wo 2009/113034 A1 I 0K O O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(19) World Intellectual Property Organization /g5 1IN IC K00 ANV 0 OO 0 OO0 01
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
17 September 2009 (17.09.2009) PCT WO 2009/113034 Al
(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GOG6F 9/48 (2006.01) CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
. o . EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(21) International Application Number: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
PCT/IB2009/051035 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
12 March 2009 (12.03.2009) NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, 8G,
B . SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
(25) Filing Language: English UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
08102525.6 12 March 2008 (12.03.2008) EP GM, KE, LS, MW, MZ, NA, SD, SL, 82, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(71) Applicant (for all designated States except US): NXP TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
B.V. [NL/NL]; 60, High Tech Campus 60, NL-5656 AG ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Eindhoven (NL). MC, MK, MT, NL, NO, PL, PT, RO, SE, SL SK, TR),
. OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
(72) Inventors; and MR, NE, SN, TD, TG)
(75) Inventors/Applicants (for US only): TERECHKO, An- P T ’
drei Sergeevich [BY/NL]; c¢/o NXP B.V., Intellectual Declarations under Rule 4.17:
Property Department High, Tech Campus 32, NL-5656 . , .
AE Eindhoven (NL). AL-KADL Ghiath [NL/NL]; c/o a“ ;Ote‘;’;p(%‘l’:;s ;’%jemem to apply for and be granted
NXP B.V., Intellectual Property Department High, Tech p ’
Campus 32, NL-5656 AE Eindhoven (NL). DURAN- — as to the applicant’s entitlement fo claim the priority of
TON, Marc Andre Georges [FR/NL]; c/o NXP B.V., In- the earlier application (Rule 4.17(iii))
tellectual Property Department High, Tech Campus 32, Published:
NL-5656 AE Eindhoven (NL). STALANDER, Magnus ’
[SE/NL]; c/o NXP B.V., Intellectual Property Department — with international search report (Art. 21(3))
High, Tech Campus 32, NL-5656 AE Eindhoven (NL). — before the expiration of the time limit for amending the
(74) Agent: VAN DER VEER, Johannis Leendert; 32, High claims and to be republished in the event of receipt of
Tech Campus 32, NL-5656 AE Eindhoven (NL). amendments (Rule 48.2(h))
(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

(54) Title: LOOK-AHEAD TASK MANAGEMENT

20 46 20 46 20
2a DY i 1 P |
| |1

10 |]
4a 4b 4c

12 | 11 l]
6a 6b 6c

14 |] 1 1]
8a 8b 8¢

16 | | 11]

FIG. 4

(57) Abstract: A method comprising receiving tasks for execution on at least one processor, and processing at least one task with-
in one processor. To decrease the turn-around time of task processing, a method comprises parallel to processing the at least one
task, verifying readiness of at least one next task assuming the currently processed task is finished, preparing a readystructure for
the at least one task veritied as ready, and starting the at least one task verified as ready using the ready-structure after the current-
ly processed task is finished.

10

15

20

25

WO 2009/113034 PCT/IB2009/051035

Look-ahead task management

FIELD OF THE INVENTION

The present application relates to a method comprising receiving tasks for
execution on at least one processor, and processing at least one of the tasks within one
processor. The application further relates to a task management unit comprising input means
for receiving tasks for execution on at least one processor, a microprocessor comprising a
storage for storing task information, a system with a task management unit and a
microprocessor, as well as a computer program comprising instructions operable to cause a

task management unit to receive tasks for execution on at least one processor.

BACKGROUND OF THE INVENTION

The current trend in computer architecture is to use more and more
microprocessors, a.k.a. cores, within one chip for processing tasks in parallel to increase
application performance. In particular in embedded domain systems, where multi-core
solutions are common, the application performance is increased. In order to utilize the
increased processing power of multi-core solutions, it is necessary to partition the programs
into tasks that can be run in parallel on separate cores.

It is apparent that the more tasks are processed in parallel, the more the overall
performance is accelerated. As the numbers of cores increases in multi-core solutions, it
becomes necessary to partition applications into more and more smaller tasks, in order to
keep all the cores busy and to accelerate application performance. The creation and
distribution of tasks, a.k.a. task scheduling, has commonly been handled by software.
However, as tasks become smaller and increase in number, a task schedule being performed
by software introduces overheads in view of data transfer and processing of the scheduling.
This will decrease the efficiency of parallel task processing.

In particular the code for managing task scheduling might become a bottle
neck for a huge number of small tasks. The code for managing tasks is generally simple,

consisting of arithmetic operations such as addition, subtraction, comparing, branching, and

10

15

20

25

30

WO 2009/113034 PCT/IB2009/051035
2

atomic loads and stores. The parallel processing requires checking dependencies of tasks,
¢.g., whether one task can be started or not depending on other tasks that might be necessary
to be executed beforehand. Therefore, dependencies of tasks need to be updated for each
finished task, such that other tasks can become ready to be executed. If the dependency check
is executed after a task has finished and the dependencies has been updated, the current
dependency state is known. This allows for verifying, which tasks can be executed. However,
the dependency check can introduce delays, since the check is performed before the next task
can be executed.

In particular for a plurality of tasks, architectures with task queues are known.
In this type of architectures, the execution of a task is followed by a piece of code for
updating dependencies and checking for a task ready status or not.

Fig. 1 illustrates a commonly known dependency check with twelve different
tasks 2, 4, 6, 8. On a first core 10, tasks 2a-2¢ are executed. On a second core 12, tasks 4a-4c
are executed. On a third core 14, the tasks 6a-6¢ arc executed. And on a forth core 16, the
tasks 8a-8c are executed. Thus, twelve different tasks 2, 4, 6, 8 are executed on four separate
cores 10-16. After completion of each task 2-8, a task dependency check 18 is executed.

In Fig. 1, for reason of simplicity, it is assumed that each task is identical in
execution time. As can be seen, the dependency check operation 18 consumes time, within
which the cores 10-16 are not operative, i.e. do not process a particular task. For example, for
a video decoder under the H.264 standard, it has been found that the dependency check
operation 18 increases the overall task execution time by 9% on average. This results in the
embodiment according to Fig. 1 in a requirement of one complete core for managing the
dependency check for every eleven other cores in the architecture.

For the reasons set forth above, it is an object of the present application to
increase performance of processing of applications that have task dependencies, i.e. in multi-
core architectures. It is another object to increase image and video decoding speed by parallel
task processing. A further object is to reduce die size by reducing dependency check
overhead. Another object is to increase energy efficiency by reducing the number of required

processors for parallel processing.

SUMMARY OF THE INVENTION

These and other objects are solved by a method comprising receiving tasks for

execution on at least one processor, processing at least one of the tasks within one processor,

10

15

20

25

30

WO 2009/113034 PCT/IB2009/051035
3

parallel to processing the at least one task, verifying readiness of at least one next task
assuming the currently processed task is finished, preparing a ready structure for the at least
one task verified as ready, and starting the at least one task verified as ready using the ready-
structure after the currently processed task is finished.

By verifying the readiness of at least one next task assuming the currently
processed task is finished parallel to processing at least one task, allows for immediate
starting the execution of the next task upon finishing a currently processed task. While a task
is being executed, it may be possible to find out what dependencies will be solved by the
currently executed task by assuming that the currently executed task is finished. This allows
for verifying, whether a next task is ready or not, prior to finishing the processing of the
currently processed task. If there are tasks that only depend on the currently executed task,
they will be ready for execution, once the currently executed task is finished. In order to
provide for immediate starting the ready tasks, these could be prepared for execution by a
task management unit, such that once the current processor (core) finishes the current
execution, the next task can start. Dependencies can be updated in parallel with the execution
of the task, thus decreasing task execution time.

During the execution of the task, it may be possible to find all tasks that
depend on the currently executed task. All found tasks may then be marked as candidate tasks
to be executed by the processor.

According to embodiments, verifying the readiness of at least one next task
may comprise checking task dependencies between the at least one received task, and the
currently processed task. This allows for checking, as a look ahead technique, whether at
least one of the received tasks may be ready for execution, once the currently processed task
is finished, in parallel with the actual execution of the task. If the at least one received task,
which is not executed yet, only depends on the currently processed task, it can be marked as
ready even during execution of the currently processed task. This look-ahead technique
provides for reducing the start time of the received tasks after the currently processed task is
finished.

According to embodiments, it may be possible, to store within a task queue at
least one of the ready-structures of tasks and/or the task verified as ready. For example, in
architectures, which have more than one core, in particular in architectures that are scalable
to more than a few cores, several processors may verify the readiness of at least one next
task. The results of this verification can be a plurality of tasks in the ready stage. This at least

one ready task can be stored in the task queues. The task queues do provide information

10

15

20

25

30

WO 2009/113034 PCT/IB2009/051035
4

about tasks in the ready state which are currently not being executed by a processor. This
way, tasks may be distributed between different cores. The distribution of task queues allows
for storing information about ready tasks within a scalable architecture.

According to embodiments, the ready-structure may comprise at least one of a
function pointer and/or an argument list. The function pointer may point to the first
instruction of the task being verified as ready. The argument list may comprise information
about arguments for the task to be executed.

According to embodiments, the argument list may be used for a data
prefetching. By performing data prefetching, the arguments for the task to be executed next
may already be fetched during the currently processed task is processed, allowing the next
task to start immediately after the currently processed task is finished.

It may also be possible that some tasks are not ready, even if the currently
processed task is finished. This may be because of further dependencies, e.g. the task is
dependent on other tasks than the currently processed task. In order to account for such tasks,
a partially-ready-structure for at least one task which is not verified as ready is provided. The
partially-ready- structure allows for providing information about task dependencies of tasks
which are not ready in the next processing sequence.

According to embodiments, the partially-ready-structure may comprise
information about task dependencies being not met. Thus, if dependencies have not been
satisfied, the dependencies may be stored in the partially-ready-structure. It may be possible
that after the started regular task ends, the unsatisfied dependencies being stored in the
partially-ready-structure are checked. This way dependencies already satisfied during the
execution of the current tasks will not delay next task creation. The verification of the
partially-ready-structure may be possible with a reduced software overhead.

According to embodiments, verifying readiness of at least one task within a
partially-ready-structure after a currently processed task is finished is possible.

To keep track of candidate tasks and speed up the turn around time of
executed tasks, a processor may comprise, according to embodiments, a dedicated storage
area may hold necessary information about candidate tasks, i.e. tasks with a partially-ready-
structure. Each processor may directly access the information about the tasks to be executed.
The dedicated storage may also hold information about ready tasks, i.e. with a ready-
structure. It may also be possible.

According to embodiments, the task information may comprise at least one of

a task pointer, a look-ahead pointer, a dependency pointer, an argument pointer, or a flag.

10

15

20

25

30

WO 2009/113034 PCT/IB2009/051035
5

The task pointer may hold information about the instruction address of the first instruction of
the task. The argument pointer may hold the address to where arguments for the tasks are
stored. The look-ahead pointer may comprise information about a look-ahead function to be
executed if the task will be executed by the core. This function may allow for calculating and
determining, which dependencies are resolved, when the currently processed task is executed.
A dependency pointer may hold the address to a memory location that stores the number of
dependencies that still have to be resolved before the task can be executed. A flag may be
used for synchronizing the processor with a task management unit. The information about the
task stored in the processor allows for speeding up the turn around time between tasks being
executed. The flag may allow for calculating and determining, which dependencies are
resolved, when the currently processed task is executed. The flag may be one bit used for
synchronizing between the task management unit and the processor. The flag may also
comprise several bits, indicating, for example, the state of a task, the time of processing, i.c.
while it is executed. If a task is ready for execution, then the task pointer and argument
pointer will be read and the processor can start the execution of the new task. The task
management unit can then, in parallel with the execution of the task, decrement the value
given by the dependency pointer for all the tasks not being executed. In case there is no ready
task, when the processor finishes with a currently processed task, it can wait until task
dependencies are updated and a task becomes ready for execution. The speed-up of verifying
a ready status may be achieved in that only the dependencies of candidate tasks not found
ready for execution by the look-ahead function need to be updated. The look-ahead function
may check, which tasks may be necessary in the future. If these tasks are dependent on the
currently processed task, their dependency can be updated. If tasks are ready , no update is
necessary. Therefore, the look-ahead function reduces the number of dependency checks.

According to embodiments, dependency information for tasks from the current
task may be obtained from the task information.

Another aspect is a task management unit comprising input means for
receiving tasks for execution on at least one processors, verifying means arranged for
verifying readiness of at least one next task, assuming the currently processed task is
finished, parallel to processing the at least one task, preparation means arranged for preparing
a ready-structure for the at least one task verified as ready, and output means for putting out
the ready structure after the currently processed task is finished for starting the at least one

task verified as ready.

10

15

20

25

30

WO 2009/113034 PCT/IB2009/051035
6

A further aspect is a microprocessor comprising a storage for storing task
information, where the storage comprises a memory area for storing a task pointer, a storage
arca for storing an argument pointer, and a storage area for storing a dependency pointer.

According to embodiments, access means may be provided for providing
access to the storage for storing task information using a task management unit of as
previously described.

Another aspect is a system with a task management unit and a microprocessor
as previously described.

A further aspect is a computer program comprising instructions operable to
cause the task management unit to receive tasks for execution on at least one processors,
provide the task for processing to at least one processor, parallel to processing the at least one
task verify readiness of at least one next task assuming the currently processed task is
finished, prepare a ready-structure for the at least one task verified as ready, and starting the
at least one task verified as ready, using the ready structure after the currently processed task

is finished within the processor.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 illustrates task execution for a conventional architecture;

Fig. 2 an illustration of dependencies between macro-blocks within a video
compression standard;

Fig. 3 an illustration of a task dependency graph;

Fig. 4 an illustration of execution of tasks according to embodiments;

Fig. 5a a ready structure for a task;

Fig. 5b a partially-ready structure for a task;

Fig. 6 an illustration of an architecture with several processors and several task
management units;

Fig. 7 an illustration of task information;

Fig. 8 a schematic illustration of a task management unit.

DETAILED DESCRIPTION OF THE DRAWINGS

As has been mentioned above, in combination with description of Fig. 1, in

multi-processor, a.k.a. multi-core, solutions, a plurality of tasks need to be processed in

10

15

20

25

30

WO 2009/113034 PCT/IB2009/051035
7

parallel, which might lead to processor contention and ineffective task processing. In
particular in the multimedia domain, the partitioning of an application will commonly
introduce the dependencies between tasks. The dependencies between tasks force the tasks to
be executed in a certain order to meet these dependencies. For example, such dependencies
can be found in a video decoder, for example a H.264 video decoder. In such a video
decoder, a high amount of tasks needs to be processed, with a lot of dependencies, which
poses a task management problem. Task dependencies need to be monitored and need to be
checked when a task is ready to be executed. The algorithms for dependency checking are
often not complex, but they can introduce large overhead. For example, in a super HD H.264
decoder, 9% of the execution time is consumed by checking task dependencies and task
management.

When processing tasks in parallel, it needs to be distinguished between tasks
that are dependent and tasks that are not dependent. For example, for parallel video decoding
with macro-blocks and spatial-temporal motion prediction, parallel tasks introduce
dependencies. This kind of applications differ from other parallel work loads, such as server
work loads with multiple incoming requests, desktop work loads consisting of multiple
programs, and scientific work loads, where the tasks are commonly independent of each
other and can be executed randomly. However, for applications with inter-task dependencies,
the execution order is crucial for correct application behavior. The execution order cannot
always be totally statically determined at compile time, because of variations in
computational load, task execution time and load balancing. Hence, a dynamic task
management at run time is necessary, as is introduced by the present embodiments.

One example of task parallelism is video decoding, such as H.264 video
decoding. Such a decoding will be exemplarily described herein after.

H.264 video decoding in super HD requires a multi-core architecture, to reach
the performance necessary for decoding 30 to frames per second. For video decoding, each
frame being decoded is first entropy decoded, consisting of either context-adaptive binary
arithmetic coding or a context-adaptive variable length coding, which both are sequential by
their natures. A frame is then passed on to a picture prediction stage, where each frame is
divided into macro blocks, for example 16 times 16 pixels. For each macro block, inter-
picture prediction and motion vector estimation is calculated. The frame is then filtered
through a deblocking filter to reduce artifacts from the picture prediction stage at block

boundaries. The resulting frame has then been decoded and can be passed onto the display.

10

15

20

25

30

WO 2009/113034 PCT/IB2009/051035
8

The picture prediction and deblocking filter is suitable for parallelization,
where the execution of the macro-block can be treated as a task. Such execution is illustrated
in Fig. 2. As can be seen, there are several macro blocks 42 at boundaries to a macro block
44, In order to process picture prediction and deblocking of macro block 44, it is necessary
that macro blocks 42 are executed before macro block 44 is filtered. By that, macro-block 44
cannot be executed before macro-blocks 42 have been executed. This introduces task
dependencies, as the tasks for filtering macro block 44 require the prior execution of filtering
of macro blocks 42.

Such a task dependency can be illustrated in a graph, for example as illustrated
in Fig. 3. The graph of Fig. 3 illustrates several tasks 0/0-4/4, which can be dependent on
certain other tasks. As can be seen in Fig. 3, a first task 0/0 is independent. However, the
second task 1/0 can only start, when the first task 0/0 has been executed. Each of the new
tasks can potentially start the execution of one or two other tasks, for example, after task 1/0,
both tasks 2/0 and 0/1 can start. These task dependencies, as illustrated in a graph of Fig. 3,
can be tracked by storing the number of tasks that each task depends on. For each finished
task, this value of task dependencies can be updated. The task can execute, once its value of
dependencies becomes zero.

In order to provide parallelism, there is provided a look-ahead task
management unit, capable of execution of task-dependency checks in parallel with the
execution of the tasks. Each task management unit can offload dependency checks and
dependency updates from a number of conventional processors and can try to schedule
dependent tasks onto these processors. The distribution of tasks between various task
management units can be done through a task queue. By executing the task-dependency
checks in parallel with the conventional processing of the tasks, a total execution time speed-
up of 4,5% for a multi-processor architecture for video decoding can be achieved.

Such a parallel task dependency check is illustrated in Fig. 4. In Fig. 4, there
are illustrated tasks 2, 4, 6, 8, a readiness verifying stage 20, and a task dependency update
46. The twelve tasks 2a-2¢, 4a-4¢, 6a-6¢, 8a-8c are being executed on four different cores 10-
16. For each task 2, 4, 6, 8, within the verifying stage 20, in parallel to processing the tasks, a
look-ahead code is being executed for verifying, whether these tasks provide for readiness of
a consecutive task. In the illustrated example, in the verifying stage 20, for the first task 2a,
executed on processor 10, a candidate task 2b was found with its dependencies fulfilled. This
second task 2b can be started immediately, once processor 10 finishes the current execution

of task 2a. Task dependency update 46 updates dependencies of tasks, and after a task

10

15

20

25

30

WO 2009/113034 PCT/IB2009/051035
9

dependency update was executed, the tasks 4b, 6b, 8b could be executed. However, the task
dependency update 46 is much faster than the verifying stage 20, thus allowing tasks 4b, 6b,
8b to be executed a lot closer in time to the finalization of a previous task.

Further, the second verifying stage 20 determines that task 4c is ready right
after task 4b has been finished. Thus, on the second processor 12, task 4c¢ is started
immediately after task 4b is finalized.

In the verifying stage 20, task ready structures 24, as illustrated in Fig. 5a, are
created. Task ready structures 24 may comprise a function pointer 24a and an argument list
24b. The function pointer and the argument list can be read, and the processor can execute
the new task immediately. The task ready structure 24 may, though not illustrated, comprise
also a look-ahead function pointer. Also, an argument pointer may also be comprised.

During the verifying stage 20, tasks may also be found as partially-ready. For
these tasks, a partially-ready-structure 28, as illustrated in Fig. 5b can be created. The
partially ready structure 28 may comprise a task pointer 28a, as well as information 28b
about task dependencies being not met. These information 28b can be updated in step 46, as
illustrated in Fig. 4, upon which a partial-ready-structure may indicate a task being
executable.

The verification step 20 and the update step 46 can be processed within a task
management unit, as illustrated in Fig. 6. The purpose of the task management unit 32 may
be to offload the management of tasks from processors 10, 12, 14, 16 in a multi-core-
architecture as illustrated in Fig. 6. While the tasks are being executed on the process source
10-16, the task management units 32 try to find tasks that are ready to be executed and have
them prepared, so that a processor 10-16 can directly start executing a new task when it
finishes their current task execution. For each task being executed, the task management unit
32 executes a function that looks ahead in time, in order to try to find tasks that will be ready
for execution. When doing so, the task management units 32 assume the currently processed
tasks on processors 10-16 being finished. As is illustrated in Fig. 6, a scalable architecture
that connects several task management units 32 with a defined number of processors 10-16
allows for processing more look-ahead functions than with a single task management unit 32.
Each task management unit 32 offloads the look-ahead control from the processors. Within a
task queue 26, tasks that are found to be ready can be stored. This way, the task management
units 32 may obtain information about tasks being ready within a task-ready structure 24
from task queue 26. This information allows for the processors 10-16 to execute tasks being

found as ready using the task-ready structure.

10

15

20

25

30

WO 2009/113034 PCT/IB2009/051035
10

In order to decrease the turn around time between executed tasks, cach
processor 10-16 may have a dedicated task information 30 list as illustrated in Fig. 7 storing
candidate tasks and the information for executing these tasks. This information can be a task
pointer 30d, an argument pointer 30e, a look-ahead pointer 30b, a dependency pointer 30c,
and a flag 30a. If there is a task ready for execution, the task pointer 30d and the argument
pointer 30¢ can be read by the processor and execution can start. The task management unit
32 can then, in parallel with the execution of the task, decrement the value given by the
dependency pointer for all the tasks not being executed. Only the dependencies of candidate
tasks not found ready for execution by the look-ahead function of the task management unit
32 need to be updated, thus reducing the number atomic accesses for updating the
information 30. The task management unit 32 may check the state of the task queue, the flag
30a of the information 30 for each core 10-16, and for incoming tasks and messages. If there
is an idle processor 10-16 and a task being found ready in the task queue 26, the task can be
fetched from the task queue 26, information 30 with a processor 10-16 can be updated, telling
the processor 10-16 that the task is ready for execution. When a processor 10-16 finishes the
execution of the task, a routine may first check for tasks that are ready for execution with an
information 30. If these tasks are not executed by the processor 10-16 itself, these tasks can
be stored in the task queue 26 for execution at a later time. Then, dependency values for tasks
not ready to be executed can be decremented. Eventually, a look-ahead pointer 30b and an
argument pointer 30c can be read from the task currently being executed by the core and the
look-ahead function can be executed by the task management unit 32.

In order to perform the look-ahead function, a task management unit 32 may
comprise, as illustrated in Fig. 8, input means 34 for receiving tasks for execution on at least
one processors. Further, there may be provided verifying means 36 for verifying readiness of
at least one next task, assuming the currently process task is finished parallel to processing
the at least one task. The verifying means 36 may have access onto information 30 and may
read the flags 30a and may update the dependency pointers 30c.

Further, there may be provided preparation means 38 for preparing the task
ready structure as illustrated in Fig. 5a. Eventually, there may be provided output means 40
for putting out the ready-structure either to the task queue 26 or to the processors 10-16 into
information 30.

By providing the parallel dependency checks, the execution time of parallel
tasks may be significantly decreased. The cores may offload dependency checks to a task

management unit. This enhances, for example video processing.

10

15

20

25

WO 2009/113034 PCT/IB2009/051035
11

Look-ahead task management

CLAIMS:

1. Method comprising:

- receiving tasks (2, 4, 6, 8) for execution on at least one processor (10, 12, 14,
16),

- processing at least one of the tasks (2, 4, 6, 8) within one processor (10, 12,
14, 16),

- parallel to processing the at least one task (2, 4, 6, 8), verifying (20) readiness
of at least one next task assuming the currently processed task (2a, 4a, 6a, 8a) is finished,

- preparing a ready-structure (24) for the at least one task (2b) verified as ready,
and

- starting the at least one task (2b) verified as ready using the ready-structure

(24) after the currently processed task (2a) is finished.

2. The method of claim 1, wherein verifying the readiness (20) of the at least one
next task (2b) comprises checking task dependencies between the at least one received task

(2b, 4b, 6b, 8b) and the currently processed task (2a).

3. The method of claim 1, further comprising storing within a task queue (26) at

least one of

A) the ready-structures of tasks (24),

B) the tasks (2b) verified as ready.

4. The method of claim 1, wherein the ready-structure (24) comprises at least one
of:

A) a function pointer (24a);

0) an argument list (24b).

5. The method of claim 4, wherein the ready-structure (2a) comprises at least the

argument list (24b) for data prefetching.

10

15

20

25

30

WO 2009/113034 PCT/IB2009/051035
12

6. The method of claim 1, further comprising preparing a partially-ready-

structure (28) for at least one task (2¢) which is not verified as ready.

7. The method of claim 6, wherein the partially-ready-structure (28) comprises

information about task dependencies being not met.

8. The method of claim 6, further comprising verifying readiness of at least one

task within the partially-ready-structure (28) after a currently processes task is finished.

9. The method of claim 1, wherein verifying readiness of at least one tasks within
a partially-ready-structure (28) comprises checking task dependencies being marked within

the partially-ready-structure (28).

10. The method of claim 1, further comprising storing within at least one

processor (10, 12, 14, 16) task information (30) about tasks (2, 4, 6, 8) to be executed.

11. The method of claim 10, wherein the task information (30) comprises at least
one of

A) a task pointer (30a),

B) a look-ahead pointer (30b),

O a dependency pointer (30c),

D) an argument pointer (30d),

E) a flag (301).

12. The method of claim 10, further comprising obtaining dependency information

for tasks from the current task (2a) from the task information (30).

13. Task management unit (32) comprising:

- input means (34) for receiving tasks for execution on a at least one processors,
- verifying means (36) arranged for verifying readiness of at least one next task

assuming the currently processed task is finished parallel to processing the at least one task,

- preparation means (38) arranged for preparing a ready-structure for the at least

one task verified as ready, and

10

15

20

25

WO 2009/113034 PCT/IB2009/051035
13

- output means (40) for putting out the ready-structure after the currently

processed task is finished for starting the at least one task verified as ready.

14. A microprocessor (10) comprising:

- a storage (30) for storing task information (30a), wherein the storage

comprises;

- a memory area for storing a task pointer (30c),

- a memory area for storing an argument pointer and

- a memory area for storing a dependency pointer (30c).

15. The microprocessor of claim 14, further comprising access means for

providing access to the storage for storing task information using a task management unit of

claim 13.

16. A system with a task management unit of claim 13 and a microprocessor of
claim 13.

17. A computer program comprising instructions operable to cause a task

management unit to

- receiving tasks for execution on at least one processors,

- provide the task for processing to at least one processor,

- parallel to processing the at least one task, verify readiness of at least one next
task assuming the currently processed task is finished,

- prepare a ready-structure for the at least one task verified as ready, and

- starting the at least one task verified as ready using the ready-structure after

the currently processed task is finished within the processor.

WO 2009/113034 PCT/IB2009/051035

1/4

2a 2C
/
10 |
4a 4c
/ /
12 |
b6a 6C
/
14 |
8a 8c
/
16 |

FIG. 2

WO 2009/113034 PCT/IB2009/051035

2/4

2a

10 |

4a

12 |

_6a
14 |

8a

16 |

FIG. 4

WO 2009/113034 PCT/IB2009/051035

3/4
24
24a 24b
FIG. 5a
28
28a 28b
10a 14a 10b 14b
" ol "e Mol
32a 32b
1 A & 1 A &
12a 16a 12b 16b
) 26 2
10c 14¢ 10d 14d
e v ¥ e v
32¢C 32d
ol " ol ®e
12¢c 16¢ 12d 16d

FIG. 6

WO 2009/113034 PCT/IB2009/051035
4/4
30a 30b 30c 30d 30e
»| 34 |e »| 36
A A
32
\ 4 \ 4
< 40 |e »| 38

FIG. 8

INTERNATIONAL SEARCH REPORT

International application No

.PCT/IBZOO9/051035

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/48 :

According to International Patent Classification (IPC) or to both-national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system foliowed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X STAVROU K ET AL: "Chip multiprocessor

' based on data-driven multithreading model"
"INTERNATIONAL JOURNAL OF HIGH PERFORMANCE
SYSTEMS ARCHITECTURE INDERSCIENCE ’
ENTERPRISES LTD. ‘SWITZERLAND,
vol. 1, no. 1, 2007, pages 24-43,
XP002531675
, ISSN: 1751-6528
A the whole document

14

- 1-13,
15-17

m Further documents are listed in the continuation of Box C. E See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

‘E* earlier document but published on or after the international e
filing date

invention

which is cited to establish the publication date of another we
citation or other special reason (as specified)

*T" later document published after the international filing date
or priority date and not in confiict with the application but
cited to understand the principle or theory underlying the

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
‘L* document which may throw doubts on priority claim(s) or . involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the

_ European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,

O document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the ar.- »
later than the priority date claimed *&" document member of the same patent family
Date of.the actual completion of the international search Date of mailing of the intemational search repornt
13 July 2009 23/07/2009
Name and mailing address of the ISA/ Authorized officer

Fax: (+31-70) 340-3016 Carciofi, Andrea

Form PCT/ISA/210 (second sheet) (Aprit 2005)

INTERNATIONAL SEARCH REPORT

International application No

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

PCT/1B2009/051035

Category*

Citation of document, with indication, where appropriate, of the relevant passages‘

Relevant to claim No.

A

NOGUERA J ET AL: "Multitasking on
reconfigurable-architectures:
microarchitecture support and dynamic
scheduling"

ACM TRANSACTIONS ON EMBEDDED COMPUTING
SYSTEMS, ACM, NEW YORK, NY, US, ’
vol. 3, no. 2, 1 May 2004 (2004-05-01),
pages 385-406, XP002398662

ISSN: 1539-9087 '

page 391, line 6 - page 393, line 6

EP 0 274 339 A2 (UNITED TECHNOLOGIES CORP
[US]) 13 July 1988 (1988-07-13)
abstract R

column 14, 1ineé 1 - column 18, 1ine 19

'US 5 809 325 A (HINTON GLENN J [US] ET AL)

15 September 1998 (1998-09-15)
abstract _
column 20, 1ine 21 - column 21, line 8

1-17

1-17

1-17

. Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

15-09-1998

'PCT/1B2009/051035
Patent document Publication Patent family Pubiication
cited in search report date - member(s) ' date
EP 0274339 - A2 13-07-1988 DE 3752059 D1 05-06-1997
DE 3752059 T2 14-08-1997
JP 63184841 A 30-07-1988
US 5809325 - A us 5842036 A 24-11-1998

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - claims
	Page 13 - claims
	Page 14 - claims
	Page 15 - drawings
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - wo-search-report
	Page 20 - wo-search-report
	Page 21 - wo-search-report

