wo 20137106256 A1 | I 01N OO O A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

18 July 2013 (18.07.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/106256 A1l

(51) International Patent Classification:
GO6F 9/06 (2006.01) GO6F 15/16 (2006.01)
(21) International Application Number:
PCT/US2013/020442
(22) International Filing Date:
7 January 2013 (07.01.2013)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
13/346,303 9 January 2012 (09.01.2012) US
(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).
(72) Inventors: CALDER, Bradley, Gene; c/o0 Microsoft Cor-

poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). WANG, Ju; c/o
Microsoft Corporation, LCA - International Patents, One
Microsoft Way, Redmond, Washington 98052-6399 (US).

BEDEKAR, Vaman; c/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). SANKARAN, Sriram; c¢/o
Microsoft Corporation, LCA - International Patents, One
Microsott Way, Redmond, Washington 98052-6399 (US).
MCNETT II, Marvin; c¢/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). GUNDA, Pradeep, Ku-
mar; ¢/o0 Microsoft Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-
6399 (US). ZHANG, Yang; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). ANTONY, Shyam;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). MANIVANNAN, Kavitha; c/o Microsotft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). SKJOLS-
VOLD, Arild, E.; ¢c/o Microsoft Corporation, LCA - Inter-
national Patents, One Microsott Way, Redmond, Washing-
ton 98052-6399 (US). KHATRI, Hemal; c/o Microsoft

[Continued on next page]

(54) Title: DECOUPLING PAAS RESOURCES, JOBS, AND SCHEDULING

(57) Abstract: Systems and methods are presented for providing resources by
1400 way of a platform as a service in a distributed computing environment to per-

1402 RECEIVE AWORKITEM FROM A

RECEIVE AN AUTO-SCALING RULE

1404~ FROM THE USER

ALLOCATE A FIRST VIRTUAL
MACHINE TO A POOL

!

ALLOCATE A SECOND VIRTUAL
MACHINE TO THE POOL

!

INSTANTIATE THE WORK ITEM ON
1410~ THE FIRST VIRTUAL MACHINE AND
THE SECOND VIRTUAL MACHINE

:

1406~

1408~

APPLY THE AUTO-SCALING RULE TO

1412+ THE POOL
RE-ALLOCATE ONE OR MORE
1414— VIRTUAL MACHINES ASSOCIATED

WITH THE POOL

FIG. 14

form a job. Resources of the system, job performing on the system, and sched-
ulers of'the jobs performing on the system are decoupled in a manner that allows
a job to easily migrate among resources. It is contemplated that the migration of
l jobs from a first pool of resource to a second pool of resource is performed by
the system without human intervention. The migration of a job may utilize dif-
ferent schedulers for the different resources. Further, it is contemplated that a
i pool of resources may automatically allocate additional or fewer resources in re-
sponse to a migration of a job.

WO 2013/106256 A1 |IIWAT 00N OO AR AE VA AR

31

84)

Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM,

GM, KF, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, Declarations under Rule 4.17:

KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NIL NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA,ZM, ZW.

kind of regional protection available): ARTIPO (BW, GH,

as to applicant'’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
Designated States (unless otherwise indicated, for every __

with international search report (Art. 21(3))

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

DECOUPLING PAAS RESOURCES, JOBS, AND SCHEDULING
BACKGROUND
[0001] Conventional methods for performing large-scale computational jobs often
required a user to actively manage tenants in a distributed environment and to manage
queues for the jobs. This active involvement of the user may inhibit the ability of the job
to span large resource clusters and to scale the use of those clusters in an efficient manner.
Further, jobs may conventionally be created in a manner that the job, the resources used
for completing the job, and the scheduling of the job on the resources are tightly coupled
to prevent efficient migration of the job in response to a failure or load balancing.
SUMMARY
[0002] In various embodiments, systems and methods are presented for providing
resources by way of a platform as a service in a distributed computing environment to
perform a job. Resources of the system, job performing on the system, and schedulers of
the jobs performing on the system are decoupled in a manner that allows a job to easily
migrate among resources. It is contemplated that the migration of jobs from a first pool of
resource to a second pool of resource is performed by the system without human
intervention. The migration of a job may utilize different schedulers for the different
resources. Further, it is contemplated that a pool of resources may automatically allocate
additional or fewer resources in response to a migration of a job.
[0003] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used as an aid, in isolation, in determining the scope of the claimed
subject matter.
BRIEF DESCRIPTION OF THE DRAWINGS
[0004] The invention is described in detail below with reference to the attached drawing
figures, wherein:
[0005] Fig. 1 depicts exemplary operating environment suitable for implementing
embodiments of the present invention, in accordance with aspects of the present invention;
[0006] Fig. 2 depicts a block diagram illustrating an exemplary job, in accordance with
aspects of the present invention;
[0007] Fig. 3 depicts a block diagram illustrating an exemplary pool, in accordance with

aspects of the present invention;

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

[0008] Fig. 4 depicts a block diagram illustrating architectural layers of an exemplary
system suitable for performing tasks within a distributed computing environment, in
accordance with aspects of the present invention;
[0009] Fig. 5 depicts a block diagram illustrating an exemplary arrangement of
processors at different locations that may be integrated within a single distributed
computing architecture, in accordance with aspects of the present invention;
[0010] Fig. 6 depicts a block diagram illustrating a potential configuration for a task
location service, in accordance with aspects of the present invention;
[0011] Fig. 7 depicts a block diagram illustrating an exemplary task location service
front end (“TLSFE”), in accordance with aspects of the present invention;
[0012] Fig. 8 depicts a block diagram illustrating an exemplary work item/job scheduler
(“WI1J”), in accordance with aspects of the present invention;
[0013] Fig. 9 depicts a block diagram illustrating a task tenant, in accordance with
aspects of the present invention;
[0014] Fig. 10 depicts a block diagram illustrating an exemplary pool server, in
accordance with aspects of the present invention;
[0015] Fig. 11 depicts a communication diagram providing an exemplary work flow
between a variety of components in an exemplary distributed computing system, in
accordance with aspects of the present invention;
[0016] Fig. 12 depicts a block diagram illustrating an exemplary method for providing
resources in a distributed computing environment, in accordance with aspects of the
present invention;
[0017] Fig. 13 depicts a block diagram illustrating an additional exemplary method for
providing resources in a distributed computing environment, in accordance with aspects of
the present invention;
[0018] Fig. 14 depicts a block diagram illustrating another method for providing
resources in a distributed computing environment, in accordance with aspects of the
present invention; and
[0019] Fig. 15 depicts a block diagram illustrating a method for providing decoupled
resource, scheduling, and jobs in a distributed computing environment, in accordance with
aspects of the present invention.

DETAILED DESCRIPTION
[0020] In various embodiments, systems and methods are presented for providing

resources by way of a platform as a service in a distributed computing environment to

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

perform a job. Resources of the system, job performing on the system, and schedulers of
the jobs performing on the system are decoupled in a manner that allows a job to easily
migrate among resources. It is contemplated that the migration of jobs from a first pool of
resource to a second pool of resource is performed by the system without human
intervention. The migration of a job may utilize different schedulers for the different
resources. Further, it is contemplated that a pool of resources may automatically allocate
additional or fewer resources in response to a migration of a job.

[0021] A first exemplary aspect includes a computer-implemented method for providing
resources in a distributed computing environment. The method is comprised of receiving
a work item from the user associated with a task account. Further, the method is
comprised of creating a job from the work item. Additionally, it is contemplated that the
method is comprised of automatically, with a processor and memory, allocating at least a
first virtual machine to a first pool. The method is further contemplated as being
comprised of assigning the job on the first pool and scheduling tasks for the job on the first
pool. Further, it is contemplated that the method is comprised of reassigning the job to a
second pool, which is comprised of at least a second virtual machine. Additionally, the
method is comprised of scheduling tasks for the job on the second pool.

[0022] A second exemplary aspect provided herein includes computer-storage media
storing computer-useable instructions that, when executed by a computing device having a
processor and memory, perform a method for providing resources in a distributed
computing environment. The method is comprised of scheduling, with a first scheduler, a
job on a first pool of resource in the distributed computing environment. The method is
further comprised of assigning the job to the first pool. Additionally, the method is
comprised of determining, without a user intervention, the job is to migrate from the first
pool to a second pool within the distributed computing environment. Additionally, the
method is comprised of assigning the job on the second pool. The method is further
comprised of automatically scheduling, with a second scheduler using a processor and
memory, the job on the second pool.

[0023] A third exemplary aspect of the present invention presented herein includes a
computer-implemented method for providing resources in a distributed computing
environment. The method is comprised of receiving, at a task location service, a work
item from a user associated with a task account in the distributed computing environment.
The method is further comprised of automatically allocating, with a pool server associated

with the task location service, a set of first virtual machines of the distributed computing

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

environment to a first pool. The method is additionally comprised of scheduling a first job
on the first pool, wherein the first job is comprised of one or more tasks associated with
the work item. Further, the method is comprised of automatically determining, based on a
load balancing evaluation of the first pool, the job is to migrate to a second pool within the
distributed computing environment. Additionally, the method is comprised of migrating at
least one task associated with the work item/job to the second pool. The method also is
comprised of scheduling the at least one task on one or more resource of the second pool.
Overview

[0024] Due to increases in the speed of data transmission over networks and
improvements in other network features, it is increasingly possible to perform large-scale
computing tasks in an environment where computing resources are distributed over a large
network. A user in a first location can submit a job or computing task to a computing
service and have the task performed on a group of computers to which the user has no
direct knowledge. The computing resources for performing the user’s task may be
distributed over multiple physical locations, which may span different states, countries,
and/or continents. A first group of computing resources located in one or more locations
can store the data and other information for performing the user’s computing task, while a
second group of computing resources, in the same locations or possibly in a different set
of one or more locations, can be used to perform the computing task. Further, it is
contemplated that the one or more locations for storing the data may be dispersed across
different geographical regions, with or without knowledge by the user. Similarly, it is
contemplated that the computing resources may be dispersed across different geographic
locations with or without the user’s knowledge.

[0025] Access to a variety of distributed computing resources allows a user to perform
job tasks (e.g., running processes) without concern for where the computing resources are
located. The distributed resources also provide an opportunity for a user to scale out (or
scale in) the amount of resources used in order to meet goals for a computing task, such as
completing the computing task by a specified time or with a desired cost value. However,
providing this flexibility for the user poses a number of challenges for the operator (and/or
owner) of the distributed computing resources. In order to meet demand, the operator of a
distributed network of resources will preferably have sufficient available resources to
satisfy resource requests at times of peak demand.

Exemplary Computing Environment

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

[0026] Referring to the drawings in general, and initially to Fig. 1 in particular, an
exemplary operating environment suitable for implementing embodiments of the present
invention is shown and designated generally as computing device 100. Computing device
100 is but one example of a suitable computing environment and is not intended to suggest
any limitation as to the scope of use or functionality of the invention. Neither should the
computing device 100 be interpreted as having any dependency or requirement relating to
any one or combination of modules/components illustrated.

[0027] Embodiments may be described in the general context of computer code or
machine-useable instructions, including computer-executable instructions such as program
modules, being executed by a computer or other machine, such as a personal data assistant
or other handheld device. Generally, program modules including routines, programs,
objects, modules, data structures, and the like, refer to code that performs particular tasks
or implements particular abstract data types. Embodiments may be practiced in a variety
of system configurations, including hand-held devices, consumer electronics, general-
purpose computers, specialty computing devices, etc. Embodiments may also be practiced
in distributed computing environments where tasks are performed by remote-processing
devices that are linked through a communications network.

[0028] With continued reference to Fig. 1, computing device 100 includes a bus 110 that
directly or indirectly couples the following devices: memory 112, one or more processors
114, one or more presentation modules 116, input/output (I/0) ports 118, I/O modules

120, and an illustrative power supply 122. Bus 110 represents what may be one or more
busses (such as an address bus, data bus, or combination thereof). Although the various
blocks of Fig. 1 are shown with lines for the sake of clarity, in reality, delineating various
modules is not so clear, and metaphorically, the lines would more accurately be grey and
fuzzy. For example, one may consider a presentation module such as a display device to
be an I/O module. Also, processors have memory. The inventors hereof recognize that
such is the nature of the art, and reiterate that the diagram of Fig. 1 is merely illustrative of
an exemplary computing device that can be used in connection with one or more
embodiments. Distinction is not made between such categories as “workstation,”
“server,” “laptop,” “hand-held device,” etc., as all are contemplated within the scope of
Fig. 1 and reference to “computer” or “computing device.”

[0029] Computing device 100 typically includes a variety of computer-readable media.
By way of example, and not limitation, computer-readable media may comprise Random

Access Memory (RAM); Read Only Memory (ROM); Electronically Erasable

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

Programmable Read Only Memory (EEPROM); flash memory or other memory
technologies; CDROM, digital versatile disks (DVD) or other optical or holographic
media; magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium that can be used to encode desired information and be
accessed by computing device 100.

[0030] Memory 112 includes non-transitory computer-storage media in the form of
volatile and/or nonvolatile memory. The memory may be removable, non-removable, or a
combination thereof. Exemplary hardware devices include solid-state memory, hard
drives, optical-disc drives, etc. Computing device 100 includes one or more processors
that read data from various entities such as memory 112 or I/O modules 120. Presentation
module(s) 116 present data indications to a user or other device. Exemplary presentation
modules include a display device, speaker, printing module, vibrating module, and the
like. 1/0 ports 118 allow computing device 100 to be logically coupled to other devices
including I/O modules 120, some of which may be built in. Illustrative modules include a
microphone, joystick, game pad, satellite dish, scanner, printer, wireless device, and the
like.

Definitions

[0031] An “account” is a global uniquely identified entity within the distributed
computing environment. In an embodiment, all of the resources and tasks discussed below
are scoped within an account. Typically, a user will create an account first before using
the resources of a distributed computing system. After creating the account, the user can
use the account to submit work items to the system and manage resources for performing
jobs based on the work items.

[0032] A “work item” is a static representation of a job to be run in the distributed
computing environment. A work item can specify various aspects of a job, including job
binaries, pointers to the data to be processed, and optionally the command line to launch
tasks for performing the job. In addition, a work item may specify the reoccurrence
schedule, priority and constraints. For example, a work item can specify to be launched
every day at SPM.

[0033] A “job” is a running instance of a work item. A job contains a collection of tasks
that work together to perform a distributed computation. The tasks can run on one or more
virtual machines in the distributed computing environment. A job is discussed in more

detail with respect to Fig. 2 hereinafter.

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

[0034] A “task” is the fundamental execution unit of a job. Each task runs on a virtual
machine. Users can specify additional input to the command line and pointers to input
data for each task. A task may create a hierarchy of files under its working directory on
the virtual machine performing the task during the course of execution of the task.

[0035] A “job manager task” (also referred to herein as a “JM task™) is a special task in
ajob. A job manager task is optional, so some jobs may be performed without the use of a
JM task. A job manager task may provide a single control point for all of the tasks within a
job and can be used as the “master” task for the job. If a job has a JM task, the system
launches the JM task as the first task in the job. The JM task can then submit more tasks
to the job, and it can monitor the progress of these tasks and control when to submit the
next batch of tasks. However, it is also contemplated that tasks may also be submitted by
one or more services outside of the system to the job even when a JM task is associated
with the job. In this way, the JM task can coordinate the scheduling of the tasks in a job
and manage dependencies among tasks. If the node or virtual machine for the job
manager task fails, the JM task can be restarted on another virtual machine so that the JM
task is always running for the corresponding job. In an exemplary aspect, the JM task is
automatically restarted on another virtual machine. In addition, users can specify to the
system that once the JM task completes, the system can terminate all the tasks in the
corresponding job. An exemplary JM task (or also referred to as a job task manager) is
discussed hereinafter with respect to Fig. 2.

Job

[0036] A job, as defined above, is a running instance of a work item. Fig. 2 depicts a
block diagram of an exemplary job 200, in accordance with aspects of the present
invention. The job 200 is comprised of a plurality of tasks, such as a task 204. As also
defined above, a task is a fundamental execution unit of the job that is executed by a
virtual machine within a task tenant (also referred to as a task machine herein and
discussed below). In addition to a plurality of tasks, the job 200 may optionally be
comprised of a job task manager 202 (also referred to as a JM task herein). The job task
manager 202 may provide a single control point for all of the other tasks (e.g., task 204)
within the job 200.

[0037] As will be discussed in greater detail herein, a work item is a static representation
of a job. The work item is referred to as a job, in an exemplary embodiment, once the
resource of the distributed computing system initiate computational resources (e.g.,

loading the job, queuing the job, instantiating tasks within the job). Stated differently, in

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

an exemplary aspect, a work item becomes a job once the system begins processing the
work item.

Virtual Machine Pools

[0038] A virtual machine refers to a logical unit of processing capability. A virtual
machine can have a one to one correspondence with a physical processor, or a virtual
machine can correspond to a plurality of processors, or a virtual machine can represent a
percentage of processing time/cycles on one or more processors. Regardless, it is
contemplated that a virtual machine, in an exemplary aspect, may be described, at least in
part, by the computing device 100 of Fig. 1.

[0039] In various embodiments, the virtual machines, which may perform a job based on
a work item, are associated with the account for the work item prior to use. A “pool” is a
logical grouping of virtual machines. Fig. 3 depicts a block diagram of a pool 300
comprised of a plurality of virtual machines, such as a virtual machine 302, in accordance
with aspects of the present invention. It is contemplated that a pool may have allocated
virtual machines spanning different data center, different geographic location, and
different physical configurations.

[0040] In an exemplary aspect, a work item always has at least one associated pool to
run the job(s) corresponding to the work item. Each account (e.g., task account) can create
one or more pools to which the account gets exclusive access for use in performing work
items associated with the account. A pool can be created when a work item is submitted
by a user, or a work item can be associated with an existing pool. Optionally, a pool can
be associated for use with a single work item or another subset of the work items
corresponding to an account. Further yet, it is contemplated that a pool may be
automatically created by the system for a job. For example, a reoccurring work item may
run every day at a particular time and usually require two hours to complete. In this
example, a pool may be automatically created every day when the job is created and the
pool may be deleted when the job completes.

[0041] When a work item is submitted by a user, the work item can be associated with
one or more pools of virtual machines, in an exemplary aspect. Further, it is contemplated
that the work item may be exclusively associated with a single pool (further it is
contemplated that multiple work items/job may be associated with a common pool). The
virtual machines can be organized within a pool in any convenient manner. For example,
all virtual machines may be organized in a single pool regardless of the geographic

location of the underlying processor for the virtual machine. Another option is to organize

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

virtual machines based on geographic location, so that all virtual machines for a pool are
in a given geographic location. Still another option is to organize virtual machines on a
basis other than geographic location, such as proximity to other variables (e.g., storage
resource, network latencies, user location/preference, and security requirements).

[0042] Another contemplated process for forming a pool utilizes system resource to
automatically generate the pool. The auto pool creation allows a pool to be created
automatically by the system when either a work item is created or when a job itself is
created. This process abstracts the creation of the pool from the customer/user/client. In
this mode operation, the customer/user/client is limited in their responsibilities to the work
item or the job to run. In an exemplary aspect, the pool is automatically created when
running the job and the pool is automatically torn down when the job has finished.
Further, it is contemplated that the pool is automatically created when the work item is
created and the pool is automatically torn down when the work item is deleted/finished.
[0043] It is contemplated that a virtual machine may run one task and/or many tasks in
an exemplary aspect. Further, it is contemplated that multiple jobs may run on the same
virtual machine pool. The VM pool may grow and shrink in size automatically without
user intervention and without explicit handling from the jobs, in an exemplary aspect. For
example, a job may not be responsible for compensating for the expansion or shrinkage of
a pool. Similarly, it is contemplated that a job may span multiple pools. This spanning of
multiple pools may be achieved by load balancing the job across multiple pools that are
able to independently grow and shrink in VM resources. Further yet, it is contemplated
that a pool may be comprised of zero virtual machines at a given time. This may occur
when there are no tasks for the job to perform. As a result, it is contemplated that a pool
may shrink down to zero VMs during a period of time to save computational resources.
Dedicated, Standby, and Preemptible Machines

[0044] In an exemplary embodiment, when a virtual machine is assigned to a pool, the
virtual machine can be in (at least) one of two types. The virtual machine can be assigned
to the pool as a dedicated virtual machine or a preemptible virtual machine. The status of
a virtual machine as dedicated or preemptible can also change while the virtual machine is
in the pool.

[0045] A “dedicated” virtual machine is a machine assigned to a pool for dedicated use
by work items/jobs assigned to the pool. Optionally, a dedicated virtual machine may be
assigned for dedicated use for one or more associated work items, as opposed to being

generally available for any job submitted to the pool. While a virtual machine has a

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

dedicated status, the machine is reserved for use by work items/jobs associated with the
pool.

[0046] A “preemptible” virtual machine is a virtual machine that is currently performing
a job in a pool on behalf of an account, but without a guarantee that the virtual machine
will continue to be available for that pool. When a preemptible virtual machine is made
available to a pool, the preemptible machine is added to that pool, which may then be used
by work items/jobs. The preemptible machine is then provisioned and used to perform a
job for that pool. The preemptible machine can be made available to the pool by any
convenient method, such as by having the pool, on behalf of an account, win processing
time on the preemptible virtual machine in a resource auction.

[0047] A virtual machine made available for use to an account will typically be a virtual
machine that has another purpose in the distributed computing environment. For example,
one source of preemptible virtual machines is virtual machines provisioned by the
distributed computing environment owner/operator for disaster recovery purposes. In
order to provide stable operation, a distributed computing environment may include one or
more groups virtual machines that are held in reserve. These reserve virtual machines are
available to replace resources that are lost due to a processor failure, network failure, or
any other kind of event that results in a portion of the distributed environment being no
longer suitable for performing jobs. When one or more dedicated virtual machines
assigned to a pool are lost due to an event, the lost machines can be replaced using the
reserve virtual machines. This improves the availability of resources in the distributed
computing environment. However, since it is desirable for failure events to be rare,
having a reserve of disaster recovery machines will often mean that a large number of
virtual machines are idle and waiting to be used. Rather than wasting the CPU cycles of
these virtual machines designated for handling failure events, the CPU cycles of these
virtual machines can be assigned to pools as preemptible VMs to run work items/jobs. If a
failure occurs and the system needs to take preemptible resources away to fill
requirements of dedicated resources, a preemptible job running on such a virtual machine
will be stopped as soon as is feasible (and possibly immediately) so that the preemptible
virtual machine can be used for its original purpose of replacing a lost or failed resource.
[0048] Another source of preemptible machines is excess capacity virtual machines.
Typically, the peak load of any network will be different from the average load. As a
result, a computing environment with sufficient resources to handle a peak load situation

will often have excess resources available during other times. These excess resources

10

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

provide a resource cushion. When a user makes a request for additional dedicated virtual
machines, the excess virtual machines can be used to fulfill the user’s request. When the
distributed computing environment has a load that is less than the peak load for dedicated
machines, one or more virtual machines will be free. Rather than wasting the CPU cycles
of these virtual machines designated for providing spare capacity, the CPU cycles of these
virtual machines can be assigned to users and pools on a preemptible basis. As the load of
requests for dedicated virtual machines increases, preemptible jobs running on these
excess virtual machines will be stopped as soon as is feasible (and possibly immediately).
This allows the preemptible virtual machine to be used for its original purpose of
providing additional dedicated resources when needed. Additionally or alternately, some
increases in the load for dedicated machines will be due to scheduled requests for
dedicated machines. If a virtual machine is going to become unavailable due to use as a
dedicated machine at a scheduled time, a preemptible job assigned to the virtual machine
may be stopped prior to the scheduled time to allow for an orderly transition from the
preemptible job to the dedicated resources.

[0049] Still another source of virtual machines is virtual machines associated with a pool
or an account in a “standby” reservation. A “standby” virtual machine reservation is a
virtual machine reservation that is associated with a first account or pool and provisioned
for use by that first account or pool. Further it is contemplated that a standby virtual
machine reservation is not tagged to a specific pool, instead the system maintains a
defined number of VMs that are kept for standby by an account or pool. When the
standby VMs are needed, the reservation number of standby VMs may be reduced to
satisfy a required number of VMs. In an exemplary aspect, the total number of VMs in a
system may equal dedicated VMs + reserved standby VMs + VMs free for computing that
are not assigned elsewhere + VMs kept in reserve for disasters and over provisioning. In
this example, it is contemplated that the number of preemptible VMs being used in system
is less than or equal to the number of reserved standby VMs + VMs free for computing.
[0050] Provisioning the standby machine reservation can include reserving VM capacity
somewhere in the system (e.g., pool level, account level). A standby virtual machine
reservation is not an allocation of a virtual. Instead, a standby virtual machine reservation
reserves the right in the future to take an idle or preemptible VM and change it to a
dedicated VM for that pool or account use. A standby VM, which is a count, may be

associated with two different pools.

11

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

[0051] One use for standby machines is for users that have high priority computation
jobs that occur only during a specific time frame. For example, a financial company may
wish to perform analysis of the daily activity of one or more financial markets, such as a
stock exchange or a commodities exchange. Continuing with this example, the financial
markets may open and close on a defined schedule, such as opening at 9:30 AM and
closing at 4:00 PM. The financial company would like to aggregate data from the hours
the financial markets are open for use in performing analysis or simulations. The goal of
the analysis is to provide information for their employees before the markets open the
following day. Such analysis can require a large number of virtual machines, but the
virtual machines are needed only between the hours of, for example, from 6:00 PM until
3:30 AM the following morning. During this time the financial company desires a
guarantee of availability of the virtual machines. During the rest of the day, the financial
company does not need the machines. Assigning a standby virtual machine reservation to
the account of the financial company can achieve this goal. In exchange for paying a
reservation price, the financial company is guaranteed the availability of the machines
during the desired times. Outside of the desired time window, the virtual machines can be
used as preemptible machines for the financial company and/or other users. When
executing a standby reservation that needs to take preemptible VMs to fulfill the
reservation, preemptible jobs can be stopped in an orderly manner prior to the scheduled
availability event.

[0052] When a standby VM reservation is converted to dedicated machines, this is
defined as conversion based on time-based criteria. In other words, the standby VM
reservation is converted to dedicated machines based at least in part on a predetermined
time and/or date. Time-based criteria are in contrast to activity criteria which are used to
define an activity threshold. An activity threshold corresponds to a threshold based on
usage and/or performance of one or more distributed resources. For example, in an
account, a customer may pay to reserve a number of standby VMs and that standby VM
reservation may be used for either time-based criteria or dynamic threshold auto-scaling
criteria. Further, it is contemplated that a standby VM reservation may be converted at
any point, regardless of reservation time or other scheduling reservation policies. For
example, a user (or administrator) may provide a request that one or more standby VMs
from the reservation are to be converted.

[0053] Another use for a standby VM reservation is to allow for improved performance

when scaling out a job. For example, a retail store may use distributed computing

12

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

resources to handle additional on-line traffic during the shopping season in advance of a
holiday, such as on-line traffic for reviewing the retailer’s website and placing orders.
Based on past experience, the retailer expects a certain level of on-line activity, and
reserves a corresponding number of dedicated virtual machines. However, in the event
that on-line activity is greater than expected, the retailer also reserves additional machines
in standby mode. The retailer can then set up one or more thresholds that indicate a higher
than expected level of activity. As these thresholds occur, the standby VM reservations
can be used to convert idle or preemptible machines to allow the retailer to handle the
additional on-line traffic without having the customers of the retailer experience slow
response times. In this situation, a standby VM reservation may be converted to a
dedicated machine at an unpredictable time, as it may not be known when an activity
threshold will be satisfied. When an activity threshold is met, idle VMs are used or
preemptible tasks are stopped and the machine is converted to a dedicated machine.
Example of Organization of Computing Resources in a Distributed Network Environment
[0054] A user of a distributed computing environment will typically desire to perform
jobs using the distributed computing resources (e.g., cloud computing resources). The
jobs may typically involve performing jobs on data that is stored in locations that are
accessible via the distributed computing environment, such as by way of a network (e.g.,
the Internet). One way for an operator to provide a distributed computing environment is
to provide the environment as a number of layers. Fig. 4 depicts a block diagram forming
layers of an exemplary system suitable for performing tasks within a distributed
computing environment, in accordance with aspects of the present invention. The system
in Fig. 4 includes a system agent runtime layer 408 (may also be referred to as a task
runtime layer) system agent runtime layer 408, an application runtime layer 406 (may also
be referred to as a third party task runtime layer), a resource management layer 402, and a
scheduling and execution layer 404.

[0055] In the embodiment shown in Fig. 4, the system agent runtime layer 408 is
responsible for setting up the execution environment and security context for a pool and
the work item/job/task to be run in the execution environment. The system agent runtime
layer 408 can also launch tasks and monitor the status of the tasks. The system agent
runtime layer 408 can take the form of a system agent running on each virtual machine.
The task runtime layer may also include a runtime library that can be linked into a user's
task executables. Having runtime libraries as part of the system agent runtime layer 408

can potentially provide richer capability to tasks executed by the system agent. Examples

13

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

of runtime libraries include one or more efficient communication libraries to allow fast
communication among tasks; an efficient remote file access library support to read files
from other virtual machines and/or other tasks; a checkpoint library to allow tasks to
checkpoint (e.g. into binary large objects) and resume; a logging library; and a library for
providing a distributed file system to be used across virtual machines performing a given
task within a pool of virtual machines.

[0056] The application runtime layer 406 allows additional runtimes to be built and run
on top of system agent runtime layer 408. The application runtime layer 406 also can
provide additional capabilities for coordinating the running of tasks for a job. Examples
may include a Map Reduce runtime to a library for providing a distributed file system to
be used across VMs performing a given task within a pool of VMs. This allows a user to
organize the distributed computing environment in a manner tailored for the user’s jobs or
tasks.

[0057] Resource management layer 402 deals with managing the computing resources
available in the distributed computing environment. One option is to have the resource
management layer 402 manage the resources at three different levels. At a first level, the
resource management layer 402 manages the allocation and de-allocation of virtual
machines associated with a job (i.e., execution of a work item) as well as the files stored
on each virtual machine associated with a task, which is depicted by a virtual machine
level 410.

[0058] At a second level, the virtual machines associated with a job can be grouped into
pools of machines, which are depicted at a pool level 412. A pool can contain virtual
machines associated with one or more jobs and/or work items. Depending on the
embodiment, a single pool can span across multiple clusters, such as all clusters in a data
center or a plurality of clusters across a plurality of data centers. A single pool can contain
a large number of virtual machines, such as millions. The virtual machines can be
contained in a large number of pools, such as up to billions.

[0059] At a third level of the resource management layer 402, the resource management
layer manages the size of each of the task tenants (to be discussed hereinafter). This
allows for the system as a whole to dynamically adjust the amount of compute resources
that are utilized based on a number of metrics, such as a current load of the system and a
timely release of unused virtual machines back to the system for other allocations. This

level is depicted by the tenant level 414,

14

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

[0060] In the embodiment shown in Fig. 4, scheduling and execution layer 404 manages
work items, jobs, and tasks that are being performed by a user. The scheduling and
execution layer 404 makes scheduling decisions and is responsible for launching jobs and
tasks as well as retries on failures. Such a scheduling and execution layer 404 can include
components for managing jobs and/or tasks at various levels.

[0061] Exemplary components may include a work item and job management
component 416, a task management and scheduling component 418, and a job manager
task component 420. The work item and job management component 416 maintains all
the work items that one or more users (or all users) have created /communicated to the
system. Based on a specification of each of the active work items, the system may then
create jobs and job queues to which the tasks are submitted. The work item may have a
reoccurrence schedule specified (e.g., every day at 5 pm). The system may then create
jobs according to the reoccurrence schedule for the work item. The work item and job
management component 416 may also be responsible for managing the termination and
cleanup of work items and jobs in the system.

[0062] The task management and scheduling component 418 allow for a user of the
system to submit (e.g., communicate) tasks to a job of the system. This component is
responsible for scheduling the tasks across all of the jobs/work items in the system while
keeping track of the status of these tasks. The task management and scheduling
component 418 may include a set of task schedulers distributed across one/some/all of the
task tenants (i.e., task machines) allowing each scheduler to only associate with a limited
set of resources (e.g., virtual machines) and tasks. Consequently, the task management
and scheduling component 418 allows the system to support billions of active tasks
running on virtual machines across a variety of task tenants, in an exemplary aspect.
[0063] The job manager task component 420 allows for a JM task, which may optionally
be associated with each job, to be launched as an initial task of a job. As previously
discussed, a JM task (also referred to as a task job manager) provides a single control point
of tasks within a particular job. This allows a JM task to submit additional tasks to a job
and to monitor progress of these tasks, which allows the JM task to control when to
terminate the job. A JM task may be an example of a mechanism that aids the application
runtime layer 406 control and run their systems.

[0064] The layers described above can be implemented in a distributed computing
environment that includes processors at multiple geographic locations. Fig. 5 depicts a

block diagram illustrating an exemplary arrangement of processors at different locations

15

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

that may be integrated within a single distributed computing system 500, in accordance
with aspects of the present invention.

[0065] In Fig. 5, one or more task tenants 514 can be used to manage pools of virtual
machines. A task tenant 514 can maintain a set of virtual machines (as will be discussed
in greater detail hereinafter with respect to Fig. 9). The jobs of one or more users can run
on the virtual machines within a task tenant 514 as part of one or more pools of virtual
machines. One or more task tenants 514 can be used in a given geographic region. The
responsibilities of a task tenant 514 can include maintaining the set of virtual machines
and dynamically growing or shrink the task tenant based on the resource utilization within
the task tenant. This allows a task tenant 514 to increase the number of virtual machines
within the task tenant to accommodate increased customer demand. This also allows a
task tenant 514 to release unused virtual machines so that the virtual machines can be
allocated to other hosted services in the data center handling service for other customers.
Another responsibility of a task tenant 514 can be implementing part of the pool
allocation/de-allocation/management logic. This allows the task tenant 514 to participate
in determining how virtual machines are assigned to pools associated with a task for a
customer. The task tenant 514 can also be responsible for scheduling and execution of
tasks on the virtual machines within the task tenant.

[0066] In the embodiment shown in Fig. 5, one or more task location services 512
(“TLS”) (as will be discussed in greater detail hereinafter with respect to Figs. 6-8) is
provided that controls all of the task tenants 514 in a given geographic region and/or
across a variety of geographical regions. In Fig. 5, task location services 512 are shown
that serve regions labeled “Geo Region 1” and “Geo Region 2.” The responsibilities of a
task location service 512 can include management of task accounts for the given
geographic region. The task location services 512 can also provide application
programming interfaces (APIs) for allowing users to interact with the distributed
computing environment. Such APIs can include handling APIs associated with pools of
virtual machines, pool management logic, and coordination of pool management logic
across task tenants within a given geographic region. The APIs can also include APIs for
handling tasks submitted by a user, as well as maintaining, scheduling, and terminating
work items or jobs associated with the user tasks. The APIs can further include APIs for
statistics collection, aggregation, and reporting for all work items, jobs, tasks, and pools in
a geographic region. Additionally, the APIs can include APIs for allowing auction of

available virtual machines as preemptible VMs to users on a short term basis based on a

16

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

spot market for virtual machines. The APIs can also include APIs for metering usage and
providing billing support.

[0067] The task location services 512 can be linked together by a global location service
502 (*“XLS”). The global location service 502 can be responsible for account creation and
management of accounts, including managing task accounts in conjunction with the task
location service 512. For example, the global location service may be responsible for
disaster recovery and availability of work items and jobs in the event of a data center
disaster. This may include running a work item or job in a different location due to the
data center not being available and allowing customers to migrate their work items, jobs,
and pools from one data center to another data center. Typically there will be only one
active global location service 502 in the system 500 at any given time. This active global
location service 502 is in communication with the various task location services 512 as
well as service components for managing data storage (not shown). The global location
service can maintain a global account namespace, such as at a domain name server 504.
[0068] As an example of operation of the system in Fig. 5, a hypothetical customer or
user may access the system 500 using a client portal 506 to create a task account via an
interface provided by the global location service 502. In this example, the hypothetical
customer is referred to as Sally. The user request to create a task account may optionally
specify a geographic region that the account needs to be created in. In this example, Sally
requests an account associated with the Geo Region 1, which has a failover region of Geo
Region 2. In response, the global location service 502 contacts the task location service
512 that corresponds to the requested geographic region (e.g., Geo Region 1) to create the
account. If aregion is not requested, the task account can be created in a region selected
by any convenient method, such as based on a location associated with the requesting user
or available resources. The task location service 512 maintains all the information for all
the accounts in its geographic region. After successfully creating the account in the task
location service 512 for Geo Region 1 and potentially a disaster recovery copy in the Geo
Region 2, the global location service 502 registers the task service endpoint for Sally’s
account to point to a virtual IP address of the task location service 512 for Geo Region 1.
For example, a domain name service (DNS) record can be created to map a host name
such as “sally.task.core.servicecompany.net” to the virtual IP address of the task location
service 512 in Geo Region 1. This completes the creation of the task account for Sally, in

this exemplary aspect. Further, it is contemplated that in the event of a failure in the Geo

17

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

Region 1, the global location service may update the DNS record to point to the Geo
Region 2.

[0069] After the account is created, the customer Sally can access the task account and
send requests to access the APIs for interacting with the distributed computing
environment against the hostname “sally.task.core.servicecompany.net.” For example,
Sally can access an API to issue a request to create a new work item or task. A DNS
server can then resolve the hostname and the request will be routed to the correct task
location service 512. In this example, the request is routed to the task location service 512
for Geo Region 1, which processes the request and creates the requested work item, job, or
task.

[0070] It is contemplated that any number of client portals 506, geo regions 508, 510,
task location services 512, and/or task tenants 514 may be implemented in any
combination in exemplary aspects of the present invention. For example, it is
contemplated that a task location service 512 may be associated with tens, hundreds, or
thousands of task tenants, in an exemplary aspect.

[0071] Fig. 6 depicts a block diagram illustrating a potential configuration for a task
location service 602, in accordance with aspects of the present invention. In the
configuration shown in Fig. 6, a task location service can include one or more account
servers 612. The account servers handle account management for accounts in a given
geographic region, including creation, deletion, or property updates. Account front ends
608 serve as the front end nodes for account service. The account front ends 608 are
behind an account virtual IP address 604 as shown in the figure. The account front ends
608 process the account API requests coming from global location service, such as API
requests to create accounts or delete accounts.

[0072] The configuration in Fig. 6 also includes one or more pool servers 614. A pool
server 614 handles pool management and pool transactions for pools of virtual machines
in a given geographic region. A pool server 614 handles pool creation, deletion and
property updates. A pool server 614 also manages the high level virtual machine
allocation algorithm across multiple task tenants. Virtual machine allocation can take into
consideration the connectivity of a virtual machine with storage for a given user. The pool
server may also perform other tasks related to allocation of virtual machines.

[0073] Further, it is contemplated that the pool server 614 may further be comprised of
an auto-scaling component 616. The auto-scaling component 616 may be formed as a

module that is responsible for running user provided auto scaling rules (e.g., formulas) that

18

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

automatically determine a desired number of dedicated, standby, and/or preemptible
virtual machines for a pool. Stated differently, the auto-scaling component may be
responsible for making auto-scaling decision based on auto-scaling rules associated with a
given pool. The auto-scaling component 616 may receive metrics regarding the pool or
jobs assigned to the pool and apply those with the user-provided (or system provided)
rules to compute an auto-scaling action on the pool. An auto-scaling action may include
increasing or decreasing a number of dedicated virtual machines; increasing or decreasing
a number of standby virtual machines in reservation, increasing or decreasing a target
number of preemptible virtual machines for the pool while also updating the bid price for
those resources.

[0074] The configuration in Fig. 6 also includes one or more work item or job
schedulers (“W1J”) 618 (as will be discussed in greater detail hereinafter with respect to
Fig. 8). WIJ schedulers 618 handle creation, deletion, and updates of work items and jobs.
The W1J is also responsible for the creating of jobs based on a schedule specified in the
related work item as well as adding the JM task (if one is to be added) to the job, in an
exemplary embodiment. In addition, the WI1J schedulers 618 may initiate the creation and
deletion of pools associated with the work items when an auto-pool configuration is
desired (as opposed to a traditional manual creation by a user). The W1J schedulers 618
may also use generic partitioning mechanisms for scaling within a task location service.
In an embodiment, there are multiple WI1J schedulers 618 in each task location service,
and each of the W1J schedulers handles a range of work items.

[0075] The pool servers 614 and W1J schedulers 618 receive requests from users via
task location service front ends 610 (as will be discussed in greater detail hereinafter at
Fig. 7). The task location service front ends 610 are also responsible for calling
corresponding components to process requests from users. The task location service front
ends 610 are behind an account virtual IP address 606 as shown in the figure.

[0076] The configuration in Fig. 6 further includes a task location service master 620.
In an embodiment, the task location service master 620 has two main responsibilities.
First, the task location service master 620 serves as a master system for implementing
partitioning logic for the corresponding servers in a task location service 602.
Additionally, the task location service master 620 can be responsible for computing the
new market price for preemptible virtual machines at the beginning of each spot period for
the entire geographic region of the task location service or coordinating the bid requests

for preemptible machines with an external service that is responsible for the spot pricing.

19

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

It collects current bids and resource availability information from the pool servers and task
tenants, and computes the new market price accordingly or communicates the information
to a spot market service. It also makes high level allocation guidance to pool servers about
preemptible virtual machines across all task tenants in a geographic region.

[0077] In order to track the activity and behavior of the computing environment, a task
location service master 620 can communicate with one or more statistics aggregation
servers 622, The statistics aggregation servers are responsible for collecting and
aggregating detailed statistics for tasks, jobs, work items and pools. The other
components in the system emit fine-grained statistics for tasks and virtual machines. The
statistics aggregation servers aggregate these fine-grained statistics from task level or
virtual machine level statistics into work item, account level, and/or pool level statistics.
The statistics can be exposed for use via an API. In addition, the statistics aggregation
servers can be responsible for generating hourly metering records for each account for use
in billing.

[0078] Fig. 7 depicts a block diagram illustrating an exemplary task location service
front end (“TLSFE”) 700, in accordance with aspects of the present invention. The
TLSFE 700 may be similar to the task location service front end 610 of Fig. 6 discussed
hereinabove in an exemplary aspect.

[0079] The TLSFE 700 is comprised of a request processor 702, an authentication and
authorization module 704, an account manager component 706, and a business logic
module 708. It is contemplated that additional or alternative modules and/or components
may be included in alternative embodiments.

[0080] The request processor 702 is a component responsible for receiving and
identifying on the HTTP(S) end point and accepting a user request. The request processor
702 may then queue and forward each request to the authentication and authorization
module 704. The authentication and authorization module 704 is responsible for user
request authentication and authorization. The TLSFE uses shared-key authentication to
authenticate the incoming requests, in an exemplary aspect. Other forms of authentication
are contemplated. Further, the authentication and authorization module 704 interacts with
the account manager component 706 to get information about user account and key
information. The authentication and authorization module 704 may then determine where
a user 1s authorized to request performance of operations (e.g., the account may be

temporarily disabled at the time of request).

20

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

[0081] The account manager component 706 may be used to encapsulate storage/access
account information. The account manager component 706 loads account information on
demand, in an exemplary aspect, as requests are received, which allows for the caching of
information locally (in memory) to speed processing of frequently accessed accounts.
When an account property (e.g., disabled state, authentication keys) change, the account
table may be updated. An account manager component 706 running in the TLSFE may
see that change when a cached copy (if any) expires, which may be a configurable
interval.

[0082] The business logic module 708 deals with all the business logic related to the
request made by the user, once it has passed the authentication and authorization module
704. The business logic module 708 may also interact with other task components within
the distributed computing system. Additionally, it is contemplated that the business logic
module 708 monitors a JM task completion queue for completed job manager tasks, which
then allows for a notification to be communicated to the W1J scheduler 618 o f Fig. 6
when the tasks complete.

[0083] Fig. 8 depicts a block diagram illustrating an exemplary work item/job scheduler
(“W1J”) 800, in accordance with aspects of the present invention. The WI1J 800 may be an
exemplary WI1J scheduler 618 of Fig. 6.

[0084] The WIJ 800 is comprised of a request processor 802, a caching module 804, a
heartbeat module 806, and a scheduling module 808. The WIJ 800, as previously
discussed may be a role responsible for accepting work items submitted by a user account
and scheduling jobs at appropriate times within the work item schedule. Consequently, it
is contemplated that the WIJ 800 creates jobs for a work item, creates queues for each
spawned new job, which are then used to queue up tasks for the job. A task scheduler of a
task tenant (discussed hereinafter with respect to Fig. 9) may then pull tasks from the
queue and schedule them on virtual machines at the task tenants. Further, it is
contemplated that the W1J is responsible for the life time management of the work item
and related jobs, such as marking the work item/job completed and contacting the
appropriate task tenants to start a job.

[0085] The request processor 802 is a module responsible for processing various work
items/jobs related to requests that are received from a TLSFE (such as the task location
service front end 610 of Fig. 6). Additionally, it is contemplated that an account server
(e.g., the account server 612 of Fig. 6) communicates requests to the WIJ 800 when an

account is deleted.

21

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

[0086] The caching module 804 is an in-memory cache of the partitions, user accounts,
active work items, active jobs, tasks tenant lists, and the like that the W1J is servicing.
This module may be responsible for keeping the cache up-to-date for relevant caching
policies.

[0087] The heartbeat module 806 coordinates with the task location service master (e.g.,
the TLSM 620 of Fig. 6) to report health and load status of the W1J. Additionally, it is
contemplated that the heartbeat module 806 also receives new partition assignments from
the TLSM via the “heart beat” coordination.

[0088] The scheduling module 808 is responsible for scheduling new jobs for work
items according to the specified schedule of that work item. It is also responsible for
marking the work item and/or job as completed. Further, the scheduling module 808 may
be responsible for creating and deleting pools that have their lifetime tied to the lifetime of
a work item or a job.

[0089] Fig. 9 depicts a block diagram illustrating a task tenant 900 in accordance with
aspects of the present invention. The task tenant, in an exemplary aspect, is contemplated
as being implemented in the system 500 of Fig. 5 as the task tenant 514. As noted above,
a task tenant can assist with managing pools of virtual machines. In the embodiment
shown in Fig. 9, a task tenant includes one or more task tenant front ends 904. The task
tenant front ends 904 are behind the task tenant virtual IP address which is internally used
for communication between a task tenant and its corresponding task location service,
including passing through requests between a task location service and a task tenant.
[0090] In the embodiment shown in Fig. 9, the task tenant also includes a task scheduler
902. A task scheduler 902 can be responsible for making local task scheduling decisions
within a task tenant. The task scheduler 902 decides what task is to run on each virtual
machine it controls. For example, a work item or job submitted by a user can have a set of
queues which contain the list of tasks to be scheduled. The task scheduler 902 takes tasks
from the set of queues, selects one or more available virtual machines in the pool
associated with the job, and contacts the virtual machine(s) to schedule these tasks. The
task scheduler 902 can also make scheduling decisions based on priority values associated
with jobs. Additionally, the task scheduler 902 keeps track of the virtual machines inside
a task tenant.

[0091] The task scheduler 902 works with pool servers to allocate/deallocate virtual
machines to/from pools. In addition, the task scheduler 902 maintains heartbeats with all

the virtual machines, synchronizes with the virtual machine about pool membership via

22

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

heartbeats, and controls restarts/reimage of the virtual machines. Still another function of a
task scheduler 902 can be to keep track of the size of the task tenant. Based on the current
utilization of the virtual machines within a task tenant, the task scheduler can grow or
shrink the task tenant, so that the task tenant has sufficient number of virtual machines to
run the tasks associated with the task tenant. Similarly, if there are too many virtual
machines sitting idle in the task tenant, the machines can be released for use by other
hosted services in the data center.

[0092] The task scheduler 902 is comprised of the following components and modules
to achieve the above-referenced functionality. For example, the task scheduler may be
comprised of a request processor 910, a heartbeat manager 912, a statistics aggregation
manager 914, a scheduling loop module 916, a pool allocation manager 918, and a task
tenant manager 920.

[0093] The task scheduler 902, in an exemplary aspect, “owns” the virtual machines of
the task tenant 900 and also “owns” what is performed on those virtual machines. As a
result, it is contemplated that a pool of VMs is comprised of VMs across multiple task
tenants. When a job is assigned to a pool, the task scheduler 902 can take work items
from a queue and run those work items on the virtual machines that the task scheduler 902
“owns” (e.g., the TVM 908 of the task tenant 900). Other task schedulers associated with
other task tenants with TVMs in the pool may also take work items from the queue and
run those work items on virtual machines associated with each of the unique task
schedulers of each task tenant.

[0094] The request processor 910 is responsible for processing various requests received
from a W1J, a Pool server, and/or a TLSM. The requests may be routed to the task
scheduler from the task tenant front end. Consequently, the request processor 910 may
queue up requests for correct subcomponents to consume.

[0095] The heartbeat manager 912 is responsible for heartbeating with other virtual
machines (e.g., TVM 908) in the task tenant. In response to heart beat communications,
this module collects information about the virtual machine health and task health.
Additionally, in response to received heartbeats messages, this module may determine
which of the virtual machines are idle and can be used for scheduling new tasks.
Additionally, the heartbeat monitor may collect various statistics (e.g., CPU, memory, disk
usage) about virtual machines. These statistics may then be passed to the statistics

aggregation manager 914.

23

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

[0096] The statistics aggregation manager 914 is responsible for aggregating and
organizing by pool, the various statistics that are collected from various virtual machines
of the task tenant. The aggregated statistics may then be communicated to a pool server
for use in auto scaling operations.

[0097] The scheduling loop module 916 may be responsible for scheduling job tasks on
the pool virtual machines. The pool allocation manager 918 is responsible with operations
related to a pool, such as scaling resources, allocating resource, assigning jobs/work items,
and the like, as discussed herein.

[0098] The task tenant manager 920 is a module that takes care of growth and
contraction of the task tenant itself. This module interacts with the distributed computing
system fabric to expand/contract the number of task tenant virtual machines according to a
load on the system. Additionally, it is contemplated that the task tenant manager 920 may
be responsible for maintaining a buffer of free reimaged virtual machines for quick
conversion to dedicated virtual machines for any given pool.

[0099] Fig. 9 also shows a plurality of virtual machines associated with a task tenant. In
the embodiment shown in Fig. 9, each of the virtual machines includes task virtual
machine 908 (TVM). In an embodiment, the task virtual machine 908 is responsible for
launching tasks on the virtual machine, as well as setting up directories structures and
permissions for the tasks. It also configures the operating system firewall on the virtual
machine to only allow traffic between virtual machines within the same pool (if the pool
needs intra-communication). As discussed earlier, the task scheduler 902 maintains
heartbeats with the virtual machines via the task virtual machines 908. This allows the
task scheduler 902 to monitor the health of the virtual machines as well as synchronizing
the pool membership information for the task virtual machine agents.

[00100] An exemplary task virtual machine 906 is depicted as being comprised of a
number of components not depicted in the TVM 908 for brevity sake. However, it is
contemplated that any modules/component may be associated with any virtual machine.
The components/modules of the task virtual machine 906 comprise a request processor
922, a resource manager 924, a task manager 926, and a security manager 928.

[00101] The request processor 922 is responsible for handling various requests that the
virtual machine gets from a task scheduler or the task tenant front end. The resource
manager 924 is responsible for managing disk quotas, creating directory structure for the
system and for downloading resources for a startup task and a job task. The task manager

926 manages the task life time, which starts from the time the virtual machine receives a

24

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

start task command from the task scheduler and is valid until the system data (e.g., related
directory structure) is cleaned up from the virtual machine. The security manager 928 is
responsible for setting up the various firewall rules and creating an account with correct
privileges for running the user task.

[00102] Fig. 10 depicts a block diagram illustrating an exemplary pool server 1000, in
accordance with aspects of the present invention. The pool server 1000 may be
implemented as the pool server 614 of Fig. 6 discussed hereinabove in an exemplary
aspect.

[00103] The pool server 1000 is comprised of the following components. A request
processor module 1002 that is responsible for accepting incoming operations (e.g., create
pool, delete pool, and update pool). A task tenant virtual machine allocation manager
module 1004 that performs virtual machine breakdown across task tenants for reserving
virtual machines in a pool. It is a decision module that decides which task tenants to
choose and how many virtual machines to reserve in a task tenant for a pool. A
transaction processor module 1006 may also be associated with a pool server. The
transaction processor module is a core module that maintains the lifetime of the pool
transaction. This module continues to work on transactions until it successfully finishes or
times out or is cancelled. Each transaction is persisted in tables and therefore may be
completed across various system components in the event of a failure. An example
transaction may include requests from a pool server to a task tenant to allocate, reserve, or
deallocate a certain number of VMs in that task tenant for a given pool. Further, it is
contemplated that an auto-scaling module 1008 may also be associated with the pool
server 1000. As previously discussed with respect to the auto-scaling component 616 of
Fig. 6, the auto-scaling module 1008 is responsible for running user provided auto scaling
rules (e.g., formulas) that automatically determine a desired number of dedicated, standby,
and/or preemptible virtual machines for a pool.

Management of Work Items/Jobs/Tasks

[00104] Fig. 11 depicts a communication diagram providing an exemplary work flow
1100 between a variety of components in an exemplary distributed computing system, in
accordance with aspects of the present invention. The distributed computing system is
comprised of a client portal 1102, a task location service front end (TLSFE) 1104, a pool
server 1106 a work item/job scheduler (W1J) 1108, a storage unit 1112, and a task tenant
1114. All of the components are discussed previously. The TLSFE 1104, pool server

25

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

1106, and the W1J 1108 are associated with a task location service 1110 (such as the TLS
600 of Fig. 6).

[00105] The work flow includes a user submitting 1116 a work item through the client
portal 1102 to the TLSFE 1104. This submission may be done using an API call to the
TLSFE. The TLSFE may then contact 1118 the WIJ 1108 to register the received work
item with the system. During the registration of the work item, the pool to use for the
work item tasks and option job manager task may be specified. This registration may, in
this exemplary aspect, result in a communication from the W1J 1108 to the storage 1112
for the persisting 1120 of the work item. Further, it is contemplated that the W1J 1108 will
create an associated job that is stored 1122 at the storage 1112.

[00106] Because a job should be associated with an auto-pool, the WIJ 1108 may instruct
the pool server 1106 to create a pool to which the tasks of the work item will be processed.
This work flow is operating under the assumption that a pool does not already exist to
which the work item is assigned. In this example, the work item submitted by the user
may indicate that it is an auto-pool embodiment. When a work item is received that
indicates that an auto-pool setting is included, the pool server 1106 may create 1124 the
pool dynamically and automatically. The W1J may control when the pool will be
created/deleted and the W1J may instruct the pool server accordingly. The pool server
may then treat the W1J requests the same as other user initiated pool creation/deletion
requests. Traditionally, the creation of the pool requires a user intervention that prevented
the creation of the pool to be dynamic and automatic.

[00107] For each job that is spawned by the WIJ 1108, multiple queues may be formed.
For example, the WIJ may create 1126 several job queues including a dedicated queue, a
preemptible queue, an “any VM” queue, and/or a job manager queue. These various
queues are used to hold tasks for the job.

[00108] If the work item has an associated job master task, then the WIJ may register the
job manager task with the system to have the job manager task as the first task started with
the job. Additionally, information may be added to the job manager queue. The system
may then ensure that the job manager is always running with the job in the event of a
system failure. Those communications are indicated by the WIJ adding 1128 a job
manager and adding a job manager task 1130.

[00109] Once a WIJ spawns a job, additional tasks for the job may be submitted via an
API. The system supports specifying a retry count for each submitted task. If the task

fails, the system may re-spawn the task up to a retry count number of times possibly on

26

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

different virtual machines. If the job has a JM task, then additional tasks for the job may
be submitted by the job manager task itself. The system may allow for tasks to be
submitted from outside the system after the job has been created.

[00110] The TLSFE handles all add task requests and upon receiving an add task request,
the TLSFE persists the task information in the task table and also puts metadata about the
task in one of the three job queues. The choice of which job queue may depend on where
the task was marked to run (e.g., dedicated only, preemptible only, or any VM in the
pool).

[00111] Once the job is spawned, the WIJ contacts all the task schedulers that have
virtual machines for the given pool and informs them about the job start, as seen in the
start job communication 1132. Users may specify during a work item creation whether the
system should terminate the entire job when the job manager task completes. The system
may then maintain this information and, if specified that when the JM tasks completes, the
following logic may be implemented. The WIJ may wait for communication about the JM
Task completion, which may occur after the task tenant(s) 1114 process jobs in the job
queue 1134. When a job manager task is completed, a message is enqueued into the JM
completion queue. The JM queue, in an exemplary aspect, is a system queue. The TLSFE
may keep monitoring the queue and upon getting a message in the queue, they dequeue the
message and inform the appropriate W1J to handle the job manager completion. After a
job manager message is received from the queue, the WIJ may mark the job as completed
in its persistent store and removes the message from the JM completion queue.

[00112] If ajob does not have an associated job manager task or users do not specify to
terminate the job with completion of the job manager task, a separate end job request by a
customer may be issued to mark the job as completed. Once the job is marked as
completed, no additional tasks for the job may be processed. Further, it is contemplated
that a job may be marked as recurrent or run once. For recurrent jobs, the WIJ may spawn
(e.g., instantiate, create) new jobs at the next recurrent interval. The work item may have
a “don not run after” time specified, which would preclude the W1J from respawning the
job after that time. Upon receiving a communication of the start job from the W1J, a task
scheduler starts looking in the job queues for presence of tasks. As additional tasks get
queued up, the task scheduler dequeue the tasks and run them on the specified pool virtual

machines, in an exemplary aspect.

27

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

Task Scheduler Scheduling

[00113] A task scheduler (“TS”) (such as the task scheduler 902 of Fig. 9) may perform
the scheduling of tasks in the following exemplary manner. The TS may maintain most of
the scheduling information in memory. However, it is contemplated that information
related to tasks that have yet to be picked up from the job queue(s) may not be maintained
in memory.

[00114] The TS, in an exemplary aspect, performs the scheduling by pool. Therefore, the
TS maintains information about each of the pools to which job tasks can be scheduled.
This information may be passed to the TS by a W1J via a start job message (e.g., the start
job communication 1132 of Fig. 11). In an exemplary aspect, the TS may persist this
information to handle the possibility of a failover scenario. For each pool there may be
multiple active jobs. The TS does the scheduling within each pool based on a job priority.
However, the priority is at the job level instead of the overarching account level, in an
exemplary aspect.

[00115] In an exemplary aspect, each TS knows the list of jobs that has been assigned.
For each scheduling quantum, the TS picks ‘N’ items from the various job queues (e.g.,
there may be multiple job queues per job with different priorities for scheduling different
types of tasks such as dedicated and preemptible tasks), wherein each job queue may be a
priority queue. In this example, the ‘N’ items may be equal to a number of VM available
in the pool for scheduling tasks. Stated differently, it is contemplated that the TS picks a
number of items from the queues that is equal to the number of virtual machines available
in the pool.

[00116] In addition to other metadata about a task, each queue entry may have a pointer
into the main task table, which allows the TS to read information about the task from the
task table. The task table may have the task state, which may help a TS determine if the
task needs to run. For example, if the task has completed, the task may not need to run
again. This may occur when there is a failure after the task completed but the VM could
not remove the entry from the job queue. Additionally, it is contemplated that affinity
information for the task may be read from the task table. This affinity may allow the TS to
determine which of the ‘N’ items picked from the queues is best suited for a particular
virtual machine.

[00117] Once a task is assigned to a VM, the TS may populate virtual machine
information in the task table corresponding to the task and schedules the task on the virtual

machine. Once a virtual machine is assigned a task, the virtual machine may take over

28

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

extending an invisibility time of the running task in their job queue, which effectively
maintains a lease on the task. The VM may update the state of the task to “running” (or a
comparable) once it receives the task. Once the resources are downloaded for the task, the
VM may update the task state to “running” (or a comparable) and spawns the task process.
Consequently, the VM may then delete the corresponding entry for the task from the job
queue. If the task happened to be a JM task (job master task), the VM may include a job
manager completion entry in the JM completion queue.

Task Retry Handling and Job Manager Task Retry Handling

[00118] Generally, a task retry and a JM Task retry handling are performed similarly;
however, a few deviations in the processes are present in an exemplary aspect. In an
exemplary aspect, each submitted task is associated with a retry count that has been
specified with the task. Upon an application failure for execution of a task, the system
may reschedule the task a number of times equal to the retry count value before marking
the task as completed with an error. In situations of system failure (e.g., a VM fails), the
system may automatically retry the failed task without counting towards the retry count.
[00119] A virtual machine monitors the task that it spawned. If the task fails, then the
VM retries the task on the VM and also updates the retry count in the task table. In an
exemplary aspect, the VM retries a task “x” number of times (which is configurable), after
that number is exceeded, the VM allows the task scheduler to reschedule the task at an
alternative VM by making the task visible again in the queue (e.g., releases the lease on
the task). The task scheduler may then pick up the visible item from the queue, updates
the retry count, and assigns it to another VM. In this example, the task may only get
picked up if there is an available VM. This process may continue until the task completes
successfully or the task has been retried a specified number of times.

[00120] A JM task may follow a similar process as outlined above. However, it is
contemplated that if a VM is not available to spawn the JM task, then the task scheduler
may pick up one of the non-JM tasks (e.g., lowest priority at run time) and preempts the
task to make resources available for the JM task to run. This may ensure that the JM task
is always restarted for a job even in the event of a system failure.

Pool Management

[00121] For each task account, one or more pools may be created (or associated). In an
exemplary aspect, there are two types of virtual machines in a pool and also a standby VM
reservation associated with the pool (as previously discussed). The VMs may be

dedicated VMs that are reserved VMs currently being used for the exclusive benefit by the

29

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

task account or pool. The second VM may be a preemptible VM. A preemptible VM may
be any non-dedicated VMs in the system that is available to run preemptible tasks,
including VMs reserved as standby VMs or any idle VMs the system has provisioned.
The preemptible VMs can be used until the system needs their resources for other
purposes.

[00122] In an exemplary aspect, an account may specify each number of dedicated VMs
and standby reserved VMs in a pool. A standby VM reservation may be converted into a
dedicated VM and the opposite is also contemplated. The system may then hold the
dedicated and the standby resources for a particular pool.

[00123] Various properties may be associated with a pool. Those properties may include
a standby VM reservation, a number of dedicated VMs, a type of VM (e.g., small or
large), communication requirements (do jobs need cross-task communication), storage
account affinity, pool metadata (e.g., metadata set by a user), and/or start task information.
The start task information is the task that gets run on each of the pools VMs during an
initial setup of the pool and also when a VM reboots. These properties may define, at least
in part, a pool and the resource of the pool.

[00124] As previously discussed, a job utilizes a pool (and the underlying virtual
machines) to run tasks of the job. The tasks run on either dedicated or preemptible VMs
in the pool. The standby VM reservation is not used to directly run the tasks, instead the
standby VMs are converted to dedicated or preemptible VMs, in an exemplary
embodiment. It is contemplated that the pricing for the various VMs may vary. For
example, a standby VM reservation may be minimal in costs for reserving the resources,
but by reserving, the standby VM reservation is available to be quickly converted into a
dedicated or preemptible resource. A dedicated VM may have traditional compute
pricing. Preemptible VMs, on the other hand, may be priced by a bidding operation that
allows for the concept of spot pricing and other variable pricing constructions.

[00125] The creation of a pool may follow a process similar to the following exemplary
steps; however, alternative methods are contemplated. A user may initiate the creation of
a pool by specifying various parameters, such as a pool name, a VM size, a storage
account affinity, cross talk communication requirements, metadata, and the like. The user
may send an API request to the TLSFE, which may then forward a related request (or the
same request) to a correct pool server. Prior to sending a request to the pool server, the
system may authenticate the user. The receiving pool server may then start a pool

transaction with a unique identifier. The pool server may then generate a VM reservation

30

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

breakdown for the task tenants to satisfy the target number of dedicated VMs and the
number of VMs to keep reserved as standby. This reservation operation may include
persisting the transaction in the event of a system failure so that the pool reservation may
ultimately prevail. The pool server may then regularly communicate status (i.e.,
heartbeats) updates and checks with the task scheduler to keep updated on the
reservations. Upon completion of the transaction, the pool server may commit the
transaction by informing each task tenant to commit their transaction and then after each
task tenant responds, removing the pending transaction.

[00126] A pool may be updated by converting the standby VM reservations to dedicated
(or vice-versa). This may be accomplished by the system (or the user) providing a desired
number of dedicated and standby VMs. The pool server may then handle the updating of
the pool by starting new transactions with the associated task tenants and passing new VM
targets to those task tenants. At the task tenant, an incoming request may be routed
through the TTFE to the task scheduler. If a desired target includes increasing a number
of dedicated VMs and reserving extra standby VMs, the task scheduler converts
unallocated VMs into dedicated VMs and reduces the standby count. If additional
dedicated VMs are still desired, then the task scheduler allocates VMs from the
preemptible pool. If insufficient VMs are available, the task tenant may grow to satisfy
the request. Stated differently, it is contemplated that free VMs are initially allocated
followed by converting preemptible VMs. However, it is also contemplated that
preemptible VMs are converted initially and free VMs are allocated to fill any remaining
resource needs.

Job Scheduling with a Platform As A Service (PAAS)

[00127] Fig. 12 depicts a block diagram illustrating an exemplary method 1200 for
providing resources in a distributed computing environment, in accordance with aspects of
the present invention. At a block 1202, a request is received to create a task account from
a user. For example, a user may request, by way of a client portal (including a service
management API), that the service generates an account that is useable by the user to
perform computations. The request may be received at a high-level location service (e.g.,
XLS) of the system. While not depicted, it is contemplated that the high-level service
ensures the account is created by communicating with lower level task location service in
one or more defined clusters of computing resources (e.g., geo regions). Further, it is
contemplated, as previously discussed, that the high-level location service coordinates

registering the namespace associated with an account or resources used by an account.

31

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

This registering of the namespace may be carried out utilizing, at least in part, a domain
name service.

[00128] At ablock 1204, a work item associated with the task account is received. For
example, a user may submit a work item by way of a client portal. The work item is
contemplated as being communicated by the user to a task location service of the system.
In an exemplary aspect, the work item is routed to the TLS based, at least in part, on a
registered namespace maintained by the system. For example, various communications
may be communicated utilizing an account virtual IP address and/or a task virtual IP
address, as previous discussed.

[00129] Among other components, it is contemplated that the work item may be
comprised of binaries to be executed by one or more virtual machines, command line
parameters that may be used by a virtual machine, and/or rules. The rules may be useable
by the system to automatically create jobs, automatically create pools, automatically run
jobs on pools, and/or automatically delete pools, for example. Other functions may be
achieved by the rules. At a block 1206, the system received rules associated with the work
item. As previously discussed, the rules may be communicated by the user or may be
generated, at least in part, by the system based on user-provided information (e.g.,
preferences associated with the task account). The rules may be a portion of a broader
specification defining characteristics of the work item, the resulting job, associated tasks,
and/or the pool.

[00130] At a block 1208, a job is automatically created based on the work item. As
previously discussed, a job may be created by a W1J of the system. The job is created, in
an exemplary aspect based on the rules/specification that was received in connection with
the work item. Among other information included with this rules/specification, it is
contemplated that priority and other computation altering information may be included
that allows the system, without a burden on the user, to automatically create the job for
eventual instantiation on a pool (or set of pools).

[00131] At a block 1210, when auto-pool is specified in the work item, virtual machines
are automatically allocated to a pool for use in processing the job. As previously
discussed, the virtual machines allocated to the pool may be based, in part, on the
specification and/or rules associated with the work item. For example, the information
associated with the work item may specify a desired resource spend, a time in which the
work item is desired to be completed, a geographical region in which to compute the tasks,

and the like. Utilizing this information a pool server may allocate zero or more virtual

32

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

machines to the pool. The information used for allocating may be part of a specification
that designates a number of dedicated and standby VMs and the like.

[00132] Atablock 1212, a job queue (or a plurality of job queues as previously
discussed) may be automatically created by a W1J. Further, it is contemplated that a JM
task may be created, in an exemplary aspect. Additionally, it is contemplated that the
work item may be instantiated as a job on the pool by assigning the job to the pool and
then scheduling tasks of the job on the VMs of the pool, as indicated at a block 1214.
Therefore, it is contemplated that a work item may be scheduled on a pool as a job. Tasks
of the scheduled job may then be assigned to VMs to be run, as part of instantiating a job.
As previously discussed, it is contemplated that a task scheduler of a task tenant may be
responsible for scheduling one or more tasks in a queue at one or more of the virtual
machines within the pool. It is also contemplated that a second job is instantiated on the
pool. The second job may be a reoccurring instance of the work item or a job based on a
completely different work item.

[00133] Atablock 1216, it is contemplated that the system automatically deletes, without
the intervention or request of the user, the pool. The pool may be deleted in response to
the completion of the job or the work item. For example, the pool may be deleted after
each job is completed. Additionally, it is contemplated that the pool may be maintained
after the completion of the job for future use by the account (or another account) or work
item. For example, it the work item is scheduled for a reoccurrence, it may be efficient to
maintain the pool in anticipation of the respawning of the job and keep state (e.g., data
files and applications) on the VMs across the running jobs. Further, it is contemplated that
using the auto-scaling functionality, the pool may automatically convert dedicated VMs to
standby VMs or reduce the number of VMs in response to scaling rules, such as a number
of pending tasks on the pool. Further, it is contemplated that a request from the user may
be received. The request may include instructions for the deletion of the pool.
Automatically Scaling a Pool and Hierarchical Structuring

[00134] Fig. 13 depicts a block diagram illustrating an exemplary method 1300 for
providing resources in a distributed computing environment, in accordance with aspects of
the present invention. In particular, it is contemplated that automatically scaling a pool of
resources based on rules, requirements, and current resource load allows for the effective
provisioning of resources in a distributed computing environment. As previously
discussed, a pool may be created by the system (e.g., distributed computing environment)

as a set of resource on to which a job is instantiated. However, based on changes in

33

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

resource demand, scheduling changes, and other variables, it may be desired to increase a
size, decrease a size, increase/decrease a particular VM type, and to adjust other variable
associated with the pool. Traditionally, this process may be manual in nature and rely on a
human intervention to manually adjust a pool resource level.

[00135] It is contemplated that automation may be provided to the scaling of resources,
such as a pool, to effectively utilize the resources of the system. In an exemplary aspect
the method 1300 allows for the auto-scaling of a pool without the intervention of a user.
At a block 1302, the system automatically determined a number of virtual machines
associated with a pool. The determination may be completed by a pool server. The
determination of a number may include determining a total number of virtual machines or
determining a total number of a particular type of virtual machine. For example, the
determination may be to determine the total number of dedicated VMs in the pool. The
determination may be made from a table or other listing maintained by one or more
components/modules of the system. For example, it is contemplated that a pool server
may maintain a listing of those task tenants having virtual machines used by the pool.
Similarly, it is contemplated that a task tenant may maintain a listing of VMs used by a
pool (e.g., a task scheduler may maintain such information). Therefore, the determination
may be made by referencing one or more source of information already maintained within
the system.

[00136] Ata block 1304, an auto scaling rule is applied to adjust a number of virtual
machines associated with the pool. For example, it is contemplated that the number of
VMs in total is decreased or increased. Further, it is contemplated that a number of a
particular type of VM (e.g., dedicated) is increased or decreased. As previously discussed,
the auto-scaling rules may include one or more preferences to aid in determining a
size/composition of a pool. For example, the auto-scaling rules may include one or more
formula for determining an optimized pool based on current pool statistics and scheduled
jobs. The auto-scaling rules may take into account metrics regarding the system, such as
job queue statistics (e.g., pending tasks waiting to run, enqueue rate, dequeue rate, task
completion rate, etc), spot-pricing information, available resources, efficiency of
resources, and the like. Further, it is contemplated that the auto-scaling rules may also
take into account a desired completion time for a work item, job, and/or task.
Additionally, it is contemplated that the auto-scaling rules may take into account the
desired financial resources that are preferred to be expended (e.g., rely on preemptible

VMs at a lower cost than dedicated VMs).

34

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

[00137] As aresult of applying the auto-scaling rules to adjust the number of virtual
machines associated with the pool, the system may dynamically allocate one or more
virtual machines of the pool, as indicated at a block 1306. The dynamic allocation of VMs
may include adding one or more VMs, removing one or more VMs, changing a type of
one or more VMs. For example, the application of the auto-scaling rules may result in the
addition of one or more virtual machines that are dedicated VMs to the pool. Further, it is
contemplated that the allocation may include converting free or preemptible VMs to
dedicated VMs and reducing the standby count. Other allocations are also contemplated.
[00138] The dynamic nature of the allocation is related to the system performing the
allocation without user intervention. For example, it is contemplated that the auto-scaling
rules may be applied at intervals (e.g., time interval, process count intervals). As a result
of automatically running the auto-scaling rules, in this exemplary aspect, the allocation of
the resources may occur without a request of a user at the time of allocation or as a direct
result of a user input requesting the allocation to be performed.

[00139] Fig. 14 depicts a block diagram illustrating a method 1400 for providing
resources in a distributed computing environment, in accordance with aspects of the
present invention. As previously discussed with respect to Fig. 13, it is contemplated that
the utilization and application of auto-scaling rules when applied to a pool allows for the
providing of resources in a distributed computing environment.

[00140] At a block 1402, a work item is received from a user. The user may
communicate the work item through an API, which may come via a client portal to a high-
level location service of the system. The work item may be associated with a particular
task account, which may have account preferences associated therewith. At a block 1404,
an auto-scaling rule is received from the user. The auto-scaling rule may provide user
preferences with respect to a time for completion of the work item, a priority of the work
item, a preferred financial resource expenditure (e.g., prefer preemptible VMs over
dedicated VMs). The auto-scaling rules may also include one or more formulas that
utilize one or more metrics associated with the pool to aid in scaling the pool in response
to demands on the pool.

[00141] At a block 1406, a first VM located in a first data center is allocated to a pool.
The allocation of the virtual machine may include the adding of the virtual machine as a
resource useable within the pool. In an exemplary aspect, the first VM is allocated
automatically to the first pool. This is done without user intervention indicated that a VM

is to be included in a pool, let alone which VM and which pool. For example, in the past a

35

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

user may have been required to establish a pool by identifying the resources to be included
in the pool. The identification of resources may include identifying a number of VM and
from where the VMs are assigned. In this example the system itself identifies that a pool
is to be created and that a number of VMs are to be allocated to the pool for the pool to
meet a desired performance or operating characteristic.

[00142] At a block 1408, a second virtual machine is allocated to the first pool. The
second VM is in a second data center that is geographically separate from the first data
center. In an exemplary aspect, the second VM may be from a set of VM resources in the
same data center, but in a different task tenant. It is contemplated that the second VM is
automatically allocated to the first pool without intervention by a user. This automation
(and other automatic tasks performed by the system without the intervention of a user)
incorporates process and steps that would otherwise not be utilized when a user is allowed
to intervene. For example, a determination as to which VM is to be allocated into the first
(or any) pool is contemplated within an exemplary embodiment of the present invention.
[00143] The first task tenant and the second task tenant may be physically independent
data centers (or in a common data center) that service the system. For example, it is
contemplated that the first Task tenant may be located in a first geographic location (e.g.,
at a specific address, city, state, region, country, and/or continent). In one example, it is
contemplated that the first task tenant is located in a first region of the United States of
America (e.g., Western US) and the second task tenant is located in a different region of
the United States of America (e.g., Eastern US). In this example, the first task tenant and
the second task tenant are addressable by a common or a different task location service.
This allows for the auto-scaling of a pool without intervention of a user into the
complexities of growing a pool (or decreasing a pool) that spans across varied data
centers. For example, it is contemplated that physical limitation may have previously
prevented the expansion of a pool beyond the size of a physical data center. Decoupling
the concepts of jobs and pools from schedulers (task tenants) in control of local VM
resources allows a pool and its jobs to expand to include resources in two or more data
centers without requiring a user to program or otherwise intervene with the system to
allow such an expansion. Hence, it is contemplated that a user may design a work item
that is able to scale across billions of VMs and across a few VMs based on the system
automatically handling the scaling of the pool.

[00144] At ablock 1410, the work item is instantiated on the first virtual machine and the

second virtual machine. The instantiation of a work item may include a scheduler in the

36

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

task tenant pulling the task off of the queue and assigning it to a VM. The instantiation of
a work item may further include scheduling of a task from the work item on the virtual
machine. The instantiation may also include the virtual machine pulling a task from a
queue for processing of the task. The instantiation may also include the processing of
tasks at the virtual machine. Therefore, the instantiating of the work item may include any
aspect that results in a portion (e.g., task) of the work item being processed by a VM.
[00145] By instantiating the work item’s job to a pool that has both the first VM and the
second VM, the work item is processed by a pool that scales across multiple data centers
without the user altering the work item to accomplish this result. Therefore, it is
contemplated that the same work item that is capable of running on a pool served by a
single task tenant may also, without user intervention, run on a pool that spans multiple
discrete task tenant and data centers.

[00146] Ata block 1412, the auto-scaling rules are applied to the pool. In an exemplary
aspect, the system, without user intervention, automatically initiates the auto-scaling
functionality. The auto-scaling rules may take into consideration resources currently
being used, resource scheduled to be committed, and resources necessary for the pool, the
amount of pending work in the queues for the jobs assigned to the pool, the tasks, the job,
and the like. Taken together, the auto-scaling rules allow for the pool to expand, contract,
and change VM types.

[00147] For example, it is contemplated that if additional tasks are added to the job or the
time for processing the job is exceeding initial predictions, the auto-scaling rules may be
employed to determine how many additional resources will be required to complete the
job. Similarly, it is contemplated that the invocation of the auto-scaling rules may result in
a determination that the number of VMs in the pool may be excessive and that some of
those resources may be converted or dropped. For example, a dedicated VM may be
converted to a preemptible or even a standby VM reservation based on auto-scaling rules.
Further, it is contemplated that a VM may be released from the pool entirely as a result of
a determination by the auto-scaling rules being applied.

[00148] At a block 1414, a re-allocation of one or more VMs associated with the pool
occurs. For example, if the auto-scaling rules determine that a dedicated VM may be
released from the pool, the dedicated VM may be freed from the pool. Similarly, if the
auto-scaling rules determine that the number of available VM is not sufficient to achieve
desired results (e.g., timely completion of the job), one or more additional VMs may be

allocated to the pool for use in completing the outstanding tasks in the queues or yet to be

37

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

queued. Further, as previously discussed, it is contemplated that the re-allocation of one
or more VM may include converting the VMs from a first type to a second type, in an
exemplary aspect. This reallocation is contemplated as being performed, at least in part,
by a pool server associated with the pool, in an exemplary aspect.

Decoupled Resource, Scheduling, and Jobs

[00149] The decoupling of resources, scheduling, and jobs allows a job to continue
execution from one pool of resources to another pool of resource. For example, this
functionality may be used when migrating work and load balancing work across different
computational resources. In a specific example, if a particular data center fails (e.g.,
natural disaster), the work may be migrated to a new data center for completion of the job.
Further, it is contemplated that the decoupling of resources, scheduling, and jobs allows a
job to span execution across several pools of resources and schedules, which may allow
the job to achieve a high level of scalability that would not otherwise be obtained.
Further, it is contemplated that a pool spans multiple schedulers, tasks tenants, and/or data
centers, which allows a job assigned to that pool to also span those resources.

[00150] Decoupling contemplates utilizing three separate concepts in the system, in an
exemplary aspect. The first concept is based on the concept of pools of virtual machines.
The second concept is formed around job management, job state, and job queues. The
third concept involves schedulers (e.g., task scheduler 902 of Fig. 9) and the VMs they are
responsible for scheduling assigned jobs to for these pools. These concepts allow for a
flexible reassignment of jobs, schedulers, and pools based upon load balancing needs of a
multi-tenancy distributed computing system. Further, it is contemplated that the three
concepts also allow for disaster recovery.

[00151] Fig. 15 depicts a block diagram illustrating a method 1500 for providing
decoupled resource, scheduling, and jobs in a distributed computing environment, in
accordance with aspects of the present invention. At a block 1502, a work item is received
at the system. For example, the work item may be received at a task location service
utilizing a task virtual IP address associated with an account submitting the work item. A
job may be created from the work item, as depicted in a block 1504. In an exemplary
embodiment, the job creation is the identification that a work item should be processed as
a job.

[00152] At a block 1506, a virtual machine is allocated to a first pool. For example, it is
contemplated that pool server may allocate the VM to the first pool to provide a pool onto

which the job may be instantiated (e.g., processed). At a block 1508, the job is assigned to

38

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

the first pool. For example, it is contemplated that a pool server associated with the first
pool has allocated VMs owned by a first task tenant scheduler such that once the job has
been assigned to the pool, then the first scheduler can take tasks off the job queue and
assign them to the VMs in that pool owned by that scheduler to run the tasks.

[00153] Ata block 1510, tasks of the job are scheduled to the first pool. As previously
discussed, scheduling a task to a pool may include a first task tenant scheduler processing
one or more tasks of the job on one or more VMs associated with the pool. Further, it is
contemplated that the processes of leasing a task from a job queue is part of instantiating a
task. It is contemplated that the scheduler “owns” the VMs and also “owns” the processes
that are run on the VMs.

[00154] Atablock 1512, a determination is made that the job is to be reassigned to a
second pool. The second pool may be operatively independent from the first pool, such
that a geographically limited disaster resulting in a failure (e.g., tornado, hurricane,
earthquake, power grid failure, network failure) does not affect the second pool directly.
The determination may also be in response to an auto balancing process that is operative to
balance the resource load across two or more pools, task tenants or data centers. For
example, certain accounts based in a common location (e.g., New York, NY) may utilize
resources at a common time (e.g., start of the financial trading day). In this example, a
pool of resource concentrated in an US East geo-region may be more burdened than
resource located in a US West geo-region. Therefore, even taking into account latencies
and other factors (e.g., affinity), the load balancing process may determine that it is more
efficient to migrate one or more portions of the job to the second pool, as indicated at a
block 1514. Migration is not limited to the transferring of an “ownership,” but instead
contemplates merely load balancing across more than one pool, which is the assigning of
the job to multiple pools. Further, the concept of migrating includes expanding a pool
across different task tenants. As a result, it is possible for a user to have the impression
that a job is being performed by a single pool even when that pool covers more than one
task tenant.

[00155] The migration of a job (or tasks within a job) may include the releasing of a lease
on a task in a queue so that a resource in a different pool may obtain the lease of that task.
In an alternative embodiment, it is contemplated that the migration of a job entails
redistributing the work item to a new task location service for recreation and scheduling in
association with resource of the new task service location. The migration of the job is a

form of reassigning the job from the first pool to the second pool. At a block 1516, the

39

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

assigning of the job at the second pool is depicted. At a block 1518, the job is scheduled
to be run on the second pool. The scheduler of the first pool may be a W1J, a task tenant,
and a pool server associate with the first pool and the scheduler of the second pool may be
a different W1J, task tenant, and pool server associate with the second pool. Therefore, by
not tying the work item/job to a single pool or a single scheduler, the work item may be
migrated to a different pool even if the resource associated with the first pool fail.

[00156] Further, as previously discussed with connection to Fig. 9 hereinabove, it is
contemplated that a task scheduler of a task tenant is a scheduler that is decoupled from
pools and work items/jobs of the system. For example, a task scheduler may select tasks
from a queue assigned to a pool and control which of the associated VMs in the task tenant
scheduled by the task scheduler run the tasks. This concept allows for when a pool spans
multiple task tenants for each scheduler associated with each task tenant to pull tasks from
queues to be run by VMs owned by each of the task schedulers. Consequently, work
items may be run on resources across a pool in a manner that effectively decouples the job
(e.g., work items) from the resources (e.g., VMs) from the schedulers (e.g., task
schedulers).

[00157] Load balancing in the system may then be performed at various levels. For
example, load balancing may occur within a common grouping of resources scheduled by
a pool server that is in coordination with task tenants (e.g., multiple task tenants within a
common geo region served by a common TLS). This common grouping may be a
grouping of task tenants. Therefore, it is contemplated that load balancing may be
performed at two different levels, in an exemplary aspect. This first level of load
balancing may occur among task tenants associated with a common pool server. In this
first level of load balancing, the pool server may allocate VMs across different task
tenants. A second, higher, level of load balancing may occur across different TLS (e.g.,
TLS 512 of Fig. 5). At this level of load balancing, the load may also be spread across
different pool servers. This type of load balancing may be implemented to result in a
migration of load across the system. Yet another level of load balancing contemplated is
performed by a WIJ assigning work items/jobs across multiple pools in the system.
[00158] As previously discussed, it is contemplated that the migration of a job may
include migration of the complete job, a portion of the job yet to be processed, and/or a
portion of the job yet to be processed while maintaining some of the portion yet to be
processed at the original pool. Therefore, the migration of a job may be useful in both the

event of a failure and in response to a load balancing operation.

40

10

15

WO 2013/106256 PCT/US2013/020442

[00159] As provided herein, a variety of modules, components, systems, layers, and
processes are discussed. It is contemplated that any one may be performed as a unique
machine for transforming information from a first form to a second useable form. This
transformation may be effected by a processor and memory that is functional to transform
a first input into a second, useable output. Further, virtual machines are discussed herein.
As previously discussed, it is contemplated that a virtual machine is functional to process a
task with a tangible processor and memory to result in a transformation of the task to a
second form that is useable by the system for the benefit of a distributed computing
environment.

[00160] From the foregoing, it will be seen that this invention is one well adapted to
attain all the ends and objects hereinabove set forth together with other advantages which
are obvious and which are inherent to the structure.

[00161] It will be understood that certain features and subcombinations are of utility and
may be employed without reference to other features and subcombinations. This is

contemplated by and is within the scope of the claims.

41

10

15

20

25

30

WO 2013/106256 PCT/US2013/020442

CLAIMS

1. A computer-implemented method for providing resources in a distributed
computing environment, comprising:

receiving a work item from a user;

creating a job from the work item;

automatically, with a processor and memory, allocating at least a first virtual
machine to a first pool;

scheduling the job on the first pool;

initiating the job on the first pool;

reassigning the job to a second pool comprised of at least a second virtual machine;
and

initiating the job on the second pool.
2. The method of claim 1, wherein the scheduling of the job on the first pool is
performed, at least in part utilizing a first scheduler that is not utilized to schedule the job
on the second pool.
3. The method of claim 1, wherein the reassigning of the job is in response to a
detected failure within the first pool.
4. The method of claim 1, wherein the reassigning of the job allows for a continuation
of the job on the second pool.
5. The method of claim 1, wherein the reassigning of the job is in response to a load
balancing determination of the first pool.
6. The method of claim 1, wherein the reassigning the job allows for migration of the
job from the first pool to the second pool without user intervention.
7. One or more computer-storage media storing computer-useable instructions that,
when executed by a computing device having a processor and memory, perform a method
for providing resources in a distributed computing environment, comprising:

scheduling, with a first scheduler, a job on a first pool of resource in the distributed
computing environment;

initiating the job on the first pool;

determining, without a user intervention, the job is to migrate from the first pool to
a second pool within the distributed computing environment;

automatically scheduling, with a second scheduler using a processor and memory,
the job on the second pool; and

initiating the job on the second pool.

42

10

15

20

WO 2013/106256 PCT/US2013/020442

8. The computer-storage media of claim 7, wherein the first pool and the second pool
are selected by a high-level location service that is in communication with a task location
service associated with the first scheduler and in communication with a task location
service associated with the second scheduler.
9. The computer-storage media of claim 7, wherein a portion of tasks associated with
the job migrate to the second pool while another portion of the tasks continue to be
scheduled on the first pool.
10. A computer-implemented method for providing resources in a distributed
computing environment, comprising:

receiving, at a task location service, a work item from a user associated with a task
account in the distributed computing environment;

automatically allocating, with a pool server associated with the task location
service, a first virtual machines of the distributed computing environment to a first pool;

scheduling a first job on the first pool, wherein the first job is comprised of one or
more tasks associated with the work item;

automatically determining, based on a load balancing evaluation of the first pool,
the job is to migrate to a second pool within the distributed computing environment;

migrating at least one task associated with the work item to the second pool; and

scheduling the at least one task on one or more resource of the second pool.

43

WO 2013/106256 PCT/US2013/020442

1/13
MEMORY
112_/
I/O PORT(S)
\/1 18
PROCESSOR(S)
114\/
/O COMPONENTS
\/1 20
PRESENTATION
COMPONENT(S)
116_/
POWER SUPPLY
\/1 22
100'/4
110
o

FIG. 1

WO 2013/106256

200

300

2/13

PCT/US2013/020442

JOB
JOB TASK
MANAGER TASK TASK,
s s
202 204
FIG. 2
POOL
VIRTUAL VIRTUAL VIRTUAL
MACHINE MACHINE MACHINE
s
302

FIG. 3

PCT/US2013/020442

WO 2013/106256

3/13

¥ Ol

YIAYT INILNNY INTOV WILSAS |-80v
¥IAYT INILNAY NOLLYOITddY ~90v
0zh 8Ly 9Ly Ly 2Ly OLb
))))))
MSVL ONITNAIHOS ANV| [LNINTDVYNVYIN BEVACR
ININTDOVYNYIN INIFNTDVNVYIN d0Or dNv ._.|__/_m_d\~/7w_m__._. ||__m_O\Mum_L_ IANIHOVIN
daor MSVL WNTLI MHOM IAVNLHIA
YIAV1NOILND3X3 HIAVT LINIWIOVNYI
/ONITNAIHOS 308N0S3Y
oy’ \zop
J0INH3S

1]0)7

PCT/US2013/020442

WO 2013/106256

4/13

§ Ol

-

¢ NOIDTY 039 I NOID3IH O399
INVN3L INVN3L pro4] LNVNAL INVN3L
MSVL MSVL MSVL MSVL
\ / \ /o
(s7L) (S7L)
IDINY3S IDINY3S
NOILYOOTMSVL NOILYOOTMSVL
oLs—’ \-g0g
S ERSE S
JNVYN (s7%) VLd0d
JDIAYIS | LNFIPS
NIVINOd NOILYDOT
\-z0g \-90g

¥0S

009

PCT/US2013/020442

WO 2013/106256

5/13

? Ol

d0IAH3S NOILVOOT MSV.L

/¢C9
029~ (WSTL) SHALSYIN : (OVS) S¥3aAY3S
JOIAY3S NOILYOOT MSVL NOILVOIHOOV JILSILVLS
wv@/ @w@ \Nv@
(rIM) S¥31NAZHOS
GOF/INGLI MHOM 1ININOJINOD SHINH3IS INNODJV
ONITVOS OLNV
A A A
SYIAY3S 100d
v19~ a 0L 809
aN3 LNOYH (34S71) AN3 LNOYA aN3 INO¥A aN3 LNO¥A
JDOIAYIS NOILYOO1 MSYL JOIAY3S NOILYOOT MSVL INNODOV LINNODOV

L
N\

d
/

dl TVNLHIA
MSV1L

//@ow

X A
/ \ \-z09

dl TVNLAIA
1INNOJOOV

//vow

PCT/US2013/020442

WO 2013/106256

6/13

008

8 Ol

ATNAOCIN ONITNAIHOS

1

JTNAONW 1v39 1dV3IH

FTNAOIN ONIHOVO

H0SS300¥d 1S3N03

FIM

~808

~908

~108

~Z08

004

L Ol

FTNAOW O190T SSANISNG

1

HFOVNVYIN LNNOJJV

ATNAON NOILVYZIHOHLNY
8 NOILVOILNIHLNY

H0SS300dd 1S3N03Y

34S711

~801

~90.

~0.

~c0.

PCT/US2013/020442

WO 2013/106256

7/13

6 Ol

826

9261

¥26-

¢26”

906

INAL

INAL

INAL INAL

™~

™~

HIOVNVYIN ALIINO3FS

HIOVNVYIN MSYL

HIOVNVYIN 30HNOS3

H0SS300¥d 1S3N03Y

(WAL) INIHOVIN

H3OVNVYIN INVNIL MSVL

H3OVNVYIN NOILVOOTIV 100d

FTNAON 4001 ONITNAIHOS

HIOVNVYIN NOILYOIHOOV SOILSILVLS M7

YIOVNYI Lv3E LVaH
IVNLEIAMSYL
¥OSSID0Yd LSINOIY
AN3 LNOYHA4 MSVYL d3TNA3IHOS MSVL
\-z06
INVN3LMSVYL

~806

~0C6

816

MO16

716

K438

~016

006

PCT/US2013/020442

WO 2013/106256

8/13

0001

0L Ol

FTNAON ONINVYOSOLNY

H0OSS300dd NOILOVSNVYHL

HIOVNVYIN NOILVOO TV

H0SS300dd 1S3N03Y

d3IAH3S 100d

~8001

~9001

~7001

~¢001

PCT/US2013/020442

WO 2013/106256

9/13

Ll Ol

MOTINHOM
MASVYL/GOr/W3ALI ¥HOM
,OLL
N — 001}
~ 3OIAY3SNOILYOOTMSVL ¥
el i m
anano sor Ll W |
aHL NI sgor|(| |
$S300%d |
1dV1S | |
| sV yaovNYIN 08 |
goraav | |
| ¥3OVNVN %CH |
gor aav . W
«_S3nano 9%} W
gor 3LV3dD vZLlL i
W 100d (| |
| EICEND) m
. for Tl |
EICERION |
“STHOM 1SISTad |
e 8 NEM m
| SUOM JLVIaD | |
| I EN lidds
| “SRIOM JLVIE0
INVNILYSVL J9VHOLS M ¥3nyas1ood 34811 TVL¥O0d LN3IND
piL zi’ 801 1 9041~ poi zo01 -

WO 2013/106256 PCT/US2013/020442

10/13

1200

RECEIVE REQUEST TO CREATE A TASK ‘/
ACCOUNT FROM A USER

'

RECEIVE A WORK ITEM ASSOCIATED WITH THE
1204~ TASK ACCOUNT

'

RECEIVE RULES ASSOCIATED WITH THE WORK
1206~ ITEM

'

AUTOMATICALLY CREATE A JOB BASED ON
1208 THE WORK ITEM

l

AUTOMATICALLY ALLOCATE VIRTUAL
MACHINES TO A POOL BASED ON THE RULES

l

AUTOMATICALLY CREATE A JOB QUEUE
1212 COMPRISED OF THE JOB

l

INSTANTIATE THE JOB ON THE VIRTUAL

1214~ MACHINES IN THE POOL BY SCHEDULING THE

JOB TO THE POOL AND ASSIGNING TASKS OF
THE JOB TO VIRTUAL MACHINES

'

AUTOMATICALLY DELETE THE POOL UPON
1216~ COMPLETION OF THE WORK ITEM OR THE JOB

1202

1210~

FIG. 12

WO 2013/106256 PCT/US2013/020442

11/13

1300

DETERMINE A NUMBER OF VIRTUAL
MACHINES ASSOCIATED WITH A POOL

l

APPLY AUTO-SCALING RULES TO
1304~ ADJUST A NUMBER OF VIRTUAL
MACHINES ASSOCIATED WITH THE POOL

l

DYNAMICALLY ALLOCATE ONE OR MORE
1306~7 \|RTUAL MACHINES OF THE POOL

1302

FIG. 13

WO 2013/106256

12/13

1402

RECEIVE A WORK ITEM FROM A
USER

:

1404—

RECEIVE AN AUTO-SCALING RULE
FROM THE USER

:

1406~

ALLOCATE A FIRST VIRTUAL
MACHINE TO A POOL

:

1408~

ALLOCATE A SECOND VIRTUAL
MACHINE TO THE POOL

:

1410~

INSTANTIATE THE WORK ITEM ON
THE FIRST VIRTUAL MACHINE AND
THE SECOND VIRTUAL MACHINE

:

1412

APPLY THE AUTO-SCALING RULE TO
THE POOL

:

1414—

RE-ALLOCATE ONE OR MORE
VIRTUAL MACHINES ASSOCIATED
WITH THE POOL

FIG. 14

PCT/US2013/020442

1400

WO 2013/106256

13/13

1502~

RECEIVE A WORK ITEM

'

1504

CREATE A JOB FROM THE WORK
ITEM

'

1506~

ALLOCATE A VIRTUAL MACHINE TO
A FIRST POOL

:

1508~

ASSIGN THE JOB ON THE FIRST
POOL

'

1510~

SCHEDULE TASKS OF THE JOB ON
THE FIRST POOL

:

1512

DETERMINE THE JOB IS TO BE
REASSIGNED TO A SECOND POOL

'

1514

MIGRATE THE JOB TO THE SECOND
POOL

'

1516~

ASSIGN THE JOB AT THE SECOND
POOL

'

1518~

SCHEDULE TASKS OF THE JOB ON
THE SECOND POOL

FIG. 15

PCT/US2013/020442

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/020442

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 9/06(20006.01)i, GOGF 15/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
GOG6F 9/06; GOGF 15/16; HO4L 12/24; GO6F 3/00; GO6F 12/00; GO6F 9/46; GO6F 9/00; GO6F 13/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: distributed, computing, environment, job, allocating, virtual machine, scheduling, pool,
reassinging

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A JP 2003-533766 A (Sun Microsystems, Inc.) 11 November 2003 1-10
See abstract, paragraphs [0002]-[0470], claims 1-30, and figures 1-48.
A KR 10-2009-0063122 A (ETRI) 17 June 2009 1-10
See abstract, paragraphs [0023]-[0056], claims 1-10, and figures 1-4.
A KR 10-2003-0086298 A (NTERNATIONAL BUSINESS MACHINES CORPORATION) 07 Novembe 1-10
r 2003

See abstract, pages 5-11, claims 1-30, and figures 1-16.

A KR 10-2010-0092850 A (UNIVERSITY-INDUSTRY COOPERATION GROUP OF KYUNG HEE UNI 1-10
VERSITY) 23 August 2010
See abstract, paragraphs [0002]-[0091], claims 1-12, and figures 1-5.

A US 05291597A A (SHORTER; DAVID U. et al.) 01 March 1994 1-10
See abstract, column 4 — column 11, claims 1-5, and figures 1-8B.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
12 April 2013 (12.04.2013) 16 April 2013 (16.04.2013)
Name and mailing address of the ISA/KR Authorized officer

Korean Intellectual Property Office

189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan YOON, Young Jin
. City, 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8533

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2013/020442

Patent document Publication Patent family Publication

cited in search report date member(s) date

JP 2003-533766 A 11.11.2003 AT 258695 T 15.02.2004
AU 2001-259718 A8 20.11.2001
AU 2001-259719 A8 20.11.2001
AU 2001-259726 A8 20.11.2001
AU 2001-261315 A8 20.11.2001
AU 2001-261374 A8 20.11.2001
AU 2001-261386 A8 20.11.2001
AU 2001-261387 A8 20.11.2001
AU 2001-261388 A8 20.11.2001
AU 2001-261389 A8 20.11.2001
AU 2001-261495 A8 20.11.2001
AU 2001-263017 A8 20.11.2001
AU 2001-263033 A8 20.11.2001
AU 2001-263036 A8 03.12.2001
AU 2001-263037 A8 20.11.2001
AU 2001-263064 A8 20.11.2001
AU 2001-263065 A8 20.11.2001
AU 2001-264577 A8 20.11.2001
AU 2001-59718 A1 20.11.2001
AU 2001-59719 A1 20.11.2001
AU 2001-59726 A1 20.11.2001
AU 2001-61315 A1 20.11.2001
AU 2001-61374 A1 20.11.2001
AU 2001-61386 A1 20.11.2001
AU 2001-61387 A1 20.11.2001
AU 2001-61388 A1 20.11.2001
AU 2001-61389 A1 20.11.2001
AU 2001-61495 A1 20.11.2001
AU 2001-63017 A1 20.11.2001
AU 2001-63033 A1 20.11.2001
AU 2001-63036 A1 03.12.2001
AU 2001-63037 A1 20.11.2001
AU 2001-63064 A1 20.11.2001
AU 2001-63065 A1 20.11.2001
AU 2001-64577 A1 20.11.2001
AU 6457701 A 20.11.2001
DE 60101911 D1 04.03.2004
DE 60101911 T2 04.11.2004
EP 1281119 A2 05.02.2003
EP 1281119 B1 04.08.2004
EP 1285323 A2 26.02.2003
EP 1285334 A2 26.02.2003
EP 1285334 B1 28.01.2004
EP 1285354 A2 26.02.2003
EP 1285354 B1 03.03.2004
EP 1287423 A2 05.03.2003
EP 1200547 A2 12.03.2003
EP 1290547 B1 07.01.2004
EP 1297413 A2 02.04.2003

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/020442
Patent document Publication Patent family Publication
cited in search report date member(s) date

EP 1299799 A2 09.04.2003
EP 1309915 A2 14.05.2003
EP 1309915 B1 10.03.2004
EP 1314085 A2 28.05.2003
EP 1314085 B1 19.07.2006
EP 1368734 A2 10.12.2003
EP 1368734 B1 20.09.2006
EP 1380941 A2 14.01.2004
EP 1384142 A2 28.01.2004
EP 1384142 B1 05.07.2006
GB 2381100 A 23.04.2003
JP 2003-533766 T 11.11.2003
JP 2003-533767 A 11.11.2003
JP 2003-534588 A 18.11.2003
JP 2003-534597 A 18.11.2003
JP 2004-501427 A 15.01.2004
JP 2004-501428 A 15.01.2004
JP 2004-504657 A 12.02.2004
JP 2004-515833 A 27.05.2004
US 6789077 B1 07.09.2004
US 6850979 B1 01.02.2005
US 6862594 B1 01.03.2005
US 6868447 B1 15.03.2005
US 6917976 B1 12.07.2005
US 7080078 B1 18.07.2006
US 7200848 B1 03.04.2007
US 7243356 B1 10.07.2007
US 7398533 B1 08.07.2008
US 7412518 B1 12.08.2008
US 7426721 B1 16.09.2008
US 7458082 B1 25.11.2008
US 7548946 B1 16.06.2009
US 7577834 B1 18.08.2009
US 7716492 B1 11.05.2010
US 8001232 B1 16.08.2011
US 8082491 B1 20.12.2011
US 813579 B1 13.03.2012
WO 01-86393 A3 15.11.2001
WO 01-86394 A3 15.11.2001
WO 01-86395 A3 15.11.2001
WO 01-86419 A3 15.11.2001
WO 01-86420 A3 15.11.2001
WO 01-86420A2 15.11.2001
WO 01-86420A3 28.11.2002
WO 01-86421 A3 15.11.2001
WO 01-86422 A3 15.11.2001
WO 01-86423 A3 15.11.2001
WO 01-86424 A3 15.11.2001
WO 01-86425 A3 15.11.2001
WO 01-86427 A3 15.11.2001

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2013/020442

Patent document Publication Patent family Publication

cited in search report date member(s) date
WO 01-86428 A3 15.11.2001
WO 01-86439 A3 15.11.2001
WO 01-86440 A3 15.11.2001
WO 01-86486 A3 15.11.2001
WO 01-86487 A3 15.11.2001
WO 01-90883 A2 29.11.2001
WO 01-90883 A3 29.11.2001

KR 10-2009-0063122 A 17.06.2009 None

KR 10-2003-0086298 A 07.11.2003 AU 2002-228206 A8 24.09.2002
CA 2435978 A1 19.09.2002
CN 1496508 A 12.05.2004
CN 1496508 CO 18.10.2006
EP 1386226 A2 04.02.2004
JP 03-980487 B2 26.09. 2007
JP 2004-530196 A 30.09.2004
US 2002-0129085 A1 12.09.2002
US 6985951 B2 10.01.2006
WO 02-073397 A2 19.09.2002
WO 02-073397 A3 19.09.2002

KR 10-2010-0092850 A 23.08.2010 None

US 05291597A A 01.03. 1994 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - wo-search-report
	Page 60 - wo-search-report
	Page 61 - wo-search-report
	Page 62 - wo-search-report

