
(19) United States
US 2003O233386A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0233386 A1
Waki et al. (43) Pub. Date: Dec. 18, 2003

(54) HIGH SPEED VIRTUAL MACHINE AND
COMPLER

(76) Inventors: Hiroyuki Waki, Hirakata-shi (JP);
Shinji Inoue, Neyagawa-shi (JP);
Satoru Hayama, Kobe-shi (JP);
Mitsuko Fujita, Tokyo-to (JP); Akira
Ishikawa, Kashiba-shi (JP)

Correspondence Address:
Snell & Wilmer LLP
Suite 1200
1920 Main Street
Irvine, CA 92614 (US)

(21) Appl. No.: 10/403,917

(22) Filed: Mar. 31, 2003

Related U.S. Application Data

(62) Division of application No. 09/288,263, filed on Apr.
8, 1999.

(30) Foreign Application Priority Data

Apr. 8, 1998 (JP)... 10-96.204

INSTRUCTION
STORING UNIT

EXECUTING
UNIT

STORING

4401

4412 PROGRAM

Publication Classification

(51) Int. Cl." ... G06F 9/00
(52) U.S. Cl. .. 709/100

(57) ABSTRACT

A virtual machine with a Stack architecture includes: a Stack
120 whose top level (TOS) and the second level from the top
(SOS) are mapped to registers of a real machine 201; an
instruction Storing unit 102 for Storing a virtual machine
instruction Sequence to be executed; next instruction infor
mation Storing unit 101 for Storing a plurality of Sets of next
instruction information that are each associated with a
different virtual machine instruction in the virtual machine
instruction Sequence, the Set of next instruction information
for a given Virtual machine instruction indicating a change
in a number of sets of data stored in the stack 120 due to
execution of a virtual machine instruction executed after the
given virtual machine instruction; a decoding unit 103 for
decoding a virtual machine instruction and an associated Set
of next instruction information after reading them from the
instruction Storing unit 102 and the next instruction infor
mation storing unit 101; and an executing unit 110 for
executing the decoded virtual machine instruction and per
forming a Stack handling in the Stack 120 in advance for a
Virtual machine instruction that is to be executed next based
on the Set of next instruction information.

4400
-

4402

4404 DECODING
UNIT

Patent Application Publication Dec. 18, 2003 Sheet 1 of 91 US 2003/023338.6 A1

FIG. 1

INSTRUCTION
STORING UNIT

4404 DECODING
UNIT

EXECUTING
UNIT

AICI]InWN

<^ICI WHOHH?d OL GIGIOO HOSSERICICTV ?Wnf> <!InWN WRIO:RIGHd OL GIGIOO HO SSRNHCICIV ?WN[\[>

US 2003/0233386A1

<99CI W MOH}{Rd OL HOTOO HOSSERICICIV dWN[\[>33CI <OUÍ WHOHH?d OL QIQOO HOSSERICICTV ?Wnf>SUI <qnS WHOHNHEId OL GIGIOO HO SSOERICICTV ?WQ/>qnS
<PPV WHO RIAA OLACIOO JOSSARICITV dwnf> || PPV ||

<dod WHOHH?d OL GIGIOO HO SSOEINGICIV ?WOf>

9 (0IH

Patent Application Publication Dec. 18, 2003 Sheet 3 of 91

Patent Application Publication Dec. 18, 2003 Sheet 4 of 91 US 2003/0233386A1

FIG. 4A

MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Push"
l:Inc r3 ; INCREMENTSPVALUEBY ONE
2:Load r0,r2 ; EXTRACT OPERAND AND

; PLACE IT ONTO REGISTER O
3: Inc r2 ; INCREMENTVIRTUAL MACHINE PCBY ONE AND

; PREPARE FOR READING NEXT INSTRUCTION
4:Store (r3) rO ; PUSHVALUE OF REGISTER it OONTO STACK

<MICROPROGRAM FORJUMPING TO NEXT VIRTUAL MACHINE INSTRUCTION)

FIG. 4B
MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Add"

l:Load y ; EXTRACT VALUE FROMSTACK
; PLACE IT ONTO REGISTEREO

2: Dec ; DECREMENT VALUE OF VIRTUAL MACHINE SP BY ONE
3:Load ; EXTRACT VALUE FROMSTACK

; PLACE IT ONTO REGISTER it 1
4:Add r0,rl ; ADD VALUES OF REGISTER O AND it AND

; PLACE RESULTONTO REGISTER it
5:Store (r3) rO ; PLACEVALUE OF REGISTER #OONTO STACK

<MICROPROGRAM FORJUMPING TO NEXT VIRTUAL MACHINE INSTRUCTION)

FIG. 4C
MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Mult" -

l:Load r0,(r3) ; EXTRACT VALUE FROMSTACK AND
; PLACE IT ONTO REGISTER it:0

2Dec r3 ; DECREMENT VALUE OF VIRTUAL MACHINESP BY ONE
3:Load r1,r2 EXTRACT VALUE FROMSTACK AND

; PLACE IT ONTO REGISTER 1
4:Mult r0,r0,r1 : MULTIPLY VALUES OF REGISTERS O AND it 1 AND

; PLACE RESULTONTO REGISTER it 1
5:Store (r3ro ; PLACE VELUE OF REGISTER iOONTO STACK
<MICROPROGRAMFORJUMPINGTONEXT VIRTUAL MACHINEINSTRUCTION)

FIG. 4D
<MICROPROGRAMFORJUMPINGTONEXTVIRTUAL MACHINEINSTRUCTIOND
l:Load r0,r2 ; READ VIRTUAL MACHINE INSTRUCTION

(JUMP ADDRESS) INDICATED BY PC
INTO REGISTER 0

2:Inc r2 ; INCREMENTVIRTUAL MACHINE PC VALUEBY ONE
3:Jmp O ; JUMPUNCONDITIONALLY TO LOCATION

INDICATED BY REGISTER it0

Patent Application Publication Dec. 18, 2003 Sheet 6 of 91 US 2003/0233386 A1

FIG. 6

4501

RECEIVE INPUT VIA
SIGNAL LINER

4503

READING STARTS?

Y - 4504
SET READING POSITION AT
LOCATION INDICATED BY PC

READ VIRTUAL MACHINE
CODE

4506.

SEARCH DECODE TABLE AND
OUTPUT DECODED DATA

- 4507
OUTPUT NOTIFICATION OF
END OF READING ONTOR

Patent Application Publication Dec. 18, 2003 Sheet 7 of 91 US 2003/0233386A1

FIG. 7
Start 4801

VCae-READ VIRTUAL A802
NACHINE CODE
OPCODE

4803

"i"INDICATES
LAST ENTRY OF

VCb{-ith VIRTUAL MACHINE O
CODE INTABLE

4806 Y
4808

SA807/OUTPUT JUMP ADDRESS Nith ENTRY
it i+1 OF TABLE TOEXECUTING UNIT

4809
SUBSTITUE NUMBER OF OPERAND IN
ith ENTRY OF TABLE INTO op Count

O P 4810
4814

ERROR HANDLING Y

End

Patent Application Publication Dec. 18, 2003 Sheet 8 of 91 US 2003/023338.6 A1

FIG. 8
4601

RECEIVE INPUT VIA
SIGNAL LINER

4603

INPUT FOR READ
NUMBER RECEIVED

VIA RP

Count(- INPUT NUMBER

NOTIFICATION FOR
PC CHANGE RECEIVED

VIA Rip

dPC (-dpC--i 4609 - 4614
461 O /OUTPUT NOTIFICATION OF

SET READING POSITION END OF READINGVIAR
AT dRC LOCATION

READ VIRTUAL MACHINE 4611
CODE -

SEARCH DECODE TABLE ANDTA612
OUTPUT DECODED DATA

4613

Patent Application Publication Dec. 18, 2003 Sheet 9 of 91 US 2003/0233386A1

FIG 9
4701

4702
INITIALIZE PROGRAM COUNTER
PC) AND STACK POINTER (SP

4703
OUTPUT NOTIFICATION TO
READ NEXT INSTRUCTION
ONTO SIGNAL R

READ DECODED DATA

4705
EXECUTE MICROPROGRAM FOR
DECODED DATA

4706
RECEIVE INPUT VIAR

NOTIFICATIO
OF END OF READING
RECEIVED VLAR

Patent Application Publication Dec. 18, 2003 Sheet 10 of 91 US 2003/023338.6 A1

FIG 10A

FIG 10B

ARITHMETIC EXPRESSION: <DATA AREA it OD=2*(3+4)

FIG 10C

10: OPERAND "O" -

US 2003/0233386 A1 Patent Application Publication Dec. 18, 2003 Sheet 11 of 91

FIG 11B FIG. 1 1A

Patent Application Publication Dec. 18, 2003 Sheet 12 of 91 US 2003/023338.6 A1

FIG. 12A
MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Push"

1Inc r3 ; INCREMENTSPVALUEBY ONE
2:Store r3) rO ; PLACEVALUE OF TOS REGISTER (iO)

; INTO STACK
3:Load r0,r2 ; EXTRACT OPERAND AND

; PLACE IT ONTO TOS REGISTER
4:Inc r2 ; INCREMENTPC OF VIRTUAL MACHINEBY ONE TO PREPARE

; FOR READING NEXT INSTRUCTION

<MICROPROGRAM FORJUMPINGTONEXTVIRTUAL MACHINE INSTRUCTION)

FIG. 12B
MICROPROGRAM FORVIRTUAL MACHINE INSTRUCTION "Add"

EXTRACT VALUE FROMSTACK
; PLACE IT ONTO REGISTER il
; DECREMENT VALUE OF VIRTUAL MACHINE PC BYONE

3:Add sw ; ADD VALUES OF REGISTERS OAND titl AND
; PLACE RESULTONTO TOS REGISTER

<MICROPROGRAM FORJUMPINGTONEXTVIRTUAL MACHINE INSTRUCTION)

FIG. 12C
MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Mult"

l:Load r1,r) ; EXTRACT VALUE FROMSTACKAND
; PLACE IT ONTO REGISTER:1

2:Dec r3 ; DECREMENT VALUE OF VIRTUAL MACHINESPBYONE
3:Mult r0,rOrl ; MULTIPLY WALUES OF REGISTERSO AND 1 AND

; PLACE RESULTONTO TOS REGISTER

<MICROPROGRAMFORJUMPINGTONEXTVIRTUALMACHINEINSTRUCTIOND

FIG. 12D
CMICROPROGRAMFORJUMPINGTONEXTVIRTUAL MACHINEINSTRUCTION)

1:Load r1,r2) ; READ VIRTUAL MACHINEINSTRUCTION (JUMP ADDRESS)
; INDICATED BYPCINTO REGISTER il

2Inc r2 ; INCREMENTVIRTUALMACHINE PCBYONE
3:Jmp r : JUMPUNCONDITIONALLY TO LOCATION

INDICATED BY REGISTER it 1

Patent Application Publication Dec. 18, 2003 Sheet 13 of 91 US 2003/0233386A1

FIG. 13A FIG 13B

Patent Application Publication Dec. 18, 2003 Sheet 14 of 91 US 2003/0233386A1

FIG. 14

W STAGENAME NOTATION

INSTRUCTION FETCH
INSTRUCTION DECODE AND
REGISTER REFERENCE

EXECUTION
MEMORYACCESS

RESULT WRITING TO REGISTER

FIG. 15
CLOCK 1 2 3. 8

INSTRUCTION A
INSTRUCTION B
INSTRUCTION C
INSTRUCTION D

FIG. 16

CLOCK

INSTRUCTION B1
INSTRUCTION B2
INSTRUCTION C1
INSTRUCTION C2
INSTRUCTION D1
INSTRUCTION D2

Patent Application Publication Dec. 18, 2003 Sheet 15 of 91 US 2003/0233386 A1

FIG. 17

CLOCK 2 3 || 4 || 5 || 6 7

INSTRUCTION AIF RFALUMEMIWB
UMEMIWB INSTRUCTION B

IF RFALUMEMWB INSTRUCTION C
INSTRUCTIOND IF RFALUMEMWB

FIG. 18

CLOCK 1 6 7
IF RFALUMEMWB
IF RFALUMEMIWB

IF RF : ALUMEMWB
INSTRUCTION A2
INSTRUCTION B1
INSTRUCTION B2 IF RFALUMEMWB
INSTRUCTION C1
INSTRUCTION C2 IF RF : ALUMEMWB
INSTRUCTION D1 IF RFALUMEMWB
INSTRUCTION D2 IF RF ALUMEMWB

FIG. 19

INSTRUCTION B
INSTRUCTION C
INSTRUCTION D

Patent Application Publication Dec. 18, 2003 Sheet 16 of 91 US 2003/0233386 A1

FIG. 20

CLOCK 1 2 | 3 || 4 || 5 || 6 || 7 | 8

INSTRUCTION A1 HHSAAWE INSTRUCTION A2
INSTRUCTION B1 LIFRF. ALUMEMWB
INSTRUCTION B2 IF RFALUMEMWB
INSTRUCTION C1 IFIRFALUMEMWB
INSTRUCTION C2
INSTRUCTION D1
INSTRUCTION D2 IF RF : ALUMEMWB

FIG 21
CLOCK 1 2 3 4 5

INSTRUCTION A
INSTRUCTION B IF x
INSTRUCTION C IFRFALUMEMWB

FIG. 22

CLOCK
INSTRUCTION A1
INSTRUCTION A2

1.

IFRFALUMEMWB
IF RFALUMEMWB

INSTRUCTION B1 H
INSTRUCTION B2 IF x
INSTRUCTION C1 IFRFALUMEMWB
INSTRUCTION C2

Patent Application Publication Dec. 18, 2003 Sheet 17 of 91 US 2003/023338.6 A1

FIG. 23

FIG. 24

Load r1 r2 IF RFALU
Inc
Jmp

Load r1,rs
Dec r3
Mult ro,r0,r1

Patent Application Publication Dec. 18, 2003 Sheet 18 of 91 US 2003/023338.6 A1

is t
s

m

very my

CN CY (A

3 aS , 2
8 N || 2 ag E

8 g E SS E

Patent Application Publication Dec. 18, 2003 Sheet 19 of 91 US 2003/023338.6 A1

352
N is 2.É.
ce Exxx xxxx is
sess EE s'ss 2222
costsea

N s
E E

Patent Application Publication Dec. 18, 2003. Sheet 20 of 91 US 2003/0233386 A1

FIG. 27

Patent Application Publication Dec. 18, 2003. Sheet 21 of 91 US 2003/0233386 A1

FIG. 28

001

Y 7005
Sum Sun--
i{-i-1

US 2003/023338.6 A1 Patent Application Publication Dec. 18, 2003 Sheet 22 of 91

H I, I, SCINWRIGHdHO HO >{{{HWN[]N

{{JLVTdJ/NGHJ, GHGIOO (HNIHOVW TVEIRI

{{CIOO ?INIHOVW TV3H?H HO GIZIS

8.LVTdJWNGIL | NOILO/TRILSNI
?INIHOVW TVTlJLÈHIA

Patent Application Publication Dec. 18, 2003. Sheet 23 of 91

FIG. 30

VIRTUAL
MACHINE
CODE
ADDRESS

VIRTUAL
MACHINE
CODE

REAL MACHINE
CODESIZE

Push 1 U S h

PP 1.

CORRESPONDING
REAL MACHINE
CODE ADDRESS

Pop (OI 5 4-8
Pop 1
Push (O)

23-26

30-34

US 2003/023338.6 A1

Patent Application Publication Dec. 18, 2003 Sheet 24 of 91 US 2003/0233386 A1

FIG. 31A
9300a 9300b

BIT SEQUENCE | MEANING
0 "a"

FIG. 31B

instruction ounct A:"babc"
10 0 1 0 1 1 0

INSTRUCTIONSEQUENCE B:"aabc"

Patent Application Publication Dec. 18, 2003 Sheet 26 of 91 US 2003/0233386 A1

FIG. 33

0:Push 0 i(-0
2:Pop O
4:Push 0 ;Sum{-0
6:Pop l

-> 8Rush 9 is 10?
A 10:Push 10

12:Sub
13:BIZ 31

15:Push (1) sum sum+i
17:Push (O)

-> 19Add -- B 20:Pop 1)
22:Push (O) i(-i+1
24:Push 1
26:Add
27:Pop O

C 8
31:Stop

Patent Application Publication Dec. 18, 2003. Sheet 27 of 91 US 2003/0233386 A1

w
3)

S

S \3 5
&

E.

E. \|
E.
E.
E. S

s s

Patent Application Publication Dec. 18, 2003 Sheet 28 of 91 US 2003/023338.6 A1

FIG 35
101 102 100

NEXT INSTRUCTION -/ INSTRUCTION INFORMATION STORING UNIT STORING UNIT

NEXT INSTRUCTION
INFORMATION
READING UNIT

10 8

DECODE
TABLE

EXECUTING
UNIT

112 MICRO PROGRAM
STORING
UNIT

121
TOS STACK

122
SOS

12
MEMORY 3
STACK

Patent Application Publication Dec. 18, 2003 Sheet 29 of 91 US 2003/0233386A1

FIG. 36A FIG. 36B

101 102

: Push 1.

2 2

Push 3

4: 3

5 : Push

w 6: 4

7: D 7: Add
8: Mult
9: Pop
10:

Patent Application Publication Dec. 18, 2003. Sheet 31 of 91 US 2003/0233386 A1

FIG. 38A
MICROPROGRAM FOR VIRTUAL MACHINE INSTRUCTION "Push" WITH "U"
1:Load r4rO COPY VALUE OF TOS REGISTER (EO)

INTO SOS REGISTER (it 4)
2:Load ro, (r2) READ OPERAND INTO TOS REGISTER

3: Inc r2 INCREMENTVIRTUAL MACHINE PC BY ONE TO
PREPARE FOR READING NEXT INSTRUCTION

4:Inc r3 INCREMENT VIRTUAL MACHINE SP BY ONE
5:Store r3r4 PLACE SOS REGISTERVALUE INTO STACK

6:Load r1,r2 READ VIRTUAL MACHINE INSTRUCTION
m (JUMP ADDRESS) INDICATED BY

PC INTO REGISTER it 1
7:Inc r2 INCREMENT VIRTUAL MACHINE PC BY ONE
8:Jmp r1 JUMP UNCONDITIONALLY TO LOCATION

INDICATED BY REGISTER it 1

FIG. 38B
MICROPROGRAM FORVIRTUAL MACHINE INSTRUCTION "Push" WITH "D"

1:Load r4rO COPY VALUE OF TOS REGISTER (EO)
INTO SOS REGISTER (it 4)

2:Load ro, (r2) READOPERAND INTO TOS REGISTER

3: Inc r2 ;INCREMENTVIRTUAL MACHINE PCBY ONE TO
PREPARE FORREADING NEXT INSTRUCTION

6:Load r1,r2) READ VIRTUAL MACHINEINSTRUCTION
(JUMP ADDRESS) INDICATED BY
PC INTO REGISTER 1

7:Inc r2 ;INCREMENTVIRTUAL MACHINE PCBY ONE
8:Jmp r1 JUMPUNCONDITIONALLY TO LOCATION

INDICATED BY REGISTER it 1

US 2003/023338.6 A1

? ?LINA GIGIOO àWnf RNIHOVW TWOLÈHIA (JOHWW}{{DO?dOHOIWN>

MALSIORI SOL OLNILTASARI ROVTd GNY. „?
‘HEILSIORI SOS CINV HALSIORI SOL HOSHIITVAŽijñ?ñW: #F0F0; TWI T?T?T?WT??WTNõ???????SN?GINIHOVW TWOLÈHIA HOdWVHOONH4OHOIWN

{{0ý ‘0IH

?IJISIOGIH SOL OLNI LTñSHRI ROVTd CINY
ºy?, LSIO?I SOS CINV HELSIOTH SOL HO SATTVA¿T?ILTOWN: #1'01'0J JITWI

Patent Application Publication Dec. 18, 2003. Sheet 33 of 91

US 2003/023338.6 A1 Patent Application Publication Dec. 18, 2003. Sheet 35 of 91

SOS ? SOL WRIOH^{-{d{<······· -SOS do? (INV SOS->SOLWHO RIAA-e.-- ço? dog WGIO INI?IA ------. SOS ?Snd WHO:RIÐd <—GIGIWYHO HNIGHä ONIH LON<—

NOILVWYWO?NI NOILOQ}{LSNI JXANEZ
NOLLWYIZIJO »IZILHV CI?SVRHONI STHARTXOVIS 39>{{{HWN?IN? N?i ivae ??O No. CIISQ QIQ OL XOVLS NI SHQTVA HO»IGI@WQNX (Z)X'X

(SOS SOL)do-?SOL(SOL)do?SOL yº

Patent Application Publication Dec. 18, 2003 Sheet 36 of 91 US 2003/0233386 A1

FIG. 43

4901

RECEIVE INPUT VIAA 4902
SIGNAL LINER

/ 4903
READING
TARTED2

Y 4904
SET READ POSITION AT
LOCATION SPECIFIED BY PC

READ VIRTUAL
/ MACHINE CODE

4906

READ NEXT INSTRUCTIONA
/ INFORMATION -

4907

SEARCH TABLE AND
OUTPUT DECODED DATA

4908
OUTPUT NOTIFICATION OF
END OF READING ONTOR

Patent Application Publication Dec. 18, 2003. Sheet 37 of 91 US 2003/0233386 A1

FIG. 44
5001

5002
VCat-READ VIRTUAL
NACHINE CODE

5003
VNCa-READ NEXT
INSTRUCTION INFORMATION

5004

"i"INDICATES
ND OF TABLE 2

5006 (0.
VCb{-VIRTUAL MACHINE
CODE AT "i"THENTRY OF TABLE

VNCb-C-NEXT INSTRUCTION INFORMATION
AT"i"THENTRY OF TABLE

Patent Application Publication Dec. 18, 2003. Sheet 38 of 91 US 2003/0233386 A1

FIG 45

m - 5101

OUTPUT "i"TH DECODED DATA TO
EXECUTING UNIT

5102
SUBSTITUTE "i"TH NUMBER OF OPERAND

(0. INTO op Count d
5103

ERROR HANDLING

Y 5104

N 5105
READ VIRTUAL MACHINE CODE AND OUTPUT
OPERANDS TOEXECUTING UNIT

5108
End

Patent Application Publication Dec. 18, 2003 Sheet 39 of 91 US 2003/023338.6 A1

FIG. 46

1:<JUMP ADDRESS OF CODE TO PERFORMPush WITH"U">

TH"U")

2:OPERAND "2"

7:<JUMP ADDRESS OF CODE TO PERFORM Add WITH "D")
8:<JUMP ADDRESS OF CODE TO PERFORM Mult WITH "D")
9:<JUMP ADDRESS OF CODE TO PERFORM Pop WITH"U">
10:OPERAND "0"

US 2003/023338.6 A1 Patent Application Publication Dec. 18, 2003. Sheet 40 of 91

FIG. 47A FIG 47B

Patent Application Publication Dec. 18, 2003 Sheet 41 of 91 US 2003/0233386A1

FIG. 48

Mult r(),rOr4

Patent Application Publication Dec. 18, 2003 Sheet 42 of 91 US 2003/023338.6 A1

FIG. 50

CLOCK 1
Load r1,r2 IF
Load rá, r3)
Inc r2

9 2 | 3 || 4 || 5 || 6

FAMEws
His

10 11

IF RFALUMEMWB
IFRFALUMEMWB

IF x
IF RFALUMEMWB Mult r0,r0,ra.

Patent Application Publication Dec. 18, 2003 Sheet 43 of 91 US 2003/023338.6 A1

FIG 52

3404

SOURCE PROGRAM 3400

3401
INSTRUCTION C3 NEXT INSTRUCTION
SEQUENCE INFORMATION
CONVERTING UNI GENERATING UNIT

VIRTUAL
56 NIT MACHINE

COMPILER
TION
CIATING U

VIRTUAL NEXT
MACHINE INSTRUCTION
PROGRAM INFORMATION

3405a 3405b

Patent Application Publication Dec. 18, 2003 Sheet 45 of 91 US 2003/0233386A1

FIG. 54

5201

INSTRUCTION TYPE
POINTERTO POINTERTO
LEFTSUB-TREERIGHTSUB-TREE

5203

5202

FIG 55
5401

5402

READ INSTRUCTIONSEQUENCE
- 5403

INITIALIZE CALCULATION
STACK

f 54.04

ptre-ROOTNODE
POINTER

5405
GENERATE VIRTUAL MACHINE
INSTRUCTIONSEQUENCE

54.06

Patent Application Publication Dec. 18, 2003 Sheet 46 of 91 US 2003/0233386A1

FIG. 56
56O1

- 5602

Said Y
PUSH proNTOCALCULATION 5908 G2)
STACK

ptre-LEFT BRANCH POINTER-5604
OF ptr NODE
GENERATE VIRTUAL MACHINE - 5605
INSTRUCTIONSEQUENCE
Popptr FROM CALCULATION 1-5606
STACK

Pushptr ONTO CALCULATIONu-5607
STACK

ptr-RIGHT BRANCH POINTER-5608
OF ptr NODE
GENERATE VIRTUAL MACHINE/5609
INSTRUCTIONSEQUENCE
Popptr FROM CALCULATION-5610
STACK

kind- INSTRUCTION TYPE VALUE/5611
OF ptr NODE

5612 (2)
Skind NUMERICA Y
ALUE OR ADDRESS

OUTPUT VIRTUAL MACHINE
CODE CORRESPONDING TO kind

5614

Start

Patent Application Publication Dec. 18, 2003 Sheet 47 of 91 US 2003/023338.6 A1

5901

OUTPUT CONTENTS (OPERAND)
OF LEFT BRANCH

5908

OUTPUT CONTENTS (OPERAND)
OF LEFT BRANCH

Patent Application Publication Dec. 18, 2003 Sheet 49 of 91 US 2003/0233386A1

FIG 59
6001

6002
prve-"U"
Addr(-0

6003
NOVIRTUAL

MACHINE CODES
TO READEXIST 2

601
N 6004 End

READ VIRTUAL MACHINE
CODE VIA C1

6005
READ NEXT INSTRUCTION
INFORMATION VIA C2

N 6008

now-(- READ NEXT INSTRUCTION
INFORMATIO

OUTPUT NEXT INSTRUCTION INFORMATION 6009
now AND VIRTUAL MACHINE CODE TO
LOCATION SPECIFIED BY VARIABLE Addr

6010
prvnow
Addr(Addr--1

Patent Application Publication Dec. 18, 2003 Sheet 50 of 91 US 2003/0233386A1

FIG. 60
3500

INSTRUCTION u1401 -7
STORING UNIT

35O2

INSTRUCTION
READING UNIT

4405 4406

DECODE TABLE

3505

4404 DECODING
UNIT

SEARCH UNIT

INTERRUPT
CONTROLLING
UNIT

BRANCH
INSTRUCTION
DETECTING UNIT

D2

INTERRUPT
INSTRUCTION
NSERTIN N

3507

INTERRUPT

SF6F RN N

G UNIT
MICRO 3516

4412 PROGRAM INTERRUPT

SFNES

EXECUTIN

Patent Application Publication Dec. 18, 2003 Sheet 51 of 91 US 2003/023338.6 A1

FIG 61
6101

vca READ VRTUALu6102
NACHINE CODE

6103

"i" INDICATE
LAST ENTRY OF

ABLE 2

6104

6105 CD
VCb{- VIRTUAL MACHINE CODE
IN "iTH" ENTRY OF TABLE

6106

seves Y 6108
N - 6107 TURNSIGNAL LINE C1. ON

i(---1 6109
OUTPUT DECODED DATAIN"iTH"
ENTRY OF TABLE ONTO D1 .

6110
TURNSIGNAL LINE C1 OFE

6111
SUBSTITUE NUMBER OF OPERAND IN

O "iTH" ENTRY OF TABLE INTO op Count
6116 6112

ERROR HANDLING

N

READ VIRTUAL MACHINE CODE
51 17 TO OUTPUT OPERAND ONTO D1

6115

Patent Application Publication Dec. 18, 2003 Sheet 52 of 91 US 2003/0233386A1

FIG. 62
6201

READ DECODED 62O2
DATAVIA D1

u 620
didata:(- READ DECODED DATA 3

6204
IS SIGNAL LINE C1 ON?

S didata ADDRESS OF
CHINSTRUCTION?

Y 6206
TURNSIGNAL
LINE C2 ON

6207
OUTPUT didata
ONTO D2

6208
- TURNSIGNAL

LINE C2 OFF

6209

Patent Application Publication Dec. 18, 2003 Sheet 53 of 91 US 2003/023338.6 A1

FIG 63

Start

READ DECODED
DATA VIA D2

6303

ddata 2 - READ DECODED DATA

NE u 6304 N

Y 6305

READ INTERRUPT
STATE VIA ID

6306
INTERRUPT STATE

DETECTED
Y 6307

OUTPUT ADDRESS OF REAL MACHINE
CODE FOR HANDLING INTERRUPT

6308
OUTPUT didata2 TO /
EXECUTING UNIT

6309

Patent Application Publication Dec. 18, 2003 Sheet 54 of 91 US 2003/0233386A1

FIG. 64

INSTRUCTION u1401
STORING UNIT

3600

3502

4404 DECODING
UNIT

3905 INTERRUPT
CONTROLLING
UNIT

BLOCK
CONVERTING
UNIT

3507

INTERRUPT
ST RIN

INTERRUPT
INSTRUCTION
NSERTIN N N

EXECUTING UNIT
MICRO 3516

4412 PROGRAM INTERRUPT

SF'N ESSES R RAM

Patent Application Publication Dec. 18, 2003 Sheet 55 of 91 US 2003/0233386A1

FIG. 65
6401

Start O
6402

DATA VIA D1
6403

m-REMAINDER GENERATED-6405
BY DIVIDING PC BY bsize

6406

Sod
TURNSIGNAL LINE
C2 ON

OUTPUT ddata 6408
ONTO D2

TURNSIGNALLINEA-6409
C2 OFF

C End D
6410

Patent Application Publication Dec. 18, 2003 Sheet 56 of 91 US 2003/0233386A1

FIG. 66

INSTRUCTION
STORING UNIT

3701 3700
4402

4404 DECODING
UNIT

3704
AREA JUDGING
N.

ADDRESS
CONVERTING UNIT

4412 PROGRAM

REAL MACHINE
FUNCTION STORING
UNIT

Patent Application Publication Dec. 18, 2003 Sheet 57 of 91 US 2003/0233386A1

FIG 67
3701

VMmin
- 6501

VIRTUAL MACHINE
PROGRAM

VMimax
RMmin(=Vmax+1) 6502

RMmax

REAL MACHINE
FUNCTION TABLE
-

FIG. 68
(CORRESPONDING ADDRESS) 6502

RMmax-RMmin)th POINTERTO REALMACHINE FUNCTION
(RMmax-RMmin-1)th POINTERTO REALMACHINE FUNCTION
(RMmax-RMmin-2)th POINTERTO REALMACHINE FUNCTION
FF

Oth POINTERTO REAL MACHINE FUNCTION

Patent Application Publication Dec. 18, 2003 Sheet 58 of 91 US 2003/0233386A1

FIG 69

6801

add-operand 6802
6803 N

Y 6804 N

addrCRMmax?

Y 6805

idx (RMmax-Jaddr
6808

CALCULATE ADDRESS OF
NEXT VIRTUAL MACHINE
CODE AND SUBSTITUTE IT

6806 INTO VARIABLE npc
READ POINTER ptr I
SEFEMESSEE 6809
NSöff'EF5Exid PUSH npcTO STACK

6810

EXECUTE REAL MACHINE
FUNCTION SHOWN BY
POINTER ptr

End

US 2003/0233386A1 Patent Application Publication Dec. 18, 2003 Sheet 59 of 91

-VJEVCI

Patent Application Publication Dec. 18, 2003 Sheet 60 of 91 US 2003/0233386A1

FIG.71 -3800 3801

INSTRUCTION
3852d STORING UNIT

INSTRUCTION
BLOCKSTORING

AREA 3853b AREA
IDENTIFIER
STORING AREAT 3854d

3852a 3852b
NSRSTIQNSRSTN-3853d RSK STORINGBLOCKSTORING
IDENTIFIER
TORING AREA

3854a - NON-BRANCH NON-BRANCH NON-BRANCH
STRUCTION INSTRUCTION INSTRUCTION

STORING AREA STORING AREA 3854b ISTORING AREA
BRANCH
INSTRUCTION
STORING AREA

BRANCH
INSTRUCTION
STORING AREA

BRANCH
INSTRUCTION
STORING AREA

3802

3855b.

"points SEGMENT
SRNK- REGISTER OFFSET

4405 COUNTER

DECODE 4406
SEARCH UNIT TABLE

EXECUTING UNIT 4411
4412 MICRO

PROGRAM
STORING
UNIT

4420

BRANCH
DESTINATION
CONVERTING
UNIT

Patent Application Publication Dec. 18, 2003 Sheet 61 of 91 US 2003/0233386A1

FIG 72

Patent Application Publication Dec. 18, 2003 Sheet 62 of 91 US 2003/0233386A1

FIG 73

8:Push
10:Push 10
12:Sub
13:BIZ

15:Push
17:Push O
19:Add
20:Pop 1)
22:Push O i(-i--1
24:Push 1
26:Add
27:Pop O)
29:Br 8

Sun Sum-i

Patent Application Publication Dec. 18, 2003 Sheet 63 of 91 US 2003/0233386A1

FIG. 74

(BIT POSITION) 15 87 O
IDENTIFIERSECMENT OFFSET

FIG. 75

8101
Start

Jaddre-OPERAND

IDENTIFIER SEGMENT OF PC(-Jaddr
OFFSET OF PC(-0

81.03

Patent Application Publication Dec. 18, 2003 Sheet 64 of 91 US 2003/023338.6 A1

FIG 76

0x0000: Push
0x0002:Pop O
0x0004:Push 0
0x0006:Pop 1)
0x0008:Br 0x0100

0x01 00:Push (O)
0x01 02:Push 10
0x0104:Sub
0x0105:Brz 0x0300
0x01 07:Br 0x0200

0x0200:Push
0x0202:Push (O)
0x0204:Add
0x0205:Pop 1
0x0207:Push (O)
0x0209:Push 1
0x020B:Add
0x020C:Pop
0x02OE:Br

0x0300:Stop

FIG 77

Patent Application Publication Dec. 18, 2003 Sheet 65 of 91 US 2003/0233386A1

7661 VIRTUAL

SOURCE PROGRAM

MACHINE
INTERMEDIATE INSTRUCTION COMPILER
SEQUENCE CONVERTING UNIT

7662 GENERATING
UNIT

65NVERTING
UNIT CONVERSION

TABLE

US 2003/0233386 A1 Dec. 18, 2003 Sheet 66 of 91 Patent Application Publication

e9991

: JJSJJONOLLISOHJON}}|}}|}}}|: 0WTHNOLIWHISIOHHI : NOII ISOd 8000|| I-3UT109è?
: J?S?JONOLLISOH{ON}}{{{|}} || 0WTH NOLIWHISTORII : NOLLISOd 8000 : J?SJÄ0 NOII ISOHJON}}|}}|}}| || 0WTHNOLIWHISI08 H | : NOLLISOd 8000 : J?SAJONOLLISOH{{ON}}{{{|}}|: 0WTHNOLIWHISIORII : NOIJISOd 8000

Z

Patent Application Publication Dec. 18, 2003. Sheet 67 of 91 US 2003/0233386 A1

FIG 79

7602
IDENTIFIERID (-0
Offset{-0

7603

Rcount(-0.

7604
ALL

VIRTUAL MACHINE
CODES ARE
READ

N
READMACHINE CODE -
INDICATED BY PC

7606
VC-VIRTUAL MACHINE CODE

7607
ISVC

AT THE FRONT OF
BASIC BLOCK?

7612
End

7701

NID-IDENTIFIERID+1
7702

GENERATE UNCONDITIONAL
BRANCHINSTRUCTION TO
LINK"ID" BLOCKWITH NEXT
"NID" BLOCK

SVC BRANCF
INSTRUCTION?

7609

CHANGE JUMP ADDRESSJUMP ADDRESS R 7703 IDENTIFIERID{-NID

7704 OUTPUT VC, ID, AND 7610
OFFSET SET ADDRESS ACCORDING

offsett-offset:+1 611 TO THE SETTING OF NID
PC-PC+1

Patent Application Publication Dec. 18, 2003 Sheet 68 of 91 US 2003/0233.386A1

FIG. 80
7301

7302

VCC-VIRTUAL MACHINE CODE

ISVC INSTRUCTION
LOCATED IMMEDIATELY

AFTER BRANCH
STRUCTION?

VCIS NOT THE FRONT
OF BASIC BLOCK

7307

7306

VC IS THE FRONT
OF BASIC BLOCK

Patent Application Publication Dec. 18, 2003 Sheet 69 of 91 US 2003/023338.6 A1

FIG. 81
Start

index(-O 7902
used{- FALSE

al 7903

index2Rcount? Y 7912
7904 Y

STORE CODE POSITION INDICATED IS "Used" TRUE
BY index INTO VARIABLE rPC N

CHANGE CONTENTS OF CELL
INDICATED BY RCount
AS FOLLOWS: PC
CODE POSITION: TRUE
REGISTRATION FLAG: NID
IDENTIFIER:

STORE REFERENCE POSITION REFERENCEPOSITION IDENTIFIERINCELL INDICATED IDENTIFIER: UNDEFINED
REFERENCEPOSITION UNDEFINED BY index INTO VARIABLE rD index INTO r OFFSET;

SEFREENESSEN 1907
BY index INTO VARIABLE rofs

7908
CHANGEUMPADDRESS OF JUMP SEESSENTIFIER 7915
ID AND OFFSETIOfSTONIDWALUE p

CHANGE CONTENTS OF CELL INDICATED BY index 17909
ASFOLLOWS:
CODE POSITION: PC
REGISTRATION FLAG : TRUE
IDENTIFIER: ND
REFERENCEPOSITION
IDENTIFIER: UNDEFINED
REFERENCE POSITION
OFFSET: UNDEFINED

used-TRUE 7910
7911

Patent Application Publication Dec. 18, 2003 Sheet 70 of 91

FIG 82

7801

7802

7803
Y

IDENTIFIER:

IDENTIFIER:

OFFSET:

REGISTRATION FLAG: FALSE

REFERENCE POSITION

REFERENCE POSITION

US 2003/0233386A1

7804 REGISTERINCELL OF RCount AS FOLLOWS: ORECODE POSITIONNDICATED Es. ST
BY index INTO VARIABLE rPC

E 7805

7810

PC

UNDEFINED

IDENTIFIERID

7806 OFFSET
STORE REGISTRATION
FLAG INDICATED BY 7811
index INTO VARIABLE rR

7807

7808

(5)
STORE IDENTIFIER
INDICATED BY index
INTO VARIABLE IID

7809
CHANGE BRANCH
DESTINATION ADDRESS
INTO rDVALUE

812
index index+1

Patent Application Publication Dec. 18, 2003 Sheet 72 of 91 US 2003/023338.6 A1

FIG 84
85O1

8502
Jaddré-OPERAND

8503
IDENTIFIER SEGMENT OF PC--Jaddr
OFFSET OF PC(-0

8504

INSTRUCTION BLOCK
OF IDENTIFIER SEGMENT

OF PC EXISTS?

N 8505
READ CORRESPONDING INSTRUCTION
BLOCK INTO CACHE

8506
End

Patent Application Publication Dec. 18, 2003 Sheet 73 of 91 US 2003/023338.6 A1

FIG 85 3900 3901

INSTRUCTION
3952b 3952d STORING UNIT

IDENTIFIER IDENTIFIER SCRING AREA-3954d SERENAREA
NON-BRANCH NON-BRANCH NON-BRANCH
NSTRUCTION INSTRUCTION INSTRUCTION
STORING AREA STORING AREA STORING AREA
BRANCH BRANCH BRANCH
NSTRUCTION INSTRUCTION INSTRUCTION

STORING AREA

T

3804 3804a -3902

IDENTIFIER
CURRENTL INSTRUCT SEGMENT FLAG REGISTER
STORING READING UNIT
UNIT

CURRENT
FLAG READ
CONTROL

412 MI9RO 4412, E58AM
STORING

4420

Patent Application Publication Dec. 18, 2003. Sheet 74 of 91

FIG. 86A 3952a 395.3a
NSTRUCTIONBLOCKIDENTEFERNO. : X

VIRT FLAG AREA 8605a

REALMACHINE CODEAREA-8607a
UALMACHINE CODEAREA

AAEMT, (EMPTY) 8607b

3954a1
3955a

FIG. 86B

O:KJUMPADDRESS OF CODE TOPERFORMPush
1:OPERAND'1"
2:KUMPADDRESS OF CODE TOPERFORMPush)
3:OPERAND'O'

4:KUMPADDRESS OF CODE TOPERFORMAdd)
5:KJUMP ADDRESS OFCODE TOPERFORMPopDX
6:OPERAND'1"
7:KJUMPADDRESS OF CODE TOPERFORMPush)
8:OPERAND'O'
9:{JUMP ADDRESS OF CODETOPERFORMPush)
10:OPERAND"1"
1:KUMPADDRESS OF CODE TOPERFORMAdd)
12:KJUMP ADDRESS OF CODE TOPERFORMPopD
13:OPERAND "O"
14:KUMPADDRESS OF CODE TOPERFORMBX
15:OPERAND "1"

US 2003/023338.6 A1

Patent Application Publication Dec. 18, 2003 Sheet 75 of 91 US 2003/0233386 A1

FIG. 87
8701

8702
RECEIVE INPUT VIA
SIGNAL LINER

8703
READING
TARTS?

Y 8704

IS MODE
PRESENT"

N

SETREADING POSITIONAT
LOCATION OF WIRTUAL MACHINE
CODE AREANDICATED BYPC

SET READING POSITIONAT
LOCATION OF VIRTUAL MACHINE
CODE AREANDICATED BY PC

8707 8710
SEARCHDECODE TABLE AND OUTPUT DECODED DATA
OUTPUT DECODED DATA TOEXECUTING UNIT

8711
SEND NOTIFICATION OF END
OF READING ON SIGNAL LINE R

Patent Application Publication Dec. 18, 2003 Sheet 76 of 91 US 2003/023338.6 A1

FIG. 88
Start 880

8802
INITIALIZE PROGRAM COUNTER (PC)
AND STACK POINTER (SP)

8803
SET "EMPTY" IN CURRENT FLAG

8804
OUTPUT NOTIFICATION TO
READ NEXT INSTRUCTION
ONTO SIGNAL R

READDECODED DATA
8806

EXECUTE DECODED DATA

RECEIVE INPUT VIA
SIGNAL LINER

RECEIVE
NOTIFICATION

OF END OF READING
VIA R

Patent Application Publication Dec. 18, 2003 Sheet 77 of 91

FIG. 89
8901

OFFSET OF PC(-0

INTO CURRENT FLAG

8902
Jaddre-OPERAND

IDENTIFIER SEGMENT OF PC(-Jaddr

SUBSTITUTE FLAG OF INSTRUCTION
BLOCK OF PC IDENTIFIER SEGMENT

US 2003/0233386A1

8903

8904

Patent Application Publication Dec. 18, 2003 Sheet 78 of 91 US 2003/023338.6 A1

INSTRUCTION
3952d STORING UNIT

UCTION
STORING

R
IDENTIFIER
STORING AREA

NON BRANCHNON BRANCH 3954b NON BRANCH
NSTRUCTION | | INSTRUCTION INSTRUCTION
STORING AREA STORING AREA STORING AREA
BRANCH BRANCH BRANCH
NSTRUCTION INSTRUCTION INSTRUCTION
TORING AREA TORING AREA

FLAG
STORING

i.
FLAG READ
CONTROL
UNIT

Patent Application Publication Dec. 18, 2003 Sheet 79 of 91 US 2003/0233386A1

FIG 91
9101

Jaddre-OPERAND 9102

IDENTIFIER SECMENT OF PC-add -9103
OFFSET OF PC-0

SUBSTITUTE FLAC OF INSTRUCTION-9104
BLOCK OF PC IDENTIFIER SEGMENT
INTO MODE

IS CURRENT FLAG
"PRESENT"

ISdPC
END OF VIRTUAL
MACHINE CODE

AREA?
9108 9112

SET READING POSITION ATVIRTUAL E
MACHINE CODE AREA INDICATED BY PC

READ VIRTUAL L-9109
MACHINE CODE

SEARCH DECODE TABLE AND-19110
CONVERT DECODED DATA.

dPC(-dPC-1 91.11

Patent Application Publication Dec. 18, 2003 Sheet 80 of 91 US 2003/023338.6 A1

VCat- L
MAC

"i" INDICATES
LAST ENTRY OF

ABLE P

READ VIRTUA
HINE CODE

i-O

VCb-e-ith REFERENCE
VIRTUAL MACHINE CODE

92.08
STORE ith DECODED DATA INTO
VARIABLE did

9209
WRITE did INTO LOCATION OF dPC
OF REAL MACHINE CODE AREA

9210
SUBSTITUTE ith OPERAND NUMBER
INTO op Count

50 92.15 it-0 9211
dPC (-dPC-1

ERROR HANDLING e

READ VIRTUAL MACHINE CODE
INTO AREA OF dBC OF REAL

9216 MACHINE CODEAREA
it-i-1 9214

On dPC (-dC-1

Patent Application Publication Dec. 18, 2003 Sheet 81 of 91 US 2003/0233386A1

FIG 93
9001

RECEIVE INPUT VIA
SIGNAL LINER

9003

READING STARTS?

SET READING POSITION AT
LOCATION OF VIRTUAL MACHINE
CODE AREA INDICATED BY PC

9005
READ DECODED DATA IN REAL
MACHINE CODE AREA

OUTPUT DECODED DATA
TOEXECUTING UNIT

SEND NOTIFICATION OF END
OF READING ON SIGNAL LINER

Patent Application Publication Dec. 18, 2003 Sheet 82 of 91 US 2003/0233386 A1

FIG. 94 -/4100
INSTRUCTION 4152d SFORNoNT

ON ÖRNCESS
IDENTIFIER
STORING AREA
COMPRESSED WIRTUAL
MACHINE CODEAREA

COMPRESSED WIRTUAL COMPRESSED VIRTUAL
MACHINE CODEAREA MACHINE CODEAREA

4154a NON-BRANCH NON-BRANCH NON-BRANCH
INSTRUCTION INSTRUCTION INSTRUCTION
STORING AREA STORING AREA STORING AREA

4155a BRANCH BRANCH BRANCH
INSTRUCTION INSTRUCTION INSTRUCTION
STORING AREA STORING AREA STORING AREA

RESTORING
ORMATION

RESTORING
INFORMATION

CURRENT
FLAG
STORING

INSTRUC.
TION
READING

4412 MI9RO PROGRAM
STORING

Patent Application Publication Dec. 18, 2003 Sheet 83 of 91 US 2003/0233386A1

FIG 95A
VIRTUAL MACHINE BITSEQUENCE SETS

000 P.
O

Patent Application Publication Dec. 18, 2003 Sheet 84 of 91 US 2003/0233386A1

4152a. 415.3a
FIG. 96A 4156a INSTRUCTIONBLOCKIDENTIFERNO. : X 1.

OMPRESSED WIRTUA 9506a
MACHINE CODENREAFLAG AREA 9507a

4158a RESTORING INFORMATION REALMACHINE CODEAREA
4157a1STORING AREA

4152b

FIG. 96B INSTRUCTIONRODENTERNO. 4153b also
00000000100110000 FLACAREA, EMPTY-9506b
OO 1010100101111 (EMPTY) L9507b
000 Push O -
OOPush O
101 Pop I O
110 Pop
111 Br 0x01

4158b.

4157b

FIG 96C
4158c 4152c

INSTRUCTIONBLOCKIDENTIFIERNO. : 2-4153c
OOOOOOOOOO 10000 4. 001 01 0100101111 FLACAREA PRESENT-9506c

O: 000 Push O MPADDRESS OF CODE TOPERFORMPush)
GE SOFERAND SEH 2:KUMP ADDRESS OF CODE TO PERFORMPush)
110 Pop ||3:OPERAND'O'
1B 0x014:KJUMP ADDRESS OF CODE TOPERFORMAdd)

OO Stop AC 5:KJUMPADDRESS OF CODE TOPERFORMPop0>
0100 Add 6:OPERAND "1"
REG 7:KUMP ADDRESSOF CODE TOPERFORMPush)
As T.E.Bessor cope toPERFORMP : S

AEGOFERAND UUUPush O 11:KJUMPADDRESS OF CODE TOPERFORMAdd) 01011 Sub
12:KJUMPADDRESS OF CODE TOPERFORMPop0)
13:OPERAND'O'
14:KUMPADDRESS OF CODE TO PERFORMBrX
15:OPERAND'1"

(c)

Patent Application Publication Dec. 18, 2003 Sheet 85 of 91 US 2003/0233386A1

FIG 97
96O1

Start

READ compressed BITSEQUENCE - 9602
AND PERFORM DECODING

96.O3

"i" INDICATES Y
LAST ENTRY OF

ABLE
N 9605

VCb{-VIRTUAL MACHINE CODE
AT "i"THENTRY OF TABLE (60)

9606
Y

96.08

9507 STORE DECODEDDATA AT "i"TH
ENTRY INTO VARIABLE did w

i(-i
w 9609

WRITE did INTO DECODED INSTRUCTION
SEQUENCE STORING AREAS

961O
SUBSTITUTE NUMBER OF OPERAND
AT "i"THENTRY INTO op Count

(60) i(-0 96.11
96.15 dPC-(-dPC+1

ERROR HANDLING

NESSSESSSES NESLES INSERTION
9616 SEQUENCESTORING AREAS

i{-i-1 96.14
End dPC(-dpC-1

Patent Application Publication Dec. 18, 2003 Sheet 86 of 91 US 2003/0233386A1

FIG. 98
97.01

97.02
RESERVE VARIABLE bitS FOR
COMPRESSED BITSEQUENCE

READ ONE BIT OF COMPRESSED CODE
FROM COMPRESSED VIRTUAL MACHINE
CODE AREA

LINK READ bit WITH
COMPRESSED CODE

9705
SEARCHRESTORING INFORMATION
STORING AREA

MATCHINGVIRTUAL
ACHINE INSTRUCTIO

FOUNDP

Y 9707
READ VIRTUAL MACHINE
INSTRUCTION FROM RESTORING
INFORMATION STORING AREA

9708
STORE OPCODE INTO
VCa

9709

SERE OPERAND INTO
op

9710

Patent Application Publication Dec. 18, 2003 Sheet 87 of 91 US 2003/023338.6 A1

FIG 99

4310

SOURCE PROGRAM

VIRTUAL
4321 MACHINE COMPILER
BLOCK START
INFORMATION
GENERATING UNIT

REAL MACHINE
ADDRESS
STORING UNIT

REAL MACHINE
INSTRUCTION
ONVERTN N

BRANCHPOSITION
AMENDING UNIT

REAL MACHINE
INSTRUCTION

Patent Application Publication Dec. 18, 2003 Sheet 88 of 91 US 2003/0233386A1

FIG 100

ISVCTUMP
DESTINATION
INSTRUCTION?

INSTRUCTION
THAT IMMEDIATELY
FOLLOWSJUMP
NSTRUCTION?

10006

OUTPUT BLOCK START OUTPUT BLOCKSTART
INFORMATION "N" ONTO D2 INFORMATION"T" ONTO D2

OUTPUTVIRTUAL MACHINE-10007
CODEVCONTO D1

10008

Patent Application Publication Dec. 18, 2003 Sheet 89 of 91

FIG. 101
Start 10101

(PC-0) 10102
101.03

ANY
VIRTUAL MACHINE

ODE LEFTP

10 104

READ VIRTUAL MACHINE CODE

SEARPLOCK START INFORMATION
(BI-BLOCK START INFORMATION)

PC OF REAL MACHINE
INDICATES ODD-NUMBERED

ADDRESS

OUTPUT REAL MACHINE
CODE "Nop"

US 2003/0233386A1

10111

VIA D1
(VC-(-VIRTUAL MACHINE CODE)

CONVERT VIRTUAL MACHINE CODE
TO REAL MACHINE CODE

101.05

101.06

OUTPUT REAL MACHINEINSTRUCTION 10110
CORRESPONDING TOVC

Patent Application Publication Dec. 18, 2003 Sheet 90 of 91 US 2003/0233386A1

E- 22222222 -

-
O C

al C

ZO
Z. ES H x g

& H222 - 22.2,

SS 3. r2

s

:

Patent Application Publication Dec. 18, 2003 Sheet 91 of 91 US 2003/0233386A1

FIG 103

U/D | N/T VIRTUAL MACHINE OPERAND(S)
OPCODE

US 2003/0233386 A1

HIGH SPEED VIRTUAL MACHINE AND
COMPLER

BACKGROUND OF THE INVENTION

0001) (1) Field of the Invention
0002 The present invention relates to virtual machines
and to Virtual machine compilers. In particular, the invention
relates to a technique for increasing the execution Speed of
Virtual machines.

0003) (2) Description of the Prior Art
0004 Standard Virtual Machine
0005 Virtual machines are used to have a same program
executed by computers, Such as personal computers and
workstations, that include different types of CPU. Virtual
machines are useful in the field of communications, espe
cially on a network to which different types of computers are
connected, since they can overcome the differences in CPU
architecture between computers and So allow the efficient
and high-speed use of Shared resources. Note that in this
specification, CPUs are called “real machines”.
0006 A virtual machine is a virtual processor, which is to
Say, a processor achieved by executing Software. A virtual
machine decodes and executes executable programs (here
inafter referred to as “virtual machine programs' or “virtual
machine instruction sequences”) that are sequences of
instructions (hereinafter, “virtual machine instructions”)
Specific to the virtual machine. Virtual machines are nor
mally realized by programs (hereinafter, “real machine
programs' or “real machine instruction Sequences' com
posed of instructions (hereinafter, "real machine instruc
tions’) specific to a target real machine on which the virtual
program is to be run. Maintaining a high execution Speed is
a central issue for Virtual machines, So that many virtual
machines have a Stack architecture.

0007 One example of conventional virtual machines are
the JAVA (trademark) virtual machines developed by SUN
MICROSYSTEMS, INC.
0008 FIG. 1 is a block diagram showing a construction
of a conventional virtual machine 4400 with a stack archi
tecture, Such as a JAVA virtual machine. The Virtual machine
4400 comprises the instruction storing unit 4401, the decod
ing unit 4402, the executing unit 4410, and the stack 4420.
The instruction storing unit 4401 stores a virtual machine
program to be executed. The decoding unit 4402 reads and
decodes a virtual machine instruction. The execution unit
4.410 executeS operations according to the decoded data
produced by the decoding unit 4402. The stack 4420, which
is a LIFO (last-in first-out) memory area, temporarily stores
data used in the processing of the execution unit 4410. In
FIG. 1, Solid lines show the data flows, while dotted lines
show the control flows.

0009. The decoding unit 4402 includes the decode table
4406, the program counter (PC) 4404, the instruction read
ing unit 4403, and the search unit 4405. The decode table
4406 Stores data, Such as jump addresses of microprograms
(stored in the executing unit 4410) that correspond to all of
the Virtual machine instructions that can be executed by the
virtual machine 4400 with a stack architecture. The program
counter (PC) 4404 holds the address of the next instruction
to be read from the instruction storing unit 4401. The

Dec. 18, 2003

instruction reading unit 4403 reads this next instruction. The
search unit 4405 refers to the decode table 4406 to find a
jump address corresponding to the read instruction and
outputs the jump address to the execution unit 4410. In this
Specification, a microprogram is a real machine program that
corresponds to a virtual machine instruction.
0010. The executing unit 4410 includes a microprogram
storing unit 4411 and a stack pointer (SP) 4412. The
microprogram Storing unit 4411 Stores microprograms,
which are real machine programs corresponding to virtual
machine instructions, in advance at locations indicated by
jump addresses. The stack pointer (SP) 4412 indicates the
address at the top of the stack 4420.
0011 FIG. 2 is a table for describing the instruction set
of the virtual machine 4400. In FIG. 2, all of the virtual
machine instructions that the virtual machine 4400 can
decode and execute are shown in mnemonic form, along
with the operation content of each instruction, changes in the
content of the stack 4420 caused by each instruction, and the
value of the SP 4412 after execution. In FIG. 2, the legend
“s0” indicates the value at the top of the stack 4420, while
“S1’ indicates the Second highest value. AS one example, the
notation “spe-s0+s1” for the virtual machine instruction
“Add” denotes that the value at the top of the stack is set
equal to a Sum of the top and Second highest values of the
stack before execution. The notation “spe-sp-1” denotes
that the height of the Stack decreases by one due to the
execution of the “Add” instruction.

0012 FIG. 3 shows the stored contents of the decode
table 4406 shown in FIG.1. This decode table 4406 includes
opcodes 4406a that indicate the operation types of virtual
machine instructions, jump addresses 4406b which are the
addresses of microprograms in the microprogram Storing
unit 4411 that correspond to these virtual machine instruc
tions, and numbers of operands 4406c that show the number
of operands in each virtual machine instruction. Here, each
opcode is Set as 1-byte long, and operands are counted in
one-byte units. Virtual machine instructions, which may
include only an opcode or only an operand, that are repre
Sented by a physical bit pattern are hereinafter referred to as
“virtual machine code'.

0013 FIGS. 4A-4D show examples of the micropro
grams Stored in the microprogram Storing unit 4411 in FIG.
1. The microprograms in FIGS. 4A-4C respectively corre
spond to the virtual machine instructions “Push”, “Add',
and “Mult', while the microprogram in FIG. 4D shows a
microprogram that forms the common latter part of each of
the microprograms in FIGS. 4A-4C. This microprogram in
FIG. 4D is a real machine program for jumping to the next
Virtual machine instruction. The operation contents of the
real machine instructions in these microprograms are shown
in FIG. 5. The virtual machine 4400 itself is realized by a
real machine that can decode and execute the real machine
instructions shown in FIG. 5. Note that the PC 4404 is
physically realized by register #2 (r2) of the real machine,
and the SP 4423 by register #3 (r3).
0014 FIG. 6 is a flowchart showing the processing of
decoding unit 4404 shown in FIG.1. The instruction reading
unit 4403 is instructed by the execution unit 4410 via a
signal line R to read the next instruction (steps 4502-4503)
and So reads the Virtual machine instruction with the address
stored in the PC 4404 from the instruction storage unit 4401

US 2003/0233386 A1

(steps 4504-4505). Following this, search unit 4405 refers to
the decode table 4406 to find a jump address and operands
corresponding to the read virtual machine instruction, out
puts the jump address and operands (if any) to the executing
unit 4410 as decoded data (step 4506), and gives the
executing unit 4410 a “read end” notification via the signal
line R (step 4507). This “read end” notification marks the
completion of decoding for one virtual machine instruction.
0.015 FIG. 7 is a flowchart showing the processing in
step 4506 in detail. The search unit 4405 compares 1-byte of
virtual machine code (the opcode) readby reading 4403 with
one opcode 4406a in decode table 4406 at a time until a
match is found (steps 4802-4807). The search unit 4405 then
reads the jump address 4406b and the number of operands
4406c corresponding to the matching opcode 4406a from
the decode table 4406. The search unit 4405 outputs the read
jump address 4406b to the executing unit 4410 (step 4808),
has the instruction reading unit 4403 read as many operands
as are indicated by the number of operands 4406c from the
instruction Storing-unit 4401, and outputs the operands to
execution unit 4410 (steps 4809-4813).
0016. The flowcharts of FIGS. 6 and 7 show the pro
cessing when decoded data Sent from the decoding unit 4402
is directly transferred to the executing unit 4410. The
flowchart in FIG. 8 shows the case when the decoded data
is transferred to the executing unit 4410 via a buffer that is
capable of Storing Sets of decoded data. In this latter case, the
reading of Virtual machine instructions from the instruction
Storing unit 4401 and the Subsequent decoding may be
performed independently of the execution by the executing
unit 4410 and repeated as long as there is space in the buffer
(steps 4605-4613).
0017 FIG. 9 shows the processing of executing unit
4410 in FIG.1. The executing unit 4410 initializes SP 4412
and PC 4404 (step 4702) and repeats the processing
described below for each virtual machine instruction (steps
4703-4707). That is, the executing unit 4410 instructs the
instruction reading unit 4403 via the signal line R to read the
next virtual machine instruction (step 4703). The executing
unit 4410 then reads decoded data transmitted from the
search unit 4405, jumps to a jump address that is included
in the decoded data and that Specifies a microprogram Stored
in the microprogram Storing unit 4411, the microprogram
corresponding to the read virtual machine instruction, and
executes the microprogram until the executing unit 4410
receives a “read end” notification via the signal line R (Steps
4704-4707).
0.018 FIG. 10A shows a sample program for describing
a specific example of the processing of the virtual machine
4400. In this example, instruction storing unit 4401 stores a
Virtual machine program for calculating the arithmetic
expression “2*(3+4)” shown in FIG. 10B.
0019 FIG. 10C shows the decoded data that is sequen

tially outputted from the decoding unit 4402 when the
virtual machine program shown in FIG. 10A is decoded and
executed by the conventional virtual machine 4400. The
decoding unit 4402 Successively outputs jump addresses and
the necessary operands corresponding to the decoded Virtual
machine instructions as decoded data to the executing unit
4410.

0020 FIGS. 11A and 11B show the states of the PC
4404, the SP 4412, and the stack 4420 before and after the

Dec. 18, 2003

execution of the each Virtual machine instruction when the
executing unit 4410 executes the virtual machine program
shown in FIG. 10A in accordance with the decoded data
sequences shown in FIG. 10C. These figures show the
processing of the Virtual machine program split into a former
and a latter part. Here, PC 4404 indicates the address of the
next virtual machine instruction to be executed in the Virtual
machine program. The addresses of Virtual machine instruc
tions are the numbers shown to the left of the virtual
machine instructions in FIG. 10A. The initial value of the
PC 4404 is “1”. The SP 4412 indicates the top of stack 4420,
and So marks a position at which an item was most recently
stored or read. The initial value of SP 4412 is “-1’ and
indicates that the stack 4420 is empty. As can be understood
from FIGS. 11A and 11B, the calculation of the arithmetic
expression “2*(3+4)” is completed when PC 4404 indicates
9”.

0021. The major problem for conventional virtual
machines like virtual machine 4400 is how to increase
execution Speed. Processes Such as the decoding of Virtual
machine instructions generate overheads, So that Virtual
machines end up operating at a much slower Speed than
when an equivalent real machine program is directly
executed by a real machine. To improve the performance
Speed of Virtual machines, the following methods have been
proposed.

0022 First Conventional Technique
0023. In this first conventional technique, the storage area
at the top of the stack (TOS) is assigned not to memory but
to a specified register of a real machine. Hereinafter, Such a
storage area is called the TOS variable (See pp315-327
“PLDI" (1995), ACM).
0024 FIGS. 12A-12D are microprograms corresponding
to the principal virtual machine instructions that are Stored
in a microprogram Storage unit of a virtual machine based on
this first conventional technique. These figures correspond
to FIGS. 4A-4D that were used to describe the virtual
machine 4400. This example uses the following physical
mapping. The TOS variable is assigned to register #0 (ro) of
the real machine and, as in FIGS. 4A-4D, PC 4404 to
register #2 (r2), and SP 4421 to register #3 (r3).
0025 FIGS. 13A and 13B show the changes in the states
of the PC 4404, the SP 4412, the TOS variable 4421, and the
memory stack 4422 (the part of the stack 4420 that is
allocated to memory) as a virtual machine provided with the
microprograms shown in FIG. 12A-12D executes the virtual
machine program shown in FIG. 10A. These figures shows
the processing split into a former and a latter part and
correspond to the FIGS. 11A and 11B that were used to
describe the operation of the virtual machine 4400. As
before, the calculation of the arithmetic expression “2*(3+
4)” is completed in FIGS. 13A and 13B when the PC 4404
indicates “9.

0026. As can be seen by comparing FIGS. 12A-12D with
FIGS. 4A-4D, the first conventional technique makes fewer
accesses to the memory. When the virtual machine 4400
executes a virtual machine instruction Such as an addition
“Add” or a multiplication “Mult”, two reads and one write
are performed for the stack 4420, making a total of three
memory accesses for one virtual machine instruction. With
the first conventional technique, the assigning of the TOS

US 2003/0233386 A1

variable to a register enables the same instruction to be
executed with only one access to the memory Stack 4422.
This results in the execution Speed being increased in
proportion to the reduction in the number of memory
CCCSSCS.

0.027 Second Conventional Technique
0028. A second conventional technique uses a “native
coding method, in which a predetermined part of a virtual
machine programs is written in real machine instructions
and is directly executed by a real machine. As a result,
identifiers are used to indicate that Such predetermined part
is written using real machine instructions.
0029. As one example, a JAVA virtual machine can store
the constant name “ACC NATIVE" (256) into an access
flag (Such as the 16-bit flag “access flags” that forms part of
the “method info' structure) of a class file that includes a
Virtual machine program to show that part of the program is
written in real machine instructions (see the Java Bytecodes
and the JAVA Virtual Machine Specification, 1995 editions,
produced by SUN MICROSYSTEMS, INC).
0.030. In this way, this second conventional technique
improves execution Speed by having the real machine
directly execute a predetermined part of a program.
0031) Third Conventional Technique
0032. A third conventional technique uses a “just-in
time” (JIT) compiler that compiles parts of a virtual machine
program as required during execution. Here, compiling
refers to the replacement of Virtual machine instructions
with real machine instructions (see Laura Lemay et al., Java
Gengo Nyumon (An Introduction to JAVA), Prentice Hall,
1996, and Laura Lemay and Charles L. Perkins, Teach
yourself JAVA in 21 days). Virtual machines that use a JIT
compiler have the real machine directly execute compiled
parts of a virtual machine program, and So increase the
overall execution Speed of Virtual machine programs.
0033) Fourth Conventional Technique
0034. A fourth conventional technique is used when
computers on a network execute virtual machine programs
that they download from a Server computer. In this tech
nique, the code in a virtual machine program is compressed
beforehand using LZ (Lempel–Zif) methods or Huffman
coding to reduce the time taken by file transfer (see Japanese
Laid-Open Patent Application H07-121352 or
H08-263263).
0035. With this technique, an increase in execution speed
can be obtained if the time taken to transfer the virtual
machine program forms a large part of the overall processing
time required to execute the virtual machine program.
0.036 The first to fourth conventional techniques
described above have the following problems.
0037 Problems with the First Conventional Technique
0038. The first conventional technique, where the TOS
variable is allocated to a register of a real machine, has a
drawback in that it is not Suited to real machines with
SuperScalar architecture that have become increasingly inex
pensive in recent years. This means that the improvements
in the execution speed for a SuperScalar real machine (here
inafter, “SuperScalar machine') are relatively small when

Dec. 18, 2003

compared with the improvement for a Standard real machine
(hereinafter called a “standard machine') that is incapable of
parallel processing. This is described in more detail below.
0039 The following describes the standard operation and
notation of a pipeline used by a register machine, Such as a
SuperScalar machine or a Standard machine, with reference
to FIGS. 14-22.

0040 FIG. 14 shows the mnemonics used to indicate
each Stage included in the pipeline. The SuperScalar machine
and a Standard machine described below are assumed to
each have a pipeline containing the five Stages shown in this
figure.

0041 FIG. 15 shows the ideal pipeline flow for a stan
dard machine. In this example, four real machine instruc
tions are Sequentially processed with each pipeline Stage
taking exactly one clock cycle. Each pipeline Stage is
performed in parallel for a different real machine instruction
So that as the long-term average, one instruction is executed
in one clock cycle.
0042 FIG. 16 shows an ideal pipeline flow for a Super
Scalar machine. This SuperScalar machine has two Separate
pipelines. In FIG. 16, two real machine instructions are
executed in one clock cycle as the long-term average, giving
the SuperScalar machine a throughput twice that of the
Standard machine.

0043 FIG. 17 shows a pipeline flow for a standard
machine when pipeline hazards occur. Here, instruction B
uses the execution result of instruction A, which is to say,
instruction B has a true dependency (also called a data
dependency) on the preceding instruction A. Since the
execution result of instruction A cannot be obtained until the
memory acceSS Stage MEM is completed, the execution of
instruction B is delayed, which causes the hazard as shown
by “-” in the figure.
0044) When the processing of an instruction is delayed in
a real machine with a pipeline Structure, the processing of
the-following instructions is also delayed. This is shown in
FIG. 17, where the processing of instruction C, which
follows instruction B, is also delayed.
004.5 FIG. 18 shows a pipeline flow for a SuperScalar
machine when pipeline hazards occur. Here, instruction B1
has a true dependency on the preceding instructions A1 and
A2. Here, the reason that a pipeline hazard occurs in the fifth
clock cycle for the instruction C2 is that the two processing
units (arithmetic logic units or “ALUs”) provided in the
processor are busy with the execution of the preceding
instructions B1 and C1. This means that instruction C2
cannot be executed in that cycle.
0046 FIGS. 19 and 20 correspond to FIGS. 17 and 18,
and show pipeline flows when two clock cycles need to pass
before values obtained through memory access (MEM) can
be used. In reality, in most real machines, obtaining a value
from the primary cache takes two clock cycles. Note that
obtaining a value from the Secondary cache takes more clock
cycles.

0047 FIGS. 21 and 22 respectively show pipeline flows
for a Standard machine and SuperScalar machine when
instructions A1 and A2 are instructions that indicate a jump
destination using a register. The jump destinations of these
instructions are not known until the register reference Stage

US 2003/0233386 A1

(RF) is completed, So that the Succeeding instructions B, B1,
and B2 that are fetched as per normal during the register
reference operation are canceled (as shown by the “X” in
FIGS. 21 and 22) in the third clock cycle following the RF
Stages.

0.048. The following describes the specific problems of a
SuperScalar machine and a real machine of the first conven
tional technique, with reference to FIGS. 23-26.
0049 FIGS. 23-26 show pipeline flows when the virtual
machine of the first conventional technique is realized by a
real machine executing the Virtual machine program shown
in FIG. 10A. In detail, these figures show the pipeline flow
for the latter part (the jump processing shown in FIG. 12D)
of the microprogram (of FIG. 12A) with the address 7 that
corresponds to the virtual machine instruction “Add” and the
pipeline flow for the former part (the multiplication process
ing) of the microprogram (of FIG. 12C) with the address 8
that corresponds to the virtual machine instruction “Mult'.
FIGS. 23 and 24 respectively show the pipeline flows for a
Standard machine and a SuperScalar machine where one
clock cycle needs to pass before a valueread during a
memory access can be used, while FIGS. 25 and 26 respec
tively show the pipeline flows for a Standard machine and a
SuperScalar machine where two clock cycles needs to pass
before a value read during a memory acceSS can be used.
0050. This series of microprograms shown in FIGS. 12D
and 12A contain two significant true dependencies. The first
is in the microprogram for jump processing shown in FIG.
12D corresponding to the virtual machine instruction" Add',
and exists between the instruction "Load” for reading a jump
address and the instruction “Jump' for jumping to the
address. The second is in the microprogram shown in FIG.
12C corresponding to the virtual machine instruction “Mult”
for multiplication processing and exists between the instruc
tion “Load” for reading a variable from the memory stack
and the instruction “Mult” for multiplication processing.

0051). In the pipeline shown in FIG. 23, the first data
dependency is absorbed by the real machine instruction
“Inc' that is inserted between the instructions "Load” and
“Jump'. The second data dependency is absorbed by the real
machine instruction “Dec' that is inserted between the
instructions “Load” and “Mult'. The processing in this
pipeline is only disturbed by the cancellation of one instruc
tion that is necessitated by the execution of the real machine
instruction "Jmp'. As a result, the entire procedure is
completed in 11 cycle clockS.

0052. In the pipeline shown in FIG. 24, the first and
Second data dependencies are not absorbed. As a result, the
processing in these pipelines is disturbed at three points. The
first disturbance is the hazard in the fourth clock cycle
caused by the first data dependency, the Second is the
cancellation of five instructions necessitated by the execu
tion of real machine instruction “Jmp', and the third is the
hazard in the eighth clock cycle caused by the Second data
dependency. As was the case with FIG. 24, the entire
procedure is completed in 11 clock cycles in FIG. 23.

0053 As in FIG. 24, the above first and second data
dependencies are not absorbed in the pipeline shown in FIG.
25, So that the processing in this pipeline is disturbed at three
points. The first disturbance is the hazard in the fifth clock
cycle caused by the first data dependency, the Second is the

Dec. 18, 2003

cancellation of one instruction necessitated by the execution
of the real machine instruction “Jmp', and the third is the
hazard in the tenth clock cycle caused by the Second data
dependency. The entire procedure is completed in 13 clock
cycles.

0054 AS in FIG. 24, the above first and second data
dependencies are not absorbed in the pipeline shown in FIG.
26, So that the processing is disturbed at three points. The
first disturbance is the hazards caused in the fourth and fifth
clock cycles by the first data dependency, the Second is the
cancellation of Seven instructions necessitated by the execu
tion of the real machine instruction “Jmp', and the third is
the hazards caused in the eighth and tenth clock cycles by
the second data dependency. As in FIG. 25, the entire
procedure is completed in 13 clock cycles.
0055 Considering that the processing shown in either of
FIGS. 23 and 24 requires 11 clock cycles and that the
processing shown in either of FIGS. 25 and 26 requires 13
clock cycles, it is clear that there is no difference in execu
tion time between a Standard machine and a SuperScalar
machine for this first conventional technique. This means
that no advantage is gained from using a SuperScalar
machine capable of parallel processing.
0056. In this way, this first conventional technique causes
a large drop in the processing efficiency of a SuperScalar
machine. Another drawback is the lack of provisions for
exception handling, Such as for errors, or interrupt handling,
which is required for debugging.

0057. As a result, a virtual machine that uses this first
conventional technique needs to detect an interrupt State and
to perform interrupt handling every time the machine
executes a virtual machine instruction. This means that
another memory access (i.e., data transfer of a variable in the
memory that indicates an interrupt state into a register) is
required every time a virtual machine instruction is
executed. This cancels out the advantage of this first con
ventional technique, wherein assigning the TOS variable to
a register reduces the number of memory accesses, So that
the overall execution Speed is not improved.
0.058 Problems with the Second Conventional Technique
0059. The second conventional technique, which is to say
the use of native coding, has a problem in that it is difficult
to provide common Virtual machine programs to real
machines with different architectures. This is because part of
the virtual machine program is written in real machine
instructions for a specific type of real machine. As a result,
when a virtual machine program is to be provided on a
network for common use by five types of computers with
different real-machine architectures, it becomes necessary to
provide real machine programs of all five real machines.
0060 Since there are also differences in system configu
ration between computers, there is no guarantee that real
machine instructions will have a faster execution Speed than
Virtual machine instructions, even for real machines with the
Same architecture. AS one example, if programs are written
for RISC (Reduced Instruction Set Computers) type real
machines where code size is generally large, the use of
insufficient memory will lead to frequent page Swapping
between main- and virtual memory when Virtual machine
instructions are replaced with real machine instructions.
This reduces the overall execution Speed.

US 2003/0233386 A1

0061 Problems with the Third Conventional Technique
0062) The third conventional technique, which uses a JIT
compiler, has a problem in that the compiling of the Virtual
machine program can take a long time. The reasons for this
are explained below.
0.063 A first reason is that the processing must satisfy the
Specific restrictions of the target real machine concerning
jump destinations. AS one example, when the target machine
has a restriction that the address of a jump destination must
be within word (basic word length) boundaries in the main
memory, Simple conversion of the virtual machine instruc
tions to corresponding real machine instructions will result
in a violation of this restriction.

0.064 FIG. 27 is a program list for a sample virtual
machine program for explaining this first reason. FIG. 28 is
a flowchart for this Sample virtual machine program.
0065. The present virtual machine program calculates the
total of ten integers from Zero to nine. It is composed of a
setting of initial values (step 7002, Addresses 0-6), judg
ment of the end of calculation (step 7003, Addresses 8-13),
addition and setting of the next value to be added (step 7004,
Addresses 15-29), and end processing (step 7005, Address
31).
0.066 FIG. 29 is a conversion table that is used when
compiling this virtual machine program according to this
third conventional technique. This conversion table is a
correspondence table that associates virtual machine instruc
tions with the real machine programs into which they are to
be converted. Note that for reference purposes, the conver
Sion table in FIG. 29 also shows the code size of each real
machine program.

0067 FIG. 30 shows the code arrangement of the real
machine program that is obtained when the Sample virtual
machine program shown in FIG. 27 is compiled using the
conversion table shown in FIG. 29. In FIG. 30, relative
addresses in original virtual machine program are given for
each real machine program to show the correspondence
between the real machine program and the Virtual machine
program.

0068 If the target real machine has a restriction whereby
only jump destinations complying with a two-word align
ment can be indicated, it can be seen from FIG. 30 that the
virtual machine instruction “Stop” with address 31 that is the
jump destination indicated by the Virtual machine instruction
“Brz” at address 13 is arranged at odd-numbered addresses
in the real machine program. Since this address does not
correspond to the two-word alignment, this branch instruc
tion violates the restrictions concerning jump destinations.
AS a result, processing that rectifies this violation needs to
be performed.

0069. A second reason for the above problem is that
Special processing that accompanies branches can be nec
essary for the target real machine. Some CPUs with RISC
architecture, such as CPUs with SPARC (Registered Trade
mark) architecture produced by SPARC INTERNA
TIONAL, INC. and CPUs produced by MIPS TECHNOLO
GIES, INC., have special rules that are used when executing
a number of instructions located after a branch instruction.
Specific examples of these rules are the execution of a
Specific Succeeding instruction regardless of whether a

Dec. 18, 2003

branch is performed (called a “delayed branch”) or the
execution of a specific Succeeding instruction only when a
branch is performed (called a “canceling branch').
0070 When the target real machine is of this type, special
processing needs to be performed, Such as Scheduling that
analyzes the instructions and changes their order or the
insertion of no operation instructions (such as NOP codes)
directly after branch instructions.
0.071) Problems with the Fourth Conventional Technique
0072 The fourth conventional technique, which is to say
the compression of Virtual machine programs in advance,
has a problem in that there is no resolving means for dealing
with problems that occur due to the execution of branch
instructions in the compressed Virtual machine program.
0073 FIG. 31A shows a compression table for explain
ing this problem. This compression table associates Vari
able-length codes 9300a with virtual machine instructions
9300b. FIG. 31B is example code that is obtained by
encoding the virtual machine instruction Sequence A using
the compression table shown in FIG. 31A.
0074) If the example code shown in FIG.31B is decoded
Starting from the first bit, the original virtual machine
instruction A (“babc') will be obtained. However, when the
execution flow moves to point B in FIG. 31B due to a
branch instruction, decoding the code sequence "0010110”
that starts at point Busing the compression table in FIG.
31A gives the mistaken virtual machine instruction “aabc'.
0075 Problems Common to the First-Fourth Conven
tional Techniques
0076. The first-fourth conventional techniques described
above have a common problem in that none of them is able
to raise the efficiency of cache processing. As a result, the
market is still waiting for the realization of a high-speed
Virtual machine that makes full use of the processing power
of real machines and computers that are equipped with a
cache memory.
0077 FIG. 32 is a block diagram showing the program
counter 6901 and the instruction cache 6902 of a virtual
machine. This drawing will be used to explain the problems
that can occur for a virtual machine that is equipped with a
cache memory.
0078. The instruction cache 6902 is equipped with a
cache table 6904 that stores addresses for specifying each
cache block in the cache memory, where a cache block is an
instruction sequence 6903 composed of the data in ten
consecutive addresses. FIG. 33 shows the case where the
sample virtual machine program shown in FIG. 27 is stored
in the cache memory, with the boundary lines A, B, and C
marking the boundaries between the cache blocks. These
boundary lines simply divide the virtual machine program
into cache blocks of an equal size, as can be seen from the
boundary line C that splits the virtual machine instruction
“Br 8” into the opcode “Br” and the operand “8”. Accord
ingly, when dividing a virtual machine program into cache
blocks, it is necessary to judge whether any of the Virtual
machine instructions that changes the value of the program
counter 6901 will end up spanning a boundary between
cache blocks. This increases the complexity of the proceSS
ing and results in an actual decrease in the Overall execution
Speed of a virtual machine when a cache is provided.

US 2003/0233386 A1

0079. It would be conceivably possible to devise a
method for Storing an entire virtual machine program in
cache memory or a method for arranging the Virtual machine
program in the cache based on analysis of the virtual
machine program by a JIT compiler. However, the former of
these methods uses cache memory inefficiently and has a
further problem in that the time required for file transfer in
a network environment is greatly increased. The latter
method, meanwhile, has a problem in that writing the Virtual
machine program into cache memory is very time-consum
ing. Accordingly, both of these methods result in a marked
decrease in the overall execution efficiency of a virtual
machine.

SUMMARY OF THE INVENTION

0080. In view of the above problems, the present inven
tion to has an overall aim of providing a virtual machine that
executes a virtual machine program at a higher execution
Speed than a conventional virtual machine, a virtual machine
compiler that generates a program for this virtual machine
(hereafter, a virtual machine and a virtual machine compiler
are together called a virtual machine System), and a JIT
compiler. Here, a virtual machine compiler refers to a
program that translates a Source program written in a high
level language Such as C into a virtual machine program.
0081. To achieve the above aim, the invention has the
following Six Specific objects.
0082 The first object is to provide a virtual machine
system that can diminish disadvantages caused by true data
dependencies So that high execution Speed is maintained.
0.083. The second object is to provide a high-speed virtual
machine System by minimizing the decreases in execution
efficiency caused by interrupt handling.

0084. The third object is to provide a virtual machine
system with which “native coding” for different real
machines can be performed without decreasing overall
execution Speed, even when the Virtual machine is used by
real machines with different architectures. Such a virtual
machine is highly independent of real machine architectures
without decreasing execution Speed.

ss

0085. The fourth object is to provide a high-speed virtual
machine System that can be used by a real machine with a
cache System without decreases in execution efficiency
which may result from a virtual machine instruction pro
gram being divided into cache blockS or from complicated
resolving addresses being performed when using a JIT
compiler.

0.086 The fifth object is to provide a high-speed virtual
machine System that can decompress a compressed virtual
machine program correctly even when the compressed pro
gram contains branch instructions.
0087. The sixth object is to provide a high-speed JIT
compiler that does not need to perform a complex resolving
of addresses.

0088. The first object can be achieved by the virtual
machine of claim 1.

0089. According to claim 1, the virtual machine executes
a virtual machine instruction Sequence under control of a
real machine, the virtual machine comprising: a Stack unit

Dec. 18, 2003

for temporarily Storing data in a last-in first-out format, an
instruction Storing unit for Storing the Virtual machine
instruction Sequence and a plurality of Sets of Succeeding
instruction information, wherein each virtual machine
instruction in the Virtual machine instruction Sequence is
asSociated with a set of Succeeding instruction information
that indicates a change in a storage State of the data in the
Stack unit due to execution of a virtual machine instruction
executed after the associated Virtual machine instruction; a
read unit for reading a virtual machine instruction and an
asSociated Set of Succeeding instruction information from
the instruction Storing unit; and a decoding-executing unit
for Specifying and executing operations corresponding to a
combination of the read virtual machine instruction and the
read Set of Succeeding instruction information.
0090. With the above construction, the instruction storing
unit Stores next instruction information in addition to Virtual
machine instructions and the decoding-executing unit per
forms-not only operations for the decoded virtual machine
instruction but also a Stack handling in advance for a virtual
machine instruction executed immediately after the decoded
Virtual machine instruction. Performing appropriate Stack
handling in advance in machine cycles where pipeline
hazards (which occur especially frequently in SuperScalar
machines) would otherwise occur, enables the detrimental
effects of true data dependencies to be absorbed and So
increases the execution Speed of the virtual machine.
0091 Here, the decoding-executing unit may include: a
real machine instruction Sequence Storing unit for Storing a
plurality of real machine instruction Sequences that corre
spond to all combinations of virtual machine instructions
and Sets of Succeeding instruction information; a specifying
unit for Specifying a real machine instruction Sequence in the
real machine instruction Sequence Storing unit, the real
machine instruction Sequence corresponding to a combina
tion of the Virtual machine instruction and the Set of Suc
ceeding instruction information read by the read unit; and an
executing unit for executing the Specified real machine
instruction Sequence.
0092. In this way, advance stack handling for absorbing
data dependencies can be included in the real machine
instruction Sequence corresponding to a virtual machine
instruction.

0093. Here, each set of succeeding instruction informa
tion may indicate a change in a number of Sets of data in the
Stack unit due to execution of a virtual machine instruction
executed after a virtual machine instruction associated with
the Set of Succeeding instruction information, and at least
one real machine instruction Sequence Stored in the real
machine instruction Sequence Storing unit may contain real
machine instructions that perform a Stack handling in the
Stack unit in advance for a virtual machine instruction that
is to be executed based on a Set of Succeeding instruction
information associated with a currently executed Virtual
machine instruction.

0094. With this construction, when a change in a number
of Stack levels due to execution of a given instruction is
canceled out by execution of an instruction executed imme
diately after the given instruction, needleSS Stack handling
can be avoided, which improves the execution Speed of the
Virtual machine.

0095. Here, the real machine instruction sequences stored
in the real machine instruction Sequence Storing unit may be

US 2003/0233386 A1

composed with a premise that regions of the Stack unit used
to Store two Sets of data to be read first and Second are
mapped to two registers in the real machine.

0096. The above construction replaces the load and store
Stack operations that are frequently performed by Stack-type
Virtual machines with read/write operations for the internal
registers of the real machine. Such operations are Suited for
rearrangement as the advance Stack handling performed in
machine cycles where pipeline hazards would otherwise
occur. In this way, execution efficiency of the Virtual
machine is raised.

0097 Here, the instruction storing unit may include a first
Storage area for Storing the Virtual machine instruction
Sequence and a Second Storage area for Storing the Sets of
Succeeding instruction information, wherein each location
that Stores a virtual machine instruction in the first Storage
area may be associated with a location that Stores an
asSociated Set of Succeeding instruction information in the
Second Storage area, and the read unit may read the Virtual
machine instruction from a location in the first Storage area
and the associated Set of Succeeding. instruction information
from a location in the Second Storage area, the location in the
first Storage area being associated with the location in the
Second storage area.
0098. In this way, a virtual machine instruction sequence
and next instruction information are Stored Separately, which
means that a virtual machine instruction Sequence of the
present virtual machine has the same data format as a
conventional virtual machine instruction sequence. Compat
ibility of instruction data format with a conventional virtual
machine is therefore maintained.

0099 Here, the virtual machine instruction sequence
Stored in the instruction Storing unit may be an extended
Virtual machine instruction Sequence that includes extended
Virtual machine instructions, the extended virtual machine
instructions being combinations of Virtual machine instruc
tions and associated Sets of Succeeding instruction informa
tion, wherein the read unit may read an extended Virtual
machine instruction from the instruction Storing unit, and
wherein the decoding-executing unit may specify and
execute operations corresponding to the extended Virtual
machine instruction.

0100. In this way, since an extended virtual machine
instruction is a combination of a virtual machine instruction
and next instruction information, next instruction informa
tion need not be processed or Stored Separately. This means
that a virtual machine with a similar architecture to a
conventional computer can be provided.

0101 The fist object can be also achieved by the virtual
machine compiler of claim 7. According to claim 7, the
compiler generateS programs for a virtual machine with a
Stack architecture that includes a Stack, the compiler includ
ing: an instruction Sequence converting unit for converting
a Source program into a virtual machine instruction Sequence
executable by the virtual machine; a Succeeding instruction
information generating unit for generating Sets of Succeed
ing instruction information corresponding to Virtual machine
instructions in the virtual machine instruction Sequence,
each Set of Succeeding instruction information indicating a
change in a storage State of data in the Stack due to execution
of a virtual machine instruction executed immediately after

Dec. 18, 2003

a virtual machine instruction corresponding to the Set of
Succeeding instruction information; and an associating unit
for associating each Set of generated Succeeding instruction
information with a corresponding virtual machine instruc
tion and outputting the Set of Succeeding instruction infor
mation and the virtual machine instruction.

0102) In this way, the above virtual machine compiler
generates not only virtual machine instructions but also next
instruction information which can be used by a virtual
machine to absorb true data dependencies. Thus, the present
Virtual machine compiler can generate programs for a virtual
machine whose execution Speed is improved by having data
dependencies absorbed.

0103) The second object can be achieved by the virtual
machine of claim 8. According to claim 8, the Virtual
machine executes a virtual machine instruction Sequence
under control of a real machine, the virtual machine includ
ing: an instruction Storing unit for Storing the Virtual
machine instruction Sequence; a read unit for reading a
Virtual machine instruction in the Virtual machine instruction
Sequence from the instruction Storing unit; and a decoding
executing unit for Specifying and executing operations cor
responding to the virtual machine instruction, wherein the
decoding-executing unit includes a branch instruction judg
ing unit for judging if the virtual machine instruction is a
branch instruction and an interrupt handling unit for detect
ing, if the Virtual machine instruction is judged to be a
branch instruction, whether there is an interrupt request, and,
if So, performing a corresponding interrupt handling in
addition to executing the branch instruction.
0104. In this way, an interrupt handling is only performed
whenever a branch instruction is executed, which is Suffi
cient for most Virtual machine programs. This Suppresses
decreases in execution Speed caused by performing interrupt
more frequently.
0105 Here, the decoding-executing unit may further
include a real machine instruction Sequence Storing unit for
Storing real machine instruction Sequences corresponding to
every virtual machine instruction and real machine instruc
tion Sequences for having interrupt handling performed
corresponding to each interrupt request and an executing
unit for executing a real machine instruction Sequence
corresponding to the virtual machine instruction read by the
read unit, wherein if the virtual machine instruction is
judged to be the branch instruction and an interrupt request
is detected, the interrupt handling unit has the executing unit
execute a real machine instruction Sequence for having the
corresponding interrupt handling performed and then the
real machine instruction Sequence corresponding to the
branch instruction.

0106 With this construction, an interrupt handling to be
additionally performed can be specified by a real machine
instruction Sequence. This realizes a virtual machine capable
of performing an interrupt handling with a simpler archi
tecture.

0107 The second object can be also achieved by the
Virtual machine of claim 10. According to claim 10, the
Virtual machine executes a virtual machine instruction
Sequence under control of a real machine, the Virtual
machine including: an instruction Storing unit for Storing the
Virtual machine instruction Sequence; a read unit for reading

US 2003/0233386 A1

a virtual machine instruction in the virtual machine instruc
tion Sequence from the instruction Storing unit; and a decod
ing-executing unit for Specifying and executing operations
corresponding to the read virtual machine instruction,
wherein the decoding-executing unit includes a block judg
ing unit for judging if the read virtual machine instruction is
a virtual machine instruction representative of a block, a
block being a predetermined number of Virtual machine
instructions and an interrupt handling unit for detecting, if
the read virtual machine instruction is judged to be the
representative virtual machine instruction, whether there is
an interrupt request to the Virtual machine, and if So,
performing a corresponding interrupt handling in addition to
executing the representative virtual machine instruction.
0108. In this way, an interrupt handling is performed
every time a predetermined number of virtual machine
instructions are executed, and a frequency to perform inter
rupt handling can be controlled by changing this number in
advance. This avoids decreases in execution Speed caused by
performing interrupt handling more frequently.

0109 Here, the decoding-executing unit may include a
real machine instruction Sequence Storing unit for Storing a
plurality of real machine instruction Sequences correspond
ing to every virtual machine instruction and at least one real
machine instruction Sequence for having interrupt handling
performed in response to an interrupt request and an execut
ing unit for executing a real machine instruction Sequence
corresponding to the read virtual machine instruction,
wherein the block judging unit may judge that the read
Virtual machine instruction is a virtual machine instruction
representative of the block when a number of virtual
machine instructions that have been read is equal to a
multiple of the predetermined number and wherein if the
read virtual machine instruction is judged to be a represen
tative Virtual machine instruction and an interrupt request
has been detected, the interrupt handling unit may have the
executing unit execute a real machine instruction Sequence
for having the interrupt handling performed and then the real
machine instruction Sequence corresponding to the repre
Sentative virtual machine instruction.

0110. With this construction, an interrupt handling to be
additionally performed can be specified by a real machine
instruction Sequence. As a result, a virtual machine that is
capable of performing an interrupt handling with a simpler
architecture can be achieved.

0111. The third object may be achieved by the virtual
machine of claim 12. According to claim 12, the Virtual
machine executes a virtual machine instruction Sequence
under control of a real machine, the virtual machine includ
ing: a real machine program Storing unit for Storing a
plurality of Subprograms composed of real machine instruc
tions, an instruction Storing unit that includes a first area for
Storing the virtual machine instruction Sequence and a
Second area for Storing a plurality of pointers to the Sub
programs in the real machine program Storing unit; a read
unit for reading a virtual machine instruction in the virtual
machine instruction Sequence from the first area in the
instruction Storing unit; and a decoding-executing unit for
Specifying and executing operations corresponding to the
read virtual machine instruction, wherein the decoding
executing unit includes an area judging unit for judging
whether the virtual machine instruction is an instruction that

Dec. 18, 2003

transferS control flow to a location in the Second area and an
address converting-executing unit for executing, if the Vir
tual machine instruction is judged to be an instruction that
transferS control flow to a location in the Second area, a
Subprogram indicated by a pointer Stored in the location.
0.112. With this construction, execution of either a virtual
machine function or a real machine function is Solely
determined by a corresponding location in an area of the
memory map in the virtual machine, So a Setting of whether
a virtual machine function or a real machine function is
executed for a function can be easily changed. This makes
it possible to use “native-coding” in Virtual machine pro
grams for real machines with different architectures.
0113. Here, the first area and the second area in the
instruction Storing unit may be two adjacent Storage areas
whose boundary is marked by an address, and the area
judging unit may judge, when the read virtual machine
instruction is a call instruction for a Subprogram, whether the
Virtual machine instruction is an instruction that transfers
control flow, by comparing a call address of the call instruc
tion with the address.

0114 With this construction, control over Switches
between executing a virtual machine function and a real
machine function can be easily achieved by shifting the
boundary line between areas in the memory map of the
Virtual machine. As a result, Virtual machines that have
improved execution Speed and are Suited to different real
machine environments can be realized.

0115 The fourth object can be achieved by the virtual
machine of claim 14. According to claim 14, the Virtual
machine executes a virtual machine instruction Sequence
under control of a real machine, the virtual machine includ
ing: an instruction Storing unit for Storing the Virtual
machine instruction Sequence; a read unit for reading a
Virtual machine instruction in the Virtual machine instruction
Sequence from the instruction Storing unit; and a decoding
executing unit for Specifying and executing operations cor
responding to the read virtual machine instruction, wherein
the instruction Storing unit is a plurality of instruction blockS
that constitute the virtual machine instruction Sequence, the
instruction blocks corresponding to basic blocks, wherein
the instruction blocks each include: an identifier area for
Storing an identifier that Specifies a start position of the
instruction block in the instruction Storing unit; a non-branch
instruction area for Storing non-branch instructions belong
ing to a corresponding basic block, and a branch instruction
area for Storing at least one branch instruction belonging to
the corresponding basic block, wherein each branch instruc
tion Stored in the branch instruction area designates a branch
destination using an identifier Stored in one of the identifier
areas, and wherein if the read virtual machine instruction is
a branch instruction, the decoding-executing unit has control
flow branch to a start position of a non-branch instruction
area in an instruction block having an identifier designated
by the branch instruction as a branch destination.
0116. With this construction, there is always only one
entry point for each instruction block, which is the Start of
the instruction block. As a result, the address analysis for
branch destinations of branch instructions is simplified, and
the timing taken by compiling is reduced. Also, by caching
instructions in instruction block units, the judgment proceSS
ing regarding the cache boundaries is simplified, and

