) in a file system section nonvolatile
memory.

8. The method of claim 7 wherein receiving the patch
manager run time instructions includes receiving conditional
operation code and data items;

wherein processing dynamic instruction Sets includes:
using the run-time engine to read the patch manager run

time instruction operation code; and,
performing a Sequence of operations in response to the

operation code.
9. The method of claim 8 wherein processing dynamic

instruction Sets includes:

using the run-time engine to capture the length of the
patch manager run time instruction;

extracting the data items from the patch manager run time
instruction, in response to the operation code; and,

using the extracted data in performing the Sequence of
operations responsive to the operation code.

10. The method of claim 9 wherein arranging the symbol
libraries into code Sections includes Starting Symbol libraries
at the Start of code Sections and arranging Symbols to be
offset from their respective code Section Start addresses;

US 2005/0010917 A9

the method further comprising:
Storing the Start of code Sections at corresponding Start

addresses;
maintaining a code Section address table croSS-refer

encing code Section identifiers with corresponding
Start addresses, and,

maintaining a symbol offset address table croSS-refer
encing Symbol identifiers with corresponding offset
addresses, and corresponding code Section identifi
CS.

11. The method of claim 10 wherein receiving the patch
manager run time instruction includes receiving Symbol
identifiers,

the method further comprising:
locating Symbols corresponding to the received symbol

identifiers by using the code Section address table
and symbol offset address table;

wherein performing a Sequence of operations in
response to the operation code includes:

when the located Symbols are data items, extracting the
data; and,

when the located Symbols are instructions, executing
the symbols.

12. The method of claim 8 wherein processing dynamic
instruction Sets includes:

accessing System data Stored in a Second code Section in
the file System Section;

analyzing the System data;
creating updated System data;
wherein operating on System data and System Software

includes replacing the System data in the Second Section
with the updated System data; and,

wherein controlling the execution of the System Software
includes using the updated System data in the execution
of the system software.

13. The method of claim 8 further comprising:
Storing a plurality of code Sections in a code Storage

Section nonvolatile memory;
wherein processing dynamic instruction Sets includes:

accessing System data Stored in a third code Section in
the code Storage Section;

analyzing the System data;
creating updated System data;
wherein operating on the System data and System

Software includes replacing the System data in the
third code Section with the updated System data; and,

wherein controlling the execution of the System Soft
ware includes using the updated System data in the
execution of the System Software.

14. The method of claim 8 further comprising:
Storing a plurality of code Sections in a code Storage

Section nonvolatile memory;
loading read-write data into Volatile memory;

Jan. 13, 2005

wherein processing dynamic instruction Sets includes:
accessing the read-write data in volatile memory;
analyzing the read-write data;
creating updated read-write data;
wherein operating on the System data and System

Software includes replacing the read-write data in
Volatile memory with the updated read-write data;
and,

wherein controlling the execution of the System Soft
ware includes using the updated read-write data in
the execution of the System Software.

15. The method of claim 8 wherein processing dynamic
instruction Sets includes:

in response to the operation code, monitoring the execu
tion of the System Software;

collecting performance data;
Storing the performance data; and,
wherein operating on the System data and System Software

includes using the performance data in the evaluation
of System Software.

16. The method of claim 15 further comprising:
transmitting the Stored data via an airlink interface.
17. The method of claim 8 further comprising:
Storing a plurality of code Sections in a code Storage

Section nonvolatile memory;
wherein receiving patch manager run time instructions

includes receiving a new code Section;
wherein operating on the System data and System Software

includes adding the new code Section to the code
Storage Section; and,

wherein controlling the execution of the System Software
includes using the new code Section in the execution of
the System Software.

18. The method of claim 17 wherein receiving a new code
Section includes receiving an updated code Section; and,

wherein operating on the System data and System Software
includes replacing a fourth code Section in the code
Storage Section with the updated code Section.

19. In a wireless communications device, a method for
executing dynamic instruction Sets, the method comprising:

forming the System Software into Symbol libraries, each
Symbol library comprising Symbols having related
functionality;

arranging the Symbol libraries into code Sections in a code
Storage Section nonvolatile memory;

executing System Software;
receiving a patch manager run time instruction (PMRTI),

including conditional operation code and data items, in
a file System Section nonvolatile memory;

calling a run-time library from a first code Section;
processing the patch manager run time instruction opera

tion code,
operating on System data and System Software; and,

US 2005/0010917 A9

in response to operating on the System data and System
Software, controlling the execution of the System Soft
WC.

20. In a wireleSS communications device, a dynamic
instruction Set execution System, the System comprising:

executable System Software and System data differentiated
into code Sections,

dynamic instruction Sets for operating on the System data
and the System Software, and controlling the execution
of the System Software; and,

a run-time engine for processing the dynamic instruction
SetS.

21. The system of claim 20 wherein the run-time engine
processes dynamic instruction Sets to perform mathematical
and logical operations.

22. The System of claim 21 further comprising:
a file System Section nonvolatile memory for receiving the
dynamic instruction Sets.

23. The system of claim 22 further comprising:

an interface through which the dynamic instruction Sets
are received into the file System Section, wherein the
interface is Selected from the group including airlink,
radio frequency (RF) hardline, installable memory
module, infrared, and logic port interfaces.

24. The system of claim 23 wherein the executable system
software and system data include symbol libraries, each
Symbol library comprising Symbols having related function
ality, arranged into code Sections, and,

wherein the run-time engine is a run-time library arranged
in a first code Section.

25. The system of claim 24 wherein the dynamic instruc
tion Sets include conditional operation code and data items,
and wherein the dynamic instruction Sets are organized in a
patch manager run time instruction (PMRTI).

26. The system of claim 25 further comprising:

a code Storage Section nonvolatile memory for Storing
code Sections.

27. The system of claim 26 wherein the run-time engine
reads the dynamic instruction Set operation code and per
forms a Sequence of operations in response to the operation
code.

28. The system of claim 27 wherein the run-time engine
captures the length of a dynamic instruction Set to determine
if data items are included, extracts the data items from the
dynamic instruction Set, and uses the extracted data in
performing the Sequence of operations responsive to the
operation code.

29. The system of claim 28 wherein the symbol libraries
are arranged to start at the Start of code Sections and Symbols
are arranged to be offset from their respective code Section
Start addresses;

wherein a code Storage Section includes Start addresses
corresponding to code Section start addresses;

the System further comprising:

a code Section address table cross-referencing code
Section identifiers with corresponding Start addresses
in the code Storage Section; and,

Jan. 13, 2005

a symbol offset address table croSS-referencing Symbol
identifiers with corresponding offset addresses, and
corresponding code Section identifiers.

30. The system of claim 27 wherein the dynamic instruc
tion Set includes Symbol identifiers, and,

wherein the run-time engine locates Symbols correspond
ing to the received Symbol identifiers using the code
Section address table and Symbol offset address table,
extracts data when the located Symbols are data items,
and executes the Symbols when the located Symbols are
instructions.

31. The system of claim 27 wherein the system data is
Stored in a Second code Section in the file System Section;

wherein the run-time engine accesses System data, ana
lyzes the System data, creates updated System data, and
replaces the System data in the Second code Section
with the updated System data in response to the opera
tion code; and,

wherein the System Software is controlled to execute using
the updated System data.

32. The system of claim 27 wherein the system data is
Stored in a third code Section in the code Storage Section;

wherein the run-time engine accesses System data, ana
lyzes the System data, creates updated System data, and
replaces the System data in the third code Section with
the updated System data in response to the operation
code; and,

wherein the System Software is controlled to execute using
the updated System data.

33. The system of claim 27 further comprising:
a volatile memory to accept read-write data;

wherein the run-time engine accesses the read-write data,
analyzes the read-write data, creates updated read-write
data, and replaces the read-write data in the volatile
memory with the updated read-write data in response to
the operation code; and,

wherein the System Software is controlled to execute using
the updated read-write data in Volatile memory.

34. The system of claim 27 wherein the run-time engine
monitors the execution of the System Software, collects
performance data, and Stores the performance data in the file
System Section in response to the operation code; and,

wherein the System Software is controlled to execute by
collecting the performance data for evaluation of the
System Software.

35. The system of claim 34 wherein the run-time engine
accesses the performance data from the file System Section
and transmits the performance data via an airlink interface in
response to the operation code.

36. The system of claim 27 wherein the file system section
receives a patch manager run time instruction including a
new code Section;

wherein the run-time engine adds the new code Section to
the code Storage Section in response to the operation
code; and,

wherein the System Software is controlled to execute using
the new code Section.

US 2005/0010917 A9

37. The system of claim 36 wherein the file system section
receives a patch manager run time instruction including an
updated code Section;

wherein the run-time engine replaces a fourth code Sec
tion in the code Storage Section with the updated code
Section in response to the operation code, and,

wherein the System Software is controlled to execute using
the updated code Section.

38. In a wireleSS communications device, a dynamic
instruction Set execution System, the System comprising:

executable System Software and System data differentiated
into code Sections with Symbol libraries arranged
within;

Jan. 13, 2005

patch manager run time instructions (PMRTIs) organized
as dynamic instruction Sets with operation code and
data items for operating on the System data and the
System Software, and for controlling the execution of
the System Software,

a file System Section nonvolatile memory for receiving the
patch manager run time instructions, and,

a run-time library arranged in a first code Section for
processing the dynamic instruction Sets.

