wo 20137109330 A2 || 0FV 00000 A0 O A

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2013/109330 A2

25 July 2013 (25.07.2013) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 21/46 (2013.01) kind of national protection available): AE, AG, AL, AM,
21) International Apolication Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCTIUS2012/062730 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
31 October 2012 (31.10.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
- . ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(30) Priority Data: M, ZW.
61/553,554 31 October 2011 (31.10.2011) Us
(84) Designated States (uniess otherwise indicated, for every
(71) Applicant (for all designated States except US): THE kind of regional protection available): ARIPO (BW, GH,
FLORIDA STATE UNIVERSITY RESEARCH GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
FOUNDATION, INC. [US/US]; 2000 Levy Avenue, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Building A, Suite 351, Tallahassee, Florida 32310-5792 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(US). EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM
(72) Inventors; and > > o O T 2T i’
(71) Applicants (for US only: AGGARWAL, Sudhir E/E) B?IQPII\U(EBE}\IBJT’SFT’GCG’ CL, CM, GA, GN, GQ, GW,
[US/US]; 2844 Royal Isle Drive, Tallahassee, Florida > - NE, SN, TD, TG).
32312 (US). YAZDI, Shiva Houshmand [IR/US]; 1128 Published:

74

Ocala Road, Apt. E-3, Tallahassee, Florida 32304 (US).
WEIR, Charles Matt [US/US]; 816 W. Carolina St., Apt.
#2, Tallahassee, Florida 32304 (US).

Agent: CHOKSI, Nilay J.; 180 Pine Avenue North, Olds-
mar, Florida 34677 (US).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: SYSTEM AND METHODS FOR ANALYZING AND MODIFYING PASSWORDS

Preprocessing Phase 7~ 14 7 16
i~ Training on real ci;‘i‘:::_}':i Set the
12+ | user passwords Gran ; Threshold :
; ranman :
I/ 22
i Enter gser's Esthaate password
,’/ password strength
20 i
g
s
26 24
3 § Modifying the W/ f
oviginal je-Beiet mim?:n Accept
password
- 28 Mg
Fi6, I

(57) Abstract: A system for analyzing and modifying passwords in a manner that provides a user with a strong and usable/memor -
able password. The user would propose a password that has relevance and can be remembered. The invention would evaluate the
password to ascertain its strength. The evaluation is based on a probabilistic password cracking system that is trained on sets of re-
vealed passwords and that can generate password guesses in highest probability order. If the user's proposed password is strong
enough, the proposed password is accepted. If the uset's proposed password is not strong enough, the system will reject it. If the pro -
posed password is rejected, the system modifies the password and suggests one or more strongetr passwords. The moditied passwords
would have limited modifications to the proposed password. Thus, the user has a tested strong and memorable password.

WO 2013/109330 PCT/US2012/062730

5

10

15

20

25

30

35

40

SYSTEM AND METHODS FOR ANALYZING AND
MODIFYING PASSWORDS

CROSS-REFERENCE TO RELATED APPLICATIONS

This nonprovisional application is a continuation of and claims priority to provisional
application No. 61/553,554, entitled “Password Analyzer and Modifier, and its Methods of
Use and Production Thereof”, filed by the same inventor on October 31, 2011, which is

incorporated herein by reference.
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under Grant No. 2006-DN-BX-K007
awarded by the National Institute of Justice. The government has certain rights in the

invention.
BACKGROUND OF THE INVENTION
1. Field of the Invention

This invention relates to password analysis and modification. More specifically, it relates
to analyzing password strength and developing strong passwords that are secure against

efficient password cracking.
2. Description of the Prior Art

The use of passwords for protecting access is now ubiquitous in the internet age, as
Internet-based systems, such as online banking and online commerce, continue to rely
heavily on passwords for authentication security. Human memorable passwords are thus
a key element in the security of such systems. However, most users do not have the
information to ensure that they are in fact using a “strong” password rather than one that
can easily be broken. This limitation has led to the use and advocacy of password
creation policies that purport to help the user in ensuring that the user chosen password
is not easily breakable. The most prevalent password creation policy is the rule-based
approach wherein users are given rules such as minimum length of eight characters and
must contain an upper case letter and a special symbol. It has been shown by several
authors that this approach by itself is not very effective (M. Weir, S. Aggarwal, M. Collins,
and H. Stern, “Testing metrics for password creation policies by attacking large sets of
revealed passwords,” Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS '10), October 4-8, 2010, pp. 163-175; E. R. Verheul,
“Selecting secure passwords,” M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 49-66,
2007). A second type of password creation policy can be termed the random approach
where an effectively random string is given by a system to the user. Clearly, the random
approach has the problem that the given string is generally non-memorable, so the

purpose of having a password that can easily be remembered is defeated.

1

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

A strong password is one that is difficult to guess or crack, yet users continue to employ
weak passwords that can often be easily guessed or broken by available password
cracking systems. Existing technology is mostly based on giving advice to users on how
to create a “secure password.” Such advice is essentially a password creation policy,
which advises users to follow rules while creating passwords. Suggested password
creation rules include minimum length, use of upper case letters, lower case letters, and
special symbols, including particular symbols. However, problems with these rules
include inconsistencies within policies that are not based on a scientific approach,

consequently resulting in a lack of strong passwords.

Moreover, current technologies tend to frustrate users when creating passwords because
they do not allow users to utilize their normal password methods for choosing passwords.
This leads to coping strategies, such as repeating a word just to make their passwords
long enough to satisfy the policy requirements, which actually reduces password strength.
Current restrictive policies are not user-friendly. These policies emphasize resistance to

brute-force attacks, thus opening the password up to dictionary-based attack methods.

Existing technology also provides for password checkers that try to help users by
providing a tool for them to check their password strength. These checkers propose to
measure the strength of the proposed password based on certain parameters of the
password. They check the password against some rules, give weights to the rules, and
find an overall numeric value for the strength of the password. However, the rules used
and weights given to the rules when applied to different parts of the proposed passwords
are ad-hoc and have no scientific or empirical basis. These checkers do not define
strength of a password based on evidence from real attacks, but define strength of a
password generally based only on password structure, for example length of password,

whether it can be found in the dictionary, etc.

Although not really an analysis of password strength, many studies attempt to determine
various aspects of how users choose passwords. In Shannon Riley, “Password security:
what users know and what they actually do,” Usability News, 8(1), 2006, Riley reports that
in a study of 315 participants, about 75% of them reported that they have a set of
predetermined passwords that they use frequently. Almost 60% reported that they do not
change the complexity of their password depending on the nature of the website they
use. In B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer,
C. Kruegel, and G. Vigna, "Your botnet is my botnet: Analysis of a botnet takeover," Tech.
Rep., April 2009, Stone-Gross et al. collected around 298 thousands passwords from the
Torpig botnet. They found that almost 28% of users reused their passwords and they
managed to crack over 40% of the passwords in less than 75 minutes. This illustrates that
having strong passwords for less important websites such as social networking websites

is likely to be as necessary as for websites such as online banking.

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

Most organizations and websites follow a rule-based approach in recommending or
enforcing password policies. A study by Shay et al. (R. Shay, S. Komanduri, P. G. Kelley,
P. G. Leon, M. L. Mazurek, L. Bauer, N. Christin, and L. F. Cranor, “Encountering
stronger password requirements: user attitudes and behaviors,” In 6th Symposium on
Usable Privacy and Security, July 2010) showed that users were not happy about
changing the password creation policy to a stricter one and that it took on average 1.77
tries to create a new password accepted by the system based on a new password
creation policy recently instituted. Riley (Shannon Riley, “Password security: what users
know and what they actually do,” Usability News, 8(1), 2006) also reports that the
average length of time users maintained their primary password was reported as 31

months and 52% of them never change their password at alll.

Rule-based advice is confusing as there is no consistency across systems and websites
in the requirements, with differing advice about length, number of symbols and digits, and
even in the symbols that can be used. In Furnell, S., “An assessment of website
password practices,” Computers & Security 26, 7-8 (2007), 445-451, it is shown that
inconsistent and even contradictory recommendations make such advice unreliable for
users. The U.S. NIST guideline (W. Burr, D. Dodson, R. Perlner, W. Polk, S. Gupta, E.
Nabbus, “NIST special publication 800-63-1 electronic authentication guideline,” National
Institute of Standards and Technology, Gaithersburg, MD, April, 2006), the basis for most
rule-based policies, proposed a rule-based approach that used the notion of Shannon
entropy for estimating password strength based on suggested values of the components
of the password. However, Weir et al. (M. Weir, S. Aggarwal, M. Collins, and H. Stern,
“Testing metrics for password creation policies by attacking large sets of revealed
passwords,” Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS '0), October 4-8, 2010, pp. 163-175) performed
password cracking attacks against multiple sets of real-life passwords and showed that
the use of Shannon entropy as defined in NIST is not an effective metric for gauging
password strength and it does not give a sufficient model to decide on the strength of a

given password.

Password expiration policies are designed to ensure stronger passwords over time.
However, Zhang et al. (Y. Zhang, F. Monrose, and M. K. Reiter, “The security of modern
password expiration: an algorithmic framework and empirical analysis,” In Proceedings of
ACM CCS’10, 2010) showed that an attacker can easily get access to an account by
capturing the account's previous passwords. They suggest that at least 41% of
passwords can be broken offline from a previous password in a matter of seconds and
only five online password guesses suffices to break 17% of accounts. A more recent
study (Philip G. Inglesant, M. Angela Sasse, “The true cost of unusable password
policies: password use in the wild,” Proc. of the 28th international conference on Human
factors in computing systems, April 10-15, 2010, Atlanta, Georgia) reports that although

nowadays users understand the importance of secure behavior, they still find it too

3

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

difficult to cope with password creation policies, and they rarely change their passwords
due to the frustration of creating a new password along with the difficulty of memorizing it.
In studies by Charoen et al. (Charoen, D., Raman, M., and Olfman, L., “Improving end
user behavior in password utilization,” Systemic Practice and Action Research, 21(1), 55.
2008) and Adams and Sasse (A. Adams and M. A. Sasse, “Users are not the enemy,”
Communications of the. ACM, 42(12):40-46, 1999), it was found that users are not even
unanimous about the necessity of having a strong password and the reason users
choose insecure passwords is because they usually do not know how to create secure
ones. Studies (J. Campbell, W. Ma, D. Kleeman, “Impact of restrictive composition policy
on user password choices,” Behavior and information technology, Vol. 30, No. 3, May-
June 2011) show that even restrictive password creation policies do not have impact on
the use of meaningful information in passwords, nor does it reduces reusing the
password. Reuse can subject users to other types of attacks such as phishing, key-
logging and targeted attacks (Florencio, D. and Herley, C., “A large-scale study of web
password habits,” In Proceeding of the 16™ Int. Conf. on World Wide Web, 2007). A study
by Shay et al. (R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman, “Of passwords and people: measuring the
effect of password-composition policies,” Proceeding of 2011 Annual Conference on
Human Factors in Computing Systems, 2011) shows that the more restrictive and

complicated the policy, the less user-friendly it is.

There have been some studies (G. Bard, “Spelling-error tolerant, order independent pass-
phrases via the Damerau-Levenshtein string-edit distance metric,” Fifth Australasian
Symposium on ACSW Frontiers - Volume 68 (Ballarat, Australia, January 30 - February
02, 2007), 117-124; Yan, J. J., Blackwell, A., Anderson, R. and Grant A., “The
memorability and security of passwords -- some empirical results,” Technical Report No.
500 (September 2000) Computer Laboratory, University of Cambridge) exploring the use
of the random password generation approach. The major problem is the usability of the
password for the user since such a password has typically no context for the user and is
naturally hard to remember. In A. Forget, S. Chiasson, P.C. van Oorschot, R. Biddle,
“Improving text passwords through persuasion,” Symposium on Usable Privacy and
Security (SOUPS) 2008, July 23-25, 2008, Pittsburgh, PA USA, Forget et al. studied the
memorability of passwords by randomly inserting or replacing fixed number of characters
in a user chosen password. They showed that once the users confirmed their changed
passwords, they could recall it as easily as the control group (passwords without change).
However, they did not develop a methodology for analyzing the strength of these

passwords.

Generating secure passwords is a tradeoff between creating a password that is hard to
crack and usable. Some studies of passwords (Florencio, D. and Herley, C., “A large-
scale study of web password habits,” In Proceeding of the 16™ Int. Conf. on World Wide
Web, 2007; Yan, J. J., Blackwell, A., Anderson, R. and Grant A., “The memorability and

4

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

security of passwords -- some empirical results,” Technical Report No. 500 (September
2000) Computer Laboratory, University of Cambridge) try to provide an understanding of
how various policy factors make creating passwords easier, memorable, and usable, but

none of them seem to have been applied in practice.

The work by Verheul (E. R. Verheul, “Selecting secure passwords,” M. Abe (Ed.): CT-
RSA 2007, LNCS 4377, pp. 49-66, 2007) is an excellent example of trying to understand
the relationship of various entropy measures in order to build better passwords. Verheul
showed how to build reasonable short secure passwords based on calculating the
Shannon entropy with assumptions on the min entropy and guessing entropy. However,
there was no attempt in this paper to consider the usability or memorability of the

passwords or how to modify a user suggested password.

The analyze-modify approach also has some related history. The analysis is usually a
simple way to determine if a password is weak such as checking against a dictionary. In
reality, this is not really a sufficient condition for a password to be strong. Current
proactive password checkers generally follow such a blacklisting approach. See for
example Yan (J. Yan, “A note on proactive password checking,” ACM New Security
Paradigms Workshop, New Mexico, USA, 2001) and Spafford (EH Spafford, “OPUS:
preventing weak password choices,” Computers& Security (1992)). However, simple
blacklisting approaches generally have problems with any sophisticated dictionary based

attack.

Perhaps the most relevant study is Schechter et al. (S. Schechter, C. Herley, M.
Mitzenmacher, “Popularity is everything: a new approach to protecting passwords from
statistical-guessing attacks”, HotSec'10: Proceedings of the 5th USENIX conference on
Hot Topics in Security, 2010) in a study on popularity of passwords. They propose to
build an oracle for existing passwords that are available to the Internet-scale
authentication systems. They recommend that such popular passwords be disallowed
and the main thrust of their work is to devise a way to efficiently store the large number of
popular passwords that would be prohibited. An open question posed in their study is how
to use the oracle without revealing the actual password to attackers while querying online.
This study also runs across a storage problem. More recently, Castelluccia et al. (C.
Castelluccia, M. Durmuth, D. Perito, “Adaptive password-strength meters from Markov
models,” NDSS '12, 2012) explores measuring the strength of passwords using a Markov

approach.

Weir et al. (M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics for password
creation policies by attacking large sets of revealed passwords,” Proceedings of the 17th
ACM Conference on Computer and Communications Security (CCS '10), October 4-8,
2010, pp. 163-175) suggested that a probabilistic password attack system could be used

to determine if a proposed password was weak and should be rejected. This probabilistic

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

cracking system can be used for analyzing passwords. Once such an analysis is done, it

can be shown how identified weak passwords can be effectively modified to be strong.

Accordingly, what is needed is a new password creation policy system that effectively
analyzes password strength and modifies passwords in a manner that users can
conveniently use the modified passwords. However, in view of the art considered as a
whole at the time the present invention was made, it was not obvious to those of ordinary

skill in the field of this invention how the shortcomings of the prior art could be overcome.

While certain aspects of conventional technologies have been discussed to facilitate
disclosure of the invention, Applicants in no way disclaim these technical aspects, and it
is contemplated that the claimed invention may encompass one or more of the

conventional technical aspects discussed herein.

The present invention may address one or more of the problems and deficiencies of the
prior art discussed above. However, it is contemplated that the invention may prove
useful in addressing other problems and deficiencies in a number of technical areas.
Therefore, the claimed invention should not necessarily be construed as limited to

addressing any of the particular problems or deficiencies discussed herein.

In this specification, where a document, act or item of knowledge is referred to or
discussed, this reference or discussion is not an admission that the document, act or item
of knowledge or any combination thereof was at the priority date, publicly available,
known to the public, part of common general knowledge, or otherwise constitutes prior art
under the applicable statutory provisions; or is known to be relevant to an attempt to solve

any problem with which this specification is concerned.
SUMMARY OF THE INVENTION

The long-standing but heretofore unfulfilled need for password analysis and personalized

modification is now met by a new, useful, and nonobvious invention.

In an embodiment, the current invention comprises a computer-implemented software
application, the software accessible from a non-transitory media and providing
instructions for a computer processor to analyze and modify a proposed password
chosen by a user for a secured user account. The instructions provided by the software
include generating a probabilistic context-free grammar from an array of control
passwords aggregated from real-user passwords and establishing a threshold complexity
value based on the effort required to crack the control passwords. Additionally, the user
proposes a password in the software application. The strength/complexity value of the
proposed password is then derived based on the context-free grammar. The complexity
value of the proposed password is compared to the threshold value. The proposed
password is accepted if its complexity value meets the threshold value, and is rejected if
its complexity value does not meet the threshold value. If the proposed password is

rejected, a modified password, or second proposed password, is generated by modifying

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

the original proposed password in a limited manner (e.g., limited edit distance). Then the
complexity value of the modified password is derived and compared to the threshold

value. If the modified password is strong enough, it is suggested to the user.

The software may provide further instructions for receiving one or more dictionaries
containing words that may be used for the alphabetic component of the proposed and/or
modified password. The dictionary may further be utilized to determine the probabilistic
context-free grammar and to generate guesses in highest probability order. Dictionaries
may be dictionaries of English or foreign words, specialized dictionaries, dictionaries of
known passwords, etc. and thus typically provide the alphabetic component of the control
passwords in the password guesses. Probabilities may be also assigned to the

dictionaries themselves.

The limited modifications may have an edit distance of only one (1), though more than

one (1) is contemplated as well, if needed.

The software may provide further instructions for updating the probabilistic context-free
grammar with the proposed password, modified password, and/or new control
passwords. This likely increases entropy value of the context-free grammar to maintain a
realistic and recent probability distribution for the context-free grammar if the additional

passwords have a probability low enough to actually increase the entropy value.

The step of establishing the threshold value may include setting a lower bound for a
number of password guesses for the proposed password until the threshold value is

reached. In this case, the password guesses themselves do not need to be generated.

The software may provide further instructions for parsing the proposed password into a
base structure containing a plurality of components, such that the modification step (i.e.,
modifying the proposed password) includes modifying the base structure or components

with the limited modifications.

The limited modifications may include one or more of an insertion operation, a deletion

operation, a substitution operation, a transposition operation, and a case operation.

The operations of modification may include any one or more of the following rules. The
insertion operation is permitted when the inserted component is not of the same type as
its adjacent components. The deletion operation is permitted if the number of components
is not one (1) and if the deletion does not cause two components of the same type to
become adjacent. The substitution operation is permitted when substitution a character
with another character of the same type. The transposition operation is permitted if it does

not make two components of the same type adjacent to each other.

In a separate embodiment, the current invention comprises a computer-implemented
method of analyzing and modifying a proposed password chosen by a user for a secured
user account. The method includes steps for generating a probabilistic context-free

grammar from an array of control passwords aggregated from real-user passwords and

7

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

establishing a threshold complexity value based on the effort required to crack the control
passwords. Additionally, the user proposes a password. The strength/complexity value of
the proposed password is then derived based on the context-free grammar. The
complexity value of the proposed password is compared to the threshold value. The
proposed password is accepted if its complexity value meets the threshold value, and is
rejected if its complexity value does not meet the threshold value. If the proposed
password is rejected, a modified password, or second proposed password, is generated
by modifying the original proposed password in a limited manner (e.g., limited edit
distance). Then the complexity value of the modified password is derived and compared
to the threshold value. If the modified password is strong enough, it is suggested to the

user.

The method may provide further steps for receiving one or more dictionaries containing
words that may be used for the alphabetic component of the proposed and/or modified
password. The dictionary may further be utilized to determine the probabilistic context-
free grammar and to generate guesses in highest probability order. Dictionaries may be
dictionaries of English or foreign words, specialized dictionaries, dictionaries of known
passwords, etc. and thus typically provide the alphabetic component of the control
passwords in the password guesses. Probabilities may be also assigned to the

dictionaries themselves.

The limited modifications may have an edit distance of only one (1), though more than

one (1) is contemplated as well, if needed.

The method may provide further steps for updating the probabilistic context-free grammar
with the proposed password, modified password, and/or new control passwords. This
likely increases entropy value of the context-free grammar to maintain a realistic and
recent probability distribution for the context-free grammar if the additional passwords

have a probability low enough to actually increase the entropy value.

The step of establishing the threshold value may include setting a lower bound for a
number of password guesses for the proposed password until the threshold value is

reached. In this case, the password guesses themselves do not need to be generated.

The method may provide further steps for parsing the proposed password into a base
structure containing a plurality of components, such that the modification step (i.e.,
modifying the proposed password) includes modifying the base structure or components

with the limited modifications.

The limited modifications may include one or more of an insertion operation, a deletion

operation, a substitution operation, a transposition operation, and a case operation.

The operations of modification may include any one or more of the following rules. The
insertion operation is permitted when the inserted component is not of the same type as

its adjacent components. The deletion operation is permitted if the number of components

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

is not one (1) and if the deletion does not cause two components of the same type to
become adjacent. The substitution operation is permitted when substitution a character
with another character of the same type. The transposition operation is permitted if it does

not make two components of the same type adjacent to each other.

These and other important objects, advantages, and features of the invention will become

clear as this disclosure proceeds.

The invention accordingly comprises the features of construction, combination of
elements, and arrangement of parts that will be exemplified in the disclosure set forth

hereinafter and the scope of the invention will be indicated in the claims.
BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the invention, reference should be made to the following

detailed description, taken in connection with the accompanying drawings, in which:

FIG. 1 is a flowchart depicting an overview of the design of certain embodiments of the

current invention;
FIG. 2 is an example of setting the threshold using the context-free grammar;

FIG. 3 is an example of modifier algorithm, creating modified passwords with distance

one from the proposed password;

FIG. 4 is a snapshot of an embodiment of the current invention, suggesting a modified

password to a user;
FIG. 5 is an example of adjusting probabilities for modified password “!!78liar”;

FIG. 6A is a line graph depicting the changes in Shannon Entropy for an example

password set using a first algorithm (iteration 1-700);

FIG. 6B is a line graph depicting the changes in Shannon Entropy for an example
password set using the first algorithm of FIG. 6A (iteration 700-3500);

FIG. 7A is a line graph depicting the changes in Shannon Entropy for an example

password set using a second algorithm;

FIG. 7B is a line graph comparing the changes in Guessing Entropy for an example

password set using the first algorithm of FIG. 6A and the second algorithm of FIG. 7A;

FIG. 8 is a line graph depicting the rising Shannon entropy levels as number of iterations

increases;

FIG. 9 is a line graph depicting how quickly weak passwords, which were capable of

being strengthened, were able to be cracked,;

FIG. 10 is a line graph depicting the difficulties of cracking strengthened passwords; and

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

FIG. 11 is a line graph depicting the rate of cracking the test password set both before
using the current system and after using current system for both John the Ripper (JTR)

and the probabilistic password cracker (PPC).
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following detailed description of the preferred embodiments, reference is made to
the accompanying drawings, which form a part thereof, and within which are shown by
way of illustration specific embodiments by which the invention may be practiced. It is to
be understood that other embodiments may be utilized and structural changes may be

made without departing from the scope of the invention.

Embodiments of the current invention teach a novel approach to password creation in
which a system analyzes a user’s proposed password and then modifies it if the proposed
password is too weak, for the purpose of strengthening the proposed password, yet
preserving enough of the original password so that the new password is still memorable
to the user. For example, this can be accomplished by changing the original password by
an edit distance of only one. Generally, this process can be deemed an “analyze-modify”
approach. In simplistic terms, the system can be viewed as having a reject function that
rejects a weak password and as having a modify function that changes that weak

password by an acceptable amount to a password that is appropriately strong.

Certain embodiments of the current invention propose implicit password creation policies
combined with probabilistic password cracking to create a novel password analyzer and
modifier. Implicit password creation policies are those in which the system has a “reject”
function based on estimated password strength. A password is accepted or rejected
based on a preset threshold for strength of the password. A password is strong if it takes
a long time for an attacker to crack the password. A password is weak if it does not take a
long time for an attacker to crack the password. Conventional password crackers,
including a probabilistic password cracker such as that taught in U.S. Patent App. No.
13/547,779, entitled “Password Cracking Through Learning Probabilistic CFGs”, which is
incorporated herein by reference, can determine the probability of a password being
cracked, thereby determining whether a password should be accepted or rejected. If the
password were rejected, then the system would suggest a new password to the user with
slight changes to the user's proposed password. Thus, the user can still have his/her

chosen password as the base of the resultant strong password.

Empirical analysis based on trying to crack passwords using probabilistic techniques (M.
Weir, Sudhir Aggarwal, Breno de Medeiros, Bill Glodek, “Password Cracking Using
Probabilistic Context Free Grammars,” Proceedings of the 30th IEEE Symposium on
Security and Privacy, May 2009, pp. 391-405) can be adapted to analyze the strength of
passwords. The associated probabilistic context-free grammar can be used to build a
realistic reject function that can distinguish between strong and weak passwords based

on a threshold probability. A dictionary of popular passwords can be incorporated into the

10

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

empirical analysis to ensure that the modified password is not contained in the dictionary.
A more important consideration is to show that the modified password is not likely to be
cracked using any effective password-cracking techniques. The blacklisting approach is
automatically subsumed by the choice of dictionaries. In an embodiment, the system
protects against off-line attacks where an attacker has obtained a set of hashes (and
likely user names) and desires to break as many passwords as possible in a reasonable

amount of time.

Certain embodiments of the current invention provide a user with a strong and
usable/memorable password. A user would propose a password that has relevance and
can be remembered. The invention would evaluate the password to ascertain its strength.
The evaluation is based on a probabilistic password cracking system that is trained on
sets of revealed passwords and that can generate password guesses in highest
probability order. If the user's proposed password is strong enough, the invention will

accept it.

If the user's proposed password is not strong enough, the invention will reject it. If the
proposed password is rejected, certain embodiments of the invention will suggest a set of
new stronger passwords. The set of new stronger passwords will have limited
modifications to the proposed password. Thus, the user will have a tested strong
password and also one that the user can remember as well. In particular examples, the
novel system is capable of strengthen passwords sufficiently by an edit distance of only

one from the user’s proposed password.

Further, the invention can dynamically adapt its suggestions with increasing use as well,
such that it continues to generate strong passwords with a high likelihood of use. In other
words, continual use of the system would continue to generate strong passwords, even if
attackers become aware of the probabilistic distribution of passwords, as proven by

multiple classical entropy measures.

Certain embodiments of the invention have one or more of the following functionalities
and benefits: determination of strength of the proposed password based on how long it
would take to crack that password in a real “optimal” attack; usability of the new
suggested passwords ensuring only slight changes are made to the proposed password;

and generation of strong passwords with a high likelihood of use.

The invention evaluates user-chosen password strength based on the probability of that
password being cracked by an attacker — the more guesses it takes for an attacker to
crack a password, the more secure the password is. Furthermore, if the user's proposed
password is not sufficiently strong, an unrelated new password is not generated. Rather,
a new password is generated that is structurally similar to the user’'s proposed password.

Therefore, the new password is usable and easy to remember for the user.

11

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

Certain embodiments of the invention also update the context-free grammar that is used
to generate guesses. Thus, with each new password suggested by users, the system
updates itself, such that an effective probabilistic password cracking system is

maintained. The context-free grammar is driven to a higher entropy value.

Using the invention’s algorithm to suggest a new password may increase both guessing
entropy and the Shannon entropy of the relevant password distributions. Guessing
entropy is the average number of tries needed for finding a password using an optimal
password cracking system. Thus, it can be useful as a numerical, verifiable metric for

password strength coupled with other metrics such as Shannon entropy and min-entropy.

Entropy is a method of measuring the uncertainty arising from a probability distribution, as
suggested by Claude Shannon (C. E. Shannon, “Prediction and entropy of printed
English,” Bell Systems Tech. J., vol. 30, pp. 50-64, Jan. 1951) in an effort to explore the

uncertainty of letters and words in English.

To define Shannon entropy, let X be a discrete random variable with probability mass

function p(x) = Pr{X=x}, xeX. The entropy H(X) of such a random variable X is defined by:
HOO ==) p()log, p(x) ™)
X

To define guessing entropy, as introduced by Massey (J. Massey, “Guessing and
entropy,” 1994 IEEE Symposium on Information Theory, pp. 204, 1994), assuming that
the probabilities p; are denoted in a decreasing form p; 2 p, = ... 2 p,, the entropy H(X) of

such a random variable X is defined by:

i=n

GO =) i ?
i=1
It is assumed that in an optimal attack, the attacker would try the highest probability
passwords first, and thus guessing entropy measures the expected number of tries until
success. However, it was shown by Verheul (E. R. Verheul, “Selecting secure
passwords,” M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 49-66, 2007) that simply
having a high value of the guessing entropy itself is not sufficient since a distribution with
a high value of guessing entropy is possible, even with the probability of the first potential
guess p; being very high and thus easily broken. A third notion is thus often used which is
called the min entropy (H..(X) = - log-» p;) (E. R. Verheul, “Selecting secure passwords,”
M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 49-66, 2007). If the min entropy is high,
then the probability of the first password is small. Understanding of this concept began to
form when hackers began posting large numbers of revealed passwords online. Using the
probabilistic password cracking system, based on training a context-free grammar, and
using this grammar effectively simulated optimal password cracking attacks (trying the

highest probability passwords first).

12

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

|. Probabilistic Password Cracking

The password cracking system as described in Weir et al. (M. Weir, Sudhir Aggarwal,
Breno de Medeiros, Bill Glodek, “Password Cracking Using Probabilistic Context Free
Grammars,” Proceedings of the 30th IEEE Symposium on Security and Privacy, May
2009, pp. 391-405) and as taught in U.S. Patent App. No. 13/547,779 was used to derive
the current system. Probabilistic context-free grammars can be utilized to model the
derivation of real-user passwords and the way users create their passwords. The goal is
to generate realistic guesses in decreasing order of probability where the probabilities are
derived through training on large sets of revealed passwords. In Weir et al. and as
described herein, password string components consisting of alphabet symbols are
denoted as L, digits are denoted as D, special characters are denoted as S, and
capitalization is denoted as M. A number is associated with each substring to show the
length of the substring. For example, the password “football123!$” would be LgD3sS,. Such
strings are herein called the base structures. There are two steps in this password
cracking approach Weir et al.: (1) generating the context-free grammar from a training set
of disclosed real-user passwords, and (2) generating the actual guesses in probabilistic

order using the grammar.

a. Step 1: generating the context-free grammar from a training set of disclosed real-user

passwords

The observed base structures and frequencies are derived from the training set of
passwords. Information about the probability of the digits, special characters, and
capitalization (i.e., case) are also obtained from the training set. This information is used
to generate the probabilistic context free grammar. The probability of any string derived
from the start symbol is then the product of the probabilities of the productions used in its

derivation, for example as seen in Table 1.

S> D.L;S, 0.8
S> S,L; 0.2
D= 123 0.76
D= 987 0.24
Si=> ! 0.52
Si=> # 0.48
S,~> ** 0.62
S.,=> '@ 0.21
S.,=> " 0.17
L;~> dog 0.5
L;> cat 0.5

Table 1. Example probabilistic CFG.

Using this grammar, for example, the password “987dog!” can be derived with probability
0.04992, illustrated by the following:

S > D;3L3S, > 987138, > 987dogS, > 987dog!

13

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

The learning phase does not actually include determining probabilities of the alphabet
strings since these are not considered to be a sufficient sample even for large training
sets. Instead, for example, the Ls part of the guess comes from a dictionary with
probability equal to one over the number of words with length three (3). Furthermore,
probability smoothing can be used to give an appropriately low probability value to digits,

special symbols, case and base structures that do not arise in the training set.
b. Step 2: generating the actual guesses in probabilistic order using the grammar

The guess generation phase generates the possible password guesses in decreasing
probability order using the context-free grammar obtained from the previous step. This
decreasing probability order is critical to computing the guessing entropy. Multiple

dictionaries can be used with probabilities associated to each dictionary.

Il. Analyzing Password Strength

For a password to be strong, the password should not be easily broken. For memorability,
an assumption must be made that the original password proposed by the user is a
memorable password for that particular user. The first step is to evaluate the user-chosen
password for strength based on the probability of that password being able to be cracked.
To accomplish this, the probabilistic password cracking system, as previously discussed,
was used. The cracking system was trained on a comprehensive set of real passwords. A
threshold value was established, below which a password would be considered as strong.
Establishing the threshold facilitates building of a reject function that accepts a strong
password and rejects a weak password. Weak passwords are then modified by the
current system to make them strong. An overview of different components of the analyze-
modify system is illustrated in Figure 1. In the preprocessing phase, the system was
trained on real-user passwords 12 using the same technique used for training a
probabilistic password cracker. This results in a probabilistic context free grammar 14 that
can generate guesses in highest probability order. It is assumed that the training set used
in this step is a comprehensive set of passwords (and a sufficiently large sample set) that
can be used as a model of realistic passwords. Upon training the system, the threshold
value can be determined 16, and thus the reject function can be established 18. Having
entered the user’s proposed password into the system 20, the system utilizes the context-
free grammar to estimate/evaluate the proposed password’s strength 22. If the proposed
password is sufficiently strong, it can surpass the reject function and is accepted 24. If the
proposed password is not sufficiently strong, the reject function rejects 26 the password,
and the system modifies the proposed password 28. The new/modified password is
created 30, and the cycle is repeated, as its strength is evaluated 22 and tested against

the threshold 16 and reject function 18.

a. Setting the threshold

14

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

Distinguishing between weak and strong passwords, a strong password is one for which it
takes an attacker an appropriately long cracking time (cf) to crack that password (in
hours). It is assumed that in an online attack, the attacker would use the optimal strategy
of trying the highest probability passwords in decreasing order of probability. The
threshold value (thp) is defined as that probability such that passwords with probability
less than thp are strong and those passwords that are greater than or equal to thp are
weak. Because probabilistic context-free grammar (plus appropriate dictionaries) is used
as a model of realistic password distribution, the number of guesses g(thp) that the
attacker would make before trying a password with a value equal to the threshold value
thp can be determined. If r is the rate-per-hour of the guesses (based on the hash type,

cracking system speed, etc.), the following equation can be derived:
g(thp) = ct=r &)

Given g(thp), the value of thp can be determined since this value (g(thp)) can be used

to decide whether a given password is strong or weak.

There are at least two ways that the threshold can be determined. In the first approach,
the probabilistic password cracker of the pre-processing phase can be run once, and a
table can be generated that produces guesses and their probabilities at various time
intervals. Although this approach is accurate and straightforward, it is not always feasible
to reach the desired number of guesses due to time and resources. Table 2 shows the
threshold table produced by running a guess generator trained on a set of over 1 million
passwords. If the threshold is set at 2.96 x 10 and the probability of a password is less
than this threshold, then it will take at least one (1) day to crack that password using an

optimal password cracking strategy.

1,800,000,000 1.31x 10! 1
14,400,000,000 1.59x 102 8
21,600,000,000 1.20 = 1072 12
28.800,000,000 637 x 101 16
43,200,000,000 296 x 10° 24
86,400,000,000 9.94 x 101 48
129,600,000,000 6.70 x 101 72
172.,800,000,000 529 % 101 96
187,200,000,000 470 x 10 104

Table 2. Thresholds for the training_psw_checker grammar.

The second approach provides only a lower bound for the number of guesses g(thp) until
a given value thp is reached, but it only requires using the context-free grammar and
does not require actually generating all the guesses. Thus, this approach is quicker than
the first approach to determining threshold. Although this approach only gives a lower
bound, it is conservative with respect to ensuring that a proposed password is strong. The

algorithm starts with a threshold thp and estimates the number of elements in each base

15

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

structure i (with probability p;) that are greater than this value. By doing a binary search, a
password can be found with an index in each component of the base structure whose
probability is the closest one to thp/p, and thus calculate the number of guesses with
probability greater than this value. This is done with each base structure. This also
provides a table of the probabilities with the associated total number of guesses, for

example as seen in Table 2.
b. The analyze-modify reject function

The current system begins by asking a user to enter or propose a chosen password, and
receiving said proposed password. Using the probabilistic context-free grammar of the
pre-processing phase, the probability of the chosen password can be calculated. First,
the given password is parsed to its components. For example, if the password is
Alice123!, it is parsed to LsMsD3S;. Next, the probability of the base structure LsD3S; is
found, along with the probabilities of alice, 123, ! and the mask ULLLL. The product of
these probabilities is the probability of the user's password. This probability p, is

compared with the threshold value to accept or reject the password.

An issue that might occur in this phase is the inability to determine the probability of p,
from the context-free grammar. This could happen if the base structure or some other
components of the user-chosen password are not included in the derived context-free
grammar. If the base structure of the user-chosen password is not included in the
context-free grammar, it can be either assumed that the password is strong enough and
the password is accepted, or the lowest probability can be found for the base structures
and this lowest probability can be set as an estimate for the probability of this base
structure. In this embodiment, the latter approach was taken. If the digit component of the
password or the special characters component were not initially in the training data, a
probability associated with those values can still be found since the grammar includes
these not-found values through smoothing. If the alphabet part of the password is not
included in the dictionary, the probability associated with a word of the same length in the
dictionary is used, since it is assumed that all words of the same length have equal

probability. Thus, it can be determined whether the user’'s password is strong or weak.

Ill. Modifying a Weak Password

When the system rejects a password, the password should be modified but remain
usable and memorable for the user. A usable and memorable password is a password
that is easy to remember and type. Things people can remember are different for each
grouping of people based on their age, situation, location, etc. There are also special
names or numbers that are important only to a particular individual. A user should be free
to choose any word, number(s) or special character(s) that make sense to that user when
initially proposing a password. An exception is that the password should be long enough,

as otherwise, a brute force attack would be sufficient to crack the password.

16

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

If a password is rejected, the system generates passwords with slight changes to the
user-chosen password using the system’s distance function. The distance function is
based on edit distance to fulfill the need of usability for users. This allows users to choose
password components for their own memorability since only minimal changes are made
to the originally proposed password. Hence, passwords are generated/modified with a
distance of one from the user-chosen password, and the generated/modified password is
confirmed or authenticated to be within the acceptable threshold value of password
strength. Forget et al. (A. Forget, S. Chiasson, P.C. van Oorschot, R. Biddle, “Improving
text passwords through persuasion,” Symposium on Usable Privacy and Security
(SOUPS) 2008, July 23-25, 2008, Pittsburgh, PA USA) described a general concept that
even several random changes, such as replacing or inserting up to four characters, were
memorable by users. Thus, the system’s modifications, which typically change only one
character in the user-chosen password, would have a similar result. Alternatively, when
the user-chosen password is sufficiently strong, the system can confirm or accept the

password, as the password does not require any modification.
a. Distance function

In an embodiment, the system utilizes a distance function similar to the Damerau-
Levenshtein distance function (Damerau, F. J. "A technique for computer detection and
correction of spelling errors. Communications of the ACM, vol. 7, Issue 3, pp. 171-176,
March 1964) but with several modifications to make the function more efficiently for the
current system. Two sets of operations exist for this distance function: (1) operations on

the base structure, or (2) operations on a component.

Typically, an edit distance of one (1) in the current system is sufficient, but further edit
distances may be utilized for different operations if needed. Additionally, it is preferred to
edit only the numerical digits or special characters (i.e., not alpha strings), except possibly
to undergo a case operation, described infra. However, alternate embodiments of the

system permit modification of alpha strings as well.
i. Operations on the base structure:

An insertion operation includes inserting a component of length one. This operation is
permitted when the inserted component is not of the same type as its adjacent
components. For example, if the base structure is LsDsS;, the component D, can be
inserted in the beginning to create a structure D.LsDsS;. However, the component L1
could not be inserted at the beginning to create L,LsD3S; since components L, and Ls

would be of the same type and adjacent.

A deletion operation includes deleting a component of length greater than one. This
operation is permitted if the number of components is not one (1) and if the deletion does
not cause two components of the same type to become adjacent. For example, the

component D, can be deleted from base structure D»-S:D, to create structure S;D;. This

17

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

can be done because D, has a length greater than one and because it does cause two
components of the same type to become adjacent. Further with base structure D>S;D;,
the component S; cannot be deleted both because it has a length of one and also
because it causes two components of the same type to become adjacent (i.e., D» and D,

become adjacent).

A transposition operation includes exchanging two adjacent components. This operation
is permitted if it does not make two components of the same type adjacent to each other.
For example, for base structure LsD3S4, adjacent components D; and S; can be
exchanged. However, for base structure D»S;D;, adjacent components S; and D, cannot

be exchanged.
ii. Operations on the component:

An insertion operation includes inserting one character of the same type inside a
component. For example, if component D5 is “123”, the component can be modified to

“4123” by inserting “4” at the beginning.

The deletion operation includes deleting one character from within a component. This

operation is permitted if the length of the component is not equal to one (1).

A substitution operation includes substituting a character with another character of the

same type. For example, if S, is “I!”, the component can be modified to “!#".

A case operation includes inverting the case (uppercase/lowercase) of one character in
the alphabetical component of the password. For example, if L, is “life”, the component

can be modified to “liFe”.
b. Modifier algorithm

When a user enters a proposed password, the system automatically parses the password
to its base structure. To construct possible modified passwords, the base structure and
components are modified as explained above, and all information maintained in a tree
structure. The user-chosen password is the root of the tree, and the system track and
recorded results of all possible operations within an edit distance of one. In the tree, a
child node is the result of one of the above-referenced operations. After building the tree,
the system begins from the root node and randomly chooses a child until a leaf node is
obtained. If this password is within the acceptable threshold limit of password strength,
the password is considered acceptable, unless the system randomly continues to attempt
more modifications to the nodes. In an embodiment, during each tree traversal, the
system can mark or flag each component previously tried, such that the system can find a

different password during the next traversal.

trans2 %%trans2
colton00 8colton00
789pine 789pinKE

18

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

mitch8202 mitch=8202
callfero cal8fero
KILLER456 KILIER456
violin22 violin™22
ATENASO511 0511AETENAS
*zalena6 *3zalena6
KYTTY023 KYTTY023r

Table 3. Example of passwords modified by the analyze-modify system

It is possible that the system may not obtain a password within distance one (1) with the
desired probability. By selecting the new passwords at random, the system avoids or
minimizes the possibility of suggesting the same password or modification to different
users with the same or similar originally proposed passwords. In order to obtain a
password with an edit distance of two (2), one could repeat the same steps for passwords
with distance one (1) starting from any of the modified distance one (1) passwords. Table
3 shows a set of passwords given to the system as input and the output of the modifier
component. It can be seen that very limited changes has been applied to the user-chosen

password thus preserving the usability and memorability of the password.

IV. Dynamic Update

In an embodiment, the current system utilizes an update strategy that modifies the
grammar periodically in order to maintain effectiveness of the system after users use the
system for a period time. One option is that the system can propose less popular
passwords to users (i.e., those having smaller probabilities) than the more common ones
initially suggested when modification is needed. However, an issue that might arise after
using the system for a period of time is that the probability distribution of passwords can
change due to the passwords proposed by the system. Thus, whenever a recent set of
real-user passwords become revealed, an attacker can use these for training their optimal
password cracker. Since the supposedly strong passwords initially suggested by the
system have theoretically become in use more often and would have higher probability in
the guessing generator, the attacker has a better model of the system’s generator. Thus,
continued use of the original grammar may become problematic. Obviously, the most
recent set of passwords can be used as the training set for the system to overcome this
problem, but it would not always be easy to access a large set of real-user passwords.
Instead, the system considers every modified password that has been suggested to a
user as a publicly disclosed password—with an appropriate weight—to be used as if each
modified password were in the training set. By effectively adding every new password to
the training set, the system maintains a realistic and recent probability distribution for the
probabilistic grammar. For example, if a particular password structure has low probability
and is suggested numerous times by the system, the system dynamically adapts and
uses that structure less frequently since every modified password (including each of this

particular password structure) is added to the training set.

a. Updating the grammar

19

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

To update the training set, it is not required that the system’s proposed password be
added to the training set, the training step repeated, and the context-free grammar
reproduced again. Rather, the probability values should be adjusted in the context-free
grammar. The probability values in the grammar are the frequencies of each structure or
component used in the training set. Whenever a new password has been suggested, the
system needs to update only the frequency of the components and base structures used
in that password. For example, if the new password is “l'78liar”, only the probabilities of
the base structure and of S, and D, are changed. The probability of “liar” is not changed
since, as previously discussed, probabilities of words do not come from the training set
but from the dictionary. Again, the system considers all the words (whether they are

included in the dictionary or whether they are not) the same based on length.

By considering the probability of each element (of the base structure or the component)

as its frequency in the training set, the following equation is produced:
pi = ni/N1 (4)

where n;is the number of occurrences of the element and N is the total number of
elements. With this in mind, seeing another element / would change the probability to

the following formula:
P = (i + /(N + @) ©)
The probability of the rest of the elements would change to the following formula:
pi=n/(N+a) (6)

The parameter « can be used to adjust the rate of change. This mechanism is similar
to Laplacian smoothing. In experimentation, the grammar was trained on
approximately 1 million passwords resulting in about 11 thousand base structures.
Updating this grammar can be accomplished almost instantaneously. Each time the
grammar is updated, at least a portion of the probability values change, and the
password distribution is changed. Entropy metrics facilitate understanding of how the

dynamic update affects the probabilities.
b. Using the entropy metrics

To utilize entropy measures, the problems with theoretical distributions of passwords and
those with empirical distributions of passwords should be distinguished. For empirical
distributions, the min entropy being low is the same as the probability of the first guess
being high. This simply means that a few initial passwords might be guessed easily, but
this might be expected in any realistic distribution. Generally, through experimentation the
current system has provided a relatively high min entropy. However, the min entropy
provides little relevance since the system generally would not propose the first few high

probability passwords.

20

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

Additionally, the Shannon entropy distribution should be reasonably high. Because the
exact Shannon entropy H(X) of probability distribution can be calculated, described infra,
a lower bound on the guessing entropy G can also be computed, using a bound derived
by Massey (J. Massey, “Guessing and entropy,” 1994 IEEE Symposium on Information
Theory, pp. 204, 1994).

G = 1/, 2% +1 (7

In the experiments used to test the system, the Shannon entropy of the original password
checker distribution was about 27, which can be viewed as equivalent to a space of 2%
different passwords. Even with the moderate value of Shannon entropy, the total number
of guesses possible by the grammar is beyond the trillions. Thus, a reasonable reject
function is needed, as there are many possible passwords with very small probabilities. If
the system has a higher Shannon entropy, then the new distribution of passwords would
be more resistant to an optimal password cracking attack. Thus, used properly, Shannon

entropy of the grammar can be useful in the grammar update function of the system.

It should be noted that when ensuring strong passwords, there are two possible
approaches. The first is to find a distribution from which any password chosen is hard to
break. This is the approach taken by Verheul (E. R. Verheul, “Selecting secure
passwords,” M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 49-66, 2007). Thus, the
guessing entropy has some meaning, but as discussed by Verheul, it must also be
ensured that the min entropy is high. However, Verheul’s approach does not ensure

usability of the chosen password.

The second approach is to ensure that a specific password is hard to break, but it need
not be randomly chosen from a given distribution. Experimentation on the current system
utilized this approach, which additionally ensures usability, while also protecting against
an optimal guessing attack. It is relatively irrelevant that some initial number of passwords
from that distribution can be broken since these passwords would be identified as weak

by the current system.
c. Shannon entropy of the grammar

Since the current system is a password guess generator that can generate passwords in
probabilistic order, the Shannon entropy, guessing entropy and min entropy can be
computed for the guesses generated by the system’s context-free grammar by generating
guesses and computing the entropy values. Since the system’s password generator was
developed through training on revealed passwords, these entropy values can be viewed
as realistic values for the relevant password probability distribution. After training on a
sufficiently large set of revealed passwords, the distribution (through the grammar) can be

viewed as a reference model for the “true” probability distribution of passwords.

The Shannon entropy can be computed using only the probabilistic-context free grammar

and without actually generating these guesses by utilizing well-known notions, such as

21

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

joint entropy and conditional entropy (T. M. Cover and J. A. Thomas, Elements of
Information Theory, Wiley, 1991). Let G be the random variable that is the distribution of
the strings that are the passwords derived from the grammar. More precisely, it is the
distribution of derivation trees, but since the grammar is non-ambiguous, it can be viewed

as the strings themselves.

The context-free grammar for a password distribution can be viewed as composed of
several distributions. One distribution is from the start symbol S to the base structures,
deemed the random variable B, and the second distribution is from the sentential forms of
base structures to the terminals (the password guesses), deemed the random variable R
(for rest). For example, if the base structures can take n different values by, by, ..., by,
where n is the total number of base structures, then since S 2> b, the relationship
p(S=>b;) = p(B=b,) is formulated. The random variable R | B is itself computable from the
probability distributions represented by each component of the base structure because of
independence of the component derivations. Table 4 is a simple example of the context

free grammar of Table 1 illustrating B and R | B with some sample probability values.

S>DsLsS; | 0.8 D;L;S;>123dog! | 0.1976
123dog# | 0.1824
123cat! | 0.1976
987cat# | 0.0576
S=> SzL3 0.2 SzL39 **cat 031
"dog | 0.085

Table 4. Example CFG for entropy calculation.

Not shown are the random variables Ls, D3, S;, Ls, and D,. For example, the random
variable D3 has the distribution as shown in Table 1. The following theorem was derived

to calculate Shannon entropy from a context-free grammar.

Theorem of Entropy of a Grammar: The Shannon entropy of a probabilistic context free
grammar H(G) can be computed from the entropies of the various random variables
defining the grammar. Assume the base structure b;is of the form XX, ... Xy where

each component is of the form L; or D;or S; in the grammar. Then:

H(G) = H(B,R) = H(B) + H(R|B)
(8)
= H(B) + Z[H(Xl-l) + H(Xy,) + -+ H(Xy,)]

The proof of the above is straightforward from the definitions of joint and conditional
entropy. For example, Using this theorem for the simple grammar of Table 1, the

Shannon entropy can be calculated to being H(G) =3.42.

The Shannon entropy of the probabilistic distribution G can be calculated in at least two
ways: (1) generating the password guesses directly and computing the entropy, and (2)

using the grammar itself through this theorem. These methodologies should result in the

22

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

same Shannon entropy. Experiments were conducted on a plurality of sets of real-user

passwords to verify this, and the entropy values resulted as expected.
d. Increasing Shannon entropy

An experiment was conducted to test the grammar update function. The experiment was
conducted on a password training set of 740 real-user passwords randomly chosen from
the MySpace set, resulting in 37667 password guesses. A new password was selected
for the user in such a way that the password’s probability was less than or equal to 1/n,
where n was the total number of passwords in the distribution. The probability of the base
structures and other components were then updated with the technique as discussed
previously. These steps were repeated until there were no passwords with probability less
than 1/n (i.e., the distribution became uniform). The theoretical Shannon entropy value for
this uniform distribution is 15.2. Figure 8 shows the changes in the Shannon entropy for
each update round. As is evident, the system appears to approach the theoretical

maximum Shannon entropy. A similar result was found for the guessing entropy.

Theoretically, having uniform distribution for passwords is ideal since in that distribution
all passwords would have equal probabilities. Practically, this would mean that each
password is equivalent to being randomly chosen. Using the system’s update algorithm
approaches uniform distribution, but the system likely cannot reach uniform distribution by
not using the full key space of alpha strings (e.g., only using words proposed by users

and the case operation) or exhausting the space of all 10-digit numbers.

Nevertheless, while maintaining usability, the system’s grammar-modifying approach
ensures that an attacker cannot take advantage of using a probabilistic password
cracking approach. In the update algorithm, when updating the training set, the
probabilities of the passwords are not modified directly, but only the password distribution
is modified implicitly by changing the context-free grammar. Thus, it is not obvious that

the Shannon entropy should be maximized for that grammar.

V. Hardware and Software Infrastructure Examples

The present invention may be embodied on various computing platforms that perform
actions responsive to software-based instructions. The following provides an antecedent

basis for the information technology that may be utilized to enable the invention.

The computer readable medium described in the claims below may be a computer
readable sighal medium or a computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a non-exhaustive list) of the
computer readable storage medium would include the following: an electrical connection
having one or more wires, a portable computer diskette, a hard disk, a random access

memory (RAM), a read-only memory (ROM), an erasable programmable read-only

23

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document, a computer readable
storage medium may be any tangible medium that can contain, or store a program for use

by or in connection with an instruction execution system, apparatus, or device.

A computer readable sighal medium may include a propagated data signal with computer
readable program code embodied therein, for example, in baseband or as part of a carrier
wave. Such a propagated signal may take any of a variety of forms, including, but not
limited to, electro-magnetic, optical, or any suitable combination thereof. A computer
readable sighal medium may be any computer readable medium that is not a computer
readable storage medium and that can communicate, propagate, or transport a program

for use by or in connection with an instruction execution system, apparatus, or device.

Program code embodied on a computer readable medium may be transmitted using any
appropriate medium, including but not limited to wireless, wire-line, optical fiber cable,
radio frequency, etc., or any suitable combination of the foregoing. Computer program
code for carrying out operations for aspects of the present invention may be written in any
combination of one or more programming languages, including an object oriented
programming language such as Java, C#, C++ or the like and conventional procedural
programming languages, such as the "C" programming language or similar programming

languages.

Aspects of the present invention are described below with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the invention. It will be understood that
each block of the flowchart illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program instructions may be provided to
a processor of a general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer or other programmable
data processing apparatus, create means for implementing the functions/acts specified in

the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer readable medium
that can direct a computer, other programmable data processing apparatus, or other
devices to function in a particular manner, such that the instructions stored in the
computer readable medium produce an article of manufacture including instructions
which implement the function/act specified in the flowchart and/or block diagram block or

blocks.

The computer program instructions may also be loaded onto a computer, other

programmable data processing apparatus, or other devices to cause a series of

24

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

operational steps to be performed on the computer, other programmable apparatus or
other devices to produce a computer implemented process such that the instructions
which execute on the computer or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart and/or block diagram block or

blocks.
EXAMPLE 1

. Pre-Processing Phase

a. Training & context-free grammar

The process of developing certain embodiments of the current invention begins in the
pre-processing phase. The system is trained on real-user passwords using the same
technique used for training the probabilistic password cracker in U.S. Patent App. No.
13/547,779. After training, the real-user passwords are modeled into a context-free
grammar with associated probabilities for each pre-terminal set to the frequencies of the

different patterns found in them.
b. Setting the threshold

The threshold is a probability value f that assumes that passwords with probability smaller
than t are sufficiently strong, and passwords with probability larger than t are not
sufficiently strong. The strength of a proposed password is related to the time it takes for
an attacker to crack that password. Examples of ways to attack a password include brute
force attacks and dictionary attacks. However, an assumption made herein is that an
attacker can use the best available attack. If an attacker begins guessing from the highest
probability order, the number of guesses g(f) he/she must make before guessing a
password with probability equal to the threshold value of t can be determined. Thus, the

calculations per hour c for each system can be calculated.

A first approach to setting the threshold includes running the guess generator of the
probabilistic password cracker in U.S. Patent App. No. 13/547,779, and matching
probability with total number of guesses the attacker must make before reaching that

probability.

A second approach to setting the threshold provides a lower bound for g(f) until t is
reached. This approach requires using the context-free grammar and does not require
actually generating all the guesses. The algorithm starts with choosing t and estimating
the number of elements in each base structure that are greater than this value, as
depicted in FIG. 2.

For example, FIG. 2 depicts a first base structure of b, = LsD3S4 with probability p; and t.
The system can estimate the number of guesses from this base structure that have
probability higher than t/p;. The middle elements, which are rank-ordered in terms of

component probabilities from highest to lowest for each component (Ls, D3, and S;), are

25

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

tested. By binary search, a password with index in each component (i, j, and k), whose
probability is closest to t/p; but greater than or equal to it, can be found. This means that
at least i*j*k guesses has probability greater than t/p, for this base structure. This process
can be repeated for additional base structures. By adding g(f) found for each base
structure, a lower bound can be found on the total number of guesses to reach t. The

same procedure can be used for the next proposed probability value.

Il. The Reject Function

Users begin by entering a proposed password. Certain embodiments of the invention are
based on an implicit creation policy, thus containing a reject function based on the
strength of a proposed password. Upon receiving the proposed password, the system
may calculate the probability of cracking the proposed password, using the context-free
grammar generated in the preprocessing phase. The product of probabilities of
components of the proposed password is p, probability of the user-chosen password.
This probability p, allows determination of password strength in comparison to the

threshold probability that defines if a password is strong.

If a base structure of the proposed password is not included in the context-free grammar,
the password is either strong enough and accepted, or the lowest probability for the base
structures can be found and set as an estimate for the probability of the base structure. If
what cannot be found in the training set is a digit component or special character
component, its probability associated with its values can be found since the grammar
includes the values through smoothing on the training set. If an alphabet component of
the password is not included in the training set, a probability associated with a word of the

same length can be used, since all words of a same length can have equal probabilities.

Ill. Suggesting New Passwords

When a proposed password is rejected, certain embodiments of the invention create a
new password that is strong (i.e., higher probability than the threshold) and is usable for
the user by modifying the proposed password with slight changes. It is critical that the

new password is both strong and usable.

Certain embodiments of the invention make only slight changes to the proposed
password, so usability of the password is preserved for the user. These changes are
made through a distance function, based on Edit distance to fulfill the need of usability for
users. The distance function includes beginning modification of the proposed password
with distance one from the proposed password. Probability of this modified password can
be calculated using context-free grammar with the same technique used to calculate the
probability of the proposed password. If the probability is an acceptable strength, it can be

suggested to the user.

As used herein, the term “L” with subscript numerical refers to an alphabetical character,

and the subscript numerical refers to the number of consecutive alphabetical characters

26

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

within the password. For example, “Ls” refers to five (5) consecutive alphabetical
characters within a password. As used herein, the term “D” with subscript numerical
refers to a numerical character, and the subscript numerical refers to the number of
consecutive numerical characters within the password. For example, “D” refers to two (2)
consecutive numerical characters within a password. As used herein, the term “S” with
subscript numerical refers to a symbol, and the subscript numerical refers to the number
of consecutive symbols within the password. For example, “S;” refers to one (1) symbol
within a password. Examples of symbols include, but are not limited to, the following: !,
@, #, %, &.

a. Distance functions

Distance functions can map a pair of strings to a real number d, where a smaller value of
d indicates greater similarity between those two strings. Examples of distance functions
include, but are not limited to, the Levenshtein distance function, the Edit distance
function, and the Damerau-Levenshtein distance function. The Levenshtein distance is a
metric for measuring the amount of difference between two sequences or strings of
characters. The distance is the minimum number of operations needed to transform one
of the sequences to the other one. An operation is defined as an insertion, deletion or
substitution of a single character. The Damerau-Levenshtein distance is an extension of
the Levenshtein distance but also counts transposition of two adjacent characters as an

operation.

One embodiment of the current invention uses the Levenshtein distance function. Two
sets of operations for the distance function may be defined. The operation can take place
on the base structure or on the component. If the operation is on the base structure, three
options exist — insertion, deletion and/or transposition. Inserting a component of length
one on the base structure is allowed when it is not of a same type of its adjacent
components. For example, if the base structure is LsDsS, a Dy can be inserted at the
beginning to produce D:LsDsS;, but an L; should not be inserted into that position.

Functionally, this helps usability of the modified password for the user.

Deleting a component on the base structure can be done if the number of components is
not one and if it does not make two components of the same type adjacent. For example,
if the base structure is D,S:D,, D, can be deleted to make SD,, but S; should not be

deleted. Again, functionally this helps usability of the modified password for the user.

Exchanging two adjacent components on the base structure can be done if it does not
make two components of the same type adjacent to each other. For example, if the base
structure is D3;S¢D4, D3 and S; should not be exchanged. Again, functionally this helps

usability of the modified password for the user.

If the operation within the component itself, three options exist — insertion, deletion, and

substitution. Inserting one character of the same type inside a component is allowed. For

27

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

example, if component D3 is “123,” a number “4” can be inserted at the beginning to
modify D to “4123.”

Deleting one character inside a component is allowed if the component is not equal to 1.

Therefore, the whole component is not deleted.

Substituting a character inside a component is allowed if the original character is
substituted with another character of the same type. For example, if S, is “I!”, it can be
modified to “1#".

b. Modifier algorithm

When users enter their proposed password, certain embodiments of the invention
automatically parse their password to its base structure. To build a new password, the
above-referenced steps may be taken. Each new base structure in the modified
passwords will have a list of all possible substitutes to try. FIG. 3 depicts an example of

the proposed password with possible substitutes to try stemming from it.

In FIG. 3, the proposed password is “alice123!” with base structure LsD3S;. Stemming
from the base structure are examples of different operations, such as insertion in base
structure where S is inserted in the first position resulting in a new base structure of
S,LsDsSy with a list of possible special characters. Another example is transposition in
base structure where D3 and S; are exchanged resulting in a new base structure LsS;Ds.
Another example is substitution in component Ds, which, because of its “3” length, results
in three possibilities, each for one digit within the D3 component. These modified
passwords can be tried at random or systematically until a new password with acceptable
strength is produced. If a modified password is traversed but still has unacceptable
strength, each component can be marked, so a different password is analyzed during the

next traversal, and so the same password is not given to another user.

If a password within distance 1 of the proposed password cannot be found with
acceptable strength, a substantially similar process can be used to determine a password

with distance 2.

FIG. 4 depicts a snapshot of an embodiment of the current invention. In FIG. 4, a user
has entered a proposed password of “life45!” The probability of the proposed password is
calculated to being 1.13 x 10'12, which is larger than the threshold. Thus, this embodiment
has suggested a new password using the modifier algorithm and choosing one of the
operations randomly. In this example, the suggested password is “life?45!” which was

created by an insertion operation in the base structure.

IV. Maintaining/Updating the System

One issue that arises with using certain embodiments of the current invention is that
stronger passwords lose their strength when they are used more often. The stronger

passwords in the training set gain a higher probability in the guessing generator, so an

28

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

attacker can crack the passwords more easily. Thus, certain embodiments of the current
invention update the training set with the modified passwords, so once a modified
password gets a higher probability and does not pass the threshold, the system will not

suggest it anymore.

Once a modified password is added to the training set for strength evaluation, a new
context-free grammar may be generated, as described previously, or a new context-free
grammar may not be generated. If a new context-free grammar is not generated, the
probability value of the modified password would be adjusted. Since the probability value
of the modified password is the frequency of the components and base structures used in
the training set, only the frequency of the components and base structures used in the

modified password needs to be updated.

For example, if a modified password is “l!78liar”, only the probabilities of the base
structures, S, and D, need to be updated, since the letter parts of the password were not
changed. By considering the probability of each element as the frequency of it in the
training set, the result would be p; = n/N, where n; is the number of occurrences of the
element and N is the total size of it. Seeing another element i would change the

probability to p’ = (ni+1)/(N+1), and the probability of the rest of the elements would
change to p/ = n/(N+1). FIG. 5 depicts adjustments in the probability values for the

modified password “!!78liar”.

Knowing the entropy values are metrics for password strength, entropy values should be
increased or even maximized. Shannon Entropy corresponds only with the average size
of passwords in bits using an optimal coding for the passwords and the average
information given by a distribution and does not say much about how attackers might try

to break the system in a password-cracking attempt.

Guessing Entropy measures the resistance against offline attacks using an optimal
strategy, which is trying the most probable password first, then the second most probable
password, etc. Guessing Entropy is defined as the average number of tries for finding the
password. The more guesses it takes for an attacker to crack a password, the more
secure a system is. It has been shown that entropy H for a discrete distribution is upper-
bounded by the Guessing Entropy, G, of the distribution by: H < 2 + log(G-1).

On the other hand, a large Shannon Entropy (and consequently Guessing Entropy) by
itself is not sufficient to guarantee a secure password distribution. In cases when the
probability of the first guess goes to one, even if the Guessing Entropy is large, the
distribution is not secure since the attacker would likely find the password guess in the
first try. This has been shown by Min Entropy H..(X) given by —log(p,). For a password
distribution to be secure, the Guessing Entropy should be large, and the Min entropy

should also be large, or equivalently p, should be small.

29

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

In one example, for a probability density function X on a finite set {x4, X,,..., X,}, H(X) < log

n, with equality if and only if X is uniform, i.e., p(x;) = 1/n for all /.

In another example, for a finite discrete distribution, the Guessing Entropy can be
maximized when p; = 1/n, where n is the number of elements. As proof, an assumption
can be made that the claim is not true. Thus, the maximum Guessing Entropy occurs for
a distribution with at least two values not equal to 1/n. Let these be px and p_ with
pk=1/(n+€) and p_=1/(n-€). If every value of a new distribution is the same as the previous
one, except that pk is decreased by €/2 and p, is increased by €/2, where e=min(px*pk+1,
pL.1-pL). Thus, the difference between the Guessing Entropy for the first distribution G,
and the Guessing Entropy of the new distribution G, is equal to: G,-G=K(pk-€) — K*px +
L(p.+e) — L*pL = L¢ - K¢ = g(L-K) > 0. Because the value of Guessing Entropy is increase

by the change, the original assumption is contradicted, and the claim stands valid.

In one example, a user may enter his proposed password, and if rejected by the system,
the user would get a suggestion for the modified password in return. The system may
select the modified password for the user in a way that its probability is less than or equal
to 1/n, where n is the total number of passwords in the distribution. Then the probability of
the base structures and other components can be updated in the training set. These

steps may be repeated until there is no password with probability less than 1/n.

This was performed on a password set of 740 real-user passwords randomly chosen from
a training set which resulted in 37667 password guesses. The maximum Shannon
Entropy value for this distribution was 15.2011. FIG. 6A depicts the change in Shannon
Entropy for the beginning of each round. As shown in FIG. 6A, the entropy starts
decreasing and is not monotonic, but after about 700 iterations, the entropy starts to

increase monotonically, as shown in FIG. 6B.

In another example, a modified password was selected for a user in a way that its
probability is the smallest probability in the distribution. The probability of the base
structures and other components can be updated in the training set. These steps can be
repeated until there is no password with probability less than 1/n, where n is the total

number of passwords in the distribution.

Using the same password set as the previous example, the maximum entropy reached
was about 15.17 in about 7000 rounds. FIG. 7A depicts the absolute increase in entropy
for each round, converging to its maximum more quickly. FIG. 7B depicts the increasing
Guessing Entropy for both algorithms, illustrating a faster convergence to the maximum
Guessing Entropy. The maximum Guessing Entropy in FIG. 7B is around 18,834 for that

set.

In the algorithms of the previous examples, the probabilities of the passwords are not
being changed directly, but the password distribution is being changed implicitly by

changing the context-free grammar. It was not obvious how the distribution would change

30

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

by changing the context-free grammar since the updating algorithm not only changes the
probability of the base structure that was added to the training set, but also changes the

probability of the other base structures and other components in each iteration.
EXAMPLE 2

. Preprocessing and Experiment Setup

The effectiveness of the novel password analysis and modification system was tested on
several sets of revealed passwords. The analysis component of the system essentially is
the password checker. The grammar of this password checker is used to set the
thresholds between strong and weak passwords, and analyze the user-proposed
passwords. Two password-cracking approaches were used to try to break passwords,

including those that had been identified as weak and made strong by the current system.

Three lists of revealed passwords were obtained for the experiments. The first list was
the RockYou password list (A. Vance, “If your password is 123456, just make it hackme,”
New York Times, January 2010,
http://lwww.nytimes.com/2010/01/21/technology/21password.html), which was released in
December 2009 and contains 32 million passwords. Two million random plain text
passwords were used from this list for the experiments. The second list was a MySpace
password list, which contained 61,995 plain text passwords and was the result of an
attack against MySpace users in 2006 (Robert McMillan, “Phishing attack targets
MySpace users,” http://www.infoworld.com/d/security-central/phishing-attack-targets-
myspace-users-614, October 27, 2006). The third list was the result of an attack against
Hotmail users in October 2009 and contains 9,748 plain text passwords (T. Warren,
“Thousands of Hotmail Passwords Leaked,”
http://www.neowin.net/news/main/09/10/05/thousands-of-hotmail-passwords-leaked-

online).

Each of these lists were randomly split into separate sets for the following methodology:
(1) training the system’s password checker (RockYou: one million, MySpace: 30,997,
Hotmail: 4,874); (2) testing the system (RockYou: %2 million, MySpace: 15,499, Hotmail:
2,437); and (3) training a probabilistic password cracker (RockYou: %2 million, MySpace:
15,499, Hotmail: 2,437). The probabilistic password cracker was intentionally trained on a
different set than is used for the system’s password checker. For the training sets,
passwords were combined from the RockYou, MySpace, and Hotmail password lists
together in order to maintain a comprehensive set for the training that also considered
that the different websites might have had different password policies for required lengths
and other rule-based restrictions. The input dictionaries “common_passwords” (The Open
wall group, John the Ripper password cracker, http://www.openwall.com) and “dic-0294”
(A list of popular password cracking wordlists, 2005,
http://www.outpost9.com/files/WordLists.html) were used to train both the system’s

password checker and the probabilistic password cracker. In the system’s password

31

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

checker, the alphabetical part of the password is not checked against the dictionary; it is
assumed that the alphabetical part is included in the dictionary, so the probability value of

words of that length were used for that component.

The threshold value for the experiments were set using the approach described
previously (i.e., running the probabilistic password cracker of the pre-processing phase
(once) and generating a table that produces guesses and their probabilities at various
time intervals) and the AMP password checker grammar to generate the guesses and
their probability values. The results were depicted in Table 2. The times shown in Table 2
are the corresponding times for performing an MD5 hash on that number of guesses on
the specific machine used for cracking. At this point, the preprocessing phase of the
current system was completed and a threshold can be set as desired. The Shannon
entropy value for this grammar calculated by the Theorem of Entropy of a Grammar was
26.78.

B. Implementation

The user interface of the current (which may be written in Java, for example) receives as
input one or more passwords. It checks the probability of the user-proposed password
against the threshold and tries to strengthen it within edit distance one if the password is
weak. The threshold value was set equivalent to different time periods, for example one
day (24 hours), meaning that a password is called weak if it can be cracked within one
day, and it is strong if it cannot be cracked within one day, though a threshold value of
one day generally is not an ideal value from a practical standpoint. Other threshold values
were tested as well. Figure 4 shows a snapshot of the current system with the user
proposed password “life45!” as the input. The probability of the user-selected password
as well as the probability value of the new password is shown along with the approximate

time to crack.

C. Password Cracking Results

To test the password analysis, two password-cracking systems were utilized: (1) John the
Ripper (The Open wall group, John the Ripper password cracker,
http://www.openwall.com); and (2) a probabilistic password cracker similar to that taught
in U.S. Patent App. No. 13/547,779. John the Ripper was executed in incremental mode,
which according to the documentation is their most powerful cracking mode and
eventually tries all possible character combinations as passwords (The Open wall group,

John the Ripper password cracker, http://www.openwall.com).

In the first series of results, the threshold value for the password checker was set to one
day; thus, the number of guesses made by both password crackers was limited to 43.2
billion guesses. This number is the approximate number of guesses that could be hashed

by password crackers in one day.

32

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

To compare the current system’s password checker with conventional password checkers
(e.g., MICROSOFT® password meter), the threshold value thp of the password checker
was mapped to their score of weak and strong passwords. For example, MICROSOFT®
outputs weak, medium, strong, and best scores as the result of its password
analysis/checking. Since its algorithm to score the strength of passwords was unknown,

this comparison was not possible.

Tables 5 and 6 show the results of the password cracking by John the Ripper and by the
probabilistic password cracker, respectively, for a threshold value of one day. The
cracking results when using the current system were divided into four different groups.
The first group is referred to herein as “originally strong”. The system had determined
these passwords as being strong based on the set threshold. The second group is
referred to herein as “originally weak not able to make stronger”. These were passwords
that the system both had recognized as weak and had tried all possible modifications
within distance one to strengthen them but had been unsuccessful in lowering the
modified probability values below the threshold value. The third group of passwords is
referred to herein “originally weak passwords able to make stronger’. These were
passwords that the system both had recognized as weak, and had strengthened with
modifications within edit distance one to modified probability values below the threshold
value. This third set contains the weak passwords prior to modification. The associated
modified passwords are in the fourth group, which is referred to herein as “strengthened
passwords modified from weak”. This fourth set contains strong passwords, as
determined by the system, relative to the threshold. Results show that both originally
strong and strengthened passwords modified from weak passwords have very low rate of
cracking compared with weak passwords. As can be seen in Table 5, John the Ripper
was able to crack less than 1% of the originally strong and strengthened passwords. As
can be seen in Table 6, the probabilistic password cracker was able to crack about 5% of

the originally strong and strengthened passwords.

2 49 988 2

325 53 2,059 2,059
0.61%) | (92.45%) | (47.98%) | (0.0975%)

23 104 5,343 71

1484 149 13,866 13,866
(1.55%) | (69.80%) | (38.33%) | (0.51%)

281 22,248 235,302 1,186

32,794 | 24,745 | 442461 | 442,461
(0.86%) | (89.90%) | (53.18%) | (0.27%)

33

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

Table 5. Password cracking results using John the Ripper.

1 53 1,069 113

325 53 2,059 2,059
03%) | 100%) | (51.91%) | (5.48%)

27 135 8,341 698

1,484 149 13,866 13,866
(1.81%) | (90.60%) | (60.15%) | (5.03%)

467 24,378 | 259,027 18,134

32,794 | 24,745 | 442,461 | 442,461
(1.42%) | (98.51%) | (58.54%) | (4.1%)

Table 6. Password cracking results using the probabilistic password cracker.

Figure 9 shows how fast the weak passwords (that could be strengthened) were able to
be cracked. With only 1 billion password guesses, which can be made in less than one
hour, about 20% of MySpace passwords, 30% of Hotmail and 35% of RockYou
passwords were cracked. In one day (i.e., set threshold), these humbers reached to 38%,

48% and 53%, respectively.

The analogous curve for strengthened passwords is shown in Figure 10. Less than 1% of
passwords had been cracked in the 24-hour period of time. Figure 10 shows the
percentage of strengthened passwords cracked over time by John the Ripper. These
passwords are the modified, strengthened passwords from Figure 9. The passwords of
Figure 9 were strengthened by the current system. Figures 9 and 10 show how much the

rate of cracking had decreased after modification.

Overall, prior to utilizing the system, the total rate of cracking the test password set was
about 56.6% with the probabilistic password cracker. Upon utilizing the system, since it
only allows strong passwords (columns 1 and 4 of Table 6), the cracking rate is about
3.9%. The analysis system successfully determines weak passwords from strong ones
with an error rate of 1.43% (column 1). This rate is the percent of passwords originally
identified as strong, but that can be cracked. As seen, at least some (39%) of passwords
were deemed as weak but were unable to be cracked (columns 2 and 3). This
experimentation deemed this type of error as acceptable since the implications are only
that the experimentation was conducted conservatively and that some passwords

deemed as weak could not be cracked.

Besides using the one-day threshold, similar tests were conducted using threshold values
(see Table 2) for 12 hours, 48 hours and 96 hours. Figure 11 shows the total rate of

cracking the test password set before using the system and after using system for both

34

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

John the Ripper (JTR) and the probabilistic password cracker (PPC). The time allocated
for cracking was of course the same time as used for determining the threshold. The
results are similar to the one-day results and even at four (4) days, the passwords

deemed weak were significantly improved.

Some of the weak passwords could not be strengthened since this experiment was
limited to changes of edit distance one. Furthermore, there were no restrictions (e.g., rule-
based limitations) on the proposed passwords, such as minimum length. The identified
weak passwords that could not be sufficiently strengthened were 4.0%, 4.8%, 18.6% and
37.7% of the total test password set for 12 hours, 24 hours, 48 hours, and 96 hours,
respectively. As an example, the proposed password “123456” could not be strengthened
below the threshold value. This was to be expected and would likely be remedied by
allowing edit distance two or having some minimal restrictions on the input proposed

password.
DEFINITIONS OF CLAIM TERMS

Adjacent position: This term is used herein to refer to a character that is immediately

preceding or following another character.

Base structure: This term is used herein to refer to a sequence or combination of alpha,
digit and/or special substring components that capture the length of the observed

substrings.

Case operation: This term is used herein to refer to a process of inverting the case

(uppercase/lowercase) of one character in the alphabetical component of a password.
Character: This term is used herein to refer to an alpha, numeric or special symbol.

Component: This term is used herein to refer to an element of the base structure. A
component can contain one or more letters (possibly capitalized), digits, or special
characters, with an associated number that indicates the number of characters within that
component. Each component contains the same type of characters that are adjacent to

one another.

Complexity value: This term is used herein to refer to the strength or effectiveness of a

password in resisting guessing and password cracking attacks.

Control passwords: This term is used herein to refer to a set of words or keys aggregated
or derived from real-user passwords and utilized to train the system in the preprocessing

phase.

Crack: This term is used herein to refer to recovering passwords from data that has been

stored in or transmitted by a computer system.

35

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

40

Decreasing probability order: This term is used herein to refer to the sequential order of
password guesses, beginning with the most probable guess to crack a password, as

would be made in an optimal password cracking attack.

Deletion operation: This term is used herein to refer to a process of deleting or removing
a component of length one or more to a password, or deleting a character within one

component.

Dictionary: This term is used herein to refer to an exhaustive list of words or keys that can
be entered into computer software, such that these words or keys can be used to

generate guesses and/or indirectly measure the strength of a password.

Digit: This term is used herein to refer to any sequence or combination of numeric

characters. For example, numeric characters may include numbers 0 to 9.

Effort required to crack a password: This phrase is used herein to refer to the number of

guesses or amount of time required for a password to be cracked.

Entropy: This term is used herein to refer to a well-known measure for a probability

distribution.

Insertion operation: This term is used herein to refer to a process of inserting or adding a

component of length one or more to a password, or adding a character to a component.

Known password or Real-user password: As used herein, these terms are used
interchangeably to refer to a word or key that has become known to the public

intentionally or unintentionally.

Length: This term is used herein to refer to the number of adjacent characters of the
same type. For example, if length of a numerical component is one (1), then the

component contains one number that has no numbers adjacent to it.

Letter: This term is used herein to refer to one or any sequence or combination of
alphabetic characters. For example, letters within the English language may include
letters A to Z.

Limited modification: This term is used herein to refer to a minimal change to a password,
such that the modified password or second proposed password is still memorable to a
user. A limited modification typically modifies a password with limited edit distance, which
refers to the number of components or characters in modification (i.e., inserted, deleted,
substituted, etc.) within a password. Typically, an edit distance of only one provides a
password with sufficient strength, but greater than edit distance one is contemplated as
well. The edit distance is “limited” in that only modification is allowed that would allow the

modified password or second proposed password to remain memorable for the user

Password guess: This term is used herein to refer to a password generated that has an

associated probability value.

36

WO 2013/109330 PCT/US2012/062730

10

15

20

25

30

35

Probabilistic context-free grammar: This term is used herein to refer to a common notion
of a grammar generated through the training step of the current invention by learning

base structure and component structure probabilities.

Probabilistic password cracking system: This term is used herein to refer to a
methodology and model of effectively and efficiently attempting to crack a password
through the use of probability values assigned to the password guesses or to structures
associated with the password guesses. The probabilistic password cracking system

generates guesses in highest probability order based on the training it received.

Probability distribution: This term is used herein to refer to application of passwords that
might be generated by probabilistic grammar or the expected distribution in the wild.
Thus, if a system remains updated with the most recent known words, distribution of

passwords and probability values can remain accurate.

Proposed password: This term is used herein to refer to sequence or combination of
alpha, numeric and/or special characters that is inputted by a user or generated by the
system, and is subject to cracking by password cracking systems and modification by the

current password analyze-modify system.

Relevant password distribution: This term is used herein to refer to the distribution

induced or represented by the probabilistic context-free grammar.

Real-user password: This term is used herein to refer to a word or key, possibly referring

to a password, that has become known to the public either intentionally or unintentionally

Special character: This term is used herein to refer to any sequence or combination of
non-alpha and non-digit symbols. For example, non-alpha and non-digit symbols may
include !@#$%"&*()- =+[1{};".",./<>7.

Substitution operation: This term is used herein to refer to a process of substituting or

exchanging one character with another character.

Sufficient complexity: This term is used herein to refer to a password having a a strength

or effectiveness that meets or surpasses the threshold complexity value.

Threshold complexity value: This term is used herein to refer to a quantitative point at
which a password is deemed strong or weak. If a password satisfies the threshold
complexity value, for example by requiring a large amount of guesses over a period of
time to be cracked, then the password is deemed strong. If the passwords fails to meet
the threshold complexity value (i.e., is too easy to crack), then the password is deemed

weak.

Transposition operation: This term is used herein to refer to a process of exchanging two

adjacent components.

37

WO 2013/109330 PCT/US2012/062730

10

15

Type: This term is used herein to refer to a grouping of one or more characters within a
component. Examples of types include alphabetic characters, numerical digits, and

special characters.

User: This term is used herein to refer to an individual attempting to test the current
password analyze-modify system or attempting to develop a password for a secure

account that requires authentication.

The advantages set forth above, and those made apparent from the foregoing disclosure,
are efficiently attained. Since certain changes may be made in the above construction
without departing from the scope of the invention, it is intended that all matters contained
in the foregoing description or shown in the accompanying drawings shall be interpreted

as illustrative and not in a limiting sense.

It is also to be understood that the following claims are intended to cover all of the generic
and specific features of the invention herein disclosed, and all statements of the scope of

the invention that, as a matter of language, might be said to fall therebetween.

38

WO 2013/109330

PCT/US2012/062730

What is claimed is:

1.

A computer-implemented software application, the software accessible from
a non-transitory media and providing instructions for a computer processor
to analyze and modify a proposed password chosen by a user for a secured

user account, the instructions comprising:

generating a probabilistic context-free grammar from an array of

control passwords aggregated from real-user passwords;

establishing a threshold complexity value based on effort required to

crack said plurality of control passwords;
receiving a first proposed password as inputted from said user;

deriving a complexity value of said first proposed password based on

said context-free grammar;

comparing said complexity value of said first proposed password and
said threshold complexity value, said first proposed password accepted as
sufficiently complex as a result of said first proposed password meeting
said threshold complexity value, said first proposed password rejected as
not sufficiently complex as a result of said first proposed password failing to

meet said threshold complexity value;

generating a second proposed password by limited modifications of
said first proposed password as a result of said first proposed password
being rejected as not sufficiently complex, said limited modifications

resulting in said second proposed password;

deriving a modified complexity value of said second proposed

password based on said context-free grammar;

comparing said modified complexity value of said second proposed
password and said threshold complexity value, said second proposed
password accepted as sufficiently complex as a result of said second
proposed password meeting said threshold complexity value, said second
proposed password rejected as not sufficiently complex as a result of said
second proposed password failing to meet said threshold complexity value;

and

suggesting said second proposed password to said user as a result

of said second proposed password accepted as sufficiently complex.

A computer-implemented software application as in claim 1, further

comprising the steps of:

39

WO 2013/109330

PCT/US2012/062730

receiving one or more dictionaries, said step of generating said
probabilistic context-free grammar further including generating said

probabilistic context-free grammar from said one or more dictionaries; and

utilizing said one or more dictionaries to generate a plurality of
password guesses in highest probability order to determine said threshold

complexity value.

A computer-implemented software application as in claim 1, further

comprising:
said limited modifications having an edit distance of one (1).

A computer-implemented software application as in claim 1, further

comprising the step of:

updating said probabilistic context-free grammar with at least one
new password selected from the group consisting of said first proposed
password, said second proposed password, and an additional plurality of

control passwords.

A computer-implemented software application as in claim 4, further

comprising the step of:

increasing an entropy value of said context-free grammar as a result
of said at least one new password having a sufficiently low probability to

increase said entropy value.
A computer-implemented software application as in claim 1, further
comprising:

said step of establishing said threshold complexity value includes
setting a lower bound for a number of password guesses for said first
proposed password until said threshold complexity value is reached,

wherein said password guesses do not need to be generated.

A computer-implemented software application as in claim 1, further

comprising the step of:

parsing said first proposed password into a base structure containing

a plurality of components,

said modification step including modifying said base structure or said

plurality of components with said limited modifications.

A computer-implemented software application as in claim 1, further

comprising:

40

WO 2013/109330

10.

PCT/US2012/062730

said limited modifications selected from the group consisting of an
insertion operation, a deletion operation, a substitution operation, a

transposition operation, and a case operation.

A computer-implemented software application as in claim 8, further

comprising:

said first proposed password having a base structure containing a

plurality of components;

said insertion operation containing rules such that an inserted
component is of a different type than a component selected from the
plurality of components, said component being adjacent to said inserted

component;

said deletion operation containing rules such that a deleted
component has a length greater than one (1) and removal of said deleted
component does not cause two of the same type components selected

from said plurality of components to become adjacently positioned;

said substitution operation containing rules such that a first character
is substituted with a second character, said first character and said second

character being of a same type; and

said transposition operation containing rules such that transposing a
first component and a second component does not does not cause two of
the same type components selected from said plurality of components to

become adjacently positioned.

A computer-implemented method of analyzing and modifying a proposed
password chosen by a user for a secured user account, said method

comprising the steps of:

generating a probabilistic context-free grammar from an array of

control passwords aggregated from real-user passwords;

establishing a threshold complexity value based on effort required to

crack said plurality of control passwords;
receiving a first proposed password as inputted from said user;

deriving a complexity value of said first proposed password based on

said context-free grammar;

comparing said complexity value of said first proposed password and
said threshold complexity value, said first proposed password accepted as
sufficiently complex as a result of said first proposed password meeting

said threshold complexity value, said first proposed password rejected as

41

WO 2013/109330

1.

12.

13.

14.

PCT/US2012/062730

not sufficiently complex as a result of said first proposed password failing to

meet said threshold complexity value;

generating a second proposed password by limited modifications of
said first proposed password as a result of said first proposed password
being rejected as not sufficiently complex, said limited modifications

resulting in said second proposed password;

deriving a modified complexity value of said second proposed

password based on said context-free grammar;

comparing said modified complexity value of said second proposed
password and said threshold complexity value, said second proposed
password accepted as sufficiently complex as a result of said second
proposed password meeting said threshold complexity value, said second
proposed password rejected as not sufficiently complex as a result of said
second proposed password failing to meet said threshold complexity value;

and

suggesting said second proposed password to said user as a result

of said second proposed password accepted as sufficiently complex.

A computer-implemented method as in claim 10, further comprising the

steps of:

receiving one or more dictionaries, said step of generating said
probabilistic context-free grammar further including generating said

probabilistic context-free grammar from said one or more dictionaries; and

utilizing said one or more dictionaries to generate a plurality of
password guesses in highest probability order to determine said threshold

complexity value.
A computer-implemented method as in claim 10, further comprising:
said limited modifications having an edit distance of one (1).

A computer-implemented method as in claim 10, further comprising the step

of:

updating said probabilistic context-free grammar with at least one
new password selected from the group consisting of said first proposed
password, said second proposed password, and an additional plurality of

control passwords.

A computer-implemented method as in claim 13, further comprising the step

of:

42

WO 2013/109330

15.

16.

17.

18.

PCT/US2012/062730

increasing an entropy value of said context-free grammar as a result
of said at least one new password having a sufficiently low probability to

increase said entropy value.
A computer-implemented method as in claim 10, further comprising:

said step of establishing said threshold complexity value includes
setting a lower bound for a number of password guesses for said first
proposed password until said threshold complexity value is reached,

wherein said password guesses do not need to be generated.

A computer-implemented method as in claim 10, further comprising the step

of:

parsing said first proposed password into a base structure containing

a plurality of components,

said modification step including modifying said base structure or said

plurality of components with said limited modifications.
A computer-implemented method as in claim 10, further comprising:

said limited modifications selected from the group consisting of an
insertion operation, a deletion operation, a substitution operation, a

transposition operation, and a case operation.
A computer-implemented method as in claim 17, further comprising:

said first proposed password having a base structure containing a

plurality of components;

said insertion operation containing rules such that an inserted
component is of a different type than a component selected from the
plurality of components, said component being adjacent to said inserted

component;

said deletion operation containing rules such that a deleted
component has a length greater than one (1) and removal of said deleted
component does not cause two of the same type components selected

from said plurality of components to become adjacently positioned;

said substitution operation containing rules such that a first character
is substituted with a second character, said first character and said second

character being of a same type; and

said transposition operation containing rules such that transposing a
first component and a second component does not does not cause two of
the same type components selected from said plurality of components to

become adjacently positioned.

43

WO 2013/109330 PCT/US2012/062730

' Preprocessing Phase ,/ 14 / 16 :
5 e - Producing ;
/"Lm Training on real g . Set the :
S D * Context-free ;
i | user passwords | Threshold l
: Grammar ;

Estimate password
strength

X

f,f« Enter user’s
- password

fg&
//} § {26 L - \;/M
-

30
Modifyingthe | _— -
oviginal (-Mgﬁiw mi:ﬁ};géﬁ Agcapt
password : e
2 -
FiG. I
L. D, S,
1 i p 1 d 1 p N 8 \ p .
1‘2 P> dﬂ Pa S, D.
lﬂ/ 2 P n/2 nee
. dm;g pm/z 82/2 pz/l
], Pi
dm Pm S, D,
FiG. 2

WO 2013/109330 PCT/US2012/062730

L.D,S,
aliveing!

]

ORI

5371

> ° &

aliceray!

alicesag!- |
R 1N I I G

ris el

aeeeseeeree e e rees,,
Mtrirsrireeiriririeirarsl

s s520555555555555 558

SN ‘\'f\,\
\'\,\\
3 3 “\\-:~
& > * & . R
LsDyS LsDeGS, 1D, s,
talice-23! 11 alicet-g! aliceiz-t |
Lo loe,. \ (0,48,] § L loL24,.d

FiG. 3

i
i

Password Checker |

Enter your password: [Idd 5!

Your password is ant Strong!

Resulis; Your chosen password: » .
Probability: | 1303R73631281938-12 F‘?G" ‘{f
Tine to oock: < Hlwh{dy ety 25(my2s)

lifend 53!
Probability: 1.798886I9GER49285- 16
Time to orack: > 10 davs

2{7

PCT/US2012/062730

WO 2013/109330

o+ N

iz

24

#50
P

A

P

o

0+ N

[PSISSISSISeIISIEIE
paatd

1% 1

0+ N

7
Y
5

L]

x

0+ N

rrrrrrsrs s,

7]

fOIPE
gL N

0+ N

i
e

24

i,

i

G
N

P

«

=4Nionils as5eyg

317

WO 2013/109330 PCT/US2012/062730

=
S
>3
o
ey
=
e

B R AN

Sumber of terations

FIG. 64

E vy sadue-

D FIHY 270G

Bisnbey of Horations

1G. 68

4i7

WO 2013/109330 PCT/US2012/062730

T Y
; G eI Sl

T Ay R

LR I

Slgawithey

Algarithem

FMunsbey of Heratian

FiG. 78

&7

WO 2013/109330 PCT/US2012/062730

by wrirogy

%

AN SN
Number of Boration

FiG. 8

— Rm:\\s\(}s‘s \}%Q&:\gk
i e
SOBR i N TR
:\%{} S PR RSN SRS

e

Porsentage of pusswords cracked

]
B
(%]
o)
o]

PCT/US2012/062730

s

FiG. 10

AMP {PPC)

Betors AMP PP
After ANMPUTR]

- Sfter

curs)

[

ferve {

gt

x

Crack

Threshold &

i

-~
&

FIG

WO 2013/109330

rn,

G

5% 5o : 7 ¥ Lo
4 i G 2 s

\?\ .\ ..»\- \.\n

\.\ \t\\ \,UK &w, k \.\

it Yrie? Grat Zrre

L R S B B S S~

PHABGED S PO 8 BHCPIE g
papress spaomssed jo adnsuanieg

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings

