

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2005245065 B8

(54) Title
Nonwoven/Film Laminate

(51) International Patent Classification(s)
B32B 5/26 (2006.01) **A41D 31/00** (2006.01)
A41D 13/12 (2006.01)

(21) Application No: **2005245065** (22) Date of Filing: **2005.04.19**

(87) WIPO No: **WO05/113232**

(30) Priority Data

(31) Number
10 2004 024 042.6 (32) Date
2004.05.07 (33) Country
DE

(43) Publication Date: **2005.12.01**
(44) Accepted Journal Date: **2010.04.01**
(48) Corrigenda Journal Date: **2010.04.22**

(71) Applicant(s)
Paul Hartmann AG

(72) Inventor(s)
Steger, Alexandra

(74) Agent / Attorney
Griffith Hack, Level 19 109 St Georges Terrace, Perth, WA, 6000

(56) Related Art
WO 2004/037026 a
WO 2001/036188 A
WO 1997/002130 A

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
1. Dezember 2005 (01.12.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/113232 A1

(51) Internationale Patentklassifikation⁷: B32B 5/26.

A41D 13/12

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) Internationales Aktenzeichen: PCT/EP2005/004132

(22) Internationales Anmeldedatum:
19. April 2005 (19.04.2005)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
10 2004 024 042.6 7. Mai 2004 (07.05.2004) DE

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): PAUL HARTMANN AG [DE/DE]; Paul-Hartmann-Strasse 12, 89522 Heidenheim (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): STEGER, Alexandra [DE/DE]; Schmittenstr. 18, 89522 Heidenheim (DE).

(74) Anwälte: LANGÖHRIG, Angelika usw.; Dreiss, Fuhldorf, Steimle & Becker, Postfach 10 37 62, 70032 Stuttgart (DE).

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

WO 2005/113232 A1

(54) Title: NON-WOVEN/SHEET LAMINATE

(54) Bezeichnung: VLIES-/FOLIENLAMINAT

(57) Abstract: A non-woven/sheet laminate comprises a sheet and a non-woven layer on each side of the sheet. At least one surface of the non-woven layer which forms one visible side of the laminate has a linting coefficient of less than 2.7.

(57) Zusammenfassung: Die Erfindung betrifft ein Vlies-/Folienlaminat umfassend eine Folie und auf beiden Seiten der Folie eine Vliesschicht, wobei mindestens eine eine Sichtseite des Laminats bildende Oberfläche der Vliesschicht einen Lintingkoeffizienten kleiner 2,7 aufweist.

Nonwoven/Film Laminate

The invention concerns a nonwoven/film laminate comprising a sheet and a nonwoven layer on both sides of the sheet.

5

Nonwoven/film laminates are well known in the art. WO 99/14262 describes e.g. a nonwoven/film laminate comprising a polyethylene film which contains a filler to render the film microporous, wherein the film and a material are laminated together. A nonwoven material may thereby be disposed on one or both sides of the film.

In addition to providing a film with mechanical stability, nonwoven materials also advantageously have tactile properties which, when used for clothes, are more pleasant to wear than are foil materials. Such laminates are therefore used e.g. as material for surgical wear, and also in the biotechnological and chemical fields.

20 Despite their more pleasant tactile properties compared to foils, nonwoven materials bear an increased safety risk during use compared to films or foils. Nonwoven materials are disadvantageous, since the fiber cohesion is insufficient for many applications. Nonwoven materials 25 moreover have a smooth surface. Such smooth surfaces are disadvantageous in that the desired haptic properties of a textile material cannot be reliably obtained.

30 A plurality of documents disclose laminates with which a nonwoven material is disposed on one side of a film, e.g. WO 00/20208 which discloses a corresponding laminate for use as a surgical material.

35 WO 03/086758 moreover discloses a "low-linting" laminate which consists of a net-like sheet and an absorbing sheet which is connected to one side thereof. This laminate may be used as a cover for operations or in hygiene products.

Further nonwoven/film laminate materials are disclosed e.g. EP 0 912 788 B1 which disclosed a nonwoven/film laminate with a drawn film which is reinforced by an adhesive.

5

It would be advantageous if the present invention would provide a nonwoven/film laminate which is suited, in particular, as a material for use in surgery, comprising a film and a nonwoven layer on both sides of the film, 10 wherein the tactile properties of the nonwoven material preferentially correspond to those of a textile material, thereby also obtaining the required criteria for use of such materials such as e.g. water vapor permeability, water impermeability, and mechanical stability. Moreover, 15 a material shall be created which ensures safe working conditions when used in a work environment.

The present invention provides in a first aspect a nonwoven/film laminate, wherein at least one surface of 20 the nonwoven layer forming a visible side of the laminate has a linting coefficient of less than 2.7.

The linting coefficient may, in particular, be less than 2.5 and, in particular, less than 2.2. With such a 25 linting coefficient, the surface is sufficiently rough to produce a haptic textile impression of the nonwoven/film laminate.

Linting is the tendency of a textile or nonwoven to 30 release material fragments during use. Linting in connection with a nonwoven material means the release of particles such as fiber fragments or other components which are used to produce a nonwoven material, during use. This release of particles is important, since a minimum 35 amount of particles should be released from materials which are used in the surgical field for reasons of sterility and soiling. The release of particles is also

undesirable in other fields of application which require particularly clean working conditions. A linting coefficient of less than 2.7, in particular less than 2.5, in particular less than 2.2, thereby corresponds to a 5 number of particles (particles larger than $3\mu\text{m}$) per sample, as is specified in more detail in the test described below, of less than 500 particles, in particular less than 320 particles and, in particular less than 160 particles.

10

In accordance with a particularly preferred embodiment, the at least one surface forming a visible side of the laminate should additionally have a sliding friction coefficient μ of between $\mu = 0.35$ and 0.75 . The sliding friction coefficient may, in particular, be between $\mu = 15 0.40$ and 0.70 and, in particular, between 0.45 and 0.65 . Such a sliding friction coefficient yields a sufficiently rough surface to produce the haptic textile impression of the nonwoven/sheet laminate. The sliding friction 20 coefficient in a planar direction of the laminate is preferably the same in both directions (machine direction and transverse direction during laminate production). The laminate may then be further processed without limitations.

25

Friction is the sliding resistance between two surfaces lying on top of each other. One distinguishes between static and sliding friction. The static friction is the friction which is present as a threshold value at the 30 start of a sliding motion between bodies which are at rest relative to each other, wherein the acting force is insufficient to produce relative motion.

In contrast thereto, sliding friction is the friction 35 which remains effective at a predetermined sliding speed directly after the static friction between the bodies being moved relative to each other has been overcome. The

sliding friction force F_D is thereby the force required to overcome sliding friction. The sliding friction coefficient μ is determined by the ratio between the sliding friction force and the normal force F_N by $\mu = F_D/F_N$.

5

Increased roughness is advantageous for the goods produced from the material, such as surgical coats and covering sheets for the surgical field. When the material is excessively smooth, the film could slip off, thereby 10 impairing the work safety. The inventive material therefore typically also has anti-slip properties.

In particular, no additional mechanical or chemical treatment of the surface is provided or required in 15 accordance with embodiments of the invention in order to increase the roughness. In particular, additional coating, impregnation or introduction of further means to increase the surface roughness are usually unnecessary.

20 Despite the increased roughness, which is always accompanied by an increased particle release in prior art since the surface is conventionally mechanically roughened, a minimum amount of particles is released, which may permit use in working environments which require 25 the highest purity.

In embodiments of the invention the laminate is thereby not additionally surface-treated or rendered hydrophobic. It is independently hydrophobic laminate, wherein, in 30 particular, the nonwoven layers are hydrophobic. As defined herein, the terms multi-layer and multi-ply as well as layer and ply are used interchangeably.

35 The nonwoven layer may thereby be designed to have several layers on one or both sides of the sheet. In particular, spunbond and meltblown layers may be provided which are alternately disposed, in particular, as

spunbond/meltblown/spunbond layers or also as spunbond/meltblown/meltblown/spunbond layers. The layer facing outwardly is thereby preferably a spunbond layer. This produces favourable characteristics of the nonwoven 5 layer, in particular, since the film and also the meltblown layers retain a certain amount of liquid. The nonwoven material may preferably be thermally solidified, e.g. using a diamond calender. The nonwoven/film laminate may thereby be produced in one single method step, or 10 alternatively, the nonwoven layers may be initially separately produced and subsequently connected to the sheet.

The film may, in particular, be a water-impermeable but 15 water vapor permeable film. The laminate consequently has a water vapor permeability (WVTR) of, in particular, more than 4000 g/m²/24h. The laminate has moreover a water resistance which is defined by a water column of, in particular, more than 400cm and, in particular, more than 20 500cm.

The film may, in particular, be microporous. This microporosity may, in particular, be introduced into a film by providing it with a non-polymeric, particulate 25 filler, in particular, calcium carbonate, and subsequent drawing of the produced film such that capillaries form at the phase borders between the plastic material and the filler, which remain even after releasing the film. The film may comprise polyolefines, preferably 30 polyethylenes. The film may, in particular, consist of a thermoplastic polymer blend comprising two or more different polyethylenes. The polymer blend may, in particular, comprise LDPE and LLDPE.

35 In accordance with a particularly preferred embodiment, the nonwoven/film laminate is produced by a heat treatment process accompanied by a reduction in length in the flat

direction. The length in the flat direction may thereby be reduced preferably in only one flat direction (preferred direction), wherein reduction in length in only one directions means that the reduction in length 5 perpendicularly to the preferred direction is at most 1/10 of the reduction in length of the preferred directions. The length reduction in at least one direction may thereby be at least 2% and in particular at least 3% of the length of the sample in this direction. The reduction in length 10 in at least one direction may thereby be at most 10% and in particular at most 6% of the length of the sample in this direction. The temperatures thereby used may be between 45 and 100 °C and, in particular, between 45 and 90 °C and, in particular, between 45 and 80 °C and moreover, 15 in particular, between 50 and 65 °C during thermal treatment. Shrinking or length reduction in the flat direction is thereby effected, in particular, in the direction corresponding to the machine direction (MD) during production of the nonwoven/film laminate. With 20 particular preference, the length reduction is combined with a sterilization step for the material or, in particular, the finished product, such that no additional step is required. The length reduction in one direction moreover increased the laminate thickness, wherein the 25 laminate or, in particular, the nonwoven material is warped. The fibers of the nonwoven material thereby bulge without impairing the fiber cohesion. This is evidenced by the very small linting coefficient.

The reduction in length may thereby increase the thickness 30 by more than 30%, in particular, more than 40% and, in particular, more than 50%. The inventive laminates may thereby preferably have a thickness before thermal treatment of 0.2 to 1.0 mm, in particular, 0.3 to 0.8 mm, and preferentially 0.4 to 0.6 mm. The inventive laminates 35 may also preferably have a thickness following thermal treatment of 0.3 to 1.5 mm, in particular 0.4 to 1.0 mm and preferentially 0.5 to 0.7 mm. The layers, i.e. the

film with the nonwoven layers may be connected by an adhesive which is disposed, in particular, not over the full surface, and is, in particular, a fusion adhesive. A method for non-full surface application is e.g. a contact 5 method in accordance with EP 568 812 A1. Alternatively, the layers may be connected through thermal solidification methods or by ultrasound.

In a particularly preferred embodiment, the nonwoven/film 10 laminate is symmetrical relative to the film. The layer structure i.e. the number and sequence of the spunbond and meltblown layers may be symmetrical as well as the materials used for producing the individual spunbond or meltblown layers. Symmetry may also be considered with 15 regard to the differing characteristics of the side of the nonwoven layers associated with the production process.

The present invention provides in a second aspect the use of a nonwoven/film laminate for a disposable piece of 20 clothing which can, in particular, be sterilized, wherein, in particular, the surface-forming walls of the piece of clothing may be formed from a corresponding nonwoven/film laminate. The material may also be used for covers, in particular in the surgical field and for surgical clothes, 25 such as surgical jackets and coats as well as caps etc.

The present invention provides in a third aspect a method for producing a nonwoven/film laminate, wherein a layer composite of film and the nonwoven layers connected to 30 both sides of the film, are subjected to thermal treatment, thereby reducing the length of the layer composite in the flat direction. The thermal treatment may be performed, in particular, at temperatures of between 45 and 100 °C and, in particular, between 45 and 35 90 °C and, in particular, between 45 and 80 °C and moreover, in particular, between 50 and 65 °C. The length may be reduced, in particular, in only one direction in the

plane, wherein reduction in length in only one direction means that the length reduction perpendicular to the preferred direction is at most 1/10 of the length reduction of the preferred direction. The length 5 reduction in at least one direction may thereby be at least 2% and, in particular, at least 3% of the length of the sample in this direction. The length reduction in at least one direction may thereby be at most 10% and, in particular, at most 6% of the length of the sample in this 10 direction.

The present invention provides in a fourth aspect a nonwoven/film laminate comprising a film and a nonwoven layer on both sides of the film, characterized in that at 15 least one surface of the nonwoven/film forming a visible side of the laminate has a linting coefficient of less than 2.7 and the at least one visible side of the nonwoven layer surface forming the laminate has a sliding friction coefficient of between $\mu = 0.35$ and 0.75 .

20 The test methods used are explained in more detail below:

Linting coefficient:

25 The linting coefficient is determined in accordance with the international standard ISO 9073-10. Measurement was performed with a device Gelbo Flex 5000 of the company Instrument Marketing Services/Fairfield and a Counter LS 31C of the company SFP.

30 Sliding friction coefficient:

The friction ratio was measured in accordance with DIN 53375, wherein the following test devices were used:

- hydraulic punch
- 35 - punching tool 65 x 200 mm \pm 0.25 mm
- punching tool 150 x 300 mm \pm 0.25 mm
- tension testing machine according to DIN 51221 class 1

- additional device consisting of sample table with removal carriage
- friction block according to DIN 53375 (produced by F.A. Zwick/Roell).

5

Sample preparation: The samples must be stored in a standard atmosphere DIN 50014 - 23/50-2 - for at least 16 hours. The samples may not be bent, folded or scratched. Finger prints, dust and other soiling must be prevented.

10

Testing is performed with the laminate outer sides opposite each other, i.e. the same sides are tested with respect to each other, wherein the machine direction and the transverse direction of the laminate are taken into consideration in the measurement, and corresponding directions of the laminate are measured with respect to each other.

20 Test method: the test body 1 (150 x 300 mm) is mounted to the base plate of the sample table with maximum alignment. The test body 2 (65 x 200 mm) is clamped into the friction block without creasing, and fastened on the force transducer using a thread (without twisting). The friction block, including test body 2, is carefully disposed onto the test body 1, such that the test sides contact each other. The connection to the force transducer should thereby not yet be tensioned. The test is started 15 seconds after disposing the friction block. The test may be terminated after a friction path of 30 approximately 60 mm. The test speed is 100 m per minute, for both the pre- and post-measurement paths.

35 Analysis: the pre-measurement of path of 10 mm and the post-measurement path of 10 mm are not used in the analysis. The force dependence of a longer sliding motion often deviates from the ideal of a constant level due to secondary effects. Only the force dependence of the path

of 60 mm is used to determine the sliding friction value μ .

The sliding friction value μ is obtained in accordance
5 with the following formula: $\mu: \mu = F_D : F_N$, wherein F_D is the
sliding friction force in Newtons and F_N is the normal
force in Newtons (here in accordance with the standard:
10 $F_N = 1.96 \text{ N}$). A sample number of at least $n = 5$ should
thereby be used, and the average value and the standard
deviation are rounded to two digits after the decimal
15 point to thereby determine the sliding friction of the
nonwoven/sheet laminate.

Water vapor volume resistance:

15 The water vapor volume resistance $R_{ET} = (\text{m}^2 \text{ Pa/W})$ was
measured as follows:

- test device: thermo regulation model of the human skin
20 (skin model, research institute Hohenstein, Castle
Hohenstein, 74357 Bönnigheim, Germany)
- test conditions: DIN 31092 (02/94) or ISO 11092 (10/93)
- test climate: temperature 35°C , 40% relative moisture
An average was formed from three individual measurements
25 on three different sample sections.
Clothes are thereby considered to be more physiologically
favorable, the lower the material-specific water vapor
volume resistance R_{ET} , since this leads to improved
evaporation of perspiration from the user's body. The
30 following criteria, obtained from research, can be used to
assess the physiological quality of textiles with barrier
effect, in particular, for surgical clothes: $R_{ET} \leq 8 \text{ m}^2 \text{ Pa/W} =$
very good, $R_{ET} \geq 40 \text{ m}^2 \text{ Pa/W} =$ insufficient.

35 Measurement of thickness:

The method determines the thickness of flat structures

under a defined load using a mechanical thickness measuring device having a measuring scale, different weights, a measuring surface of 25 cm^2 , and a scale setting of 0.01 mm. A test sample of a sufficiently large size is 5 cut out from the test material and the test sample is prepared at the standard climate (23°C , 50% moisture). The thickness measuring device is operated in accordance with the operating instructions and the thickness is measured as specified at a load of 5g/cm^2 in millimeters to 10 exactly 0.01 mm. In the evaluation, the thickness of five samples is measured in millimeters, therefrom determining the average value, which is rounded to two decimal places.

15 The inventive dimensional information thereby corresponds to the average value determined in accordance with the stated test method, unless otherwise specified.

20 Embodiments of the invention are also explained in more detail below by means of an example.

Further advantages and features of the embodiments of the invention can be extracted from the following example and its description: The example concerns a nonwoven/film laminate which is formed by stacking two layers of 25 nonwoven and one microporous sheet symmetrically with respect to the central layer. Each nonwoven layer thereby consists of a spunbond/meltblown/meltblown/spunbond laminate (SMMS) which is thermally solidified and also symmetrically structured. The two central layers of the 30 meltblown material cannot be separately identified after production. The nonwoven layer and the film are connected using a hot fusion adhesive with a surface application of 2 g/m^2 of connecting surface. It is applied onto a portion of the surface using the contact coating method in 35 accordance with EP 568 812 A1 and via controllable slot dies. The nonwoven material thereby has the following properties:

- surface density 17 g/m²
- distribution SMMS = 6.8 - 1.7 - 1.7 - 6.8 [g/m²]

5 The nonwoven material consists of different polypropylenes (PP). None of the layers is subjected to an anti-static surface treatment or is subsequently rendered hydrophobic.

10 The film consists of thermoplastic polymer blend of low density polyethylene (LDPE) and a linear-low density polyethylene (LLPDE) and a filler, in the present case calcium carbonate (CaCO₃).

15 The film has one layer, is not elastic, has a surface density of 25 g/m², and a film thickness of 25µm. The film contains 50 weight % (± 12 weight %) of calcium carbonate having an average particle diameter of less than 2µm. It is uniaxially drawn in the machine direction in order to provide micropores in the film.

20 The laminate was then subjected to tests in accordance with the above-described methods, i.a. to determine the parameters and the shrinking behavior. Thermal treatment was performed in a warming cabinet at 54 °C and 70% relative air moisture for 6 hours. The following values 25 were determined:

1. length change (laminate) due to thermal treatment

30 The measurements were performed on 5 punched-out material pieces of identical sizes of 206 mm x 294 mm (MD x CD). All five samples had a size of 200 mm x 296 mm (MD x CD) after thermal treatment and in the cooled state at room temperature.

35 Length change in the machine direction (MD): -2.9%
Length change in the transverse direction (CD): +0.7%
2) surface density (F) / g / m² - averaged over 10

measurements (average value and standard deviation)
measured with Mettler Toledo PB 3002

5 F (before thermal treatment) = 63.2 g/m² (s=1.7 g/m²)
F (after thermal treatment) = 65.6 g/m² (s=1.0 g/m²)

The surface density thereby increases on average by
approximately 4% due to thermal treatment.

10 3) Measurement of thickness, thickness (D) / mm - averaged
over 10 measurements (average value and standard
deviation)

15 D (before thermal treatment) = 0.43 mm (s=0.005 mm)
D (after thermal treatment) = 0.66 mm (s=0.020 mm)

The thickness thereby increases on average by
approximately 53% due to thermal treatment.

20 4) sliding friction coefficient μ - averaged over 10
measurements (average value and standard deviation)

μ (MD, before thermal treatment) = 0.46 (s=0.04)
 μ (MD, after thermal treatment) = 0.52 (s=0.07)
25 μ (CD, before thermal treatment) = 0.48 (s=0.04)
 μ (CD, after thermal treatment) = 0.57 (s=0.06)

This is followed by a test after sterilization with
ethylene oxide and heat under the same conditions as
30 before (54°C, 70% relative air humidity, duration 6h):

1) length change (laminate):

35 The measurements were performed on 5 punched-out material
pieces of identical sizes of 206 mm x 294 mm (MD x CD).
All five samples had a size of 200 mm x 296 mm (MD x CD)
after thermal treatment and in the cooled state at room

temperature.

Length change in the machine direction (MD): -3.0%

Length change in the transverse direction (CD): 0.0%

5

2) surface density (F) / g / m² - averaged over 10 measurements (average value and standard deviation) measured with Mettler Toledo PB 3002.

10 F (before thermal treatment) = 65.2 ± 1.3 g/m²

F (after thermal treatment) = 66.6 ± 1.0 g/m²

The surface density thereby increases on average by approximately 2 % due to thermal treatment.

15

3) Measurement of thickness, thickness (D) / mm - averaged over 5 measurements (average value and standard deviation)

D (before thermal treatment) = 0.43 ± 0.005 mm

20 D (after thermal treatment) = 0.68 ± 0.005 mm

The thickness thereby increases on average by approximately 58% due to thermal treatment.

25 4) sliding friction coefficient μ - averaged over 5 measurements (average value and standard deviation)

μ (MD, before thermal treatment) = 0.46 ± 0.02

μ (MD, after thermal treatment) = 0.51 ± 0.02

30 μ (CD, before thermal treatment) = 0.51 ± 0.03

μ (CD, after thermal treatment) = 0.52 ± 0.03

5) water vapor permeability (WVTR) / g / m² / 24h (climate B) - averaged over 5 measurements (average value and

35 standard deviation), according to DIN 53 122-1

WVTR (before thermal treatment) = 5182 ± 115 g/m² - 24h

2005245065 04 Mar 2010

- 15 -

WVTR (after thermal treatment) = $5149 \pm 252 \text{ g/m}^2$ - 24h

6) water column (W) / cm for a gradient of 60 mbar / min -
averaged over 5 measurements (average value and standard
5 deviation) according to EN 20 811 device Textest FX 3000

W (before thermal treatment) = $565 \pm 45 \text{ cm}$

W (after thermal treatment) = $592 \pm 20 \text{ cm}$

10 7) water vapor volume resistance - averaged over 3
measurements $R_{et} = 25.07 \text{ m}^2 \text{ Pa/W}$

15 Linting values were moreover determined in 5 samples,
wherein both sides were measure in each case. The results
were between 1.28 and 2.49 which corresponds to an amount
of particles of more than $3\mu\text{m}$ per sample of between 19 and
310.

20 8) linting (L) / number of particles $> 3\mu\text{m}$
Gelbo Flex 5000 ES by Instrument Marketing Services of
Fairfield; Counter LS 31C of the company SFP

25 A sterile material, which was sterilized in accordance
with the above-mentioned conditions, was tested - 5
measurements per side (average value and standard
deviation)

L (side 1) = 130 ± 116

L (side 2) = 105 ± 113

30 Embodiments of the invention thereby provides a material
which can be used with particular advantage for surgical
applications, such as e.g. surgical aprons and coats,
surgical caps and cover sheets due to it pleasant textile
35 properties and at the same time low linting coefficient.
Moreover, the material can be easily produced and further
processed.

It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any 5 other country.

In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary 10 implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

Claims

1. Nonwoven/film laminate comprising a film and a
5 nonwoven layer on both sides of the film,
characterized in that at least one surface of the
nonwoven film forming a visible side of the laminate
has a linting coefficient of less than 2.7 and the at
least one visible side of the nonwoven layer surface
10 forming the laminate has a sliding friction
coefficient of between $\mu = 0.35$ and 0.75.
2. Nonwoven/film laminate according to claim 1,
characterized in that the linting coefficient is
smaller than 2.5.
- 15 3. Nonwoven/film laminate according to claim 1 or 2,
characterized in that the linting coefficient is
smaller than 2.2.
4. Nonwoven/film laminate according to one of the claims
1 to 3, characterized in that the sliding friction
20 coefficient is between $\mu = 0.40$ and 0.70 and, such as
between $\mu = 0.45$ and 0.65.
5. Nonwoven/film laminate according to any one of the
preceding claims, characterized in that the nonwoven
layer comprises several layers on one or both sides
25 of the film.
6. Nonwoven/film laminate according to claim 5,
characterized in that the nonwoven layer comprises
spunbond and meltblown layers.
7. Nonwoven/film laminate according to claim 6,
30 characterized in that one or both nonwoven layers
is/are a spunbond/meltblown/spunbond laminate.
8. Nonwoven/film laminate according to claim 6,

characterized in that one or both nonwoven layers is/are a spunbond/meltblown/meltblown/spunbond laminate.

9. Nonwoven/film laminate according to any one of the preceding claims, characterized in that one or both nonwoven layers are thermally solidified.
10. Nonwoven/film laminate according to any one of the preceding claims, characterized in that one or both nonwoven layers are hydrophobic.
11. Nonwoven/film laminate according to any one of the preceding claims, characterized in that the laminate withstands a water column of $W>400\text{cm}$, such as $W>500\text{cm}$.
12. Nonwoven/film laminate according to any one of the preceding claims, characterized in that the laminate has a water vapor permeability of $\text{WVTR} > 4000 \text{ g/m}^2/24\text{h}$.
13. Nonwoven/film laminate according to any one of the preceding claims, characterized in that the film is microporous.
14. Nonwoven/film laminate according to any one of the preceding claims, characterized in that the film comprises polyolefines such as polyethylenes.
15. Nonwoven/film laminate according to any one of the preceding claims, characterized in that the film comprises a non-polymeric, particulate filler, in particular CaCO_3 .
16. Nonwoven/film laminate according to any one of the preceding claims, produced through a thermal treatment process and associated reduction in length in the flat direction.

17. Nonwoven/film laminate according to claim 16, characterized in that the length is reduced in the flat direction in substantially only one direction.
18. Nonwoven/film laminate according to any one of the preceding claims, characterized in that the nonwoven layers are connected to the film by an adhesive.
19. Nonwoven/film laminate according to claim 18, characterized in that the adhesive is not disposed on the entire surface.
- 10 20. Nonwoven/film laminate according to claim 18 or 19, characterized in that the adhesive is a hot fusion adhesive.
- 15 21. Nonwoven/film laminate according to any one of the preceding claims, characterized in that the nonwoven film laminate is symmetric relative to the sheet.
22. The use of a nonwoven/film laminate according to any one of the preceding claims, for a disposable piece of clothing, such as a disposable piece of clothing, which can be sterilized.
- 20 23. Method of producing a nonwoven/film laminate according to any one or more of the preceding claims, characterized in that a layer composite of film and nonwoven layers connected to the film is subjected to thermal treatment, thereby reducing the length in the flat direction of the layer composite.
- 25 24. Method according to claim 23, characterized in that thermal treatment is performed at temperatures between 45 and 100 °C, such as between 45 ° and 90 °C, or between 45 ° and 80 °C or between 50 ° and 65 °C.
- 30 25. Method according to claim 23 or 24, characterized in that the length is reduced in the flat direction substantially only in one direction.

26. Disposable piece of clothing, characterized in that its surface-forming walls consist of the nonwoven film laminate in accordance with one of claims 1 to 21.
- 5 27. Nonwoven/film laminate, method or disposable piece of clothing substantially as herein described with reference to an example described on pages 11-16.