US 20030233386A1

a2 Patent Application Publication (o) Pub. No.: US 2003/0233386 Al

a9 United States

Waki et al.

43) Pub. Date: Dec. 18, 2003

(54) HIGH SPEED VIRTUAL MACHINE AND
COMPILER

(76) Inventors: Hiroyuki Waki, Hirakata-shi (JP);
Shinji Inoue, Neyagawa-shi (JP);
Satoru Hayama, Kobe-shi (JP);
Mitsuko Fujita, Tokyo-to (JP); Akira
Ishikawa, Kashiba-shi (JP)

Correspondence Address:
Snell & Wilmer LLP
Suite 1200

1920 Main Street
Irvine, CA 92614 (US)

(21) Appl. No.: 10/403,917

(22) Filed: Mar. 31, 2003

Related U.S. Application Data

(62) Division of application No. 09/288,263, filed on Apr.
8, 1999.

(30) Foreign Application Priority Data

ADL. 8, 1998 (IP) oo renecerecens 10-96204

STORING UNIT

INSTRUCTION 4401

Publication Classification

(1) Int.CL7 .. GOGF 9/00
(52) US.Cl oo 709/100

(7) ABSTRACT

A virtual machine with a stack architecture includes: a stack
120 whose top level (TOS) and the second level from the top
(SOS) are mapped to registers of a real machine 201; an
instruction storing unit 102 for storing a virtual machine
instruction sequence to be executed; next instruction infor-
mation storing unit 101 for storing a plurality of sets of next
instruction information that are each associated with a
different virtual machine instruction in the virtual machine
instruction sequence, the set of next instruction information
for a given virtual machine instruction indicating a change
in a number of sets of data stored in the stack 120 due to
execution of a virtual machine instruction executed after the
given virtual machine instruction; a decoding unit 103 for
decoding a virtual machine instruction and an associated set
of next instruction information after reading them from the
instruction storing unit 102 and the next instruction infor-
mation storing unit 101; and an executing unit 110 for
executing the decoded virtual machine instruction and per-
forming a stack handling in the stack 120 in advance for a
virtual machine instruction that is to be executed next based
on the set of next instruction information.

4400

4402
e

4403

Y _~

4404 DECODING
s UNIT

INSTRUCTION § .

READING UNIT

PC

4405
/

4406
-

SEARCH UNIT je=

DECODE TABLE

R
Y o)

EXECUTING
UNIT

4412
STORING
I [

f- -~ ~ -~

4420

STACK

Patent Application Publication Dec. 18,2003 Sheet 1 of 91 US 2003/0233386 A1

FIG. 1
4400
INSTRUCTION |-4401
STORING UNIT
4402
5 ~
! 4403 4404 DECODING
: l« o ~ UNIT
INSTRUCTION oC
READING UNIT |
4406
/
SEARCH UNIT DECODE TABLE

Y

4410

EXECUTING

4411

UNIT

STACK

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 2 of 91

0—ds | FLV.LS TVILINI ONISSAD0¥d ANIHOVIN TYNIAIA dOLS doig
& d 5508 AMTTVA dOL IOVIS

10508 | gs L q1a7da JO SSTHAAY OL ATTYNOLLIANOINN dINNT 1

[rdsds $S4aav 3000 aANVIEd0 .
INHOVA VLA DAN-0S| 40 SSTIAAV A9 QAIdIOddS NOLLONNA TTVO

dsds 1508 0 LON SLNIVA —
0s—313474a JOL MOV.LS Al ANVIEdO 40 SSTIAav 0L JNNL

ﬁuﬂmlam [S—0s i O mw m:..—<> N.um
0s—ALATAA JOL MOVLS A1 ANVIEdO J0 SSTIaay ol NNt
ds_.d R — aNVdado 40

S 05—0° SSTIAAY OL ATTYNOLLIANOONN dNN(d

s 101 SOVLS OLNO L1NSTI F4OLS ANV SYOVIS |

[-ds—ds 1540508 GNODES (ANY dOL NO SINTVYA ATdIL TN A
4o d JOL SIDVLS OLNO L1NSad 3301S ANV

[-ds—ds 180508 SMOVIS ANODES ANV dOL NO SANTVA adv PPV

ds L ds 155505 ONVIad0 Ad Q3LVOIANI SSaIaay dog
0s—pueiedo | QLNI LI 30V1d ANV MOV.IS dOL 40 3NTYA dOd

[+ds—ds puesado(s MOVIS OLNO ANV¥ddO HSNd ysnd

ANTVA dS| \ay1s NEAONVID SINTLNOD NOLLY¥HdO NIHIYI
| 2 OId

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 3 of 91

<AIJ WNO4¥Ed OL 3a0D 40 SSaIaayv dnwni>

<IN NJ0AYEd OL 3A0D 40 SSaIAav dNnl>

<290 WJ0JA¥dd 01 4d0D 40 SSHIAAv dNni>

<ouf WOAdAd OL 3d0D 40 SSFIAAv dNNf>

<anS WAOAYEd OL 40D 40 SSTIAAV JNNI>

< PPV INJOJIYd OL 440D 40 SSHIAAy dNni>

< dod INJOA¥dd OL 4A00 40 SSFYAAV JNNL>

— 1= OO O|O|O| O

<ysnd W04 dd OL d0D 40 SSFIaAayv dnni>

SANVY4dO
40 mmmS_Dz

SSAYAayv dnNnl

Vi

ddoodo

\
290v¥

n@ovw\ \

90¥¥

Patent Application Publication Dec. 18,2003 Sheet 4 of 91 US 2003/0233386 A1

FIG. 4A
MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Push”
L:Inc 3 ; INCREMENT SP VALUE BY ONE
2:Load r0,[r2] ; EXTRACT OPERAND AND
A : PLACE IT ONTO REGISTER #0
J:Inc re ; INCREMENT VIRTUAL MACHINE PC BY ONE AND
; PREPARE FOR READING NEXT INSTRUCTION
4:Store [r3]60 ; PUSH VALUE OF REGISTER #0ONTO STACK
<MICROPROGRAM FOR JUMPING TO NEXT VIRTUAL MACHINE INSTRUCTION.>
FIG. 4B
MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Add"
1:Load r0,[r3] ; EXTRACT VALUE FROM STACK
: ; PLACE IT ONTO REGISTER #0
2:Dec r3 : DECREMENT VALUE OF VIRTUAL MACHINE SP BY ONE
3:Load rl,[r3] ; EXTRACT VALUE FROM STACK
: PLACE IT ONTO REGISTER #1
4:Add 0,:0rl ; ADD VALUES OF REGISTER #0 AND #1 AND
: PLACE RESULT ONTO REGISTER #1
5:Store (r3].:0 ; PLACE VALUE OF REGISTER #0 ONTO STACK
<MICROPROGRAM FOR JUMPING TO NEXT VIRTUAL MACHINE INSTRUCTION >
FIG. 4C
MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Mult®
1:Load 10,[r3] ; EXTRACT VALUE FROM STACK AND
» ; PLACE IT ONTO REGISTER #0
2:Dec 3 : DECREMENT VALUE OF VIRTUAL MACHINE SP BY ONE
3:Load r1,[r3] : EXTRACT VALUE FROM STACK AND
; PLACE IT ONTO REGISTER #1
4:Mult @001 : MULTIPLY VALUES OF REGISTERS 30 AND #1 AND
; PLACE RESULT ONTO REGISTER #1
5:Store (r3.10 : PLACE VELUE OF REGISTER #0 ONTO STACK
<MICROPROGRAM FOR JUMPING TO NEXT VIRTUAL MACHINE INSTRUCTION>
FIG. 4D
<MICROPROGRAM FOR JUMPING TO NEXT VIRTUAL MACHINE INSTRUCTION>
l:iLoad - r0.[r2} : READ VIRTUAL MACHINE INSTRUCTION
(JUMP ADDRESS) INDICATED BY PC
INTO REGISTER #0
2:Inc r2 : INCREMENT VIRTUAL MACHINE PC VALUE BY ONE
3:Jmp 0 ; JUMP UNCONDITIONALLY TO LOCATION
INDICATED BY REGISTER #0

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 5 of 91

AENRO1¥d ONIHLION doy
0 LON SI (0%) ¥HISIOF qaLYNOISAA 40 ANTVA 41 (1¥)
AL | xQX zuf MAISIOFY ALYNOISHA A9 ALVIIANI SSTIAAV OL dNNT [
0'SI (0%) ¥ALSIOTI AFLYNOISIA 40 ANTVA 1 (1%)
2 Zf| XX 7 JH1S19Fd ALYNOISHA A9 QALVIIANI SSHIAAY OL dNN(7
A duf oX dwl | (0x) YAISI9HY QLLYNOISHA A Q4LVIIANI SSHIAAY O dNAL _ dugf
JALSIOTS ANYS NI L1NSTI TI0LS ANV * (%)
gl %(] X 39 JAISIOTY AILYNOISAA 40 ANTVYA WO¥d 1 LIVILINS (]
| JHISIOTY ANVS NI L1NSTI HI0ILS |
pd ou[0X ouf ANV * (1%) Y31SI93¥ A4.LYNOISAA 40 INTVA OL I adv o]
(0%) YALSIOFY ALYNOISTA OLNO LTNSTY F0V1d ANV
Ay N | xxox I ' (7% 1%) SYAISIOFN AFLYNOISAd 40 SANTYA ATdILTNN N
(0%) YAISIOFY ILYNOISHA OLNO LTNSTY HOV'1d
e oppy | xxox PRy aNY ' (2% 1%) SYA1SI93d q4LYNIISHd J0 SINTVA aav ppY
JALSIOTY A9 QALYNOISAA [0%] NOLLYIOT AYONEN
] wog| xfox] 8lIg OINO (1X) ¥AISIOFY ALLYNOISAA 40 ANTYA 4V Td A0)S
FAIRE peo| [ix]'ox peoq (0%) Y31S19dd A4LVYNOISAA 40 INTVA OLNO
, JA1S1994 Ad Q4LYNOISEA ([1X]) NOLLYJ0T AYONEN 40
! peo’] [X0x peo] LVHI 30 (1¥) ¥4.1S1938 @4LYNOISId 40 ANTVA HOV'1d peo]
NOLLONYLSNI
J1dNVXE NOLLV.ION SINTINOD NOILV¥ddO ANTOVA TVRI
G OId

Patent Application Publication Dec. 18,2003 Sheet 6 of 91 US 2003/0233386 A1

FIG. 6

4501
Start 20
RECEIVE INPUT VIA

SIGNAL LINE R

READING STARTS ?

4504

SET READING POSITION AT
LOCATION INDICATED BY PC

4505

READ VIRTUAL MACHINE
CODE

4506

SEARCH DECODE TABLE AND
OUTPUT DECODED DATA

4507

OUTPUT NOTIFICATION OF
END OF READING ONTO R

Patent Application Publication Dec. 18,2003 Sheet 7 of 91

- FIG. 7

VCa<-READ VIRTUAL
NACHINE CODE

802

4803

"i" INDICATES
LAST ENTRY OF
ABLE ?

VCb+ ith VIRTUAL MACHINE
CODE IN TABLE

US 2003/0233386 A1

OUTPUT JUMP ADDRESS IN ith ENTRY
OF TABLE TO EXECUTING UNIT

SUBSTITUE NUMBER OF OPERAND IN
ith ENTRY OF TABLE INTO op Count

4810

[—

READ OPERANDS TO OUTPUT
TO EXECUTING UNIT
— 4813

815 [
End

Patent Application Publication Dec. 18,2003 Sheet 8 of 91 US 2003/0233386 A1

FIG. 8
Start 4601
>
RECEIVE INPUT VIA 4602
SIGNAL LINE R

~— 4603

INPUT FOR READ
NUMBER RECEIVED
VIAR?

Counie INPUT NUMBER]} 4604
‘ 0 I
4605

4607

RECEIVE INPUT VIA R

NOTIFICATION FOR
pC CHANGE RECEIVED
VIAR?

| dPC—dPC+i r’ 4609 4614
: 4610 [OUTPUT NOTIFICATION OF
SET READING POSITION END OF READING VIAR
AT dPC LOCATION

READ VIRTUAL MACHIN
CODE »

Patent Application Publication Dec. 18,2003 Sheet 9 of 91 US 2003/0233386 A1

FIG. 9
4701

(Start)

INITIALIZE PROGRAM COUNTER
PC) AND STACK POINTER (SP

4702

4703

OUTPUT NOTIFICATION TO
READ NEXT INSTRUCTION
ONTO SIGNAL R

EXECUTE MICROPROGRAM FOR
DECODED DATA

NOTIFICATIO
OF END OF READING
RECEIVED VIAR ?

Patent Application Publication Dec. 18,2003 Sheet 10 of 91 US 2003/0233386 A1

FIG. 10A

l:
2
3:
4:
5:
6:
7
8:
9:
10:

FIG. 10B

ARITHMETIC EXPRESSION : <DATA AREA #0>=2%(3+4)

FIG. 10C

1: <JUMP ADDRESS OF CODE TO PERFORM Push>

2: OPERAND "2"

3; <JUMP ADDRESS OF CODE TO PERFORM Push>

4: OPERAND "3"

5. <JUMP ADDRESS OF CODE TO PERFORM Push>]
6

7

8

9:

: OPERAND "4"
- <JUMP ADDRESS OF CODE TO PERFORM Add>
. <JUMP ADDRESS OF CODE TO PERFORM Mult>
<JUMP ADDRESS OF CODE TO PERFORM Pop>
10: OPERAND "0"

Patent Application Publication Dec. 18, 2003 Sheet 11 of 91 US 2003/0233386 A1

FIG. 11A | FIG. 11B

T PCa 440 A
TSPl ptte
§ il [I

; PC:11

E > 3 SP:-1 E

g 2 : i

L et 1 §

U, S v - :
:

Patent Application Publication Dec. 18,2003 Sheet 12 of 91 US 2003/0233386 A1

FIG. 12A
MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Push”
l:Inc r3 ; INCREMENT SP VALUE BY ONE
2:Store {r3i0 ; PLACE VALUE OF TOS REGISTER ($0)
» INTO STACK
J:Load 10,[r2} ; EXTRACT OPERAND AND
» PLACE IT ONTO TOS REGISTER
4:Inc r2 » INCREMENT PC QOF VIRTUAL MACHINE BY ONE TO PREPARE
» FOR READING NEXT INSTRUCTION
<MICROPROGRAM FOR JUMPING TO NEXT VIRTUAL MACHINE INSTRUCTION>

FIG. 12B
MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Add"
1:Load r1.[r3] ; EXTRACT VALUE FROM STACK
; PLACE IT ONTO REGISTER #1
2:Dec 3 : DECREMENT VALUE OF VIRTUAL MACHINE PC BY ONE
3:Add 0101 ; ADD VALUES OF REGISTERS #0 AND #1 AND

; PLACE RESULT ONTO TOS REGISTER

<MICROPROGRAM FOR JUMPING TO NEXT VIRTUAL MACHINE INSTRUCTION>

FIG. 12C
MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Mult”
1:Load el[r3] ; EXTRACT VALUE FROM STACK AND
; PLACE IT ONTO REGISTER #1
2:Dec B ; DECREMENT VALUE OF VIRTUAL MACHINE SP BY ONE
3:Mult 001 ; MULTIPLY VALUES OF REGISTERS #0 AND #1 AND
; PLACE RESULT ONTO TOS REGISTER
<MICROPROGRAM FOR JUMPING TO NEXT VIRTUAL MACHINE INSTRUCTION>>

FIG. 12D

<MICROPROGRAM FOR JUMPING TO NEXT VIRTUAL MACHINE INSTRUCTION>>
1:Load rl,[r2) ; READ VIRTUAL MACHINE INSTRUCTION (JUMP ADDRESS)
: INDICATED BY PC INTO REGISTER #1
2Inc 12 ; INCREMENT VIRTUAL MACHINE PC BY ONE
3Jmp rl : JUMP UNCONDITIONALLY TO LOCATION

INDICATED BY REGISTER #1

Patent Application Publication Dec. 18,2003 Sheet 13 of 91 US 2003/0233386 A1

FIG. 13A | FIG. 13B
L AM04 442

PC:1 || TOS:0 |: Add |

: [_SP:-1 | T
4412 adt I PC:8 I| TOS7
E ; i [__SP:1

Patent Application Publication Dec. 18,2003 Sheet 14 of 91 US 2003/0233386 A1

FIG. 14
STAGE NAME NOTATION
| __INSTRUCTIONFETCH ___ | ____IF_____
INSTRUCTION DECODE AND RF
REGISTER REFERENCE

FIG. 15

CLOCK 1]12]3]4[5]6]7]8
- INSTRUCTION A | IF {RF |ALUMEM|WB
INSTRUCTION B IF | RF [ALUMEM|WB

INSTRUCTION C IF |RF [ALUMEMWB|
INSTRUCTION D IF |RF |ALUMEMWB
FIG. 16
CLOCK 1]2|3|4]5]6]7]8

INSTRUCTION Al | IF |RF |ALUMEMIWB
INSTRUCTION A2 | IF [RF |[ALUMEM{WB

INSTRUCTION Bl IF | RF |ALUMEMWB
INSTRUCTION B2 IF | RF |ALUMEMWB
INSTRUCTION C1 IF | RF |JALUMEM]WB
INSTRUCTION C2 IF |RF |ALUMEM|WB
INSTRUCTION D1 IF | RF |JALUMEM/WB

INSTRUCTION D2 IF | RF |ALUMEM|WB

Patent Application Publication Dec. 18,2003 Sheet 15 of 91 US 2003/0233386 A1

FIG. 17

CLOCK 11213141561 7]8189
INSTRUCTION A | IF | RF |ALUMEM[WB
INSTRUCTIONB — |IF |RF| - |ALUMEM|WB

INSTRUCTION C 1IF | - [RF[ALUMEMWB
INSTRUCTION D - | IF |RF |ALUMEMWB
FIG. 18

CLOCK 1]2]|3]4]5]6]7[8]9

INSTRUCTION Al | IF | RF |ALUMEM{WB
INSTRUCTION A2 | IF | RF |ALUMEM]WB
INSTRUCTION Bl1 IF |RF| - [ALUMEMIWB
INSTRUCTION B2 IF | RF|ALUIMEMWB

INSTRUCTION C1 IF |RF |ALUMEMWB
INSTRUCTION C2 IF |[RF| - |[ALUMEM[WB
INSTRUCTION D1 ~[TF |RF [ALUMEMWB
INSTRUCTION D2 IF [RF| - |ALUMEMWE]
FIG. 19

CLOCK 1]2]|3}]4]516[7]8]9110
INSTRUCTION A | IF | RF |ALUMEM|WB

INSTRUCTION B IF |RF| - | - [ALUMEM|WB
INSTRUCTION C IF | - | - |RF|ALUMEMWB|
INSTRUCTION D - | - [IF |RF ALUMEMWE]

Patent Application Publication Dec. 18,2003 Sheet 16 of 91 US 2003/0233386 A1

FIG. 20

CLOCK 112131456789
INSTRUCTION Al | IF | RF |ALUMEM]WB
INSTRUCTION AZ | IF | RF |ALUMEM|WB
INSTRUCTION B1 [F|RF| - | - |ALUMEMWB
INSTRUCTION B2 IF | RF|JALUMEMWB

INSTRUCTION C1 - | IF | RF |ALUMEM|WB
INSTRUCTION C2 IF | RF [ALUMEM[WB
INSTRUCTION D1 IF | RF [ALUMEMWB
INSTRUCTION D2 IF |RF[- |[ALUMEMWB
FIG. 21

CLOCK 112[3(4]5(6]7

INSTRUCTION A | IF |RF |ALUMEM[WB
INSTRUCTION B IF | x .
INSTRUCTION C IF [RF|ALUIMEMWB

FIG. 22

CLOCK]2
INSTRUCTION Al [IF |RF [ALUMEM|WB
INSTRUCTION A2 [TF [RF [ALUMEM|WB
INSTRUCTION B1 TF | x
INSTRUCTION B2 F
INSTRUCTION C1 IF |RF |ALOMEM[WE
INSTRUCTION C2 IF |RF [ALUMEM[WB

Patent Application Publication Dec. 18,2003 Sheet 17 of 91 US 2003/0233386 A1

FIG. 23
CLOCK 11|23 14|5|6]|7|8]9{10]11
Load rl,[r2]| IF | RFJALUMEMWB|
Inc 2 IF|RF |ALUMEM{WB
Jmp 11 IF | RF|ALUMEM/WB
IF| x
Load rl,[r3] IF | RFALUMEMIWB
Mult r0,r0,rl (IF | RF ALUMEM[WB
FIG. 24
CLOCK 1]2]3]|45|6]7]8[9]10j11
Load rl,[r2]| IF |RF |ALUMEM
Inc r2 IF |RF |ALUMEMIWB
Jmp rl IF | RF| - |ALUMEMIWB
IF |RFIALU| x
IF |[RF]| x
IF |RF| x
IF | x
IF | x ‘
Load rl,[r3] IF | RF|ALUMEMIWB
Dec 13 IF | RF |ALUMEMIWB
Mult r0,r0,rl IF |RF| + JALUMEMWB

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 18 of 91

dM

WIN

11TV

dl

dM

TV

d1

WIA

1\

4

41

[rorod IMAN
o ST
[€3]'14_peoT

4l

dm

WIN

'V

41

dM!

WA

0V

41

11 duf
AR |

dM

WIN

'V

dI

[29]'11 peO]

el

¢l

Il

Ol

I

0010

G¢ OH

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 19 of 91

aminaninTyl - | - | A1 [Xoror M
AMINININTY] 1T | AT g1 29Q
AMNININTY| AT | A1 [¢3]'13 peo]

S El

x | Al

x [dd | Al

X | dd) A1

x [NTv[4A | A1

i B b

x [NANINTY[1 | A1

dMINININTY] - | - || dI 11 duf
IMNININTY| | AT AR
dMNININTY| 2 | AT [[23] 12 peo]
cilerliilotf 6|8z]ofls|¥v|E€|l2| T DDOTIO

9¢ O

Patent Application Publication Dec. 18,2003 Sheet 20 of 91 US 2003/0233386 A1

FIG. 27
Q:Push O i<0
2:Pop [0]
4:Push O ;sum<—0
6:Pop [1]
8:Push [0] i<10?
10:Push 10
12:Sub
13:Brz 31
- 15:Push [1] ;sum<—sum-+i
17:Push [0 |
19:Add
20:Pop 1]
22:Push [0] i+l
24:Push 1
26:Add
2T:Pop [0}
29:Br 8
- 31:Stop

Patent Application Publication Dec. 18,2003 Sheet 21 of 91 US 2003/0233386 A1

FIG. 28

Start 001

7002

21004 wl« 7005

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 22 of 91

doig

0 < A0S INJOJIHd OL HA0O>| STIOM 2
I <23 WAOdd OL HA0D>| SIOM & z1g
1 <3G WJORIAd 0L HA0D>| S@MIOM € g
I <[Jusnd WIOAHEd 0L 300> SA@IOM S [Jusnd
0 <N WJORIAd OL 3A0D>| SIOM € T
0 <qnS WIOAJdd OL 9d00>| SAQIOM € qng
0 <PPV WJIOJJAd OL Q00> SAQIOM € PPY
I <dod INJOAJHAd OL 4d0D>| SAIOM S dog
I <usnd WAOAAd 0L 4A0D>] S@Iomvy i ysnd
ALV IdNAL [INOLLOMALSNI
4LV IdNEL
JOUIIANN| 000 ENHDVACIvEY SR ENIHOVINI| ™ "dNIHOYIN

6¢ OId

Patent Application Publication Dec. 18,2003 Sheet 23 of 91 US 2003/0233386 A1

FIG. 30
VIRTUAL
VIRTUAL CORRESPONDING
I&AS*SP%HNE MACHINE EBADEI‘S’II‘%%HINE REAL MACHINE
| ADDRESS CODE CODE ADDRESS
0 Push 0 4 0-3
2 Pop (0] 5 4-8
4 Push 0 4 9-12
6 Pop 1] 5 13-17
8 Push (0] 5 18-22
10 Push 10 4 23-26
12 Sub 3 27-29
13 Brz 31 5 30-34
[15 J[Push__[1 5 35-39
17 . JPush [0 5 40-44
19 llAdd 3 45-47
20 Pop 1 5 48-52
22 Push [0 5 53-57
24 Push 1 4 58-61
26 |[Add 3 62-64
27 Pop 0 5 65-69
29 Br 8 3 70-72
| 31 Stop | 2 73-715

Patent Application Publication Dec. 18,2003 Sheet 24 of 91 US 2003/0233386 A1

FIG. 31A
93002 9300
, b
BIT SEQUENCE | MEANING
0 T
10 0
110 G
11 T

FIG. 31B

INSTRUCTION SEQUENCE A:"babc”

1{ojoJ1Jof1]1]0

INSTRUCTION SEQUENCE B:"aabc”

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 25 of 91

AONANOHS

_ 7069

NOILLON™LSNI /| Nt — W3 SASSHIAay

(mmném#mmmmm&a@
ONANOTS|—+® |62# —02# SASSTIAAY

NOILLO(1d.LSNI 61+ —01 # SISSAIAAY

AIONANOIS «——1®| 63 —03 SHSSHIAAV

NOLLIN A LSNI

€069
AHOVD NOLLDNILSNI

_ﬂmm.wz:o”u WVd004d _

1069

2069"

¢€ "Old

Patent Application Publication Dec. 18,2003 Sheet 26 of 91 US 2003/0233386 A1

FIG. 33
Q:Push O i<0
2:Pop 0]
4:Push 0 :sum<0
6:Pop 1]
8:Push [0] :i<10¢?
A > 10:Push 10
12:Sub
13:Brz 31
15:Push [1] ‘sumM<—sum-+i
17:Push | [O] |
B 20:Pop 1]
22:Push (0] i+l
24:Push 1
26:Add
27:Pop 0]
c —>—29Br 8

31:Stop

Patent Application Publication Dec. 18,2003 Sheet 27 of 91 US 2003/0233386 A1

=
‘ ()
O -
<P
S 2
(]
[q\]
- \
[qN]
()
o
N v
\ Q)]
S |2
% AN\ =
2 2
% 2]
& 2
|
B 8
£ i Q
uw
=\
7 =<

FIG. 34

Patent Application Publication Dec. 18,2003 Sheet 28 of 91 US 2003/0233386 A1

FIG. 35

o 101 102 100
NEXT INSTRUCTION /
‘ I ‘INSTRUCTION I
INFORMATION

STORING UNIT STORING UNIT 103

P
1 e | s pgene

NEXT INSTRUCTION| [[INSTRUCTION ke
INFORMATION — [€ ,
READING UNIT READING UNIT

T\ /107

l 106 108 PC
~ -~ A

SEARCH UNIT DECODE

Patent Application Publication Dec. 18,2003 Sheet 29 of 91 US 2003/0233386 A1

FIG. 36A FIG. 36B

102
/101 / 0

o
=
wn
-

clclo|o|o|ojc|clc|a

j—
o

oy
<

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 30 of 91

<., GINDISSY Ul WJO44dd 01 4A0J 40 SSTIAay dnni>

<N, INDISSY 2ul WJ0AYAd 0L 4000 40 SSRIAay dNn>

<., QANDISSY IS NJOIdd OL 400D 40 SSHIAAy dNni>

<., QINOISSY anS WOAYAd 0L 402 40 SSTIAav dwnk>

. <0, QINOISSY PPY WORIAd 01 400D 40 SSTIAAY dWN{>

<. QANDISSY PPY WNOL4dd 0L 400D 40 SSTIAAY JNNI>

<.d, QIN9ISSY dod NJO:NIAd OL 30D 40 SSFIAAY dWni>

<N, ENOISSY dod WJOL4dd OL 400D 40 SSTIAAY dNNI>

<.d. QEINDISSY Usnd WJOJ¥dd 0L 400D 40 SSTIAAY dNnl>

<N, QANOISSY Usnd INOL¥Hd 0L 700D 40 SSTIAAY dNnl>

S ol [a) o) [a) jo) [a) o) [a)ja) ya))

SANVIHdO
40 mmeDZ

SSHIaav dnnfl
, ,

NOLLVINYOANI
NOILINYLISNI

4d02d0

\
P8OT

\ \

9801 \

801

Patent Application Publication Dec. 18,2003 Sheet 31 of 91 US 2003/0233386 A1

FIG. 38A

MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Push” WITH "U"

1:Load r4,0 :COPY VALUE OF TOS REGISTER (#0)
INTO SOS REGISTER (1 4)
2:Load 10,(r2] ;READ OPERAND INTO TOS REGISTER

3Inc 12 INCREMENT VIRTUAL MACHINE PC BY ONE TO
: PREPARE FOR READING NEXT INSTRUCTION

4Inc 13 ;INCREMENT VIRTUAL MACHINE SP BY ONE
5:Store [r3],r4 ;PLACE SOS REGISTER VALUE INTO STACK

6:Load rl1,[r2] ;READ VIRTUAL MACHINE INSTRUCTION
’ (JUMP ADDRESS) INDICATED BY
PC INTO REGISTER #1
Tinc 12 INCREMENT VIRTUAL MACHINE PC BY ONE
8Jmp 1l .JUMP UNCONDITIONALLY TO LOCATION
INDICATED BY REGISTER #1

FIG. 38B

MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Push” WITH "D"

l:Load r4,r0 ;COPY VALUE OF TOS REGISTER (#0)
INTO SOS REGISTER (# 4)
2:Load 10,[r2] ;READ OPERAND INTO TOS REGISTER

3Inc r2 :INCREMENT VIRTUAL MACHINE PC BY ONE TO
PREPARE FOR READING NEXT INSTRUCTION

6:Load rl,[r2] ;READ VIRTUAL MACHINE INSTRUCTION
(JUMP ADDRESS) INDICATED BY
PC INTO REGISTER #1
T:Inc r2 :INCREMENT VIRTUAL MACHINE PC BY ONE
8Jmp 1l ;JUMP UNCONDITIONALLY TO LOCATION
INDICATED BY REGISTER #1

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 32 of 91

<.d, HLIM 3a00 dNNT ANTHOVIN TVNLYIA JOd WVIDOYJOIOIN>

JALSIOAY SOL OLNI LTNSHY 90V1d ANV
MALSIOFA SOS ANV JALSIOFY SOL 40 SANTVA AdV: #1'0'0! PPV:I

0. HLIM PPV, NOLLOMALSNI ANIHOVIA TVNLAIA J0d WVID0YdOdOIN

d6¢ Old

<.N. HLIM mQOU .&2_\: ANIHOVIN TVNLAIA J0d WVID0ddOIOIND>

JALSIOFY SOL OLNI L 1NSHY 0VTd ANV
ALSIOF SOS ANV JELSIOFY SOL 40 SHITVA aav. oerod pev:-l

.1 HLIM PPV, NOLLONYLSNI INTHOVIN TVLLAIA Y04 WVIO0IdOADIN

- V6€ OId

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 33 of 91

<.d.HLIM 3000 dAN[ANIHOYIN TVALAIA F0d WVIDOOIJOYIIND

ALSIONY SOL OLNI L1NSTY AOVId ANV o
MALSIOT SOS ANV JALSIOHY SOL 40 SHNTVA ATdILION: ProFe MINC

1. OLIM A, NOILONILSNI ANIHOVIN TVLAIA 404 NVIO0ddOdIIN
d0v "OId

< .1, HLIM 3000 dJANT INIHOVIN TVILAIA F04 NVID0AdOYIIN>

YALSIOFY SOL OLNI LTNSHY d0V1d ANV
VALSIOTI SOS ANV JALSIOHA SOL 40 SANTVA ATdILTNANG prorod MPINCT

M. HLIM PN, NOLLONAYLSNI ANIHOVIN TVNLIIA 04 NVIO0IdOIOIN
vOv Old

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 34 of 91

14 YALSIOHY A9 AILVOIANI
NOLLYDO0T OL ATTVYNOILIGNOONAN dNNT: 11 dwfig
ANO A9 dS ANIHOVIN TYNLAIA 40 d'TVA INIWNHIOFA: g1 RA¥

ANO Ad 0d ANIHOVIN TVNLAIA JO dTVA LNAWNHAONI ANNCL) 3
YALS10dd SOS OLNI |

11 AJOO ANV MOV.LS WOdd HNTVA aVHY: [€3]'%d PEOTC
T4 ¥ALSIOH OLNI Od ANIHOVIN
TVNLAIA A9 ELVOIANI (SSTaav dNNI)
NOLLDNMLSNI ANIHOVIA TVNLIIA AVEY- [23)'13 peOTI

0. ELLIM 3000 JNNT NTHOVIN TYNLAIA 304 WVEO0ddO¥OIN |
di¥ "OId

| 14 YALSIOTY A9 A4LVOIANI
 NOILLYDOT 0L ATTVNOLLIANOONN NN 11 dufg

ANO Ad Od ANIHOVIN TVNLAIA O HI'TVA LNANTIONI: AN O/
14 YALSIOT OLNI Od ANIHOVIN

TYNLYIA A9 QALVOIANI (SSHIAdV dNnl)
NOLLONYLSNI ANTHOVIN TYNLIIA AVHEY: [23]'13 peOT:(

. LW 2000 dNNI aNTHOVINUTVNLAIA 304 WVD0YdOYOIN
| VIiv "Old

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 35 of 91

<0s dod ANV SOS—SOL WIORIAd <€ = =
SOS USNd NHOANHd €= (INJOLHd ONIHION «<——

NOLLYINYOANI NOLLONJLSNI LXHN-Z

NOLLYYHdO JALAV SVAIONI STHATTMOVLS 40 JAGNNN-A
NOLLVAdO A9 d4SN 39 OL MOV.LS NI SHN'TVA 40 IGNNNX (Z)A'X

(SOS'S0.1)do—-S0OL (SO1)do—-SOL ¢

SOS—SOL WAOIATd <rrerer
SOS dod WHOAYHAd <G====

Patent Application Publication Dec. 18,2003 Sheet 36 of 91 US 2003/0233386 A1

FIG. 43

S 4901
RECEIVE INPUT VIA £ 4902
SIGNAL LINE R
/4903
READING
TARTED 2
v /4904
SET READ POSITION AT |
LOCATION SPECIFIED BY PC

| /4905
READ VIRTUAL

/ MACHINE CODE

| /4906

READ NEXT INSTRUCTION #
INFORMATION |

/4907

SEARCH TABLE AND
OUTPUT DECODED DATA

4908

OUTPUT NOTIFICATION OF
END OF READING ONTO R

Patent Application Publication Dec. 18,2003 Sheet 37 of 91 US 2003/0233386 A1
FIG. 44

5001
, 5002
VCa<-READ VIRTUAL
NACHINE CODE
5003
VNCa<—READ NEXT
INSTRUCTION INFORMATION

~—~ 5004

"i" INDICATES
ND OF TABLE 2

— __5006 @
VCb«VIRTUAL MACHINE _
CODE AT "i"THENTRY OF TABLE

5007

[VNCb<«~NEXT INSTRUCTION INFORMATION
AT "i"THENTRY OF TABLE

Patent Application Publication Dec. 18,2003 Sheet 38 of 91 US 2003/0233386 A1

! 5101

OUTPUT "i"TH DECODED DATATO
EXECUTING UNIT

FIG. 45

95102

SUBSTITUTE "i"TH NUMBER OF OPERAND
INTO op Count

5107
| ERROR HANDLING |

-

Y

i=op Count?

5105

READ VIRTUAL MACHINE CODE AND OUTPUT
OPERANDS TO EXECUTING UNIT

Patent Application Publication Dec. 18,2003 Sheet 39 of 91 US 2003/0233386 A1

FIG. 46

1:<JUMP ADDRESS OF CODE TO PERFORM Push WITH "U">
2:0PERAND "2"

3:<JUMP ADDRESS OF CODE TO PERFORM Push WITH "U">
4:0PERAND "3" |

5:<<JUMP ADDRESS OF CODE TO PERFORM Push WITH "D">
6:0PERAND "4"

7.<JUMP ADDRESS OF CODE TO PERFORM Add WITH "D">

8:<JUMP ADDRESS OF CODE TO PERFORM Mult WITH "D">

9: <JUMP ADDRESS OF CODE TO PERFORM Pop WITH “U">
10:0PERAND "0"

Patent Application Publication Dec. 18,2003 Sheet 40 of 91

FIG. 47A
07

FIG. 47B

;I PCl l} TOS() |122 D/Add
; SP 1 SOS:0_T:

1D | 123 §

PC:5 TOS:3
SP:1 SOS:2 |

i [PC:9_|[T0S:14]
t[_SP:-1 SOS:0_|
E_________--.—.?: E

{ [_PC:11_] [[TOSD]
: [SP-1 SOS0_|:
SRR = §

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 41 of 91 US 2003/0233386 A1

FIG. 48
CLOCK 1 {2 |3 }41I|51|6 |7 {8 {9 |10]ll
Load rl,[r2]| IF | RF|ALUMEM|WB
Load r4,[r3] IF | RFIALUMEM|WB] .
Inc 12 IF | RF|ALUMEM|WB
Dec 13 IF | RF|ALUMEM|WB
Jmp rl IF | RF |ALUMEM [WB
IF| x
Mult r0,r0,r4 IF |RF ALUMEM|WB
FIG. 49
CLOCK 1]213]|4|5|6}|7({8]9
Load rl,[r2] I_F.__R_F_ALURIEMWB
Load r4,[r3]| IF |RF |JALUMEM]WB
Inc r2 IF | RF |ALUIMEMWB
Dec r3 IF |RF [ALUIMEMWB
Jmp rl IF | RF|ALUMEM|WB
IF | RF| x
IF| x
IF| x

Mult 10,r0,r4 IF | RF JALUMEMIWB

Patent Application Publication Dec. 18,2003 Sheet 42 of 91 US 2003/0233386 A1

FIG. 50
CLOCK 1123|4156 |7 1819 }10]11
Load rl,[r2])|IF | RF{ALUMEM[WB :
Load r4,[r3] IF | RFJALUMEM|WB
Inc 12 IF | RFJALUMEM[WB
Dec 13 ' IF | RF{ALUMEM|WB
Jmp 1l IF | RF |ALUMEM |WB
IF| x
Mult r0,r0,r4 IF |RF ALU|MEM|WB
FIG. 51
CLOCK 1| 2|3]4|5|6|7]8]9]10
Load rl,[r2] | IF [RF|ALU M/WB
Load r4,[r3][IF |RF |JALUMEM|WB
Inc 12 IF | RF [ALUIMEMIWB
Dec 13 IF | RF [ALUMEMWB
Jmp 1l IF | RF| - |[ALUMEM{WB
IF | RFIALU} x
IF |RF} x
'TF |RF| x
IF| x
IF| x
IF | RF |[ALUMEM|WB

Mult 10,r0,r4

Patent Application Publication Dec. 18,2003 Sheet 43 of 91 US 2003/0233386 A1

FIG. 52

/3404
SOURCE PROGRAM 3400
VS 3402 3401
INSTRUCTION C3_[NEXT INSTRUCTION
SEQUENCE — | INFORMATION
CONVERTING UNIT] GENERATING UNIT
Cll 3403 |
RELATION . VIRTUAL
MACHINE
ASSOCIATING UNIT C? COMPILER

VIRTUAL ‘NEXT |
MACHINE INSTRUCTION

PROGRAM :INFORMATION

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 44 of 91

F, AVTYA TYORENON
J4ALNOILOMALSNI

J4AL

£ ANTVA TYORINAN

NOLLDMYLNI

avdd -4dAL
NOLLO(JLSNI

avdad -ddAlL
NOLLONY.LSNI

ot HdAL
NOLLOOJLSNI

X, SSEYAQY HdAL
NOLLONYLSNI

1, ANTVA TVORNON
AL NOILOMAISNI

£ ATVA TVORIIAON
AL NOLLITALSNI

avad -HdAL
NOLLONYLSNI

Qvad ‘adAL
NOLLONILSNI

o HdAL
NOILLOMILSNI |

NOLLONJLSNI

%, HdAL

o= HdAL
NOILINYLSNI

.(F+E)

«(Z+1)=X,:ZONINOIS NOLLONJ.LSNI
J0O NOILONYLSNOD VLVd

€6 OId

Patent Application Publication Dec. 18,2003 Sheet 45 of 91 US 2003/0233386 A1

FIG. 54
5201
-

INSTRUCTION TYPE § 6903

A POINTERTO {POINTERTO
52027 | LEFT SUB-TREE |RIGHT SUB-TREE

FIG. 55
5401
(Start)
5402
Z READ INSTRUCTION SEQUENCE ,
| 5403
INITIALIZE CALCULATION

STACK.

¢ 5404

btr—ROOT NODE
POINTER

GCENERATE VIRTUAL MACHINE |
INSTRUCTION SEQUENCE

- 5406

End

Patent Application Publication Dec. 18,2003 Sheet 46 of 91 US 2003/0233386 A1

FIG. 56

5601
,_/ 5602

Start

5603

PUSH ptr ONTO CALCULATION
STACK

ptr< LEFT BRANCH POINTER 5604
OF ptr NODE

GENERATE VIRTUAL MACHINE 5605
INSTRUCTION SEQUENCE

Pop ptr FROM CALCULATION 5606
STACK

Bush ptr ONTO CALCULATION | 5607
STACK

pu— RIGHT BRANCH POINTER |~ 5608
OF ptr NODE -

CENERATE VIRTUAL MACHINE[} 5609
INSTRUCTION SEQUENCE

Pop ptr FROM CALCULATION 5610
STACK

knd<— INSTRUCTION TYPE VALUE

OF ptr NODE
5612 @
S knd NUMERICA Y
ALUE OR ADDRESS
~ 5613

OUTPUT VIRTUAL MACHINE
CODE CORRESPONDING TO knd

[<
C End),/5614

3611

Patent Application Publication Dec. 18,2003 Sheet 47 of 91 US 2003/0233386 A1

5901
Start
FIG. 57TA 5002
REM\[}%E> " (%E>'g+" -
O
- FIG. 57B FIG. 57C
Y
5903 5905

OUTPUT VIRTUAL MACHINE
CODE "Mult"

OUTPUT VIRTUAL
MACHINE CODE "Push’

OUTPUT CONTENTS (OPERAND)

OF LEFT BRANCH
FIG. 57E @
5906

OUTPUT VIRTUAL MACHINE
CODE "Add" |

OUTPUT CONTENTS (OPERAND)

OF LEFT BRANCH

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 48 of 91

|
20 OLNO NOILVINJOANI
6055 - NOLLONYLSNI LXHUN SV XN 1Nd1N0
- >

[La—veN | [.N.—™eN
8065~ 7%:,5 L0SS~ | usng 905G~ »azémmo

& SYHHLO ¥0 "4sd,
ANVYEO ‘SANOdSAAYOD HA0D ANIHOVI TV/LLA]
avdd 4dAL HOIHM OL

puy
1166 G0SS

>OHHUDMHmZH IX4dN SV .M. LNdLNO

£J VIA 4d0D

20 OLNO NOILYINHOANI _
ANIHOVIN TVNLIIA dVHd

osm\

¥056 — N

¢, AVAY NIdd 4AVH SHd0
INIHOVIN TVNLYIA TIV

€066
€D VIA HdOO
ANIHOVIN TYNIMIA QVEY
206G — l
1055 ps) 86 "OId

Patent Application Publication Dec. 18,2003 Sheet 49 of 91 US 2003/0233386 A1

FIG. 59
6001

Start
6002

prve—"U'
Addr0

6003

NO VIRTUAL
MACHINE CODES
TO READ EXIST 3

6011
_
End
READ NEXT INSTRUCTION
INFORMATION VIA C2
___6006
IS NEXT INSTRUCTION
FORMATION "X" g
__6007 y 6008
now< READ NEXT INSTRUCTION I now<—prv I
INFORMAT

<

OUTPUT NEXT INSTRUCTION INFORMATION
now AND VIRTUAL MACHINE CODETO
LOCATION SPECIFIED BY VARIABLE Addr

6010

prv<-now
Addr<Addr+1

6009

Patent Application Publication Dec. 18,2003 Sheet 50 of 91

FIG. 60

INSTRUCTION 2
STORING UNIT

401

US

2003/0233386 A1

3500

3502
S

’ 1403
/

INSTRUCTION
READING UNIT

4405
~
SEARCH UNIT

D1

Cl

<]

«—

~

4404 DECODING

PC

/

4406

DECODE TABLE

Pt

3510

Y

)
BRANCH
INSTRUCTION
DETECTING UNIT
c2,,

\

\LDZ /3506

3209 INTERRUPT
. CONTROLLING

UNIT
S

3307 -

INTERRUPT

INTERRUPT

INSTRUCTION <7

STATE
STORING UNI

INSERTING UNIT]|

3515

NR

EXECUTING UNIT

4411

MICRO-
4412

SP

3516

INTERRUPT
HANDLING
PROGRAM

STACK

4420

UNIT
(._‘

Patent Application Publication Dec. 18,2003 Sheet 51 of 91 US 2003/0233386 A1

VCa—READ VIRTUAL %10
NACHINE CODE '
6103

"i" INDICATE
LAST ENTRY OF
ABLE ¢

FIG. 61

VCb<— VIRTUAL MACHINE CODE
IN "iTH" ENTRY OF TABLE

6108

= 6107 £ TURN SIGNAL LINE C1 4

OUTPUT DECODED DATA IN "{TH’
ENTRY OF TABLE ONTQ D1

~ 6110
TURN SIGNAL LINE C1 OFE

—~ 6111

SUBSTITUE NUMBER OF OPERAND IN
"iTH" ENTRY OF TABLE INTO op Count

~ 6116 6112
‘ERROR HANDLINGl
— Y

6113

e
/6114

~ |READ VIRTUAL MACHINE CODE
/91 17 | TO OUTPUT OPERAND ONTQ D1

1+—1+1 6115

Patent Application Publication Dec. 18,2003 Sheet 52 of 91 US 2003/0233386 A1

FIG. 62

6202

READ DECODED
| DATA VIA DI

—y— 6203
ddata<— READ DECODED DATA

6204
IS SIGNAL LINEC1 ON ¢

- |
S ddata ADDRESS OF
CH INSTRUCTION &

6206

TURN SIGNAL
LINE C2 ON

6207

OUTPUT ddata
ONTO D2
6208
TURN SIGNAL

LINE C2 OFF
6209

Patent Application Publication Dec. 18,2003 Sheet 53 of 91 US 2003/0233386 A1

FIG. 63

6301

6302

READ DECODED
DATA VIA D2

Start

6303
ddata 2+ READ DECODED DATA

READ INTERRUPT
STATE VIA ID

6306
INTERRUPT STATE
DETECTED ¢

6307

OUTPUT ADDRESS OF REAL MACHINE
CODE FOR HANDLING INTERRUPT __

6308

OUTPUT ddata2 TO
EXECUTING UNIT

C " :'/6309

Patent Application Publication Dec. 18,2003 Sheet 54 of 91

US 2003/0233386 A1
FIG. 64
3600
INSTRUCTION |34V
STORING UNIT
3502
: P

i 4403
A A

INSTRUCTION

l 4405

SEARCH UNIT «—DECODE TABLE

/4404 DECODING
UNIT

4406
/

cii |D1 3610
Y V¥ 3605
BLOCK INTERRUPT
CONVERTING ~ 8%11\%TROLLING
UNIT ,

E 3507
c2; lDz 3506

INTERRUPT

INSERTING UNIT

INSTRUCTION __ [<|STATE

INTERRUPT

STORING UNIT

EXECUTING UNIT

4411

SP UNIT

MICRO-

— 4412 | EROC R M INTERRUPT

3516

HANDLING
PROGRA

STACK

4420

READING UNIT[< PC <

PR L

Patent Application Publication Dec. 18,2003 Sheet 55 of 91 US 2003/0233386 A1

FIG. 65

64
!
5402

READ DECODED
DATA VIA D1

6403

| ddata—READ DECODED DATA |
| READ PC VALUE |/ 6404

m<—REMAINDER GENERATED
BY DIVIDING PC BY bsize

6405

TURN SIGNAL LINE
C2 ON

OUTPUT ddata
ONTO D2

TURN SIGNAL LINE - 6409

C2 OFF
6410

Patent Application Publication Dec. 18, 2003

Sheet 56 of 91 US 2003/0233386 A1
FIG. 66
3700
nsTRucTIoN 27
STORING UNIT
4402
; .~
: 1403 1404
R " I0% DECODING
| INSTRUCTION _
READING UNIT[<] PC <
4405 4406
[
SEARCH UNIT <—DECODE TABLE

R:

v ,_,37 10 _

EXECUTING UNIT 4411 3704
MICRO- AREA JUDGING
4412 |PROGRAM| LUNIT
— | STORING
SP UNIT ADDRESS
: CONVERTING UNIT]|

/f,4420 |

3705

v 3706

STACK

'REAL MACHINE
FUNCTION STORING
UNIT

Patent Application Publication Dec. 18,2003 Sheet 57 of 91 US 2003/0233386 A1

FIG. 67
3701

VMmin
' : 6501
VIRTUAL MACHINE

PROGRAM

VMmax
RMmin(=Vmax+1)

6502
REAL MACHINE

RMmax FUNCTION TABLE

FIG. 68

(CORRESPONDING
ADDRESS) | 6302

RMmax | (RMmax-RMmin)th POINTER TO REAL MACHINE FUNCTION
RMmax-1 | (RMmax-RMmin-1)th POINTER TO REAL MACHINE FUNCTION
RMmax-2 | (RMmax-RMmin-2)th POINTER TO REAL MACHINE FUNCTION

RMmin 0th POINTER TO REAL MACHINE FUNCTION

Patent Application Publication Dec. 18,2003 Sheet 58 of 91 US 2003/0233386 A1

FIG. 69

(' Start),/ 6801

Jaddr<—OPERAND

6803
Y 6804 "
addr<RMmax ?

6802

| —
Y 6805 6808
e] CALCULATE ADDRESS OF
idx—RMmax-Jaddr | | Sesf TRTUAL MACHINE
CODE AND SUBSTITUTE IT
| 6806 |INTO VARIABLE npc
READ POINTER pir IN —
R M TABLE =
I NDICTED BY INDEX idx | | PUSH npe TO STACK

~— 6810

PC<«Jaddr
6807 _—ﬂ—_'l

EXECUTE REAL MACHINE
FUNCTION SHOWN BY
POINTER ptr

~6811
(End ,

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 59 of 91

vivd

G © 19V.L NOLLONNA ANIHOVIN TVHY d0d XddNI

vivd

¢+ dT1dV.L NOLLONNA INI

HOVIN TvHY 404 XAANI

vivd

viIvd

vivd

g+l

¢t

[+
I

[+UTWAA
UTWINA

2019 -~

0L OId

Patent Application Publication Dec. 18,2003 Sheet 60 of 91

US 2003/0233386 A1
FIG. 71 /3800 3801
//
| INSTRUCTION
__ 3852a _3852b 3852d STORING UNIT
INSTRUCTION _|{INSTRUCTION | 353 4{INSTRUCTION
BLOCK STORING|[BLOCK STORING d1BLOCK STORING
AREA AREA 3853b AREA
3853a~ | IDENTIFIER DENTFER | |~ IDENTIFIER
TORING AREA| || |STORING AREAT | 3854d| STORING AREA
38542 || [NONBRANCH | || [NON-BRANCH || - - MNNON-BRANCH
INSTRUCTION INSTRUCTION [T | |INSTRUCTION
| STORING AREA| || |STORING AREA| | 3854b| |STORING AREA
38552 N [BRANCH BRANCE__ 1. LS4 [BRANCH
INSTRUCTION INSTRUCTION [t~ INSTRUCTION
STORING AREA| || [STORING AREA| | 3855b/| ISTORING AREA

3804, 3804a 3802

i 4403 = 7

N s pc [[DENTIFIER SEGMENT BE%)DING
A

OFFSET
4405 COUNTER
— 2406
DECODE

SEARCH UNIT je—{ DECODE |25 35046

Y

v 3810
EXECUTING UNIT _ 4411 3811
- BRANCH
4412 %’gglécﬁAM DESTINATION
SP | ISTORING | |CONVERTING
UNIT UNIT

STACK

Patent Application Publication Dec. 18,2003 Sheet 61 of 91

US 2003/0233386 A1
FIG. 72
NSTRUCTION BLOCK IDENTFER N0 O 38232
(Z):Eush (BO]
:Pop
4:Push 0 . 3854a
6:-Fop (1] 38552
3:br UxUl A
= 3852b
STRUCTONBLOCK DENTRERNO.: 2 2P
0:Push [0]
5| | 2:Push 10 3854b
4:Sub —
5:Brz X
LM ¥y
¢ 3852d
' —~ 3853 | /3853
INSTRUCTION BLOCK IDENTIFIER NO. 2

0:Push
2:Push
4:Add
5:Pop
7:Push
9:Push
11:Add
12:Pop

[1]
(0]

[1]

[0]
1

[0]

7

14:Br

0x01 ~

TNSTRUCTION BLOCK IDENTIFERNO, - 3

0:Stop

N,

3854c
3855¢

3854d

Patent Application Publication Dec. 18,2003 Sheet 62 of 91 US 2003/0233386 A1

FIG. 73

O:Push O i<0
2:Pop [0]
4:Push 0
6:Pop

‘sum<—0

8:Push [0] <107
10:Push 10
12:Sub
13:Brz

‘sum<—sum-+i

17:Push [0]

19:Add

20:Pop [1]

[IO] B e 03

Patent Application Publication Dec. 18,2003 Sheet 63 of 91 US 2003/0233386 A1

FIG. 74

(BIT POSITION) 15 e gl7 0

|IDENTIFIER SEGMENTI OFFSET I

FIG. 75

8101

Start

’ 8102
l Jaddr<—~OPERAND I

IDENTIFIER SEGMENT OF PC«Jaddr
OFFSET OF PC<-0 |

8103

8104

End

Patent Application Publication Dec. 18,2003 Sheet 64 of 91

FIG. 76
0x0000-Push O
0x0002:Pop [0]
0x0004:Push 0
0x0006:Pop (1]

0x0008:Br

0x0100

0x0100:Push
0x0102:Push
—>{ 0x0104:Sub
0x0105:Brz
0x0107:Br

[0]
10

0x0300
0x0200

0x0200:Push
0x0202:Push
0x0204:Add
0x0205:Pop

0x0207:Push
0x0209:Push
0x020B:Add
0x020C:Pop
0x020E:Br

[1]
(0]

(1]
(0]
1

[0]
0x0100

I 0x0300:Stop l

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 65 of 91 US 2003/0233386 A1

FIG. 77

SOURCE PROGRAM

/7660

7661 VIRTUAL
Y = MACHINE

INTERMEDIATE INSTRUCTION | COMPILER
SEQUENCE CONVERTING UNIT

v
GENERATING /7662
UNIT 7664
VIRTUAL MACHINE
PROGRAM
7663
BLOCK = BRANCH 76634

CONVERTING |DESTINATIONH
UNIT CONVERSION

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 66 of 91

+ JAMIINAQL NOLLISO HONAHAHY

- OV NOLLVILSIOH

[-3Unody|

- NOLLISOd 3d0J

: YA141LNAI NOLLISOd FONTIAIR

+ LIS440 NOILISOd FINHYE44Y

+ 135440 NOILISOd INAdH4Hd

 JA14LINEAL NOLLISOd FONT4ad

+ 135440 NOILISOd HON2Y341Y

 YAILINAQ NOLLISO ONTIAHY

+ 135440 NOILISOd HONAY 434

- YAI41LNE] NOLLISOd FONZd 9

+ 135440 NOLLISOd AONAYH3d

- YAI41LNEAI NOLLISOd HONTI343d

+ 135440 NOILISOd FONTH434

* OV NOILLVYLSIORY | - NOLLISOd 3A0J| ¥
L Y1 NOILVYLSIONY | - NOLLISOd 3d00| €
TV NOLLVALSIOR | - NOLLISOd 3009| 2
: V14 NOILVILSIORY | - NOLLISOd 4d0J| 1
: V1 NOLLVILSIOHNY | - NOILISOd 3d09| O

eE99.

\

8L OId

Patent Application Publication Dec. 18,2003 Sheet 67 of 91

FIG. 79

7602
IDENTIFIER ID<-0
offset<—0
7603

PC<0
Rcount<0

7601

US 2003/0233386 A1

7609

| |CHANGE JUMP ADDRESS I

OUTPUT VC, ID, ANDJ7610
OFFSET

611

offsete—offset+1
PC«PC+1

ALL Y
VIRTUAL MACHINE
CODES ARE 7612
EAD? =
N End
7605
READ MACHINE CODE
INDICATED BY PC
7606
VC<—VIRTUAL MACHINE CODE
7607
ISVC
AT THE FRONT OF
BASIC BLOCK ? 7701
NID<-IDENTIFIER ID+1
S VC BRANC = AL
3 GENERATE UNCONDITIONAL
INSTRUCTION ? BRANCH INSTRUCTION TO

LINK "ID" BLOCK WITH NEXT
"NID" BLOCK

1703

IDENTIFIER ID<-NID
offset<—0

~_T104

SET ADDRESS ACCORDING]
TO THE SETTING OF NID

Patent Application Publication Dec. 18,2003 Sheet 68 of 91 US 2003/0233386 A1

FIG. 80
7301
Start
7302
VC<—VIRTUAL MACHINE CODE

ISVC
BRANCH DESTINATION
STRUCTION ?

IS VC INSTRUCTION
LOCATED IMMEDIATELY
AFTER BRANCH

STRUCTION %

N 7305 v 7306

VC IS NOT THE FRONT VC IS THE FRONT
OF BASIC BLOCK

| OF BASIC BLOCK

7307

- End

Patent Application Publication Dec. 18,2003 Sheet 69 of 91 US 2003/0233386 A1

FIG. 81

Start 7901

4 index<0 7902
used< FALSE

. 7903

Y

__7904

STORE CODE POSITION INDICATED
BY index INTO VARIABLE rPC

CHANGE CONTENTS OF CELL
INDICATED BY Rcount

AS FOLLOWS: PC

CODE POSITION . TRUE
REGISTRATION FLAG : NID
IDENTIFIER :

STORE REFERENCE POSITION REFERENCE POSITION (yNDEFINED
IDENTIFIER IN CELL INDICATED DENTIFIER :

BY index INTO VARIABLE 1ID %.EIE}SSE,FNCEPOSHION UNDEFINED

ST O o
BY index INTO VARIABLE rofs | Mmm

CHANGE JUMP ADDRESS,OF [UV? 7908 7915
INSTRUCTION AT POSITION OF IDENTIFIER End
£ID) AND OFFSET rofs TO NID VALUE ‘

—

CHANGE CONTENTS OF CELL INDICATED BY index
ASFOLLOWS;

CODE POSITION : PC

REGISTRATION FLAG : '11\"]1]%]‘5

IDENTIFIER :

REFERENCE POSITION

IDENTIFIER UNDEFINED

REFERENCE POSITION

OFFSET : UNDEFINED

| used—TRUE 7 910
> 7911

Patent Application Publication Dec. 18, 2003

FI1G. 82

(Start r’
| index<-0 I 7802

7803

STORE CODE POSITION INDICATED
BY index INTO VARIABLE rPC

STORE REGISTRATION
FLAG INDICATED BY
index INTO VARIABLE rF

Sheet 70 of 91 US 2003/0233386 A1
7801
Y
>y 7810
REGISTER IN CELL OF
Rcount AS FOLLOWS:
CODE POSITION : PC

REGISTRATION FLAG : FALSE
[DENTIFIER : UNDEFINED
REFERENCE POSITION
[DENTIFIER :
REFERENCE POSITION

[DENTIFIERID

OFFSET : OFFSET

__-7811

| Rcount<Rcount+1 I

__-7808

STORE IDENTIFIER
INDICATED BY index
INTO VARIABLE 1ID

1809

Yy 17812

index<—index+1

CHANGE BRANCH
DESTINATION ADDRESS
INTO rID VALUE

End

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 71 of 91

. X 4 JAILLNACI
MO0 zo?o:m,ﬁmé/ : .
27688~ ,
L@ | €3 NAILLNAAT
0018 NOLLOMULSNI |—® | 23 JHLLINACL
a7585” I+ YALAILNACI
0019 NOLLonuLsNle—T® 1 0% mmEﬂZmMH
4 27088 -¥0¥8
THOVD NOLLONMILSNI
208"

By08¢

av08¢

1aS440

® INIWOES YHIILNAA]

YALNNOD WVIO0dd

508E”

€8 OId

Patent Application Publication Dec. 18,2003 Sheet 72 of 91 US 2003/0233386 A1

FIG. 84
8501

Start
__-8502

| - Jaddr<-OPERAND |
__-8503

IDENTIFIER SEGMENT OF PC*—Jaddr
OFFSET OF PC<0

INSTRUCTION BLOCK
OF IDENTIFIER SEGMENT
OF PC EXISTS ?

__-8505

READ CORRESPONDING INSTRUCTION
BLOCK INTO CACHE

__-8506

End

Patent Application Publication Dec. 18,2003 Sheet 73 of 91 US 2003/0233386 A1

FIG. 85 3901
/3900 3
39522 39526 3952 INSTRUGTION

INSTRUCTION | NSTRUCTION. | 39538 INSTRUCTION
BLOCK STORING| [BLOCK STORING | *~>°¢{ BLOCK STORING
AREA AREA 3953b NAREA

3953a~ [IDENTIFIER IDENTIFIER 39544 "IDENTIFIER
~ISTORING AREA STORING AREA- STORING AREA

N
29542 -L| [NOWCBRANCH | || [NON-BRANCH | 22240 NINON-BRANCH
N_LINSTRUCTION | || |INSTRUCTION 1439554} |INSTRUCTION
STORING AREA) | | [STORING AREAT |30, | |STORING AREA
39552~ [BRANCH [BRANCH 39995 NIppancy
INSTRUCTION | || |INSTRUCTION 11 39564 [INSTRUCTION
STORING AREA| || [STORING AREA 3 |STORING AREA

[

o | | R 1| o
| e | e
TORING AREA TORING ARFA TORING AREA

5 (3804 3804a 3902

o e i Ll
<«—>|INSTRUCTION
E%SEING = |READING UNIT REGISTER ||«
UNIT | OFFSET
\ 4405 COUNTER |
SEARCH "DECODE |4406 2

/3912 EXECUTING UNIT 4411 3811

T MICRO- BRANCH
%EARSE RI\FiAD 4412 18P SGRAM| [DESTINATION

SP | [STORING | |CONVERTING
CONTROL —! |UNIT UNIT

Patent Application Publication Dec. 18,2003 Sheet 74 of 91 US 2003/0233386 A1

FIG. 86A _~3952a _3953a
IIVSTRUCTION BLOCK IDENTIFIERNO. - X| 39562
TRV VACHRE COEREEH (TFTAG AREA—— PH-560%
Pari] 8607a
3954a [= 1 || [REAL MACHINE CODE AREAH
39552
-
FIG. 86B [[(omucTove.0r DIFERN0 2}-3853b 3956b
0Push (I [TFTAG AREA : EMPTYH-360°P
2:Push (0] 8607b
4:Add [EMPTY) }
5:Pop (1]
3954b-T | 7:Push [0}
9:Push 1
11:Add
12:Pop [0}
3955b A4—114:Br UxU1
FIG. 86C | |
3954c __3952¢
[INSTRUCTION BLOCK DENTEERRO_:7}-3953c _3956¢
0-Push }(1) [FLAG AREA - PRESENT}-8605¢ _8607c
4:Add 0:JUMP ADDRESS OF CODE TO PERFORM Push]>
" 5:Pop (1) 1:0PERAND °I"
7:Push [0] |]{2<JUMP ADDRESS OF CODE TO PERFORM Pushl]>
9:Push I 3;0PERAND *0"
13608 | || 4:<IUMP ADDRESS OF CODE TO PERFORM Add>
(c) | [T&Br___. x0T | {} 5:<JUMP ADDRESS OF CODE TO PERFORM Popl]>
B:0PERAND]
\ 7.2V ADDRESS OF CODE TO PERFORM P>
3955¢ B.OPERAND *0"
:JUMP ADDRESS OF CODE TO PERFORM Push>
I(:OPERAND *1"
11:<JUMP ADDRESS OF CODE TO PERFORM Add)>
12:<JUMP ADDRESS OF CODE TO PERFORM Pop(]>
13:0PERAND *
[4:<JUMP ADDRESS OF CODE TO PERFORM Br>
15:0PERAND *I"

Patent Application Publication Dec. 18,2003 Sheet 75 of 91 US 2003/0233386 A1
FIG. 87
8701
> 8702
RECEIVE INPUT VIA
SIGNAL LINE R
y ,../8708

[SET READING POSITION AT
LOCATION OF VIRTUAL MACHINE
CODE AREA INDICATED BY PC

[SET READING POSITION AT
| LOCATION OF VIRTUAL MACHINE
CODE AREA INDICATED BY BC

INSTRUCTION

READ VIRTUAL MACHINE J /READ DECODED DATA IN
REAL MACHINE CODE AREA

8711

SEND NOTIFICATION OF END
OF READING ON SIGNAL LINER J

| 8710
SEARCH DECODE TABLE AND| | /QUTPUT DECODED DATA
OUTPUT DECODED DATA TO EXECUTING UNIT

Patent Application Publication Dec. 18,2003 Sheet 76 of 91 US 2003/0233386 A1

FIG. 88

Start 8801

8802

INITIALIZE PROGRAM COUNTER (PC)
AND STACK POINTER (SP)

8803
SET "EMPTY" IN CURRENT FLAG

OUTPUT NOTIFICATION TO
READ NEXT INSTRUCTION
ONTO SIGNAL R

__-8805

{EEAD DECODED DATA’

—38806

l EXECUTE DECODED DATAI

__-8807

RECEIVE INPUT VIA
SIGNAL LINE R

RECEIVE 8808

NOTIFICATION
OF END OF READING
VIAR? _

Patent Application Publication Dec. 18,2003 Sheet 77 of 91 US 2003/0233386 A1

FIG. 89
8901

Start
__-8902

I Jaddr—OPERAND I
__-8903

IDENTIFIER SEGMENT OF PC«Jaddr
OFFSET OF PC<0

, 8904

SUBSTITUTE FLAG OF INSTRUCTION
BLOCK OF PC IDENTIFIER SEGMENT
INTO CURRENT FLAG

__-8905

End

Patent Application Publication Dec. 18,2003 Sheet 78 of 91 US 2003/0233386 A1

FIG. 90 | 3901
| /4000 J
39sa 3952 39624 INSTRUCTION |

STRUCTION STRUCT TON 1 3953 INSTRUCTION
BLOCK STORING BLOCK STORING < BLOCK STORING
AREA ARE 3953b REA

3953a~{{ [IDENTIFIER DEN [FIER 3954 IDENTIFIER
~STORING ARFA STORING AREA: STORING ARFA

d
20542 | [NONERANCH | || [NONERANCH | 39940 \INONBRANCH

NLLINSTRUCTION | || [INSTRUCTION 44739554| {INSTRUCTION
STORING AREA || [STORING AREAT |10 -, N\ [STORING AREA
39552~ [BRANCH BRANCH \

LB — BRANCH
TNSTRUCTION INSTRUCTION 11 3956d |INSTRUCTION

a6 STORING AREA| || LSTORING AREA 3956b\\STORINGARE
aN DF
B %‘%L%\%JT%ON §§§q\%now ' gNgﬁ%“ TION

FORING ArEA RING AREA RING AREA

: /3804 380424002

%EE(%ENT 3907 03 FTDENTIFIER | | DECODING

< [INSTRUCTION |« SEGMENT | |UNIT
STORING 1< >1READING UNIT REGISTER 1|«

\ ~ OFFSET
| 4405 COUNTER

[E N ‘ N

<A SEARCH | [DECODE |4406 3gqqp

4008 v 3910
3912 EXECUTING UNIT__ 4411 3811

MICRO- BRANCH
%EA}%E RIEHAD 412 1856 RAM| [DESTINATION

SP | [STORING | [CONVERTING
CoRT ROk — |UNIT UNIT

Patent Application Publication Dec. 18,2003 Sheet 79 of 91 US 2003/0233386 A1

FIG. 91

Start 9101

| Jaddr—OPERAND r 9102
‘ 9103

IDENTIFIER SEGMENT OF PC«Jaddr
OFFSET OF PC<0

SUBSTITUTE FLAG OF INSTRUCTION
BLOCK OF PC IDENTIFIER SEGMENT

INTO MODE

9104

9105
Y

IS CURRENT 'If%AG

END OF VIRTUAL
MACHINE CODE
AREA ?

9108 9112
SET READING POSITION AT VIRTUAL ﬁ
MACHINE CODE AREA INDICATED BY PC

READ VIRTUAL 9109
MACHINE CODE
SEARCE DECODE TABLE AND| 2110
CONVERT DECODED DATA
‘ dPC«dPC+1 I—-/91 11

—>

Patent Application Publication Dec. 18,2003 Sheet 80 of 91 US 2003/0233386 A1

FIG. 92

Start 9201

VCa—READ VIRTUAL - 9202
MACHINE CODE |
' = 9203

i<=0

"i" INDICATES
LAST ENTRY OF

/9205

VCb<ith REFERENCE
VIRTUAL MACHINE CODE

9208

STORE ith DECODED DATA INTO
VARIABLE dd
9209

WRITE dd INTQO LOCATION OF dPC
OF REAL MACHINE CODE AREA

9210

SUBSTITUTE ith OPERAND NUMBER
INTO op Count

9215 i<0 9211
- dPC<«dPC+1
|ERROR HANDLINGI
’ Y

-
<

i=op Count ?

N
READ VIRTUAL MACHINE CODE
INTO AREA OF dPC OF REAL
9216 MACHINE CODE AREA

= it 9214
End __J dPC—dPC+1

Patent Application Publication Dec. 18,2003 Sheet 81 of 91 US 2003/0233386 A1

FIG. 93

Stamt 9001

9002

RECEIVE INPUT VIA
SIGNAL LINER

9003

READING STARTS ?

Y 9004

SET READING POSITION AT
LOCATION OF VIRTUAL MACHINE
CODE AREA INDICATED BY PC

9005

READ DECODED DATA IN REAL
MACHINE CODE AREA
| __~9006

OUTPUT DECODED DATA
TO EXECUTING UNIT

9007

SEND NOTIFICATION OF END
OF READING ON SIGNAL LINE R

Patent Application Publication Dec. 18,2003 Sheet 82 of 91 US 2003/0233386 A1
FIG. 94 4100 4101
-~ INSTRUCTION
pSRREIe ST o STRICTO
STR
BLOCK STORING| [BLOCK STORING 31 230 BLOCK STORING
4153a_| | AREA AREA 21050 MAREA
“N_[IDENTIFIER IDENTIFIER __ 144 158d | NIDENTIFIER
STORING AREA STORING AREA§ |+ ¢« * NISTORING AREA
4158a_\ | Meovpressi VAL ||| (ORI VRTAL M Lo 80\ M copRessep VUL
MACHNECODEAREA || || MACHNECODEAREA |{ 4194d || MACHNECODEAREA
4154a~\ NON-BRANCH NON-BRANCH |{|4154b N|NON-BRANCH
44 INSTRUCTION INSTRUCTION ‘,/4‘ 155d INSTRUCTION
STORING AREA STORING AREA <{ || STORING AREA
4155a | ||[BRANCH BRANCH 4155b \|[BRANCH____
1 INSTRUCTION INSTRUCTION {1} HINSTRUCTION
STORING AREA STORING AREA[4157g STORING AREA
4157a | [RESTORING RESTORING | | 4157b NRESTORING
INEORMATION | || {INFORMATION | 4* INFORMATION
s156,.|| EICRNCAREA STORING AREA[| 4 1564| [STORING AREA
a~ ~N
|| |
B || Rl | 8
TORING AREA STORING AREAT STORING AREA
: A 4103 ,3804 ,3804a 4002
T J i I
CURRENT| 3907 fyerpyc VIRTUAL TDENTIFIER] | DECODING
fac - |NORCMAcHNE [IIPCISEGMENT || UNT
STORING [«—>1eApiG INSIRUCTION| - IREGISTER |1«
UNI UNIT OFFSET
3 1 ~ COUNTER
‘ ON 4405 4103a S
SEOUENCE™ e AT SEARCH | [DECODE | 4406 304y,
URIT TABLE
4008 Ry 3910
3012 EXECUTING UNIT__ 4411 _ ,38&1{
RRENT MICRO- RAN
LGl o [l ey
CONTROL UNIT ONIT

Patent Application Publication Dec. 18,2003 Sheet 83 of 91

US 2003/0233386 A1
FIG. 95A
VIRTUAL MACHINE
BIT SEQUENCE | NSTRUCTION
000 Push [0}
100 Push O
101 Pop [0
110 Pop n
111 Br 0x01
0011 Stop
0100 Add
0110 Brz 0x03 .
0111 Br 0x02
00100 Push [1]
00101 Push 1
01010 Push 10
01011

00100 '
00101
0011 +—

FIG. 95B
Push 01 000
ush Ll

| Push 1
Stop
Add 0100
Push 10 01010

Sub 01011
Brz 0x03 0110
Br 0x02 0111
Push O 100
Pop (O] 101
Pop 1) 110
Br 0x01 111

Patent Application Publication Dec. 18,2003 Sheet 84 of 91

//4152&1

4133a

FIG. 96A

41582711
FSTORING AREA

4157a"

(INSTRUCTION BLOCK IDENTIFEER 0. 2 X

COMPRESSED VIRTUAL
MACHINE CODE AREA

[FLAG AREA

FSTORING INFORMATION

[REAL MACHINE CODE AREAY1

FIG. 96B

=1 4153D
TNSTRUCTION BLOCK IDENTIFERRO. . 2} 4199 4156

US 2003/0233386 A1

001000000100110000 | [[FTAG AREA - EMPTY
4158b-171001010100101111 9507b
EMPT
000 [Push | (0] [Ty T
100 {Push U
A4 101 [Pop 0
4157b 110 [Pop]
T [Br | 0x01
FIG. 96C
4158¢ _4152¢
[TVSTRUCTION BLOCK DENTFERNO - 2} ~4153c ~_4156c -
~ | [COTOO000OTOOTIONO0 | [[FLAG AREA : PRESENT]~9506 _9507c
ST TPoh T T0T] | [<JUMP ADDRESS OF CODE TO PERFORM Pust],>
100 [Push| O 1:0PERAND '1*
101 [Pop | [0 2:<JUMP ADDRESS OF CODE TO PERFORM Push{).>
10 1Pop | 11 3:0PERAND ‘0"
| 0101111 }gr x0T | || 4:<JUMP ADDRESS OF CODE TO PERFORM Add>
© | FomrTad 5:<JUMP ADDRESS OF CODE TO PERFORM Pogl>
OTT0 [Brz | 0x03] || G-OPERAND 1
T—ter—1—0x07] || :<JUMP ADDRESS OF CODE TO PERFORM Push{]>
0T00 [Push || || BOPERAND Y
0T tPeh {1 0:<JUMP ADDRESS OF CODE TO PERFORM Push>
TOTO {Pash 101 ||!0:OPERAND 1
1011 {Swb 11:<JUMP ADDRESS OF CODE TO PERFORM Add>
12:<JUMP ADDRESS OF CODE TO PERFORM Pop0>
4157c [3:0PERAND *("
{4:< JUMP ADDRESS OF CODE TO PERFORM Br>
15:0PERAND *1"

Patent Application Publication Dec. 18,2003 Sheet 85 of 91 US 2003/0233386 A1

FIG. 97
9601

Start
READ COMPRESSED BIT SEQUENCE 9602
AND PERFORM DECODING
9603 o

“i" INDICATES
[AST ENTRY OF
ABLE ?

S

VCb<—VIRTUAL MACHINE CODE
AT "i"TH ENTRY OF TABLE

/9608

X _SH07[STORE DECODED DATA AT "i"TH| |
—— ENTRY INTO VARIABLE dd \
1<i+
[——r——l 9609

WRITE dd INTO DECODED INSTRUCTION
SEQUENCE STORING AREAS

~9610

SUBSTITUTE NUMBER OF OPERAND| -
. AT "i"TH ENTRY INTO op Count
(60) <0 9611
9615 dPC<—dIP_C+1
y 4

ERROR HANDLING

-
-

WRITE CONTENTS OF oplll
MO BECODED INSTRUCTION
o616 | SEQUENCE STORING AREAS

End | dPC+dPC+1 }/

Patent Application Publication Dec. 18,2003 Sheet 86 of 91 US 2003/0233386 A1

FIG. 98
9701

Start
:'—l—'—) 9702

RESERVE VARIABLE bits FOR
COMPRESSED BIT SEQUENCE

__-9703

READ ONE BIT OF COMPRESSED CODE
FROM COMPRESSED VIRTUAL MACHINE

CODE AREA ,

LINK READ bit WITH 9704
COMPRESSED CODE
9705

SEARCH RESTORING INFORMATION
STORING AREA

MATCHING VIRTUAL
ACHINE INSTI;UCTIO

READ VIRTUAL MACHINE
INSTRUCTION FROM RESTORING
INFORMATION STORING AREA

Patent Application Publication Dec. 18,2003 Sheet 87 of 91 US 2003/0233386 A1

FIG. 99

VIRTUAL
4321 MACHINE
S~ COMPILER

BLOCK START
OUTPUT| INFORMATION
GENERATING UNIT

AN

Dl 4300
/

4303 v 4301

: IT
REAL MACHINE REAL MACHINE JCOMPILER
ADDRESS <>| INSTRUCTION
STORING UNIT CONVERTING UNIT

A 4302

BRANCH POSITION| |
AMENDING UNIT

REAL MACHINE
INSTRUCTION
EQUENCE

Patent Application Publication Dec. 18,2003 Sheet 88 of 91 US 2003/0233386 A1

FIG. 100
10001

Start
;'r—'J 10002

VC+<—VIRTUAL MACHINE CODE

IS VC JUMP
DESTINATION
INSTRUCTION 2

S Ve 10004
INSTRUCTION
THAT IMMEDIATELY Y >
FOLLOWS JUMP
NSTRUCTION ?
| X 10005 V10006
QUTPUT BLOCK START QUTPUT BLOCK START

INFORMATION "N" ONTO D2 INFORMATION "T" ONTOQ D2

10007

CODE VC ONTO D1
~~ 10008

End

Patent Application Publication Dec. 18,2003 Sheet 89 of 91 US 2003/0233386 A1

FIG. 101

READ VIRTUAL MACHINE CODE

VIA D1
(VC—VIRTUAL MACHINE CODE)

CONVERT VIRTUAL MACHINE CODE} 10105
TO REAL MACHINE CODE
READ BLOCK START INFORMATION J—10106
(BI-BLOCK START INFORMATION)

PC OF REAL MACHINE
INDICATES ODD-NUMBERED
ADDRESS ?

10109

OUTPUT REAL MACHINE
CODE "Nop"

OUTPUT REAL MACHINE INSTRUCTION|10110
CORRESPONDING TO VC

US 2003/0233386 A1

Patent Application Publication Dec. 18,2003 Sheet 90 of 91

- | L i Ll Z doglf 1€ |
- N €1-1) ¢ 8 g 62
- N 04-99 g [0 dod L2
- N 69-€9 ¢ PPV 97
- N 79-65 b I ysnd] 12
- N 85-¥¢ q o] usnd 22
- N £G-6¥ q 1] dod 02
- N 8v-9¥ € pPY 61
- N Cy-1¥% G o] usnd L1
- L 0¥-9¢ G 1] usnd Gl
doN N ¥E-08 G 1§ 2ig €1
- N 62-L2 g qng Z1
- N 92-£2 b 01 usnd 01
- L 22-81 G [0] usnd 8
- N LI-C1 g [1] _do 9
- N 216 b 0 usnd b
- N 8¥ G [0] dod Z
g L ¥ 0 usnd 0
1nazpol|nouyreoaal| SSRSIN AR | ARASOR |anmiowa fsszaay
doN | TS oo 18 ONIANOJSHIN0D Tvad | 1NLIAIA ||

20T OI4

Patent Application Publication Dec. 18,2003 Sheet 91 of 91 US 2003/0233386 A1

FIG. 103

U/D | N/'T |[VIRTUAL MACHINE| OPERAND(S)
OPCODE

US 2003/0233386 Al

HIGH SPEED VIRTUAL MACHINE AND
COMPILER

BACKGROUND OF THE INVENTION
[0001] (1) Field of the Invention

[0002] The present invention relates to virtual machines
and to virtual machine compilers. In particular, the invention
relates to a technique for increasing the execution speed of
virtual machines.

[0003] (2) Description of the Prior Art
[0004] Standard Virtual Machine

[0005] Virtual machines are used to have a same program
executed by computers, such as personal computers and
workstations, that include different types of CPU. Virtual
machines are useful in the field of communications, espe-
cially on a network to which different types of computers are
connected, since they can overcome the differences in CPU
architecture between computers and so allow the efficient
and high-speed use of shared resources. Note that in this
specification, CPUs are called “real machines”.

[0006] A virtual machine is a virtual processor, which is to
say, a processor achieved by executing software. A virtual
machine decodes and executes executable programs (here-
inafter referred to as “virtual machine programs” or “virtual
machine instruction sequences”) that are sequences of
instructions (hereinafter, “virtual machine instructions™)
specific to the virtual machine. Virtual machines are nor-
mally realized by programs (hereinafter, “real machine
programs” or “real machine instruction sequences” com-
posed of instructions (hereinafter, “real machine instruc-
tions™) specific to a target real machine on which the virtual
program is to be run. Maintaining a high execution speed is
a central issue for virtual machines, so that many virtual
machines have a stack architecture.

[0007] One example of conventional virtual machines are
the JAVA (trademark) virtual machines developed by SUN
MICROSYSTEMS, INC.

[0008] FIG. 1 is a block diagram showing a construction
of a conventional virtual machine 4400 with a stack archi-
tecture, such as a JAVA virtual machine. The virtual machine
4400 comprises the instruction storing unit 4401, the decod-
ing unit 4402, the executing unit 4410, and the stack 4420.
The instruction storing unit 4401 stores a virtual machine
program to be executed. The decoding unit 4402 reads and
decodes a virtual machine instruction. The execution unit
4410 executes operations according to the decoded data
produced by the decoding unit 4402. The stack 4420, which
is a LIFO (last-in first-out) memory area, temporarily stores
data used in the processing of the execution unit 4410. In
FIG. 1, solid lines show the data flows, while dotted lines
show the control flows.

[0009] The decoding unit 4402 includes the decode table
4406, the program counter (PC) 4404, the instruction read-
ing unit 4403, and the search unit 4405. The decode table
4406 stores data, such as jump addresses of microprograms
(stored in the executing unit 4410) that correspond to all of
the virtual machine instructions that can be executed by the
virtual machine 4400 with a stack architecture. The program
counter (PC) 4404 holds the address of the next instruction
to be read from the instruction storing unit 4401. The

Dec. 18, 2003

instruction reading unit 4403 reads this next instruction. The
search unit 4405 refers to the decode table 4406 to find a
jump address corresponding to the read instruction and
outputs the jump address to the execution unit 4410. In this
specification, a microprogram is a real machine program that
corresponds to a virtual machine instruction.

[0010] The executing unit 4410 includes a microprogram
storing unit 4411 and a stack pointer (SP) 4412. The
microprogram storing unit 4411 stores microprograms,
which are real machine programs corresponding to virtual
machine instructions, in advance at locations indicated by
jump addresses. The stack pointer (SP) 4412 indicates the
address at the top of the stack 4420.

[0011] FIG. 2 is a table for describing the instruction set
of the virtual machine 4400. In FIG. 2, all of the virtual
machine instructions that the virtual machine 4400 can
decode and execute are shown in mnemonic form, along
with the operation content of each instruction, changes in the
content of the stack 4420 caused by each instruction, and the
value of the SP 4412 after execution. In FIG. 2, the legend
“s0” indicates the value at the top of the stack 4420, while
“s1” indicates the second highest value. As one example, the
notation “sp<—sO+s1” for the virtual machine instruction
“Add” denotes that the value at the top of the stack is set
equal to a sum of the top and second highest values of the
stack before execution. The notation “sp<—sp—1" denotes
that the height of the stack decreases by one due to the
execution of the “Add” instruction.

[0012] FIG. 3 shows the stored contents of the decode
table 4406 shown in FIG. 1. This decode table 4406 includes
opcodes 44064 that indicate the operation types of virtual
machine instructions, jump addresses 4406b which are the
addresses of microprograms in the microprogram storing
unit 4411 that correspond to these virtual machine instruc-
tions, and numbers of operands 4406¢ that show the number
of operands in each virtual machine instruction. Here, each
opcode is set as 1-byte long, and operands are counted in
one-byte units. Virtual machine instructions, which may
include only an opcode or only an operand, that are repre-
sented by a physical bit pattern are hereinafter referred to as
“virtual machine code”.

[0013] FIGS. 4A-4D show examples of the micropro-
grams stored in the microprogram storing unit 4411 in FIG.
1. The microprograms in FIGS. 4A-4C respectively corre-
spond to the virtual machine instructions “Push”, “Add”,
and “Mult”, while the microprogram in FIG. 4D shows a
microprogram that forms the common latter part of each of
the microprograms in FIGS. 4A-4C. This microprogram in
FIG. 4D is a real machine program for jumping to the next
virtual machine instruction. The operation contents of the
real machine instructions in these microprograms are shown
in FIG. 5. The virtual machine 4400 itself is realized by a
real machine that can decode and execute the real machine
instructions shown in FIG. 5. Note that the PC 4404 is
physically realized by register #2 (r2) of the real machine,
and the SP 4423 by register #3 (r3).

[0014] FIG. 6 is a flowchart showing the processing of
decoding unit 4404 shown in FIG. 1. The instruction reading
unit 4403 is instructed by the execution unit 4410 via a
signal line R to read the next instruction (steps 4502-4503)
and so reads the virtual machine instruction with the address
stored in the PC 4404 from the instruction storage unit 4401

US 2003/0233386 Al

(steps 4504-4505). Following this, search unit 4405 refers to
the decode table 4406 to find a jump address and operands
corresponding to the read virtual machine instruction, out-
puts the jump address and operands (if any) to the executing
unit 4410 as decoded data (step 4506), and gives the
executing unit 4410 a “read end” notification via the signal
line R (step 4507). This “read end” notification marks the
completion of decoding for one virtual machine instruction.

[0015] FIG. 7 is a flowchart showing the processing in
step 4506 in detail. The search unit 4405 compares 1-byte of
virtual machine code (the opcode) read by reading 4403 with
one opcode 44064 in decode table 4406 at a time until a
match is found (steps 4802-4807). The search unit 4405 then
reads the jump address 44065 and the number of operands
4406¢ corresponding to the matching opcode 4406a from
the decode table 4406. The search unit 4405 outputs the read
jump address 4406b to the executing unit 4410 (step 4808),
has the instruction reading unit 4403 read as many operands
as are indicated by the number of operands 4406¢ from the
instruction storing-unit 4401, and outputs the operands to
execution unit 4410 (steps 4809-4813).

[0016] The flowcharts of FIGS. 6 and 7 show the pro-
cessing when decoded data sent from the decoding unit 4402
is directly transferred to the executing unit 4410. The
flowchart in FIG. 8 shows the case when the decoded data
is transferred to the executing unit 4410 via a buffer that is
capable of storing sets of decoded data. In this latter case, the
reading of virtual machine instructions from the instruction
storing unit 4401 and the subsequent decoding may be
performed independently of the execution by the executing
unit 4410 and repeated as long as there is space in the buffer
(steps 4605-4613).

[0017] FIG. 9 shows the processing of executing unit
4410 in FIG. 1. The executing unit 4410 initializes SP 4412
and PC 4404 (step 4702) and repeats the processing
described below for each virtual machine instruction (steps
4703-4707). That is, the executing unit 4410 instructs the
instruction reading unit 4403 via the signal line R to read the
next virtual machine instruction (step 4703). The executing
unit 4410 then reads decoded data transmitted from the
search unit 4405, jumps to a jump address that is included
in the decoded data and that specifies a microprogram stored
in the microprogram storing unit 4411, the microprogram
corresponding to the read virtual machine instruction, and
executes the microprogram until the executing unit 4410
receives a “read end” notification via the signal line R (steps
4704-4707).

[0018] FIG. 10A shows a sample program for describing
a specific example of the processing of the virtual machine
4400. In this example, instruction storing unit 4401 stores a
virtual machine program for calculating the arithmetic
expression “2*(3+4)” shown in FIG. 10B.

[0019] FIG. 10C shows the decoded data that is sequen-
tially outputted from the decoding unit 4402 when the
virtual machine program shown in FIG. 10A is decoded and
executed by the conventional virtual machine 4400. The
decoding unit 4402 successively outputs jump addresses and
the necessary operands corresponding to the decoded virtual
machine instructions as decoded data to the executing unit
4410.

[0020] FIGS. 11A and 11B show the states of the PC
4404, the SP 4412, and the stack 4420 before and after the

Dec. 18, 2003

execution of the each virtual machine instruction when the
executing unit 4410 executes the virtual machine program
shown in FIG. 10A in accordance with the decoded data
sequences shown in FIG. 10C. These figures show the
processing of the virtual machine program split into a former
and a latter part. Here, PC 4404 indicates the address of the
next virtual machine instruction to be executed in the virtual
machine program. The addresses of virtual machine instruc-
tions are the numbers shown to the left of the virtual
machine instructions in FIG. 10A. The initial value of the
PC 4404 is “1”. The SP 4412 indicates the top of stack 4420,
and so marks a position at which an item was most recently
stored or read. The initial value of SP 4412 is “~1” and
indicates that the stack 4420 is empty. As can be understood
from FIGS. 11A and 11B, the calculation of the arithmetic
expression “2*(3+4)” is completed when PC 4404 indicates
“9”.

[0021] The major problem for conventional virtual
machines like virtual machine 4400 is how to increase
execution speed. Processes such as the decoding of virtual
machine instructions generate overheads, so that virtual
machines end up operating at a much slower speed than
when an equivalent real machine program is directly
executed by a real machine. To improve the performance
speed of virtual machines, the following methods have been
proposed.

[0022] First Conventional Technique

[0023] In this first conventional technique, the storage area
at the top of the stack (TOS) is assigned not to memory but
to a specified register of a real machine. Hereinafter, such a
storage area is called the TOS variable (See pp315-327
“PLDI” (1995), ACM).

[0024] FIGS. 12A-12D are microprograms corresponding
to the principal virtual machine instructions that are stored
in a microprogram storage unit of a virtual machine based on
this first conventional technique. These figures correspond
to FIGS. 4A-4D that were used to describe the virtual
machine 4400. This example uses the following physical
mapping. The TOS variable is assigned to register #0 (r0) of
the real machine and, as in FIGS. 4A-4D, PC 4404 to
register #2 (r2), and SP 4421 to register #3 (r3).

[0025] FIGS. 13A and 13B show the changes in the states
of the PC 4404, the SP 4412, the TOS variable 4421, and the
memory stack 4422 (the part of the stack 4420 that is
allocated to memory) as a virtual machine provided with the
microprograms shown in FIG. 12A-12D executes the virtual
machine program shown in FIG. 10A. These figures shows
the processing split into a former and a latter part and
correspond to the FIGS. 11A and 11B that were used to
describe the operation of the virtual machine 4400. As
before, the calculation of the arithmetic expression “2*(3+
4y” is completed in FIGS. 13A and 13B when the PC 4404
indicates “9”.

[0026] As can be seen by comparing FIGS. 12A-12D with
FIGS. 4A~4D, the first conventional technique makes fewer
accesses to the memory. When the virtual machine 4400
executes a virtual machine instruction such as an addition
“Add” or a multiplication “Mult”, two reads and one write
are performed for the stack 4420, making a total of three
memory accesses for one virtual machine instruction. With
the first conventional technique, the assigning of the TOS

US 2003/0233386 Al

variable to a register enables the same instruction to be
executed with only one access to the memory stack 4422.
This results in the execution speed being increased in
proportion to the reduction in the number of memory
accesses.

[0027] Second Conventional Technique

[0028] A second conventional technique uses a “native
coding” method, in which a predetermined part of a virtual
machine programs is written in real machine instructions
and is directly executed by a real machine. As a result,
identifiers are used to indicate that such predetermined part
is written using real machine instructions.

[0029] As one example, a JAVA virtual machine can store
the constant name “ACC_NATIVE” (256) into an access
flag (such as the 16-bit flag “access_flags™ that forms part of
the “method_info” structure) of a class file that includes a
virtual machine program to show that part of the program is
written in real machine instructions (see the Java Bytecodes
and the JAVA Virtual Machine Specification, 1995 editions,
produced by SUN MICROSYSTEMS, INC.).

[0030] In this way, this second conventional technique
improves execution speed by having the real machine
directly execute a predetermined part of a program.

[0031] Third Conventional Technique

[0032] A third conventional technique uses a “just-in-
time” (JIT) compiler that compiles parts of a virtual machine
program as required during execution. Here, compiling
refers to the replacement of virtual machine instructions
with real machine instructions (see Laura Lemay et al., Java
Gengo Nyumon (An Introduction to JAVA), Prentice Hall,
1996, and Laura Lemay and Charles L. Perkins, Teach
yourself JAVA in 21 days). Virtual machines that use a JIT
compiler have the real machine directly execute compiled
parts of a virtual machine program, and so increase the
overall execution speed of virtual machine programs.

[0033] Fourth Conventional Technique

[0034] A fourth conventional technique is used when
computers on a network execute virtual machine programs
that they download from a server computer. In this tech-
nique, the code in a virtual machine program is compressed
beforehand using LZ (Lempel-Zif) methods or Huffman
coding to reduce the time taken by file transfer (see Japanese
Laid-Open Patent Application =~ H07-121352 or
H08-263263).

[0035] With this technique, an increase in execution speed
can be obtained if the time taken to transfer the virtual
machine program forms a large part of the overall processing
time required to execute the virtual machine program.

[0036] The first to fourth conventional techniques
described above have the following problems.

[0037] Problems with the First Conventional Technique

[0038] The first conventional technique, where the TOS
variable is allocated to a register of a real machine, has a
drawback in that it is not suited to real machines with
superscalar architecture that have become increasingly inex-
pensive in recent years. This means that the improvements
in the execution speed for a superscalar real machine (here-
inafter, “superscalar machine) are relatively small when

Dec. 18, 2003

compared with the improvement for a standard real machine
(hereinafter called a “standard machine”) that is incapable of
parallel processing. This is described in more detail below.

[0039] The following describes the standard operation and
notation of a pipeline used by a register machine, such as a
superscalar machine or a standard machine, with reference
to FIGS. 14-22.

[0040] FIG. 14 shows the mnemonics used to indicate
each stage included in the pipeline. The superscalar machine
and a standard machine described below are assumed to
each have a pipeline containing the five stages shown in this
figure.

[0041] FIG. 15 shows the ideal pipeline flow for a stan-
dard machine. In this example, four real machine instruc-
tions are sequentially processed with each pipeline stage
taking exactly one clock cycle. Each pipeline stage is
performed in parallel for a different real machine instruction
so that as the long-term average, one instruction is executed
in one clock cycle.

[0042] FIG. 16 shows an ideal pipeline flow for a super-
scalar machine. This superscalar machine has two separate
pipelines. In FIG. 16, two real machine instructions are
executed in one clock cycle as the long-term average, giving
the superscalar machine a throughput twice that of the
standard machine.

[0043] FIG. 17 shows a pipeline flow for a standard
machine when pipeline hazards occur. Here, instruction B
uses the execution result of instruction A, which is to say,
instruction B has a true dependency (also called a data
dependency) on the preceding instruction A. Since the
execution result of instruction A cannot be obtained until the
memory access stage MEM is completed, the execution of
instruction B is delayed, which causes the hazard as shown
by “-” in the figure.

[0044] When the processing of an instruction is delayed in
a real machine with a pipeline structure, the processing of
the-following instructions is also delayed. This is shown in
FIG. 17, where the processing of instruction C, which
follows instruction B, is also delayed.

[0045] FIG. 18 shows a pipeline flow for a superscalar
machine when pipeline hazards occur. Here, instruction B1
has a true dependency on the preceding instructions Al and
A2. Here, the reason that a pipeline hazard occurs in the fifth
clock cycle for the instruction C2 is that the two processing
units (arithmetic logic units or “ALUs”) provided in the
processor are busy with the execution of the preceding
instructions Bl and C1. This means that instruction C2
cannot be executed in that cycle.

[0046] FIGS. 19 and 20 correspond to FIGS. 17 and 18,
and show pipeline flows when two clock cycles need to pass
before values obtained through memory access (MEM) can
be used. In reality, in most real machines, obtaining a value
from the primary cache takes two clock cycles. Note that
obtaining a value from the secondary cache takes more clock
cycles.

[0047] FIGS. 21 and 22 respectively show pipeline flows
for a standard machine and superscalar machine when
instructions Al and A2 are instructions that indicate a jump
destination using a register. The jump destinations of these
instructions are not known until the register reference stage

US 2003/0233386 Al

(RF) is completed, so that the succeeding instructions B, B1,
and B2 that are fetched as per normal during the register
reference operation are canceled (as shown by the “x” in
FIGS. 21 and 22) in the third clock cycle following the RF
stages.

[0048] The following describes the specific problems of a
superscalar machine and a real machine of the first conven-
tional technique, with reference to FIGS. 23-26.

[0049] FIGS. 23-26 show pipeline flows when the virtual
machine of the first conventional technique is realized by a
real machine executing the virtual machine program shown
in FIG. 10A. In detail, these figures show the pipeline flow
for the latter part (the jump processing shown in FIG. 12D)
of the microprogram (of FIG. 12A) with the address 7 that
corresponds to the virtual machine instruction “Add” and the
pipeline flow for the former part (the multiplication process-
ing) of the microprogram (of FIG. 12C) with the address 8
that corresponds to the virtual machine instruction “Mult”.
FIGS. 23 and 24 respectively show the pipeline flows for a
standard machine and a superscalar machine where one
clock cycle needs to pass before a valueread during a
memory access can be used, while FIGS. 25 and 26 respec-
tively show the pipeline flows for a standard machine and a
superscalar machine where two clock cycles needs to pass
before a value read during a memory access can be used.

[0050] This series of microprograms shown in FIGS. 12D
and 12A contain two significant true dependencies. The first
is in the microprogram for jump processing shown in FIG.
12D corresponding to the virtual machine instruction “Add”,
and exists between the instruction “Load” for reading a jump
address and the instruction “Jump” for jumping to the
address. The second is in the microprogram shown in FIG.
12C corresponding to the virtual machine instruction “Mult”
for multiplication processing and exists between the instruc-
tion “Load” for reading a variable from the memory stack
and the instruction “Mult” for multiplication processing.

[0051] In the pipeline shown in FIG. 23, the first data
dependency is absorbed by the real machine instruction
“Inc” that is inserted between the instructions “Load” and
“Jump”. The second data dependency is absorbed by the real
machine instruction “Dec” that is inserted between the
instructions “Load” and “Mult”. The processing in this
pipeline is only disturbed by the cancellation of one instruc-
tion that is necessitated by the execution of the real machine
instruction “Jmp”. As a result, the entire procedure is
completed in 11 cycle clocks.

[0052] In the pipeline shown in FIG. 24, the first and
second data dependencies are not absorbed. As a result, the
processing in these pipelines is disturbed at three points. The
first disturbance is the hazard in the fourth clock cycle
caused by the first data dependency, the second is the
cancellation of five instructions necessitated by the execu-
tion of real machine instruction “Jmp”, and the third is the
hazard in the eighth clock cycle caused by the second data
dependency. As was the case with FIG. 24, the entire
procedure is completed in 11 clock cycles in FIG. 23.

[0053] As in FIG. 24, the above first and second data
dependencies are not absorbed in the pipeline shown in FIG.
25, so that the processing in this pipeline is disturbed at three
points. The first disturbance is the hazard in the fifth clock
cycle caused by the first data dependency, the second is the

Dec. 18, 2003

cancellation of one instruction necessitated by the execution
of the real machine instruction “Jmp”, and the third is the
hazard in the tenth clock cycle caused by the second data
dependency. The entire procedure is completed in 13 clock
cycles.

[0054] As in FIG. 24, the above first and second data
dependencies are not absorbed in the pipeline shown in FIG.
26, so that the processing is disturbed at three points. The
first disturbance is the hazards caused in the fourth and fifth
clock cycles by the first data dependency, the second is the
cancellation of seven instructions necessitated by the execu-
tion of the real machine instruction “Jmp”, and the third is
the hazards caused in the eighth and tenth clock cycles by
the second data dependency. As in FIG. 25, the entire
procedure is completed in 13 clock cycles.

[0055] Considering that the processing shown in either of
FIGS. 23 and 24 requires 11 clock cycles and that the
processing shown in either of FIGS. 25 and 26 requires 13
clock cycles, it is clear that there is no difference in execu-
tion time between a standard machine and a superscalar
machine for this first conventional technique. This means
that no advantage is gained from using a superscalar
machine capable of parallel processing.

[0056] In this way, this first conventional technique causes
a large drop in the processing efficiency of a superscalar
machine. Another drawback is the lack of provisions for
exception handling, such as for errors, or interrupt handling,
which is required for debugging.

[0057] As a result, a virtual machine that uses this first
conventional technique needs to detect an interrupt state and
to perform interrupt handling every time the machine
executes a virtual machine instruction. This means that
another memory access (i.e., data transfer of a variable in the
memory that indicates an interrupt state into a register) is
required every time a virtual machine instruction is
executed. This cancels out the advantage of this first con-
ventional technique, wherein assigning the TOS variable to
a register reduces the number of memory accesses, so that
the overall execution speed is not improved.

[0058] Problems with the Second Conventional Technique

[0059] The second conventional technique, which is to say
the use of native coding, has a problem in that it is difficult
to provide common virtual machine programs to real
machines with different architectures. This is because part of
the virtual machine program is written in real machine
instructions for a specific type of real machine. As a result,
when a virtual machine program is to be provided on a
network for common use by five types of computers with
different real-machine architectures, it becomes necessary to
provide real machine programs of all five real machines.

[0060] Since there are also differences in system configu-
ration between computers, there is no guarantee that real
machine instructions will have a faster execution speed than
virtual machine instructions, even for real machines with the
same architecture. As one example, if programs are written
for RISC (Reduced Instruction Set Computers) type real
machines where code size is generally large, the use of
insufficient memory will lead to frequent page swapping
between main- and virtual memory when virtual machine
instructions are replaced with real machine instructions.
This reduces the overall execution speed.

US 2003/0233386 Al

[0061] Problems with the Third Conventional Technique

[0062] The third conventional technique, which uses a JIT
compiler, has a problem in that the compiling of the virtual
machine program can take a long time. The reasons for this
are explained below.

[0063] A first reason is that the processing must satisfy the
specific restrictions of the target real machine concerning
jump destinations. As one example, when the target machine
has a restriction that the address of a jump destination must
be within word (basic word length) boundaries in the main
memory, simple conversion of the virtual machine instruc-
tions to corresponding real machine instructions will result
in a violation of this restriction.

[0064] FIG. 27 is a program list for a sample virtual
machine program for explaining this first reason. FIG. 28 is
a flowchart for this sample virtual machine program.

[0065] The present virtual machine program calculates the
total of ten integers from zero to nine. It is composed of a
setting of initial values (step 7002, Addresses 0~6), judg-
ment of the end of calculation (step 7003, Addresses 8~13),
addition and setting of the next value to be added (step 7004,
Addresses 15~29), and end processing (step 7005, Address
31).

[0066] FIG. 29 is a conversion table that is used when
compiling this virtual machine program according to this
third conventional technique. This conversion table is a
correspondence table that associates virtual machine instruc-
tions with the real machine programs into which they are to
be converted. Note that for reference purposes, the conver-
sion table in FIG. 29 also shows the code size of each real
machine program.

[0067] FIG. 30 shows the code arrangement of the real
machine program that is obtained when the sample virtual
machine program shown in FIG. 27 is compiled using the
conversion table shown in FIG. 29. In FIG. 30, relative
addresses in original virtual machine program are given for
each real machine program to show the correspondence
between the real machine program and the virtual machine
program.

[0068] If the target real machine has a restriction whereby
only jump destinations complying with a two-word align-
ment can be indicated, it can be secen from FIG. 30 that the
virtual machine instruction “Stop” with address 31 that is the
jump destination indicated by the virtual machine instruction
“Brz” at address 13 is arranged at odd-numbered addresses
in the real machine program. Since this address does not
correspond to the two-word alignment, this branch instruc-
tion violates the restrictions concerning jump destinations.
As a result, processing that rectifies this violation needs to
be performed.

[0069] A sccond reason for the above problem is that
special processing that accompanies branches can be nec-
essary for the target real machine. Some CPUs with RISC
architecture, such as CPUs with SPARC (Registered Trade-
mark) architecture produced by SPARC INTERNA-
TIONAL, INC. and CPUs produced by MIPS TECHNOLO-
GIES, INC., have special rules that are used when executing
a number of instructions located after a branch instruction.
Specific examples of these rules are the execution of a
specific succeeding instruction regardless of whether a

Dec. 18, 2003

branch is performed (called a “delayed branch”) or the
execution of a specific succeeding instruction only when a
branch is performed (called a “canceling branch”).

[0070] When the target real machine is of this type, special
processing needs to be performed, such as scheduling that
analyzes the instructions and changes their order or the
insertion of no operation instructions (such as NOP codes)
directly after branch instructions.

[0071] Problems with the Fourth Conventional Technique

[0072] The fourth conventional technique, which is to say
the compression of virtual machine programs in advance,
has a problem in that there is no resolving means for dealing
with problems that occur due to the execution of branch
instructions in the compressed virtual machine program.

[0073] FIG. 31A shows a compression table for explain-
ing this problem. This compression table associates vari-
able-length codes 93004 with virtual machine instructions
93005. FIG. 31B is example code that is obtained by
encoding the virtual machine instruction sequence A using
the compression table shown in FIG. 31A.

[0074] 1If the example code shown in FIG. 31B is decoded
starting from the first bit, the original virtual machine
instruction A (“babe”) will be obtained. However, when the
execution flow moves to point B in FIG. 31B due to a
branch instruction, decoding the code sequence “0010110”
that starts at point B using the compression table in FIG.
31A gives the mistaken virtual machine instruction “aabc”.

[0075] Problems Common to the First-Fourth Conven-
tional Techniques

[0076] The first-fourth conventional techniques described
above have a common problem in that none of them is able
to raise the efficiency of cache processing. As a result, the
market is still waiting for the realization of a high-speed
virtual machine that makes full use of the processing power
of real machines and computers that are equipped with a
cache memory.

[0077] FIG. 32 is a block diagram showing the program
counter 6901 and the instruction cache 6902 of a virtual
machine. This drawing will be used to explain the problems
that can occur for a virtual machine that is equipped with a
cache memory.

[0078] The instruction cache 6902 is equipped with a
cache table 6904 that stores addresses for specifying each
cache block in the cache memory, where a cache block is an
instruction sequence 6903 composed of the data in ten
consecutive addresses. FIG. 33 shows the case where the
sample virtual machine program shown in FIG. 27 is stored
in the cache memory, with the boundary lines A, B, and C
marking the boundaries between the cache blocks. These
boundary lines simply divide the virtual machine program
into cache blocks of an equal size, as can be seen from the
boundary line C that splits the virtual machine instruction
“Br 8” into the opcode “Br” and the operand “8”. Accord-
ingly, when dividing a virtual machine program into cache
blocks, it is necessary to judge whether any of the virtual
machine instructions that changes the value of the program
counter 6901 will end up spanning a boundary between
cache blocks. This increases the complexity of the process-
ing and results in an actual decrease in the overall execution
speed of a virtual machine when a cache is provided.

US 2003/0233386 Al

[0079] 1t would be conceivably possible to devise a
method for storing an entire virtual machine program in
cache memory or a method for arranging the virtual machine
program in the cache based on analysis of the virtual
machine program by a JIT compiler. However, the former of
these methods uses cache memory inefficiently and has a
further problem in that the time required for file transfer in
a network environment is greatly increased. The latter
method, meanwhile, has a problem in that writing the virtual
machine program into cache memory is very time-consum-
ing. Accordingly, both of these methods result in a marked
decrease in the overall execution efficiency of a virtual
machine.

SUMMARY OF THE INVENTION

[0080] In view of the above problems, the present inven-
tion to has an overall aim of providing a virtual machine that
executes a virtual machine program at a higher execution
speed than a conventional virtual machine, a virtual machine
compiler that generates a program for this virtual machine
(hereafter, a virtual machine and a virtual machine compiler
are together called a virtual machine system), and a JIT
compiler. Here, a virtual machine compiler refers to a
program that translates a source program written in a high-
level language such as C into a virtual machine program.

[0081] To achieve the above aim, the invention has the
following six specific objects.

[0082] The first object is to provide a virtual machine
system that can diminish disadvantages caused by true data
dependencies so that high execution speed is maintained.

[0083] The second object is to provide a high-speed virtual
machine system by minimizing the decreases in execution
efficiency caused by interrupt handling.

[0084] The third object is to provide a virtual machine
system with which “native coding” for different real
machines can be performed without decreasing overall
execution speed, even when the virtual machine is used by
real machines with different architectures. Such a virtual
machine is highly independent of real machine architectures
without decreasing execution speed.

[0085] The fourth object is to provide a high-speed virtual
machine system that can be used by a real machine with a
cache system without decreases in execution efficiency
which may result from a virtual machine instruction pro-
gram being divided into cache blocks or from complicated
resolving addresses being performed when using a JIT
compiler.

[0086] The fifth object is to provide a high-speed virtual
machine system that can decompress a compressed virtual
machine program correctly even when the compressed pro-
gram contains branch instructions.

[0087] The sixth object is to provide a high-speed JIT
compiler that does not need to perform a complex resolving
of addresses.

[0088] The first object can be achieved by the virtual
machine of claim 1.

[0089] According to claim 1, the virtual machine executes
a virtual machine instruction sequence under control of a
real machine, the virtual machine comprising: a stack unit

Dec. 18, 2003

for temporarily storing data in a last-in first-out format; an
instruction storing unit for storing the virtual machine
instruction sequence and a plurality of sets of succeeding
instruction information, wherein each virtual machine
instruction in the virtual machine instruction sequence is
associated with a set of succeeding instruction information
that indicates a change in a storage state of the data in the
stack unit due to execution of a virtual machine instruction
executed after the associated virtual machine instruction; a
read unit for reading a virtual machine instruction and an
associated set of succeeding instruction information from
the instruction storing unit; and a decoding-executing unit
for specifying and executing operations corresponding to a
combination of the read virtual machine instruction and the
read set of succeeding instruction information.

[0090] With the above construction, the instruction storing
unit stores next instruction information in addition to virtual
machine instructions and the decoding-executing unit per-
forms-not only operations for the decoded virtual machine
instruction but also a stack handling in advance for a virtual
machine instruction executed immediately after the decoded
virtual machine instruction. Performing appropriate stack
handling in advance in machine cycles where pipeline
hazards (which occur especially frequently in superscalar
machines) would otherwise occur, enables the detrimental
effects of true data dependencies to be absorbed and so
increases the execution speed of the virtual machine.

[0091] Here, the decoding-executing unit may include: a
real machine instruction sequence storing unit for storing a
plurality of real machine instruction sequences that corre-
spond to all combinations of virtual machine instructions
and sets of succeeding instruction information; a specifying
unit for specifying a real machine instruction sequence in the
real machine instruction sequence storing unit, the real
machine instruction sequence corresponding to a combina-
tion of the virtual machine instruction and the set of suc-
ceeding instruction information read by the read unit; and an
executing unit for executing the specified real machine
instruction sequence.

[0092] In this way, advance stack handling for absorbing
data dependencies can be included in the real machine
instruction sequence corresponding to a virtual machine
instruction.

[0093] Here, each set of succeeding instruction informa-
tion may indicate a change in a number of sets of data in the
stack unit due to execution of a virtual machine instruction
executed after a virtual machine instruction associated with
the set of succeeding instruction information, and at least
one real machine instruction sequence stored in the real
machine instruction sequence storing unit may contain real
machine instructions that perform a stack handling in the
stack unit in advance for a virtual machine instruction that
is to be executed based on a set of succeeding instruction
information associated with a currently executed virtual
machine instruction.

[0094] With this construction, when a change in a number
of stack levels due to execution of a given instruction is
canceled out by execution of an instruction executed imme-
diately after the given instruction, needless stack handling
can be avoided, which improves the execution speed of the
virtual machine.

[0095] Here, the real machine instruction sequences stored
in the real machine instruction sequence storing unit may be

US 2003/0233386 Al

composed with a premise that regions of the stack unit used
to store two sets of data to be read first and second are
mapped to two registers in the real machine.

[0096] The above construction replaces the load and store
stack operations that are frequently performed by stack-type
virtual machines with read/write operations for the internal
registers of the real machine. Such operations are suited for
rearrangement as the advance stack handling performed in
machine cycles where pipeline hazards would otherwise
occur. In this way, execution efficiency of the wvirtual
machine is raised.

[0097] Here, the instruction storing unit may include a first
storage area for storing the virtual machine instruction
sequence and a second storage area for storing the sets of
succeeding instruction information, wherein each location
that stores a virtual machine instruction in the first storage
area may be associated with a location that stores an
associated set of succeeding instruction information in the
second storage area, and the read unit may read the virtual
machine instruction from a location in the first storage area
and the associated set of succeeding. instruction information
from a location in the second storage area, the location in the
first storage area being associated with the location in the
second storage area.

[0098] In this way, a virtual machine instruction sequence
and next instruction information are stored separately, which
means that a virtual machine instruction sequence of the
present virtual machine has the same data format as a
conventional virtual machine instruction sequence. Compat-
ibility of instruction data format with a conventional virtual
machine is therefore maintained.

[0099] Here, the virtual machine instruction sequence
stored in the instruction storing unit may be an extended
virtual machine instruction sequence that includes extended
virtual machine instructions, the extended virtual machine
instructions being combinations of virtual machine instruc-
tions and associated sets of succeeding instruction informa-
tion, wherein the read unit may read an extended virtual
machine instruction from the instruction storing unit, and
wherein the decoding-executing unit may specify and
execute operations corresponding to the extended virtual
machine instruction.

[0100] In this way, since an extended virtual machine
instruction is a combination of a virtual machine instruction
and next instruction information, next instruction informa-
tion need not be processed or stored separately. This means
that a virtual machine with a similar architecture to a
conventional computer can be provided.

[0101] The fist object can be also achieved by the virtual
machine compiler of claim 7. According to claim 7, the
compiler generates programs for a virtual machine with a
stack architecture that includes a stack, the compiler includ-
ing: an instruction sequence converting unit for converting
a source program into a virtual machine instruction sequence
executable by the virtual machine; a succeeding instruction
information generating unit for generating sets of succeed-
ing instruction information corresponding to virtual machine
instructions in the virtual machine instruction sequence,
each set of succeeding instruction information indicating a
change in a storage state of data in the stack due to execution
of a virtual machine instruction executed immediately after

Dec. 18, 2003

a virtual machine instruction corresponding to the set of
succeeding instruction information; and an associating unit
for associating each set of generated succeeding instruction
information with a corresponding virtual machine instruc-
tion and outputting the set of succeeding instruction infor-
mation and the virtual machine instruction.

[0102] In this way, the above virtual machine compiler
generates not only virtual machine instructions but also next
instruction information which can be used by a virtual
machine to absorb true data dependencies. Thus, the present
virtual machine compiler can generate programs for a virtual
machine whose execution speed is improved by having data
dependencies absorbed.

[0103] The second object can be achieved by the virtual
machine of claim 8. According to claim 8, the virtual
machine executes a virtual machine instruction sequence
under control of a real machine, the virtual machine includ-
ing: an instruction storing unit for storing the virtual
machine instruction sequence; a read unit for reading a
virtual machine instruction in the virtual machine instruction
sequence from the instruction storing unit; and a decoding-
executing unit for specifying and executing operations cor-
responding to the virtual machine instruction, wherein the
decoding-executing unit includes a branch instruction judg-
ing unit for judging if the virtual machine instruction is a
branch instruction and an interrupt handling unit for detect-
ing, if the virtual machine instruction is judged to be a
branch instruction, whether there is an interrupt request, and,
if so, performing a corresponding interrupt handling in
addition to executing the branch instruction.

[0104] Inthis way, an interrupt handling is only performed
whenever a branch instruction is executed, which is suffi-
cient for most virtual machine programs. This suppresses
decreases in execution speed caused by performing interrupt
more frequently.

[0105] Here, the decoding-executing unit may further
include a real machine instruction sequence storing unit for
storing real machine instruction sequences corresponding to
every virtual machine instruction and real machine instruc-
tion sequences for having interrupt handling performed
corresponding to each interrupt request and an executing
unit for executing a real machine instruction sequence
corresponding to the virtual machine instruction read by the
read unit, wherein if the virtual machine instruction is
judged to be the branch instruction and an interrupt request
is detected, the interrupt handling unit has the executing unit
execute a real machine instruction sequence for having the
corresponding interrupt handling performed and then the
real machine instruction sequence corresponding to the
branch instruction.

[0106] With this construction, an interrupt handling to be
additionally performed can be specified by a real machine
instruction sequence. This realizes a virtual machine capable
of performing an interrupt handling with a simpler archi-
tecture.

[0107] The second object can be also achieved by the
virtual machine of claim 10. According to claim 10, the
virtual machine executes a virtual machine instruction
sequence under control of a real machine, the virtual
machine including: an instruction storing unit for storing the
virtual machine instruction sequence; a read unit for reading

US 2003/0233386 Al

a virtual machine instruction in the virtual machine instruc-
tion sequence from the instruction storing unit; and a decod-
ing-executing unit for specifying and executing operations
corresponding to the read virtual machine instruction,
wherein the decoding-executing unit includes a block judg-
ing unit for judging if the read virtual machine instruction is
a virtual machine instruction representative of a block, a
block being a predetermined number of virtual machine
instructions and an interrupt handling unit for detecting, if
the read virtual machine instruction is judged to be the
representative virtual machine instruction, whether there is
an interrupt request to the virtual machine, and if so,
performing a corresponding interrupt handling in addition to
executing the representative virtual machine instruction.

[0108] In this way, an interrupt handling is performed
every time a predetermined number of virtual machine
instructions are executed, and a frequency to perform inter-
rupt handling can be controlled by changing this number in
advance. This avoids decreases in execution speed caused by
performing interrupt handling more frequently.

[0109] Here, the decoding-executing unit may include a
real machine instruction sequence storing unit for storing a
plurality of real machine instruction sequences correspond-
ing to every virtual machine instruction and at least one real
machine instruction sequence for having interrupt handling
performed in response to an interrupt request and an execut-
ing unit for executing a real machine instruction sequence
corresponding to the read virtual machine instruction,
wherein the block judging unit may judge that the read
virtual machine instruction is a virtual machine instruction
representative of the block when a number of virtual
machine instructions that have been read is equal to a
multiple of the predetermined number and wherein if the
read virtual machine instruction is judged to be a represen-
tative virtual machine instruction and an interrupt request
has been detected, the interrupt handling unit may have the
executing unit execute a real machine instruction sequence
for having the interrupt handling performed and then the real
machine instruction sequence corresponding to the repre-
sentative virtual machine instruction.

[0110] With this construction, an interrupt handling to be
additionally performed can be specified by a real machine
instruction sequence. As a result, a virtual machine that is
capable of performing an interrupt handling with a simpler
architecture can be achieved.

[0111] The third object may be achieved by the virtual
machine of claim 12. According to claim 12, the virtual
machine executes a virtual machine instruction sequence
under control of a real machine, the virtual machine includ-
ing: a real machine program storing unit for storing a
plurality of subprograms composed of real machine instruc-
tions; an instruction storing unit that includes a first area for
storing the virtual machine instruction sequence and a
second area for storing a plurality of pointers to the sub-
programs in the real machine program storing unit; a read
unit for reading a virtual machine instruction in the virtual
machine instruction sequence from the first area in the
instruction storing unit; and a decoding-executing unit for
specifying and executing operations corresponding to the
read virtual machine instruction, wherein the decoding-
executing unit includes an area judging unit for judging
whether the virtual machine instruction is an instruction that

Dec. 18, 2003

transfers control flow to a location in the second area and an
address converting-executing unit for executing, if the vir-
tual machine instruction is judged to be an instruction that
transfers control flow to a location in the second area, a
subprogram indicated by a pointer stored in the location.

[0112] With this construction, execution of either a virtual
machine function or a real machine function is solely
determined by a corresponding location in an area of the
memory map in the virtual machine, so a setting of whether
a virtual machine function or a real machine function is
executed for a function can be easily changed. This makes
it possible to use “native-coding” in virtual machine pro-
grams for real machines with different architectures.

[0113] Here, the first area and the second area in the
instruction storing unit may be two adjacent storage areas
whose boundary is marked by an address, and the area
judging unit may judge, when the read virtual machine
instruction is a call instruction for a subprogram, whether the
virtual machine instruction is an instruction that transfers
control flow, by comparing a call address of the call instruc-
tion with the address.

[0114] With this construction, control over switches
between executing a virtual machine function and a real
machine function can be easily achieved by shifting the
boundary line between areas in the memory map of the
virtual machine. As a result, virtual machines that have
improved execution speed and are suited to different real
machine environments can be realized.

[0115] The fourth object can be achieved by the virtual
machine of claim 14. According to claim 14, the virtual
machine executes a virtual machine instruction sequence
under control of a real machine, the virtual machine includ-
ing: an instruction storing unit for storing the virtual
machine instruction sequence; a read unit for reading a
virtual machine instruction in the virtual machine instruction
sequence from the instruction storing unit; and a decoding-
executing unit for specifying and executing operations cor-
responding to the read virtual machine instruction, wherein
the instruction storing unit is a plurality of instruction blocks
that constitute the virtual machine instruction sequence, the
instruction blocks corresponding to basic blocks, wherein
the instruction blocks each include: an identifier area for
storing an identifier that specifies a start position of the
instruction block in the instruction storing unit; a non-branch
instruction area for storing non-branch instructions belong-
ing to a corresponding basic block; and a branch instruction
area for storing at least one branch instruction belonging to
the corresponding basic block, wherein each branch instruc-
tion stored in the branch instruction area designates a branch
destination using an identifier stored in one of the identifier
arcas, and wherein if the read virtual machine instruction is
a branch instruction, the decoding-executing unit has control
flow branch to a start position of a non-branch instruction
area in an instruction block having an identifier designated
by the branch instruction as a branch destination.

[0116] With this construction, there is always only one
entry point for each instruction block, which is the start of
the instruction block. As a result, the address analysis for
branch destinations of branch instructions is simplified, and
the timing taken by compiling is reduced. Also, by caching
instructions in instruction block units, the judgment process-
ing regarding the cache boundaries is simplified, and

US 2003/0233386 Al

decreases in execution efficiency that occur when a cache is
provided for the virtual machine can be made smaller than
in conventional techniques.

[0117] Here, the decoding-executing unit may include a
program counter composed of (a) an identifier register for
storing an identifier of an instruction block to which a virtual
machine instruction to be read belongs and (b) an offset
counter for storing an offset that indicates a relative storage
position of the virtual machine instruction in the instruction
block, wherein the read unit may read the virtual machine
instruction based on the identifier and the offset in the
program counter, wherein the decoding-executing unit may
update, if the read virtual machine instruction is the branch
instruction, the program counter by writing the identifier
designated as the branch destination by the branch instruc-
tion into the identifier register and by setting an initial value
in the offset counter, and if the read virtual machine instruc-
tion is a non-branch instruction, update the program counter
by incrementing the offset counter, and the read unit may
read a virtual machine instruction to be executed next based
on the program counter updated by the decoding-executing
unit.

[0118] Accordingly, each instruction block is specified
only by a value of the identifier segment register, and each
relative instruction storage position of a virtual machine
instruction by a value of the offset counter. As a result, an
address converting technique according to a conventional
“segment method” can be used.

[0119] Here, the decoding-executing unit may include a
real machine instruction sequence storing unit that stores a
plurality of real machine instruction sequences that each
correspond to a different virtual machine instruction, the
instruction blocks in the instruction storing unit each may
include a decoded data sequence area for storing a decoded
data sequence that specifies real machine instruction
sequences in the real machine instruction sequence storing
unit, the real machine instruction sequences corresponding
to virtual machine instructions stored in the non-branch
instruction area and the branch instruction area of the
instruction block, wherein if a decoded data sequence is
stored in an instruction block where reading is to be per-
formed, the read unit may read a set of decoded data in the
decoded data sequence instead of a virtual machine instruc-
tion, and if not, the read unit may read the virtual machine
instruction and then generate a set of decoded data to specify
a real machine instruction sequence in the real machine
instruction sequence storing unit that corresponds to the
virtual machine instruction, and wherein the decoding-ex-
ecuting unit may read from the real machine instruction
sequence storing unit the real machine instruction sequence
specified by the set of decoded data that has been either read
or generated by the read unit, and executes the real machine
instruction sequence.

[0120] With this construction of the virtual machine, in
addition to the effects achieved in the virtual machine of
claim 15 that manages a virtual machine program in units of
instruction blocks, a time to decode a virtual machine
instruction is shortened for the instruction blocks that
already have a decoded data sequence. This is because the
decoded data sequence is executed directly instead of virtual
machine instructions. As a result, the execution speed of the
virtual machine is improved.

Dec. 18, 2003

[0121] Here, the decoded data sequence area in the
instruction storing unit may include a flag area for storing a
flag that indicates whether the decoded data sequence is
stored in the decoded data sequence area, wherein the
decoding-executing unit may include a current flag storing
unit for storing a flag that is read from a flag area in a branch
destination instruction block by the decoding-executing unit
when executing a branch instruction, and wherein the read
unit may read a set of decoded data or a virtual machine
instruction depending on the flag in the current flag storing
unit.

[0122] For this construction, a flag indicating whether a
decoded data sequence exists is provided to each instruction
block and read from the instruction block to be held by the
virtual machine. As a result, when executing virtual machine
instructions in an instruction block that has a decoded data
sequence, the virtual machine need not refer to a flag every
time it executes one virtual machine instruction.

[0123] Here, each instruction block in the instruction
storing unit may further include a flag area for storing a flag
that indicates whether a decoded data sequence is stored in
the decoded data sequence area of the instruction block, and
the decoding-executing unit may include a decoded data
sequence writing unit for judging, after a branch instruction
has been executed, whether the instruction block designated
as the branch destination by the branch instruction stores a
decoded data sequence by referring to a flag stored in a flag
arca of the instruction block, and if no decoded data
sequence is stored, having a virtual machine instruction
sequence in the instruction block read, decoding the read
virtual machine instruction sequence to produce a decoded
data sequence, and writing the decoded data sequence into
a decoded data sequence area in the instruction block.

[0124] For this construction, a decoded data sequence is
generated when an instruction block is executed for the first
time. As a result, when the same instruction block needs to
be repeatedly executed as in loop processing, the time
required for executing instructions corresponding to the
block is reduced from the second execution of the block
onwards.

[0125] The fifth object can be achieved by the virtual
machine of claim 19. According to claim 19, the virtual
machine executes a virtual machine instruction sequence
under control of a real machine, the virtual machine includ-
ing: an instruction storing unit for storing a compressed
virtual machine instruction sequence to be executed; a read
unit for reading a compressed virtual machine instruction in
the compressed virtual machine instruction sequence from
the instruction storing unit and decompressing the com-
pressed virtual machine instruction to generate a decom-
pressed virtual machine instruction; and a decoding-execut-
ing unit for specifying and executing operations
corresponding to the decompressed virtual machine instruc-
tion, wherein the instruction storing unit is a plurality of
instruction blocks containing compressed virtual machine
instructions constituting the compressed virtual machine
instruction sequence, the instruction blocks corresponding to
basic blocks, wherein the instruction blocks each include: an
identifier area for storing an identifier that specifies a start
position of the instruction block in the instruction storing
unit; a non-branch instruction area for storing compressed
non-branch instructions belonging to a corresponding basic

US 2003/0233386 Al

block; and a branch instruction area for storing at least one
compressed branch instruction belonging to the correspond-
ing basic block, wherein each compressed branch instruction
stored in a branch instruction area designates a branch
destination using an identifier stored in one of the identifier
areas, and wherein if the decompressed virtual machine
instruction is a branch instruction, the decoding-executing
unit has control flow branch to a start position of a non-
branch instruction area in an instruction block having an
identifier designated by the branch instruction as a branch
destination.

[0126] For this construction, the compressed virtual
machine program is stored in units of the instruction blocks
based on basic blocks and is decompressed by the decoding-
executing unit. As a result, malfunctions caused when com-
pressed bit sequences are mistakenly decoded starting mid-
way through do not occur to this virtual machine.

[0127] Here, each instruction block may include a decom-
pression table area for storing a decompression table for use
during decompression of compressed virtual machine
instructions in the instruction block, the decompression table
containing at least one combination of a compressed virtual
machine instruction stored in the instruction block and a
corresponding decompressed virtual machine instruction
and wherein the read unit may read the compressed virtual
machine instruction from the instruction storing unit and
decompresses the compressed virtual machine instruction by
referring to a decompression table in an instruction block to
which the compressed virtual machine instruction belongs to
generate the decompressed virtual machine instruction.

[0128] With this virtual machine, each instruction block
stores a decompression table, and a different decompression
table is referred for execution of instructions belonging to
each instruction block. Accordingly, the present virtual
machine assures that even when each instruction block is
compressed in a different format, decompression can be
correctly performed.

[0129] The sixth object can be achieved by the JIT com-
pilers of claims 25 and 26. According to claim 25, the JIT
compiler is for use with a virtual machine that executes a
virtual machine instruction sequence under control of a real
machine, the JIT compiler converting parts of the virtual
machine instruction sequence into real machine instruction
sequences before execution, the JIT compiler including: a
block start information receiving unit for receiving an input
of block start information for each virtual machine instruc-
tion that composes the virtual machine instruction sequence,
the block start information showing whether a correspond-
ing virtual machine instruction would correspond to a start
of a basic block if the virtual machine instruction sequence
were divided into basic blocks; a converting unit for con-
verting virtual machine instructions in the virtual machine
instruction sequence into real machine instruction
sequences; and an outputting unit for rearranging the real
machine instruction sequences produced by the converting
unit into basic block units in accordance with the block start
information received by the block start information receiv-
ing unit. Here, this JIT compiler may further include a
branch violation judging unit for judging, when a real
machine instruction at a start of a produced real machine
instruction sequence corresponds to a virtual machine
instruction whose block start information indicates that the

Dec. 18, 2003

virtual machine instruction would be a start of a basic block,
whether the real machine instruction is going to be arranged
in an address that violates an address alignment restriction of
the real machine, wherein if the real machine instruction is
going to be arranged in an address that violates the address
alignment restriction, the outputting unit may rearrange the
real machine instruction sequence so that the real machine
instruction is not arranged in the address.

[0130] Accordingly, without performing the complicated
processing for analyzing branch destinations of branch
instructions, the present JIT compiler can produce a real
machine instruction program at a higher speed in which
branch destinations are arranged at addresses complying
with a two-word alignment.

[0131] Here, the outputting unit may insert a certain
number of no-operation instructions at a start of each basic
block, the number being a number of real machine instruc-
tions processed during a delay of a delayed branch.

[0132] As a result, the above JIT compiler is capable of
dealing with delayed branch by inserting no-operation
instructions at a start of each basic block without performing
a complicated delayed branch analyzing.

[0133] As has been described, the present invention
improves execution speed of virtual machines and is espe-
cially valuable as a technique to promote efficient and
high-speed use of shared resources by different types of
computers connected on a network environment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0134] These and other objects, advantages and features of
the invention will become apparent from the following
description thereof taken in conjunction with the accompa-
nying drawings which illustrate a specific embodiment of
the invention. In the drawings:

[0135] FIG. 1 is a block diagram showing a conventional
virtual machine with a stack architecture;

[0136] FIG. 2 is an explanation drawing that shows a
virtual machine instruction set used in the conventional
technique and the present invention;

[0137] FIG. 3 shows contents of the decode table shown
in FIG. 1;

[0138] FIG. 4 shows microprogram lists stored in the
microprogram storing unit shown in FIG. 1;

[0139] FIG. 5 shows operation contents of real machine
instructions of the conventional technique and the present
invention;

[0140] FIG. 6 is a flowchart showing the processing of the
decoding unit shown in FIG. 1;

[0141] FIG. 7 is a flowchart showing the specific process-
ing of step 4506 in FIG. 6;

[0142] FIG. 8 is a flowchart showing the processing of
decoding unit 4402 in a case where decoded data transmitted
from the decoding unit is transferred to the executing unit
via a buffer;

[0143] FIG. 9 is a flowchart showing the processing of the
executing unit shown in FIG. 1;

[0144] FIG. 10A shows a sample program list;

US 2003/0233386 Al

[0145] FIG. 10B shows the arithmetic expression “2*(3+
4)” based on FIG. 10A,;

[0146] FIG. 10C shows decoded data transmitted from the
decoding unit in order;

[0147] FIG. 11 shows changing internal states of the
conventional virtual machine when the executing unit of the

virtual machine processes the decoded data shown in FIG.
10C;

[0148] FIGS. 12A-12D show a microprogram list for the
conventional virtual machine that uses the TOS variable;

[0149] FIG. 13 shows changing internal states of the
conventional virtual machine that stores microprograms
shown in FIGS. 12A-12D when the virtual machine
executes the virtual machine program shown in FIG. 10A;

[0150] FIG. 14 is an explanation drawing that shows
abbreviated symbols for pipeline stages;

[0151] FIG. 15 shows an ideal pipeline flow of the stan-
dard machine;

[0152] FIG. 16 shows an ideal pipeline flow of the super-
scalar machine;

[0153] FIG. 17 shows a pipeline flow of the standard
machine when hazzards occur;

[0154] FIG. 18 shows a pipeline flow of the superscalar
machine when hazzards occur;

[0155] FIG. 19 shows a pipeline flow when two clock
cycles need to pass before values obtained through memory
access can be used in the case shown in FIG. 17,

[0156] FIG. 20 shows a pipeline flow when two clock
cycles need to pass before values obtained through memory
access can be used in the case shown in FIG. 18;

[0157] FIG. 21 shows a pipeline flow for the standard
machine when instructions Al and A2 are instructions that
indicate jump destinations using a register;

[0158] FIG. 22 shows a pipeline flow for the superscalar
machine when instructions Al and A2 are instructions that
indicate a jump destination using a register;

[0159] FIG. 23 shows a pipeline flow when the virtual
machine of the first conventional technique is realized by a
standard machine where one clock cycle needs to pass
before values obtained through memory access can be used
and the virtual machine program shown in FIG. 10A is
executed;,

[0160] FIG. 24 shows a pipeline flow corresponding to
FIG. 23 when the virtual machine of the first conventional
technique is realized by a superscalar machine;

[0161] FIG. 25 shows a pipeline flow for the standard
machine when two clock cycles need to pass before values
obtained through memory access can be used;

[0162] FIG. 26 shows a pipeline flow corresponding to
FIG. 25 in the case of the superscalar machine;

[0163] FIG. 27 shows a virtual machine program list as a
sample;
[0164] FIG. 28 is a flowchart for the sample program list

shown in FIG. 27,

Dec. 18, 2003

[0165] FIG. 29 is a conversion table that is used by the
conventional JIT compiler;

[0166] FIG. 30 shows the code arrangement of the real
machine program that is obtained when the sample virtual
machine program shown in FIG. 27 is compiled using the
conversion table shown in FIG. 29;

[0167] FIG. 31A shows an example of a compression
table;

[0168] FIG. 31B shows an example code that is obtained
using the compression table shown in FIG. 31A;

[0169] FIG. 32 is a drawing for explaining a problem
likely to occur to the conventional virtual machine that
includes a cache memory;

[0170] FIG. 33 shows the case where the sample virtual
machine program shown in FIG. 27 is stored in the cache
memory, with the boundary lines A, B, and C marking the
boundaries between the cache blocks;

[0171] FIG. 34 is a hardware construction drawing of a
computer system where the virtual machine systems of the
first to ninth embodiments are used;

[0172] FIG. 35 is a block diagram showing the construc-
tion of the virtual machine in the first embodiment;

[0173] FIG. 36A shows the next instruction information
stored in the next instruction information storing unit of the
virtual machine shown in FIG. 35;

[0174] FIG. 36B shows the virtual machine program that
is stored in the instruction storing unit and that corresponds
to the next instruction information shown in FIG. 36A;

[0175] FIG. 37 shows stored contents of the decode table
of the first embodiment;

[0176] FIGS. 38A and 38B show microprograms corre-
sponding to virtual machine instructions “Push” assigned
“U” and “D”, respectively;

[0177] FIGS. 39A and 39B show microprograms corre-
sponding to virtual machine instructions “Add” assigned
“U” and “D”, respectively;

[0178] FIGS. 40A and 40B show microprograms corre-
sponding to virtual machine instructions “Mult” assigned
“U” and “D”, respectively;

[0179] FIG. 41A shows a microprogram corresponding to
the latter half of the microprograms assigned “U” shown in
FIGS. 39A and 40A,;

[0180] FIG. 41B shows a microprogram corresponding to
the latter half of the microprograms assigned “D” shown in
FIGS. 39B and 40B;

[0181] FIG. 42 is a state transition diagram showing
changes in virtual machine instruction types to be executed
by the virtual machine of the first embodiment;

[0182] FIG. 43 is a flowchart showing the processing of
the decoding unit of the virtual machine of the first embodi-
ment;

[0183] FIG. 44 is a flowchart showing the initial half of
the detailed processing of step 4907 for table searching in
FIG. 43;

US 2003/0233386 Al

[0184] FIG. 45 is a flowchart showing the latter half of the
detailed processing of step 4907 for table searching in FIG.
43,

[0185] FIG. 46 shows a decoded data sequence succes-
sively outputted from the decoding unit to the executing unit
of the virtual machine in the first embodiment;

[0186] FIGS. 47A and 47B show changes in the internal
states of the virtual machine when its executing unit operates
according to the decoded data sequence shown in FIG. 46;

[0187] FIG. 48 shows a pipeline flow for the standard real
machine when one clock cycle needs to pass before values
obtained through memory access can be used;

[0188] FIG. 49 shows a pipeline flow for the superscalar
real machine when one clock cycle needs to pass before
values obtained through memory access can be used;

[0189] FIG. 50 shows a pipeline flow for the standard real
machine when two clock cycles need to pass before values
obtained through memory access can be used;

[0190] FIG. 51 shows a pipeline flow for the superscalar
real machine when two clock cycles need to pass before
values obtained through memory access can be used;

[0191] FIG. 52 is a block diagram showing the construc-
tion of the virtual machine compiler in the first embodiment;

[0192] FIG. 53 shows the data construction of the source
program to be inputted into the instruction sequence con-
verting unit of the virtual machine compiler;

[0193] FIG. 54 shows the data construction of each node
shown in FIG. 53;

[0194] FIG. 55 is a flowchart showing a general procedure
of the instruction sequence converting unit of the virtual
machine compiler;

[0195] FIG. 56 is a flowchart showing the detailed pro-
cessing of step 5405 in FIG. 55;

[0196] FIG. 57 is a flowchart showing the detailed pro-
cessing of step 5613 in FIG. 56;

[0197] FIG. 58 is a flowchart showing the processing of
the next instruction information generating unit of the virtual
machine compiler;

[0198] FIG. 59 is a flowchart showing the processing of
the relation associating unit of the virtual machine compiler;

[0199] FIG. 60 is a block diagram showing the construc-
tion of the virtual machine in the second embodiment;

[0200] FIG. 61 is a flowchart showing the detailed pro-
cessing for table search and decoded data output by the
decoding unit of the virtual machine;

[0201] FIG. 62 is a flowchart showing the processing of
the branch instruction detecting unit of the virtual machine;

[0202] FIG. 63 is a flowchart showing the processing of
the instruction inserting unit of the virtual machine;

[0203] FIG. 64 is a block diagram showing the construc-
tion of the virtual machine in the third embodiment;

[0204] FIG. 65 is a flowchart showing the processing of
the block converting unit of the virtual machine;

Dec. 18, 2003

[0205] FIG. 66 is a block diagram showing the construc-
tion of the virtual machine of the fourth embodiment;

[0206] FIG. 67 shows a memory map of the instruction
storing unit of the virtual machine;

[0207] FIG. 68 shows the construction of the real machine
function table shown in FIG. 67,

[0208] FIG. 69 is a flowchart showing the processing of
the execution unit of the virtual machine;

[0209] FIG. 70 shows a modification example of a
memory map of the instruction storing unit of the virtual
machine;

[0210] FIG. 71 is a block diagram showing the construc-
tion of the virtual machine in the fifth embodiment;

[0211] FIG. 72 shows an example of states of virtual
machine programs stored in the instruction storing unit of
the virtual machine;

[0212] FIG. 73 shows a control flow of the virtual
machine programs shown in FIG. 72;

[0213] FIG. 74 shows a data format obtained by the
addressing by the PC of the virtual machine;

[0214] FIG. 75 is a flowchart showing the processing of
the branch destination converting unit of the executing unit
of the virtual machine;

[0215] FIG. 76 shows the address conversion by the
branch destination converting unit, where logical addresses
and identifiers in the virtual machine program shown in
FIG. 72 are replaced with physical addresses;

[0216] FIG. 77 is a block diagram showing the virtual
machine compiler in the fifth embodiment;

[0217] FIG. 78 shows the construction of the branch
address conversion table of the virtual machine compiler;

[0218] FIG. 79 is a flowchart showing the processing of
the block converting unit of the virtual machine compiler;

[0219] FIG. 80 is a flowchart showing the detailed pro-
cessing of step 7607 in FIG. 79;

[0220] FIG. 81 is a flowchart showing the detailed pro-
cessing of step 7704 in FIG. 79;

[0221] FIG. 82 is a flowchart showing the detailed pro-
cessing of step 7609 in FIG. 79;

[0222] FIG. 83 shows the relationship between the PC, the
instruction block storing areas, and the cache table when
caching is performed by the virtual machine in instruction
block units;

[0223] FIG. 84 is a flowchart showing the instruction
processing of branch instructions by the executing unit when
instructions are cached in instruction block units in the
virtual machine;

[0224] FIG. 85 is a block diagram showing the construc-
tion of the virtual machine in the sixth embodiment;

US 2003/0233386 Al

[0225] FIGS. 86A to 86C show examples of the stored
state of virtual machine programs in the instruction storing
unit;

[0226] FIG. 87 is a flowchart showing the processing of
the decoding unit of the virtual machine;

[0227] FIG. 88 is a flowchart showing the processing of
the executing unit of the virtual machine;

[0228] FIG. 89 is a flowchart showing the control per-
formed for the decoding unit when the executing unit of the
virtual machine executes a branch instruction;

[0229] FIG. 90 is a block diagram showing the construc-
tion of the virtual machine in the seventh embodiment;

[0230] FIG. 91 is a flowchart showing the processing of
the decoded instruction sequence writing unit, the current
flag read control unit, and the branch destination converting
unit when the virtual machine executes a branch instruction;

[0231] FIG. 92 is a flowchart showing the detailed pro-
cessing of step 9110 in FIG. 91;

[0232] FIG. 93 is a flowchart showing the operation of the
decoding unit when viewed from the executing unit;

[0233] FIG. 94 is a block diagram showing the construc-
tion of the virtual machine in the eighth embodiment;

[0234] FIG. 95A shows an example of the decompression
table stored in the restoring information storing unit of the
virtual machine;

[0235] FIG. 95B shows the rules governing codes in the
decompression table shown in FIG. 95A;

[0236] FIGS. 96A to 96C show examples of the stored
states of a virtual machine program that is stored in the
instruction storing unit of the virtual machine;

[0237] FIG. 97 is a flowchart showing the processing of
the decoding unit of the virtual machine;

[0238] FIG. 98 is a flowchart showing the detailed pro-
cessing of step 9602 in FIG. 97;

[0239] FIG. 99 is a block diagram showing the construc-
tion of the entire compiler system including the JIT compiler
of the ninth embodiment;

[0240] FIG. 100 is a flowchart showing the processing of
the block start information generating unit of the virtual
machine compiler;

[0241] FIG. 101 is a flowchart showing the processing of
the real machine instruction converting unit, the branch
position amending unit, and the real machine address storing
unit;

[0242] FIG. 102 is a table showing the block start infor-
mation generated by the block start information generating
unit, the timing of the generation of “Nop” real machine
instructions generated by the branch position amending unit
of the JIT compiler, and other related information; and,

[0243] FIG. 103 shows a modification example of a
virtual machine instruction format used by the virtual
machine of the present invention.

Dec. 18, 2003

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

[0244] The following explains embodiments of the present
invention, with reference to figures.

[0245] First Embodiment

[0246] The following describes the virtual machine sys-
tem of the first embodiment that can absorb a true data
dependency.

[0247] FIG. 34 shows a hardware construction of the
computer system 200 that operates the virtual machine
system of the present embodiment. The computer system
200 comprises a real machine 201, a memory 200, a key-
board 203, a mouse 204, a display screen 206, a hard disks
207, a network card 208, and internal busses 205A-205C
that connect these elements. This hardware construction is
the same as that of a normal personal computer.

[0248] The virtual machine and the virtual machine com-
piler of the present embodiment are programs written with
instructions for the real machine 201. These programs are
stored in the hard disks 207 and loaded into the memory 202
according to instructions from the user or from another
program that is being executed by the real machine 201. The
real machine 201 is a CPU that decodes and executes the real
machine instructions shown in FIG. 5§ in the same way as
described in the prior art.

[0249] Virtual Machine Construction

[0250] FIG. 35 is a block diagram showing the construc-
tion of a virtual machine 100 of the present embodiment.
This figure corresponds to FIG. 1 in the explanation of the
prior art. This virtual machine 100 includes a next instruc-
tion information storing unit 101, an instruction storing unit
102, a decoding unit 103, an executing unit 110 and a stack
120.

[0251] The instruction storing unit 102 is a storage area to
store a virtual machine program to be processed, and the
next instruction information storage unit 101 is an area to
store sets of next instruction information that correspond to
virtual machine instructions constituting the virtual machine
program. A set of next instruction information refers to
one-bit information indicating whether a virtual machine
instruction that immediately follows a currently executed
instruction is an instruction-whose execution results in the
level of the stack 120 being increased or decreased. Next
instruction information indicating the former is written as
“U” and the latter as “D”. This information is generated
together with the virtual machine program from a source
program using a virtual machine compiler of the present
embodiment, which will be described later.

[0252] FIGS. 36A and 36B respectively show examples
of next instruction information stored in the next instruction
information storing unit 101 and virtual machine codes
stored in the instruction storing unit 102. These virtual
machine codes and next instruction information correspond
to a virtual machine program with the same contents as the
virtual machine program shown in FIG. 10A, i.e. a calcu-
lation of “2*(3+4)”. For example, next instruction informa-
tion “U” is stored in locations specified by addresses “1” and
“2” in the next instruction storing unit 101, since the
corresponding virtual machine instruction “Push 2” in

US 2003/0233386 Al

addresses “1” and “2” in the instruction storing unit 102
precedes an instruction “Push 37, that raises the level of the
stack 120.

[0253] The decoding unit 103 reads virtual machine
instructions successively from the instruction storing unit
102, decodes the virtual machine instruction referring to a
corresponding set of next instruction information stored in
the instruction storing unit 102, and outputs the result of the
decoding to the executing unit 110. The decoding unit 103
includes a next instruction information reading unit 104, an
instruction reading unit 105, a search unit 106, a program
counter (PC) 107, and a decode table 108.

[0254] The PC 107 is a storage area to hold the address of
a virtual machine instruction to be read next from the
instruction storing unit 102 and the address of the corre-
sponding next instruction information in the next instruction
information storing unit 101. In the present embodiment,
these addresses are assigned the same address number and
are updated by the executing unit 110. The PC 107 is
allocated physically to register #2 (r2) of the real machine
201.

[0255] The instruction reading unit 105 reads a virtual
machine instruction from the instruction storing unit 102
according to the address indicated by the PC 107 and outputs
the read virtual machine instruction to the search unit 106.
In the same way, the next instruction information reading
unit 104 reads a set of next instruction information from the
next instruction information storing unit 101 specified by the
address in the PC 107 and outputs the read information to the
search unit 106. This processing by the next instruction unit
104 is synchronized with the instruction reading unit 105.

[0256] The decode table 108 stores the combinations of
the next instruction information and opcodes corresponding
to all the virtual machine instructions shown in FIG. 2 to be
decoded and executed by the virtual machine 100, a jump
address of a microprogram in the microprogram storing unit
111 to which each combination jumps, and a number of
operands that accompany each opcode. Each opcode has one
combination with the next instruction information “U”, and
one with the next instruction “D”. As in the prior art,
opcodes are 1-byte long, and operands are counted in units
of one byte.

[0257] FIG. 37 shows the stored contents of the decode
table 108, which corresponds to the decode table 4406
shown in FIG. 3 in the description of the prior art. Unlike
the conventional decode table 4406, the jump address 108C
and the number of operands 108D in this decode table 108
correspond to two cases when the opcode 108A is associated
with next instruction information 108B “U” and “D”. As one
example, for the opcode “Push”, a jump address to a
microprogram that processes “Push” assigned “U” is pro-
vided for cases when the opcode “Push” is associated with
the next instruction information “U”, and a jump address to
a microprogram that processes “Push” assigned “D” is
provided for cases when the opcode “Push” is associated
with the next instruction information “D”.

[0258] The search unit 106 receives an opcode of a virtual
machine instruction from the instruction reading unit 105
and the next instruction information from the next instruc-
tion reading unit 104 as a combination, specifies an entry
corresponding to the combination out of the decode table

Dec. 18, 2003

108, reads a jump address stored in the specified entry to
output it as the decoded data to the executing unit 101.

[0259] The executing unit 110 executes a microprogram
corresponding to a virtual machine instruction using the
decoded data sent from the search unit 106. This executing
unit 110 includes a microprogram storing unit 111 and a
stack pointer (SP) 112.

[0260] The microprogram storing unit 111 stores micro-
programs corresponding to the combinations of the virtual
machine instructions to be decoded and executed by the
virtual machine 100 and the next instruction information.
These microprograms will be explained later in detail.

[0261] The SP 112 is a storage area to store an address of
the top of the stack 120 as described in the prior art, and is
allocated physically to a register #3 (13) of the real machine
201.

[0262] The stack 120 is a temporary LIFO storage area
used by the executing unit 110 to execute microprograms for
the decoded virtual machine program. This stack 120
includes the TOS variable 121, the SOS (Second Of Stack)
122 and the memory stack 123. The TOS variable 121 is a
storage area for a value at the top of the stack 120 and is
physically allocated to register #0 (r0) of the real machine
201. The SOS variable 122 is a storage area for a value on
the second level of the stack 120 and is physically allocated
to register #4 (r4) of the real machine 201. The memory
stack 123 is a storage area for values on the third and lower
levels and is allocated physically to the memory 202.

[0263] Contents of the Microprogram Storing Unit 111

[0264] FIGS. 38A and 38B respectively show micropro-
grams in the microprogram storing unit 111 that correspond
to the virtual machine instructions “Push” assigned “U” and
“Push” assigned “D”. FIGS. 39A, 39B, 40A, and 40B show
microprograms corresponding to virtual machine instruc-
tions “Push” assigned “U” and “D”, and virtual machine
instructions “Mult” assigned “U” and “D”. The instruction
sequence shown in FIG. 41A forms the common latter part
of the microprograms shown in FIGS. 39A and 40A that
correspond to virtual machine instructions assigned “U”. In
the same way, the instruction sequence shown in FIG. 41B
forms the common latter part of the microprograms shown
in FIGS. 39B and 40B that correspond to virtual machine
instructions assigned “D”. The operation content of each real
machine instruction in these microprograms are shown in
FIG. 5.

[0265] By comparing these microprograms with the con-
ventional microprograms shown in FIGS. 4A-4D and 12A-
12D, it can be seen that the microprograms in the micro-
program storing unit 111 of the virtual machine 100 in the
present embodiment have the following characteristic. That
is, with the present embodiment, different microprograms
are prepared for a same type of virtual machine instruction
and are selectively used depending on the next instruction
information assigned to the virtual machine instruction. By
considering how stack handling will be performed during
the execution of the next virtual machine instruction, need-
less stack operations and pipeline disturbances due to true
data dependency can be avoided. For instance, while the
microprogram shown in FIG. 38B is for the virtual machine
instruction “Push”, it does not include an instruction to push
a value stored in the SOS variable 122 to the memory stack

US 2003/0233386 Al

123 because the next instruction information assigned to this
virtual machine instruction is “D”, meaning that the execu-
tion of the next instruction will result in a pop. In this way,
needless pushes to the memory are avoided in advance.

[0266] The virtual machine 100 has also another charac-
teristic in that not only the storage area at the top of the stack
120 (the TOS variable 121), but also the storage area on the
second level of the stack 120 (the SOS variable 122) are
allocated to registers, not the memory. By doing so, both
values used by an operation such as an addition can be held
in registers, so that data transfer between the real machine
201 and the memory 202 can be performed less frequently.
For instance, when an addition is performed, no data transfer
between the registers and the memory 202 is necessary.

[0267] FIG. 42 is a state transition diagram showing
changes in virtual machine instruction types. Here, each
state in the state transition corresponds to an instruction type
for each virtual machine instruction to be executed by the
virtual machine 100 of the present embodiment. These
instruction types are obtained by classifying all the combi-
nations of virtual machine instructions to be decoded and
executed by the virtual machine 100 and next instruction
information, into the groups or instruction types, as indi-
cated in the ovals in the figure, according to operations
performed in the stack 120. Three numbers “X,Y(Z)”
enclosed by each circle respectively denote a number of
values used out of the stack by an operation, an increase in
the number of stack levels due to the execution of the
operation, and the next instruction information. For
example, the “2, —1(U)” instruction type represents all
virtual machine instructions that require two values for their
operation, whose execution reduces the stack by one level,
and that are assigned the next instruction information “U”.
An example of such is the virtual machine instruction “Add”
that is assigned the next instruction information “U”. The
equation next to each oval of instruction type shows changes
in the TOS variable 1221 and the SOS variable 122 resulting
from the execution of the virtual machine instruction type in
the oval, with “X* denoting an operand.

[0268] In this figure, any instruction belonging to an
instruction type from which an arrow starts can be executed
prior to the execution of any instruction belonging to the
other instruction type indicated by the arrow. Different
operations that can be executed prior to the execution of a
next instruction are distinguished by arrows. Hereafter, these
operations, which can be performed prior to the execution of
the nest instruction, are called preceding operations. In FIG.
42, all arrows that start at a same instruction type are the
same type. After the execution of an instruction belonging to
the instruction type “2,-1(D)”, for instance, a preceding
operation shown by the arrow indicating “Pop SOS” can be
executed before a next instruction which belongs to one of
the following six instruction types: “2,-1(U)”, “2,-1(D)”,
“1,0(U0y", “1,0(D)2, “1,-1(U)”, and “1, -1(D)”. These
operations “Pop SOS” pops the value at the top of the
memory stack 123 onto the SOS variable 122. Note that the
unconditional branch instruction “Br” and the end instruc-
tion “Stop” are represented by “1,0(U)” or “1,0(D)”, which
indicate that an empty operation is performed for a value
stored in the TOS variable 121.

[0269] In this way, this state transition diagram can be
thought of as showing analyzing results which indicate the

Dec. 18, 2003

preceding operations for each virtual machine instruction of
the virtual machine 100. These analysis results are reflected
in the microprograms stored in the microprogram storing
unit 111, so that preceding operations (shown by the differ-
ent types of arrows) are included in the corresponding
microprograms.

[0270] Operation of Virtual Machine

[0271] The following explains the processing of the virtual
machine 100 whose construction has been explained above.

[0272] FIG. 43 is a flowchart showing the processing of
the decoding unit 103 of this virtual machine. This figure
corresponds to FIG. 6 in the description of the prior art. By
comparing FIGS. 43 and 6, it can be observed that the
processing flow of this decoding unit 103 is basically the
same as that of the conventional decoding unit 4402, except
that a new step (step 4906) has been added and that specific
contents of the processing to search the decode table (step
4907) are different. In the new step, the next instruction
information storing unit 101 reads next instruction informa-
tion from the next instruction storing unit 101 in synchro-
nization with the instruction reading unit 105.

[0273] FIGS. 44 and 45 are flowcharts respectively show-
ing former and latter halves of the detailed processing for
searching the decode table 108 shown in step 4907 in FIG.
43. This figure corresponds to FIG. 7 in the description of
the prior art. As can be seen by comparing FIG. 7 with
FIGS. 44 and 45, the processing for searching tables in the
present embodiment differs from the conventional art in that
the following steps are newly added. The search unit 106
refers to not only an opcode of a virtual machine instruction
outputted from the instruction reading unit 105 but also the
next instruction information outputted from the next instruc-
tion information reading unit 104 (steps 5003 and 5007).
The search unit 106 then finds an entry corresponding to the
combination of the opcode and the next instruction infor-
mation from the decode table 108 when “Yes™ is given in
steps 5008 and 5009, refers to a jump address 108C and a
number of operands 108D, and outputs them as decoded data
to the executing unit 110.

[0274] FIG. 46 shows decoded data to be outputted suc-
cessively to the executing unit 110 when the next instruction
information and the virtual machine instructions are stored
in the next instruction information storing unit 101 and the
instruction storing unit 102 as shown in FIGS. 36A and
36B, respectively. FIG. 46 corresponds to FIG. 10C in the
description of the prior art. As shown in the figure, jump
addresses to microprograms that correspond to combina-
tions of the next instruction information and a virtual
machine instruction are outputted.

[0275] The processing of the executing unit 110 is basi-
cally the same as that of the prior art shown in FIG. 9. That
is, the executing unit 110 initializes the PC 107 and the
SP112 (step 4702) and repeats the following processing
from steps 4703-4707, where the executing unit 110 reads
decoded data transmitted from the decoding unit 103 (step
4704) and branches to a microprogram specified by a jump
address included in the decoded data for its execution (step
4705).

[0276] FIGS. 47A and 47B show the states of the PC 107,
the SP 112, the TOS variable 121, the SOS variable 122, and
the stack 4420 before and after the execution of the each

US 2003/0233386 Al

virtual machine instruction when the executing unit 110
executes the virtual machine program shown in FIG. 36B.
This figure corresponds to FIGS. 11A and 11B, or FIGS.
13A and 13B in the description of the prior art. A set of next
instruction information and a virtual machine instruction to
be executed is shown on the left and right of a slash “/”,
within a transition arrow pattern. The calculation of the
arithmetic expression “2*(3+4)” is completed when PC
4404 indicates “9”, as in the description of the prior art.

[0277] The characteristics observed in states shown in
FIGS. 47A and 47B are, for instance, that after the execu-
tion of the virtual machine instruction “U/Push 37, the value
in the SOS variable 122 has already been stored on the top
of the memory stack 123, or that after the execution of the
virtual machine instruction “D/Push 4”, contents of the SP
112 and the memory stack 123 have not changed. These are
the result of the execution of the preceding operations based
on the analysis shown by the state transition diagram
described above.

[0278] FIGS. 48-51 show pipeline flows of the real
machine 201 when the virtual machine 100 of the present
embodiment executes a part of the virtual machine program
show in FIG. 36B, more specifically microprograms shown
in FIGS. 41B and 40B, that respectively correspond to jump
processing of the latter half of the virtual machine instruc-
tion “Add” assigned “D” with address “7” and multiplica-
tion processing of the first half of the instruction “Mult”
assigned “D” with address “8”. FIGS. 48 and 49 show the
cases when one clock cycle is required before using a value
obtained through memory reference (MEM) for a standard
machine and a superscalar machine, respectively. FIGS. 50
and 51 show the cases requiring two clock cycles for a
standard machine and a superscalar machine, respectively.
These four figures correspond to FIGS. 23-26 for the first
conventional technique.

[0279] This series of microprograms shown in FIGS. 12D
and 12B contain two significant true dependencies between
instructions. The first exists between instruction “Load” for
reading a jump address and instruction “Jump” for jumping
to that address. These instructions are included in the
microprogram for jump processing shown in FIG. 12D
corresponding to a virtual machine instruction “Add”. The
second true dependency exists between instruction “Load”
for reading a variable from the memory stack and “Mult” for
multiplication processing. These instructions are included in
the microprogram shown in FIG. 12C corresponding to a
virtual machine instruction “Mult” for multiplication pro-
cessing.

[0280] In the pipeline flow shown in FIG. 48, the pro-
cessing is only disturbed by one instruction cancellation
caused in relation to the execution of the preceding real
machine instruction “Jmp”, so that the whole processing is
completed in 11 cycle clocks. As can be seen by comparing
this flow with that of FIG. 23, the execution speed of this
virtual machine is the same as that of the conventional
virtual machine described in the first conventional technique
when the real machine 201 is a standard machine capable of
using a memory reference value one clock cycle after a
memory reference.

[0281] Inthe pipeline flow shown in FIG. 49, the first and
the second data dependencies described in the first conven-
tional technique are absorbed by the virtual machine 100 of

Dec. 18, 2003

the present embodiment. As a result, this pipeline flow is
only disturbed by three instruction cancellations caused in
relation to the execution of the preceding real machine
instruction “Jmp r1”, so that the whole processing is com-
pleted in 9 clock cycles. As can be seen by comparing this
figure with that shown in FIG. 24, when the real machine
201 is a superscalar machine capable of using a memory
reference value one clock cycle after a memory reference,
the virtual machine 100 of the present embodiment has an
execution speed 22% higher than that of the virtual machine
described in the first conventional technique that requires 11
clock cycles.

[0282] In the microprogram corresponding to the virtual
machine instruction “Add”, instructions for the preceding
operations, which are “Load r4,[r2]" and “Dec r3”, for the
next virtual machine instruction “Mult” are executed, and as
a result, a sufficient time is secured between a memory
reference (Load r1,[r2]) and a branch (Jun rl) so that the
disturbance in the pipeline flow is absorbed. Here, “Load
r4,[r2]” and “Dec r3” for the preceding operations denote the
popping from the memory stack 123 to the SOS variable 122
and a decrementing of the SP 112, respectively.

[0283] In the pipeline shown in FIG. 50, for the same
reason described above, with the virtual machine 100 of the
present embodiment, the first and the second data depen-
dencies described in the first prior art are absorbed. As a
result, the pipeline flow is only disturbed by the cancellation
of one instruction necessitated by the execution of the
preceding real machine instruction “Jmp rl”, so that the
whole processing is completed in 11 clock cycles. As can be
seen by comparing this pipeline flow with that shown in
FIG. 25, when the real machine 201 is a standard machine
capable of using a memory reference value two clock cycles
after a memory reference, the virtual machine 100 of the
present embodiment has a performance speed 18% higher
than that of the conventional virtual machine described in
the first conventional technique that requires 13 clock
cycles.

[0284] In the pipeline shown in FIG. 51, a number of
hazards caused by the first data dependency decreases and
the second data dependency is absorbed by the virtual
machine 100 of the present embodiment. As a result, the
pipeline flow is only disturbed by a hazard for one clock
cycle resulting from the first data dependency and by the
cancellation of five instructions due to the execution of the
preceding real machine instruction “Jmp rl”, so that the
whole processing is completed in 10 clock cycles. As can be
seen by comparing this pipeline flow with that shown in
FIG. 26, when the real machine 201 is a standard machine
capable of using a memory reference value two clock cycles
after a memory reference, the virtual machine 100 of the
present embodiment has a performance speed 30% higher
than that of the virtual machine described as the first
conventional technique that requires 13 clock cycles.

[0285] As has been described, the virtual machine 100 of
the present embodiment executes a virtual machine instruc-
tion by referring to the corresponding next instruction infor-
mation and performing stack handling, which is a preceding
operation for the execution of the immediately following
virtual machine instruction, between executions of two real
machine instructions that have a true dependency with one
another.

US 2003/0233386 Al

[0286] Construction of the Virtual Machine Compiler

[0287] The following explains a virtual machine compiler
for the above virtual machine 100.

[0288] FIG. 52 is a block diagram showing the construc-
tion of a virtual machine compiler 3400 for the above virtual
machine 100. The input to this virtual machine compiler is
a source program 3404 written in a high-level language. The
virtual machine compiler 3400 is a cross compiler for
generating a virtual machine program 3405A composed of
the specific virtual machine instructions shown in FIG. 2 of
the above virtual machine 100 and sets of next instruction
information 3405B that correspond to the virtual machine
instructions. This virtual machine compiler 3400 includes an
instruction sequence converting unit 3402, a next instruction
information generating unit 3401, and a relation associating
unit 3403.

[0289] The instruction sequence converting unit 3402
receives the source program 3404 via a circuit S from the
network card 208 or the hard disk 207, and performs
syntactic analysis to convert the source program 3404 into a
virtual machine instruction sequence containing virtual
machine instructions specific to the above virtual machine
100. The instruction sequence converting unit 3402 succes-
sively outputs the converted virtual machine sequence to the
next instruction information generating unit 3401 and the
relation associating unit 3403 via circuits C1 and C3.

[0290] The next instruction information unit 3401 receives
virtual machine instructions from the instruction sequence
converting unit 3402, specifies a set of next instruction
information for each virtual machine instruction, and out-
puts the specified sets of next instruction information to the
relation associating unit 3403 in order via a circuit C2. The
instruction sequence converting unit 3402 and the next
instruction information generating unit 3401 adjust timing
for outputting the virtual machine instructions and the next
instruction information so that inputs of a virtual machine
instruction and a corresponding set of next instruction
information to the relation associating unit 3403 are syn-
chronized.

[0291] The relation associating unit 3403 associates a
virtual machine instruction outputted from the instruction
sequence converting unit 3402 with a corresponding set of
next instruction information outputted from the next instruc-
tion information generating unit 3401 as a pair, and outputs
each virtual machine instruction and next instruction infor-
mation to a storage area like the memory 202 or the hard disk
207 as a final output program 3405 via circuits D1 and D2.

[0292] FIGS. 53 and 54 shows data constructions of the
source program 3404 to input to the instruction sequence
converting unit 3402 via the circuit S. FIG. 53 shows a tree
construction corresponding to an instruction sequence “X:=
(1+2)*(3+4)” of the source program 3404, and FIG. 54
shows a data construction of each node constituting the tree.
A node corresponds to each instruction making up the
instruction sequence in the source program 3404, and con-
tains an instruction type 5201, a pointer to left sub-tree 5202,
and a pointer to right sub-tree 5203.

[0293] Operation of Virtual Machine Compiler

[0294] The following describes the processing of the vir-
tual machine compiler 3400 that processes the source pro-
gram 3404 that has the data construction described above.

Dec. 18, 2003

[0295] FIG. 55 is a flowchart showing the procedure of
the instruction sequence converting unit 3402. The instruc-
tion sequence converting unit 3402 reads an instruction
sequence of the source program 3404 represented by the tree
structure (step 5402) and initializes a calculation stack used
to track each branch of the tree construction (step 5403). The
instruction sequence converting unit 3402 then sets a pointer
to a root node in the variable ptr (step 5404), generates a
virtual machine instruction sequence, i.e. virtual machine
code corresponding to the instruction sequence represented
in the tree construction (step 5405), and outputs it in units of
bytes to the next instruction information generating unit
3401 and the relation associating unit 3403.

[0296] FIG. 56 shows the detailed processing of step 5405
in FIG. 55. The instruction converting unit 3402 repeats the
following processing, where a node placed on the left branch
is processed (steps 5603-5606) before a node on the right
branch (steps 5607-5610). Numerical values and addresses
included in instruction types 5201 are outputted as they are,
and other codes are outputted after being converted to a
corresponding virtual machine code (steps 5611-5613). Note
that the processing from steps 5601-5614 is invoked on a
recursive call in steps 5605 and 5609 so that this processing
is repeated for all the nodes contained in the tree construc-
tion.

[0297] FIGS. S57A-57D are flowcharts showing the
detailed processing of step 5613 in FIG. 56. These flow-
charts correspond to the source program shown in FIG. 53.
The instruction sequence converting unit 3402 generates
either “Push”, “Mult”, “Pop”, or “Add” opcode of a virtual
machine instruction according to a stored value in the
variable kind of each instruction type 5201 of a node (steps
5901-5909).

[0298] FIG. 58 is a flowchart showing the processing of
the next instruction information generating unit 3401. The
next instruction information generating unit 3401 receives
virtual machine codes, which are successively outputted
from the instruction sequence converting unit 3402, in units
of bytes (step 5502), and judges whether each virtual
machine code except for the virtual machine code sent using
the first one byte is an operand, “Push” opcode of a virtual
machine instruction, or an other opcode. The next instruc-
tion information generating unit 3401 then specifies a set of
next instruction information Next corresponding to the vir-
tual machine code and outputs the information Next to the
relation associating unit 3403 (steps 5503-5509). Here, a set
of next instruction information to be output last is fixed as
“U” (step 5510).

[0299] FIG. 59 shows the processing of the relation asso-
ciating unit 3403. The relation associating unit 3403 initial-
izes a variable prv that stores a set of next instruction
information of a virtual machine instruction processed
immediately before and an address Addr of a virtual
machine code and associated next instruction information to
be generated (step 6002). The relation associating unit 3403
then repeats the following processing (steps 6004-6010)
until it judges that there are no virtual machine code to be
read from the instruction sequence converting unit 3402
(step 6003).

[0300] The relation associating unit 3403 receives a 1-byte
virtual machine code and the corresponding next instruction
information Next from the instruction sequence converting

US 2003/0233386 Al

unit 3402 and the next instruction information generating
unit 3401 via the circuits C1 and C2, respectively (steps
6004 and 6005). The relation associating unit 3403 then
judges whether the next instruction information Next is “X”
indicating that the present next instruction information is the
same as the immediately preceding information (step 6006),
and determines the next instruction information now of the
virtual machine code (steps 6007 and 6008). Following this,
the relation associating unit 3403 outputs the determined
next instruction information now and the virtual machine
code as a pair to a location specified by the address Addr in
a storage area, such as the memory 202, (step 6009) and
prepares for the processing of the next virtual machine code
(step 6010).

[0301] In this way, the virtual machine compiler 3400 of
the present embodiment generates a virtual machine pro-
gram used for the virtual machine 100 of the present
embodiment from the source program 3404 written in high-
level language. This generated virtual machine program
contains a virtual machine instruction sequence and sets of
next instruction information, to be respectively stored in the
instruction storing unit 102 and the next instruction infor-
mation storing unit 101 of the virtual machine 100 shown in
FIG. 35.

[0302] Here, note that input to the virtual machine com-
piler 3400 of the present embodiment is not limited to a
source program represented with a tree construction such as
the source program 3403, but may be text written in a
programming language such as C. In such a case, the
instruction sequence converting unit 3402 may perform a
preceding operation to convert the text to intermediate code
using a tree construction or a three-operand method.

[0303] Second Embodiment

[0304] The following describes the virtual machine of the,
second embodiment, which execution rate is not affected by
an interrupt processing.

[0305] Construction of the Virtual Machine

[0306] FIG. 60 is a block diagram showing the construc-
tion of the virtual machine 3500 of the present embodiment.
This virtual machine 3500 includes an instruction storing
unit 4401, a decoding unit 3502, an interrupt controlling unit
3510, an executing unit 4410, and a stack 4420.

[0307] As canbe seen by comparing FIG. 60 with FIG. 1,
this virtual machine 3500 includes basically the same ele-
ments as the conventional virtual machine 4400. These
elements in the two figures are assigned common numbers,
and explanation of these elements will be omitted here.

[0308] The differences between the conventional virtual
machine 4400 and this virtual machine 3500 are as follows.
First, in addition to the elements included in the conven-
tional machine 4400, this virtual machine 4400 includes an
interrupt controlling unit 3510 for controlling and executing
processing that corresponds to an interrupt request to this
virtual machine 3500. Secondly, the decoding unit 3502
outputs a control signal and decoded data to the branch
instruction detecting unit 3505. Finally, the microprogram
storing unit 4411 of the executing unit 3515 newly stores an
interrupt handling program 3516 which is a real machine
program for interrupt handling. The following explanation

Dec. 18, 2003

focuses on these new aspects of the virtual machine 3500
that are not included in the conventional virtual machine
4400.

[0309] The interrupt controlling unit 3510 detects if there
iS an interrupt request every time the virtual machine 3500
decodes and executes a branch instruction, and controls the
processing to have the executing unit 4410 perform neces-
sary interrupt handling. The interrupt controlling unit 3510
includes a branch instruction detecting unit 3505, an inter-
rupt instruction inserting unit 3506, and an interrupt state
storing unit 3507.

[0310] The branch instruction detecting unit 3505 receives
decoded data from the search unit 4405 via a signal line D1,
and judges if the received decoded data is a jump address of
a microprogram corresponding to one of the following
branch instructions of “Br”, “Brz”, “Brz”, “Call”, and
“Ret”. If so, the branch instruction detecting unit 3505 turns
on the signal line C2 and outputs the decoded data to the
interrupt instruction inserting unit 3506, and if not, outputs
the data with the signal line C2 left off.

[0311] The interrupt state storing unit 3507 is a storage
area to store a state variable ID for specifying if an interrupt
request to the virtual machine 3500 exists and, if so, a type
of the interrupt. This interrupt state storing unit 3507 is
physically allocated to a register of the memory 202 or the
network card 208, for instance.

[0312] The interrupt instruction inserting unit 3506 is
notified via the signal line C2 that the branch instruction
detecting unit 3505 has detected a branch instruction. The
interrupt instruction inserting unit 3506 then checks if there
is an interrupt request by referring to the state variable ID
stored at that point in the interrupt state storing unit 3507. If
there is an interrupt request, the interrupt instruction insert-
ing unit 3506 outputs the state variable ID and the decoded
data for having an interrupt handling performed which is a
jump address of the interrupt handling program 3516 of the
microprogram storing unit 4410. This output is performed
preceding the output of another decoded data for the
detected branch instruction.

[0313] The interrupt handling program 3516 is a real
machine program that reads an interrupt vector stored in the
address on the memory 202 based on the state variable ID
outputted from the interrupt instruction inserting unit 3506,
and processes a subroutine in a location indicated by the
interrupt vector.

[0314] Operation of Virtual Machine The following
describes the processing of the virtual machine 3500 that has
the above construction.

[0315] FIG. 61 is a flowchart showing the detailed pro-
cessing for outputting decoded data and searching the table
by the decoding unit 3502. This figure corresponds to FIG.
7 in the description of the prior art.

[0316] The difference between these flowcharts lies in the
processing for outputting decoded data (steps 6108-6111).
That is, the search unit 4405 reads a jump address corre-
sponding to an opcode of a virtual machine instruction
outputted from the instruction reading unit 4403 (step 6106),
and outputs the read jump address as decoded data to the
branch instruction detecting unit 3505 via a signal line D1
with a signal line C1 on (steps 6108-6110).

US 2003/0233386 Al

[0317] FIG. 62 is a flowchart showing the processing of
the branch instruction detecting unit 3505. The branch
instruction detecting unit 3505 reads decoded data via a
signal line D1, stores it temporarily as ddata (steps 6202-
6203), and judges if the decoded data ddata is a jump address
of a microprogram by referring to a state of the signal line
C1 (step 6204). If so, the branch instruction detecting unit
3505 also judges if the jump address is for a microprogram
corresponding to one of the branch instructions “Br”, “Brz”,
“Brnz”, “Call”, and “Ret” that are stored in the branch
instruction detecting unit 3505 in advance (step 6205). If so,
the branch instruction detecting unit 3505 turns the signal
line C2 on (step 6206) and outputs the decoded data ddata,
which has been temporarily stored (steps 6206-6208). If not,
the decoded data ddata is outputted with the signal line C2
turned off (steps 6207-6208).

[0318] FIG. 63 is a flowchart showing the processing of
the interrupt instruction inserting unit 3506. The interrupt
instruction inserting unit 3506 reads decoded data via the
signal line D2, stores it as ddata2 temporarily (steps 6302-
6303), and judges if the read decoded data ddata2 is a jump
address of a microprogram corresponding to one of the
above branch instructions referring to a state of the signal
line C2 (step 6304). If so, the interrupt instruction inserting
unit 3506 reads a state variable ID from the interrupt state
storing unit 3507 (step 6305), and judges if an interrupt has
been generated by referring to the state variable ID (step
6303). If so, the interrupt instruction inserting unit 3506
outputs the state variable ID and the jump address of the
interrupt handling program 3516 to the executing unit 4410
as decoded data for having a predetermined interrupt han-
dling performed (step 6307). Following this, the interrupt
instruction inserting unit 3506 outputs other decoded data
ddata2 for the branch instruction that has been temporarily
stored to the executing unit 4410(step 6308). As a result, the
executing unit 3515 executes the interrupt handling program
3516 based on the state variable ID prior to the execution of
the branch instruction.

[0319] On the other hand, if the interrupt instruction
inserting unit 3506 judges that the decoded data inputted via
the signal line D2 is not a jump address of a microprogram
for a branch instruction (step 6304), or that no interrupt has
been generated (step 6306), then the temporarily stored
decoded data ddata2 is simply outputted to the executing
unit 4410 (step 6308).

[0320] In this way, the virtual machine 3500 of the present
embodiment checks whether an interrupt has occurred to the
virtual machine 3500 each time it decodes and executes a
branch virtual machine instruction, and if so, interrupt
handling is additionally performed.

[0321] Compared with a conventional virtual machine
4400, the virtual machine 3500 of the present embodiment
needs to execute one extra branch instruction for interrupt
handling each time a virtual machine branch instruction is
executed. As a result, the number of accesses to memory
increases by one for each virtual machine branch instruction.
However, in a normal machine program, an average of six
non-branch instructions exist between branch instructions,
so that the increased number of accesses to the memory for
one instruction becomes less than 0.2. Accordingly, by using
the above interrupt handling function of the present embodi-
ment for the virtual machine 100 of the first embodiment, the

Dec. 18, 2003

number of accesses to the memory can be reduced as a
whole, and a virtual machine with an interrupt handling
function and improved performance speed can be achieved
without overriding the effect of the TOS variable.

[0322] As has been described, the virtual machine 3500 of
the present embodiment includes the interrupt controlling
unit 3510 between the decoding unit 3502 and the executing
unit 4410, and interrupt detection and handling are carried
out only when the branch instruction detecting unit 3505
decodes and executes a virtual machine branch instruction.
Accordingly, an interrupt detection is only performed at a
more suitable frequency, and decreases in performance
efficiency can be suppressed more than when interrupt
detecting and handling are performed for every instruction
execution.

[0323] Note that, for the present embodiment, a virtual
machine instruction is detected by monitoring decoded data
transmitted from the decoding unit 3502, although this
detection may be achieved by monitoring each opcode of a
virtual machine instruction inputted to the decoding unit
3502.

[0324] TInstead of monitoring decoded data sent from the
decoding unit 3502 to find a virtual machine branch instruc-
tion, the procedure of the interrupt instruction inserting unit
3506 may be provided to microprograms in the micropro-
gram storing unit 4411 that correspond to branch instruc-
tions. This provides the same effect as described above to the
virtual machine of the present embodiment.

[0325] Third Embodiment

[0326] The following describes a virtual machine of the
third embodiment that can perform an interrupt handling
while minimizing decreases in performance efficiency.

[0327] Construction of the Virtual Machine

[0328] FIG. 64 is a block diagram showing the construc-
tion of the virtual machine 3600 of the present embodiment.
This virtual machine 3600 includes an instruction storing

unit 4401, a decoding unit 3502, an interrupt controlling unit
3610, an executing unit 4410, and a stack 4420.

[0329] As can be seen by comparing FIG. 64 with FIG.
60, the present virtual machine 3600 has almost the same
construction as the virtual machine 3500 of the second
embodiment. The differences between the two lie in a block
converting unit 3605 replacing the branch instruction detect-
ing unit 3505 of the second embodiment and in connections
of the block converting unit 3605. The following explana-
tion focuses on these differences between the present virtual
machine 3600 and the virtual machine 3500 of the second
embodiment. The block converting unit 3605 converts the
virtual machine codes decoded by the virtual machine 3600
into blocks, which is to say, detects if a predetermined
number of virtual machine codes 10 byte, for instance, have
been decoded and notifies the result of the detection to the
interrupt instruction inserting unit 3506.

[0330] Operation of Virtual Machine

[0331] The following describes the processing of the vir-
tual machine 3600 that have the above construction.

[0332] FIG. 65 is a flowchart showing the processing of
the block converting unit 3605. The block converting unit
3605 reads a set of decoded data inputted via a signal line

US 2003/0233386 Al

D1, temporarily stores it as ddata (steps 6402-6403), and
reads a value of PC 4404 at that point (step 6404), or other
words, checks an address of a virtual machine code corre-
sponding to the decoded data outputted from the decoding
unit 3502.

[0333] Following this, the block converting unit 3605
divides the read PC value by a stored constant bsize to
generate a remainder m (step 6405), and judges if the
remainder m is zero (step 6404). If so, the block converting
unit 3605 turns a signal line C2 on (step 6407) and outputs
the ddata that has been temporarily stored (steps 6407-
6409). If judged not (step 6406), the block converting unit
3605 outputs the stored ddata with the signal line C2 being
left off (steps 6407-6409).

[0334] As in the second embodiment, the interrupt instruc-
tion inserting unit 3506 only checks if-an interrupt has
occurred only when the signal line C2 is on. If so, the
interrupt instruction inserting unit 3506 outputs another set
of decoded data for an interrupt handling to the executing
unit 4410, the decoded data containing a jump address of an
interrupt handling program stored in the microprogram
storing unit 4411 and a state variable ID.

[0335] In this way, an interrupt occurring to this virtual
machine 3600 is checked every time the virtual machine
3600 has decoded a predetermined number bsize of virtual
machine codes, and if an interrupt has occurred, interrupt
handling is additionally performed. Accordingly, an inter-
rupt detection is performed only once for a block of virtual
machine codes whose number is specified by a constant
bsize.

[0336] Accordingly, by setting a value higher than a
certain value in the constant bsize and using the above
interrupt handling function of the present embodiment for
the virtual machine 100 of the first embodiment, the number
of accesses to the memory can be reduced as a whole, and
a virtual machine with an interrupt handling function and
improved performance speed can be achieved without over-
riding the effect of the TOS variable whereby a reduced
number of memory accesses can be made.

[0337] Although the block converting unit 3605 of the
present virtual machine 3600 refers to the PC 4404, this
reference does not increase the number of memory accesses
since the PC 4404 is associated to register #2 (12) of the real
machine 201.

[0338] Also, with the present virtual machine 3600, the
number of memory accesses can be flexibly controlled by
changing a value of the constant bsize.

[0339] The decoding unit of the present embodiment com-
pares the constant bsize with a value of PC 4404 corre-
sponding to decoded data sent from the decoding unit 3502,
although the constant bsize may be compared with a value
of an internal counter that is provided in the decoding unit
3502 and counts a number of “on” signals on the signal line
C1. In this case, an interrupt detection processing is per-
formed for a group of virtual machine codes corresponding
to not a predetermined number of bytes but a predetermined
number of instructions.

[0340] With the present embodiment, the interrupt con-
trolling unit 3610 independently performs blocking,
although the blocking may be performed by the executing

Dec. 18, 2003

unit 4410 referring to the PC 4404, if the procedure of the
interrupt controlling unit 3610 is additionally stored in the
microprogram storing unit 4411.

[0341] Fourth Embodiment

[0342] The following describes the virtual machine of the
fourth embodiment. This virtual machine is highly indepen-
dent of the architecture of a real machine.

[0343] Construction of the Virtual Machine

[0344] FIG. 66 is a block diagram showing the construc-
tion of the virtual machine 3700 in this fourth embodiment.
This virtual machine 3700 includes an instruction storing
unit 3701, a decoding unit 4402, an executing unit 3710, and
a stack 4420.

[0345] As can be seen by comparing FIG. 66 with FIG. 1,
the present virtual machine 3700 has almost the same
construction as the conventional virtual machine 4400. The
differences between the two lie in the content of the execut-
ing unit 3710, in the executing unit 3710 being provided
with the area judging unit 3704 and the address converting
unit 3705, and in the provision of the real machine function
storing unit 3706. The following explanation focuses on
these differences between the present virtual machine 3700
and the conventional virtual machine 4400.

[0346] The real machine function storing unit 3706 stores
a set of the functions (called “real machine functions”) that
are included in real machine instructions beforehand. In
other words, the real machine function storing unit 3706
stores a set of the functions that execute the routine pro-
cessing required by virtual machine programs as an execu-
tion library. This real machine function storing unit 3706 is
physically assigned to an area in the memory 202. As one
specific example, a total of (RM,,,,—~RM, ; +1) machine
functions numbered from the 0™ to the (RM,,..—-RM_;)™
are stored.

[0347] The instruction storing unit 3701 stores not just the
virtual machine program to be executed, but also a real
machine function table beforehand. This real machine func-
tion table is a set of pointers (start addresses) for the different
real machine pointers stored in the real machine function
storing unit 3706.

[0348] FIG. 67 shows a memory map of the instruction
storing unit 3701, which is to say how different memory
areas in the instruction storing unit 3701 are used when seen
from the virtual machine 3700. The area between the
addresses VM, ; and V___is assigned to the virtual machine
program 6501, which is to say, to an area where a set of the
functions given in virtual machine instructions are arranged.
In the following area between the addresses RM,;, and
RM_ is assigned to an area that stores the real machine
function table 6502. Note that this area of the real machine
function table 6502 is located directly after the wvirtual
machine program 6501. This means that the address RM_;,
is equal to the address VM, +1.

[0349] FIG. 68 shows the construction of the real machine
function table 6502 shown in FIG. 67. In the area of the
instruction storing unit 3701 with the addresses
RM_; ~RM, .., pointer to the real machine functions num-
bered 0~(RM,,..-RM, ;) are given. However, these point-
ers are stored in reverse order to the assignment of
addresses. As one example, the 0™ real machine function is

US 2003/0233386 Al

the function executed when the virtual machine function
located at the address RM,,,. is called. Similarly, the
(RM==-RM, .)" real machine function is the function
executed when the virtual machine function located at the

address RM, ;. is called.

[0350] The area judging unit 3704 oversees the decoded
data outputted by the decoding unit 4402 and, when a
function call instruction “Call” is to be executed by the
executing unit 3710, judges before the function call is
performed whether the called function is in the virtual
machine program 6501 or in the area where the real machine
function table 6502 is located.

[0351] The address converting unit 3705 operates as fol-
lows. When the area judging unit 3704 judges that the virtual
instruction to be executed is a function call instruction
“Call” that calls a function in the real machine function table
6502, the address converting unit 3705 directly has the real
machine 201 execute a real machine function in the real
machine function storing unit 3706 that is indicated by the
function pointer in the real machine function table 6502 that
corresponds to the call address.

[0352] Operation of Virtual Machine

[0353] The following describes the operation of the virtual
machine 3700.

[0354] FIG. 69 is a flowchart that shows the operation of
the executing unit 3710 in the virtual machine 3700. This
drawing focuses in particular on the operation of the area
judging unit 3704 and the address converting unit 3705
when decoded data for a function call operation “Call” has
been sent from the decoding unit 4402.

[0355] The area judging unit 3704 oversees the decoded
data sent from the search unit 4405 and the state of the signal
line R. On discovering that the operand of the function call
instruction “Call” has been sent from the decoding unit
4402, the area judging unit 3704 judges, before the function
call instruction is executed, whether the call address Jaddr
indicated by the operand is within a range given as the
addresses RM_; ~RM, _ . and by doing so judges whether
the call address is located in the area that stores the real
machine function table 6502 (steps 6802~6804).

[0356] When the call address Jaddr is judged as being in
this area, the address converting unit 3705 calculates an
index idx for the real machine function table 6502 corre-
sponding to the call address Jaddr, based on the reverse order
described above (step 6805). The address converting unit
3705 then reads the pointer ptr stored in the entry of the real
machine function table 6502 indicated by the index idx (step
6806). The executing unit 3710 then directly executes the
real machine function in the real machine function storing
unit 3706 shown by the pointer ptr in place of the original
virtual machine instruction “Call” (step 6807).

[0357] On the other hand, when the area judging unit 3704
judges that the call address Jaddr of the function call
instruction “Call” is not in the same area as the real machine
function table 6502, the executing unit 3710 proceeds with
the execution of a standard function call (steps 6808-6810).
This means that the executing unit 3710 stores the return
address (steps 6808, 6809), and then executes the virtual
machine function located at the call address Jaddr (step
6810).

Dec. 18, 2003

[0358] In this way, when the call address Jaddr of the
virtual machine instruction “Call” belongs to the area of the
virtual machine program 6501, the virtual machine function
is called as it is. However, when the call address Jaddr
belongs to the real machine function table 6502, the corre-
sponding real machine function is executed.

[0359] As can be seen from the memory map shown in
FIG. 67, switches between executing a virtual machine
function or a real machine function in response to a function
call instruction “Call” can be easily achieved by shifting the
boundary line between the areas 6501 and 6502. As one
example, when the address V. that marks the boundary is
lowered, the address RM,;, is also lowered, so that for a
function call instruction “Call” with the same call address,
a switch can be made from having a virtual machine function
executed to having a real machine function executed. In the
same way, when the address V. that marks the boundary
is raised, a switch can be made from having a real machine
function executed to having a virtual machine function
executed.

[0360] As described above, the virtual machine 3700 of
the present embodiment achieves control that calls virtual
machine functions as they are or has real machine functions
performed in place of virtual machine functions based on the
setting of just one parameter V, .. This means that the
virtual machine 3700 has a favorable architecture for a
virtual machine that is enacted on a variety of real machines
and computer environments. This is because before execu-
tion a virtual machine program can be partially converted
into real machine functions in keeping with a variety of real
machines and computers that have different architectures.
Here, the division into parts executed as virtual machine
functions and into parts executed as real machine functions
can be separately determined for each different architecture.

[0361] In this way, no deterioration in processing speed is
observed, and a virtual machine that is highly independent
of the architecture of real machines can be realized.

[0362] Note that while the present embodiment states that
only the virtual machine program 6501,is located in the area
between the addresses VM, and VM, _ in the instruction
storing unit 3701, this is not a limitation for the present
invention. As one example, FIG. 70 shows that memory
attributes for each address (“V” or “R”), and, corresponding
to these attributes, data (a virtual machine program) or an
index for the real machine function table may be stored. By
doing so, it is possible to switch between executing a virtual
machine function as it is and executing a real machine
function in response to virtual machine functions that call
the same address, without shifting the boundary line VM, ...

[0363] Fifth Embodiment

[0364] The following describes the virtual machine sys-
tem of the fifth embodiment of the present invention. This
embodiment reduces the processing load for converting
virtual machine programs into cache blocks and the time
required by a JIT compiler to compile the virtual machine
program.

[0365] Construction of Virtual Machine

[0366] FIG. 71 is a block diagram showing the construc-
tion of the virtual machine 3800 in this fifth embodiment.

US 2003/0233386 Al

This virtual machine 3800 includes an instruction storing
unit 3801, a decoding unit 3802, an executing unit 3810, and
a stack 4420.

[0367] As canbe seen by comparing FIG. 71 with FIG. 1,
the present virtual machine 3800 has almost the same
construction as the conventional virtual machine 4400. The
differences between the two lie in the content of the execut-
ing unit 3810, in the construction of the PC 3804, and in the
branch destination converting unit 3811 being added to the
executing unit 3810. The following explanation focuses on
these differences between the present virtual machine 3800
and the conventional virtual machine 4400.

[0368] The instruction storing unit 3801 stores the virtual
machine program to be executed split into units called
instruction blocks. The instruction storing unit 3801 is
composed of a plurality of instruction block storing areas
3852a~3852d that each store an instruction block.

[0369] In this embodiment, an instruction block refers to
a basic block in the virtual machine program to which a
unique identifier has been assigned and to which a branch
instruction for continuing the logical flow of the virtual
machine program has been appended. These instruction
blocks are created by a special compiler for the virtual
machine 3800 that is described later in this embodiment.
Note that a basic block is an instruction sequence that starts
with an instruction that is the sole entry point into the basic
block and ends with an instruction that is the sole exit point
from the basic block. In this embodiment, the identifier of an
instruction block is composed of address information that
specifies the start of the instruction block in an instruction
block storing area.

[0370] The instruction block storing arcas 3852a~3852d
each include an identifier storing area 38534, a non-branch
instruction storing area 3854a~3854d that stores instruc-
tions, out of the virtual machine instructions that belong to
the corresponding instruction block, that are not branch
instructions (such instructions hereafter being called “non-
branch instructions™), and a branch instruction storing area
3855a~3855d that stores only the branch instructions in the
corresponding instruction block.

[0371] FIG. 72 shows an example of the stored state of a
virtual machine program that has been stored in the instruc-
tion storing unit 3801. This shows the case when the sample
virtual machine program shown in FIG. 27 is stored.

[0372] As shown in FIG. 72, the virtual machine program
is divided into four instruction blocks 38524~3852d. These
instruction blocks 3852a~3852d are composed of the
instruction block identifiers 38534~3853d, the non-branch
parts 3854a~3854d that include all parts of the instruction
block aside from the branch instructions, and the branch
parts 38554~38554 that include the branch instructions
located at the end of basic blocks and the branch instructions
used for linking instruction blocks to the following basic
block.

[0373] Note that the virtual machine programs shown in
FIG. 72 and in FIG. 27 have the control low shown in FIG.
73 and so have effectively the same processing content. This
should be clear from the meanings of the virtual machine
instructions shown in FIG. 2.

[0374] PC 3804 includes the identifier segment register
38044 and the offset counter 3804H. The identifier segment

Dec. 18, 2003

register 38044 stores a segment address that is equivalent to
the identifier of the instruction block that includes the virtual
machine code in the instruction storing unit 3801 which
should be read next. This segment address is hereafter called
the “identifier segment”. The offset counter 38045 stores an
offset for the instruction block including that virtual machine
code.

[0375] Note that the present virtual machine 3800 per-
forms 16-bit addressing, as shown in FIG. 74, with the
upper 8 bits being the identifier segment and the lower 8 bits
being the offset. This is to say, an 8-bit identifier segment is
stored in the identifier segment register 38044 and an 8-bit
offset is stored in the offset counter 3804H. The 16-bit
address given by linking these together specifies one virtual
machine code in the instruction storing unit 3801.

[0376] The branch destination converting unit 3811 oper-
ates as follows. When a branch instruction is executed by the
executing unit 3810, the branch destination converting unit
3811 updates the instruction block identifier that is the
branch destination using the combination of the identifier
segment and offset, and stores the converted result in the PC
3804.

[0377] Operation of Virtual Machine

[0378] The following describes the operation of the virtual
machine 3800.

[0379] The decoding unit 3802 and the executing unit
3810 operate in almost the same way as the corresponding
components in the conventional virtual machine 4400. The
differences between the two are that during normal opera-
tion, only the offset counter 38045 of the PC 3804 is updated
by the executing unit 3810, and that when a branch is
executed, the identifier segment register 38044 and the offset
counter 3804) of the PC 3804 are updated by the branch
destination converting unit 3811.

[0380] FIG. 75 is a flowchart showing the operation of the
branch destination converting unit 3811 in the executing unit
3810. This branch destination converting unit 3811 first
obtains the operand of a branch instruction, which is to say
the 8-bit instruction block identifier Jaddr, from the decod-
ing unit 3802 (step 8102). The branch destination converting
unit 3811 sets this as the identifier segment of the branch
destination, sets the offset as zero, and generates a 16-bit
physical address which it uses to update the identifier
segment register 38044 and the offset counter 38045 of the
PC 3804 (step 8103).

[0381] FIG. 76 shows this address conversion by the
branch destination converting unit 3811, where a logical
address and identifier in the virtual machine program shown
in FIG. 72 are replaced with a physical address. As one
example, the operand “x03” of the branch instruction “Brz”
in the instruction block with the identifier number 1 in FIG.
72 is converted by the branch destination converting unit
3811 into the physical address “x0300” at the start of the
instruction block with the identifier number 3.

[0382] In this way, whenever the executing unit 3810
executes a branch instruction, the executing unit 3810 per-
forms control so that processing branches to the start of the
instruction block indicated by the operand of the branch
instruction. By doing so, the virtual machine 3800 decodes
and executes virtual machine programs that have been stored

US 2003/0233386 Al

divided into instruction blocks using effectively the same
procedure that is used for programs that are not divided into
instruction blocks.

[0383] Construction of the Virtual Machine Compiler

[0384] The following describes a virtual machine com-
piler for the virtual machine 3800.

[0385] FIG. 77 is a block diagram showing the construc-
tion of the virtual machine compiler 7660 in this fifth
embodiment. This virtual machine compiler 7660 receives
an input of a source program 7650 that is written in a
highlevel language such as C, and converts the source
program 7650 into a suitable form for storage into the
instruction storing unit 3801 of the virtual machine 3800,
this suitable form being the instruction block set 7651. The
virtual machine compiler 7660 includes an intermediate
instruction sequence converting unit 7661, a generating unit
7662, and a block converting unit 7663.

[0386] The intermediate instruction sequence converting
unit 7661 performs syntactic analysis on an inputted source
program and develops temporary intermediate code that is
used for optimization. The generating unit 7662 converts the
intermediate code developed by the intermediate instruction
sequence converting unit 7661 into the code of a virtual
machine program 7664, such as that shown in FIG. 27. This
intermediate instruction sequence converting unit 7661 and
generating unit 7662 have the same functions as the equiva-
lent components in a standard conventional virtual (or real)
machine compiler.

[0387] The block converting unit 7663 converts the virtual
machine program generated by the generating unit 7662 into
a set of instruction blocks that can be stored in the instruc-
tion storing unit 3801. When doing so, the main processes
are the division into basic blocks and the setting of addresses
in accordance with the division. This setting of addresses is
a process whereby the branch destinations used by branch
instructions in the virtual machine program 7664 are
replaced with instruction block identifiers ID.

[0388] Next, the block converting unit 7663 generates and
to uses a branch address conversion table 7663z as a
temporary variable table for setting the addresses. The
construction of the branch address conversion table 7663« is
shown in FIG. 78.

[0389] Each row (entry) in the branch address conversion
table 76634 is generated corresponding to either a different
branch instruction in the virtual machine program 7664 that
is inputted into the block converting unit 7663 or one of the
generated instruction blocks. In each entry:

[0390] “code position” shows the first address in the
instruction block or an address of the branch instruc-
tion in the virtual machine program 7664.

[0391] “registration flag” is a flag showing whether
the address setting has been completed for the branch
instruction.

[0392] “reference position identifier” and “reference
position offset” show the instruction block identifier
and offset where the branch instruction is located or
where the branch instruction that branches to the
instruction block is located.

Dec. 18, 2003

[0393] Operation of the Virtual Machine Compiler

[0394] FIG. 79 is a flowchart showing the characteristic
operation of the virtual machine compiler 7660, which is to
say the operation of the block converting unit 7663. First, the
block converting unit 7663 resets the instruction block
identifier ID of the instruction block generated as part of the
instruction block set 7651, the pointer offset that shows the
relative instruction storage position in the instruction block,
the counter PC that shows the position of a one-byte virtual
machine code VC that has been read in order from the virtual
machine program 7664, and the counter Rcount that shows
the number of branch destinations whose branch addresses
need to be updated (steps 7602~7603).

[0395] As its fundamental operation, the block converting
unit 7663 reads the virtual machine codes VC one byte at a
time from the virtual machine program 7664 while updating
the counter PC. The block converting unit 7663 outputs a
read virtual machine code VC together with the identifier ID
of the instruction block to which the virtual machine code
VC should belong and the pointer offset that is a relative
position in this instruction blocks as one element in the
instruction block set 7651 (steps 7604~7611).

[0396] When doing so, the block converting unit 7663
judges whether the virtual machine code VC is located at the
start of a basic block (step 7607), and judges whether the
virtual machine code VC is a branch instruction (step 7608).
If either of these judgments is affirmative, the block con-
verting unit 7663 executes a special procedure (steps
7701~7704 or step 7609).

[0397] FIG. 80 shows the details of the judgment in step
7607 of FIG. 79, which is to say, the judgment as to whether
the virtual machine code VC should be made the start of a
basic block. If the virtual machine code VC corresponds to
either a branch destination instruction or an instruction
located immediately after a branch instruction, the block
converting unit 7663 judges that the virtual machine code
VC corresponds to the start of a basic block (step
7302~7306).

[0398] As shown in FIG. 79, when the virtual machine
code VC is judged as being the start of a basic block, the
block converting unit 7663 updates the identifier ID to
generate a new instruction block (step 7701) and generates
an unconditional branch instruction to link the end of the,
immediately preceding instruction block (identifier ID) with
the next instruction block (identifier NID) (step 7702). The
block converting unit 7663 then prepares for the generation
of virtual machine codes in the new instruction block (step
7703), and sets addresses in accordance with the setting of
the identifier NID (step 7704).

[0399] On determining in step 7608 that the virtual
machine code VC is a branch instruction, the block con-
verting unit 7663 performs address setting to convert the
branch destination of the branch instruction to a suitable
address (step 7609). This address setting is performed
because the processing of branch instructions and addition
of new branch instructions by the block converting unit 7663
results in a rearrangement of the virtual machine instructions
in the original virtual machine program 7664.

[0400] FIG. 81 shows the details of step 7704 in FIG. 79,
which is to say the setting of addresses in accordance with
the allocation of the identifier NID of a new instruction

US 2003/0233386 Al

block. Here, on discovering that the branch address of a
branch instruction may now be set in accordance with the
allocation of the identifier NID to a new instruction block,
the block converting unit 7663 sets the branch address for
the branch instruction (steps 7905~7910). When this is not
the case, the block converting unit 7663 additionally regis-
ters information into the branch address conversion table
7663a so that the address of a branch instruction that
branches to this instruction block can be set in a later process
(steps 7913,7914).

[0401] FIG. 82 shows the details of step 7609 in FIG. 79,
which is to say the setting of an address of a branch
destination that is indicated by a branch instruction in the
virtual machine program 7664. Here, when the branch
instruction is a branch to a preceding position, which is to
say, a branch to an instruction block that has already been
registered in the branch address conversion table 76634, the
block converting unit 7663 sets the address by replacing the
branch destination of the branch instruction with the instruc-
tion block identifier rID (steps 7802~7809, 7812). When this
is not the case, the block converting unit 7663 registers a
new entry in the branch address conversion table 7663a to
show that the address has not been set (steps 7810, 7811).

[0402] As described above, the virtual machine compiler
7660 converts a source program written in a high-level
language into a standard virtual machine program 7664 like
that shown in FIG. 27, divides the virtual machine program
7664 into basic blocks, and allocates identifiers to the basic
blocks.

[0403] The virtual machine compiler 7660 then adds
branch instructions for linking the basic blocks and sets
addresses in accordance with the allocation of identifiers so
as to convert the virtual machine program 7664 into an
instruction block set 7651 that can be executed by the virtual
machine 3800 of the present embodiment.

[0404] Considerations

[0405] With the virtual machine 3800 and the virtual
machine compiler 7660 of the present embodiment, the
virtual machine program to be executed will not be stored in
the instruction storing unit 3801 and executed in the con-
ventional state shown in FIG. 27. Instead, the wirtual
machine program executed having been stored in the
instruction storing unit 3801 divided into basic blocks. This
has the technical consequences described below.

[0406] First, let us examine the time taken by compiling
by a JIT compiler.

[0407] As described above, a conventional JIT compiler
needs to analyze whether any branch destination in the
virtual machine program violates certain restrictions. If such
a branch destination is present, a JIT compiler needs to
perform a process, such as moving the branch destination.
However, with the present virtual machine system, it is
guaranteed that each branch destination will be the start of
an instruction block. As a result, such conventional process-
ing of branch destinations is largely unnecessary if the
present invention is used.

[0408] A conventional JIT compiler also needs to perform
processes due to the presence of instructions like delayed
branches. An example of such a process for a delayed branch
is the specifying of instructions that are unaffected by the

Dec. 18, 2003

delayed branch and so can be located immediately after the
branch instruction. However, with the present virtual
machine system, the virtual machine program is stored in the
instruction storing unit 3801 so that each instruction block is
divided into a non-branch instruction storing area and a
branch instruction storing area. It is also guaranteed that in
one branch instruction storing area, one branch instruction
can only be followed by one more branch instruction at
most. As a result, most of such processes that are required
due to the presence of delayed branches and the like do not
need to be performed with the present invention.

[0409] The following describes the impact of the present
invention with regard to the compatibility of programs to the
cache construction of a virtual machine.

[0410] When making programs compatible with a conven-
tional cache construction, it is necessary when dividing the
virtual machine program into cache blocks to check that
none of the virtual machine instructions that change the
program counter change it to a value that crosses a boundary
with another cache block. However, with the present virtual
machine system, if the virtual machine program stored in the
instruction storing unit 3801 is cached in instruction block
units, all virtual machine instructions that change the pro-
gram counter to a value that crosses a cache boundary will
belong to a branch instruction storing area 3855a~38554.

[0411] FIG. 83 shows the relationship between the PC
3804, the instruction block storing areas 3852a~3852d and
the cache table 8084 when caching is performed by the
virtual machine 3800 of the present embodiment in instruc-
tion block units. This corresponds to the conventional art
shown in FIG. 32. Conventionally, an ten-address instruc-
tion sequence 6903 is placed in the instruction cache 6902
as a cache block. With the present virtual machine 3800,
however, instructions are arranged into the instruction cache
in units of instruction blocks 3852a~38524, with these being
managed using the identifiers in the cache table 8404, as
shown in FIG. 83.

[0412] FIG. 84 is a flowchart showing the instruction
processing of branch instructions by the executing unit 3810
when instructions are cached in instruction block units in the
virtual machine 3800 of the present embodiment. This
corresponds to the FIG. 75 where units are not reconciled to
the cache construction. By comparing these drawings, it can
be seen that the virtual machine 3800 can be made into a
suitable virtual machine for the cache construction by refer-
ring to the identifiers in the cache table 8404 and judging in
instruction block units whether a cache hit is made (step
8504), and then performing a write into the instruction cache
8402 when there is a cache miss (step 8505).

[0413] In this way, by caching a virtual machine program
in instruction block units, processes that were convention-
ally necessary, such as judgments regarding the cache
boundaries, are no longer required. Even when an instruc-
tion needs to be loaded into the cache as a result of a cache
miss, the original virtual machine program will already has
been divided into instruction blocks, so that there is a
reduced load for the loading process.

[0414] As described above, the virtual machine system of
the present embodiment converts a source program into a
standard virtual machine program and then divides the
virtual machine program into instruction blocks using basic

US 2003/0233386 Al

blocks as units. These instruction blocks are stored in the
instruction storing unit 3801 and the branch destinations of
each branch instruction are converted into the identifiers of
instruction blocks. As a result, the address analysis process-
ing for branch destination instructions by a JIT compiler is
simplified, and the timing taken by compiling is reduced. By
caching instructions in instruction block units, the judgment
processing regarding the cache boundaries is simplified, and
decreases in execution efficiency that occur when a cache is
provided for the virtual machine can be made smaller than
in conventional techniques.

[0415] Note that while the virtual machine compiler 7660
of the present embodiment is provided with an intermediate
instruction sequence converting unit 7661 and a generating
unit 7662, it should be obvious that a standard compiler for
generating a virtual machine program from a source pro-
gram may be used instead.

[0416] Sixth Embodiment

[0417] The following describes the virtual machine of the
sixth embodiment. This virtual machine has a faster decod-
ing process than the virtual machine of the fifth embodiment.

[0418] Construction of the Virtual Machine

[0419] FIG. 85 is a block diagram showing the construc-
tion of the virtual machine 3900 in this sixth embodiment.
This virtual machine 3900 includes an instruction storing
unit 3901, a decoding unit 3902, an executing unit 3910, and
a stack 4420.

[0420] As can be seen by comparing FIG. 85 with FIG.
71, the present virtual machine 3900 has almost the same
construction as the virtual machine 3800 of the fifth embodi-
ment. The differences between the two lie in the stored
content of the instruction storing unit 3901, in the provision
of the current flag storing unit 3907 in the decoding unit
3902, in the functions of the instruction reading unit 3903,
and in the addition of the current flag read control unit 3912
to the executing unit 3910. The following explanation
focuses on these differences between the present virtual
machine 3900 and the virtual machine 3800 of the fifth
embodiment.

[0421] The instruction storing unit 3901 stores the virtual
machine program to be executed split into a plurality of
instruction blocks 39524~39524d, in the same way as the
instruction storing unit 3801 in the fifth embodiment. How-
ever, the instruction block storing areas 39524~39524 of the
sixth embodiment differ in further including decoded
instruction sequence storing areas 3956a~3956d for storing
decoded data sequences that correspond to all of the virtual
machine codes stored in the non-branch instruction storing
areas and branch instruction storing areas (collectively
called the “virtual machine code area”) of the corresponding
instruction block.

[0422] FIGS. 86A to 86C shows examples of the stored
state of virtual machine programs in the instruction storing
unit 3901. These correspond to the case when the sample
virtual machine program shown in FIG. 27 is stored.

[0423] As shown in FIGS. 86A to 86C, the decoded
instruction sequence storing areas 39564~39564 provided in
the instruction block storing areas 3952a~3952d further
include real machine code areas 8607a~8607¢ for storing
the decoded instruction sequences and the flag areas

Dec. 18, 2003

86054~8605¢ for storing flags that respectively show
whether a decoded instruction sequence is stored in the real
machine code areas 8607a~8607c. As one example, the
instruction block storing area 3952b shown in FIG. 86B
does not have a decoded instruction sequence in the real
machine code area 8607b, so that flag (“empty”) showing an
indication of this is stored in the flag area 8605b. On the
other hand, the instruction block storing area 3952¢ shown
in FIG. 86(c) has a decoded instruction sequence in the real
machine code area 8607¢, so that a flag (“present”) showing
an indication of this is stored in the flag area 8605c.

[0424] Note that the decoded instruction sequence that
should be stored in each real machine code area can obtained
in advance, such as by using the virtual machine 3800 of the
fifth embodiment. This is because the decoded instruction
sequence is the same as the decoded data sequence outputted
by the decoding unit 3802 to the executing unit 3810 when
the virtual machine 3800 of the fifth embodiment executes
the virtual machine program in each instruction block.

[0425] 1In each instruction block, the separate virtual
machine instructions located in the virtual machine code
areas 3954a~3954d, 39554~3955d and the corresponding
decoded data located in the real machine code area
8607a~8607d are arranged at positions with addresses that
are separated by a predetermined offset.

[0426] The current flag storing unit 3907 is a temporary
storage area that holds a flag that is stored in the flag area of
the instruction block in the instruction storing unit 3901 that
is currently being executed by the virtual machine 3900.

[0427] The instruction reading unit 3903 reads a virtual
machine instruction or decoded data from the instruction
storing unit 3901, based on the value of the flag held by the
current flag storing unit 3907, and outputs the read item to
the search unit 4405 or executing unit 3910. This means that
when decoded data is read, the search unit 4405 is bypassed,
so that the decoded data is sent directly to the executing unit
3910.

[0428] The current flag read control unit 3912 checks
whether the decoded data sent from the decoding unit 3902
is a branch instruction. If so, the current flag read control
unit 3912 controls the decoding unit 3902 immediately after
the branch instruction is executed, so that flag stored in the
flag area of the branch destination instruction block is read
and stored in the current flag storing unit 3907.

[0429] Operation of Virtual Machine

[0430] The following describes the operation of the virtual
machine 3900.

[0431] FIG. 87 is a flowchart showing the operation of the
decoding unit 3902.

[0432] The instruction reading unit 3903 of the decoding
unit 3902 is instructed by the executing unit 3910 via the
signal line R to read a next virtual machine instruction (steps
8702, 8703). The instruction reading unit 3903 then reads
the flag held by the current flag storing unit 3907 and judges
its content (step 8704).

[0433] On judging that a decoded instruction sequence is
not included, the instruction reading unit 3903 operates in
the same way as in the fifth embodiment. The instruction
reading unit 3903 reads the virtual machine code stored in

US 2003/0233386 Al

the branch instruction storing area or non-branch instruction
storing area in accordance with the address in the virtual
machine code area that is stored in the PC 3804, and passes
the read virtual machine code over to the search unit 4405
(steps 8705, 8706). Next, the search unit 4405 specifies the
jump address by referring to the decode table 4406, and
outputs the jump address to the executing unit 3910 as
decoded data (step 8707), before sending notification of this
on the signal line R (step 8711).

[0434] On the other hand, on judging from the current flag
that a decoded instruction sequence is included, the instruc-
tion reading unit 3903 calculates an address in the real
machine code arcas 86074~8607d by adding the predeter-
mined offset to the address in the virtual machine code area
stored in the PC 3804 (step 8708). The instruction reading
unit 3903 then reads the decoded data in accordance with the
calculated address (step 8709) and outputs the read decoded
data directly to the executing unit 3910 (step 8710).

[0435] FIG. 88 is a flowchart showing the operation of the
executing unit 3910.

[0436] FIG. 88 has fundamentally the same flow as the
conventional art shown in FIG. 9. The PC 3804 and SP 4412
are initialized (step 8802), and then the microprogram in the
microprogram storing unit 4411 is executed based on the
decoded data sent from the decoding unit 3902 (steps
8804~8808).

[0437] The difference with FIG. 9 lies in the addition of
the processing that involves the current flag storing unit
3907 (step 8803). On starting its operation, the executing
unit 3910 stores a flag showing that no decoded data
sequence is present into the current flag storing unit 3907 to
initialize the value of the current flag (step 8803).

[0438] FIG. 89 is a flowchart showing the control per-
formed for the decoding unit 3902 when the executing unit
3910 executes a branch instruction. As can be understood by
comparing FIG. 89 with FIG. 75, when the executing unit
3910 executes a branch instruction, the branch destination
converting unit 3811 converts the operand of the branch
instruction into an identifier segment of the branch destina-
tion instruction block and initializes the offset. The branch
destination converting unit 3811 stores this identifier seg-
ment and updated offset respectively into the identifier
segment register 38044 and the offset counter 38045 of the
PC 3804 (steps 8902, 8903), though this processing is same
as in the fifth embodiment.

[0439] The difference with the fifth embodiment lies again
in the addition of the processing that involves the current
flag storing unit 3907 (step 8904). After the PC 3804 has
been updated by the branch destination converting unit 3811
(steps 8902, 8903), the current flag read control unit 3912
controls the instruction reading unit 3903 so as to read the
value of the flag area in the instruction block shown by the
identifier segment stored in the identifier segment register
38044 and store the read value into the current flag storing
unit 3907 (step 8904). As a result, when a branch is
performed to a new instruction block, the content of the
current flag storing unit 3907 is updated, with a flag showing
whether a decoded instruction sequence is stored in the real
machine code area of the instruction block to be executed
next being set in the current flag storing unit 3907.

[0440] As described above, the virtual machine 3900 of
the present embodiment divides a virtual machine program

Dec. 18, 2003

to be executed into instruction blocks that are generated
from basic blocks. These instruction blocks are stored in the
instruction storing unit 3901. However, instruction blocks
do not just include virtual machine instructions, and so may
also include decoded data that corresponds to the virtual
machine instructions. The decoding unit 3902 refers to the
flag area in each instruction block and, when decoded data
exists for an instruction block, only needs to read the
decoded data and pass it on to the executing unit 3910. When
this happens, the search unit 4405 does not need to search
the search table. In addition to the effects achieved by the
virtual machine 3800 of the fifth embodiment, the present
virtual machine 3900 can execute the instruction blocks that
already include decoded data in a shorter time.

[0441] Note that in the present embodiment, the virtual
machine code area and real machine area in each instruction
block were described as having a positional relationship
whereby corresponding addresses are separated by a prede-
termined offset, although this need not be the case. As one
example, the limitations of this positional relationship can
be removed by providing each instruction block with an
offset address for specifying the first address in the decoded
instruction sequence storing area. When such offset
addresses are provided, the flag and offset address of the
instruction block can be read whenever a branch is per-
formed to a new instruction block. In this way, addresses that
respectively suit the virtual machine code area and real
machine code area can be set in the PC 3804 in accordance
with the current flag.

[0442] Seventh Embodiment

[0443] The following describes the virtual machine 4000
of the seventh embodiment of the present invention. This
virtual machine 4000 dynamically generates the decoded
instruction sequences for the virtual machine of the sixth
embodiment.

[0444] Construction of the Virtual Machine

[0445] FIG. 90 is a block diagram showing the construc-
tion of the virtual machine 4000 in this seventh embodiment.
This virtual machine 4000 includes an instruction storing
unit 3901, a decoding unit 4002, an executing unit 3910, and
a stack 4420.

[0446] As can be seen by comparing FIG. 90 with FIG.
85, the present virtual machine 4000 has almost the same
construction as the virtual machine 3900 of the sixth
embodiment. The differences between the two lie in the
provision of the decoded instruction sequence writing unit
4008 in the decoding unit 4002 and in the accompanying
changes to the internal wiring of the decoding unit 4002. The
following explanation focuses on these differences between
the present virtual machine 4000 and the virtual machine
3900 of the sixth embodiment.

[0447] The decoded instruction sequence writing unit
4008 operates as follows. When execution control by the
present virtual machine 4000 has branched to an instruction
block that does not have a decoded instruction sequence, the
decoded instruction sequence writing unit 4008 halts the
execution of the instruction block and then has the entire
virtual machine program located in that instruction block
converted into a decoded instruction sequence by the
instruction reading unit 3903 and the search unit 4405. The
decoded instruction sequence writing unit 4008 then writes

US 2003/0233386 Al

the decoded instruction sequence into decoded instruction
sequence storing area of that instruction block. After this, the
decoded instruction sequence writing unit 4008 has the
reading by the instruction reading unit 3903 and executing
by the executing unit 3910 recommenced for the decoded
instruction sequence it has written.

[0448] As a result, only decoded data that has been read
from the instruction storing unit 3901 by the instruction
reading unit 3903 is passed over to the executing unit 3910
without amendment. Decoded data that is obtained by the
search unit 4405 searching the decode table 4406 is not
directly passed over to the executing unit 3910. This differs
from the sixth embodiment, and corresponds to the decoded
data being sent from the search unit 4405 not to the
executing unit 3910 but to the decoded instruction sequence
writing unit 4008.

[0449] Operation of the Virtual Machine

[0450] The following describes the operation of the
present virtual machine 4000.

[0451] FIG. 91 is a flowchart showing the characteristic
operation of the virtual machine 4000 when executing a
branch instruction. This characteristic operation is the opera-
tion of the decoded instruction sequence writing unit 4008,
the current flag read control unit 3912, and the branch
destination converting unit 3811. When branching to a new
instruction block, the updating the value of the PC 3804 by
the branch destination converting unit 3811 (steps 9102,
9103) and the updating of the content of the current flag
storing unit 3907 by the current flag read control unit 3912
use the same procedures as the sixth embodiment shown in
FIG. 89. The difference between the present embodiment
and the sixth embodiment lies in the subsequent generation
and writing in the instruction storing unit 3901 of a decoded
instruction sequence by the decoded instruction sequence
writing unit 4008 (steps 9105-9111).

[0452] In more detail, the decoded instruction sequence
writing unit 4008 receives and refers to the flag that has been
read by the instruction reading unit 3903 to judge whether a
decoded data sequence has already been stored for the
present instruction block (step 9105).

[0453] On finding that a decoded instruction sequence
exists, the decoded instruction sequence writing unit 4008
performs no particular processing (step 9112). When this is
the case, the decoded instruction sequence in present block
is read out in order and is directly executed by the executing
unit 3910.

[0454] On the other hand, when no decoded instruction
sequence exists, the decoded instruction sequence writing
unit 4008 increments the pointer dPC (steps 9106~9111)
while having the instruction reading unit 3903 successively
read the virtual machine codes in the present instruction
block (steps 9108, 9109) and having the search unit 4405
convert the read virtual machine codes into decoded data
with the required jump addresses. Here, the decoded instruc-
tion sequence writing unit 4008 writes the resulting decoded
data into the decoded instruction sequence storing area of
the present instruction block (step 9110).

[0455] Once the converting into decoded data and writing
has been completed for all of the virtual machine code in the
present block (step 9107), the decoded instruction sequence

Dec. 18, 2003

writing unit 4008 writes a flag showing a decoded data
sequence exists into the current flag storing unit 3907 and
into the flag area of the present instruction block and thereby
completes its processing (step 9112). As a result, the reading
by the instruction reading unit 3903 and the executing by the
executing unit 3910 can recommence for the decoded
instruction sequence of the instruction block.

[0456] FIG. 92 is a flowchart showing the details of the
processing in step 9110 of FIG. 91, which is to say, the
conversion from virtual machine code into decoded data and
the storage in instruction storing unit 3901. As can be seen
by comparing FIG. 92 with FIG. 7, the present processing
is composed of the processing of the conventional search
unit 4405 plus the processing by the decoded instruction
sequence writing unit 4008. This processing by the decoded
instruction sequence writing unit 4008 writes the jump
addresses dd obtained by searches of the decode table 4406
and the operands of virtual machine instructions into the
instruction storing unit 3901 as decoded data (steps 9209,
9213).

[0457] FIG. 93 is a flowchart showing the operation of the
decoding unit 4002 when viewed from the executing unit
3910. The instruction reading unit 3903 only passes decoded
data read from a real machine code area of the instruction
storing unit 3901 to the executing unit 3910, and so from its
relation with the executing unit 3910 can be said to function
as a specialized reading unit for decoded data.

[0458] As described above, when a branch has been per-
formed to an instruction block that does not have a decoded
instruction sequence, the virtual machine 4000 of the present
embodiment first has the virtual machine code in that
instruction block converted into decoded data that is written
into the instruction storing unit 3901, with this decoded data
then being directly executed. As a result, when this execu-
tion block is next executed, the same decoded data can be
read and directly executed, so that the time taken for
decoding, which is to say, the time taken by the search unit
4405 to search the decode table 4406, can be saved. The
resulting increase in execution speed is especially pro-
nounced-when a same instruction block is repeatedly
executed, such as for a loop process.

[0459] Eighth Embodiment

[0460] The following describes the virtual machine 4100
of the eighth embodiment. This virtual machine 4100 is
similar to the virtual machine of the seventh embodiment,
but uses data compression.

[0461] Construction of the Virtual Machine

[0462] FIG. 94 is a block diagram showing the construc-
tion of the virtual machine 4100 in this seventh embodiment.
This virtual machine 4100 includes an instruction storing
unit 4101, a decoding unit 4102, an executing unit 3910, and
a stack 4420.

[0463] As can be seen by comparing FIG. 94 with FIG.
90, the present virtual machine 4100 has almost the same
construction as the virtual machine 3900 of the sixth
embodiment. The differences between the two lie in the code
format of the virtual machine program stored in the instruc-
tion storing unit 4101, in the provision of the restoring
information storing arcas 41574~4157d in the instruction
storing unit 4101, and in the addition of the virtual machine

US 2003/0233386 Al

instruction restoring unit 4103a to the instruction reading
unit 4103 of the decoding unit 4102. The following expla-
nation focuses on these differences between the present
virtual machine 4100 and the virtual machine 4000 of the
seventh embodiment.

[0464] The branch instruction storing areas 4154a~4154d
and non-branch instruction storing arecas 4155a~4155d
(hereafter collectively called the “compressed virtual
machine code areas) of the instruction storing unit 4101
store compressed virtual machine instructions in advance.
The restoring information storing areas 4157a~4157d of the
instruction storing unit 4101 each store a decompression
table for decompressing the compressed virtual machine
instructions that are stored in the corresponding instruction
block.

[0465] FIG. 95A shows an example of a decompression
table. This table includes numerous pairs of a compressed bit
sequence and the corresponding virtual machine instruction.

[0466] FIG. 95B shows the rules governing codes in the
decompression table shown in FIG. 95A. In this embodi-
ment, single virtual machine instructions including operands
are compressed into bit sequences according to a bit com-
pression method based on Huffman coding. As one example,
the bit sequence “000” represents the virtual machine
instruction “Push [0]’, while the bit sequence “01010”
represents the virtual machine instruction “Push 10”.

[0467] FIGS. 96A-96C show examples of the stored state
of a virtual machine program that is stored in the instruction
storing unit 4101. This virtual machine program is equiva-
lent to the sample virtual machine program shown in FIG.
27. The compressed virtual machine code areas
4158a~4158¢, composed of the non-branch instruction stor-
ing arcas 4154a~4154¢ and the branch instruction storing
areas 4155a~4155¢, in the instruction block storing areas
4152a~4152c¢ respectively store bit sequences (hereafter,
“compressed bit sequences”) that are obtained by compres-
sion encoding the virtual machine program in the corre-
sponding instruction block and linking the results into
sequences. Each restoring information storing area
4157a~4157¢ stores a decompression table for decompress-
ing the bit sequences in the corresponding compressed
virtual machine code areas 4158a~4158c. Note that FIG.
96B shows the instruction block storing area 4152b that does
not have a decoded instruction sequence, while FIG. 96C
shows the instruction block storing area 4152¢ that has a
decoded instruction sequence.

[0468] The instruction reading unit 4103 has the same
functions as the instruction reading unit 3903 of the seventh
embodiment, which is to say the instruction reading unit
4103 reads compressed bit sequences from the compressed
virtual machine code areas 4158a~41584 in the instruction
storing unit 4101 and reads decoded instruction sequences
from the decoded instruction sequence storing areas
4156a~4156d. However, the instruction reading unit 4103 is
also provided with a virtual machine instruction restoring
unit 4103a.

[0469] The virtual machine instruction restoring unit
41034 operates as follows. When the instruction reading unit
4103 reads one bit at a time in a compressed bit sequence
from one of the compressed virtual machine code areas
4158a~4158d in the instruction storing unit 4101, the virtual

Dec. 18, 2003

machine instruction restoring unit 4103a refers to a decom-
pression table stored in the corresponding restoring infor-
mation storing area 4157a~4157d and specifies the virtual
machine instruction that corresponds to the read compressed
bit sequence. The virtual machine instruction restoring unit
41034 then passes this virtual machine instruction on to the
search unit 4405. These processes compose the decompres-
sion (restoring) processing that is repeated by the virtual
machine instruction restoring unit 4103a.

[0470] Operation of the Virtual Machine

[0471] The following describes the operation of the
present virtual machine 4100.

[0472] As mentioned above, the present virtual machine
4100 includes all of the functions of the virtual machine
4000 of the seventh embodiment, so that the overall pro-
cessing by the virtual machine 4100 is the same except for
the decompression of the compressed bit sequences. Accord-
ingly, the processing of the virtual machine 4100 is the same
as that shown by the flowchart in FIG. 91.

[0473] The present virtual machine 4100 operates in the
same way as the virtual machine 4000 in the seventh
embodiment when there is a branch to an instruction block
that does not have a decoded instruction sequence. The
instruction reading unit 4103 and search unit 4405 first
convert the virtual machine program in this instruction block
into decoded data which is written into the instruction
storing unit 4101 by the decoded instruction sequence
writing unit 4008. After this, the resulting decoded instruc-
tion sequence is read by the instruction reading unit 4103
and directly executed by the executing unit 3910.

[0474] The virtual machine 4100 of the present embodi-
ment differs from the virtual machine 4000 in that it reads
virtual machine instructions that have been compressed. As
a result, the detailed processing in steps 9109 and 9110 of
FIG. 91 differs from the processing in the seventh embodi-
ment. This is because a suitable read process must be
performed for the compressed bit sequences and a decom-
pression process must be additionally performed.

[0475] FIG. 97 is a flowchart showing the detailed pro-
cessing of steps 9109 and 9110 in the FIG. 91 for this eighth
embodiment. This processing is performed by the decoding
unit 4102 of the virtual machine 4100. Here, steps 9602 and
9603~9616 in FIG. 97 respectively correspond to steps 9109
and 9110 in FIG. 91.

[0476] As can be understood by comparing FIG. 97 with
FIG. 92 that shows the operation in the seventh embodi-
ment, the differences between the two are as follows. First,
instead of reading the virtual machine code directly, the
present embodiment reads compressed bit sequences and
performs decoding (step 9602). Second, operands (the pat-
terns op[i]) are also obtained as necessary during the decod-
ing (step 9602), so that instead of reading the operands from
the instruction storing unit 4101, the present embodiment
writes these operands (the patterns op[i]) into the decoded
instruction sequence storing areas 4156a~4156d (step
9613). FIG. 98 is a flowchart showing the details of step
9602 in FIG. 97. The instruction reading unit 4103 first
reserves a temporary storage area (the variable bits) for the
compressed bit sequences (step 9702), and then reads one bit
of compressed code from one of the compressed virtual
machine code areas 4158a~41584d in one of the instruction

US 2003/0233386 Al

block storing areas 4152a~4152d that does not have a
decoded instruction sequence (step 9703). The instruction
reading unit 4103 links this read bit with the compressed
codes (the variable bits) that it has already read (step 9704).

[0477] The virtual machine instruction restoring unit
41032 compares the compressed code (the variable bits)
obtained in step 9704 in order with each compressed code
sequence registered in the decoding table in a restoring
information storing area 4157a~4157d that starts from an
address given by adding a predetermined offset to the value
of the PC 3804, and so specifies the matching virtual
machine instruction (step 9705). This reading (step 9703)
and search (step 9705) are repeated until a matching virtual
machine instruction is found (step 9706).

[0478] When a matching virtual machine instruction has
been found, the virtual machine instruction restoring unit
4103a reads that virtual machine instruction from that
restoring information storing area 4157a~4157d (step 9707)
and outputs the virtual machine instruction to the search unit
4405, having separated the virtual machine instruction into
an opcode and operand (the pattern op[]) when such operand
exists (steps 9708, 9709). After this, the search unit 4405
converts the virtual machine instruction into the correspond-
ing decoded data, as shown in steps 9603~9614 in FIG. 97,
and the decoded instruction sequence writing unit 4008
writes this decoded data with the operand pattern op[] if
necessary into the real machine code area of the correspond-
ing instruction block. In this way, the virtual machine 4100
of the present embodiment arranges a compressed virtual
machine program into each instruction block in the instruc-
tion storing unit 4101, so that when there is a branch to an
instruction block that does not have a decoded instruction
sequence, the virtual machine 4100 first decompresses the
compressed virtual machine program in that instruction
block, converts it into decoded data, and writes the decoded
data into the instruction storing unit 4101 so that the decoded
data can then be directly executed.

[0479] As aresult, the virtual machine 4100 of the present
embodiment guarantees that each compressed bit sequence
will always be decoded starting from the start of an instruc-
tion block, which is to say, from the start of a complete
instruction. As a result, the problems caused when the
execution of a branch instruction leads to decoding being
mistakenly performed starting midway through a com-
pressed bit sequence can be completely avoided. In this way,
the present embodiment realizes a virtual machine that can
correctly execute virtual machine programs that have been
compressed.

[0480] Note that while the instruction block storing areas
4152a~4152d in the instruction storing unit 4101 of the
present embodiment are provided with decoded instruction
sequence storing arcas 4156a~4156d, provided that the
conventional problem of failing to decode a compressed bit
sequence from its start can still be avoided, these decoded
instruction sequence storing areas 4156a~4156d may be
omitted.

[0481] This is to say, the virtual machine 4100 of the
present embodiment was described as corresponding to the
virtual machine 4000 of the seventh embodiment, which
includes the decoded instruction sequence storing areas
4156a~4156d, but having a further function of being able to
decode and execute virtual machine programs that have been

Dec. 18, 2003

compressed. However, it is also possible to achieve a virtual
machine that corresponds to the virtual machine 3800,
which does not have decoded instruction sequence storing
areas 4156a~4156d, but is capable of decoding and execut-
ing virtual machine programs that have been compressed. In
either case, the compressed virtual machine program is
stored in units of instruction blocks based on basic blocks,
and the branch destination of every branch instruction is
guaranteed to be the first instruction in an instruction block.
This means that compressed bit sequences will not be
mistakenly decoded starting midway through.

[0482] Note that while the present embodiment uses Huff-
man coding bo compress the virtual machine instruction, it
should be obvious that L.Z methods or other compression
techniques may be used.

[0483] Ninth Embodiment

[0484] The following explains the JIT compiler that is a
ninth embodiment of the present invention. This JIT com-
piler can quickly generate real machine code that satisfies
the boundary restrictions relating to jump destinations in the
target real machine

[0485] Construction of the Compiler System

[0486] FIG. 99 is a functional block diagram showing the
entire JIT compiler 4300 of the present embodiment. This
figure shows not only JIT compiler 4300, but also the virtual
machine compiler 4320 that generates the information that
needs to be inputted into the JIT compiler 4300.

[0487] The virtual machine compiler 4320 is equipped
with language conversion functions that are provided in a
standard compiler, which means that it receives an input of
a source program written in a high-level language like “C”,
generates virtual machine codes for a specified virtual
machine, and outputs the resulting virtual machine codes to
circuit D1. However, the virtual machine compiler 4320 is
further equipped with a block start information generating
unit 4321a that generates special information (the block start
information) that is required by the JIT compiler 4300 and
outputs this special information to the circuit D2.

[0488] The block start information generating unit 4321a
is a function that is additionally provided in an output unit
4321 of a standard compiler, which is to say, an output unit
4321 that sequentially outputs virtual machine codes, which
are finally obtained after syntactic analysis and conversion
into intermediate code, to the periphery. This block start
information generating unit 4321a judges whether each
virtual machine code outputted from the output unit 4321 to
the circuit D1 should be made the start of a basic block, and
outputs the block start information that shows the results of
these judgments to the circuit D2.

[0489] The JIT compiler 4300 receives an input of the
virtual machine codes and the block start information gen-
erated by the virtual machine compiler 4320, and converts
the virtual machine codes into a real machine instruction
sequence 4311 for a real machine that has a restriction
whereby the branch destinations of real machine instructions
are based on the two-word alignment in the address space.
This JIT compiler 4300 includes a real machine instruction
converting unit 4301, a branch position amending unit 4302,
and a real machine address storing unit 4303.

US 2003/0233386 Al

[0490] The real machine instruction converting unit 4301
operates as follows. When a virtual machine code outputted
from the virtual machine compiler 4320 via the circuit D1 is
an opcode, the real machine instruction converting unit 4301
converts the virtual machine code into the corresponding
real machine code based on an internal conversion table. On
the other hand, when a virtual machine code is an operand,
the real machine instruction converting unit 4301 outputs the
operand as it is to the branch position amending unit 4302.
When doing so, the real machine instruction converting unit
4301 reads the real machine address PC stored by the real
machine address storing unit 4303 and outputs it together
with the real machine code to the branch position amending
unit 4302, before updating the real machine address PC.

[0491] The real machine address storing unit 4303 stores
a relative address PC in the real machine space at which the
next real machine code to be generated should be placed in
the real machine instruction converting unit 4301.

[0492] The branch position amending unit 4302 judges
whether the real machine instruction at the start of a basic
block is positioned at an odd-numbered address, based on
the real machine address PC sent from the real machine
instruction converting unit 4301 and the block start infor-
mation outputted from the virtual machine compiler 4320
via the circuit D2. This is to say, the branch position
amending unit 4302 judges whether this starting real
machine instruction violates the restriction concerning the
two-word alignment in the address space. If the address
violates this restriction, the branch position amending unit
4302 inserts a one-word dummy instruction, which is to say,
a no-operation instruction “Nop” in front of the instruction,
before outputting the real machine code send from the real
machine instruction converting unit 4301 to the periphery as
part of the real machine instruction sequence 4311. By doing
so, the branch position amending unit 4302 arranges the
effective start of the basic block at,an address complying
with the two-word alignment without affecting the process-
ing content of the program.

[0493] Operation of the Compiler System

[0494] The following is an explanation of a compiler
system of the above construction, focusing on the differ-
ences with a standard compiler.

[0495] FIG. 100 is a flowchart showing the operation of
the block start information generating unit 4321a of the
virtual machine compiler 4320. This flowchart has funda-
mentally the same flow as the operation of the wvirtual
machine compiler of the fifth embodiment that was shown in
FIG. 80.

[0496] First, the block start information generating unit
4321a judges whether each virtual machine code that the
output unit 4321 is trying to output should be made the start
of a basic block (steps 10003, 10004). The block start
information generating unit 4321a outputs block start infor-
mation “T” on judging that a virtual machine code should be
made the start of a basic block, (step 10006), or otherwise
outputs the block start information “N” (step 10005). The
block start information generating unit 4321a outputs the
block start information “T” or “N” to the circuit D1 and the
virtual machine code VC to circuit D2 (step 10007).

[0497] FIG. 101 is a flowchart showing the operation of
the real machine instruction converting unit 4301, the

Dec. 18, 2003

branch position amending unit 4302, and the real machine
address storing unit 4303. First, the real machine address
storing unit 4303 initializes the real machine address PC
(step 10102).

[0498] The real machine instruction converting unit 4301
receives the virtual machine code VC outputted by the block
start information generating unit 4321a (steps
10103,10304), converts the virtual machine code VC into a
corresponding real machine code as necessary, and transfers
this to the branch position amending unit 4302 together with
the real machine address PC read from the real machine
address storing unit 4303. After this, the real machine
instruction converting unit 4301 increments the real machine
address PC (step 10105).

[0499] Following this, the branch position amending unit
4302 receives the block start information “BI” correspond-
ing to the virtual machine code VC from the block start
information generating unit 4321a (step 10106) and, when
outputting the real machine code received from the real
machine instruction converting unit 4301, judges whether
the virtual machine code will cause a violation of the
boundary restrictions described earlier (steps 10107, 10108).
Specifically, the branch position amending unit 4302 judges
whether the block start information BI received from the
block start information generating unit 4321a is “T” show-
ing the start of a basic block and the real machine address PC
received from the real machine instruction converting unit
4301 violates the two-word alignment restriction (steps
10107, 10108).

[0500] On judging that a virtual machine code VC should
be made the start of a basic block and that the real machine
address PC violates the two-word alignment restriction, the
branch position amending unit 4302 generates and outputs a
real machine instruction “Nop”, before outputting the afore-
mentioned real machine instruction as part of the real
machine instruction sequence 4311 (steps 10109, 10110).
Note that whenever the branch position amending unit 4302
generates “Nop” real machine instructions (step 10110), it
also updates the real machine address PC in the real machine
address storing unit 4303 accordingly.

[0501] The processing in steps 10104~10110 described
above is repeated while virtual machine codes are trans-
ferred from the block start information generating unit
4321a (steps 10103, 10111).

[0502] FIG. 102 is a table showing the block start infor-
mation generated by the block start information generating
unit 4321a, the timing of the generation of “Nop” real
machine instructions by the branch position amending unit
4302, and other related information, for a case when the
sample virtual machine instruction sequence shown in FIG.
27 is inputted into the JIT compiler 4300. As can be seen
from FIG. 102, the virtual machine instructions at the virtual
machine addresses 0, 8, 15, and 31 are cach set as the start
of a basic block, so that the block start information “T” is
generated for these instructions.

[0503] When processing the virtual machine address 15,
the branch position amending unit 4302 receives the block
start information “T” from the block start information gen-
erating unit 4321g and an odd number (35) as the real
machine address PC from the real machine instruction
converting unit 4301. Before outputting the virtual machine

US 2003/0233386 Al

instruction corresponding to the virtual machine instruction
“Push[1]”, the branch position amending unit 4302 outputs
a “Nop” instruction. As a result, cases where the first
instruction in a block is located at an odd-numbered address
can be avoided.

[0504] With the JIT compiler 4300 of the present embodi-
ment, the analysis of the branch destinations of branch
instructions does not require the complicated procedure that
was conventionally necessary. As a result, the JIT compiler
4300 can generate real machine programs that do not violate
the boundary restrictions for jump destinations. This is
because the block start information generating unit 43214 in
the virtual machine compiler 4320 detects the basic blocks
and informs the JIT compiler 4300 of the block start
information.

[0505] Compared to a conventional JIT compiler 4300, the
JIT compiler 4300 of the present invention can eradicate the
problems regarding boundary restrictions by merely adding
“Nop” virtual machine instructions based on the block start
information. As a result, the present embodiment realizes a
JIT compiler that generates suitable real machine code
where the jump destinations of jump instructions do not
violate the boundary restrictions.

[0506] Note that while the block start information gener-
ating unit 4321a of the present embodiment is provided as
an additional feature of the output unit 4321 of the virtual
machine compiler 4320, this may be replaced with a pro-
cedure for dividing into basic blocks that is provided in a
standard compiler. As part of optimization, a standard com-
piler will divide a program into basic blocks, so that by
outputting block start information obtained during this block
division procedure to the periphery (the JIT compiler 4300),
a block start information generating unit 43214 can be easily
realized.

[0507] In this ninth embodiment, “Nop” instructions are
used as the no-operation instructions, although such no
operation instructions do not need to be explicit. As one
example, instructions that add zero to the value of a register
may be used instead.

[0508] Also in the present embodiment, alignment pro-
cessing is only performed when positioning real machine
instructions that are jump destinations, although it should be
obvious that other instructions may also be rearranged in the
same way when there is a delayed branch or a canceling
branch. This means that by merely arranging a required
number of no-operation instructions at the start of a basic
block, it can be guaranteed that delayed branches will be
properly performed. This is because when basic blocks are
arranged into memory with no intervals between them, the
branch instruction that is located at the end of each basic
block will definitely be linked to the required number of
no-operation instructions, so that erroneous operations due
to a delayed branch are avoided.

[0509] The virtual machine, virtual machine compiler, and
JIT compiler of the present invention have been described by
way of the first-ninth embodiments, although the present
invention is not limited to these embodiments. The charac-
teristic components of each embodiment may be combined
or partially integrated into other embodiments, so that a
variety of variations of the present invention may be real-
ized.

Dec. 18, 2003

[0510] As one example, by combining the first and fifth
embodiments, the virtual machine program can be divided
into basic blocks and stored into an instruction storing unit
together with the corresponding next instruction informa-
tion. This realizes a high-speed virtual machine that removes
true data dependency and simplifies the address processing
by a JIT compiler.

[0511] In the same way, combining the second and eighth
embodiments realizes an interrupt-handling virtual machine
that only performs sufficient interrupt handling and executes
compressed bit sequences for which proper decoding is
guaranteed.

[0512] In the first embodiment, the next instruction infor-
mation and virtual machine instructions have a separate
structure to the block start information and virtual machine
instructions in the ninth embodiment. As shown in FIG. 103,
however, the virtual machine instructions executed by the
virtual machine of the present invention may be defined as
extended virtual machine instructions that have such next
instruction information and block start information embed-
ded. In such a case, by routinely branching after a read has
been performed from an instruction storing unit in units of
extended virtual machine instructions, the next instruction
information, block start information, and opcode and oper-
and(s) of the virtual machine can be distinguished and
separately obtained.

[0513] In the fifth-eighth embodiments, each instruction
block storing unit was given a unique identifier, although
should identifiers do not need to be used if each instruction
block can be separately identified, such as when each
instruction block is arranged in an instruction block storing
unit according to certain rules.

[0514] The virtual machine, virtual machine compiler, and
JIT compiler of the present invention can each be realized by
a program that is executed by a standard personal computer.
It should be obvious that such programs may be distributed
having been recorded onto a storage medium such as CD-
ROM or by being transmitted via communication lines.

[0515] Although the present invention has been fully
described by way of examples with reference to accompa-
nying drawings, it is to be noted that various changes and
modifications will be apparent to those skilled in the art.
Therefore, unless such changes and modifications depart
from the scope of the present invention, they should be
construed as being included therein.

What is claimed is:

1. A virtual machine that executes a virtual machine
instruction sequence under control of a real machine, com-
prising:

stack means for temporarily storing data in a last-in
first-out format;

instruction storing means for storing the virtual machine
instruction sequence and a plurality of sets of succeed-
ing instruction information, wherein each virtual
machine instruction in the virtual machine instruction
sequence is associated with a set of succeeding instruc-
tion information that indicates a change in a storage
state of the data in the stack means due to execution of
a virtual machine instruction executed after the asso-
ciated virtual machine instruction;

US 2003/0233386 Al

read means for reading a virtual machine instruction and
an associated set of succeeding instruction information
from the instruction storing means; and

decoding-executing means for specifying and executing
operations corresponding to a combination of the read
virtual machine instruction and the read set of succeed-
ing instruction information.
2. The virtual machine of claim 1, wherein the decoding-
executing means includes:

a real machine instruction sequence storing unit for stor-
ing a plurality of real machine instruction sequences
that correspond to all combinations of virtual machine
instructions and sets of succeeding instruction infor-
mation;

a specifying unit for specifying a real machine instruction
sequence in the real machine instruction sequence
storing unit, the real machine instruction sequence
corresponding to a combination of the virtual machine
instruction and the set of succeeding instruction infor-
mation read by the read means; and

an executing unit for executing the specified real machine

instruction sequence.

3. The virtual machine of claim 2, wherein each set of
succeeding instruction information indicates a change in a
number of sets of data in the stack means due to execution
of a virtual machine instruction executed after a virtual
machine instruction associated with the set of succeeding
instruction information and

wherein at least one real machine instruction sequence
stored in the real machine instruction sequence storing
unit contains real machine instructions that perform a
stack handling in the stack means in advance for a
virtual machine instruction that is to be executed based
on a set of succeeding instruction information associ-
ated with a currently executed virtual machine instruc-
tion.

4. The virtual machine of claim 3, wherein the real
machine instruction sequences stored in the real machine
instruction sequence storing unit are composed with a
premise that regions of the stack means used to store two
sets of data to be read first and second are mapped to two
registers in the real machine.

5. The virtual machine of claim 1, wherein the instruction
storing means includes a first storage area for storing the
virtual machine instruction sequence and a second storage
area for storing the sets of succeeding instruction informa-
tion, wherein each location that stores a virtual machine
instruction in the first storage area is associated with a
location that stores an associated set of succeeding instruc-
tion information in the second storage area and

wherein the read means reads the virtual machine instruc-
tion from a location in the first storage area and the
associated set of succeeding instruction information
from a location in the second storage area, the location
in the first storage area being associated with the
location in the second storage area.

6. The virtual machine of claim 1, wherein the virtual
machine instruction sequence stored in the instruction stor-
ing means is an extended virtual machine instruction
sequence that includes extended virtual machine instruc-
tions, the extended virtual machine instructions being com-

32

Dec. 18, 2003

binations of virtual machine instructions and associated sets
of succeeding instruction information,

wherein the read means reads an extended virtual machine
instruction from the instruction storing means, and

wherein the decoding-executing means specifies and
executes operations corresponding to the extended vir-
tual machine instruction.
7. A compiler that generates programs for a virtual
machine with a stack architecture that includes a stack,
comprising:

instruction sequence converting means for converting a
source program into a virtual machine instruction
sequence executable by the virtual machine;

succeeding instruction information generating means for
generating sets of succeeding instruction information
corresponding to virtual machine instructions in the
virtual machine instruction sequence, each set of suc-
ceeding instruction information indicating a change in
a storage state of data in the stack due to execution of
a virtual machine instruction executed after a virtual
machine instruction corresponding to the set of suc-
ceeding instruction information; and

associating means for associating each set of generated
succeeding instruction information with a correspond-
ing virtual machine instruction and outputting the set of
succeeding instruction information and the virtual
machine instruction.
8. A virtual machine that executes a virtual machine
instruction sequence under control of a real machine, com-
prising:

instruction storing means for storing the virtual machine
instruction sequence;

read means for reading a virtual machine instruction in the
virtual machine instruction sequence from the instruc-
tion storing means; and

decoding-executing means for specifying and executing
operations corresponding to the virtual machine
instruction,

wherein the decoding-executing means includes

a branch instruction judging unit for judging if the
virtual machine instruction is a branch instruction
and

an interrupt handling unit for detecting, if the virtual
machine instruction is judged to be a branch instruc-
tion, whether there is an interrupt request, and, if so,
performing a corresponding interrupt handling in
addition to executing the branch instruction.
9. The virtual machine of claim 8, wherein the decoding-
executing means further includes

a real machine instruction sequence storing unit for stor-
ing real machine instruction sequences corresponding
to every virtual machine instruction and real machine
instruction sequences for having interrupt handling
performed corresponding to each interrupt request and

an executing unit for executing a real machine instruction
sequence corresponding to the virtual machine instruc-
tion read by the read means,

US 2003/0233386 Al

wherein if the virtual machine instruction is judged to

be the branch instruction and an interrupt request is

detected, the interrupt handling unit has the execut-

ing unit execute a real machine instruction sequence

for having the corresponding interrupt handling per-

formed and then the real machine instruction
sequence corresponding to the branch instruction.

10. A virtual machine that executes a virtual machine

instruction sequence under control of a real machine, com-

prising:

instruction storing means for storing the virtual machine
instruction sequence;

read means for reading a virtual machine instruction in the
virtual machine instruction sequence from the instruc-
tion storing means; and

decoding-executing means for specifying and executing
operations corresponding to the read virtual machine
instruction,

wherein the decoding-executing means includes

a block judging unit for judging if the read virtual
machine instruction is a virtual machine instruction
representative of a block, a block being a predeter-
mined number of virtual machine instructions and

an interrupt handling unit for detecting, if the read

virtual machine instruction is judged to be the rep-

resentative virtual machine instruction, whether

there is an interrupt request to the virtual machine,

and if so, performing a corresponding interrupt han-

dling in addition to executing the representative
virtual machine instruction.

11. The virtual machine of claim 10, wherein the decod-

ing-executing means includes

a real machine instruction sequence storing unit for stor-
ing a plurality of real machine instruction sequences
corresponding to every virtual machine instruction and
at least one real machine instruction sequence for
having interrupt handling performed in response to an
interrupt request and

an executing unit for executing a real machine instruction
sequence corresponding to the read virtual machine
instruction,

wherein the block judging unit judges that the read
virtual machine instruction is a virtual machine
instruction representative of the block when a num-
ber of virtual machine instructions that have been
read is equal to a multiple of the predetermined
number and

wherein if the read virtual machine instruction is

judged to be a representative virtual machine instruc-

tion and an interrupt request has been detected, the

interrupt handling unit has the executing unit execute

a real machine instruction sequence for having the

interrupt handling performed and then the real

machine instruction sequence corresponding to the
representative virtual machine instruction.

12. A virtual machine that executes a virtual machine

instruction sequence under control of a real machine, com-

prising:

Dec. 18, 2003

real machine program storing means for storing a plurality
of subprograms composed of real machine instruc-
tions,;

instruction storing means that includes a first area for
storing the virtual machine instruction sequence and a
second area for storing a plurality of pointers to the
subprograms in the real machine program storing
means;

read means for reading a virtual machine instruction in the
virtual machine instruction sequence from the first area
in the instruction storing means; and

decoding-executing means for specifying and executing
operations corresponding to the read virtual machine
instruction,

wherein the decoding-executing means includes

an area judging unit for judging whether the virtual
machine instruction is an instruction that transfers
control flow to a location in the second area and

an address converting-executing unit for executing, if
the virtual machine instruction is judged to be an
instruction that transfers control flow to a location in
the second area, a subprogram indicated by a pointer
stored in the location.

13. The virtual machine of claim 12, wherein the first area
and the second area in the instruction storing means are two
adjacent storage areas whose boundary is marked by an
address and

wherein the area judging unit judges, when the read

virtual machine instruction is a call instruction for a

subprogram, whether the virtual machine instruction is

an instruction that transfers control flow, by comparing

a call address of the call instruction with the address.

14. A virtual machine that executes a virtual machine

instruction sequence under control of a real machine, com-
prising:

instruction storing means for storing the virtual machine
instruction sequence;

read means for reading a virtual machine instruction in the
virtual machine instruction sequence from the instruc-
tion storing means; and

decoding-executing means for specifying and executing
operations corresponding to the read virtual machine
instruction,

wherein the instruction storing means is a plurality of
instruction blocks that constitute the virtual machine
instruction sequence, the instruction blocks corre-
sponding to basic blocks,

wherein the instruction blocks each include: an identi-
fier area for storing an identifier that specifies a start
position of the instruction block in the instruction
storing means; a non-branch instruction area for
storing non-branch instructions belonging to a cor-
responding basic block; and a branch instruction area
for storing at least one branch instruction belonging
to the corresponding basic block,

wherein each branch instruction stored in the branch
instruction area designates a branch destination
using an identifier stored in one of the identifier
arcas, and

US 2003/0233386 Al

wherein if the read virtual machine instruction is a
branch instruction, the decoding-executing means
has control flow branch to a start position of a
non-branch instruction area in an instruction block
having an identifier designated by the branch instruc-
tion as a branch destination.

15. The virtual machine of claim 14, wherein the decod-
ing-executing means includes a program counter composed
of (a) an identifier register for storing an identifier of an
instruction block to which a virtual machine instruction to be
read belongs and (b) an offset counter for storing an offset
that indicates a relative storage position of the virtual
machine instruction in the instruction block,

wherein the read means reads the virtual machine instruc-
tion based on the identifier and the offset in the program
counter,

wherein the decoding-executing means updates, if the
read virtual machine instruction is the branch instruc-
tion, the program counter by writing the identifier
designated as the branch destination by the branch
instruction into the identifier register and by setting an
initial value in the offset counter, and if the read virtual
machine instruction is a non-branch instruction,
updates the program counter by incrementing the offset
counter, and

wherein the read means reads a virtual machine instruc-
tion to be executed next based on the program counter
updated by the decoding-executing means.

16. The virtual machine of claim 15, wherein the decod-
ing-executing means includes a real machine instruction
sequence storing unit that stores a plurality of real machine
instruction sequences that each correspond to a different
virtual machine instruction,

wherein the instruction blocks in the instruction storing
means each include a decoded data sequence area for
storing a decoded data sequence that specifies real
machine instruction sequences in the real machine
instruction sequence storing unit, the real machine
instruction sequences corresponding to virtual machine
instructions stored in the non-branch instruction area
and the branch instruction area of the instruction block,

wherein if a decoded data sequence is stored in an
instruction block where reading is to be performed, the
read means reads a set of decoded data in the decoded
data sequence instead of a virtual machine instruction,
and if not, the read means reads the virtual machine
instruction and then generates a set of decoded data to
specify a real machine instruction sequence in the real
machine instruction sequence storing unit that corre-
sponds to the virtual machine instruction, and

wherein the decoding-executing means reads from the
real machine instruction sequence storing unit the real
machine instruction sequence specified by the set of
decoded data that has been either read or generated by
the read means, and executes the real machine instruc-
tion sequence.

17. The virtual machine of claim 16, wherein the decoded
data sequence area in the instruction storing means includes
a flag area for storing a flag that indicates whether the
decoded data sequence is stored in the decoded data
sequence area,

Dec. 18, 2003

wherein the decoding-executing means includes a current
flag storing unit for storing a flag that is read from a flag
areas in a branch destination instruction block by the
decoding-executing means when executing a branch
instruction, and

wherein the read means reads a set of decoded data or a
virtual machine instruction depending on the flag in the
current flag storing unit.

18. The virtual machine of claim 16, wherein each instruc-
tion block in the instruction storing means further includes
a flag area for storing a flag that indicates whether a decoded
data sequence is stored in the decoded a data sequence area
of the instruction block and

wherein the decoding-executing means includes a
decoded data sequence writing unit for judging, after a
branch instruction has been executed, whether the
instruction block designated as the branch destination
by the branch instruction stores a decoded data
sequence by referring to a flag stored in a flag area of
the instruction block, and if no decoded data sequence
is stored, having a virtual machine instruction sequence
in the instruction block read, decoding the read virtual
machine instruction sequence to produce a decoded
data sequence, and writing the decoded data sequence
into a decoded data sequence area in the instruction
block.

19. A virtual machine that executes a virtual machine

instruction sequence under control of a real machine, com-
prising:

instruction storing means for storing a compressed virtual
machine instruction sequence to be executed;

read means for reading a compressed virtual machine
instruction in the compressed virtual machine instruc-
tion sequence from the instruction storing means and
decompressing the compressed virtual machine instruc-
tion to generate a decompressed virtual machine
instruction; and

decoding-executing means for specifying and executing
operations corresponding to the decompressed virtual
machine instruction,

wherein the instruction storing means is a plurality of
instruction blocks containing compressed virtual
machine instructions constituting the compressed
virtual machine instruction sequence, the instruction
blocks corresponding to basic blocks,

wherein the instruction blocks each include: an identi-
fier area for storing an identifier that specifies a start
position of the instruction block in the instruction
decompresses the compressed virtual machine
instruction by referring to a decompression table in
an instruction block to which the compressed virtual
machine instruction belongs to generate the decom-
pressed virtual machine instruction.

21. The virtual machine of claim 20, wherein the decod-
ing-executing means includes a program counter composed
of (a) an identifier register for storing an identifier of an
instruction block to which a compressed virtual machine
instruction to be read belongs and (b) an offset counter for
storing an offset that indicates a relative storage position of
the compressed virtual machine instruction in the instruction
block,

US 2003/0233386 Al

wherein the read means reads the compressed virtual
machine instruction based on the identifier and the
offset in the program counter,

wherein if the decompressed virtual machine instruction
is a branch instruction, the decoding-executing means
updates the program counter by writing the identifier
designated as the branch destination by the branch
instruction into the identifier register and by setting an
initial value in the offset counter, and if the decom-
pressed virtual machine instruction is a non-branch
instruction, updates the program counter by increment-
ing the offset counter, and

wherein the read means reads a compressed virtual
machine instruction to be executed next based on the
program counter updated by the decoding-executing
means.

22. The virtual machine of claim 21, wherein the decod-
ing-executing means includes a real machine instruction
sequence storing unit that stores a plurality of real machine
instruction sequences that each correspond to a different
virtual machine instruction,

wherein the instruction blocks in the instruction storing
means each include a decoded data sequence area for
storing a decoded data sequence that specifies real
machine instruction sequences in the real machine
instruction sequence storing unit, the real machine
instruction sequences corresponding to compressed vir-
tual machine instructions stored in the non-branch
instruction area and the branch instruction area in the
instruction block,

wherein if a decoded data sequence is stored in an
instruction block where reading is to be performed, the
read means reads a set of decoded data in the decoded
data sequence instead of a compressed virtual machine
instruction, and if not, the read means reads a com-
pressed virtual machine instruction, decompresses the
compressed virtual machine instruction to generate a
decompressed virtual machine instruction, and then
generates a set of decoded data to specify a real
machine instruction sequence corresponding to the
decompressed virtual machine storing means; a non-
branch instruction area for storing compressed non-
branch instructions belonging to a corresponding basic
block; and a branch instruction area for storing at least
one compressed branch instruction belonging to the
corresponding basic block,

wherein each compressed branch instruction stored in a
branch instruction area designates a branch destination
using an identifier stored in one of the identifier areas,
and

wherein if the decompressed virtual machine instruction
is a branch instruction, the decoding-executing means
has control flow branch to a start position of a non-
branch instruction area in an instruction block having
an identifier designated by the branch instruction as a
branch destination.

20. The virtual machine of claim 19, wherein each instruc-
tion block includes a decompression table area for storing a
decompression table for use during decompression of com-
pressed virtual machine instructions in the instruction block,
the decompression table containing at least one combination

Dec. 18, 2003

of a compressed virtual machine instruction stored in the
instruction block and a corresponding decompressed virtual
machine instruction and

wherein the read means reads the compressed virtual
machine instruction from the instruction storing means
and instruction in the real machine instruction sequence
storing unit, and

wherein the decoding-executing means reads from the
real machine instruction sequence storing unit the real
machine instruction sequence specified by a set of
decoded data that has been either read or generated by
the read means, and executes the real machine instruc-
tion sequence.

23. The virtual machine of claim 22, wherein each instruc-
tion block in the instruction storing means further includes
a flag area for storing a flag that indicates whether a decoded
data sequence is stored in the decoded data sequence area of
the instruction block,

wherein the decoding-executing means includes a current
flag storing unit for storing a flag that is read from a flag
area in a branch destination instruction block by the
decoding-executing means when executing a branch
instruction, and

wherein the read means reads a set of decoded data or a
compressed virtual machine instruction depending on
the flag in the current flag storing unit.

24. The virtual machine of claim 22, wherein each instruc-
tion block in the instruction storing means further includes
a flag area for storing a flag that indicates whether a decoded
data sequence is stored in the decoded data sequence area of
the instruction block and

wherein the decoding-executing means includes a
decoded data sequence writing unit for judging, after a
branch instruction has been executed, whether the
instruction block designated as the branch destination
by the branch instruction stores a decoded data
sequence by referring to a flag stored in a flag area of
the instruction block, and if no decoded data sequence
is stored, having a compressed virtual machine instruc-
tion sequence in the instruction block read and decom-
pressed, having the decompressed virtual machine
instruction sequence decoded to produce a decoded
data sequence, and writing the decoded data sequence
into a decoded data sequence area in the instruction
block.

25. A Just-In-Time (JIT) compiler for use with a virtual
machine that executes a virtual machine instruction
sequence under control of a real machine, the JIT compiler
converting parts of the virtual machine instruction sequence
into real machine instruction sequences before execution,
and

the JIT compiler comprising:

block start information receiving means for receiving
an input of block start information for each virtual
machine instruction that composes the virtual
machine instruction sequence, the block start infor-
mation showing whether a corresponding virtual
machine instruction would correspond to a start of a
basic block if the virtual machine instruction
sequence were divided into basic blocks;

US 2003/0233386 Al

converting means for converting virtual machine
instructions in the virtual machine instruction
sequence into real machine instruction sequences;
and

outputting means for rearranging the real machine
instruction sequences produced by the converting
means into basic block units in accordance with the
block start information received by the block start
information receiving means.

26. The JIT compiler of claim 25, further comprising
branch violation judging means for judging, when a real
machine instruction at a start of a produced real machine
instruction sequence corresponds to a virtual machine
instruction whose block start information indicates that the
virtual machine instruction would be a start of a basic block,
whether the real machine instruction is going to be arranged
in an address that violates an address alignment restriction of
the real machine,

wherein if the real machine instruction is going to be
arranged in an address that violates the address align-
ment restriction, the outputting means rearranges the
real machine instruction sequence so that the real
machine instruction is not arranged in the address.

27. The JIT compiler of claim 26, wherein the outputting
means rearranges the real machine instruction sequence by
inserting a necessary number of no-operation instructions at
the start of the basic block to which the real machine
instruction belongs.

28. The JIT compiler of claim 25, wherein the outputting
means inserts a certain number of no-operation instructions
at a start of each basic block, the number being a number of
real machine instructions processed during a delay of a
delayed branch.

29. A storage method used by instruction storing means
that stores a virtual machine instruction sequence to be
executed by a virtual machine, having a stack architecture,
under control of a real machine,

the storage method being characterized by storing each
virtual machine instruction in the virtual machine
instruction sequence associated with different succeed-
ing instruction information, the succeeding instruction
information for a given virtual machine instruction
indicating a change in a storage state of data in a stack
due to execution of a virtual machine instruction
executed after the given virtual machine instruction.
30. A storage method used by instruction storing means
that stores a virtual machine instruction sequence to be
executed by a virtual machine under control of a real
machine,

wherein the storage method results in:

the instruction storing means being a plurality of
instruction blocks that constitute the virtual machine
instruction sequence, the instruction blocks corre-
sponding to basic blocks;

the instruction blocks each including:

an identifier area for storing an identifier that speci-
fies a start position of the instruction block in the
instruction storing means;

a non-branch instruction area for storing non-branch
instructions belonging to a corresponding basic
block; and

Dec. 18, 2003

a branch instruction area for storing at least one
branch instruction belonging to the corresponding
basic block; and

each branch instruction stored in the branch instruc-
tion area designating a branch destination using an
identifier stored in one of the identifier areas.
31. A computer-readable recording medium that stores a
program to have a computer function as a virtual machine
with a stack architecture,

wherein the virtual machine comprises:

stack means for temporarily storing data in a last-in
first-out format;

instruction storing means for storing a virtual machine
instruction sequence and a plurality of sets of suc-
ceeding instruction information, wherein each vir-
tual machine instruction in the virtual machine
instruction sequence is associated with a set of
succeeding instruction information that indicates a
change in a storage state of the data in the stack
means due to execution of a virtual machine instruc-
tion executed after the associated virtual machine
instruction;

read means for reading a virtual machine instruction
and an associated set of succeeding instruction infor-
mation from the instruction storing means; and

decoding-executing means for specifying and execut-
ing operations corresponding to a combination of the
read virtual machine instruction and the read set of
succeeding instruction information.

32. A computer-readable recording medium that stores a
program to have a computer function as a compiler that
generates a program for a virtual machine with a stack
architecture,

wherein the compiler comprises:

instruction sequence converting means for converting a
source program into a virtual machine instruction
sequence executable by the virtual machine;

succeeding instruction information generating means
for generating sets of succeeding instruction infor-
mation corresponding to virtual machine instructions
in the virtual machine instruction sequence, each set
of succeeding instruction information indicating a
change in a storage state of data in the stack due to
execution of a virtual machine instruction executed
after a virtual machine instruction corresponding to
the set of succeeding instruction information; and

associating means for associating each set of generated
succeeding instruction information with a corre-
sponding virtual machine instruction and outputting
the set of succeeding instruction information and the

virtual machine instruction.
33. A computer-readable recording medium that stores a
program to have a computer function as a virtual machine,

wherein the virtual machine comprises:

instruction storing means for storing a virtual machine
instruction sequence;

US 2003/0233386 Al

read means for reading a virtual machine instruction in
the virtual machine instruction sequence from the
instruction storing means; and

decoding-executing means for specifying and execut-
ing operations corresponding to the virtual machine
instruction,

wherein the decoding-executing means includes

a branch instruction judging unit for judging if the
virtual machine instruction is a branch instruction
and

an interrupt handling unit for detecting, if the virtual

machine instruction is judged to be a branch

instruction, whether there is an interrupt request,

and, if so, performing a corresponding interrupt

handling in addition to executing the branch
instruction.

34. A computer-readable recording medium that stores a

program to have a computer function as a virtual machine,

wherein the virtual machine comprises:

instruction storing means for storing a virtual machine
instruction sequence;

read means for reading a virtual machine instruction in
the virtual machine instruction sequence from the
instruction storing means; and

decoding-executing means for specifying and execut-
ing operations corresponding to the read virtual
machine it instruction,

wherein the decoding-executing means includes

a block judging unit for judging if the read virtual
machine instruction is a virtual machine instruc-
tion representative of a block, a block being a
predetermined number of virtual machine instruc-
tions and

an interrupt handling unit for detecting, if the read
virtual machine instruction is judged to be the
representative virtual ~machine instruction,
whether there is an interrupt request to the virtual
machine, and if so, performing a corresponding
interrupt handling in addition to executing the
representative virtual machine instruction.

35. A computer-readable recording medium that stores a
program to have a computer function as a virtual machine,

wherein the virtual machine comprises:

real machine program storing means for storing a
plurality of subprograms composed of real machine
instructions;

instruction storing means that includes a first area for
storing a virtual machine instruction sequence and a
second area for storing a plurality of pointers to the
subprograms in the real machine program storing
means;

read means for reading a virtual machine instruction in
the virtual machine instruction sequence from the
first area in the instruction storing means; and

Dec. 18, 2003

decoding-executing means for specifying and execut-
ing operations corresponding to the read virtual
machine instruction,

wherein the decoding-executing means includes

an area judging unit for judging whether the virtual
machine instruction is an instruction that transfers
control flow to a location in the second area and

an address converting-executing unit for executing,
if the virtual machine instruction is judged to be an
instruction that transfers control flow to a location
in the second area, a subprogram indicated by a

pointer stored in the location.
36. A computer-readable recording medium that stores a
program to have a computer function as a virtual machine,

wherein the virtual machine comprises:

instruction storing means for storing a virtual machine
instruction sequence;

read means for reading a virtual machine instruction in
the virtual machine instruction sequence from the
instruction storing means; and

decoding-executing means for specifying and execut-
ing operations corresponding to the read virtual
machine instruction,

wherein the instruction storing means is a plurality of
instruction blocks that constitute the virtual
machine instruction sequence, the instruction
blocks corresponding to basic blocks,

wherein the instruction blocks each include: an iden-
tifier area for storing an identifier that specifies a
start position of the instruction block in the
instruction storing means; a non-branch instruc-
tion area for storing non-branch instructions
belonging to a corresponding basic block; and a
branch instruction area for storing at least one
branch instruction belonging to the corresponding
basic block,

wherein each branch instruction stored in the branch
instruction area designates a branch destination
using an identifier stored in one of the identifier
arcas, and

wherein if the read virtual machine instruction is a

branch instruction, the decoding-executing means

has control flow branch to a start position of a

non-branch instruction area in an instruction block

having an identifier designated by the branch
instruction as a branch destination.

37. A computer-readable recording medium that stores a

program to have a computer function as a virtual machine,

wherein the virtual machine comprises:

instruction storing means for storing a compressed
virtual machine instruction sequence to be executed;

read means for reading a compressed virtual machine
instruction in the compressed virtual machine
instruction sequence from the instruction storing
means and decompressing the compressed virtual
machine instruction to generate a decompressed vir-
tual machine instruction; and

US 2003/0233386 Al

decoding-executing means for specifying and execut-
ing operations corresponding to the decompressed
virtual machine instruction,

wherein the instruction storing means is a plurality of
instruction blocks containing compressed virtual
machine instructions constituting the compressed
virtual machine instruction sequence, the instruc-
tion blocks corresponding to basic blocks,

wherein the instruction blocks each include: an iden-
tifier area for storing an identifier that specifies a
start position of the instruction block in the
instruction storing means; a non-branch instruc-
tion area for storing compressed non-branch
instructions belonging to a corresponding basic
block; and a branch instruction area for storing at
least one compressed branch instruction belonging
to the corresponding basic block,

wherein each compressed branch instruction stored
in a branch instruction area designates a branch
destination using an identifier stored in one of the
identifier areas, and

wherein if the decompressed virtual machine instruc-
tion is a branch instruction, the decoding-execut-
ing means has control flow branch to a start
position of a non-branch instruction area in an
instruction block having an identifier designated
by the branch instruction as a branch destination.

38

Dec. 18, 2003

38. A computer-readable recording medium that stores a
program to have a computer function as a Just-In-Time (JIT)
compiler used with a virtual machine that executes a virtual
machine instruction sequence under control of a real
machine, the JIT compiler converting parts of the virtual
machine instruction sequence into real machine instruction
sequences before execution,

wherein the compiler comprises:

block start information receiving means for receiving
an input of block start information for each virtual
machine instruction that composes the virtual
machine instruction sequence, the block start infor-
mation showing whether a corresponding virtual
machine instruction would correspond to a start of a
basic block if the virtual machine instruction
sequence were divided into basic blocks;

converting means for converting virtual machine
instructions in the virtual machine instruction
sequence into real machine instruction sequences;
and

outputting means for rearranging the real machine
instruction sequences produced by the converting
means into basic block units in accordance with the
block start information received by the block start
information receiving means.

