UNITED STATES PATENT OFFICE

2,410,228

HIGHWAY TRAFFIC POST

Robert E. Lee Maxey, Akron, Ohio

Application April 17, 1944, Serial No. 531,465

2 Claims. (Cl. 256—13.1)

The device forming the subject matter of this application is a highway traffic post, meaning thereby a post placed along a highway to carry a signal or reflector, the post forming a support for guarding cables which extend along the highway. The post, generally, is no more than a few feet in height.

One object of the invention is to provide novel means for mounting the reflector on the post.

Another object of the invention is to supply novel means for retaining the cables.

Another object of the invention is to provide a highway post of the class described, which will be strong, and well adapted to withstand impact shocks from vehicles, regardless of whether shocks are communicated directly to the post, or to the cables which are strung from post to post.

It is within the province of the disclosure to improve generally and to enhance the utility of devices of that type to which the present invention appertains.

With the above and other objects in view, which will appear as the description proceeds, the invention resides in the combination and arrangement of parts and in the details of construction hereinafter described and claimed, it being understood that changes in the precise embodiment of the invention herein disclosed, may be made within the scope of what is claimed, without departing from the spirit of the invention.

In the accompanying drawings:

Fig. 1 shows, in side elevation, a highway traffic post constructed in accordance with the invention;

Fig. 2 is a side elevation wherein the post is viewed at right angles to the showing of Fig. 1, parts being broken away;

Fig. 3 is a vertical section taken through the upper portion of the post and attendant parts, portions remaining in elevation;

Fig. 4 is a vertical longitudinal section taken through the upper part of the post, the cutting plane in Fig. 4 being at right angles to the cutting plane in Fig. 3;

Fig. 5 is a transverse section on the line 5—5 of Fig. 1;

Fig. 6 is a top plan of an H-beam which constitutes the core of the post;

Fig. 7 is a sectional view showing a modification.

In carrying out the invention, there is provided a highway traffic post, comprising an H-beam 1, including a web 2 and flanges 3, as shown in Fig. 6.

A rectangular cap plate 4 is mounted on the upper end of the beam 1 and is of an area determined by the width 5 of the flanges 3, thereby to form a closure for the upper ends of the spaces 6 (Fig. 6) which exists between the flanges 3, on opposite sides of the web 2.

The cap plate 4 is provided on opposite edges with depending legs 7, extending downwardly along the corresponding outer surfaces of the flanges 3, and of substantially the same width as the flanges 3.

The cap plate 4 is supplied on other opposite edges with upwardly parallel lips 8, having free upper edges.

The numeral 9 marks a reflector, comprising a laterally projecting base 10, supported on the cap plate 4 and engaged between the lips 8, the lips terminating substantially flush with the upper surface of the base.

Oppositely disposed retainers 11 are provided, and comprise depending legs 12, extended downwardly along the outer surfaces of the legs 1 of the cap plate 4 and of substantially the same width as the legs 7.

The retainers 11 comprise inwardly extended wings 14, overlapped upon the upper surface of the base 10 of the reflector 9, and extended continuously therearcross.

There is provided a concrete body 15 in which the beam 1 is enclosed, the upper surface 16 of the body being disposed close to the upper surface of the wings 14. The body 15 fills the spaces 6, hereinbefore mentioned and shown in Fig. 6, and the body engages the lower surface of the cap plate 4, to aid in supporting the cap plate.

The reflector 9 may be of various forms. As shown, but not of necessity, it includes a globular head 18, joined by a reduced neck 19 to the base 10, the head and the neck being supplied interiorly with a reflecting surface 20. The neck 19 opens through the base 10, and, therefore, the reflecting surface 16 may be applied readily.

The legs 12 of the retainers 11 are longer than the wings 14, and have a good hold in the concrete body 15. The legs 12 of the retainers 11 terminate at their lower ends in flush relation to the lower ends of the legs 7 of the cap plate 4.

The legs 12 and 7 preferably are joined together by welding (not shown) and if desired the legs 7 of the cap plate 4 may be joined to the outer surfaces of the flanges 3 of the H-beam 1.

The lips 8 of the cap plate 4 have been described hereinafter as having "free upper edges." By that limitation it is intended to imply that the
The device forming the subject matter of this application comprises a novel but effective structure in which a strong post is combined with a novel reflector structure and with a novel grip for a cable or the like.

Referring to Fig. 4, it will be noted that the hook bolt 24 may be inserted into the post from either side thereof, and, moreover, either the long arm 25 or the short arm 26 may be disposed uppermost.

In Fig. 7, parts hereinbefore described are designated by numerals already used, with the suffix "a." The bolt 24a is a U-bolt, and two nuts 28a are employed.

What is claimed is:

1. A highway guard including a supporting post having a pair of upper and lower transverse tubes extending therethrough, a hook bolt comprising a long arm and a short arm, and a curved portion connecting the long arm and short arm, said arms being slidably mounted within the transverse tubes, one end of the hook being extended beyond the side of the post, a coiled spring positioned over the extended end of the hook and adapted to frictionally engage a cable held in the hook forcing the cable outwardly into engagement with the curved portion of the hook, whereby said hook and cable move against the tension of said spring, and means for securing the hook to the post.

2. A highway guard including a supporting post having a pair of upper and lower transverse tubes extending therethrough, a bolt embodying a pair of arms connected at their outer ends by a curved portion, slidably mounted within the transverse tubes, a coiled spring secured on one end of the bolt and adapted to engage a cable held within the curved portion of the bolt forcing the cable outwardly, and said bolt adapted to move within the transverse tubes, when pressure is directed against the cable and bolt.