«» UK Patent Application .,GB ,2501343 . A

(43)Date of A Publication 23.10.2013
(21) Application No: 1220769.2 (51) INT CL:
GO6F 21/52 (2013.01) GO6F 21/64 (2013.01)
(22) Date of Filing: 19.11.2012 GO6F 21/74 (2013.01)

(30) Priority Data:
(31) 13368419 (32) 08.02.2012 (33) Us
(31) 1217531 (32) 01.10.2012 (33) GB

(71) Applicant(s):
ARM Limited
(Incorporated in the United Kingdom)
110 Fulbourn Road, Cherry Hinton, CAMBRIDGE,
CB1 9NJ, United Kingdom

(72) Inventor(s):
Thomas Christopher Grocutt
Richard Roy Grisenthwaite

(74) Agent and/or Address for Service:
D Young & Co LLP
120 Holborn, LONDON, EC1N 2DY, United Kingdom

(56) Documents Cited:
GB 2482701 A GB 2448149 A
WO 2007/089373 A2 US 20100031360 A1

(58) Field of Search:
INT CL GO6F
Other: WPI, EPODOC, TXTE, INSPEC, XPESP,
XPESP2, XPIEE, XPIPCOM, XPI3E, XPMISC, XPLNCS,
XPRD

(54) Title of the Invention: Data processing apparatus and method using secure domain and less secure domain
Abstract Title: DATA PROCESSING APPARATUS AND METHOD USING SECURE DOMAIN AND LESS

SECURE DOMAIN

(57) A data processing apparatus has processing circuitry
which has a secure domain and a less secure domain.
When operating in the secure domain the processing
circuitry has access to data that is not accessible in the
less secure domain. In response to a control flow altering
instruction, processing switches to a program instruction
at a target address. Domain selection is performed to
determine a selected domain in which the processing
circuitry is to operate for the program instruction at the
target address. Domain checking can be performed to
check which domains are allowed to be the selected
domain for the target program. A domain check error is
triggered if the selected domain in the domain selection is
not an allowed selected domain. Thus, if less secure
code causes the control flow altering instruction to
behave in an unexpected way, an error is triggered,
guarding against unauthorised access to secure data.
The control flow altering instruction may be a branch
instruction or a load instruction. If the control flow altering
instruction is executed while operating in the less secure
domain, domain checking is performed and a domain
error may be triggered if the selected domain is not an
allowed domain.

T |

process other kind N |control flow altering Pr200
of instruction instruction ?
H
202 A

domain selection for
determining selected
domain for r204
program instruction
at target address

220
[y
is target instruction N
from sgecure region ? currently secure ? 200
N Y Y
Py - perform domain
tgrénesttraléc(}g;:; checking to determine | ~208
: PN allowed selected
guard snstru::tlon ? domain(s)
Nj 222 Y
selectgd domain in 21\3
trigger guard domain :e!ecuon N trigger domain
check error an allowed selected domain check error
252 4 in domain checking ?
H
Yo 210
process instruction at 214 FIG. 5

target address in
selected domain

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

vV E¥EL0SC 99

1711

I Old

N,m om om Qm Aowawi
Yoels| 18pon Yoelsi |8pon
9JNoBs 88| HOm ailhdss HQV
NdiN
6o’
r
Yoiey
Lol
< apogsp
-zl
21nosX9
- Ly x
Z

€l 10 €0

0y
8] :
Zhy
dSN dSS 7
A1 77
od oz

030113

2/11

memory address space

327 stack
60~ less secure
program code
30~ stack
60 secure

program code

FIG. 2

fJ
}RESERVED

S

/

70

50

r_J
less secure
(public)

40

fJ
secure
(private)

(e.g. 0XF0O000000
to OXFFFFFFFF)

030113

less secure

bob(
(

joe (password)
100 Ve BL joe

LR = PC+4
PC = joe

iess otLuUle

bob()
(

MOV LR, fred
// MOV PC joe
108/

)

]

3/11

secure

joe (string password)

(
GUARD -~ 102

if (password = = STORED PASSWORD)

fred ()
) 104
BXLR -

)
fred ()

(

secure processing

)

FIG. 3A

secure

joe (string password)

GUARD
if (password = = STORED PASSWORD)
fred ()
/ 104
BX LR ! less secure code can
) trigger branch to Fred

fred () «——— without password !

secure processing

)

FIG. 3B

030113

4/11

target address

BX/BLX T

I
'

T = bit [0] of target address

150~

target domain value

1 - expected to branch
to secure domain

0 - expected to branch
to less secure domain

legacy target instruction set values:

1 = 1st instruction set
0 = 2nd instruction set

FIG. 4A

Rtarget

155 gysmLx

target address

¥

T
identify register
storing target l
address

bit [0]

.
target domain

FIG. 4B value

030113

511

of instruction

process other kind |

A

oY
202

220
—

N [control flow altering
instruction ?

200

|

A\
T

y

determinin

program i
at target

domain selection for

g selected

domain for

nstruction
address

A

is target instruction

from secure region ? |

]

currently

N Y

A

secure ?

206

Y

L

/

o ok o Al e

guard instruction

is instruction at
target address a

perform

_\
N| 222

¥

trigger guard
check error

L\
224

domain

checking to determine | ~208
n allowed selected
' domain(s)

Y

¥

selected domain in
domain selection

an allowed selected domain
in domain checking ?

204

212
—

\

A

L\
Y 210

¥

process instruction at
target address in
selected domain

f214

FIG. 5

v

trigger domain
check error

030113

6/11

1st determining
(instruction not
guard instruction)

A

which region is
the address of next | 230
instruction in ?

less secure | , secure
selected selected
232~] domain domain | 234
less secure secure

2nd determining

T=0 T=2 T=1
LW
250
v v
selected selected
252~ domain domain |-254
less secure secure

FIG. 7

030113

less secure

bob()

MOV LR fred
MOV PC, joe

less secure

john()

RO = function pointer

bill ()

)

7711

secure

joe (string password)

(
GUARD [set T=0]

102 in LR

if (password = = STORED PASSWORD)

(

fred ()

) link to fred in secure,

BX LR — but T indicates non-
) secure — error!
fred ()

(
)

104

FIG. 8

secure
bill ()

(
- GUARD fohn () sets
\SETT=0in RO function pointer to

secure location,
300/ BLXRO will detect error
)

FIG. 9

030113

8/11

\
N MBLorBx? P =0
y Y
N | insecure domain | Y
andT=07? 370
= ¥ =
¥ 360 store dummy return
ddress to LR
store actual return | 365 2
address to LR {
save actual return
390 address to secure stack
- N
. branch fo 380
target address
domain selection and checking as in Fig 5
FIG. 10
7
N} controlflow |400
altering instruction?
v Y
N | targetaddress= | Y
dummy address ? 430
S Y -
¥ 410 switch to secure domain
branchto |, 420 '
target address 440~ |fetch actual return address
from secure stack

domain selection and
checking as in Fig 5

y
branch to actual

FIG. 11

return address

H
450

030113

9/

11

1

i

control flo

N instruction in secure that
needs to pass function
argument via the stack ?

w altering

Y

y

place argument
on secure stack

v

place argument on
less secure stack

FIG. 12

030113

less secure

mary()
(

BLX reg

less secure

mary()
(

MOV RO0,alice
BLX reg

coming from less
secure, so need —
GUARD to avoid error

10/11

reg ()

3027 - BX RO —
300-)

alice ()

(

et o)

BXLR

FIG. 13

reg ()

3027 ,-BX RO —
300-)

FIG. 14

secure

GUARD [set T=0 in LR]
Va SETT=0inR0

branch to secure
but T =0l

error

secure

GUARD [set T=0 in LR]
/SETT=0inRO

T=0 so switch to
less secure

guard, so both secure and
less secure are allowed

switch to secure in
response to guard

030113

less secure

mary()
(

MOV RO, alice
BLX reg

11/11

secure

reg ()
(

GUARD
SETT=0inR0O set both less secure and

302/ BX R0-. _—— secure as allowed selected
300/) — domains, switch to less secure

branch to alice ()

alice ()} =—

coming from less secure, so need

GUARD in alice () to avoid error,
in secure, which matches one

) of the allowed target domains

GUARD ~—
306”7

FIG. 15

10

15

20

25

30

DATA PROCESSING APPARATUS AND METHOD USING SECURE DOMAIN
AND LESS SECURE DOMAIN

Field of the invention

The present invention relates to the field of data processing. More particularly,
the present invention relates to a data processing apparatus and method using a secure

domain and a less secure domain.

Background of the invention

A data processing apparatus may be able to operate in a secure domain and a less
secure domain. When operating in the secure domain, data can be accessed that is not
accessible when operating in the less secure domain. This provides a way of isolating
potentially sensitive data and code from access by unauthorized persons or processes.

One way of keeping data and code secure is provided by ARM® of Cambridge
UK, with their Trustzone architecture where there are secure and non-secure states and an
exception instruction is used to transition between the states, the exception handler
protecting the security of the secure side. Although this approach provides a high degree
of security, considerable software intervention in the form of the software exception
handler is required to change security states which both reduces the performance of the
system and increases the amount of effort required to develop an external application
program interface API for the secure software as all calls must be proxied through the
exception hander.

For a small system such as microcontrollers, it may be more important to achicve
a compromise between the level of security and the performance of the system, and so

keep the overheads associated with implementing the secure domains reasonably low.

SUMMARY OF THE INVENTION

According to a first aspect, the present invention provides a data processing
apparatus comprising:

processing circuitry for performing data processing operations in response to
program instructions, the processing circuitry having a plurality of domains of operation

including a secure domain and a less secure domain, wherein when operating in the

10

15

20

25

30

secure domain the processing circuitry has access to data that is not accessible when
operating in the less secure domain;

wherein in response to execution of a control flow altering instruction, the
processing circuitry is configured to switch to processing a program instruction at a target
address indicated by the control flow altering instruction, and to perform domain
selection for determining a selected domain in which the processing circuitry is to operate
for the program instruction at the target address; and

at least if the control flow altering instruction is executed while operating in the
secure domain, then the processing circuitry is configured to:
(1) perform domain checking for determining which of the plurality of domains are
allowed to be the selected domain determined by the domain selection for the program
instruction at the target address, the domain checking using a different technique to the
domain selection; and
(i1) trigger a domain check error if the selected domain determined in the domain

selection is not an allowed selected domain determined in the domain checking.

In the present technique, a control flow altering instruction may be used to switch
processing between the plurality of domains. This means that it is not necessary to use an
exception and a corresponding software exception handler to control changes between
domain, and hence improves performance. However, it is important that a control flow

altering instruction does not circumvent the security safeguards of the system.

Following the control flow altering instruction, the selected domain in which the
program instruction at the target address is to be processed is determined using a domain
selection technique. Hence, the same control flow altering instruction could be used to
switch to processing in different domains depending on the domain selection technique

being used.

The present technique recognises that a security risk could occur if the behaviour
of a control flow altering instruction, which is intended by the programmer to switch to

processing of a program instruction in one domain, is altered by code in the less secure

10

15

20

25

30

domain so that it instead switches to processing of a program instruction in a different
domain. For example, the code in the less secure domain may change the target address
of the control flow altering instruction. As an example, there may be a control flow
altering instruction to be executed in the secure domain which is intended to cause a
switch to an instruction in the less secure domain. However, the target address of the
control flow altering instruction may be set by code in the less secure domain to point to a
program instruction to be processed in the secure domain, so that now the control flow
altering instruction may instead switch to processing in the secure domain. This could
allow a hacker to use code in the less secure domain to trigger an uncontrolled transition
from the secure domain to secure code, since typically a secure-to-secure switch would
not be policed because secure processing is expected to be trusted. This could lead to a

security breach.

To address this problem, the processing circuitry may perform domain checking
at lcast when a control flow altering instruction is executed while in the secure domain.
The domain checking determines which of the plurality of domains are allowed to be the
selected domain determined by domain selection for the program instruction at the target
address. The domain checking does not influence the actual domain in which the system
will operate for the instruction at the target address, because this is determined by domain
selection. However, the domain checking allows the system to verify that the control
flow altering instruction has resulted in the expected domain transition. A domain check
error can be triggered if the domain determined in the domain selection is not an allowed
selected domain determined in the domain checking. In this way, if less secure code
causes the control flow altering instruction to behave in an unexpected way, then an error

can be triggered to guard against unauthorized access to secure data.

The control flow altering instruction may be any instruction which causes a non-
sequential transition in the instructions being processed. Most commonly, the control
flow altering instruction may comprise a branch instruction. However, the control flow

altering instruction may also include other kinds of instructions, for example a load

10

15

20

25

30

instruction which loads a value to the register which stores the program counter

indicating the next instruction to be processed.

It is not essential to perform domain checking for control flow altering
instructions executed while in the less secure domain. This may seem counterintuitive
since one would generally expect that the instructions in the less secure domain should be
subject to more stringent checks. However, often there will be some other mechanism for
regulating transitions from the less secure domain to the secure domain. On the other
hand, it is when in the secure domain that the type of attack described above is most
problematic, since generally when the system is already in the secure domain, code would
be trusted and assumed to be acting correctly, and so this could be exploited by a hacker
using less secure code to change the behaviour of a control flow altering instruction in the
secure domain. Therefore, the domain checking is performed at least for a control flow

altering instruction exccuted while in the secure domain.

Nevertheless, if desired the domain checking could also be performed when a
control flow altering instruction is executed while operating in the less secure domain.
As well as guarding against security breaches, the domain checking can also be used to
detect corrupted instructions or target addresses whose bit values have, owing to a
particle strike or other kind of error, changed state so that the instruction now does not
behave as expected. This can be useful in both the secure domain and the less secure

domain.

In addition to control flow altering instructions, the domain selection could also
be performed for other instructions. For example, in some systems the processing
circuitry could determine for each instruction which domain the instruction should be

processed in.

The domain selection and the domain checking use different techniques to
determine the selected domain and allowed domain(s) so that the domain selection can be

verified by a different form of domain checking. For example, a first determining can be

10

15

20

25

30

used for one of the domain selection and the domain checking and a second determining
used for the other. A technique which in one embodiment is used for the domain

selection may in another embodiment be used for the domain checking, and vice versa.

In one embodiment, there may be a data storec which has a plurality of regions
including a secure region and a less secure region, the secure region being for storing data
which is accessible by the processing circuitry when operating in the secure domain and
is not accessible when in the less secure domain. The less secure region can be accessible

both when in the secure domain and when in the less secure domain.

Hence, the first determining may comprise determining at least one selected
domain in dependence upon at least which of the regions corresponds to the instruction
address of the program instruction at the target address. In general the less secure domain
may be seclected as the sclected domain if the instruction address of the program
instruction corresponds to the less secure region, and the secure domain may be selected
if the instruction address corresponds to the secure region. This technique may be used

for either the domain selection or the domain checking.

Which region corresponds to the instruction address may not be the only criterion
in the first determining. For example, for certain instructions the first determining may
also be dependent on the type of program instruction at the target address. Also, where
first determining is used for the domain checking then multiple domains could be selected

as an allowed selected domain.

The second determining may comprise determining, as the selected domain (or
one of several allowed selected domains in the case of the domain checking) one of the
plurality of domains that is indicated by a target domain value. The target domain value
may be maintained by the processor to indicate in which domain the program instruction
at the target address is expected to be processed. This may be part of the domain

selection or the domain checking.

10

15

20

25

30

Hence, in one example the domain selection may be performed based on the
region of the data store corresponding to the instruction address of the program
instruction at the target address, and the domain checking may be performed based on the
target domain value. In this case, the target domain value provides a check for verifying
whether the control flow altering instruction has switched to a program instruction in the
correct region. In another example, the target domain value may be used to control the
actual domain in which the program instruction at the target address is to be processed,
and the domain checking may then verify that the target address is in the correct region of

the data store.

The target domain value may be represented in different ways. In one example,
the target domain value may be specified in the encoding of a control flow altering
instruction. For example, there may be several versions of the control flow altering
instruction corresponding to different target domain values which indicate different
security domains as the selected domain. When writing a program, the programmer can
select which version of the control flow altering instruction to use so that the control flow
of the altering instruction will cause the appropriate domain to be selected as the selected
domain (in the case of domain sclection) or the allowed domain(s) (in the case of domain

checking).

Alternatively, the target domain value may be specified in part of the target
address used by a control flow altering instruction. This form of the target domain value
can be uscful for indirect control flow altering instructions which identify a register

which stores the target address.

The target domain value may be sct in response to a target domain value setting
instruction. This allows the programmer to control the expected transition of a following
control flow altering instruction by including a target domain value setting instruction to
be executed before the control flow altering instruction. For example, if a function

pointer is set while in the less secure domain, then before using the function pointer in the

10

15

20

25

30

secure domain, the target domain setting instruction can be executed to set the expected

behaviour for the control flow altering instruction.

One example of a target domain value setting instruction is a guard instruction
which is used to protect transitions from the less secure domain to the secure domain. It
is often important to avoid uncontrolled switches to the middle of a secure function,
because this can sometimes circumvent security checks performed carlier in the secure
function. To prevent such switching, the system can require that, at the point at which
processing switches from the less secure domain to the secure domain, a guard instruction
must be present. If, following a control flow altering instruction for which the processing
circuitry was operating in the less secure domain before switching to processing a
program instruction at the target address in a secure region, the program instruction at the
target address is not a guard instruction, then an error can be triggered. Hence, the guard
instruction should be used to mark trusted entry points to secure code. The guard
instruction can be useful for setting the target domain value, since when a target address
is set in the less secure domain for use in the secure domain, there must be an entry to the
secure domain and hence a guard instruction will be executed. By using the guard
instruction to sct the target domain value, it is not necessary to execute a further

instruction for this purpose.

In particular, the guard instruction may be useful for setting the target domain
value for a return address to which a subsequent control flow altering instruction will
switch processing to. The presence of a guard instruction often means that programmer
expects that there is a risk that a function in the secure domain could have been called by
less secure code, and so there could be a subsequent function return control flow altering
instruction which triggers processing to switch to a program instruction at a return
address specified by the less secure domain. To protect against this possibility, the guard
can be used to set the target domain value for the return address to set up the expected

transition for the function return.

10

15

20

25

30

In one example, the target domain value can be set to indicate the less secure
domain if the processing circuitry was operating in the less secure domain before the
target domain value setting instruction was performed. For example, if the target domain
value setting instruction is the guard instruction, then if the system was in the less secure
domain before switching to the guard instruction it will be expected that a subsequent

function return should switch back to the less secure domain.

The data store may have a plurality of stacks including a secure stack and a less
secure stack, with the secure stack being accessible when in the secure domain and not
being accessible when in the less secure domain. The less secure stack can be accessed

from the secure domain and the less secure domain.

When a function is called using a control flow altering instruction, sometimes it
may be desirable to pass function arguments (data values) from the code being executed
before the function call for use by the code executed after the function call. A stack may
be used for passing the function arguments. If the function call causes a transition from
the secure domain to the less secure domain then the arguments would need to be placed
on the less secure stack since the secure stack would not be accessible to the processing
circuitry. On the other hand, if a function call causes a transition from the secure domain
to the secure domain then the arguments should be placed in the secure stack to prevent
less secure code from accessing these data values. Therefore, when executing a function
call in the secure domain, the determination of which stack to use will depend on the
domain of operation following the function call. The target domain value can provide a
quicker indication of which domain the function call is expected to switch to than other
techniques such as based on the target address. Therefore, reusing the target domain
value for determining which stack to use for passing function arguments cnables a

quicker switch to the function and therefore improved processing performance.

Another use for the target domain value is in setting a function return address.
Generally when calling a function a first control flow altering instruction will be

executed, and when returning from the function a second control flow altering instruction

10

15

20

25

30

will be executed. On occurrence of the first control flow altering instruction a return
address is typically stored at a predetermined storage location (e.g. the link register) to
indicate the location to which processing should return in response to the second control
flow altering instruction. One issue which arises when calling a function in the less
secure domain from code in the secure domain is that the return address may be sensitive
and so it may be desirable to prevent the less secure domain gaining access to the return

address.

To address this problem, in response to the first control flow altering instruction
when executed in the secure domain and causing a transition to the less secure domain, a
dummy return address may be stored to the predetermined storage location, the dummy
return address not being a valid instruction address. The actual return address may be
stored to a secure storage location that is not accessible while in the less secure domain
(for example a secure stack or a secure memory region). When the second control flow
altering instruction is executed, the processor detects that the return address is the dummy
return address, which then causes the actual return address to be retrieved from the secure
storage location. The processing can then be switched to the actual return address to

return from the function.

Hence, when calling a function from the secure domain, it is useful to be able to
determine whether the function will be processed in the secure domain or the less secure
domain to determine whether the actual return address or dummy return address should
be stored to the predetermined storage location. This can be done quickly and easily

using the target domain value.

The target domain value can be represented in various ways. It can be useful to
use a redundant data ficld in either the encoding of the control flow altering instruction or
the target address used by the control flow altering instruction. For example, a field
originally intended for a given functionality may not be relevant if that functionality is

not supported by the data processing apparatus and so this field can be reused to indicate

10

15

20

25

30

10

the target domain value. This avoids needing to add an additional bit field for the target

domain value.

For example, some systems can execute instructions from multiple instruction
sets. In such systems, the control flow altering instruction or the target address may
include a target instruction set field indicating whether the instruction at the target
address will be from the first instruction set or the second instruction set. This allows the
processor to determine how to decode the instruction at the target address when executing
a control flow altering instruction. Other systems may only be capable of executing one
of these instruction sets, but may still execute instructions designed for systems
supporting two instruction sets. In this case, the target instruction field of the instruction
or the target address may become redundant. Hence, this field can be reused to indicate

the target domain value.

The target instruction set field may have a first value indicating the first
instruction set and a second value indicating the second instruction set. Where the first
instruction set is the instruction set that is supported by the processing circuitry and the
second instruction is not supported by the processing circuitry, it can be useful to map the
values of the target instruction set ficld to values of the target domain value such that the
first value indicates the secure domain as the sclected domain and the second value
indicates the less secure domain as the selected domain. Since only the first instruction
set is supported, this will mean that existing control flow altering instructions in software
written using instructions of the first instruction set will specify the first value of the
target instruction set field. Since generally most control flow altering instructions
executed in the secure domain are intended to cause transitions to other locations in the
secure domain, it is useful to map this value to a target domain value indicating the secure
domain so that relatively few instructions or target addresses will need to be modified to
indicate a different target domain value. Only the target domain values for control flow
altering instructions in the secure domain which are intended to switch to the less secure
domain would need to be altered (c.g. by adding an earlier target domain value sctting

instruction to indicate the less secure domain as the selected domain). Hence, adopting

10

15

20

25

30

11

this mapping of the target instruction sct ficld to the target domain value enables

backwards compatibility with legacy code.

When this mapping of the target domain value is used, it is useful to omit
performing the domain checking when a control flow altering instruction is performed in
the less secure domain to improve backwards compatibility with legacy code. Most
control flow altering instructions in the less secure domain will cause a transition to
another instruction also in the less secure domain. However, using the above mapping of
the target domain value the legacy instructions of the first instruction set will indicate the
first value in the target instruction set field, which will indicate that the secure domain is
expected to be the selected domain. Hence, if domain checking was also performed in
the less secure domain then the target domain values associated with most control flow
altering instructions to be executed in the less secure domain would need to be modified
to prevent a domain check error. This would reduce the backwards compatibility of the
system with legacy code. Since in any case the domain checking is less important for the
instructions in the less secure domain, because other mechanisms such as the guard
instruction may alrcady be provided for controlling transitions from the less secure
domain to the secure domain, then it can be more efficient to omit the domain checking
when in the less secure domain so that previously written code does not need to be

modified.

Often, the domain checking will determine a single domain as an allowed selected
domain for the program instruction. For example, in secure code there may be a control
flow altering instruction which is supposed to switch back to the less secure domain, and

so only the less secure domain can be sclected as an allowed domain.

However, on other occasions it may be useful to determine a plurality of the
domains as allowed selected domains for the same program instruction. For example,
there may be some control flow altering instructions in the secure domain that may
sometimes be used to switch to the secure domain and sometimes be used to switch to the

less secure domain. In this case, by selecting a plurality of allowed domains then this

10

15

20

25

30

12

instruction can be exccuted without triggering a domain check error regardless of which
domain the instruction switches to. In another example, since the domain check error is
not so critical when in the less secure domain, for a control flow altering instruction in the

less secure domain both domains could be set as allowable domains.

Another instruction for which can be uscful to select multiple allowed domains is
the guard instruction. For example, the same program function may be called from cither
the secure domain or the less secure domain, in which case a guard instruction would
usually be present at the start of the function to indicate an allowed entry point from the
less secure domain. If calling the function from the less secure domain, it may be
desirable to defer switching from the less secure domain until it is determined whether
the guard instruction is present, so that if there is not a guard instruction then there has
been no switch to secure domain. Hence, the guard instruction may be able to operate in
cither domain depending on whether the function is called from the secure domain or the
less secure domain. To prevent a domain check error occurring in this case, then it may
be convenient to set both the secure domain and the less secure domain as allowed
domains for the guard instruction, irrespective of which region of memory the guard

instruction is in or the value of the target domain value.

For at least one control flow altering instruction executed in the secure domain, it
can sometimes be useful to switch from operating in the secure domain to operating in the
less secure domain before switching to processing the program instruction at a target
address. This means that, following the switch, the system will appear to have come
from an instruction in the less secure domain and so a guard instruction will be required
to avoid an error. This is useful for control flow altering instructions which may not be
trusted to switch to a safe entry point in the secure domain, for example a control flow
altering instruction for which the target domain value indicates the less secure domain as
an allowed domain (in this case it is likely that less secure code has set the target address

for the control flow altering instruction).

10

15

20

25

30

13

Viewed from another aspect the present invention provides a data processing
apparatus comprising:

processing means for performing data processing operations in response to
program instructions, the processing means having a plurality of domains of operation
including a secure domain and a less secure domain, wherein when operating in the
secure domain the processing means has access to data that is not accessible when
operating in the less secure domain;

wherein in response to cxecution of a control flow altering instruction, the
processing means is configured to switch to processing a program instruction at a target
address indicated by the control flow altering instruction, and to perform domain
selection for determining a selected domain in which the processing means is to operate
for the program instruction at the target address; and

at least if the control flow altering instruction is executed while operating in the
secure domain, then the processing means is configured to:
(1) perform domain checking for determining which of the plurality of domains are
allowed to be the selected domain determined by the domain selection for the program
instruction at the target address, the domain checking using a different technique to the
domain selection; and
(i1) trigger a domain check error if the sclected domain determined in the domain

selection is not an allowed selected domain determined in the domain checking.

Viewed from a further aspect, the present invention provides a data processing
method for an apparatus comprising processing circuitry for performing data processing
operations in response to program instructions, the processing circuitry having a plurality
of domains of operation including a secure domain and a less secure domain, wherein
when operating in the secure domain the processing circuitry has access to data that is not
accessible when operating in the less secure domain; the method comprising:

in response to execution of a control flow altering instruction, switching to
processing a program instruction at a target address indicated by the control flow altering

instruction;

10

15

20

25

30

14

performing domain seclection for determining a sclected domain in which the
processing circuitry is to operate for the program instruction at the target address; and

at least if the control flow altering instruction is executed while operating in the
secure domain, then:
(1) performing domain checking for determining which of the plurality of domains
are allowed to be the selected domain determined by the domain selection for the
program instruction at the target address, the domain checking using a different technique
to the domain selection; and
(i1) triggering a domain check error if the selected domain determined in the domain

selection is not an allowed selected domain determined in the domain checking.

The above, and other objects, features and advantages of this invention will be
apparent from the following detailed description of illustrative embodiments, which is to

be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 schematically illustrates data processing apparatus;

Figure 2 illustrates a memory address space having a less secure region and a
secure region;

Figure 3A illustrates an example of program code in which an instruction in a less
secure domain sets the target address for a branch instruction in the secure domain;

Figure 3B illustrates a security issue which can occur if a hacker modifies the less
secure code of Figure 3A;

Figure 4A illustrates an example of indicating a target domain value using part of
the instruction encoding of a control flow altering instruction;

Figure 4B shows an example in which the target domain value is represented by
part of the target address of a control flow altering instruction;

Figure 5 illustrates a data processing method comprising domain selection and
domain checking;

Figure 6 illustrates an example of first determining which could be used for cither

the domain selection or the domain checking;

10

15

20

25

30

15

Figure 7 illustrates an example of second determining which can be used for
cither the domain selection or domain checking;

Figure 8 shows an example of how the security issue illustrated in Figure 3B can
be prevented by performing domain checking to verify the domain selection;

Figure 9 shows an example of using a domain checking to protect against less
secure code attempting to use a function pointer to access secure code;

Figures 10 and 11 respectively show examples of handling a function call and
function return;

Figure 12 shows an example of selecting which of a secure stack and a less secure
stack to use for passing function arguments;

Figure 13 shows an example of a situation in which it might be legitimate for less
secure code to control secure code to switch to processing further secure code;

Figure 14 shows a first example of how the situation in Figure 13 can be achieved
securely and without triggering an error; and

Figure 15 shows a second example of how the situation in Figure 13 can be

achieved securely and without triggering an error.

DETAILED DECRIPTION OF EMBODIMENTS

Figure 1 schematically illustrates a data processing apparatus 2 comprising
processing circuitry 4, a data store (memory) 6 and registers 8. The data store may
include at least one cache as well as a main memory. The processing circuitry 4
comprises a processing pipeline which includes a fetch stage 10 for fetching instructions
from memory 6, decode stage 12 for decoding the fetched instructions, and an execute
stage 14 for executing the decoding instructions. It will be appreciated that the pipeline

may include other types of stages, for example a register renaming stage or issue stage.

The registers 8 include several general purpose registers Ry to Ry, for storing data
on behalf of the processing circuitry 4. While Figure 1 shows 13 general purpose
registers Ry to Ry, it would be appreciated that other numbers of registers may be
provided, and optionally floating point registers for storing floating point values could

also be provided. The registers 8 also include some special purpose registers including a

10

15

20

25

30

16

program counter (PC) register 20, a link register (LR) 22 and stack point registers 24, 26.
The program counter register 20 stores a program counter indicating the instruction
address of the next program instruction to be executed by the processing circuitry 4.
Generally, following execution of an instruction the program counter will be updated to
indicate the next instruction from memory. However in response to a control flow
altering instruction the program counter can be set to a value which does not follow
sequentially from the previous value. The link register 22 may be set to store a return
value used when returning from a function or an exception to determine which program
instruction should be processed following completion of the function or exception. The
stack point registers 24, 26 store stack pointers indicating the location of a stack 30, 32
within the memory 6. For example, the stack pointer can indicate the location of the last

item placed on the stack 30, 32.

The memory 6 includes a secure region 40 and a less secure region 50. As shown
in Figure 2, the memory address space of the address memory 6 may be divided into a
secure region and a less secure region with some ranges of memory addresses
corresponding to the secure region 40 of memory and other ranges of memory addresses
corresponding to the less secure region 50. A memory protection unit (MPU) 65 can
control the partitioning of the address space into different regions. Although Figure 2
shows one secure region and one less secure region, it is also possible for the memory
address space to include two or more discrete secure regions or two or more discrete less
secure regions. The memory address space also includes a reserved address range 70
(c.g. address values of 0xF0000000 or higher) in which the address values do not
correspond to any valid instruction address. These addresses can be used for special
purposes such as in handling exception returns and function returns. Each of the secure
region 40 and the less secure region 50 may include program code 60 and a
corresponding stack 30, 32. Separate secure and non-secure stack pointer registers 24, 26
are used to maintain the stack pointers for a secure stack 30 in the secure region 40 and a

less secure stack 32 in the less secure region 50.

10

15

20

25

30

17

The processing circuitry 4 can operate in a secure domain and a less secure
domain. When the processing circuitry is in the secure domain, the processing circuitry 4
can access data and code in the secure region 40 of the memory 6 and can also access
data and code in the less secure region 50. However, when the processing circuitry 4 is in
the less secure domain then only the less secure region 50 can be accessed and the secure
region 40 is inaccessible. This prevents untrusted code in the less secure domain
accessing secure data. Although Figures 1 and 2 illustrate an example where there is one
secure domain, one less secure domain, and corresponding secure and less secure regions
40, 50 of memory 6, it is also possible to provide more than two domains and regions.
For example, there may be several secure domains, ecach with a security level, or several
less secure domains. In some embodiments, each domain may have a different security
level. In other embodiments, there could be multiple domains with the same security

level.

In general, the system of Figure 1 operates such that when the processing circuitry
4 is executing code from the secure region 40 of memory 6 then the processing circuitry 4
is in the secure domain and when the processing circuitry is executing code from the less
secure region 50 for memory 6 then the processing circuitry 4 operates in a less secure
domain. However, Figures 3A and 3B show an example of a security problem which

could arise if this is the only domain determining technique that is used.

In Figure 3A, the program code 60 includes a function bob() in a less secure
domain and two functions joe() and fred() in the secure domain. The function joe() is
called by bob() and checks whether a password provided by bob() is valid. If the
password is valid, joe() calls the function fred() for performing secure processing.
Clearly, it is desirable that the function fred() can only be executed if the password check
in the function joe() is passed. Figure 3A shows the case where the code operates
correctly. Function bob() includes a branch instruction 100 which calls the function joe().
As shown in Figure 3A, the branch instruction 100 causes a return address (PC+4) to be
placed in the link register 22 and the address of function joe() to be placed in the program

counter register 20. The return address represents the address of the instruction to which

10

15

20

25

30

18

processing should switch once the function joe() has finished. The updating of the
program counter register 20 causes processing to jump to the start address of the function
joe(). Since the code for function joe() is stored in the secure region 40, joe() will be

processed in the secure domain.

When changing from the less secure domain to the secure domain in response to a
branch instruction or other control flow altering instruction, a guard instruction 102 must
be present at the target address of the branch instruction 100, otherwise a guard check
error will be triggered (this mechanism guards against branches in the less secure domain
which branch to the middle of functions in the secure region of memory). In this case, a
guard instruction 102 is present, so processing can continue in the secure domain. The
function joe() then checks whether the password provided by bob() matches the stored
password, and if so calls the function fred(). When fred() is complete then another
branch instruction 104 returns processing to the less secure domain by causing a branch

to the program instruction whose address is stored in the link register 22.

Figure 3B shows an example of a security leak where a hacker could gain access
to the secure function fred() without the correct password. As shown in Figure 3A, on
calling joe(), bob() is supposed to write the function return address PC+4 to the link
register 22. However, instead a hacker could write bob() so that a MOV instruction 106
places the address of the function fred() in the link register 22. Hence, even if the
password check in joe() fails because the correct password has not been supplied, the
function return branch 104 in joe() will branch to the address stored in the link register
22, i.c. the address of function fred(). Therefore, without the correct password the less

secure domain has been able to cause the secure domain to perform the function fred().

Moreover, as the branch instruction 104 which caused the processing to switch to
function fred() was executed in the secure domain, the system will not require a guard
instruction to be present in fred(). Hence, the hacker could use untrusted less secure code
to trigger a branch to any arbitrary secure location in the memory 6, which could cause

unauthorized access to secure data or secure code.

10

15

20

25

30

19

To prevent this type of attack, a target domain value is provided which provides a
second technique for determining which domain the processor is expected to be operating
in following a control flow altering instruction such as a branch instruction. Together
with the first determining technique based on the target address of the control flow
altering instruction, there are two different ways of determining the selected region. At
least for control flow altering instructions executed in the secure domain, one technique
can be used for selecting which domain the processor should actually operate in after the
branch, and the other technique can be used to check that the selected domain is an
allowed domain. An error can be triggered if the selected domain in the domain selection
does not match an allowed domain, and hence the type of attack shown in Figure 3B can

be prevented.

Figure 4A shows a first example of maintaining a target domain value. The
control flow altering instruction 150, such as a branch instruction, can include a bit ficld
T for representing the target domain value. If the target domain value T has one value
(c.g. T=1) then it indicates that this instruction is expected to branch to the secure
domain, and if it has another value (¢.g. T=0) then the instruction is expected to branch to
the less secure domain. Figure 4B shows another example in which the target domain
value T can be represented by a bit of the target address. This can be useful when a
branch instruction or other control flow altering instruction 155 specifies a register which
stores the target address. In the examples of Figures 4A and 4B, the target domain value
is represented by a redundant bit field which was previously used to represent whether
the instruction at the target address is from a first instruction set or a second instruction
set. The processing circuitry 4 only supports the first instruction set and so this bit field
has become redundant and so is reused for the target domain value. The mapping of the
values of the target instruction set field to the target domain value that is shown in Figure

4A improves backwards compatibility with legacy code.

Figure 5 shows an example of processing a control flow altering instruction. At

step 200, the processing circuitry 4 determines whether the next instruction is a control

10

15

20

25

30

20

flow altering instruction. A control flow altering instruction may be any instruction
which causes a non-sequential change to the program counter register 20, such as a
branch instruction or another instruction which loads the new value to the program
counter register 20. If the instruction is not a control flow altering instruction then at step
202 the processing circuitry 4 processes the other kind of instruction. Processing then

moves onto the next instruction.

If the current instruction is a control flow altering instruction then the method
moves onto step 204 where the processing circuitry 4 determines which of the domains is
the selected domain in which the processor 4 should operate for the program instruction
at the target address. The timing at which this is performed may vary — e.g. it may be
performed either in response to execution of the control flow altering instruction or in
response to execution of the program instruction at the target address following the
change of control flow. As will be discussed in Figures 6 and 7, the domain selection can

be performed using a first determining technique or a second determining technique.

At step 206, the processing circuitry determines whether, the control flow altering
instruction was executed in a secure domain. If so, then at step 208 the processing
circuitry performs domain checking to determine which of the domains is an allowed
selected domain which the domain selection is allowed to select for the program
instruction at the target address. At step 210, the processing circuitry determines whether
the domain which was selected at step 204 is an allowed selected domain selected at step
208. If not, then at step 212 a domain check error is triggered. On the other hand, if the
selected domain matches an allowed selected domain, then at step 214 the instruction that
the target address is processed in the selected domain. The method then returns to the

step 200 for the next instruction.

Meanwhile, if at step 206 it was determined that the system was not in the secure
state when exccuting the control flow altering instruction, then at step 220 it is
determined whether the target instruction is from the secure region. If not, then the

method proceeds to step 214 where the instruction at the target address is processed in the

10

15

20

25

30

21

less secure domain. In this case, both the control flow altering instruction and the target
instruction at the target address are in the less secure region and so the change is

acceptable since there is no secure code being processed.

However, if at step 220 it is determined that the instruction at the target address is
from the secure region, then at step 222 it is determined whether that instruction is a
guard instruction. If not, then a guard check error is triggered at step 224 and the method
ends. Hence, when changing from the non-secure domain to the secure domain, the first
instruction after the switch must be a guard instruction. This prevents non-secure code
being able to branch to any arbitrary point within secure code, which could cause a
security leak. On the other hand, if at step 222 the instruction is a guard instruction then
the method continues to step 214 where the instruction is processed and then the method

returns to step 200 for the next instruction.

Figure 5 shows an example in which domain checking is not performed if the
control flow altering is executed in the less secure domain. However, if desired the

domain checking could also be performed in the less secure domain.

Figure 5 shows two techniques for determining the sclected domain. The domain
selection performed at step 204 determines the actual domain in which the instruction is
to be processed. The domain checking is performed at step 208 to check that this domain
is an allowed domain. Figure 6 and 7 show two determining techniques which could be

used.

Figure 6 illustrates a first domain determining technique. At step 230 the
processing circuitry 4 determines which region of the memory 6 includes the address of
the next instruction to be processed. For example, the processing circuitry 4 can send the
address to the memory protection unit 65 which can return an indication of which
memory region corresponds to the address. If the instruction address is in the less secure
region 50 then at step 232 the less secure domain is selected as the selected domain, while

if the instruction address is in the secure region 40 then at step 234 the secure domain is

10

15

20

25

30

22

selected as the selected domain. This technique will generally be performed for most
instructions, although there may be some exceptions. There could be some instructions
for which a different technique or other parameters may be used to determine the selected
domain. For example, as will be described later a guard instruction 102 may require a

different technique.

Figure 7 shows a second determining technique based on the target domain value
shown in Figures 4A or 4B. At step 250 the value of the target domain value T is
determined. If the target domain value has a value of 0, then at step 252 the less secure
domain is selected as the selected domain, while if the target domain value has a target of
1 then at step 254 the secure domain is sclected as the sclected domain. It will be
appreciated that a different mapping of domains to the values of the target domain value
T can be used, although the mapping shown in Figures 4A and 7 is useful for backwards
compatibility with legacy code.

The first determining and second determining shown in Figures 6 and 7 can be
used for either the domain selection or the domain checking. In one example, the first
determining shown in Figure 6 can be used for the domain selection for sclecting the
actual domain in which the processor is to operate, and the second determining shown in
Figure 7 based on the target domain value can be used as the check to find what the
allowed selected domain is. On the other hand, the target domain value (second
determining) could be used to trigger the actual domain selection, while the address of the
next instruction (first determining) can be used as a check to see whether the target
address matched the domain indicated in the target domain value. Either way, code in the
secure domain can be used to set the target domain value to indicate the domain to which

the control flow altering instruction is expected to branch.

Figures 8 and 9 show examples in which unauthorized access to secure code can
be prevented using the domain checking. Figure 8 shows the same situation as in Figure
3B. Again, a hacker has written function bob() to place the address of function fred() in

the link register 22, to try to cause function return branch instruction 104 in the secure

10

15

20

25

30

23

domain 104 to switch to the secure function fred(). However, in response to the guard
instruction 102, the processing circuitry 4 sets the target domain value T for the address
in the link register 22 to the value 0 indicating that the function return branch 104 should
branch to an instruction in the less secure region of memory. When the function return
branch instruction 104 is executed, processing actually switches to the function fred() in
the secure region. Hence, there will be a mismatch between the first determining, which
will determine based on the address of the first instruction of function fred() that the
selected domain should be the secure domain, and the second determining, which will
determine based on the target domain value that the selected domain should be the less
secure domain. Regardless of which of the first and second determining represents the
domain selection and which represents the domain checking, this mismatch will cause an
error to be triggered, which will prevent further processing of secure function fred().
Hence, this prevents the hacker using less secure code to trigger a branch from secure

code to another secure location.

Figure 9 shows another example where performing domain checking can be
useful. In this case, the security risk comes from a function john() in the less secure
domain storing a function pointer in a register RO, which a function bill() in the secure
domain then uses to call a function. The branch instruction 300 which calls the function
from bill() branches to the address indicated in register R0O. If the function pointer has
been set to a secure location, the less secure code can trigger the secure code to switch to
an arbitrary secure location even if it is not a valid secure entry point marked by a guard

instruction. Therefore, this could lead to a security breach.

However, by including an carlier target domain setting instruction 302 which sets
the target domain value T to O to indicate that the function pointer should point to an
address in the less secure domain, the programmer writing the secure function bill() can
guard against this kind of attack. On branching to the function pointer location in
response to branch instruction 300, if the hacker has set the function pointer to a secure
value then the domain checking will determine a mismatch between the secure domain

determined because the instruction is in the secure region, and the less secure domain

10

15

20

25

30

24

indicated by the target domain value. Therefore, an error can be triggered and the

security breach can be prevented.

Although Figures 8 and 9 show cases where an error is triggered, in other
embodiments this error could be avoided if there is a guard instruction at the function
pointer location indicating that this is an authorized change of control flow (see Figures

14 and 15 below).

As shown in Figures 8 and 9, a target domain value setting instruction preceding
the branch instruction is used to set the target domain value to the desired value. The
target domain value setting instruction could be a guard instruction as shown in Figure 8§,
or another kind of target domain setting instruction shown in Figure 9. Generally, the
programmer of secure code should include a target domain value setting instruction in the
program code before a control flow altering instruction in the secure domain to make sure

that the control flow altering instruction behaves correctly.

The target domain value T may be useful for other purposes as well as the domain
checking and domain selection. One example shown in Figures 10 and 11. This example
relates to function calls and function returns. The functions bob(), joe() etc. described
above would typically be called using a first control flow altering instruction which
places a function return address in the link register 22 and branches to an address
corresponding to the first instruction of the function to be called, and then a second
control flow altering instruction would return processing to the function return address.
However, if a function is called from the secure domain and is to be executed in the less
secure domain, then the return address may need to be hidden from the less secure code.
Hence, a dummy return address can be stored in the link register. For example, the
dummy return address could be one of the reserved range 70 of addresses shown in
Figure 2. The actual return address can be saved to the secure stack 30 for access in the

secure domain when returning from the function call.

10

15

20

25

30

25

To make it easier to determine whether the dummy address or the actual return
address should be saved to the link register 22, the target domain value T can be used.
This is shown in Figures 10 and 11. Figure 10 shows the processing when executing the
first control flow altering instruction triggering the function call. At step 350, it is
determined whether or not the next instruction is a branch instruction BL or BLX of the
type that will place a return address in the link register. If so, at step 360 it is determined
whether the processing is currently in the secure domain and the target domain value T
for the branch indicates that the branch is expected to switch to the less secure domain. If
this is not the case, then the actual return address is stored in the link register 22 at step
365. However, if at step 360 the processing is in the secure domain and the target domain
value T indicates that the processing is expected to switch to the less secure domain
(T=0), then at step 370 the dummy return address is stored to the link register 22. At step
380 the actual return address is saved to the secure stack. Regardless of which address is
saved to the link register the method then proceeds to step 390 where the processing
branches to the target address and the function is then processed. Domain selection and
checking for the instruction at the target address would then proceed as shown in Figure
5. At step 360 of Figure 10 the target domain value enables a quicker determination of
whether the dummy return address or the actual return address should be stored the link

register than if this decision was based on the target address.

Eventually, another control flow altering instruction will be encountered (step 400
of Figure 11). At step 410, it is checked whether the target address is the dummy address
at step 410. If not, then the processing branches to the target address of the control flow
altering instruction at step 420 as this is cither a normal control flow altering instruction
which is not a function return, or a function return for which the target address is the
actual return address stored in the link register. On the other hand, if at step 410 it is
determined that the target address is the dummy address, then at step 430 processing
switches to the secure domain. At step 440 the actual return address is fetched from the
secure stack in the secure regions 40 of memory. Then, at step 450 the processing
branches to the actual return address and then domain selection and checking continues as

normal.

10

15

20

25

30

26

Figure 12 shows another example where the target domain value can be useful.
When calling a function, it is sometimes necessary for the caller function to pass a
function argument to the callee function via the stack. If the function call is made from
the secure domain, whether the function argument should be stored on the secure stack 30
or the less secure stack 32 will depend on whether the callee function is to be executed in
the secure domain or the less secure domain. As shown in Figure 12 the determination of
which stack to use for passing the function arguments can be made using the target
domain value T. Using the target domain value T enables a quicker determination of the
target domain than checking with the memory protection unit 65 which region
corresponds to the target address representing the location of the callee function. The
determination of Figure 12 may be performed either in hardware by the processing

circuitry or in software by the code run by the processing circuitry.

The examples shown so far have explained the domain checking in the context of
a single domain being the allowed domain for a particular control flow altering
instruction. However, in some cases it may be desirable to make several domains the
allowed domain. Figure 13 illustrates an example of this. Figure 13 corresponds to the
situation shown in Figures 9, but in this case function reg() includes a branch instruction
300 which should sometimes return to the less secure region and should other times
switch to a trusted function alice() in the secure region, depending on the value placed in
the register RO by a less secure function mary(). With the technique described above
where the target domain value setting instruction 302 sets the target domain value of the
function pointer in register R0 to indicate the less secure domain as the expected target
domain, an error would be triggered when mary() sets the register RO to a secure location.
In this case, on exccuting the branch instruction 300 the target domain value would
indicate the less secure domain as the sclected domain, while on branching to function
alice() the MPU 65 would determine the secure domain as the selected domain. If this
particular branch is legitimate, it is desirable to avoid triggering an error in this case, but

to still protect against unauthorized switches of this type.

10

15

20

25

30

27

Figures 14 and 15 show ways in which this could be addressed. For some
program instructions, the system can determine multiple domains as the allowed domain,
so that regardless of the behaviour following the branch instruction 300 the domain
switching is allowed. However, to protect against unauthorized switches, the system can
require that the first instruction following the branch instruction 300 is a guard

instruction.

In the example of Figure 14, the domain sclection is based on the target domain
value and domain checking based on the region determined by the MPU 65 for an
address. For guard instructions, the MPU 65 determines both the secure domain and less
secure domains as allowed domains. Hence, following branch 300, processing will
switch to the less secure domain because the target domain value T was set to 0.
However, for guard instruction 306 in alice(), the domain checking based on the first
determining seclects both the secure and less secure domains as an allowed domain.
Hence, the actual domain is the less secure domain and this matches one of the allowed
domains and so there is no error. Similarly, for branches to alice() controlled by secure
code, the target domain value would be set to 1 so that following the branch the system
executes in the secure domain. Hence, alice() can be accessed from both secure code and
less secure code, and branch 300 can correctly switch to both secure code and less secure
code. If branch 300 resulted in a switch to a program instruction in the secure region that
is not a guard instruction, an error would be triggered. Hence, unauthorized switches to

arbitrary secure locations can still be avoided.

In another example shown in Figure 15, the domain checking is based on the
target domain value and the domain selection is based on the memory region to which the
instruction address corresponds. In this case, in response to the branch instruction 300
both the less secure and secure domains are selected as allowed selected domains for the
instruction at the target address (irrespective of the value of the target domain value). On
branching to the guard instruction 306 in alice(), the MPU 65 will determine the secure

domain as the selected domain, which will match one of the allowed domains from the

10

15

20

25

28

domain checking. Provided there is a guard instruction 306 at the target location, no error

will be triggered.

Hence, regardless of which of the domain selection and domain checking uses the
target bit, the system can allow some legitimate switches from the secure domain to a
secure location under control of an address set by the less secure domain. The guard
instruction is required to validate such switches. Usually the guard check would not be
required when alrecady in the secure domain, so to make sure the guard check is
performed the system can switch to the less secure domain before executing a branch
instruction 300 in the secure region of memory for which the target domain value has a
value of 0. If the branch switches to the secure domain, the branch will appear to have
come from the less secure domain, and so a guard instruction will be required at the target

address to avoid an error.

The subject matter of the present application is related to subject matter discussed
in commonly assigned co-pending US application number 13/368,419 and UK patent
application number 1217531.1, and the entire contents of both of these documents are

hereby incorporated by reference.

Although illustrative embodiments of the invention have been described in detail
herein with reference to the accompanying drawings, it is to be understood that the
invention is not limited to those precise embodiments, and that various changes and
modifications can be effected therein by one skilled in the art without departing from the

scope and spirit of the invention as defined by the claims.

10

15

20

25

30

29

CLAIMS

1. A data processing apparatus comprising:

processing circuitry for performing data processing operations in response to
program instructions, the processing circuitry having a plurality of domains of operation
including a secure domain and a less secure domain, wherein when operating in the
secure domain the processing circuitry has access to data that is not accessible when
operating in the less secure domain;

wherein in response to execution of a control flow altering instruction, the
processing circuitry is configured to switch to processing a program instruction at a target
address indicated by the control flow altering instruction, and to perform domain
selection for determining a selected domain in which the processing circuitry is to operate
for the program instruction at the target address; and

at least if the control flow altering instruction is executed while operating in the
secure domain, then the processing circuitry is configured to:
(1) perform domain checking for determining which of the plurality of domains are
allowed to be the selected domain determined by the domain selection for the program
instruction at the target address, the domain checking using a different technique to the
domain selection; and
(i1) trigger a domain check error if the selected domain determined in the domain

selection is not an allowed selected domain determined in the domain checking.

2. The data processing apparatus according to claim 1, wherein the control flow

altering instruction comprises a branch instruction.

3. The data processing apparatus according to claim 1 or claim 2, wherein if the
control flow altering instruction is executed while operating in the less secure domain, the
processing circuitry is also configured to perform the domain checking and trigger the
domain check error if the selected domain determined in the domain selection does not

match an allowed domain determined in the domain checking.

10

15

20

25

30

4. The data processing apparatus according to any preceding claim, wherein one of
the domain selection and the domain checking comprises first determining and the other

of the domain sclection and the domain checking comprises second determining.

5. The data processing apparatus according to claim 4, comprising a data store for
storing data, the data store comprising a plurality of regions including a secure region and
a less secure region, wherein the secure region is for storing data which is accessible by
the processing circuitry when operating in the secure domain and not accessible by the
processing circuitry when operating in the less secure domain;

wherein the first determining comprises determining at least one selected domain
in dependence upon at least which of the plurality of regions corresponds to the

instruction address of a program instruction at the target address.

6. The data processing apparatus according to claim 5, wherein for at least some
program instructions the first determining comprises sclecting the less secure domain as
the selected domain if the instruction address corresponds to the less secure region, and
selecting the secure domain as the selected domain if the instruction address corresponds

to the secure region.

7. The data processing apparatus according to any of the claims 4 to 6, wherein the
second determining comprises determining, as the selected domain, one of the plurality of

domains indicated by a target domain value.

8. The data processing apparatus according to claim 7, wherein the target domain

value is specified in the encoding of a control flow altering instruction.

9. The data processing apparatus according to claim 7, wherein the target domain

value is specified in part of the target address used by a control flow altering instruction.

10

15

20

25

30

31

10. The data processing apparatus according to any of claims 7 or 9, wherein the
processing circuitry is configured to set the target domain value in response to a target

domain value setting instruction.

1. The data processing apparatus according to claim 10, wherein if the processing
circuitry was operating in the less secure domain before said target domain value setting
instruction was performed, then the processing circuitry is configured to sct the target

domain value to indicate the less secure domain.

12. The data processing apparatus according to any of claims 10 and 11, wherein the
processing circuitry is configured to trigger an error if, following a guard-protected
control flow altering instruction for which the processing circuitry was operating in the
less secure domain before switching to processing the program instruction at the target
address in a secure region, the program instruction at the target address is not a guard
instruction; and

the target domain value setting instruction comprises the guard instruction.

13. The data processing apparatus according to claim 12, wherein in response to a
first control flow altering instruction, the processing circuitry is configured to store a
return address to a predetermined storage location, and to switch to processing the
program instruction at the target address; and

in response to a second control flow altering instruction, the processing circuitry
is configured to switch to processing the program instruction at the return address;

wherein in response to the guard instruction, the processing circuitry is configured
to sct the target domain value for the second control flow altering instruction to indicate
the less secure domain if the first control flow altering instruction was performed in the

less secure domain.

14. The data processing apparatus according to any of claims 7 to 13, comprising a
data store comprising a plurality of stacks including a secure stack and a less secure

stack, wherein the secure stack is accessible by the processing circuitry when operating in

10

15

20

25

30

32

a secure domain and not accessible by the processing circuitry when operating in a less

secure domain.

15. The data processing apparatus according to claim 14, wherein at least one of the
processing circuitry and software executed on the processing circuitry is configured to
determine, in dependence on the target domain value, which of the plurality of stacks can

be used for passing function arguments.

16. The data processing apparatus according to any of claims 7 to 15, wherein in
response to a first control flow altering instruction, the processing circuitry is configured
to store a return address to a predetermined storage location, and to switch the control
flow to the program instruction at the target address; and

in response to a second control flow altering instruction, the processing circuitry

is configured to switch to processing the program instruction at the return address.

17. The data processing apparatus according to claim 16, wherein if the first control
flow altering instruction is executed in the secure domain and causes a transition to the
less secure domain, then the processing circuitry is configured to store a dummy return
address to the predetermined storage location as the return address, the dummy return
address not being a valid instruction address, and to store an actual return address to a
secure storage location that is not accessible while in the less secure domain; and

in response to the second control flow altering instruction, if the return address
was the dummy return address then the processing circuitry is configured to retrieve the
actual return address from the secure storage location and to switch to processing the

program instruction at the actual return address.

18. The data processing apparatus according to claim 17, wherein the processing
circuitry is configured to determine, depending on at least the target domain value, which
of the dummy return address and the actual return address to store to the predetermined

storage location in response to the first control flow altering instruction.

10

15

20

25

30

33

19. The data processing apparatus according to any of claims 7 to 18, wherein the
target domain value is represented by a redundant data ficld in one of the encoding of the
control flow altering instruction and the target address used by the control flow altering

instruction.

20. The data processing apparatus according to any of claims 7 to 19, wherein the
processing circuitry is configured to execute instructions from a first instruction set;

one of the encoding of the control flow altering instruction and the target address
used by the control flow altering instruction includes a target instruction set field
indicating whether the program instruction at the target address is from the first
instruction set or from a second instruction set, wherein the second instruction set is not
supported by the processing circuitry; and

the target domain value is indicated using the target instruction set field.

21. The data processing apparatus according to claim 20, wherein a first value of the
target instruction set field indicates the first instruction set and corresponds to the target
domain value indicating that the secure domain is the selected domain; and

a seccond value of the target instruction set field indicates the second instruction
set and corresponds to the target domain value indicating that the less secure domain is

the selected domain.

22, The data processing apparatus according to claim 21, wherein the domain
checking comprises the second determining, and if the control flow altering instruction is
performed while in the less secure domain, then whether or not the domain check error is
generated following the switch to processing the program instruction at the target address

is independent of the value of the target domain value.

23. The data processing apparatus according to any preceding claim, wherein for at
least one program instruction, the domain checking comprises determining a plurality of

the domains as an allowed selected domain for the program instruction.

10

15

20

25

30

34

24. The data processing apparatus according to claim 23, wherein said at least one

program instruction comprises a guard instruction.

25. The data processing apparatus according to any preceding claim, wherein for at
least one control flow altering instruction performed in the secure domain, then the
processing circuitry is configured to switch from operating in the secure domain to
operating in the less secure domain before switching to processing the program

instruction at the target address.

26. The data processing apparatus according to any of claims 23 to 25, wherein the
processing circuitry is configured to trigger an error if the program instruction at the

target address is not a guard instruction.

27. A data processing apparatus comprising:

processing means for performing data processing operations in response to
program instructions, the processing means having a plurality of domains of operation
including a secure domain and a less secure domain, wherein when operating in the
secure domain the processing means has access to data that is not accessible when
operating in the less secure domain;

wherein in response to cxecution of a control flow altering instruction, the
processing means is configured to switch to processing a program instruction at a target
address indicated by the control flow altering instruction, and to perform domain
selection for determining a selected domain in which the processing means is to operate
for the program instruction at the target address; and

at least if the control flow altering instruction is executed while operating in the
secure domain, then the processing means is configured to:
(1) perform domain checking for determining which of the plurality of domains are
allowed to be the selected domain determined by the domain selection for the program
instruction at the target address, the domain checking using a different technique to the

domain selection; and

10

15

20

25

35

(i1) trigger a domain check error if the sclected domain determined in the domain

selection is not an allowed selected domain determined in the domain checking.

28. A data processing method for an apparatus comprising processing circuitry for
performing data processing operations in response to program instructions, the processing
circuitry having a plurality of domains of operation including a secure domain and a less
secure domain, wherein when operating in the secure domain the processing circuitry has
access to data that is not accessible when operating in the less secure domain; the method
comprising:

in response to execution of a control flow altering instruction, switching to
processing a program instruction at a target address indicated by the control flow altering
instruction;

performing domain seclection for determining a sclected domain in which the
processing circuitry is to operate for the program instruction at the target address; and

at least if the control flow altering instruction is executed while operating in the
secure domain, then:
(1) performing domain checking for determining which of the plurality of domains
arc allowed to be the selected domain determined by the domain sclection for the
program instruction at the target address, the domain checking using a different technique
to the domain selection; and
(ii) triggering a domain check error if the selected domain determined in the domain

selection is not an allowed selected domain determined in the domain checking.

29. A data processing apparatus substantially as herein described with reference to the

accompanying drawings.

30. A data processing method substantially as hercin described with reference to the

accompanying drawings.

878 INTELLECTUAL >

ceo’ PROPERTY OFFICE

Application No: GB1220769.2 Examiner: Andrew Hole
Claims searched: 1to 28 Date of search: 13 August 2013

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:
Category |Relevant | Identity of document and passage or figure of particular relevance
to claims

X 1,27, & | GB 2482701 A
28 at (ARM) Please see abstract, drawings and page 6, line 32 to page 9, line
least. | 28.

A - US 2010/0031360 Al
(SESHADRI et al.) Please see drawings, abstract and the summary of
the invention.

A - GB 2448149 A
(ARM) Please see drawings and abstract.

A - WO 2007/089373 A2
(TEXAS INSTRUMENTS) Please see drawings and abstract.

Categories:

X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.

Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.

& Member of the same patent family E Patent document published on or after, but with priority date

earlier than, the filing date of this application.
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC™ :

Worldwide search of patent documents classified in the following areas of the IPC
[GOGF |
The following online and other databases have been used in the preparation of this search report
WPIL, EPODOC, TXTE, INSPEC, XPESP, XPESP2, XPIEE, XPIPCOM, XPI3E, XPMISC,
XPLNCS, XPRD

International Classification:

Subclass Subgroup Valid From
GO6F 0021/52 01/01/2013
GO6F 0021/64 01/01/2013
GO6F 0021/74 01/01/2013

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

	Front Page
	Drawings
	Description
	Claims
	Search Report

