wo 2010/057312 A1 I A0KVO 0 OO OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual Property Organization /5% o
(19 World Inclectuat Propety Organization. /552 NN A DR AR OO D
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
27 May 2010 (27.05.2010) PCT WO 2010/057312 Al
(51) International Patent Classification: 723 Carlaw Avenue, Toronto, Ontario M4K 3K8 (CA).
GO6F 21/00 (2006.01) HO041 9/30 (2006.01) POELUEYV, Yuri [CA/CA]; 637 Frieburg Drive, Water-
GO6F 9/445 (2006.01) loo, Ontario N2T 2Y2 (CA). CAMPAGNA, Matthew, J.
. L. i [US/US]; 264 Old Sib Road, Ridgefield, Connecticut
(21) International Application N“mber'P CTICA2005/001686 06877 (US). STIEMERLING, Thomas [CA/CAJ; 4th
Floor, 5520 Explorer Drive, Mississagua, Ontario L4W
(22) International Filing Date: 5L1 (CA).
24 November 2009 (24.11.2009) 74y Agents: SLANEY, Brett, J. ct al; Blake, Cassels &
(25) Filing Language: English Graydon LLP, Box 25, Commerce Court West, 199 Bay
. Street, Suite 2800, Toronto, Ontario M5L 1A9 (CA).
(26) Publication Language: English
L. (81) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of national protection available). AE, AG, AL, AM,
61/224,801 10 July 2009 (10.07.2009) Us CA. CH. CL. CN. CO. CR. CU. CZ. DE. DK. DM. DO.
(71) Applicant (for all designated States except US): CERTI- DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
COM CORP. [CA/CA]; 4th Floor, 5520 Explorer Drive, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
Mississauga, Ontario L4W SL1 (CA). KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(72) Inventors; and NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(75) Inventors/Applicants (for US only): O'LOUGHLIN, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
Daniel [US/US]; 209 Baldwin Drive, Aptos, California TZ,UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.
95003 (US). SMITH, Keelan [CA/CA]; 41 O'Hara Av-
(84) Designated States (unless otherwise indicated, for every

enue, Toronto, Ontario M6K 2P9 (CA). FULLER, Jay,
Scott [US/US]; 901 Lockwood Lane, Scotts Valley, Cali-
fornia 95066 (US). KU, Joseph [US/US]; #215, 380
Vista Roma Way, San Jose, California 95136 (US). LAT-
TIN, William [US/US]; 1590 Shirley Avenue, Los Altos,
California 94024 (US). STRUIK, Marinus [CA/CA];

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR HARDWARE BASED SECURITY

Appliance

10
/
50 14
S
16 FCT 12 Device
<
Tester 528 ACC

N ki Qsi

CERT[CA]

dsi . .
dei Qei CERTI[APP]]

h 4

Figure 51

Device
Programmer

20

(57) Abstract: An asset management system is provided, which includes a hardware module operating as an asset control core.
The asset control core generally includes a small hardware core embedded in a target system on chip that establishes a hardware-
based point of trust on the silicon die. The asset control core can be used as a root of trust on a consumer device by having fea-
tures that make it difficult to tamper with. The asset control core is able to generate a unique identifier for one device and partici-
pate in the tracking and provisioning ot the device through a secure communication channel with an appliance. The appliance gen-
erally includes a secure module that caches and distributes provisioning data to one of many agents that connect to the asset con-
trol core, e.g. on a manufacturing line or in an after-market programming session.

WO 2010/05731:2 A1 W00 0000 AR O

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, _ before the expiration of the time limit for amending the

ML, MR, NE, SN, TD, TG). claims and to be republished in the event of receipt of
Published: amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

WO 2010/057312 PCT/CA2009/001686

SYSTEM AND METHOD FOR HARDWARE BASED SECURITY
[0001] This application claims priority from U.S. Patent Application No. 61/193,391 filed
November 24, 2008, and U.S. Patent Application No. 61/224,801 filed July 10, 2009, the contents of

both being incorporated herein by reference.

TECHNICAL FIELD

[0002] The following relates to a system and method for managing electronic assets.
BACKGROUND

[0003] There are various elements in a manufacturing process that can create what is
considered “waste”. Such elements may include defects, inventory (excessive, redundant, etc.), over-
production, over-processing, movement, transportation, and waiting. Additionally, there are costs that
can be attributed to external causes such as cloning, copying, technology transfer, and theft (both
physical and IP theft).

[0004] Also, at the heart of a wide variety of consumer and commercial products today is a
System-on-Chip (SoC) where many features are integrated on a single silicon die. Manufacturers may
use the same SoC in different platforms with various features enabled/disabled in order to
differentiate the final products in the market. Unauthorized enablement of features represents
significant revenue loss to companies.

[0005] Traditional methods of feature programming include: outright customization of the
SoC silicon through different mask sets; the use of silicon fuses that may be selectively “blown” to
control a feature; the use of jumper wires on motherboards; and the loading of different components
and firmware per product.

[0006] The provisioning of features occurs in a variety of manufacturing locations whose
facilities perform a range of production steps including wafer fabrication for chips, assembly,
packaging, test, and system integration where components and firmware are integrated into a final
product or assembly. These manufacturing locations are typically overseas and out of the control of
the semiconductor company outsourcing the contract manufacturing to these facilities. As a result,
there is little reason for the semiconductor company to trust the distributed manufacturing facility to
manage the distribution and collection of proprietary and sensitive data such as feature provisioning
commands, content protection key data, software/firmware code images, test results and yield
reporting data.

[0007] Given the value such SoCs have, and the trend for semiconductor companies to
outsource manufacturing, assembly and distribution of their products, several new problems begin to

emerge due to the lack of trusted manufacturing processes.

WO 2010/057312 PCT/CA2009/001686

BRIEF DESCRIPTION OF THE DRAWINGS

- [0008] Embodiments will now be described by way of example only with reference to the
appended drawings wherein:

[0009] Figure 1 is a block diagram of an asset management system (AMS).

[0010] Figure 2 a sequence diagram showing exemplary operations performed by the AMS in
Figure 1 for providing an asset to a device.

[0011] Figure 3 is a block diagram showing details of one embodiment for the controller
shown in Figure 1.

[0012] Figure 4A is a block diagram showing details of one embodiment for the appliance

shown in Figure 1.

[0013] Figure 4B is a state diagram illustrating state transitions for the appliance shown in
Figure 4A.
[0014] Figure 5 is a block diagram showing details of one embodiment for the tester and

agent shown in Figure 1.

[0015] Figure 6A is a block diagram showing details of one embodiment for the agent API
shown in Figure 1.

[0016] Figure 6B is a block diagram showing details of one embodiment for the daemon API
shown in Figure 1.

[0017] Figure 7A is a block diagram showing a configuration of the AMS for performing
serialization along with a schema definition workflow example.

[0018] Figure 7B is a block diagram showing a configuration of the AMS for performing key
injection.

[0019] Figure 7C is a block diagram showing a configuration of the AMS for performing

feature activation.

[0020] Figure 8 is a sequence diagram showing an exemplary set of operations for performing
serialization using the AMS.

[0021] Figure 9 is a sequence diagram showing an exemplary set of operations for performing
key injection using the AMS.

[0022] Figures 10A to 10B are sequence diagrams showing an exemplary set of operations for
performing feature activation using the AMS.

[0023] Figure 11 is an exemplary screen shot showing a quick status view provided by the
AMS graphical user interface (GUI) shown in Figure 1.

[0024] Figure 12 is an exemplary screen shot showing an appliances view provided by the
AMS GUL

WO 2010/057312 PCT/CA2009/001686

[0025] Figure 13 is an exemplary screen shot showing an appliances view provided by the

AMS GUI with an alert bar showing.

[0026] Figure 14 is an exemplary screen shot showing a main status view provided by the
AMS GUL

[0027] Figure 15 is an exemplary screen shot showing an alerts view provided by the AMS
GUIL

[0028] Figure 16 is an exemplary screen shot showing a jobs view provided by the AMS GUI
in a three-line zoom mode.

[0029] Figure 17 is an exemplary screen shot showing a jobs view provided by the AMS GUI
in a one-line zoom mode.

[0030] Figure 18 is an exemplary screen shot showing a jobs view provided by the AMS GUI
in a details zoom mode.

[0031] Figure 19 is an exemplary screen shot showing a reports view provided by the AMS
GUIL

[0032] Figure 20 is an exemplary screen shot showing a generate reports view provided by the
AMS GUL

[0033] Figure 21 is an exemplary screen shot showing a reports screen provided by the AMS
GUL

[0034] Figure 22 is an exemplary screen shot showing a controller view provided by the AMS
GUL

[0035] Figure 23 is an exemplary screen shot showing a modify controller view provided by
the AMS GUL

[0036] Figure 24 is an exemplary screen shot showing an appliances view provided by the

AMS GUI in a three-line zoom mode.
[0037] Figure 25 is an exemplary screen shot showing an appliances view provided by the
AMS GULI in a one-line zoom mode.

[0038] Figure 26 is an exemplary screen shot showing an appliances view provided by the

AMS GUI in a details zoom mode.

[0039] Figure 27 is an exemplary screen shot showing a ping appliance view provided by the
AMS GUL

[0040] Figure 28 is an exemplary screen shot showing a sync appliance view provided by the
AMS GUL

[0041] Figure 29 is an exemplary screen shot showing a modify appliance view provided by
the AMS GUL

WO 2010/057312 PCT/CA2009/001686

[0042] Figure 30 is an exemplary screen shot showing a deactivate appliance view provided

by the AMS GUL

[0043] Figure 31 is an exemplary screen shot showing a remove appliance view provided by
the AMS GUL

[0044] Figure 32 is an exemplary screen shot showing a products view provided by the AMS
GUI in a three-line zoom mode.

[0045] Figure 33 is an exemplary screen shot showing a products view provided by the AMS
GUI in a one-line zoom mode.

[0046] Figure 34 is an exemplary screen shot showing a products view provided by the AMS
GUI in a details zoom mode.

[0047] Figure 35 is an exemplary screen shot showing an add product view provided by the
AMS GUL

[0048] Figure 36 is an exemplary screen shot showing a serialization schema view provided

by the AMS GUI in a three-line zoom mode.

[0049] Figure 37 is an exemplary screen shot showing a serialization schema view provided
by the AMS GUI in a one-line zoom mode.

[0050] Figure 38 is an exemplary screen shot showing a serialization schema view provided

by the AMS GUI in a details zoom mode.

[0051] Figure 39 is an exemplary screen shot showing an add schema view provided by the
AMS GUI.

[0052] Figure 40 is an exemplary screen shot showing a key types view provided by the AMS
GUI in a three-line zoom mode.

[0053] Figure 41 is an exemplary screen shot showing a key types view provided by the AMS
GUI in a one-line zoom mode.

[0054] Figure 42 is an exemplary screen shot showing a key types view provided by the AMS
GUI in a details zoom mode.

[0055] Figure 43 is an exemplary screen shot showing an add key type view provided by the
AMS GUL

[0056] Figure 44 is an exemplary screen shot showing a feature control tickets view provided

by the AMS GUI in a three-line zoom mode.
[0057] Figure 45 is an exemplary screen shot showing a feature control tickets view provided
by the AMS GUI in a one-line zoom mode.

[0058] Figure 46 is an exemplary screen shot showing a feature control tickets view provided
by the AMS GUI in a details zoom mode.

WO 2010/057312 PCT/CA2009/001686

[0059] Figure 47 is an exemplary screen shot showing a users view provided by the AMS
GUL

[0060] Figure 48 is an exemplary screen shot showing an add users view provided by the
AMS GUL

[0061] Figure 49 is an exemplary screen shot showing an add users view provided by the

AMS GUI showing one example of an error bar.
[0062] Figure 50 is an exemplary screen shot showing an add users view provided by the

AMS GUI showing another example of an error bar.

[0063] Figure 51 is a block diagram of an AMS in one configuration for utilizing the ACC.
[0064] Figure 52 is a block diagram showing further detail of the device and ACC shown in
Figure 51.

[0065] Figure 53 is a block diagram showing further detail of hardware components of the

ACC shown in Figures 51 and 52.
[0066] Figure 54 is a state diagram illustrating the sequence of operations executed by the

firmware in the ACC in transitioning through various states.

[0067] Figure 55 is flow diagram illustrating a boot sequence executed by the firmware in the
ACC.
[0068] Figure 56 is a flow diagram illustrating a state transition sequence executed by the

firmware in the ACC.
[0069] Figures 57a to 57d are flow diagrams illustrating subroutines for the four life cycle

states shown in Figures 54 and 55.

[0070] Figure 58 is flow diagram for a command interpreter executed by firmware in the
ACC.
[0071] Figure 59 is a flow diagram illustrating an error handler routine executed by the

firmware in the ACC.

[0072] Figure 60 is a flow diagram illustrating a hibernation subroutine executed by the
firmware in the ACC.

[0073] Figure 61 is a flow diagram illustrating a single command sequence between the
appliance and the ACC.
[0074] Figure 62 is a flow diagram illustrating an initialization protocol between the backend,

appliance, and ACC.

[0075] Figure 63 is a flow diagram illustrating a key agreement protocol between the
backend, appliance, and ACC.
[0076] Figure 64 is a flow diagram illustrating an authentication with confidential messaging

protocol between the backend, appliance, and ACC.

-5-

WO 2010/057312 PCT/CA2009/001686

[0077] Figure 65 is a block diagram illustrating an MMO hash function.

[0078] Figures 66a to 66f are flow diagrams illustrating a sequence of operations performed
in a feature activation routine for virtual inventory.

DETAILED DESCRIPTION OF THE DRAWINGS

[0079] A problem with traditional approaches to feature programming is that they need to be
done in a trusted environment, can be costly to make changes, and typically cannot be readily undone.
[0080] Also, it has been recognized that counterfeit or discarded chips are being treated as
new products with no way of differentiating between legitimate and illegitimate parts. In some cases,
defective chips designated to be destroyed are somehow being recycled back into the production line,
while good devices are siphoned off and replaced by cheap competitor or non-compatible chips. As a
result, chip vendors are beginning to see their brand being diluted while the cost of warranty
increases as these unofficial chips are returned for failing to meet specification.

[0081] Another problem arises when considering the proliferation of content protection
schemes designed to protect the commercial rights of digital media owners. These content protection
schemes require that unique per device key data be programmed into each device somewhere in the
manufacturing process. As a licensee of these content protection schemes, semiconductor
manufacturers become liable for the content protection key data and need to protect that data as it is
distributed throughout their untrusted manufacturing operation.

[0082] As semiconductor manufacturers begin to leverage the distributed manufacturing
model, they lose direct control of proprietary device and manufacturing data to the distributed
manufacturing operation. In addition to content protection key data, other outbound forms of
proprietary data, like feature provisioning commands, software/firmware instruction/machine code,
and device personalization data must be distributed and stored throughout the untrusted
manufacturing operation. Proprietary manufacturing data also needs to be stored at and collected from
the untrusted distributed manufacturing operation by the semiconductor company. The inbound
proprietary manufacturing data could exist as test reports/programs, process data and yield
management data.

[0083] Opportunities to increase the bottom line in a given manufacturing process may exist
by obtaining competitive advantages through the secure management of digital assets. In the
following, a system is described that provides a solution framework that may be used to reduce the
above-noted wastes and obtain competitive advantages in various applications. The system to be
described comprises several software and hardware components that are deployed and integrated into
the manufacturing process across multiple physical locations. In this way, a manufacturing platform

is created that can provide a comprehensive infrastructure solution.

Asset Management System (AMS)

-6 -

WO 2010/057312 PCT/CA2009/001686

[0084] The manufacturing platform noted above may be referred to herein as an asset
management system (AMS) and will be denoted by numeral 10 as shown in Figure 1. The AMS 10
is a customizable solution that can be adapted to accommodate various services. For example, as
discussed below, the AMS 10 can be configured to perform one or more of serialization, key
injection, and feature activation by controlling the provision of corresponding assets. An asset may
therefore refer to any digital data that is to be added, applied to, associated with, or otherwise bound
to a device 14. A device 14 can be any component or item that is capable of utilizing such assets. For
example, a device 14 may represent a chip, circuit board, electronic consumer device, computer,
processor, memory, etc. The AMS 10 creates a control channel 4 to control the provision or injection
of an asset into a device 14, and an audit channel 6 to enforce the collection of logging data to track
the distribution and use of the assets. The components of the AMS 10 which will be described below
can be distributed globally, implemented locally, or any configuration comprising both remote and
local components. The AMS 10 enables a company to manage and control sensitive manufacturing
processes across a global, outsourced manufacturing environment.

[0085] The AMS 10 comprises one or more controllers 22, which operate as main servers and
can be located at the headquarters of an electronic device manufacturer to remotely control their
operations at any global location. The controller 22 can communicate remotely over the Internet or
other network (not shown) to control one or more secondary or remote servers, herein referred to as
appliances 18. The appliances 18 can be situated at different manufacturing, testing or distribution
sites. The controller 22 and appliances 18 comprises hardware security modules (HSMs) 19 to
perform sensitive and high trust computations, store sensitive information such as private keys,
perform other cryptographic operations, and establish secure connections between components. The
HSMs 19 are used to create secure end-points between the controller 22 and the appliance 18 and
between the appliance 18 and the secure point of trust in the asset control core (ACC) 12 embedded in
a device 14. The HSM 19 can be a standard off-the-shelf component that provides the ability to add a
functional module (FM) 11 comprising source code to perform additional secure operations. For
example, as will be explained further below, the AMS 10 enables the metering of credits for assets
that are consumed and the HSM 19 when utilizing the FM 11 allows such metering to be performed
securely within the secure boundary created by the HSM 19. The use of the FM 11 provides greater
flexibility in which operations can be performed in a trusted and secure manner, e.g. in addition to
encryption and signing. The FM 11 also provides greater flexibility in which protocols can be
utilized, e.g. the ECMQV protocol used to communicate with the ACC 12 (discussed later).

[0086] The controller 22 also provides a graphical user interface (GUI) 8 to enable
administrators, operators, and other users to interface with the controller 22, the appliances 18, and the

wider AMS 10. The appliance 18 communicates with one or more agents 20, wherein each agent 20

-7 -

WO 2010/057312 PCT/CA2009/001686

is integrated into a test script or other production routine using an agent application programming
interface (API) 21 and in some embodiments a daemon API 23 that places the agent’s role in a
separate process outside of the tester 16 and its application (see Figure 6B discussed later). The test
script or production routine is typically a custom application that is loaded onto a tester 16 on a
manufacturing line. It will be appreciated that the term “tester” may represent any manufacturing or
production equipment that is used to inject or otherwise provide an electronic asset to a device 14.
Typically, an appliance 18 is located at a production site which may be in the same physical location
as the tester 16 or may instead be remote thereto and connected over a LAN, WAN or other network
(not shown). As illustrated in Figure 1, the appliance 18 can be deployed in a redundant architecture
(i.e. with additional appliance 18) to ensure that if the primary or master appliance 18 malfunctions
or goes offline, the additional appliance 18’ is provisioned to take over and minimize production
downtime. In some embodiments, the AMS 10 may utilize an ACC 12 embedded on the device 14
for establishing secure communications between the appliance 18 and the device 14, through the agent
20.

[0087] Using the AMS 10, a system of factory provisioning can be created and deployed,
which can lead to a reduction in revenue loss and can open new revenue sharing opportunities with
partners and downstream customers. The AMS 10 can also improve overall security and brand
protection throughout the manufacturing process, in particular when outsourced contractors are used
to produce high margin devices. Such revenue loss reduction in the manufacturing and distribution
processes can be accomplished by: using the AMS 10 to help prevent unauthorized activation of
features in semiconductors and other electronic devices 14, reducing over-production, reducing
inventory and supply chain costs, enabling strong built-in revenue and brand protection measures, and
opening new opportunities to profit from after-market revenue potential.

[0088] Figure 2 illustrates how the controller 22, appliance 18, agent 20, and ACC 12 can be
used to define, distribute, and apply an asset to a device 14 as well as collect log reports at various
stages for auditing purposes. At the controller 22, the manufacturer (or owner of the asset to be
provided) defines the product, namely the object utilizing a particular type of service being provided
such as serialization, key injection, feature activation, etc. The controller 22 also defines the asset
type which corresponds to the product and service being applied to the product. By having separate
definitions for the assets and the products, a unique product name can enable multiple assets of
different types to be delivered together in some embodiments. For example, a key can be delivered
with a set of features to be activated or a key and a serial number can be delivered and injected at the
same time. This saves time and bandwidth as the two assets would utilize the same instance of the

control channel 4 to optimize delivery on a product-by-product basis.

WO 2010/057312 PCT/CA2009/001686

[0089] A number of assets are generated, acquired or otherwise imported by the controller 22
and the assets are bound to the product which creates an association between the asset and product
such that application of the service injects or adds the asset to the product and ultimately one or more
devices 14 being produced for that product. The product is then bound to an appliance 18. The
product can also be bound to more than one appliance 18 such that the AMS 10 can be configured to
distribute assets of the product across the appliances 18. If the same type of device 14 is being
produced at different facilities, different products can be created, one for each location. For example,
a device 14 may be produced in several geographical locations, each having an appliance 18 at a
different production facility. A product may then be created for each facility and bound to the
corresponding appliance 18. It may be noted that an appliance 18 can service more than one agent 20
at more than one tester 16 and thus more than one product can be defined for the same appliance 18.
[0090] The controller 22 then provides the products and corresponding assets to the appliance
18, and these assets are stored and the products thus provisioned at the appliance 18. The controller
22 meanwhile logs the event of sending the products and the assets and waits for an acknowledgement
from the appliance 18 of successful receipt and storage of the assets. The appliance 18 is configured
to communicate with at least one agent 20. The agent 20 is configured to utilize the assets in a
production or distribution stage. The agent 20 thus requests assets that it needs to perform this stage.
The appliance 18 meters and obtains an appropriate number of assets and logs this event to record the
allocation of assets to a particular agent 20 (and thus a particular tester 16). The assets are then
provided to the agent 20. The agent 20 may then begin a loop that includes applying an asset and
logging this event for each device 14 that it operates on. It can be seen that when an ACC 12 is used,
an exchange with the ACC 12 is performed, details of which are provided below. At some point, e.g.
upon hitting a log threshold, the agent 20 provides a set of agent logs to the appliance 18, and the
appliance 18 stores the logs. In other embodiments, the appliance 18 may request logs from the agent
20. The controller 22 at some later point (e.g. during a synchronization operation) then requests logs
for products associated with the appliance 18, and the appliance logs and agent logs, both stored by
the appliance 18 are provided to the controller 22. The controller 22 may then store the logs and
make them available for auditing and other post-processing or analyses of the data contained therein.
By controlling the distribution in one direction and enforcing the logging of events and collection of
same in the other direction, the AMS 10 is able to provide control over the manufacturing process.
[0091] As discussed above, the AMS 10 can be configured to provide various services such as
serialization, key injection, and feature activation. These services can be implemented using the
control and auditing channels exemplified in general in Figure 2. In order to configure the

components of the AMS 10 for these various services, the controller 22, appliance 18, agent 20, and

WO 2010/057312 PCT/CA2009/001686

ACC 12 should have certain capabilities. Further detail of these components will now be described,
making reference to Figures 3 to 6.

[0092] The controller 22 is shown in greater detail in Figure 3. The controller 22 can be
implemented as a security hardened, rack-mounted system which can be accessed through a web
interface from a standard web browser 100, 100’. As seen in Figure 3, the controller 22 includes the
GUI 8 which can be accessed by a web browser 100 at the controller 22 or remotely 100°. The GUI 8
sits on top of a web server 104 that utilizes a controller daemon 106 to communicate securely
(denoted by S) with the appliance(s) 18 and typically without security (denoted by U) with the
database 110. A reporting tool 108 can also securely access a relational database 110 to obtain
logging and other data for the purpose of generating reports. Service requests from the reporting tool
108 or any similar application can be made to access data in the database 110. A database schema is
utilized for efficient storage of logs, efficient storage of data as required by service modules, and for
efficient lookups of data as required by the service modules. Custom log data from all services
modules can be exported from the database 110. Before an appliance 18 is deleted, the controller 22
should synchronize with the appliance 18 to ensure that all logs have been collected. The controller
22 in this example also supports a command line interface (CLI) utility 102 that operates with the
controller daemon 106. The CLI utility 102, if utilized, should provide similar functionality as the
GUI 8.

[0093] The controller 22 synchronizes appliances 18 automatically at specified time intervals
to make sure that any service-related assets are at their specified maximum amounts, i.e. the controller
22 ensures that the appliance 18 has the assets it needs to operate as intended. A read only sync mode
can be provided to query current credit levels without topping up any credits. The synchronization
operation can also be used to send appliance configuration settings, and to retrieve logs from the
appliance 18 as illustrated in Figure 2. This enables the AMS 10 to support high speed manufacturing
at each production site without interruption if connections are temporarily lost. The controller 22 can
also issue alerts to specified e-mail addresses to inform operators of conditions that could stop
production, ideally before those conditions result. The controller 22 issues an alert under several
circumstances, such as: when the controller 22 is unable to contact an appliance 18, if there are any
errors when the controller 22 sends data to an appliance 18 (and vice versa), when a synchronization
operation has failed, when the number of assets in an appliance 18 reaches a specified warning level,
when the free disk space on an appliance 18 reaches a minimum, and when an appliance 18 has
blocked a connection from an agent 20 - because the agent IP address is not in the list managed by the
appliance 18. The management of these alerts can be performed through the GUI 8, described in

more detail below.

-10 -

WO 2010/057312 PCT/CA2009/001686

[0094] The controller 22 is also used to monitor all jobs running in the AMS 10, such as
synchronization operations and other long running tasks, the status of which can be monitored and
their progress logged. Job information can be made available in the GUI 8. The controller 22 also
enables operators to add and remove user roles. User roles can be assigned different levels of
permission to access each of the components of the AMS 10. The logs generated by the AMS 10 are
stored in the relational database 110.

[0095] The controller 22 in this example runs on server hardware, e.g. a Dell 2950
PowerEdge 2U rack mount server using a 2 x Intel Xeon quad core 5300 processor @ 3GHz. The
controller 22 can also use a 110/220 V 750 W redundant power module, a DVD ROM, dual gigabit
NICs, and a PCle riser. The controller 22 requires initial provisioning, e.g. by an export PKCS10
request for HSM and SSL certificates, signing the certificates by a device certification authority (CA),
and importing the SSL and HSM certificates into the HSM 19. It can be appreciated that any identity
certificates unique to each HSM 19 can also be used. The controller 22 should enable general settings
to be configured, such as name and SMTP settings for email alerts. Support for multiple user
accounts should be provided and a per-user permissions matrix can be used to allow access to various
parts of the AMS 10 to be granted or denied. In this way, different user roles can be defined and
different permissions given to each user role on a per module basis. The permissions matrix should
be configurable such that a customer can define such permissions and define the number of user roles
to differentiate between users. The controller 22 enables and disables service modules to enable
different service products to be defined, e.g. for serialization, key injection, feature activation, etc.
The controller 22 can also configure general settings for an appliance 18, settings such as name,
manufacturer, location, IP address, port number, socket retries, socket timeout, send/receive block
sizes, and list of agents 20 authorized for that appliance 22.

[0096] The controller 22 synchronizes with each appliance 18 at configurable time intervals,
e.g. every 30 minutes. However, the controller 22 also enables an operator to force a synchronization
immediately if this is desired before the next scheduled sync. The controller 22 provides control over
the AMS 10 and thus can authorize new appliances 18 before they are added. When shipped from a
supplier, the appliances 18 should then be in a state requiring such authorization before use. Other
provisioning of the appliance 18 by the controller 22 can also be performed once authorization has
completed successfully. The controller 22 also implements a credit system in which the controller 22
issues credit to appliances 18. Whenever an appliance 18 consumes an asset by providing it to an
agent 20 (as shown in Figure 2), the credit is decremented. The operator can define warning,
minimum and maximum levels and, if the current credit on the appliance 18 is less than or equal to
the warning level, the controller 22 issues an alert. If the current credit on the appliance 18 is less

than the minimum level, the controller 22 tops up the credit to the maximum level. If the appliance 18

<11 -

WO 2010/057312 PCT/CA2009/001686

runs out of credit, it can no longer provide assets to the agents 20. The credits should be allocated per
appliance 18 rather than per a service module in general.

[0097] As noted above, the controller 22 monitors a list of jobs for each appliance 18. This
creates a multithreaded design which allows each appliance 18 to be serviced independently of the
others. In addition, jobs on each appliance 18 may also be performed concurrently and independently
of the others. This allows multiple Ul requests to be handled by separate threads as well as multiple
appliance 18 connections to be handled by separate threads such that communication with one entity
does not disrupt communication with another thus increasing the parallelism of the AMS 10. The
health of each appliance 18 is also monitored, including the free and used hard disk space, free and
used memory, health of other hardware components like the HSM 19, date/time of last
communication with the controller 22, and date/time of last communication with each agent 20. The
controller 22 provides a ping utility to check the network liveness of the appliances 18, which uses the
secure communications channel between the controller 22 and the appliance 18. A time
synchronization utility is also provided to synchronize time on each appliance 18 with the controller
22 to ensure that the system time and the HSM time on the controller 22 and appliances 18 are
specified in UTC and are the same.

[0098] The controller 22 should also provide a process to disable appliances 18 from
servicing agents 20. Appropriate warnings and confirmation can be provided as such an action may
interfere or even stop a manufacturing line. When disabled, appliances 18 should continue servicing
the controller 22. For example, the ping utility should still work when the appliance 18 is disabled.
This functionality allows an operator to control their manufacturers through the appliances 18 in the
event that anomalies are detected and remedial action required. E-mail alerts can be generated to flag
issues that may potentially stop the manufacturing line and multiple e-mail addresses can be specified
so that all interested and affected parties can be notified. The controller 22 should also be able to
automatically and manually trigger a backup of itself. In the event of hardware failure or other
disasters, it should be possible to restore the controller 22 from a backup to new hardware or to
existing hardware.

[0099] Remote upgrades to appliance software, including HSM code, as well as local
upgrades of controller software, including HSM code are also enabled by the controller 22. The
controller 22 manages a list of agent IP addresses and subnets that are allowed to connect to each
appliance 18, and enables service requests from the GUI 8 and the CLI utility 102.

[00100] The appliances 18 are typically used in redundant pairs as shown in Figure 1 for
failure detection and failover. With redundant appliances 18, 18, each appliance 18, 18’ can be given
a similar quantity of assets with each set having different values. Therefore, if one appliance 18 fails,

the agent 20 can still obtain assets from the other appliance 18" without risk of having overlapping

-12-

WO 2010/057312 PCT/CA2009/001686

assets, in particular where assets must be unique. The appliances 18 should also be security-hardened,
rack mounted systems. Further detail of an exemplary configuration for an appliance 18 is shown in
Figure 4A. The appliance 18 comprises an appliance daemon 112 for controlling communications
between the controlier 22 and the agent 20 to provide a secure communication channel, and an
appliance relational database 114 for storing logs and other data. As discussed above, appliances 18
can be located at a test location, third-party manufacturer, assembly plant, or any production or
distribution location. One appliance 18 serves one or more agents 20, and appliances 18 can
communicate through one or more agents 20 with an ACC 12, if used. Controller-to-appliance
communications should be secure, e.g. using an SSL connection, protected and mutually
authenticated. All issues of assets from an appliance 18 to an agent 20 are recorded in activity logs.
When these logs are collected by the controller 22, they are saved in the database 114 and can be
viewed in the GUI’s reports view as discussed later.

[00101] When a new appliance 18 is added to the AMS 10, it is in an off-line state. The
appliance 18 is then activated in order to be used. Once an appliance 18 is active, it still needs to be
synchronized before it can begin producing services. Figure 4B illustrates the various states of the
appliance 18.

[00102] The appliance 18 can run on hardware that is similar to the controller 22 and all high
trust computations will take place inside an HSM 19. The appliance 18 has at least one HSM 19 but
in some embodiments may support more to improve performance of cryptographic operations such as
ECMQV (use of ECMQV discussed later). Appliances 18 should be provided in pairs for
redundancy and high availability. Both appliances 18, 18’ in a redundant pair should always be active
as the agent 20 may connect to either one. Both appliances 18, 18’ are configured on the controller 22
separately. It may be noted that the operator should ensure that both appliances 18, 18’ have similar
configurations in terms of assets. From the point of view of capacity planning, each pair should be
considered as one appliance 18, for example, you can only count on the throughput of the pair to be
no more than the throughput of a single appliance 18. An export PKCS10 request from the HSM 19
can be made for the SSL, HSM and ACC certificates and the certificates should be signed by a device
CA. The certificates are then imported into the HSM 19.

[00103] When the appliance 18 is interacting with the tester 16, high performance is paramount
to minimize test time. Protocol optimizations should therefore be made where possible. For example,
ephemeral public keys can be pre-generated in the HSMs 19 for use in the appliance-ACC protocol.
Communications with the controller 22 for conveying custom data and log data should also be
efficient so as not to impact the performance of the appliance 18 in its interactions with the agent 20.
The appliance 18 handles service requests from the controller 22 and the agents 20 using the

appliance daemon 112 and uses multiple threads to allow controllers 22 and agents 20 to be serviced

-13 -

WO 2010/057312 PCT/CA2009/001686

independently of each other in the same way as the controller 22 can operate in parallel using multiple
threads. In this way, the controller 22 is given a separate thread and each agent 20 is given a separate
thread. Schema for the database 114 should be designed for efficient storage of logs, for efficient
storage of data as required by various service modules, and for efficient lookups of data as required by
the service modules.

[00104] The agents 20, shown in Figure 5, are software libraries and each agent 20 is
integrated into or with a customer’s test program or script, a custom application that is loaded onto a
tester 16 (a computer configured to test the devices 14) on the manufacturing line. Where applicable,
the agent 20 communicates with an ACC 12 or a soft ACC 12°. When configured to utilize the agent
API 21, the agent API 21 makes requests for assets to appliances 18 and send logs of used assets back
through a secure SSL connection. In addition to the agent API 21, the AMS 10 supports the use of the
daemon API 23, which spawns a separate process, namely the daemon 25, that retrieves assets from
and provides assets to an appliance 18, reducing some of the work being done by the tester application
116. Figure 6A illustrates a configuration for the agent 20 utilizing the agent API21. The agent API
21 allows the test application 116a, running on the tester 16, to connect to an appliance 18, to retrieve
assets, and to return logs to the appliance 18. It can be seen that the agent API 21 is integrated
directly in the test application 116a, which gives complete control over how and when assets and logs
are transferred between the tester 16 and the appliance 18. As seen in Figure 6A, the agent API 21
obtains an asset data package 120 from the appliance 18, as well as any log request 126. The agent
API 21 also provides an asset request 124 to the appliance 18 and provides requested log reports 122.
[00105] Turning now to Figure 6B, the daemon API 23 can be used instead of the agent API 21
to offload responsibilities for managing assets and logs. As shown in Figure 6B, the daemon API 21
is integrated into the test application 116b to enable it to communicate with a separate process — the
daemon 25, that acts as an intermediary between the test application 116b and the appliance 18 for
managing the exchange of asset data packages 120, log reports 122, asset requests 124, and log
requests 126. The daemon API 23 provides a simpler interface and can be configured to run the
daemon 25 as a background process. As shown in Figure 6B, the daemon API 23 provides an
interface with the test application 116b to obtain assets as they are needed and obtain log data 128 as
it is generated during or at the end of each test. The daemon API 23 runs the separate daemon 25 to
host the agent API 21 for the purpose of obtaining assets and providing log reports 122 to the
appliance 18 to avoid the test application 116b having to constantly connect to the appliance 18
during the testing process, thus saving time. The daemon 25 can request batches of assets at a time
using the agent API 21, and deliver assets as they are needed to the tester 16 through the daemon API
23 such that assets are always available to the tester 16 without having to connect to the appliance 18.

In this way, the test application 116b only needs to interface and thus communicate with the daemon

-14 -

WO 2010/057312 PCT/CA2009/001686

API 23 for obtaining an asset and for providing its log data (which is then packaged into a log report
by the agent API 23 on the daemon 25). The daemon 25 maintains an asset cache 130 to store batches
of assets for subsequent distribution to the tester 16 as needed, and a log cache 132 to store log data
128 output by the test application 116b as tests are completed, to be organized in the log reports 122.
The daemon API 23 can also have a resource management subsystem (RMS) 27 configured for
independently implementing and registering resource management processes with the daemon 25. In
this way, users can implement their own resource management process (with their own directives) to
make decisions when to fetch assets, send back logs, etc. and can associate this process by name with
a particular product profile.

[00106] The use of the daemon 25 and daemon API 23 as shown in Figure 6B provides several
advantages. By having the daemon 25 maintain or cache the connection with the appliance 18, the
test application 116b does not need to repeatedly request a new session thus saving time which is
critical in a testing environment. Also, the daemon 25 can utilize thresholds to control how many
assets it stores in the asset cache 130. For example, a low threshold, when crossed can cause the
daemon 23 to utilize the agent API 21 to separately obtain a new batch of assets from the appliance 18
without disrupting the testing procedure and while continuing to forward the assets that it still has.
Also, it has been found that when multiple assets are provided by the appliance 18 directly to the test
application 116a, for example when sending a batch of keys, if there are leftover assets on the test
application 116a when it terminates, these assets can be lost as they may be wiped off the tester’s
memory. In this case, the AMS 10 would be wasting assets and one or more entities would lose
revenue or have to absorb the cost. By separating the daemon 25 from the test application 116b as
shown in Figure 6B, in situations such as this, the daemon 25 and the asset cache 130 would survive
the test application 116b and thus no assets would be wasted without a chance to recover them.
Leftover assets may thus be marked as wasted if the daemon 25 shuts down and a log report can be
generated and returned to the appliance 18 to ensure that leftover quantities can, if the applicant
permits, be credited back to the customer. In other embodiments, leftover assets can simply be
maintained for the next instance of the test application 116b.

[00107] The daemon API 23 can be used to create a standalone application as shown in Figure
6B or can also be embedded with the test application 116b in other embodiments. The daemon API
should be used to offload the management of the assets and the log reports 122 in the test application
116b. The daemon API 23 can be created in client or server mode. In server mode, it connects to the
appliance 18 and automatically manages the retrieval of assets and the sending of log reports 122. In
client mode, it connects to an already running server mode daemon application for AMS assets and
logs. There can also be an auto mode where the daemon API 23 uses client or server mode depending

on whether or not another instance of the daemon 25 is already running. The daemon API 23 uses

-15 -

WO 2010/057312 PCT/CA2009/001686

text-based configuration directives for the management of AMS products (or assets) and logs. These
directives can be read from a file or from memory at compile time. The configuration directives
include one or more product profiles. A product profile contains the name of the AMS product, the
connection credentials for logging into an appliance 18, the resource management process, and the
process settings. The resource management process is used to manage the assets and logs of the
product associated with a profile. The process includes configurable directives for the asset top-up
levels (min asset and max asset) and the threshold level at which logs are automatically sent to the
appliance (max log).

[00108] Since the appliances 18 are typically delivered in pairs, the agent 20 should be
configured with the IP addresses of both appliances 18, 18’ and fail-over from one appliance 18 to the
other 18’ in case of appliance failure. The agent 20 should report any errors, for example, if the agent
20 is unable to connect to one of the appliances 18, 18’. In the case of connection errors, the time the
agent 20 waits before failover to the other appliance 18 should be configurable.

[00109] The ACC 12 is a small and efficient cryptographic security engine that is integrated
into a chip’s design. The ACC 12 is integrated into the device 14 being manufactured and thus would
be established in parallel but separately from the AMS 10. The AMS 10 can be used with or without
the ACC 12 depending on the application. For example, serialization and key injection may not
require the ACC 12 but the feature activation service module typically does. However, the ACC 12
can be used in applications involving serialization and key injection.

[00110] The ACC 12 is typically embedded in a SoC die, which is then packaged into a chip,
which is mounted on a printed circuit board (PCB), and eventually assembled into an electronic
device 14. Every chip that has an ACC 12 can be registered and logged in the controller’s database
110 as soon as it has passed wafer testing, which in turn can track every chip manufactured that
underwent wafer testing. The ACC 12 has a set of output ports, and evaluating the aggregate of these
outputs indicates which features are to be enabled and which are to be disabled. Once assembled, the
ACC 12 can still serve as a root of trust on the ultimate device 14.

[00111] The ACC 12 is designed to manage access to non-volatile memory (NVM) and to
protect certain regions of the NVM from being accessed by unauthorized agents 20. The ACC 12 can
provide self-contained generation of a unique device ID (UID) used to uniquely identify the ACC 12.
The ACC 12 can also provide self-contained generation of keys used to open up a secure
communication channel with a trusted server. The ACC 12 should ensure that the enabling and
disabling of features are done using trusted equipment by trusted sources and the ACC 12 should be
able to initiate or disable device self tests and heath checks to make sure the device 14 has not been
tampered with. The ACC 12 can also lock out the device whenever too many invalid commands are

issued. The ACC 12 is used to process commands from the appliance 18 and can be programmed to

-16 -

WO 2010/057312 PCT/CA2009/001686

shut itself off if it detects a specified number of illegal commands. The ACC 12 should be designed
to work in any electronics manufacturing test environment since the security features of the AMS 10
do not necessarily rely on being able to trust the data link between an appliance 18 and the ACC 12.
Instead, security is built into the communications protocols using cryptography. As a result, the AMS
10 provides the ability to allow provisioning to occur in a secure, auditable manner anywhere — from
the wafer fabrication to the ODM to the OEM to the user.

[00112] In order to secure the ACC-to-appliance communication channel, the ACC 12 uses an
asymmetric cryptography scheme for key exchange, and symmetric key cryptography to transfer
messages between it and the appliance 18. The asymmetric cryptography scheme uses a public key,
which is generated from a secret private key. The private key is kept secret and the public key is
exposed. It is imperative that the private key be protected in a secure, highly tamper resistant setting.
An embedded ACC 12 is able to fulfill this requirement by being able to internally and autonomously
generate a unique private key, with a combination of hardware and firmware to protect the secret key
from being exposed. The ACC 12 generates a unique identifier for each device 14, and participates in
the tracking and provisioning of the device 14 through the encrypted channel with the appliance 18.
Once both parties agree on a symmetric key, the appliance 18 issues confidential messages, referred to
herein as feature control tickets (FCTs) 50 to the ACC 12 in a secure manner. The ACC 12 is
described in greater detail below making reference to Figures 51 to 66.

[00113] To implement the AMS 10 as discussed above, various security considerations should
be made. As noted above, all high trust computations in the controller 22 and appliances 18 should
take place inside an HSM 19, in particular on the appliance 18 which is typically running at another
entity with various levels of trust between the manufacturer and the entity. When performing
serialization, the appliance 18 should only be able to generate serial numbers based on the serial
number schema received from the controller 22 (such schemas are described below). For key
injection, the appliance 18 should only be able to decrypt the sequenced keys received directly from
the controller 22, i.e. not from another appliance 18. For feature activation, the appliance 18 should
only be able to decrypt the FCTs 50 received directly from the controller 22, i.e. not received from
another appliance 18. The credit or metering scheme used by the AMS 10 should be secured such that
appliances 18 can only use the credit notices received directly from the controller 22. The appliances
18 should only use assets that are from the controller 22 from which it was provisioned to ensure that
assets mistakenly sent to another appliance 18 cannot be used. It should not be possible for the
appliance 18 to use credit notices from another appliance 18 and it should not be possible for an
attacker to add, remove, or change the number of credits on the appliance 18. However, it can be
appreciated that the AMS 10 can be configured to enable assets on one appliance 18 to be replicated

to another appliance 18 for high availability/failover purposes if mechanisms are in place to ensure a

-17 -

WO 2010/057312 PCT/CA2009/001686

unique asset is not used more than once. For the administration of the controller 22, the web browser
100 should only be able to access the web server 104 over https and the communications should be
secured, e.g. mutually authenticated, encrypted, integrity checked, replay protected, etc.

[00114] The communications between the web server 104 and the controller daemon 106 and
the CLI utility 102 and the controller daemon 106 should be secured as shown in Figure 3, e.g. using
SSL. Similarly, the communications between the controller 22 and appliance 18 and appliance 18 and
agent 20 should be secured, e.g. using SSL. The communications between the appliance HSM 19 and
the ACC 12 should be secured using the ACC protocol and the ACC 12 should authenticate the
appliance 18. The appliance 18 does not need to authenticate the ACC 12 as it is considered a trusted
root. The logs from the agent 20 to the appliance 18 to the controller 22 may be encrypted and should
be integrity protected to prevent eavesdropping and tampering. Only the controller 22 should be able
to decrypt and validate logs. These logs may include custom data such as yield data. The controller
22 and the appliance 18 should be hardened against attack. This hardening will apply to the OS and
the applications (e.g. the database 110) including those running on the HSM 19.

[00115] All certificates are preferably elliptic curve cryptography (ECC) certificates issued by
a trusted device CA, signed on a per-customer, AMS sub-root certificate. ECC certificates would
then be used for SSL between each of the web server 104, controller daemon 106, appliance 18, and
agent 20 - for HSM certificates, for every HSM 19 in the AMS 10, and for the ACC certificate used
in the ECMQV negotiation with the ACC 12. Customer names should be embedded in the certificates
and should be checked so that communications only occur between end points with the same customer
name. Data stored in the database 110 should be protected against unauthorized access and

modification.
Products and Service Modules for the AMS
[00116] In the examples discussed herein, a product is a model, which provides the AMS 10

with a name for the product, its identification, the service it provides, which appliances 18 are
producing the product, and a list of assets. For example, assets can be a collection of serialization
schemas and a list of appliances 18 to which the schema collection applies. Similarly, the assets can
be a collection of key types and a list of appliances 18 to which that key type collection applies. In
yet another example, the assets can be a collection of FCTs 50 and a list of corresponding appliances
18. Service modules discussed herein determine what each of the AMS components (controller 22,
appliances 18, agents 20, and ACC 12) provide in the production process. The AMS 10 in the
following examples can define service modules for serialization, key injection, and feature activation,
however, it will be appreciated that other service rﬁodules can be applied to deliver and provide other
types of assets. Examples of serialization, key injection, and feature activation service module

configurations are shown in Figures 7A, 7B, and 7C respectively.

-18 -

WO 2010/057312 PCT/CA2009/001686

Serialization

[060117] Turning first to Figure 7A, the serialization service module is a configuration of the
AMS 10 that is used to provide a secure means of generating, assigning to chips (or other electronic
objects or devices), and tracking unique serial numbers. To provide this service, the controller 22 is
used to define a product model, then to define one or more serialization schemas 134 to be bound to
each product model. Each serialization schema 134 contains a range of serial numbers for a particular
product (e.g. device 14). The serial number schemas 134 are sent over a secure, encrypted connection
(e.g. over SSL) to the appliances 18 at the manufacturer’s location, typically automatically, whenever
a synchronization operation takes place. Agents 20 can then request serial number values by product
name using the agent API 21 or the daemon API 23. The serial numbers are generated by the
appliance 18, metered, and provided to the agents 20. The serial numbers are then injected
sequentially into each die in a chip manufacturing process using the agent 20. The controller 22
tracks how many serial numbers have been consumed for each serialization product, and makes these
results available in the GUI 8.

[00118] A serialization schema 134 is an object that defines the rules about how a serial
number is generated. For example, it determines whether the serial number digits are presented in
hexadecimal or decimal form and whether fixed strings are included. While one or more serialization
schemas 134 can be bound to a serialization product, a particular schema 134 can only be bound to
one product. Serialization schemas 134 bound to a product cannot overlap and once bound, the
schemas 134 should not be unbound. For other changes, e.g. to change the static strings that have
been inserted, a new serialization schema 134 should be created.

[00119] If more than one schema 134 is bound to the same product, such multiple schemas 134
should be assigned in a priority order. When requesting serial number strings for a product, serial
numbers are given out from schemas 134 with the highest priority. If a schema 134 is exhausted (i.e.
count values from the schema 134 have all been assigned), the schema with the next highest priority is
then used. Serialization products can be bound to more than one appliance 18, with each binding
having a minimum and maximum inventory level. The controller 22 can be used to ensure that
products bound to multiple appliances 18 have non-overlapping ranges of serial numbers. When a
product is bound to an appliance 18, the controller 22 keeps an inventory of serial numbers at the
specified maximum level. Once the inventory has been sent from the controller 22 to an appliance 18,
the serial number values should not be able to be recalled or revoked.

[00120] A serial number schema 134 may describe how to convert a base value into a serial
number string. In this example, the term sertal number base value refers to any positive 64-bit
integer, and should not be confused with the base attribute. A serial number schema 134 has several

attributes: start, count, base, and total characters. The start and count values define the range of base

-19-

WO 2010/057312 PCT/CA2009/001686

values that are allowed in the schema. The base attribute determines whether the base value is
represented in base-10 or base-16 format, when it is converted to a serial number string. The total
character attribute defines how many characters to use when representing the base value as a serial
number string. Zero or more static strings can be inserted at any position in the serital number string.
It may be noted that you should not be able to specify a number less than the minimum number of
characters required to represent the largest value in the schema 134. For example, if the schema 134
starts with 0 and the count is 1000, then there should be three or more characters, because the schema
defines the range [0, 999] and three characters are required to represent 999.

[00121] Given a serial number schema 134 and a base value, a serial number string is

constructed as follows:

[00122] a) the base value must be in the range of [start value, start value + count-1];
[00123] b) the base value is then represented in the specified format;
[00124] ¢) the resultant string is then either truncated from the left, or most significant end, or

it is padded on the left with zeros, depending on the total character attribute; and

[00125] d) any static strings are then inserted in the resulting string.

[00126] Example A — If Schema A = (start = 1, count = 100, characters = 4, base = 16) and the
base value = 55, the result is the serial number 0037. This is because 55 is within the range, the hex
format for 55 is 37, and four characters are required thus padding of two zeros. If the base value = 3,
the result is the serial number 0003.

[00127] Example B — If Schema B = (start = 1, count = 100, characters = 3, base = 10,
staticstring1=(pos=3, str=X), staticstring2=(pos=1, str=-)), and the base value is 56, the result is the
serial number string 0-56X. This is because 56 is in the range, 56 is already in base 10, an X is
inserted at position 3 (i.e. the least significant position) and a dash (-) is inserted at position 1 (i.e. the
most significant position). A zero is used to pad the serial number string because 56 is only two
characters. If the base value = 1, the result is the serial number string 0-01X with two zeros of
padding.

[00128] The serialization service module creates logs when serial number schemas are sent
from the controller 22 to the appliance 18 (recorded as controller activity logs), when serial numbers
are generated by the appliance 18 and sent to the agent 20 (recorded as appliance activity logs), and
when serial numbers are used by the agent 20 (recorded as agent activity logs). All logs are kept on
the controller 22 (after being collected) and can be used to monitor and track serial number use. Each
time a serial number is issued to an agent 20, the issuing appliance’s credit is decremented by one,
and the serial number inventory for that product is decremented. Both levels are replenished during a
synchronization operation between the controller 22 and the appliance 18, and are used to meter the

serial number use of the appliance 18.

-20 -

WO 2010/057312 PCT/CA2009/001686

[00129] Figure 8 illustrates a sequence diagram for implementing a serialization service
module based on the base AMS sequence diagram shown in Figure 2. It can be seen in Figure 8 that
the controller 22 generates serialization schemas 134, binds these to a product, then binds the product
to the appliance 18, and sends the products and schemas to the appliance 18 whereby the serial
numbers are generated and metered. »

[00130] Turning back to Figure 7A, a serialization product workflow is shown. In this
example, a business manager may define the serialization schema by documenting this and
communicating the proposed schema to the AMS administrator. The AMS administrator may then
use the controller GUI 8 to generate the serialization schema 134. The business manage can also
define the serialization product, document this product definition, and communicate the definition to
the AMS administrator. The AMS administrator may then create a serialization product, per the
definition, using the controller GUI 8. The AMS administrator then proceeds to bind the serial
number schema to the product, bind the product to the appliance, and uses the controller 22 to
synchronize the serial number schema with the appliance 18. The appliance 18 then uses the agent 20
to inject the serial numbers, e.g. per the sequence shown in Figure 8.

[00131] The serialization products, when defined, are assigned a unique product ID by the
AMS 10 and a unique identifying name provided by the operator in order to distinguish from other
products. For each serialization product, the appliance 18 can deliver the serial numbers to the agent
20 directly or can deliver the serial numbers via FCTs 50. If the serial number is delivered via an
FCT 50, then the operator would, in the examples provided below, need to specify a 2-byte memory
offset (in hexadecimal) within the ACC 12 where the serial number is to be stored and also an 8-byte
record tag value (in hexadecimal).

[00132] The appliance 18 receives serial number products/schemas from the controller 22,
responds to requests from agents 20 for serial numbers, generates the serial numbers based on the
serial number schema 134, meters the serial numbers, receives logs back from the agent 20, and sends
logs back to the controller 22. The appliance credit is reduced by one for each serial number
delivered to the agent 20 and if the credit reaches zero (0), no more serial numbers should be
delivered. When a serial number is to be delivered via an FCT 50, it should not be able to be
delivered directly, i.e. the appliance 18 should deny any such requests. Also, when delivered via an
FCT 50, the logging in the appliance 18 should be identical to when the serial number is delivered
directly, with the exception that the ACC UID should also be logged. A configurable receive block
size should be accommodated (number of logs returned in a single block from an appliance 18).
When a serial number is delivered via an FCT 50, the ACC flag, record tag and memory address data

should be protected from tampering on the appliance 18.

221 -

WO 2010/057312 PCT/CA2009/001686

[00133] The agent 20 should be capable of requesting serial numbers from the appliance 18
using the agent API 21 or the daemon API 23 by serialization product name and count. The agent 20
should also support the two mechanisms for delivery, namely directly or via an FCT 50. Agents 20
should log the use of each serial number and return logs back to the appliance 18. The agent 20
should also log discarded serial numbers as wasted. When a serial number is delivered via an FCT
50, the logging in the agent should be identical to when the serial number is delivered directly, with
the exception that the ACC UID should also be logged.

[00134] As discussed above, the agent 20 obtains log data 128 from the test application 116b,
e.g. when using the daemon API23. It has been found that the audit channel 6 provided by the AMS
10 enables various correlations to be made during the manufacturing process. For example, when
adding a serial number to a chip in the tester 16, the tester 16 typically knows the location of the
particular chip on the wafer. This location information can be logged along with the serial number
that was added, and eventually this information is stored by the controller 22 in the relational database
110. In this way, at a later time, if the chip fails a test in the manufacturing process, the relational
database 110 can be used to correlate the serial number of the failed chip with the location at which it
was on the die to determine if faults occur in certain parts of the process or locations within the
machinery. In another example, a timestamp associated with the addition of the serial number can be
used to track failures at certain times on certain machines or even to identify certain employees in
alleged theft of chips. Therefore, the audit channel 6 and relational database 110 can be utilized for
various data mining and analyses for improving accountability and for identifying and rectifying root
cause of failures in a manufacturing process.

Key Injection

[00135] Turning now to Figure 7B, the key injection service module is a configuration of the
AMS 10 that provides a secure means of injecting keys into products (e.g. devices 14). To provide
this service, the controller 22 is used to define one or more key types 138. A key type 138 defines the
format of the keys in a file. The controller 22 is then used to define a product model 140, and then to
bind one or more key types 138 to each product models 140 as shown by way of example only in
Figure 7B. It has been found that by adding keys directly to product definitions without separating
key types from products, confusion can arise from the different ways that project names and product
types are defined by customers in different applications. For example, if multiple key types are added
to “product buckets”, when that product gets fow in credits, it can be difficult to determine which of
the keys is low and to thus know which key types to top up. By separating the key types 138 from the
products 140 as shown in Figure 7B, an additional level of abstraction is provided to more closely
reflect how the customers typically utilize the assets. In this way, the controller 22 can be used to

define a product type 140 that can form “blobs” of one or more key types 138 as well as other assets

-22 -

WO 2010/057312 PCT/CA2009/001686

to avoid inadvertently loading incorrect keys and to better track the actual inventory level of each key
type 138. As such, when the keys are imported, e.g. on a DVD 136 as shown in Figure 7B, the keys
are separated into distinct “buckets” according to key type rather than trying to allocate keys directly
to certain products which would then be referred to by different names without necessarily a logical
correlation to the number and types of keys used for that product type 140. Instead, the keys are
simply separated by key type 138 and then customer defined associations are defined by way of the
product type 140 abstraction. Also, when defining a product 140, certain permissions can be
established such that the product 140 only uses certain key type(s), e.g. from certain distributers.
Since certain key types 138 may be provided according to various contractual obligations, better
control over the separation and allocation of key types 138 ensures such contractual obligations are
adhered to.

[00136] Also shown in Figure 7B is a key transform 139 which can be used to modify certain
key types 138 in customer specific ways. As illustrated in Figure 7B, a key transform 139 can be
applied at the time of importing the keys, e.g. if the keys of that key type 138 are always to be
transformed in that way such that a transformed key type 138 is defined. Alternatively, the key
transform 139 can be applied prior to or upon delivery wherein the key is transformed on a product-
specific basis or on an appliance specific basis. In yet another alternative, the key transform 139 can
be applied at the appliance 18 before the keys are delivered to the agents 20. When determining
where the key transform 139 is applied, security considerations should be made based on where the
key transform 139 is located, e.g. higher security when at the appliance 18 due to the lower trust at
that location. It may be noted that by separating key types 138 and product types 140 as shown, the
transform 139 can be associated with the product 140 rather than the key type 138 to minimize the
number of key types 138 required. In other words, the key types 138 can be stored separately as
imported and the key transform 139 performed per the product type 140 to avoid adding yet another
key type 138 and the potential confusion this can cause.

[00137] Once a key type 138 has been defined, keys of that type can be imported from a key
file (e.g. via a DVD 136) onto the controller 22 using the GUI 8. Operations personnel can then use
the GUI 8 to specify the number of keys to be sent to an appliance 18. If a hash has been defined,
then the AMS 10 verifies the hash value. The keys are sent over a secure, encrypted connection (e.g.
SSL) to the appliances 18 at a manufacturer’s location, in this example, automatically, whenever a
synchronization operation takes place. The keys can then be requested by product name using the
agent APT21 or daemon API 23. When the agent 20 fetches keys, it asks for a product and a number
of units of that product. The appliance 18 queries all key types bound to this product, and returns the
specified number of keys for each key type. The keys are then injected into each die on the assembly

line by the agent 20.

-23 -

WO 2010/057312

PCT/CA2009/001686

[00138] Key injection products can be bound to one or more appliances 18, with each binding

having a minimum and maximum inventory levels. When a product is bound to an appliance 18, the

controller 22 keeps its inventory of keys at the specified maximum level. Once inventory has been

sent from the controller 22 to an appliance 18, the keys cannot be recalled or revoked. The controller

22 tracks how many keys have been injected for each key type 138, and makes these results available

in the GUI 8. Figure 9 illustrates an exemplary sequence diagram for performing a key injection

service. It can be seen that when compared to serialization, key injection also has a step of importing

the keys from a file, however, it can be appreciated that the keys could also be generated by the

controller 22 and done at the time of defining the key types. Therefore, the sequence shown in Figure

9 is for illustrative purposes only.

[00139] When implementing the AMS 10 for key injection, the key data should not be stored in

plaintext after it is imported onto the controller 22. Decryption should only happen when the

appliance 18 delivers keys to agents 20, unless the ACC 12 is used, in which case the data is not

decrypted until it is processed by the ACC 12 (i.e. by processing the key within an FCT 50).

[00140] A key type 138 has several attributes that define the format of the keys in a file. A

typical key type definition is provided in Table 1 below for an HDCP TX key.

name HDCP_TX | A string with a minimum length of 1 character and a maximum
length of 256 characters that uniquely identifies the key type.

total length 308 The total length of the stream of key bytes.

key unique id offset 0 The 0-based offset in the stream of key bytes where a key
identifier can be found.

key unique id length 8 The length of the key identifier.

key data offset 8 The 0-based offset in the stream of key bytes where the key
data can be found.

key data length 280 The length of the key data.

hash algorithm SHA-1 The hash algorithm that is used to check the integrity of the
key data.

hash data offset 288 The 0-based offset in the stream of key bytes where the hash

can be found.

Y

WO 2010/057312 PCT/CA2009/001686

hash data length 20 The length of the hash. The hash is used to verify the integrity
of the key.

hash protect offset 0 The 0-based offset in the stream of key bytes where the hash is
computed.

hash protect length 288 The length of the data used to compute the hash.

key file header length | 8 The length of the key file header.

Table 1: Sample key type definition
[00141] The key injection service module is configured to create logs when keys are sent to an
appliance 18 (controller activity logs), when keys are sent to an agent 20 (appliance activity logs), and
when keys are consumed by agents 20 (agent activity logs), whether they are successful, failed, or
wasted. Such log events are shown in Figure 9. All the logs are stored on the controller 22 after
being returned by the appliance 18 during a synchronization operation, and can be used to monitor
and track key use. Each time a key is issued to an agent 20, the appliance’s credit is decremented by
one, and the key inventory for that product is decremented. Both levels are replenished during a
synchronization operation between the controller 22 and the appliance 18, and are used to meter use
on the appliance 18.
[00142] Similar to serialization, each key injection production is assigned a unique product ID
by the AMS 10 and a unique identifying name provided by the operator. For each key injection
product, the two mechanisms discussed above, namely providing keys directly to the agent 20, and
delivery using the FCTs 50 should be allowed. If the key is delivered via an FCT 50, the operator
would also specify the 2-byte memory offset within the ACC 12 and the 8-byte record tag value.
Each key type 138 is assigned a unique key type ID by the AMS 10 and a unique identifying name
provided by the operator. A key is treated in this example as a stream of bytes.
[00143] A plaintext batch of sequenced keys can be imported from a file local to the controller
22 (e.g. the DVD 136). Each key is assigned a unique key ID by the AMS 10. It may be noted that
this unique key ID is not the same as the key identifier in the key. The key files can also be imported
from a remote computer on which the GUI 8 is running. A special case is to allow HDCP keys that
are PGP encrypted to be PGP decrypted and then imported. There is a specific file format that is
supported for these HDCP keys. For PGP decryption, GNU GPG can be used. The certificate and
private key required is assumed in this case to have been imported into GNU GPG already.
[00144] During importation of the particular key type 138, if the key identifier is used, then the
key identifier of the key will be compared to all previously imported key identifiers for that key type

-25.-

WO 2010/057312 PCT/CA2009/001686

138. It may be noted that this mechanism does not protect against a key file being used again for
another key type and thus should be prevented using operational rules. During import of a particular
key type, if a hash is used, then the hash is calculated and verified for all keys. This hash calculation
is not performed using the HSM 19. Operators should be prevented from importing keys of a
particular key type if there is already a job running that is importing keys of the same key type.
[00145] One or more keys should be allowed to be bound to a key injection product. Each key
type may be assigned to multiple products. For each key type in each product, how many of those
keys types are required should be specified. A key type should be able to be unbound from a product,
but only if the product is not bound to any appliance 18. Each key injection product should be
allowed to be bound to one or more appliances 18. Each appliance 18 may have multiple key
products assigned to it and it should be able to unbind a key injection product from an appliance 18.
The controller 22 should not send duplicate keys to appliances 18. Once a key has been delivered to
an appliance, it should be deleted from the controller 22.

[00146] Similar to serialization, a metering system should be used and, once keys are issued to
appliances 18 they should not be able to be returned, recalled, or revoked. When a key is delivered
via an FCT 50, the logging in the appliance 18 and agent 20 should be identical to when the key is
delivered directly, but also includes the ACC UID.

[00147] The key injection service module can also support the processing of keys at the
controller 22 before they are imported, allowing the keys to be arbitrarily transformed, referred to
herein as key import signed objects. Key import signed objects should be able to be defined wherein
each signed object is assigned a unique signed object ID by the AMS 10 and each signed object is
assigned a unique identifying name provided by the operator. The signed object is a shared object
that resides in the controller 22 and is cryptographically protected with a signature. A function in the
shared object is then called once for every key before it is imported to allow the operator to transform
the key. It may be noted that the key identifier (for example KSV in the case of HDCP) should be
copied out so that the controller 22 can always access it even after the signed object has potentially
obfuscated it. Key import signed objects should be able to be assigned to one or more key types 138
and each key type 138 should be able to have at most one key import signed object assigned. The key
import signed objects should be able to be unassigned from key types 138 as well.

[00148] The controller 22 when configured for key injection, can also support key transform
plug-ins 139, which allows for the processing of keys at the controller 22 after they are decrypted but
before they are sent to the appliance 18. This may be referred to as a key-to-appliance transform. The
key transform plug-in 139 allows, for example, a hardware specific or end-to-end protocol specific
modification to the key be made on a per-customer or per-product basis. This allows modifications

such as bit allocation for error correction to be made and the transformations can be performed upon

-26 -

WO 2010/057312 PCT/CA2009/001686

importing the keys or prior to delivery to the appliance 18. Such key-to-appliance transforms 139
should be able to be defined and each transform should be assigned a unique signed object ID by the
AMS 10 and each transform should be assigned a unique identifying name provided by the operator.
The transform is a shared object that resides in the controller 22 and should be cryptographically
protected with a signature. A function in the shared object is called once for every key before it is
sent to the appliance 18 to transform the key. It may be noted that the key identifier should be copied
out so that the controller 22 can always access it even after the transform has taken place. Key-to-
appliance transforms should be able to be assigned to one or more key types 138 when bound to a
product. Each bound key type 138 should have at most one key-to-appliance transform assigned. The
key-to-appliance transforms should be able to be unassigned from key types in a product as well.
[00149] The key injection service module can also support appliance signed objects which
allow for the post-processing of keys at the appliance 18 after they are decrypted but before they are
sent to the agent 20. With respect to appliance signed objects, key pass-through should also be
supported. Depending on whether key pass-through is enabled or disabled, it enforces whether or not
appliance signed objects should be present before the appliance 18 will send keys to the agent 20.
This may be referred to herein as key-to-agent signed objects.

[00150] Key-to-agent signed objects should be able to be defined and each signed object is
assigned a unique signed object ID by the AMS 10 and each signed object is assigned a unique
identifying name provided by the operator. The signed object is a shared object that resides on the
controller 22 and is cryptographically protected by a signature. A function in the shared object can be
called for every key before it is sent to the appliance 18 to transform the key. It may be noted that the
key identifier should also be copied out so that the controller 22 can access even after the transform
takes place. Key-to-agent signed objects should be able to be assigned to one or more key types.
Each key type should have at most one key-to-agent signed object assigned and key-to-agent signed
objects should be able to be unassigned from key types as well. The key injection service module can
also support a read-only sync mode where the controller only queries current key levels and retrieves
logs from the appliance without delivering new keys.

[00151] The appliance 18 should not send duplicate keys to agents 20 and once a key has
been delivered, it should be deleted from the appliance 18. When a key is delivered via an FCT 50, it
should not be able to be delivered directly and when a key injection product is unbound from an
appliance 18, all keys belonging to that product should be deleted from the appliance 18.

[00152] The agent 20 should be able to request key blobs from the appliance 18 by product
name and count and each key blob should contain one or more keys, depending on how many key
types are bound to the product. For example, if the product utilizes 3 key types, the key blob would
include 3 keys. Agents 20 should not send duplicate keys to the tester 16. Once a key is delivered to

-27 -

WO 2010/057312 PCT/CA2009/001686

the tester 16 it should be deleted from the agent 20. The agent 20 should also log the use of each key
in the key blob separately, and should log any keys that it intends to discard.

Feature Activation

[00153] The AMS 10, when configured to provide a feature activation service module, as
shown in Figure 7C, provides a secure means of activating or deactivating a product’s feature set
dynamically, after fabrication, using the ACC 12. As noted above, the ACC 12 can also be used with
serialization and key injection service modules but is particularly advantageous for use with the
feature activation service module. To provide this service, the controller 22 is used to define one or
more FCTs 50, then to define a product model. The FCTs 50 are then bound to each product model,
in which case all FCTs 50 are also bound to the appliance 18 producing that product. The FCTs 50
are then applied to each die on the assembly line using the ACC 12. Products can be bound to one or
more appliances 18, with each binding having a minimum and maximum inventory level. When a
product is bound to an appliance 18, the controller 22 keeps its inventory of FCTs 50 at the specified
maximum level. Once the inventory level has been sent from the controller 22 to the appliance 18,
the FCTs 50 should not be able to be recalled or revoked. The controller 22 tracks how many FCTs
50 have been applied to each product, and makes these results available in the GUI 8.

[00154] In the examples described herein, the ACC 12 contains a 256 bit (32 byte) feature
register 120, a tag register, and NVRAM. The feature register 120 is meant to be used to control (turn
on or off — or partially on or partially off) features on the device 14. Exactly how the features are
turned on, off, etc. is device dependent. ACC commands provided by way of FCTs 50 are used to
read data from, or write data to the feature register 120, tag register, or NVRAM. FCTs 50 contain
feature data and a record tag. The feature data determines which product features to activate or
deactivate. The record tag provides a record of which features will be activated by the ACC 12 using
the feature data. The feature data is programmed into the ACC feature register 120 and the record tag
is programmed into the ACC tag register. The value of the record tag is also customer-dependent.
The two commands (which are described in greater detail below) to write to the feature register are
SETFEAT and SETFEAT TEMP. When using the latter, the feature data is not saved in NVRAM
and would be lost on power-down.

[00155] The ACC 12 also contains in this example a 64 bit (8 byte) record tag (register). The
record tag is meant to be used to record what has been programmed on the ACC 12. the record tag is
set when using any of the commands that write to the ACC 12 (except SETFEAT TEMP). How the
record tag is interpreted is application-dependent. The ACC 12 also contains an implementation-
dependent amount of NVRAM. The command to write to the NVRAM is WRACCESS. A
maximum amount of data that can be written is usually imposed, e.g. 500 bytes. What is written to

the NVRAM and where it is written is implementation-dependent.

-28 -

WO 2010/057312 PCT/CA2009/001686

[00156] The FCTs 50 are sent over a secure, encrypted connection (e.g. SSL) to the appliances
18 at the manufacturer’s location automatically whenever a synchronization operation occurs. FCTs
50 can then be requested by the agents 20 by product name, using the agent API 21 or daemon API
23. When an agent 20 requests a feature activation product it would obtain all the FCTs 50 bound to
that product individually. When an agent 20 fetches FCTs 50 from an appliance 18, it queries all
service modules for an ACC-enabled product of that name, in which case multiple FCTs 50 may be
delivered to an agent 20, and are then send to an ACC 12 individually. The agent API 21 may not
interface with the ACC 12 directly in which case an implementation-dependent interface is required.
When using the feature activation service module, the feature data should never be in plaintext after it
leaves the controller 22 and before it enters the ACC 12.

[00157] As can been seen in Figure 10A, the feature activation service module creates logs
when feature data is sent to an appliance (controller logs), when feature data is sent to an agent 20
(appliance logs), and when feature data is sent to the ACC 12 (agent logs). All the logs are stored on
the controller after being returned by an appliance 18 during a synchronization operation, and can be
used to monitor and track feature use. Each time feature data is used on an appliance 18, the
appliance credit is decremented by one and each appliance 18 also maintains a feature data product
level, which is decremented by one each time feature data is used. The feature data level and credit
level are replenished when the controller 22 synchronizes an appliance 18. Both of these mechanisms
are used to meter feature data use on an appliance 18.

[00158] In Figure 10A, the defining of products and feature data, as well as the delivery of
FCTs 50 and log reporting are similar to the mechanisms used in serialization and key injection.
However, it can be observed that when utilizing an ACC 12, the normal loop for the injection or
application of assets is separated into a pair of loops, Loop 1 that involves key generation, and Loop
2, within Loop 1, which involves feature programming. Loop 1 is initiated by providing the
command cmd[STARTACC] described in detail below. The loops are terminated by providing the
command ¢cmd[STOPACC]. The loops are shown in greater detail in Figure 10B. Once providing
cmd[STARTACC], the ACC 12 generates public keys and after some time the agent 20 requests a
response by sending the command cmd[REQRESP] to obtain the ACC public keys. The agent 20
provides these public keys in turn to the appliance 18 and the appliance 18 uses these keys to generate
a shared key, e.g. using the ECMQV protocol as exemplified later. The appliance 18 has now opened
a secure connection with the ACC 12 and can meter and encrypt the features and log this event. The
appliance public keys and the encrypted features are then provided to the agent 20. The agent 20 then
initiates the feature programming loop by sending the command cmd[INITIAL FCT | FCT] which
includes the FCT 50. The features are then programmed in the feature register 120 by the ACC 12
and the agent requests a response again using the cmd[REQRESP]. In response the ACC 12 provides

-29.

WO 2010/057312 PCT/CA2009/001686

an encrypted response pertaining to the feature programming steps and the agent 20 logs this event.
Since the secure connection is established, additional feature programming steps can be applied
before the loops terminate as noted above.

[00159] It can therefore be seen that when implementing the AMS 10 with an ACC 12, the
general provisioning and delivery of assets is similar to those services that do not require an ACC 12
with additional considerations and commands required to establish the secure connection with the
ACC 12 also required. It can be appreciated that these operations can also be adapted to be used in
the serialization and key injection service modules to utilize FCTs 50 for carrying serial numbers and
keys. As such, various implementations are available using the common application framework
provided by the AMS 10.

[00160] As with the other service modules exemplified herein, for feature activation, each
product should be assigned a unique product ID by the AMS 10 and a unique identifying name
provided by the operator. Each feature that is defined can be assigned a unique feature ID by the
AMS 10 and a unique identifying name by the operator. Each feature defines a command type and, in
this example, a 32-byte data value. One or more features should be allowed to be bound to a feature
activation product and each feature may be bound to multiple products. A feature should be able to be
unbound from a product, but only if that product is not bound to any appliances 18. Each feature
activation product can be bound to one or more appliances 18 and each appliance 18 may have
multiple feature activation products assigned to it.

[00161] A metering process can be implemented where the controller 22 will top up the feature
activation product levels on the appliance 18 during a synchronization operation. The operator would
define warning, minimum and maximum levels similar to the other service modules exemplified
herein. A feature activation product may be modified/deleted on the controller 22 if it is not bound to
any appliance 18 and features may be modified/deleted on the controller 22 if it is not assigned to any
feature activation product. An appliance 18 can be deleted on the controller 22 if there are no
products bound to the appliance 18. The feature command, record tag, and data should be protected
from tampering on the appliance 18 and a read-only sync mode should be supported to allow a query
to be made and logs to be obtained without providing more FCTs 50.

[00162] The appliance 18 supports delivery of features to the ACC 12 via the agent 20 using
the protocol defined in Figures 51 to 66 described below. This includes receiving feature activation
products from the controller 22, responding to requests from the agent 20 for feature activation
products, metering the products, receiving logs back from the agent 20, and sending logs back to the
controller 22. The appliance 18 decrements appliance credit for each FCT 50 delivered and when a
feature activation product is unbound from an appliance 18, all features belonging to that product

should be deleted from the appliance 18.

-30 -

WO 2010/057312 PCT/CA2009/001686

[00163] The agent 20 can request features from the appliance 18 by feature activation product
name; can interface with the ACC 12 using the above-mentioned protocols; and can deliver each
feature in the product to the ACC 12 separately, log the feature use, and return logs to the appliance
18. The feature activation feature use log should include a single character string field for customer

log data, formatted appropriately.
AMS GUI

[00164] Figures 11 to 50 illustrate exemplary screen shots for the GUI 8 shown in Figures 1
and 3. The GUI 8 is, in this example, a web-based application providing a graphical interface for the
AMS 10. As will be explained, the GUI 8 is designed with an AMS system operator as the intended
user and thus provides the ability to connect to the AMS controller 22, e.g. by logging in with a
username and password. The GUI 8 enables the operator to view status information by products 14,
services, or by manufacturer; review current alerts, manage and track jobs currently active on the
controller 22; view and generate reports; view information and statistics about the controller 22;
manage the appliances 18 and perform operations associated with the appliances 18; manage products
14 in the system and perform operations associated with these products 14; manage serialization
schemas, key types, and FCTs 50; manage users, passwords and roles that allow access to controllers
22 and appliances 18; access online help for the particular application; and determine information
related to the application (e.g. build date, version, etc.)

[00165] When implemented as a web-based system, the GUI 8 can be accessed by launching a
standard web-browser and pointing the browser to an appropriate URL. As shown in Figure 11, the
GUI 8 can include a quick status view 200, which can be configured to appear when the user is logged
off or otherwise “locked out” of the controller 22. For example, the quick status view 200 can be
configured to appear after the GUI 8 times out from inactivity on the part of the user logged in, or if
the user clicks a lock button or selects a similar option from a menu (not shown). The quick status
view 200 is also made available for viewing even without a user login. In this way, status
information, alerts, and other critical messages can be viewed without the observer having to be
logged in. For example, when an appliance 18 goes offline or malfunctions an operator or even
another person in the vicinity can immediately be aware of this situation without having to first log in.
The quick status view 200 also functions as a screen-saver for the GUI 8 such that if a prescribed
period of time passes with no activity in the GUI 8, the quick status view is displayed 200 and the
operator would need to log in again to continue. This protects the AMS 10 from inadvertent or
malicious tampering while still providing important status information on a “read only” basis.
[00166] The quick status view 200 comprises a top portion 202 and a bottom portion 204. In
the top portion 202, service icons 206 are displayed for the services offered by the AMS 10. Each

icon indicates, by colour (e.g. red or blue), whether there is a problem or alert with any of the

231 -

WO 2010/057312 PCT/CA2009/001686

appliances 18 associated with the particular service. In the bottom portion 204, product icons 208 are
displayed for any products 14 defined in the GUI 8. Similar to the top portion 202, each icon 208
indicates, by colour, whether there is a problem or alert with any of the appliances 18 in the system or
application supporting the particular product. The use of different colours for normal operations
versus problem states enables an operator to quickly identify a problem and drill in to that appliance
18 and application to determine the source of the problem and take any remedial action if necessary.
If necessary, the bottom portion 204 can provide multiple rows (not shown), e.g. when there are many
products 14. In some embodiments, the operator may be given a option for defining which products
14 should appear in the quick status view 200.

[00167] By clicking any of the icons on the quick status view 200, a user login screen (not
shown) can be launched. Once logged in, the operator can be presented with a status view filtered
according to the selected icon. Therefore, the operator, upon determining a problem with a particular
service in the quick status view 200, can click on that service icon 206 and, upon logging in, the next
view would be filtered to that service, e.g. serialization. Once in the status view, the operator can
observe which appliance(s) have alerts and double-clicking (or other input) can take the operator to a
detailed view of information about the appliance 18, allowing them to determine the source of the
alert. When logging in, the login screen can be given a format that is similar to the quick status view
200 and other screens and to differentiate between fields, each field can be highlighted with a
different colour and provide a status bar to indicate what is being performed. If there is an error
logging in, a non-field specific message can be displayed with a red background at the top of the
form.

[00168] Once the operator has successfully connected and logged onto a particular controller
22, a main application 210 appears, which may be filtered if the user had selected a particular icon
206, 208. One example, providing an appliance view is shown in Figure 12. To facilitate navigation,
the GUI 8 provides a consistent form of panes and methods for interacting with the application.
[00169] The main navigational and information areas of the main application 210 in this
example include an application menu bar 212, a view pane 214, a main information pane 216, a status
bar 218, and a version bar 220. The applications menu bar 212 in Figure 12 comprises five menus,
namely a Controller menu, a Services menu, a View menu, an Actions menu, and a Help menu. The
Controller menu enables the operator to modify the controller 22, and log out of the GUI 8. The
Services menu includes an item for each service which, in this example include serialization, key
injection, and feature activation. The View menu enables the operator to select from various views,
e.g. status, alerts, jobs, reports, controller, appliance, products, serialization schema, key types, feature

control tickets, users, etc. The Actions menu changes according to the selected view. The Help menu

-32-

WO 2010/057312 PCT/CA2009/001686

can provide access to various help resources such as system help, administrator’s guide, developer’s
guide, product overview, system overview, user’s guide, etc.

[00170] The view pane 214 provides quick access to the different views in the GUI 8. Such
views may include a status view, alerts view, jobs view, reports view, controller view, appliances
view, products view, serialization schema view, key types view, FCTs view, and user’s view. It may
be noted that in this example, the view pane 214 is an alternative to user the View menu. Where
applicable, a number beside each view item indicates the number of the associated item (e.g. number
of alerts for the alerts view, number of jobs for the jobs view, etc.) active in the AMS 10. Many of the
views can also display the Services menu allowing the operator to quickly filter items in the data
according to the selected service. For example, if the appliances view is active and a serialization
item is selected in the Services menu, then the appliances view can display all appliances with the
serialization service active. When using the Services menu to filter, the standard filter bar can be
disabled and hidden. Additional service specific information may be displayed for each item in the
information pane 216 and extra service specific actions may appear when selecting services in the
Services menu.

[00171] The main information pane 216 displays information about the objects in the system
according to the selected view. For example, for the Jobs view, each item in the data area is a job in
the system. The main information pane 216 comprises several features. A view title bar 222 displays
the title of the active view along with the title of the form if a form is currently displayed. For
example, the view title bar 222 for a “Modify Appliance” may show: “APPLIANCES - MODIFY
APPLIANCE”. The view title bar 222 may also contain a link to context-sensitive online help for the
current screen. A services bar 223 provides a way for the operator to quickly hone in on the services
they are interested in. The services bar 223 in the example shown in Figure 12 displays icons in a
horizontal grid and may include the following items: All, Serialization, Key Injection, and Feature
Activation. Selecting “all” removes any filters and displays the results of the active view with no
filtering. Selecting any of the remaining services displays the active view filtered according to the
selected service. For example, appliances using the selected service, jobs related to the selected
service, etc. In this way, the operator can more easily navigate amongst multiple services and
appliances served by a single controller 22. Additional service-specific information may be displayed
for each item in the data area and extra service-specific actions may appear when selecting services in
the service bar.

[00172] An action bar 224 contains various buttons on its left side with a pull down menu
containing any additional actions that are valid for the current view. On the right side of the action
bar 224 is a search field. Typing text in the search field filters the contents of the data area 226

depending on the view. For example, for the appliance view, the user may search by appliance name,

-33.

WO 2010/057312 PCT/CA2009/001686

manufacturer, location, or product. Actions in the action bar 224 may be valid or invalid depending
on the selected item in the data area, or whether there is anything selected. If an action is invalid, it
can be greyed out. In general, it is advantageous for the list of actions for each view to be consistent,
and actions become valid or invalid. A data area 226 presents the information as appropriate for the
view, filtered as necessary. In this example, each view may support up to three zoom levels to enable
the user to conveniently drill down into further details when needed to troubleshoot or to identify
various settings. Zoom levels may be one item per page, one item per three-lines, and one item per
line. The shorthand for these zoom levels are: 1-line, 3-line, and detail. A pull down menu 225 in
the action bar 224 allows the operator to select a zoom level. A paging bar 228 allows the operator to
page through many items when there are too many items to fit on one page. If the zoom level is
“detail”, then there may be one page for each item. The paging bar 228 can be configured to appear
automatically whenever necessary. If the information to display fits on a single page, the paging bar
228 does not need to appear.

[00173] On the left side of the paging bar 228 is a text description of the information presented
in the data area 226, with a pull-down menu to select the number of items to display per page and how
it should be sorted. For example, “View 10 items by Service”, where the number of items and the sort
field are pull down menus. There is also a button to switch between increasing and decreasing sort
order. On the right side of the paging bar 228 are paging widgets 230, which can include: text
describing which items are displayed (for example, “Reports 11 — 20 of 46”); button to go to the first
page; button to go to the previous page; the text “Page XX of YY”, where XX is a text field allowing
the user to go directly to a specific page, and YY is the total number of pages; button to go to the next
page; and button to go to the last page.

[00174] The status bar 218 is positioned at the bottom of the window and displays basic
information about the controller 22, e.g. to indicate that a connection is made and with which
operator. Lock and refresh buttons can be included as shown for all views.

[00175] To attract the attention of the operator, the data area 226 can be modified to include an
alert bar 232 as shown in Figure 13, which in the example shown indicates that the selected product
(shown in the data area 226) has low inventory on a particular appliance 18 named “TestApp”. The
alert bar 232 can be given a distinct and bold colour such as red, consistent with other alerts, to draw
immediate attention to the alert. In this example, the alert bar 232 extends across the width of the data
area 226 and includes emergency-related icons to further identify the alert as such.

[00176] The main application 210 can be used to launch a main status view 234 as shown in
Figure 14, which displays appliances 18 in three ways: grouped by product, by manufacturer, or by
location. If the view is accessed from the quick status screen 200 by clicking one of the product icons

208, if the view is filtered by products 14, or if the “By Product” action is selected, then it will group

-34 -

WO 2010/057312 PCT/CA2009/001686

appliances by product. Otherwise, it groups appliances 18 by manufacturer. The screenshot shown in
Figure 14 illustrates a view by product. If displaying appliances 18 grouped by product as shown in
Figure 14, each product is displayed showing each appliance 18 associated with the product. If
displaying appliances 18 grouped by manufacturer, then each manufacturer is displayed showing each
appliance 18 associated with the manufacturer. If displaying appliances 18 grouped by location, then
each location is displayed showing each appliance 18 associated with the location.

[00177] Appliance icons 236 include service indicators 237 for which services are active on the
particular appliance as well as provides an indication of whether the appliance 18 currently has any
active alerts (by colouring the icon red) or whether the appliance 18 is operating correctly (by
colouring the icon blue). The service indicators 237 can utilize a colour-coded scheme for indicating
various states. For example, an orange icon may indicate that the service on that appliance 18 is low
on assets, a red icon may indicate a problem with that service, a dim or ‘greyed out’ icon can indicate
that the service is not assigned to the appliance 18, and a green icon can be used to indicate that there
are no problems. The status view 234 uses a single zoom level in this example. The View action (or
double-clicking a particular appliance) takes the operator to the one item per page zoom level of the
appliances view with the selected appliance 18 being displayed. The actions associated with the main
status view 234 are: View, By product, By manufacturer, and By location.

[00178] The operator can access the alerts view 238 shown in Figure 15 to examine any alerts
present in the AMS 10. The zoom level shown in Figure 15 is a 1-line zoom level. In the alerts view
238, the operator can view the alerts, ping the affected appliance 18, sync the affected appliance 18,
and remove the alert. The controller 22 can be configured to issue alerts under several different
circumstances such as: when the controller 22 is not able to contact an appliance 18, if there are any
errors when the controller 22 sends data to an appliance (and vice versa), when a synchronization
operation has failed, when the number of assets an appliance 18 has reached the asset warning level,
when the free disk space on the appliance 18 has reached a warning level, when the HSM 19 on the
controller 22 (or any appliance 18) has deactivated itself, or when an appliance 18 has blocked a
connection from an agent 20 — because the agent IP address is not in the list managed by the appliance
18. If an alert is issued, the appliance 18 affected appears in the alerts view 238 in the data area 226.
The alerts view 238 provides a description of the alert, identifies the service for which the alert was
issued, and provides the time the alert was issued. The appropriate response to an alert depends on
the cause of the alert.

[00179] The operator can access the jobs view 240 shown in Figures 16 to 18 to perform
various actions associated with jobs in the AMS 10, such as cancelling a job in progress and removing
a completed job. The jobs view 240 in this example supports a 3-line zoom mode 240a as shown in

Figure 16, a 1-line zoom mode 240b as shown in Figure 17, and a detail zoom mode 240c as shown in

-35-

WO 2010/057312 PCT/CA2009/001686

Figure 18. The complete set of information that the detail zoom mode 240c gives, per job, is: name,
job ID, system (appliance 18 or controller 22), job type, job status, start time, end time or estimated
end time (if available), duration, and progress. A progress bar 242 is provided in each zoom mode
240a-c to provide a graphical overview of the status of the job. Within the jobs view 240, the operator
can pause the job, zoom between zoom modes, resume the job, cancel the job, view a job log, remove
a job, show completed jobs, and remove completed jobs.

[00180] The operator can access the reports view 244 shown in Figure 19 to generate reports
supported by the AMS 10. Figure 19 illustrates a 1-line zoom mode for the reports view 244. The
reports view 244 provides a service icon and a name for a report. The reports view 244 can also be
filtered by selecting a service on the services bar 223 to limit the list of reports to a particular service.
The generate report action displays a generate reports form 246 shown in Figure 20 for the operator to
enter information required to generate a report. Once the operator has completed the form 246, the
report can be viewed as shown in Figure 21 in the view reports screen 248. The view reports screen
248 also enables the operator to downioad PDF or CSV formats in this example. Various report types
can be generated, for example: number of assets issued by a controller 22 in total, by product or by
schema (for serialization); number of assets issued by day for a particular range; number of assets by
appliance 18 (total, by day, etc.); number of assets received by agents (total, by day, etc.); number of
missing logs, duplicate logs, logs by asset ID or number, logs for a specified product/date range; etc.
[00181] The controller view 250 shown in Figure 22 provides details of the controller 22 to
which the operator is connected in the data area 226. In this example, the controller view 250
provides the following information: controller name, services the controller is providing, IP address of
the controller 22, port of the controller 22, SMTP IP address, SMTP port, SMTP domain, “From”
address, “To” address, disk health, controller HSM status, HSM software version, controller software
version, number of alerts in the system 10, the number of jobs active in the system 10, job delete time,
system check interval, controller’s disk space, and memory available on controller 22. In the
controller view 250, the operator can modify the controller 22, test email, and log out. To modify the
controller 22, the Modify button in the controller view 250 is selected, launching a modify controller
form 252 shown in Figure 23. As can be appreciated from Figure 23, the modify controller form 252
enables the operator to make changes to the settings and details for the controller 22 and apply those
settings.

[00182] The operator can access the appliances view 254 shown in Figures 24 to 26 to perform
various actions associated with the appliances 18, such as adding, modifying, removing and syncing
an appliance 18. The appliances view 254 can support detail, 3-line, and 1-line zoom modes. Figure
24 shows the appliance view 254 in All Services mode. In All Services mode, each appliance 18

displays service-specific information about one of the services. If only one service is active on the

-36 -

WO 2010/057312 PCT/CA2009/001686

appliance 18, then that service is displayed. If more than one service is active, then the service to
display can be selected in a defined order of priority. If a service is selected in the services bar 223,
then that service is displayed for all appliances 18 in the appliances view 254. The 3-line mode 254a
is shown in Figure 24, the 1-line mode 254b is shown in Figure 25, and the details mode 254c is
shown in Figure 26. As can be seen in Figure 26, the information available per appliance 18 in this
example includes: appliance name, services provided by the appliance 18, manufacturer, location, IP
address and port, status (e.g. online, offline, inactive, unprovisioned), HSM software version, disk
space available, memory available, credit available, minimum amount of credit, maximum amount of
credit, warning level for credit, appliance software version, number of alerts, number of jobs, number
of connection retries, connection timeout period, auto sync interval, ready only sync, asset block size,
last update, list of allowable agent IP subnets, date/time of last communication with controller 22,
date/time of last communication with each agent 20, and service-specific information (e.g. serial
numbers, keys, FCTs 50). Certain ones of these details can appear in certain zoom levels as shown in
Figures 24 and 25. In the appliance view 254, the operator can perform a zoom between zoom modes,
ping the appliance 18, sync the appliance 18, add an appliance 18, modify an appliance 18, remove an
appliance 18, activate an appliance 18, and deactivate an appliance 18.

[00183] The ping appliance action launches a ping screen 256 as shown in Figure 27, which
enables the operator to ping the selected appliance 18 over the secure channel to make sure it is alive
and to determine its network latency. The ping action is used to test whether a particular host
(appliance 18) is reachable across an IP network and to test an SSL connection, self test the network
interface card (NIC) of the computer being used, or as a speed test. The ping can estimate the round-
trip time, generally in milliseconds, record packet loss, and print a statistical summary when
complete.

[00184] The sync appliance action launches a sync screen 258 shown in Figure 28 and enables
the operator to ensure any service-related objects are topped up (e.g. assets such as serial numbers,
keys, FCTs 50, etc.), pushes any appliance configuration changes, and retrieves service logs from the
appliance 18. The synchronizing action makes sure that any service related objects or assets, such as
serial numbers, key, and FCTs 50 are at their maximum amounts. The synchronizing action also
synchronizes an appliance’s clock with the controller’s clock and retrieves service logs from the
appliance 18. In addition, any configuration changes made to an appliance 18 can come into effect
after the appliance 18 is synchronized. A read only sync can also be performed, which will gather the
status and asset information of the appliance 18 to see if it is in sync, but does not make any changes.
The synchronization can also be used to obtain service logs from an appliance 18.

[00185] The modify appliance action launches a modify appliance screen 260 shown in Figure
29. The modify appliance screen 260 enables details of the appliance 18 to be edited by the operator.

-37-

WO 2010/057312 PCT/CA2009/001686

Not shown in Figure 29 are credit minimum, credit maximum, and credit warning fields to enable the
operator to set thresholds for the credits given to the appliance 18 and when to issue a low-level
warning. The controller 22 and appliance 18 should automatically synchronize on a regular basis and,
when the appliance 18 is synchronized, the controller 22 checks to see how many assets are on the
appliance 18. If the number of assets is equal to or lower than the minimum value, then the controller
22 fills the appliance’s assets to the maximum level. If the number of assets is equal to or below the
warning level, then the controller 22 can issue an alert.

[00186] When an appliance 18 is first added to a controller 22, it is added with an inactive
status (see also FIG. 4B described above). The activate appliance action brings the selected appliance
18 online (automatically initiating provisioning if necessary). The deactivate appliance action takes
the selected appliance 18 offline with appropriate warnings if taking the appliance 18 offline will stop
an associated production line. Figure 30 illustrates a deactivate appliance screen 262 showing a
selected appliance to be deactivated before having the operator confirm this selection. The remove
appliance action should only be available if the selected appliance is not online, otherwise the action
should be disabled. Figure 31 illustrates a remove appliance screen 264 which is similar to the
deactivate appliance screen 262 in that the selected appliance 18 is shown prior to confirmation of the
selection by the operator. It may be noted that the appliance 18, when deactivated, should indicate
this by, e.g. changing colour to red as exemplified above, to provide a further visual cue to the
operator regarding the status of the appliance 18.

[00187] A product in the GUI 8 is a named grouping of one or more asset types that provides
the AMS 10 with a name for the product, an identifier for the product, a list of assets (e.g. serialization
schema, key type, or FCT 50, depending on the service), a list of appliances to which the assets
should apply, and the service the product provides. In the products view 266, shown in Figures 32 to
34, the operator can manage products and perform various actions associated with products in the
AMS 10, such as adding, modifying or removing a product. The products view 266 is shown in a 3-
line zoom mode 266a in Figure 32, a 1-line zoom mode 266b in Figure 33, and a details zoom mode
266¢ in Figure 34. As can be seen in Figure 34, the product view 266 can include various information
pertaining to the product, such as: product name, service, 1D, assets available (displayed as a meter,
each displayed individually in detail zoom level 266¢), list of assets (schema, key types or FCTs 50),
list of appliances 18, and for serialization and key injection — injection method (ACC or normal),
ACC record field and ACC offset field. In the product view 266, the operator can perform a zoom
between zoom modes, add a product, modify a product, and remove a product.

[00188] An add a product form 268 is shown in Figure 35 and is exemplified for serialization.
For key injection, the serialization schema list would be replaced with a key type list and for feature

control, the serialization schema would be replaced with an FCT list.

-38-

WO 2010/057312 PCT/CA2009/001686

[00189] A serialization schema in the AMS 10 is an object that defines the rules about how a
serial number is generated. For example, whether the serial number digits are presented in
hexadecimal or decimal and whether fixed strings are included. A serial schema view 270 is shown in
Figures 36 to 38. In these views, the operator can manage serialization schema and perform various
actions associated with schema in the AMS 10, such as adding, modifying or removing schema. The
3-line zoom mode 270a is shown in Figure 36, the 1-line zoom mode 270b is shown in Figure 37, and
the details zoom mode 270c¢ is shown in Figure 38. As best seen in Figure 38, the information that
defines the serial schema in this example includes the schema name, schema ID, serial numbers
remaining (not yet sent to appliances 18) from total pool, start value, total count of serial numbers to
generate, whether to use base-10 or base-16, total number of characters in the serial number (to pad or
truncate), list of static strings to include with their positions in the serial number, and samples to
illustrate the schema. In the serialization schema view 270, the operator can perform a zoom between
zoom modes, add a schema, modify a schema, remove a schema, and duplicate a schema (modify the
current selection but save with a new name). To add/modify/duplicate a serialization schema, an
add/modify/duplicate schema form 272 is launched as shown in Figure 39.

[00190] A key type in the AMS 10 is an object that defines the rules about what types of
cryptographic keys should be injected for a particular product. A key types view 274 is shown in
Figures 40 to 42. In the key types view 274, the operator can manage key types and perform various
actions associated with key types in the AMS 10 such as adding, modifying or removing a key type.
A 3-line zoom mode 274a is shown in Figure 40, a 1-line zoom mode 274b is shown in Figure 41, and
a details zoom mode 274c is shown in Figure 42. As best shown in Figure 42, the information that the
key types view 274 may provide can include: key type name, ID, keys available since last import,
length of key, key identifier length and offset, key data length and offset, file header length, hash
output (length and offset), hash algorithm, and hash input. A key type diagram 276 is also shown
which provides a visual depicted of the structure of the key and is updated as parameters are changed
to show the way in which the structure changes. In the key types view 274, the operator can zoom,
import keys, add key types, modify key types, remove key types, and duplicate key types (modify
current selection but save with a new name). An add/modify/duplicate key type form 278 is shown in
Figure 43 which can be seen is similar to the details zoom mode 274c¢ but enables parameters to be
edited.

[00191] An FCT 50 in the AMS 10 is an object that defines a particular feature or features that
may be specified for a particular product. An FCT 50 includes an array of bits called the feature
register 282. The state of specific bits in the feature register 282 may be mapped to features in the
device 14, controlling whether those features are active or disabled. An FCT view 280 is shown in

Figures 44 to 46 and illustrates a visual depiction of the feature register 282 with the active features

-39.-

WO 2010/057312 PCT/CA2009/001686

being distinguished from unactivated features by filling in a corresponding cell with a different
colour. A 3-line zoom mode 280a is shown in Figure 44, a 1-line zoom mode 280b is shown in
Figure 45, and a details zoom mode 280c is shown in Figure 46. In the FCT view 280, the operator
can manage FCTs 50 and perform various actions associated with FCTs 50 in the AMS 10 such as
adding, modifying, or removing a ticket. As best shown in Figure 46, the information that can be
provided in the FCT view 280 for a particular FCT 50 may include: FCT name, ID, feature inclusion
value, command implemented, tag (record tag indicating a feature or set of features programmed on
the ACC 12), and total number of injections. In the FCT view 280, the operator can navigate between
zoom modes, add FCTs 50, modify FCTs 50, remove FCTs 50, and duplicate FCTs 50.

[00192] An administrator can access a users view 284 shown in Figure 47 to perform various
actions associated with the users in the system, such as adding a user, removing a user, and changing a
user’s password. In this example, the users view 284 is at the 1-line zoom level. As can be seen in
Figure 47, the users view 284 lists information such as: username, controller permissions, appliance
permissions, user permissions, serialization permissions, key injection permissions, feature control
permissions, and last login time. The various permissions dictate what operations the user can
perform, e.g. adding or removing an appliance, generating a serialization schema, etc. In the users
view 284, the administrator can add a user, duplicate a user, modify a user, change a password, and
remove a user. An add user form 286 is shown in Figure 48 and enables the AMS 10 to impose
security permissions on its users according to defined user roles. In this way, the administrator can
define a user role to enable or deny different levels of access to particular parts of the system. By
creating several users with different permissions, the responsibilities can be partitioned within the
GUI 8 to allow operating the GUI 8 to be much more effective. For example, three user roles can be
establishes as follows: Security Officer (SO), Administrator (AD), and Operator (OP). For each user
role, various permissions can be set per the above, e.g. for view only, view and save, view and
operate, full access, etc.

[00193] Figure 49 illustrates the add user form 286 with an error bar 288, shown in red to draw
the administrator’s attention. Figure 50 illustrates a similar error with a field-specific indicator bar
290 to highlight the cause of the error, in this example due to a lack of correspondence between the
password and the confirm password fields. Other forms (not shown) can be launched for changing a
user’s password and removing a user.

[00194] An online help service can also be provided for the GUI 8, which can comprise a menu
item or a help icon or both (e.g. as shown in Figures 11 to 50) which link to an AMS online help
guide, e.g. in HTML format such that it is supported by a web browser. The menu item can lead the
user to the front page (table of contents) and the help button can lead the user to a help article

determined according to the current view in the data area 226 (i.e. context-sensitive help).

_40 -

WO 2010/057312 PCT/CA2009/001686

Asset Control Core

[00195] Turning now to Figure 51, further detail of an embodiment of the AMS 10 is now
shown configured for providing the feature activation service module. In the example shown in
Figure 51, the system 10 is configured to provision, communicate with, provide data to, collect data
from, and activate features within an ACC 12 embedded in an electronic device 14. As discussed
above, the device 14 and in turn the ACC 12 is connected to a tester 16, which is used in a
fabrication/manufacturing/assembly process. The tester 16 employs an agent 20, which is a software
module running on the tester 16. The tester 16 is in turn connected to an appliance 18, which includes
an HSM 19 that protects sensitive data and provides a secure zone within the appliance 18. As shown
in Figure 1, the agent 20 facilitates a secure communication channel 29 between the HSM 19 and the
ACC 12 for cryptographically securing communications therebetween. Over channel 29, an FCT 50
can be sent from the appliance 18 to the ACC 12. The appliance 18 may be connected to a backend
infrastructure 11, which may provide a certifying authority (CA), a database, and a controller 22 for
controlling one or more appliances 18 as will be explained in greater detail below.

[00196] In addition to being connected to the tester 16, the ACC 12 may also, either at the
same time or at some later time (or other time during the process), be connected to a user interface
(UD) over a wide-area-network (WAN) 24 or a device programmer 26. The device programmer 26
may also connect to the ACC 12 via the WAN 24 as shown. The device programmer 26 and/or WAN
24 can connect to the device 14 and ACC 12 using any suitable connection, for example, serial,
parallel, wired, wireless, infrared, RFID, etc. In this example, the ACC 12 is connected to the tester
16 over a standard testing protocol/connection 28 such as JTAG (Joint Test Action Group) IEEE-1149
test interface. The tester 16 and appliance 18 are connected over a suitable connection 30 depending
on their relative locations. In the examples provided below, the appliance 18 is located at the same
physical facility as the tester 16 and therefore the connection 30 may be a local area network (LAN).
[00197] The ACC 12, as will be shown, can comprise various types of memory, shown
generally and collectively as numeral 34 in Figure 51. The ACC 12 uses a portion of memory to
store, either persistently or ephemerally, various keys and certificates. Figure 51 illustrates various
keys and certificates that are used in the following examples. A static private key dsi, a static public
key Qsi (also referred to as the ACC’s UID), an ephemeral private key dei, an ephemeral public key
Qeti, a CA’s certificate CERT[CA], and appliance j’s certificate CERT[APPj], are shown in Figure 51.
In one embodiment, the static keys are stored in non-volatile memory (NVM), although they could be
mask programmed into a ROM memory. In another embodiment, no NVM may be required and the
keys can be stored offline on either a hard disc or flash memory or some other non volatile bulk data

storage medium outside of the ACC 12.

-41 -

WO 2010/057312 PCT/CA2009/001686

[00198] As can be seen in Figure 52, the ACC 12 is a small hardware core embedded in a
target system-on-chip (SoC) that establishes a hardware-based point of trust on the silicon die. The
ACC 12 can be considered a root of trust on the consumer device 14 as it comprises tamper proof
features that provide physical protection to sensitive data and methods to provide remote attestation
and verification. As will be explained in greater detail below, the ACC 12 is able to generate a unique
identifier (UID) for one integrated circuit (IC) 40, and participate in the tracking and provisioning of
the IC 40 through a secure and authenticated communication channel 29 with the appliance 18. In the
example shown in Figure 52, the IC 40 is mounted on a printed circuit board (PCB) 44 that would
then be assembled into a consumer device 14. Although embedded as such, the ACC 12 can continue
to serve as a root of trust on the PCB 44 and/or the final device 14.

[00199] The 1C 40 may also comprise a separate micro-control-unit (MCU) 42 which can be
used to establish a coﬁnection with a non-tester, e.g. a device programmer 26 by connecting
connection 32 to the IC 40 via a communication interface 48 configured for a suitable protocol as 1s
known in the art. It will be appreciated that, as shown in Figure 52, the communication interface 48
may also be integrated into the IC 40 with a direct connection through the PCB 44 to the WAN 24.
The role of the external MCU 42 shown in Figure 52 would be to facilitate the communication of the
FCT 50 between the appliance and the ACC 12 over a network (e.g. WAN 24) by receiving FCT 50
command messages through the communications interface 48 and reformatting the networked data, in
this case maybe a stream of bytes, into a format that it could pass over its (the MCU’s) memory
mapped interface through the ACC 12 parallel interface 66 (see also Figure 53) for processing by the
ACC 12. Conversely the ACC 12 would return FCT 50 response messages over its parallel interface
66 to the external MCU 42 for the MCU 42 to translate into a stream of bytes and transmit over the
communications interface 48 back to the appliance 12. The ACC 12 may connect to the agent 20 and
thus the appliance 18 via a test interface 72 (e.g. JTAG) — see also Figure 53 - which in turn bridges
the connection 28.

[00200] The appliance 18 is a secure module used to cache, distribute and collect provisioning
data and responses to/from one or more agents 20. For example, when an ACC 12 comes on-line, the
appliance 18 can track the parts that it is connected to using the ACC’s unique ID (UID). The
appliance 18 and the ACC 12 may then proceed to exchange key information and open up a tamper
resistant communication channel 29, which allows data to be transferred in such a way that the ACC
12 can be certain that it is talking to an authorized appliance 18, and the appliance 18 can be assured
that only one unique ACC 12 can decrypt and respond to the message it has sent. Ultimately, the
ACC 12 can be issued FCTs 50, and provide FCT responses which contain provisioning commands,
secure data, key information, serialization information and any other data the appliance 18 wishes to

provide to, push to, upload to, inject into or collect from the ACC 12 or the device 14 in general.

-42 -

WO 2010/057312 PCT/CA2009/001686

[00201] The agent 20 may be considered a piece of software that manages the lower-level data
transmission between the appliance 18 and the ACC 12. Each agent 20 is coupled to a tester 16 or
device programmer 26, and is responsible for passing data transparently between the appliance 18 and
the agent 20. The agent 20 comprises a transport layer API with which the appliance 18 may be used
to issue commands and receive responses to/from the ACC 12. It will be appreciated that unless
specified otherwise, secure operations performed by the appliance 18 are preferably performed within
the HSM 19. The tester 16 or device programmer 26 can be physically connected to the chip through
the standard JTAG IEEE 1149 test ports (e.g. test interface 46 and connection 28), or another
programming interface depending on the application. The agent 20, in either configuration, is used to
bridge the transport and physical layers. The agent 20 may be considered insecure and in the examples
described herein does not perform any cryptographic functions aside from simply providing a
message caching mechanism and passing messages between the appliance 18 and the ACC 12. Of
course, if desired, the agent 20 can also be equipped with cryptographic capabilities of varying
degrees depending on the requirements of the application.

[00202] The back-end infrastructure 11, is a general term referring to the entire backend
infrastructure that is used to interface between the manufacturer and its customers/end users.
Conceptually, every device ever processed by the system 10 and all programming records would be
kept in a back-end database which the manufacturer may use to query the history of each part
manufactured. The infrastructure may comprise a CA, database engine, ERP applications and
submodules, a feature control server (FCS), and an e-commerce front-end server if necessary. The
system 10 may also comprise connector logic to connect it to an to an ERP or e-commerce front
end server. The typical system environment may have the back-end server located at a central
location talking to an appliance 18 at a customer’s manufacturing site via security protocols such as
Secure Sockets Layer (SSL), Transport Layer Security (TLS), or Level 2 Security (MACSec) over the
internet.

[00203] Greater detail concerning the ACC 12 is shown in Figure 53. The dark outer boundary
in Figure 53 denotes a secure boundary such that any operations performed within this boundary are
presumed to be trusted.

[00204] The ACC 12 is typically a relatively small hardware core with customizable firmware
stored in read-only-memory (ROM) 52. In the example shown in Figure 53, the ACC 12 also
contains a small microcontroller 54, an elliptic curve cryptography (ECC) arithmetic unit 56, a
hardware-based random number generator (RNG) 58, data read/write memory (RAM) 60 and non-
volatile memory (NVM) 62. The ACC 12 has the ability to participate in the elliptic curve
implementation of the Menezes-Qu-Vanstone (ECMQV) protocol, and the elliptic curve digital

-43 -

WO 2010/057312 PCT/CA2009/001686

signature algorithm (ECDSA), as well as message encryption and authentication with advanced
encryption standard (AES)-based algorithms.

[00205] As noted above, the ACC 12 is designed to communicate with an appliance 18
connected to a tester 16 or something similar to a device programmer 26. In order to secure this
communication channel 29, the ACC 12 may use an asymmetric cryptography scheme for key
exchange, and symmetric key cryptography to transfer messages between it and the appliance 18.
[00206] For asymmetric cryptography, a public key (e.g. Qsi) is generated based on a secret
private key (e.g. dsi). It is important that the private key be protected in a secure, highly tamper
resistant setting. An embedded ACC 12 is able to fulfill this requirement by being able to internally
and autonomously generate a unique private key, with a combination of hardware and firmware to
protect the secret from being exposed. The private key is statistically unique to a particular device 14
and is permanently associated with that device 14.

[00207] The private key is kept secret, whereas the public key is shared. For the ACC 12, the
public key, or some numerical derivation thereof, can be treated as the IC’s unique device ID (UID) as
discussed above. Since the private key has a one to one mapping with the public key, the UID is also
statistically unique to a particular device 14 and is permanently associated with that device 14 (when
the public key is derived from a static private key).

[00208] This technique of IC identification along with the confidentiality and authentication
provided by the provisioning protocol described below, gives a chip or device vendor the ability to
register every authentic part in a database, to enact enforcement measures in order to detect and
prevent impropriety in the manufacture and distribution of the device 14 such as cloning and reselling
over-production parts.

[00209] The UID can be used as part of the security protocol to establish a secret between the
appliance 18 and the ACC 12 through mutual key agreement. During key agreement, public keys are
traded between two parties, each party generates a shared key independently of the other, using only
the public keys that were exchanged in the open, and his’her own private key that is kept secret. The
result of key agreement is that the two parties arrive at a secret shared between only the two of them,
while any third parties trying to listen in could not complete the agreement unless they have copies of
the private keys.

[00210] The appliance 18 and ACC 12 can also participate in an ECMQV key agreement
scheme, which generates a secret key that is known only to the two parties involved. The shared secret
generated (e.g. kij) is the basis and prerequisite for symmetric key cryptography, that is, it is used to
establish a highly tamper resistant encrypted and authenticated communication channel 29 between

the two parties.

-44 -

WO 2010/057312 PCT/CA2009/001686

[00211] Once both parties agree on a symmetric key, the appliance 18 can start issuing and
receiving signed confidential messages, also known as FCTs 50, to/from the ACC 12 in a secure and
authenticated manner. FCT 50 commands are messages containing either feature provisioning,
read/write access to protected NVM 62 memory regions, or any other command or message to be
provided to the ACC 12 in a controlled, secured and traceable manner. FCT 50 responses are
messages containing status, audit data or any other command or message to be provided to the
appliance 18 in order establish, maintain or comply with the secure provisioning protocol.

[00212] Privileges can be used to positively enable features at test and manufacture time, or
enable features upon reconnecting to a server or device programmer 26 in the after-market. The lack
of privileges can be used negatively to disable non-authorized features in a suspect device, whether it
being a clone, a counterfeit or otherwise stolen device.

[00213] Completely secured feature provisioning can be achieved through the combination of
various cryptographic techniques, examples of which are as follows.

[00214] Each ACC 12 may have a Root CA public key stored in its ROM 52 or NVM 62.
Each appliance j may then have its own unique certificate CERT[APP;] produced by the Root CA (not
shown). The certificates may be relatively small and the certificate fields bit-mapped for easy parsing.
The appliance 18 authenticates itself to the ACC 12 by sending a certificate to the ACC 12 as part of
the protocol (to be discussed in greater detail below). The ACC 12 uses the CA root certificate to
verify the identity of the appliance 18.

[00215] Each appliance 18 can have a customer ID (CID) assigned to it that is sent along with
the certificate. The CID in the certificate should match one of the CIDs stored in the ACC 12 to
ensure that a particular appliance 18 belongs to the proper owner/producer of a particular device 14
and is authorized to communicate with the embedded ACC 12. Multiple CIDs on an ACC 12 allows
for different vendors on a tiered manufacturing process to provision features that they own. For
example, an application specific integrated circuit (ASIC) vendor would configure the SoC for a
particular original equipment manufacturer (OEM), who then configures the device to target a
particular equipment seller or service provider, and finally the end customer might be allowed to
activate yet another subset of configurations based on his/her service plan.

[00216] The ACC 12 can be made to enforce access control to the third party vendor owned
features according to a secure identity data (CID) of the participating vendors. The original owner of
the SoC could potentially load a CID/Feature Set configuration table as part of its provisioning.
[00217] Each FCT 50 from the appliance 18 to the ACC 12 is encrypted, integrity protected,
authenticated, and protected against replay and spoofing in this embodiment. Each FCT 50 may be
keyed to the UID of a specific ACC 12, and feature privileges granted only on a per device basis upon

the success of unlocking the FCT 50 with a device’s private key. A fraudulent device attempting to

- 45 -

WO 2010/057312 PCT/CA2009/001686

intercept an FCT 50 locked to another UID would then fail to decrypt the FCT 50. Each FCT 50 may
also be provided a serial number associated with it such that an FCT 50 can only be used once to
prevent them from being copied or replayed. Each FCT 50 may be signed by the appliance 18 that
issued it so that the FCT 50 cannot be altered in an undetectable manner.

[00218] The response from the ACC 12 back to the appliance 18 can be configured to have a
serial number and a message authentication code (MAC) so that even the response cannot be altered
or replayed. Since the FCTs 50 are linked to a specific UID, the appliance 18 can keep an audit log
showing where and what a particular UID was programmed. The audit log can be reported back
through the backend 11 to the SoC manufacturer/vendor. Should multiple instances of the same UID
be detected in a review of these log files, it would be an indication that a chip has been cloned or
counterfeited.

[00219] The use of ECMQYV provides an encrypted tunnel 29 that links a specific appliance 18
to a specific ACC 12. No other party can participate in this protocol or decrypt commands sent during
an encrypted programming session. ECMQV in particular, may be chosen as the technique to create
the channel 29, since it is known to be less vulnerable to the man-in-the-middle attack, which is a
credible threat in the environment shown.

[00220] The ACC 12 and appliance 18 can be configured in various ways to suit a particular
environment. The following discusses various features that enable such configurability. The ACC 12
should utilize a very small total silicon area, and should support on-chip (self contained in ACC 12)
generation of a UID, and on-chip generation and storage of ECC public-private key pairs.
Enablement/disablement of scan chain testing of the ACC 12 should be available prior to ACC ECC
key pair generation to prevent the private key from being revealed. Authentication/integrity protection
of commands from the appliance 18 to the ACC 12 should be provided, and security-critical
commands should be unique to a specific ACC 12. FCTs 50 between an appliance 18 and the ACC
12 should be encrypted for confidentiality and features may be enabled and disabled via FCTs 50
provided to the ACC 12.

[00221] The ACC 12 may function as a protocol enforcer — if the received commands are
invalid, the ACC 12 can reject them and optionally shut down if a threshold of invalid commands
were attempted. There should also be the ability to ensure that once the ACC 12 is locked out, (as in
the case when the device is to be retired permanently, or if the system 12 detects the device has been
tampered with,) the ACC 12 cannot be re-enabled. When not in use, the ACC 12 should be capable of
powering down to very low current drain, and the ACC 12 operation should not rely on external (off-
core) firmware or an external CPU to perform its basic functions.

[00222] The agent 20 and/or any suitable interface (e.g. 46, 48) can provide the flexibility to

allow customers to add their custom programming interfaces to the ACC 12, which ultimately allows

- 46 -

WO 2010/057312 PCT/CA2009/001686

customers to communicate with the ACC 12 using a variety of device programmers 26 (e.g., USB
port, [2C serial interface, Ethernet, etc.). Similarly, ACC 12 programming should be capable of
taking place at multiple locations, at multiple times, provided it can open up a secure communication
channel 29 with a trusted appliance 29. In this way, programming can be deferred until the least
costly phase of the manufacturing cycle. The appliance 18 and the ACC 12 can be used to securely
program and store additional information such as unique device identification numbers (e.g.,
IMEVEIN for mobile phones).

Hardware Details

[00223] Further detail of the hardware implementation shown in Figure 53 will now be
provided. The ACC hardware in this example comprises a microcontroller 54, a memory bus
controller 64 to access scratch data ram 60 and NVM 62, and several memory mapped peripherals,
including an arithmetic unit 56 (configured for EC operations), an RNG 58 accessible through a
peripheral controiler 59 and, although not shown, optionally an AES and SHA core (if the area /
performance trade-off is feasible). Additionally, the ACC 12 can have an optional generic parallel
bus interface 66 and external-access NVM interface 68 to add flexibility for SoC designers.

[00224] At the center of the ACC 12 is the microcontroller 54, which plays an integral part in
all the tasks that the ACC 12 accomplishes, including: authenticating and executing provisioning
commands and enforcing provisioning; executing high-level security protocols; assisting in
sequencing the low-level hardware cryptographic accelerator functions, performing management tasks
such as initialization, configuration, power management; and assisting in maintenance built in self test
(MBIST) and a RNG BIST during wafer testing. The microcontroller should be chosen primarily for
its size, then enhanced to meet speed performance where deemed necessary.

[00225] The field arithmetic unit 56 provides hardware acceleration of the low-level
cryptographic calculations. Specifically, the field arithmetic unit 56 should be configured to perform a
binary field multiplication efficiently. The field arithmetic unit 56 may be considered an important
part of the ACC 12 because it allows the completion of an EC point multiplication relatively quickly.
The field arithmetic unit 56 can be used to accelerate both the ECDSA and ECMQV public key
protocols used to provide, respectively, authentication and mutual authentication. The details of these
protocols will be explained below.

[00226] The hardware and firmware typically trade off in terms of area, code memory,
complexity and performance metrics. Decisions based on what will be implemented in hardware is
typically primarily gate-count and performance driven. The performance of the ACC 12 has direct
cost implications measured in terms of tester time, and the equivalent gate count drives the cost of

implementation as measured by silicon area.

-47 -

WO 2010/057312 PCT/CA2009/001686

[00227] The RNG 58, with the help of a software conditioner (not shown) can be used to
generate statistically random numbers used as cryptographic keys and UIDs. In elliptic curve public
key cryptography schemes, a random number is used as the private key, and when it is multiplied,
using elliptic curve scalar point multiplication, by the previously agreed upon Generation Point of the
curve parameter, the product would be the public key. The RNG 58 can be used when the ACC 12
generates its static private key pair which is static throughout the entire life of that ACC 12. In
addition, a new ephemeral key is created for every secure session between an ACC 12 and an
appliance 18. Whenever the ACC requires a new static or ephemeral key to be generated, the RNG 58
is asked to provide a random bit stream to be used as the seed to generate the private static or
ephemeral key. The random bit stream feeds into an AES block cipher to condition the raw entropy
produced by the RNG, producing a uniformly distributed random number that is used as the static
private key. In some embodiments, prior to feeding into the AES block cipher, the random bit stream
can be fed into a software-based linear feedback shift register (LFSR) to condition the RNG data. As
part of design for testability (DFT) testing, the ACC 12 should be asked to perform a health check of
the RNG 58.

[00228] The ACC 12 in this example can have a 16-bit address, ranging from 0000h — FFFFh,
byte addressable memory spaces. The following Table 2 lists how the memory space may be divided

into distinct regions in this embodiment.

of bytes
start addr |[end addr |allocated |Name Description
0x0000 OxOFFF 4K XRAM General purpose scratch data ram
0x1000 Ox1FFF 4K - reserved
0x2000 0x21FF 512 NVPRIV |Private Space of the NVM
0x2200 0x23FF 512 NVPROT |Protected Space of the NVM
0x2400 0x2FFF 3K NVSHARE |Shared Space of the NVM
0x3000 |OX3FFF [4K [ACCREG |ACC registers
0x4000 [0x7FFF [16K |IDBG [debugger storage (reserved)
0x8000 OxDFFF 16K ROM Instruction Program ROM
OxE000 OxFFFF 16K - reserved

Table 2 — Memory Space Allocation

[00229] The microcontroller scratch space (XRAM) in the above table, can be used for
temporary data storage by the microcontroller 54. It may be implemented as fast, single-cycle access,
8-bit byte addressable, 32 bit data static RAM. The actual amount of scratch space should be defined

based on firmware usage.

-48 -

WO 2010/057312 PCT/CA2009/001686

[00230] The ACC 12 may be configured to have a generic interface to an NVM storage
element 62 such as OTP, MTP, EPROM, FLASH, etc. NVM 62 is IC technology dependent, so an
NVM interface 70 for such NVM 62, is likely defined according to the specific application. The
NVM interface 70 provides abstraction and should have the capability of writing, rewriting and
erasing the UID in a secure manner that is easily adapted to a proprietary NVM interface protocol.
Certain types of NVM 62 are one-time programmable (OTP); which means that once they are
“burned” they cannot be erased or re-wriiten into that memory location. If OTP memories are used,
then firmware is needed to make sure that it keeps track of which memory locations have already been
written to and maintain a mechanism which is used to find the latest data content and where there are
available free space.

[00231] In this embodiment, there are three distinct NVM permission levels, each permission
level having different restrictions placed on them. First, private space permission level, wherein
NVM 62 is reserved for the ACC’s use exclusively. The ACC 12 can read and can write, but other
agents are prohibited to access this region. Data stored in this region may include the secret static
key, the UID, and the non-volatile state of the ACC 12. Second, a protected public space permission
level, wherein external agents can only write data in this region using the FCTs 50 and the secure
messaging protocols with authentication as will be described below. This region is readable from the
JTAG port 72 with the RDACCESS type FCTs 50. This region is also readable from the parallel
command interface 66 with a normal memory access, as well as with RDACCESS FCTs 50.
Typically, this region contains secret data that the customer would want to store in NVM 62 that are
only allow accessible by on-chip logic, assuming the on-chip logic does not leak that data to outside
the chip. Third, a shared memory space permissible level, containing other data to be stored in NVM
62 that that the ACC 12 does not need to protect. External agents can read and write in this region
either with the cmd[SHARENVMWR] or the cmd[SHARENVMRDY], or by using direct memory
access from the parallel command interface 66. The “cmd” commands will be explained in greater
detail below. Ata minimum, the ACC 12 should have enough NVM 62 space with a “private”
permission level to store on-chip secrets.

[00232] One of the many applications for the ACC 12 is to provide a way to enable and disable
features based on customer requirements. Although the exact feature set defining what can be
enabled/disabled is to be provided by the customer, the following describes how a provisioning
interface 74 may be used such that adaptations can be made according to specific customer
requirements. In short, as noted above, the ACC 12 comprises a set of output ports, denoted by the
enablement controller and interface 74 in Figure 53, and evaluates the aggregate of these outputs
indicates which features are enabled and which are disabled. In one embodiment, there is one enable

signal detected over the enablement controller and interface 74 per feature item that would need to be

- 49 -

WO 2010/057312 PCT/CA2009/001686

enabled/disabled. The raw data that determines the values output to the enablement controller and
interface 74 may come from the NVM 62. It is possible to encode or scramble the enable signals such
that there is not a one-to-one mapping of a particular feature to a single enable signal. In this case you
would instead need to evaluate multiple bits of signals to determine whether a particular feature has
been enabled. It can be appreciated that it would be up to individual customer application to determine
whether this is necessary or feasible. In this way, unauthorized feature enabling can be made more
difficult, at the cost of some additional logic. However, whether scrambling is even necessary depends
on the actual feature list from the customer and which threat models are being considered.

[00233] If the ACC 12 has been compromised, as will be explained below, it is transitioned
into a lock-out state, wherein the feature enablement is automatically set to some very primitive value
where only a bare minimum set of features are enabled for debugging and post-mortem analysis. The
feature enablement value when in the lock out state may be different than the initial feature
enablement of a new device 14 depending on customer requirements.

[00234] The amount of time for which the ACC 12 is active is typically relatively short, and
therefore power consumption while it is inactive should be considered more important than while it is
active. The ACC 12 can include power management circuitry provided by the underlying silicon
technology to reduce power when it is inactive. For example, techniques that can be used to save
power when the ACC 12 is inactive, include clock gating and power gating may be used.

[00235] The ACC 12 shown in Figure 53 also provides a bi-directional generic serial command
interface 76 to a JTAG test access port (TAP) controller 72 as defined in the IEEE 1149 (JTAG)
specification. The controller 72 is simply a state machine and implements the feature provisioning
commands as JTAG user-defined commands. The JTAG specification provides a nicely defined tester
interface that can be used by the tester to transiate high level commands from the provisioning server

into tester commands that are communicated to the design-under test (DUT) through the tester

interface.
[00236] The ACC DFT features that can be implemented comprise the following:
[00237] 1) Software MBIST of the RAM 60 and NVM 62 can be initiated by a command

issued by the tester 16. MBIST for RAM 60 and NVRAM involves a fixed pattern across the rows
and columns of the memory then reading them back to make sure it contains what is expected.
However, if OTP NVM 62 is used, it is impractical to test every address location, so the pattern may
be applied to only one address location.

[00238] 2) Partial scan chain testing inserted for the registers inside the ACC 12, initiated and
controlled by the tester 16. Registers, which may be a sub-set of control and configuration registers
75 in the ACC 12, deemed to contain sensitive information are excluded from scan chain. The

following registers may be excluded from scan chain: Life_Cycle State and System_Ready registers,

-50 -

WO 2010/057312 PCT/CA2009/001686

feature enablement registers, reset enable register, cross-clock domain synchronization latches, and
DFT enable/disable register.

[00239] 3) JTAG Boundary scan is used to test the primary I/O of the IC 40. This is added
security to make sure the ACC 12 was not disconnected, which might be an indication of an attack.
All ACC 12 DFT features are controlled by the ACC’s own TAP controller 72 and, as such, the
hardware should be designed so that the DFT features can be enabled and disabled based on the state
of the ACC 12. An uninitialized ACC 12 powers up into a Test State and has DFT features enabled by
default. When the ACC 12 receives a cmd[EXITTEST], software then causes a transition from the
Test State to the Initialization State. As a result of this transition, the hardware can determine that it is
no longer in the Test State and disables DFT features until it is enabled again.

[00240] In this embodiment, appliance 18 commands are sent serially through the JTAG
interface to the ACC’s TAP controller 72 as described above. It is possible that is some applications,
it would be desirable to have an alternate way of issuing commands to the ACC 12 besides a TAP
controller 72, and thus a second interface for commands to be sent can be provided, namely a generic
programming interface. Such a generic programming interface is considered to be simply a 16 or 32-
bit processor interface.

[00241] The parallelized output from the two command sources should be muitiplexed
(MUXED) together and only one command interface should be active at any time. The command
interface 76 chosen is the one that issues the first command (the TAP controller 72 may be chosen as
the default in case there is a tie.) The selected interface is the active interface until a cmd[REQRESP]
is completed or an explicit cmd[STOPACC] is issued or if the device 14 resets. The purpose of the
command processing state machine, which is implemented in protected firmware running on the
MCU 54, is to perform a preliminary decode and filter of the commands issued by the appliance 18to
see how to handle them.

Sequence of Operations for the ACC

[00242] Figure 54 is a high-level state diagram illustrating the sequence of operations for
transitioning from one life cycle state to the next. Throughout its life time, the ACC 12 can operate in
one of four states based on what has occurred in the past, thus they are called the ACC’s Life Cycle
States. Preferably, certain actions are only permissible in particular life cycle states, as enforced by a
combination of hardware control logic and firmware code.

[00243] The firmware should have sole control of the state transition based on commands
received from the appliance 18. The first step of transitioning to a new state is to write the new state
value to a fixed location in private NVM space. The definitive state value would then be kept in
NVM 62 so that if power gets cut before the state was saved, the ACC 12 does not revert back to a

state that it has already transitioned through upon power up. In other words, the lifecycle state

-51-

WO 2010/057312 PCT/CA2009/001686

transition and the update to the lifecycle state register should be executed as an atomic operation. An
overview of the four life cycle states shown in Figure 54 will now be provided.

[00244] Test State 80 — The ACC 12 is in the test state 80 when it is a brand new, un-initialized
device that has yet to pass testing and sorting. 1f an ACC 12 is still in this state, it implies that the
ACC 12 has not completed BIST, Scan or other test operations, and is thus presumed to not yet be
ready for the Initialization State 82. During the Test State 80, the ACC 12 can execute any number of
chip validation tests, repeatedly if necessary. Some of these tests can corrupt the internal registers and
memory content, therefore it is foreseeable for the test program to require multiple reset cycles before
being done. The ACC 12 should be designed such that it remains in the Test State 80 through multiple
reset cycles until the tester issues one particular command, namely the cmd[EXITTEST] command
(described below), that can be designated as the way to exit the Test State §0.

[00245] The cimd[EXITTEST] causes the ACC 12 to disable all DFT features, and transition to
the Initialization State 80, before issuing a soft reset. Disabling DFT features prevents an adversary
from using those features to tamper with the SoC without authorization. The DFT features are left
disabled until they are explicitly enabled with a FCT 50 issued by an authenticated appliance 18 later
on in the Functional State 84. The least significant bit of the feature register can be reserved to allow
DFT in the Functional State 84. DFT features should not be able to alter the Life Cycle state, and
having DFT re-enabled should not cause the state to change. The soft reset can be helpful to ensure
that there are no residual DFT data left in the ACC 12. The ACC’s firmware should be used to update
the Life Cycle State value in NVM 62 before issuing the soft reset to ensure that when the ACC 12
restarts, its proceeds directly to performing the initialization procedure.

[00246] Initialization State 82 — In this state the ACC 12 generates its static key pair (e.g. dsi,
Qsi). The x-coordinate of the public static key may then be used as the ACC’s UID. When this has
been done, the ACC 12 can update the non-volatile life cycle state so that the next boot will proceed
to the Functional State 84. The response to the cmd[EXITTEST], in this example, contains the UID.
[00247] Functional State 84 — In this state, the ACC 12 performs basic health checks, updates
the feature register and then goes into hibernation, waiting for the cmd[STARTACC] and subsequent
commands from the appliance 18. The ACC 12 can verify that the commands from the appliance 18
are valid and participating in secured communications. If for whatever reason the ACC 12 receives a
limited number of what are deemed to be invalid commands in any of the above states, the ACC 12
can automatically transition into a Lock-Out State 86. The least significant bit of the feature register
allows DFT in the Functional State 84. DFT features should not be able to alter the Life Cycle state,
and having DFT re-enabled should not cause the state to change. A FCT 50 may be required to set the
DFT feature bit, bit zero of the feature, so that only under secure conditions the DFT can be re-

enabled. It may be noted that this re-enabled occurs typically in a volatile FCT enable operation,

-52 -

WO 2010/057312 PCT/CA2009/001686

where DFT capability is lost when the device powers down. The volatile nature of DFT enable allows
for multiple enables over the lifecycle of the device, even when considering the use of non-volatile
memory to store enable bits.

[00248] Lock-Out State 86 — This state may be reached if the ACC 12 has encountered one of
the following conditions: i) been issued the cmd[LOCKOUT], ii) detected and exceeded a maximum
number of allowed errors, iii) detected an unrecoverable error. The lock-out mechanism is intended to
be a deterrent against repeated attempts to attack the ACC 12 and the entire system 10 as a whole.
Once the ACC 12 is in the Lock-Out state 86, the ACC 12 ceases to process additional commands.
Any attempt to communicate using ACC commands thereafter would then result in a LOCKED status
as a response. In addition, the firmware can either revert to a pre-specified feature set or simply
maintain the feature set as is, prevent further changes to the feature set or protected space of the NVM
62, then shut down and go into hibernation.

[00249] Life cycle state transitions are typically progressive and are non-volatile, that is to say,
once the ACC 12 has transitioned to a new state, it could not go back to a previous state even through
power and reset cycles. The exception to this can be the transition to the Lock-out State 86, which
will be volatile. The Life Cycle State 86 that is stored in NVM 62 should not be modified by going to
Lock-Out state 86, such that the ACC 12 will be unlocked if it is goes through a power or reset cycle.
By preventing command and protocol errors to cause a permanent lock out of the ACC 12, this
scheme can prevent the SoC from being permanently disabled inadvertently.

[00250] However, there are certain errors (mostly due to hardware defects) that may prevent
the ACC 12 from operating normally. If the ACC 12 encounters any of these unrecoverable errors,
then it is possible for the ACC 12 to be stuck in the Lock-Out state 86 permanently. A counter
allocated in RAM 60 may be used to keep track of how many error conditions the ACC 12 has
observed since reset. Each time the ACC 12 encounters an error condition, it would then increment
the error count. When the ACC 12 reaches a maximum number of allowed errors, the ACC 12
transitions into the volatile Lock-out state 86. The error counter may allow any specified number of
allowable errors before locking out the ACC 12.

Firmware — Boot Sequence, State Transitioning, and Life Cycle States

[00251] The firmware can be organized generally into the following groups: a set of
cryptographic primitives, which includes various underlying arithmetic primitives; a set of BIST
primitives; boot and start up sequencer; Life Cycle State functions; and a set of functions to interpret
and process incoming commands and messages. The cryptographic primitives will be described later
following a discussion of the communication protocols, and the BIST primitives will be discussed

with a discussion of the command handling. The following will thus focus on the boot and start up

-53-

WO 2010/057312 PCT/CA2009/001686

sequences, the Life Cycle State functions and the set of functions to interpret and processing incoming
commands and messages.

[00252] Boot/Start up — As shown in Figure 55, at every ACC 12 restart, the microcontroller
54 embedded in the ACC 12 automatically starts executing firmware boot code upon power up or
coming out of reset. The firmware program should always begin executing the boot sequence in the
following order: 1) Perform some necessary low level register initializations and configurations; 2)
Read the feature enablement list stored in NVM 62 and determine which features needs to be enabled
or disabled, then drive the appropriate feature enable signals; 3) Read the NVM 62 to get the last state
the ACC 12 was in with before it was powered-down/reset; and 4) Transition into the appropriate Life
Cycle State by writing to the Life Cycle State register and jumping to a sub-routine that handles
everything needed to be done in that particular state.

[00253] A diagram illustrating a state transition sequence is provided in Figure 56. Every state
transition may begin with the following sequence: First, the state transition subroutine has an input
parameter indicating the new state it is transitioning to and then does the following: 1) Check the new
state against the current state to make sure the state transition is valid; 2) If the new state is different
than the last state stored in NVM 62, update the NVM 62 with the new state value; 3) Write the new
state value to the Life Cycle State register; 4) Decide whether this state transition is the first state
transition right after a power up or a hard reset. If it is, then go automatically into hibernation mode by
defauit; and 5) Otherwise, call the corresponding state function to start performing the required
operations in that particular state. It may be noted that, for step 5, each state has its own subroutine to
handle the operations necessary in that state. The subroutines for each of the state subroutines are
shown in Figures 57a to 57d.

[00254] The Test State subroutine is shown in Figure 57a, the Initialization State subroutine is
shown in Figure 57b, the Functional State routine is shown in Figure 57¢, and the Lock-Out State
subroutine is shown in Figure 57d. It can be seen that the subroutines generally follow the high-level
blocks shown in the life cycle diagram of Figure 54.

[00255] It may be noted that, as far as firmware is concerned, enabling or disabling features
involves writing the appropriate values to a set of hardware registers and storing that value in known
locations in NVM 62. It may also be noted that in certain applications, the ACC 12 may use OTP
memories to store non-volatile data. OTP memory does not allow firmware to erase previously written
data. Typically, OTP memories can be thought of as fuse circuits: Every bit has a value of ‘0’
initially, and upon writing a ‘1’ to a certain bit location, that fuse is permanently burned and could
never be restored. For this to occur, the firmware should consider: whether a piece of data is valid or
not, where to look for most up-to-date data, where there is free space available and what happens

when no more free space, and allocating enough extra redundant space to allow for multiple writes.

-54 -

WO 2010/057312 PCT/CA2009/001686

If the NVM 62 is not OTP, firmware may treat it as RAM and be free to overwrite existing content.
However, it should be appreciated that NVM 62 is typically slower than SRAM. Firmware should try
to access NVM 62 in bursts to minimize performance impact.

[00256] The firmware should store important information to NVM 62 as soon as possible in
case the ACC 12 loses power or is suddenly disconnected from the appliance 18. With certain NVM
62 technologies, data written into NVM 62 should be read back to ensure the writes were successful
since some NVM 62 write operations may not be 100% reliable. In addition, the firmware should
maintain a running count of how many failed/illegal commands were observed, and if the count
reaches a threshold, firmware should place the ACC 12 into the Locked-Out State 86. Also, ifa
command fails to provide the proper response in a reasonable amount of time, it might be an
indication that something went wrong inside the ACC 12 or it had been disconnected prematurely. In
such cases, the appliance 18 could attempt a reset or it would need to log the disconnection in the
database; and resume the last operation in case this ACC 12 is ever reconnected again.

[00257] In order to impede side-channel attacks where an adversary extracts secret information
by examining information inadvertently leaked out due to implementation details of fundamentally
sound algorithms, the ACC’s firmware may include certain firmware counter measures to mitigate
these attacks. The counter measures, if any, will be specified in the firmware implementation
specification. It may be noted that certain counter measures create complexity in the system 10,
which in turn increases the execution time and energy consumption.

[00258] Figure 58 provides a diagram illustrating a command interpreter subroutine, which
outlines what the firmware does for received commands. The firmware is responsible of processing

the following commands, shown in Table 3 below:

-55-

WO 2010/057312

PCT/CA2009/001686

Command Code |Command Name Valid State

0x02 REQVERID Test, Initilaize, Functional
0x03 STARTACC Any

0x04 STOPACC Any

0x05 LOCKOUT Test, [nitilaize, Functional
0x06 INITIALFCT Functional

0x07 FCT Functional

0x08 TESTMEM Test (*DFT), Functional
0x09 TESTROM Test (*DFT), Functional
0x0A TESTNVM Test (*DFT), Functional
0x0B TESTRNG Test (*DFT), Functional
0x0D SHARENVMWR Test, Functional

0x0E SHARENVMRD Test, Functional

0xO0F EXITTEST Test

0x10 REQRESP Any

Table 3 - Valid Firmware Commands

[00259]

Table 3 (even valid commands that are handled by the hardware), the firmware can treat such

If the firmware receives a command that is not in a predetermined list, such as that in

commands as errors and call the error-handler function. The commands indicated by (*DFT) in the
Table 3 are used to validate the logic on the silicon is manufactured without defect. Some DFT
commands have their own protocols and behave differently than the regular command sequence. A
description of the actual functionality of these commands will be described later. The DFT commands
remain invalid in the Functional State 84 until the DFT features are re-enabled through secure feature

provisioning via cmd[FCT] - the command associated with providing FCTs 50.

[00260] The process of handing ACC commands can be described in the following processing
sequence:

[00261] 1) Poll the register NewCmdAvail until it detects the bit value ‘1°, which indicates a
new command is available;

[00262] 2) Set the CmdInProgress bit to notify the hardware that the firmware started
processing the command;

[00263] 3) Read the instruction register (IR) to obtain the command code;

[00264] 4) Read the data (if applicable for the command) from the registers (word by word,
where word is 32-bit);

[00265] 5) Process the data, perform necessary operations requested by the command;
[00266] 6) Prepare the response payload to the hardware, where the response payload is in this

format: <status code , data>, where ‘status code’ contains a 4-byte value (SUCCESS, FAIL, or

-56 -

WO 2010/057312 PCT/CA2009/001686

LOCKED) and ‘data’ contains is as many bytes as required by the command (it can be empty for
some commands, and it should always be empty if the status is not = SUCCESS);

[00267] 7) Set the RspReady bit and clear the CmdInProgress bit at the same time by writing
to SWFLAGS register;

[00268] 8) Wait until SendRspNow is set to 1° (indication that the hardware is ready to receive
response data from the firmware), and write the response data to the registers (word by word, where
word is 32-bit); and

[00269] 9) If instead of the SendRspNow flag you have a NewCmdAvail flag, abandon the
response and handle the new command instead.

[00270] As noted above, Figure 58 provides a flow diagram showing the steps that the
command interpreter firmware code may take.

[00271] Figure 59 illustrates a flow diagram showing steps in an error handling routine. It is
possible to jump into the error handling function and never come back because the ACC 12 has
reached the maximum number of errors allowed and has transitioned into the Lock-Out State 86. In
this example, as noted above, there are a total of 8 error count markers, allowing up to 8 invalid
commands to be observed without locking up the ACC 12 throughout the entire life span of the ACC
12. The error handling can optionally be implemented via the MCU traps, which are interrupts that
can be triggered by programmable conditions such as counter thresholds, read/write operations
to/from a specified register or via an external signal. There are some benefits to using the MCU traps:
uniformed error handling from everywhere in the firmware code and handling exceptions such as
invalid MCU instructions, bad addresses, and such (so that the hardware can catch these exceptions
and treat them as errors).

[00272] Figure 60 provides a flow diagram illustrating steps performed during a hibernation
routine. The hibernation mode can be implemented via an MCU “stop” instruction, which puts the
MCU 54 into a low-power mode. In this embodiment, the only way for the firmware to get out of
hibernation state is to perform an MCU reset. When the hardware receives cmd[STARTACC] from
the appliance 18, it can reset the MCU 54 causing the firmware to boot.

Command Handling

[00273] An important aspect of the ACC 12 is incorporating protocols to decode, verify,
process and respond to commands that are sent by the appliance 18. ACC hardware and firmware
need to cooperate by communicating with each other through the use of memory mapped registers
that are set, cleared or polled at the proper instances. Various commands have been introduced above
but the following describes further detail of all the commands the ACC 12 accepts in this embodiment

to illustrate an exemplary protocol for command handling.

-57-

WO 2010/057312

[00274]

PCT/CA2009/001686

The following Table 4 provides a summary of all the commands that the ACC 12 can

process. The function of each of these commands will then be described in more detail.

Command Name | Encoding | Life-Cycle Additional Description
IR[4:0] State Available | Comments
IDCODE 0x01 ALL *HW-Only, JTAG IDCODE
*SPECIAL
REQVERID 0x02 ALL *HW-Only, send ACC SW and HW
*SPECIAL versions
STARTACC 0x03 TEST, INIT, *HW-Only ACC reset/ wake-up from
FUNC hibernate
STOPACC 0x04 TEST, INIT, ACC hibernate
FUNC
LOCKOUT 0x05 TEST, INIT, Go to lockout state
FUNC
INITIALFCT 0x06 FUNC Establishes shared key session
and process the first FCT in the
session
FCT 0x07 FUNC Process an additional FCT in an
existing key session
TESTMEM 0x08 TEST, FUNC *DFT RAM test
TESTROM 0x09 TEST, FUNC *DFT ROM test
TESTNVM 0x0A TEST, FUNC *DFT NVM test
TESTRNG 0x0B TEST, FUNC *DFT RNG test
SCAN 0x0C TEST, FUNC *DFT SCAN test
SHARENVMWR | 0x0D TEST, FUNC Writes to “shared” regions of
NVM
SHARENVMRD 0x0E TEST, FUNC Reads from “shared” regions of
NVM
EXITTEST 0x0F TEST Disables DFT features and exit

-58 -

WO 2010/057312 PCT/CA2009/001686

the TEST state
REQRESP 0x10 ALL *SPECIAL Request for Response
BYPASS 0x1F ALL *HW-Only, JTAG BYPASS
*SPECIAL
Table 4 - Command Summary
[00275] First, some general comments regarding Table 4. The commands indicated as *HW-

only are ones which are handled by the hardware only and the firmware are not aware of them. All
the other commands are passed to the firmware to be processed. The commands indicated as *DFT in
Table 4 are used to validate that the logic on the silicon is manufactured without defects. As the ACC
12 transitions out of Test State 80, DFT commands are disabled and considered invalid. They will
remain invalid until the DFT features are re-enabled through the secure feature provisioning with a
FCT 50. The REQRESP command is a special command, designed to be used to get the response of
another command. REQRESP requires hardware and firmware to work together. The commands
indicated as *SPECIAL are low-level hardware commands. They do not follow the command
protocol sequence (to be described later), and they do not return data using the cmd[REQRESP].
SHARENVMWR and SHARENVMRD are optional, and either one or both may be omitted in certain
applications. TESTMEM, TESTROM, TESTNVM, and SCAN are optional depending on the
application’s DFT strategy. The use of STOPACC may also be optional. In some applications, this
command does not need to be used, e.g. if it is intended that the tester/device programmer issue a reset
when it wants to disconnect from the ACC 12. Finally, some commands are restricted to only certain
Life Cycle States (80-86). The ACC 12 enforces the validity of the command issued for the current
state, keeps track of the number of invalid commands encountered, and if the count exceeds a
threshold, the ACC 12 is to be locked out.

[00276] cmd[REQRESP] — The purpose of the REQRESP command, as mentioned earlier is to
provide a request for the response of some other command and, as such, it should be issued only when
it is preceded by another command. There is typically no request payload for this command. The
ACC 12 drives all ‘0’s until the response is ready, then it returns the following message: (Start-Of-
Payload marker || STATUS || <RSPPAYLOAD>). Responses are comprised of the Start-of-Payload
marker, a status, and the returned data payload when applicable. The Start-Of-Payload marker may
have the following form: 0xFFFF0000 represented by 16 consecutive bits of ‘1° followed by 16
consecutive bits of ‘0’s or, if the appliance 18 is using the parallel command bus, the values ‘OxFFFF’
followed by “0x0000° if the bus is 16-bits wide, or a DWORD containing the value ‘OXFFFF_0000” if
the bus is 32-bit wide. The response comprises one of three status values: SUCCESS, FAIL,

-59.-

WO 2010/057312 PCT/CA2009/001686

LOCKED. The following codes may then be used to designate the response statuses: SUCCESS =
0xFFFF0001; FAIL = 0xFFFFO00E; and LOCKED = OxFFFF000D.

[00277] If the status is = SUCCESS, there can be a response payload based on the initial
command type. The size and content of the response payload will vary from command to command.
The appliance 18 should have to keep track of how long the response from the ACC 12 and this
should be based on what was the original command that was issued. If the response is anything but
SUCCESS, no additional information will be returned, instead, the ACC 12 can repeat a string of ‘0’s
if the appliance 18 has attempted to read after a non-success. The appliance 18 may then choose to
either retry or abort the operation. In some cases, the appliance 18 may choose to disable the ACC 12
permanently by issuing a cmd[LOCKOUT]. This command is usually issued in the event that the
appliance 18 has detected repeated attack attempts, defects in the ACC, or if it wants to decommission
the device. The lack of more insightful status codes than simply status messages may be used to
prevent divulging information about the internal operations of the system, inadvertently yielding an
advantage to an attacker. The REQRESP command in this embodiment is valid in all states.

[00278] cmd[EXITTEST] — This command may be used to indicate that all DFT are done and
to transition out of the Test State 80. EXITTEST will disable DFT features, transition to the
Initialized State 82, cause a soft reset, and reboot the ACC 12. The static keys are generated in the
Initialization State 82, making the UID available as a result. The request payload in this example is 4
bytes, wherein Payload len = 0. An additional response payload is then generated if the command is
successful, which comprises UID; — the x-coordinate of the static public key of ACC;. This command
is valid in the Test State 80. It is recommended that the tester 16 initiates a hard reboot immediately
prior to issuing the cmd[EXITTEST] to remove any residual traces from DFT testing in the ACC 12.
In addition, the firmware should assume that the RAM content is corrupted and unreliable, so it
should execute out of ROM 52 as much as possible.

[00279] cmd[STARTACC] - This command may be used to cause a soft reset, which effectively
wakes up the ACC 12 from power-saving mode and reboots. Once the ACC 12 resumes from reset, it
may begin executing the entire boot sequence. If the ACC 12 is in the Functional State 84, it
automatically generates a new ephemeral key pair in order to prepare to establish a new key session
with the appliance 18. There is no request payload for this command. If successful, an additional
response payload comprises Qy;, the static public key (73 bytes), and Q.;, the ephemeral public key (73
bytes). The successful response is sent only in the Functional State 84 (after the static keys have
already been generated and that it was verified to have been written to NVM 60 correctly). This
command is valid in all states. It may be noted that STARTACC may require time for the soft reset

boot sequence, entropy collection, and generation of the ephemeral keys.

- 60 -

WO 2010/057312 PCT/CA2009/001686

[00280] emd[STOPACC] - This command may be used to prepare the ACC 12 to be
disconnected. The firmware should then transition into the hibernation mode. The request payload in
this example comprises 4 bytes wherein Payload_len = 0. If the request is successful, no additional
payload is provided. This command is valid in the Test State 80, the Initialization State 82, and the
Functional State 84. It may be noted that no response is available for this command. Issuing a
REQRESP after the ACC 12 has been put in hibernate mode will yield nothing but ‘0’s when
attempting to retrieve a response. The firmware should save all necessary data in the NVM 62 before
going to the hibernation mode because, in order to resume, the hardware generates a reset causing the
boot sequence in the firmware and thus all data that is not in NVM 62 after this point will be lost.
[00281] cmd[LOCKOQUT] - This command may be used to force a transition to the Lock-Out
State 86. The request payload in this example comprises 4 bytes wherein Payload len = 0. If the
request is successful, no additional payload is provided. This command is valid in the Test State 80,
the Initialization State 82, and the Functional State 84. Executing this command results in a permanent
lock-out of the ACC 12, where the ACC 12 then refuses to process any additional commands. In this
state, the ACC 12 goes to power-saving mode and only responds with the LOCKED status when it
sees cmd[REQRESP].

[00282] cmd[INITFCT] - This command is typically the first feature control command in a key
session and it is used to instruct the firmware to process a FCT 50 message. The command contains
all necessary information to derive a shared secret for the session, to secure the tunnel between the
appliance 18 and the ACC 12 via the tester 16 and agent 20. It may be noted that a key session lasts
until the ACC 12 is rebooted and the INITFCT command should be issued only once between ACC
12 reboots. If another cmd[INITFCT] is encountered once a key session has been established, it
should be treated as an error. To send additional feature provisioning commands after a key session
has been established, the appliance 18 should use the shorter cmd[FCT] commands (see below) for
subsequent feature provisioning messages. The request payload for the INITFCT command may be

arranged as follows:

4 bytes 73 bytes 150 bytes 2 bytes EM len 16 bytes

Payload len Qe CERT; EM_len EM, MACG,;

[00283] where:

[00284] Payload_len is length of the payload. This field can be used to specify how many 32-
bit words are in the rest of the payload. (If the payload ends on a fraction of a word, the payload_len
may be rounded up to nearest integer).

[00285] Q. is the ephemeral public key of APP;(e.g. in standard ANSI external format).

-61 -

WO 2010/057312 PCT/CA2009/001686

[00286] CERT; is a mini-certificate of APP;, containing: CERT; = VER||CID||Qgl[SIGcerj, where
VER is certificate version number (1 byte), CID is the customer ID (4 bytes), Qs is public static key
of APP; (73 bytes), and SIG..y is the signature for the CERT;, signed by the root CA, where SIGceqj =
ECDSA_SIGN (CERT;, dy), and d; is the root CA's private key.

[00287] EM _len is the length of EM,; in bytes (e.g. having a range of [74 - 584]).

[00288] EM,;; and MAC,; represent the encrypted feature provisioning message FCT 50 (e.g.
90-600 bytes), where (EM,; MAC,;j) = AES_CCM* (FCT]|| SIGy;, n, k), FCT being the feature
control ticket message (2 — 512 bytes), k;; being the derived encryption key, n being a nonce built as
(msgID || 4 zero bytes) (8 bytes), msgID being a message counter for the current message (4 bytes) ~
e.g. always even incrementing by 2 with every FCT command, and SIG,;= ECDSA_SIGN (UID ||
msglD || padding || FCT, dg;) (72 bytes). Here, UID is the ACC’s UID (36 bytes), msgID is the same
as above (4 bytes), padding comprises zero bytes (8 bytes), and dg; is the APP;’s private key,
corresponding to the certificate CERT;.

[00289] It will be appreciated that the number of bytes indicated above are for illustrative

purposes only and may change as required by the particular application.

[00290] The additional response payload, if the command is successful may be arranged as
follows:
(40 - 552 bytes) 16 bytes
ERy; MACy;

[00291] where:

[00292] ER,; and MAC,; represent the encrypted response to the feature command. (ERy,
MAC,;) = AES_CCM* (FCTRSPy;, n, k), where FCTRSPni is the response to the FCT 50 command,
kij is the derived encryption key, n is a nonce built as (msgID]||4 zero bytes) (8 bytes), and msgID is a
message counter for the current message (4 bytes) (e.g. value of the msgID in the request payload plus
‘1°, always odd).

[00293] This command is valid in the Functional State 84. If the firmware detects this
command in the Functional State 84, it can perform the following operations for this command:
[00294] 1. Reset the message counter, msgID, to ‘0’, and use it to validate that the ACC’s own

message count matches what was transmitted while processing the feature provisioning message in

step 5.
[00295] 2. Authenticate the CERT; and extract Q, from the certificate.
[00296] 3. Compute a shared secret key and derive the encryption key k; with ECMQVwKDF

(dsia dei> Q€i> Qsj’ er)'

-62 -

WO 2010/057312 PCT/CA2009/001686

[00297] 4. Decrypt EMnij, verify SIGnij, then process the feature provisioning message, FCT
50

[00298] 5. Prepare a response, (ER,;, MAC,;) to the feature provisioning message. When
preparing the response, (msglD+1) should be used for the nonce n.

[00299] If all of the above steps are successful, the firmware may then send the status code
SUCCESS and (ER,; MAC,;, back. Otherwise, the firmware sends the status code FAIL, or if the
error counter has reached its maximum, the firmware transitions into the Lock-Out State 86 and sends
the status code LOCKED.

[00300] cmd[FCT] - This command is used to instruct the firmware to process a feature
provisioning message. It is similar to the INITFCT command except that it reuses an existing shared

key instead of generating a new shared key. The request payload may be arranged as follows:

4 bytes

2 bytes

EM len

16 bytes

Payload_len

EM len

EMnij

MAG,;

[00301]

where, as above:

[00302] Payload_len is the length of the payload, which specifies how many 32-bit words are
in the rest of the payload. (If the payload ends on a fraction of a word, the payload_len is round up to
nearest integer).

[00303] EM _len is the length of the EM,; in bytes (e.g having a range [74-584]);

[00304] EM,;; and MAC,; represent the encrypted feature provisioning message (90-600
bytes). (EM,;;, MAC,;) = AES_CCM* (FCT || SIGnij, n, kij), where FCT is the feature control ticket
message (2-512 bytes), n is the nonce built as (msgID || 4 zero bytes) (8 bytes) - €.g. always even,
incrementing by 2 with every FCT command, msglD is the message counter for the current message
(4 bytes), SIG,;= ECDSA_SIGN (UID || msgID || padding || FCT, dg) (72 bytes), UID is the ACC’s
UID (36 bytes), msglD is the same as above (4 bytes), padding comprises zero bytes (8 bytes), dg; 1s
the APP;’s private key corresponding to the certificate CERT;, and k;; is the derived encryption key.

[00305] The additional response payload, if the FCT command is successful, may be arranged
as follows:
(40 — 552 bytes) 16 bytes
ERnij MACnij

[00306] where:

-63 -

WO 2010/057312 PCT/CA2009/001686

[00307] ER,; and MAC,; represent the encrypted response to the feature command, where
(ERyj, MAC,;) = AES_CCM* (FCTRSPy;, n, kip), FCTRSP,; is the response to the FCT command, k;;
is the derived encryption key, n is the nonce built as (msgID || 4 zero bytes) (8 bytes), and msgID is
the message counter for the current message (4 bytes) (e.g. value of the msgID in the request payload

plus ‘1°, always odd).

[00308] The FCT command is valid in the Functional State 84. The firmware may perform the
following operations for this command:

[00309] 1. The message counter msglD is incremented by 2 regardless of whether the FCT 50
is valid or not, and is validated while processing the feature provisioning message in step 2.

[00310] 2. Decrypt EMnij, verify SIGnij, then process the feature provisioning message FCT
50.

[00311] 3. Prepare a response (ER,;, MAC,;) to the feature provisioning message. When

generating the response, (msgID +1) should be used for the nonce.

[00312] If all the steps are successful, the firmware sends the status code SUCCESS and (ERy;,
MAC,;) back. Otherwise, the firmware sends the status code FAIL, or if the error counter has reached
its maximum, the firmware transitions into the Lock-Out State 86 and sends the status code
LOCKED. It may be noted that in some embodiments, this command requires that a
cmd[INITFCT]command be successfully processed previously so that a key session is available. If
that is not true, the command would then result in an error.

[00313] FCT 50 messages sent to the ACC 12 as part of cmd[INITFCT] and cmd[FCT] are
typically constructed by the appliance 18 ahead of time and may be non-specific to any particular
ACC 12. There are several different types of FCTs 50, and examples of the formatting of the
different FCT types may be defined as follows: |

FCT Type Field Name Size (in Description
bytes)
SETFEAT Setting feature provisioning bits to some

values

TYPE 2 Type =0

TAG 8 Record Tag (See below).

FEATSET 32 Feature provisioning data as a byte stream of
32 bytes (The definition of what each bit does
is typically application specific)

-64 -

WO 2010/057312

PCT/CA2009/001686

GETFEAT Retrieve the feature provisioning values
currently in use
TYPE 2
Value =1
WRACCESS Writing data to Protected NVM
TYPE 2 Value =2
TAG 8 Record Tag (see below).
ADDR 2 Address offset from the beginning of NVM
DATA EM len-12 Data to be written to NVM as a byte stream of
the EM_len-12 bytes.
RDACCESS Reading data from Protected NVM
TYPE 2 Value =3
ADDR 2 Address offset from the beginning of NVM
memory
SIZE 2 Value = [4-512] bytes.
SETFEAT TEMP Temporary feature enablement
TYPE 2 Value =4
FEATSET 32 Feature data as a byte stream of 32 bytes (The'
definition of what each bit does is typically
application specific)

Table 5 — FCT Types and Corresponding Fields
[00314] Note 1: The shortest of all FCT 50 is the GETFEAT type, which is only 2 bytes long.
The longest FCTs 50 are of the WRACCESS type, which can be up to 512 bytes (see notes 2 and 3

for further details).

[00315] Note 2: RDACCESS and WRACCESS FCTs 50 in this example can only access data

in 4 Byte increments. The address should be aligned on 4-Byte boundaries, and the amount of data

accessible should be divisible by 4.

- 65 -

WO 2010/057312 PCT/CA2009/001686

[00316] Note 3: The minimum amount of data accessible is, in this case 4 bytes. The
maximum amount of data a WRACCESS can access is = (maximum EM_len) — len(n) — len(TYPE) —
len(TAG) - len(ADDR) =512 — 1 — 1 — 8 — 2 = 500 bytes. The maximum amount of data a
RDACCESS type FCT 50 can access is limited by the maximum length of the ER_len, which is in
this embodiment defined to be 512B. The limitations placed on the maximum EM_len and ER_len is
due to the fact that there should be the ability to hold the entire payload within the limited amount of
RAM 60 available. If more data needs to be accessed, then one would need to break it up into
multiple FCTs 50 until they fit within these limits.

[00317] Note 4: The WRACCESS and RDACCESS FCTs 50 should only be allowed to access
protected areas of the NVM 62. Attempting to access anything other than protected NVM 62 would
then be considered as an error. One exception to this rule can be writing/reading the record tag,
TAG, stored in private NVM 62, which is allowed for these commands (although the user of
WRACCESS should be aware that TAG and DATA are written at the same location in private NVM
62, causing the resulting value in NVM 62 to be an OR operation result of TAG and DATA values.
[00318] Note 5: SETFEAT FCTs 50 are used to perform permanent feature provisioning while
SETFEAT_TEMP FCTs 50 are used to perform temporary feature provisioning. With permanent
feature provisioning, the FEATSET bits are written into NVM 62. With temporary feature
provisioning, the FEATSET value in NVM 62 is OR’ed with the FEATSET field of the FCT 50, and
as a result will be used as the actual FEATSET for as long as the ACC 12 remains powered on. Once
the ACC 12 loses power and/or reboots, the temporary FEATSET is lost and reverts back to what was
stored in NVM 62.

[00319] FCT TAG Record - The TAG field of programming FCTs 50, (namely, SETFEAT and
WRACCESS types), is used as a history record of what has happened to the ACC 12 in the past.
[00320] Each programming FCT 50 may represent a step in the manufacturing process, each
step has a bit in the TAG record associated with that step. After a FCT 50 is processed, the
corresponding bit is set to indicate that step has happened. When the appliance 18 constructs the FCT
50, it would then need to know what is the content of the FCT 50 and set the appropriate tag bit. The
ACC 12 then keeps a TAG record in a special reserved space in the protected area of NVM 62. When
a FCT 50 is successfully processed, the ACC 12 may then bit-wise OR the FCT’s tag field with the
previous TAG record and store the new value back into NVM 62. By just looking at individual bits of
the TAG record, the programming steps which were taken can be determined (if the bit = ‘1°) and
which were not (if the bit = ‘0’). A brand new, un-initialized ACC 12 in this case would have a TAG
record of all ‘0’s. The tag record on the ACC 12 is updated as a result of successfully processing a
programming FCT 50, or alternatively, an arbitrary value can be written directly to the tag record if

you know the address of the tag record with a WRACCESS FCT 50. The TAG record should not be

- 66 -

WO 2010/057312 PCT/CA2009/001686

updated if the ACC 12 encounters an error while processing the FCT 50. The tag record can be read
out using cmd[SHAREDNVMRD)], and the read data will be unencrypted.

[00321] It may be noted that care should be taken when issuing an WRACCESS FCT 50 that is
to write to the tag record, the tag record will be written twice, once when executing the FCT 50, the
second time updating the TAG record. If this were to happen, the DATA field should be the same as
the TAG field or one of them consists of all ‘0’s to prevent accidentally corrupting the TAG record.
[00322] FCT Responses - FCT responses are sent after processing either cmd[INITFCT] or

cmd[FCT]. The complete response may be arranged as follows:

4 bytes Flexible Size

STATUS ER

[00323] where:
[00324] ER = AES CCM* ((STATUS || UID || <data>), n, k), where STATUS is one of the
status codes listed above, UID; is the unique ID of the ACC;, the x-coordinates of Qg;, and <data> is

data requested by the FCT 50 command, where:

[00325] if FCT type = SETFEAT: none

[00326] if FCT type = GETFEAT: the current settings for all the features on the device (32
bytes)

[00327] if FCT type = WRACCESS: none

[00328] if FCT type = RDACCESS: up to 512B of the requested read data.

[00329] n is the nonce built as (msgID || 4 zero bytes) (8 bytes), and msgID, as above, is the
message counter for the current message, and should always be odd (4 bytes).

[00330] It may be noted that STATUS is sent out both in the clear, and also part of the
encrypted response. Even though the unencrypted status should match the encrypted status, unless the
status is authenticated by decrypting and verifying the ER, there is no guarantee that the unencrypted
status is correct because the message could have been altered enroute. Some applications may want to
simply look at the unencrypted status to get a quick check on whether the FCT 50 was successful, but
they should only do it if they are willing to trust the communication channel. The length of the
successful response, len (status || ER), should be known to the agent when it issued the FCT 50
command, so the agent should always assume that the ACC 12 returns that amount of data in the
response, and reads that amount of data back.

[00331] Cmd[TESTMEM], cmd[TESTROM], cmd[TESTNVM], [TESTRNG]: These

commands can be used by the chip manufacturers to run functional DFT tests on the silicon die to

-67 -

WO 2010/057312 PCT/CA2009/001686

determine whether the chip is faulty. The request payload, identified by Payload_len, may be 4 bytes
and is equal to zero.

[00332] if TESTMEM, TESTROM, TESTNVM, the additional response payload, if the
command is successful is: none.

[00333] if TESTRNG, the additional response payload, if the command is successful is a 32-bit
string of random data, as collected by the on-board random number generator. These commands are
valid in the Test State 82, and the Functional State 84 if that particular DFT feature has been
reenabled using a FCT 50. The enable check is done by firmware.

[00334] The ACC 12 may execute one of the following based on the command type:

[00335] 1. A memory test program marches a specific data pattern across the entire RAM 60 to
see if any of the memory bits are faulty.

[00336] 2. ANVM 62 test program, which is similar to the MemTest, but for the NVM 62.
[00337] 3. The ROM 60 code health check involves running a CRC-32 on the entire ROM 60
content and comparing that against a hardwired check sum. This is a simple check to make sure the
ROM 60 is accessible and fault-free; it is not meant to secure the ROM 60 code from being tampered
with.

[00338] 4. A RNG 58 test to check the amount of entropy received out of the RNG ring
oscillators. This involves collecting a bit stream from the RNG 58 over a fixed period of time, then
returning the random data to be post-processed off-chip.

[00339] It may be noted that each of these BIST programs has a DFT command associated
with it. The command triggers the execution of these test programs and the pass/fail test result will be
the response status. If any of the BIST program fails, the ACC 12 enters the Lock-Out State 86
automatically on the first failure. They will not be given the ability to accept multiple additional tries
like other invalid command error conditions. It can be appreciated that in other embodiments, the
application may dictate other DFT strategies, in which case only a subset of these commands may be
implemented.

[00340] cmd[SHARENVMWR] - This is typically an optional command that allows the
appliance 18 or other agents 20 to write to the “shared” region of the NVM 62. These commands are
insecure, but they allow open access to the NVM 62 that is within the ACC’s control. Typical reasons
why these commands should be included: a) if the design of the SoC only has one NVM 62 that is
shared between different multiple functional blocks, the ACC 12 would be the gate keeper to that
NVM 62 bloqk and help enforce access restrictions; b) if a system was to use the NVM 62 as a
mailbox to and from the ACC 12; and ¢) if the tester needs to inject information to the ACC 12 before

a secure session can be established. The request payload may be arranged as follows:

- 68 -

WO 2010/057312 PCT/CA2009/001686

4 bytes 2 bytes | 2 bytes SIZE

Payload len | ADDR SIZE WRDATA

[00341] where:
[00342] Payload_Jen is, as above, the length of the payload;

[00343] ADDR is the the starting address offset from the NVM base address that the command
is trying to access, which should be aligned on 4-byte boundaries;

[00344] SIZE is the number of bytes being accessed, in increments of 4 bytes; and

[00345] WRDATA is the data stream to be written and being SIZE number of bytes long, only

applicable for cnd[SHARENVMWR].

[00346] For this command, if successful, there would be no additional response payload. This
command is valid in the Test State 82 and the Functional state 84. The maximum amount of data that
is accessible is limited by the maximum amount of contiguous shared NVM spaces available, up to
64KB. The firmware should check the address and size of the request against a pre-programmed
NVM permission table, and make sure the entire access is permitted. If any part of the access is
outside of Shared NVM space, then it is considered as an error and the command fails. The exception
to this would be when reading the TAG record, which is located in a special reserved Protected area
of the NVM 62.

[00347] cmd[SHARENVMRD] - This may also be used as an optional command that allows the
appliance 18 or other agents 20 to access the “shared” region of the NVM 62. These commands are
insecure, but they allow open access to the NVM 62 that is within the ACC’s control. Typical reasons
why these commands should be included are: a) if the design of the SoC only has one NVM 62 that is
shared between different multiple functional blocks, the ACC 12 would be the gate keeper to that
NVM block and help enforce access restrictions; b) if a system was to use the NVM 62 as a mailbox
to and from the ACC 12; and c) As pointed out above, the cmd[SHARENVMRD] can be used to read
back the FCT TAG record that is located in a specially reserved area of the NVM 62. The TAG record
is readable in the clear with the cmd[SHARENVMRD] but should not be writable with
cmd[SHARENVMWR]. The request payload may be arranged as follows:

4 bytes 2 bytes | 2 bytes

Payload len | ADDR SIZE

[00348] where:
[00349] As above, Payload_len is the length of the payload;

- 69 -

WO 2010/057312 PCT/CA2009/001686

[00350] ADDR is the starting address offset from the NVM 62 base address that the command
is trying to access, and should be aligned on 4-byte boundaries; and

[00351] SIZE is the number of bytes to be accessed, in increments of 4 bytes.

[00352] If the command is successful, the additional response payload comprises RDDATA

which is of flexible size. RDDATA is a data stream of SIZE number of bytes long, only applicable
for cnd[SHARENVMRD)]. It should be presumed that the agent 20 talking to the ACC 12 can
calculate the length of RDDATA beforehand. Also, the appliance 18 that created the command
should let the agent 20 know how much data to retrieve when it sends down the SHAREDNVMRD
command. This command is valid in the Test State 80, and the Functional State 84. The maximum
amount of data that is accessible should be limited by the maximum amount of continguous shared
NVM spaces available, up to 64KB. The firmware checks the address and size of the request against
a pre-programmed NVM permission table, and makes sure the entire access is permitted. If any part
of the access is outside of Shared NVM space, then it is considered as an error and the command fails.
[00353] cmd[SCAN] - This command indicates that the tester wants to start scan testing the
ACC 12. The request payload is 4 bytes and the Payload_len = 0. If the command is successful, no
additional response payload is provided. This command is valid in the Test State 80 and the
Functional State 84, if this particular DFT feature has been reenabled using a FCT 50. The enable
check is done by firmware. The ACC 12 should set the ScanMode bit high.

[00354] cmd[REQVERID] - This command may be used to request the ACC’s version ID,
which is used to identify the hardware and software revision of the ACC 12. This command can be
useful in cases where there needs to be a way to distinguish protocols and feature differences between
different versions of the ACC 12. Typically, this command is the first command sent to confirm that
all parties are in agreement as to the exact protocol to use in further communications. There is no

request payload for this command. The response may be arranged as follows:

DR[31:16] | DR[15:8] DR([7:0]

0x0000 FW VERID; | HW VERID;

(reserved)

[00355] Both firmware and hardware version IDs are both 8 bits. The actual values of these
fields are determined based on which revision of the ACC 12 design is in use. REQVERID should
always return with a response immediately. The response will not have a Start-of-Payload marker, nor
will it have a status field. HW Version ID should be hard-wired and, as such, always available. FW
Version ID is initially all “0’s, until the firmware loads the correct value from ROM 60 and writes that

value to the FWVERID register at boot time. If the FW Version ID is “0”, then it indicates that the

-70 -

WO 2010/057312 PCT/CA2009/001686

ACC 12 has not started to run yet and should try again later. If the response is anything other than
known VERIDs, it should be considered as a fatal error. This command is valid in all states shown in
Figure 54.

[00356] emd[IDCODE] - This command returns the IDCODE of the ACC’s tap controller, per
IEEE 1149 spec. (further detail of this command can be found in this spec). There is no request

payload for this command. The response may be arranged as follows:

DR[31:0]

IDCODE

(reserved)

[00357] The IDCODE should be a hard-wired constant and thus should always return a
response immediately. The response will not have a Start-of-Payload marker, nor will it have a status
field. The actual value of the IDCODE is typically application specific. This command is valid in all
states.

[00358] cmd[BYPASS] - This command puts the ACC tap controller in bypass mode, per IEEE
1149 spec. Every bit that gets shifted in is delayed by 1 TCK clock cycle and shifted out. This
command is valid in all states.

Communication Protocols

[00359] A high level description of the communication protocols is now provided. As has
been discussed, the appliance 18 communicates securely with the ACC 12 using messages known as
Feature Control Tickets or FCTs 50. In the system 10, there are two interfaces with which the
appliance 18 can communicate with the ACC 12.

[00360] One interface is the JTAG test interface 72 as defined in the IEEE 1149.1 standard for
test access port and boundary scan architecture. The interface standard includes the definitions of a
set of control and data signals, a test access port controller, and a mechanism and instruction set to
support testing of the circuit. Although the JTAG interface 72 is typically used to test integrated
circuits for manufacturing defects, the standard includes provisions for individuals to extend the
command set to implement user defined functions.

[00361] In addition to the JTAG interface 72, this embodiment provides a secondary command
interface 66 for connecting a parallel bus to enable the additional flexibility of allowing after-market
reprogramming, or if there is no access to the JTAG interface 72. The secondary command interface
66 can be configured to look like a simple, generic memory-mapped bus. The data width on the
secondary interface 66 could be configured to be 8, 16, or 32 bits, depending on the application’s

requirements.

-71 -

WO 2010/057312 PCT/CA2009/001686

[00362] It may be noted that although the JTAG interface 72 and Parallel Command Interface
66 are physically different, one being a serial interface, the other being a parallel bus, they share a
common set of commands and responses. The two interfaces 72, 66 are multiplexed together in
hardware (via command interface MUX 76) to present a uniform interface to the firmware. As such,
the differences in the physical implementations can be hidden from firmware.

[00363] When trying to follow the communication protocol described herein, the following
may be noted:

[00364] a) The appliance 18/agent 20 should always be the one to initiate communication with
the ACC 12, through a tester 16 or a customer-dependent device programmer 26.

[00365] b) The ACC 12 can be considered a slave in the command protocol, such that it can
only respond to commands, it cannot initiate them. For example, in this configuration, the ACC 12
does not even send response data without being prompted to do so.

[00366] ¢) The microcontroller 54 in the ACC 12 is single threaded, with no interrupts.
Therefore, it can only work on one task at a time and will have to complete that task before it does
anything else. If another command arrives before that task is done, the new command will need to be
ignored.

[00367] d) A wafer tester typically does not want to waste time waiting for the ACC 12 to
finish its time consuming calculations. Instead, it will want to move on to do other things and come
back when ACC 12 is close to completing a command.

[00368] e¢) The JTAG interface 72 specification requires every JTAG implementation have an
Instruction Register (IR) and a Data Register (DR). Both registers are readable and writable by the
tester 16. In this example, there are two versions of IR/DR register pairs. One is located in Tap and
JTAG interface 72, the other in the parallel interface 66. The Cmd Interface Mux 76 arbitrates
between the two versions and routes the IR/DR data accordingly to the peripheral controller 59. The
tester 16 would write to the IR to tell which command to execute. It can send request data by writing
to the DR, and it can capture the response data by reading from the DR. Similarly, the parallel
command interface 66 reuses this paradigm as much as possible so it will also have an IR and a DR,
but they can be implemented as a memory mapped register on the bus.

[00369] Depending on the command programmed, reading the DR after writing might not get
back the same content that was written. The tester 16 may read and write the IR and DR at any time,
but this may result in corrupt data or be out of sync if done at inappropriate times. The transaction
protocol described below specifies when reads and writes can occur and what the expected results
should be.

[00370] Turning now to Figure 61, an example single command sequence is shown. The tester

16 initiates one of the commands listed in Table 4 to the ACC 12 by writing the instruction code to

-72 -

WO 2010/057312 PCT/CA2009/001686

the ACC’s Instruction Register (IR) at 1a). As soon as the IR is updated signifying a new command is
issued, the ACC 12 decodes the command and prepare to absorb the correct amount of data associated
with that command at 1b). The tester 16 then sends the data payload associated with the new
command by writing data to the ACC’s data register (DR) at 2a). If the request payload is not sent in
full, the ACC 12 will hang, waiting for the remaining data indefinitely. The ACC 12 will be
responsible for sampling the data register as fast as the tester 16 sends it, and storing the entire
payload into scratch data RAM 60 at 2b) before executing the command itself. The ACC 12 then
issues reads to the DR, and inserts wait states to stretch out a read cycle until a ready signal indicates
that new data has arrived.

[00371] The actual throughput limit is based on JTAG and ACC system clock frequencies and
the ability of ACC’s microcontroller to move data from the DR to its RAM 60. When using the
custom parallel interface 66, there is the potential for data to be sent faster than the ACC 12 can copy,
in which case, flow control to limit how fast the bus should be written. In any case, the ACC 12
should be configured such that incoming data is not dropped.

[00372] After the entire payload has been sent and absorbed, the ACC 122 starts to process the
command. The agent 20 waits until the command has completed before issuing another command at
3), and this could take a relatively long time. Each command can take up to a fixed maximum number
of cycles to execute that type of command. If the appliance 18 waits this maximum number of cycles,
it can ensure that the ACC 12 will finish processing the command. While the ACC 12 is processing at
3), the appliance 18/agent 20/tester 16 may use the waiting period to opportunistically perform other
tasks, e.g., testing other parts of the SoC, if possible. If the tester 16 does not wait and issues a new
command before the previous command is finished, it is considered a protocol violation and the new
command will be ignored. (The exception to this is the cmd[REQRESP] and some special commands
handled by the hardware exclusively).

[00373] When the appliance 18 is ready to come back and ask for the response, it issues the
command to Request-for-Response, cmd[REQRESP] at 4). When hardware logic detects this, it sets
the SendRespNow flag. If the tester 16 reads from the DR without first sending the cmd[REQRESP],
it will get ‘0’s. Once the ACC 12 has finished processing the command and the result is ready,
firmware can check the SendRespNow flag to see if the cmd[REQRESP] has been issued. If the
c¢cmd[REQRESP] is issued before the ACC 12 finishes executing the command, the ACC 12 sends ‘0’s
until it finishes and have the full result ready at 5a). If the cmd[REQRESP] was issued and the ACC
12 has finished executing the command and has the response ready, the ACC 12 can begin to send the
response which comprises a Start-of-Payload marker, followed by a response status, and then the

response payload if there’s any at 5b).

-73 -

WO 2010/057312 PCT/CA2009/001686

100374] If there are response payload data to be sent, the ACC 12 copies data from the
response buffer (in scratch RAM 60) to the DR as fast as the appliance 18 reads from the DR. This
continues until the entire response payload is sent. Again, the actual throughput limit is based on
clock frequency and the ability of ACC’s microcontroller 54 to move data from the RAM 60 to the
DR. When using the custom parallel interface 66, there is the potential for data to be read faster than
the ACC 12 can copy. In that case, restrictions can be placed on how fast the bus should read data.
[00375] The tester 16 should read the DR until it sees the Start-of-Payload marker at 6), then
continue to read the entire response. Once the Start-of-Payload is sent and read by the tester, it should
not issue another command before the entire response payload is read or else the system 10 may
behave unpredictably, including hanging indefinitely.

[00376] If the agent 20 continues to read after the entire payload has been sent, the ACC 12
will resume sending all ‘0’s. Should additional programming be required, the appliance 18 can repeat
these steps. If no additional programming is required, the appliance can finish by transitioning the
ACC 12 to hibernate mode with a cmd[STOPACC].

[00377] Some additional comments regarding the REQRESP may be noted. First, the reason
for the explicit request for response is to keep the appliance 18 and the ACC 12 synchronized, but it
may also allow the tester 16 to perform other tasks in parallel instead of waiting for the ACC 12 to
respond. If a command requires some sort of response from the ACC 12, the appliance 18 would
issue a cmd[REQRESP] before it issues the next command or else the response will not be sent and
will be discarded. If the appliance 18 issues two cmd[REQRESP] back to back, without a valid
command in between, then this sequence can be considered a protocol violation. The actual behaviour
of the ACC 12 would then make it appear like the second REQRESP is discarded. It is
recommended that every command be followed by a cmd[REQRESP] just to close the transaction
loop, but the protocol allows omitting the cmd[REQRESP] if the appliance 18 is not concerned with
the status or return data. The ACC 12 should always prepare the full response assuming it will be
requested at some point, only it without transmitting it without a cmd[REQRESP].

[00378] Once a cmd{REQRESP] is issued, and the Start-of-Payload is sent, the appliance 18
needs to make sure to read the entire response. It may not issue another command before all the
response is read or else the system 10 may hang indefinitely. 1f for some reason the appliance 18 does
not get a Start-of-Payload after the expected wait time has expired, it may be an indication that
something is wrong and that the ACC 12 is stuck in some unknown state for unknown reasons. When
that happens, the safest thing to try when attempting to recover from such error is by issuing a
STARTACC command to reset the ACC 12. Although, resetting may not be a guaranteed way to

recover from all possible (foreseeable or unforeseeable) failures.

-74 -

WO 2010/057312 PCT/CA2009/001686

[00379] Figure 62 illustrates an initialization and identification sequence. The initialization
sequence describes how a newly fabricated ACC 12 is brought up from the Test State 80, through the
Initialization State 82, to the Functional State 84. The initialization sequence should be executed
between an appliance (APP;) 18 and its agent 20 on a tester 16 and an ACC 12 as shown in Figure 51,
some time during the manufacturing process. At the conclusion of the initialization sequence, the
ACC 12 will have generated a statistically unique ID which is used to identify a particular SoC die
and will be ready to process FCTs 50.

[00380] On the “server” side, the appliance 18 should record the initialization event and relay
the information obtained as a result of the initialization sequence back to the database in the backend
infrastructure 11. The information such as the part number, lot number, wafer ID, time, agent’s ID,
location, operator ID, and such are valuable information that would allow the vendor to track the
history of each individual SoC die using the ACC’s UID as a reference.

[00381] A set of preconditions should first be considered. A newly fabricated ACC,; is
powered up and connected to APP; agent 20 through a tester 16 or device programmer 26. ACC;
would still be in the Test State 80. If the ACC 12 is not in the Test State 80, it means that it has
previously been initialized. If the ACC 12 is in the Initialization State 82, the procedure shown in
Figure 62 would jump to 3). If the ACC 12 is in the Functional State 84, the procedure shown in
Figure 62 would jump to 6). If the ACC 12 is in the Locked State 86, the ACC 12 would remain in
the Locked State 86, go to power-saving mode, and return LOCKED status when a response is
requested.

[00382] A set of feature provisioning bits may be used to control whether certain DFT or
debug features are enabled or disabled and such bits would be application specific.

[00383] As another precondition, APP; should obtain the ACC;’s version ID (VERID;), which
is composed of a hardware version number and a firmware version number, in order to find out which
version of the communication protocol to use. If this has not been done yet, a cmd[VERID]| may be
sent the the ACC; to obtain the VERID. This allows the APP; to account for slight protocol variations
between different generations or stepping of ACC;.

[00384] APP; may also have assurances that the ACC,; is healthy and functional by making sure
it has passed all DFT tests available.

[00385] Finally, a precondition may be that ACC; does not have any residual artifacts which
might impact operations from defect testing such as scan and memory BIST. DFT features would
need to be carefully designed to make this possible.

[00386] The procedure shown in Figure 62 will now be described. First, ACC; powers up and
detects that it is booting from a hard reset, and that it is still in the Test State 80. As long as the ACC
12 is still in the Test State 80, firmware ensures that all DFT features are enabled. ACC; should be

- 75 -

WO 2010/057312 PCT/CA2009/001686

able to perform any DFT tests at pre) and to undergo multiple hard reboot cycles without effecting its
ability to protect secure data later in its life cycle.

[00387] At some point, APP; issues a cmd[EXITTEST] at 1) to signal that a basic set of tests
has finished successfully and now ACC; should start to disable some DFT features. When ACC; sees
[EXITTEST], it a) writes 0’s to the FEAT register to disable DFT features, b) changes the Life Cycle
State in NVM 62 to the Initialization State 82, and issues a soft reset at 2).

[00388] Upon rebooting, ACC; should find that a) it’s booting due to a soft reset, by looking at
a HW flag, b) it’s in the Initializaton State 82 by reading the state stored in NVM 62, and ¢) that this
is the first time both a) and b) are both true at 3). Then, the ACC 12 writes an Exit Test marker to
NVM 62 to indicate that this ACC 12 has exited the Test State 80, and proceeds to perform its usual
Initialization State 82 tasks (see 4) below). If the next time ACC; reboots and a) and b) are true, but
the Exit Test is already set, then it means that the initialization failed and the device is now unreliable.
In which case, ACC; will transition to the Locked State 86 immediately.

[00389] While in the Initialization State 82, ACC; attempts to generate the static ECC keys (d,
Q) at 4) according to an EC key generation function to be discussed later. If key generation fails, the
ACC 12 would transition to the Locked Out State 86 directly. If key generation is successful, the
ACC 12 prepares a success response payload having (SUCCESS || UID). ACC; then updates the Life
Cycle state in NVM 62 such that the next reboot will cause the ACC 12 to start up in the Functional
State 84. The ACC 12 would then wait to process additional commands and should not go into
hibernation.

[00390] If the APP,; optionally issues a cmd[REQRESP] at this point, the response would be
either (LOCKED) or (SUCCESS || UID). APP; will typically collect the UIDs of all the chips it has
initialized, making sure they are valid public keys and forward them to the backend database at 5a)
along with other information deemed to be useful to facilitate tracking and cataloguing the dies. At
5b), the backend 11 may store the UID, store the ID of the appliance 18 that was used, and increment
a device production count.

[00391] A cmd[STARTACC] is the next command issued in the typical initialization sequence
at 6). Alternatively, the ACC 12 may be power cycled multiple times at this point, and the behaviour
can expect to be the same. ACC; may come out of reset, run its boot sequence, and come up in the
Functional State 84. In the Functional State 84, ACC; should always automatically start to generate
the ephemeral key, (d.;, Q.;) according to the EC key generation function to be described below. If
key generation is successful, the response will be (SUCCESS || Qs || Qei), otherwise the response will
just be (FAILURE) or (LOCKED).

-76 -

WO 2010/057312 PCT/CA2009/001686

[00392] In the meantime, the tester 16 has the option to go on to perform other tasks while
waiting for the ephemeral key to be generated. When the tester 16 is ready to retrieve the ephemeral
keys, it will issue a cmd[REQRESP] at 7) and wait for a response from ACC;.

[00393] When ACC; has the response ready, and has seen the cmd[REQRESPY], it will send a
Start-of-Payload marker followed by the response payload back to the APL; at 8).

[00394] APP; is then expected to extract the information from the response and process it
accordingly at 9). If the return status is a FAIL or if the appliance 18 cannot process the data that was
received, APP; has the option to issue a cmd[LOCKOUT] to lock out ACC;. The initialization process
may then perform post operations. The appliance 18/agent 20/tester 16 may issue additional
commands or disconnect, and the ACC 12 may process such other commands in the Functional State
84.

[00395] Some additional features regarding the initialization protocol may be noted. First, the
entire initialization process can be streamlined down to be completed very quickly because tester time
is very costly. As soon as the appliance 18 has ACC’s UID, the appliance 18 can issue a
cmd[STOPACC] to have the ACC 12 run its power down routine and go into hibernation (low-power)
mode. When the ACC 12 sees the cmd[STOPACC], it should explicitly overwrite all sensitive data
from its scratch memory to prevent exposing secret data if at all possible. However, it can be
appreciated that if the device was hot-unplugged, the ACC 12 would not be able to neatly wipe out
secrets in SRAM and shut down properly.

[00396] Once the initialization sequence is completed, the ACC 12 can reconnect to the
appliance 18 through a different agent 20 at a later time, perhaps further down the product
manufacturing line, such as packaging, during board assembly, or even after the device is fully
assembled and being activated at the end retail location by an end customer. The UID is defined to be
the x-coordinate of Qg which in this example is a 283-bit number. It is noted that the UID of chips
should be registered as soon as convenient in order to detect chips with duplicated UIDs being out in
the field.

[00397] Turning now to Figure 63, a protocol for establishing a secure communication session
using key agreement is illustrated. Up to this point in the present example, all the testing and
initialization commands between an appliance 18 and an ACC 12 that have been described thus far
are sent “in the clear”. In order to start secure communications, the two parties will need to
participate in a key agreement protocol, and the cmd[INITFCT] can be used to do that.

[00398] The cmd[INITFCT] is broken up into two parts: the first part has all the necessary
information needed by the ACC 12 to derive a shared secret for a new key session and the second part
contains the first FCT 50 that needs to be processed. For the protocol in Figure 63, several

preconditions may exist. First, an initialized ACC; would have already generated its static and

-77 -

WO 2010/057312 PCT/CA2009/001686

ephemeral keys, (dg;, Qs;), (dei, Qei)- Also, APP; would have received and validated Qg;, Qi and it
would be able to extract UID; from Q. If these first two preconditions are not satisfied, the
initialization sequence shown in Figure 62 may be executed. The appliance 18 has its static key pair,
(dsj, Qg), and a certificate CERT[APP;] signed by the Root CA. Also, APP; has some indication that it
needs to communicate with ACC;. This could be either a manufacturer wanting to preset some default
features before shipping, or could be a customer requesting a new feature on his/her device to be
enabled. Another precondition is that ACC; has been pre-programmed with the Root CA’s public key,
Qs in its ROM 60. Optionally, ACC; is pre-programmed with a customer ID (CID) in its ROM 60.
ACCG; has not received another cmd[INITFCT] after it was last rebooted. If it did, it’s considered as a
protocol error. Finally, a precondition is that ACC; is ready to handle a new command. This means
that ACC;is in the Functional State 84, is not in hibernation mode, has completed all previous tasks,
and is now waiting.

[00399] The output will be the status FAIL, or the status SUCCESS and ACC; ‘s ephemeral
public key, Q.;. It may be noted that various side effects can occur. ACC;’s message counter number,
msglD, may get reset to zero, and both parties could have generated the shared session key, k;;
independently from each other.

[00400] The procedure shown in Figure 63 proceeds as follows. The appliance 18 generates its
ephemeral keys for this session (d¢j, Q) at 1). The appliance 18 then issues a cmd[INITFCT] at 2)
with the request data being (Q.; || CERT;|| EM_len || EM,;). The ACC 12 receives the command and
validates the certificate, and the public key, ECDSA VERIFY(CERT;, Q.,) and

public_key validation (Qy;), respectively at 3). The ACC 12 then extracts Qg from CERT[APP;]. If
the protocol requires matching a customer ID (CID), a CID field in the CERT would have to match
against the CID stored in ACC 12.

[00401] The ACC 12 then computes a shared session key, k;;, with ECMQVWKDF (dg;, dei, Q.
Q.j) at 4a). If 3) and 4a) are successful, the ACC 12 continues on to process decrypt and authenticate
the FCT 50 in the rest of the payload at 4b). Otherwise, the ACC 12 may stop here and prepare a
FAILURE response. If the response is FAIL, the appliance 18 can either restart the sequence or issue
a cmd[LOCKOUT]. The appliance 18 can optionally log the error in the database.

[00402] A few additional features may be noted. First, if everything was successful, the shared
session key k; computed at the end of this sequence forms the basis for an encryption tunnel using
symmetric key ciphers between linking an authorized appliance 18 to a specific ACC 12. Any other
ACC 12 or appliance 18 would not be able to participate in any further communications between the
two because k;; is known only to the two authorized parties. This sequence may not be repeated
without a reboot, by using either a hard reset, or a cmd[STARTACC]. There should be no limit as to
how many times the ACC 12 can be rebooted, but each time the ACC 12 reboots, a new ephemeral

-78 -

WO 2010/057312 PCT/CA2009/001686

key will need to be regenerated which could take a noticeable amount of time, in the range of
hundreds of milliseconds. If the ACC 12 encounters any error or failures during any step of the key
exchange protocol, it should call the Error Handler subroutine, as described above.

[00403] In step 3, the ACC 12 verifies CERT[APP;] using a copy of the Root CA’s public key
that the ACC 12 has in its ROM 60. The certificate validation step lets the ACC 12 know that the root
CA has authenticated and qualified this particular appliance 18 to issue commands to this ACC 12.
This is to prevent untrusted appliances 18 from issuing sensitive commands to the ACC 12. If a
particular application requires the use CIDs, the certificate will contain a CID which has to match
with a CID stored in a table in the ACC’s ROM 60. This is to meant prevent an appliance 18 assigned
to a particular customer from being used to connect to parts manufactured for another customer. If the
CID in the certificate is not found in the CID table, it will be treated as an error.

[00404] Figure 64 illustrates an example of an authenticated confidential messaging protocol,
which will now be described. After the successful execution of the key agreement, the ACC 12 and
the appliance 18 will have established the basis of a secure channel between the two, and they are now
able to share authenticated confidential messages in the form of FCTs 50. The following
preconditions may be required. First, APP; should have its own static private key, dy; and obtained
some indication that ACC;, which owns UID;, will receive a feature control ticket, FCT 50. Second,
ACC; should have APP;’s static public keys, Qg, and ACC;should be ready to handle a new command.
This means that ACC;is in the Functional State 84, is not in hibernation mode, and has completed its
previous task.

[00405] The APP; and ACC; have their own copies of the following variables and the two
copies should match: a shared session key, k;;, that had been generated as a result of the key
agreement protocol; and msgID, the command serial ID that starts from ‘0° on cmd[INITFCT] and
increments by 2 for each cmd[FCT] (always even), and for responses it equals to msgID from the
corresponding command plus ‘17 (always odd).

[00406] The input is a FCT 50 and the output is the status FAIL or the status SUCCESS and
whatever data that was requested by the FCT 50. One side effect is that depending on the type of FCT
50, either features on the SoC gets enabled/disabled, or some data was accessed out of the NVM 62.
Another side effect may be that both APP; and ACC; increment their copy of the command serial ID

count, msgiD.

[00407] The procedure illustrated in Figure 64 may be summarized as follows.

[00408] 1. APP; constructs the INITFCT or FCT payload.

[00409] 2. APP;j issues the cmd[INITFCT], or cmd[FCT] and sends the requested data payload.
[00410] 3. ACC; verifies the authenticity of the message using ECDSA signature verification.

[00411] 4. ACC; decrypts the message to obtain the FCT 50.

-79 -

WO 2010/057312 PCT/CA2009/001686

[00412] 5. If everything verifies correctly, ACC; performs the operations requested by the FCT
50, and prepares the FCT 50 response message.

[00413] 6. APP; at some point issues a cnd[REQRESP].

[00414] 7. ACC; sends the prepared response when it has completed step 5 and after receiving

the cmd[REQRESP].

[00415] 8. APP; receives the response, then decrypts and verifies the response. 1f the appliance

18 requires sending more commands or tries resending the same command, it may do so without
rerunning the key agreement protocol (i.e. another cmd[INITIALFCT] should not be sent) as long as
the command serial number gets incremented.

[00416] APP; then finishes by reporting a log record back to the backend 11 with the result of
this transaction.

[00417] Various error conditions may be noted. First, it ACC; encounters any error or failures
during any step of the key exchange protocol, it should call the Error Handler subroutine (see Figure
59). For step 8, if APP; receives a FAIL response, APP; can either retry the sequence or issue a
c¢cmd[LOCKOUT]. The appliance 18 can optionally log the error in the database.

[00418] Some additional features regarding this protocol may also be noted. First, the
command serial ID, msgID, starts with ‘0’ and increments by 2 with every cmd[FCT] in this session.
It gets reset back to ‘0 at the beginning of a new session as a result of a key agreement protocol.
However, for the responses to cmd[FCT], msgID is equal to the msgID in the corresponding
command plus ‘1°. The use of this ID prevents the same command and response to be reused in
replay-type of attacks. For example, imagine an adversary pays to enable some features, then capture
the FCT 50 messages, and immediately asks to disable the features to get a refund, only to turn around
right away and replay the enabling FCT 50. Alternatively, an adversary initially forces the appliance
18 to issue an invalid command to generate a FAIL response, then ask to be issued an enablement
FCT 50. When the ACC 12 is asked whether the command was processed properly, the adversary
could substitute a success response with the recorded FAIL response thereby successfully pretending
to have the enablement not go through.

[00419] The UID; ties the command and response to one ACC 12, to prevent an adversary from
being able to replay this message on another ACC 12. The key pair, dy and Q;, uniquely identifies
the specific appliance 18 who participated in the shared key agreement session that created the session
key kj;. When they are used in the signing process, it can be used to positively identify the originator
of the message. Furthermore, through the use of a CERT[APP;] that is certified by the Root CA during
the key agreement protocol, the ACC 12 has the assurance that this appliance 18 is permitted to be
issuing FCTs 50.

- 80 -

WO 2010/057312 PCT/CA2009/001686

[00420] It may be noted that there are two possible application scenarios: i) FCT 50 messages
are created by the backend 11 on a per use, per ACC 12 basis if the device has already reached the
retail space, and ii) FCTs 50 could be something the backend 11 batch-configures an appliance 18
which then automatically apply to an entire batch of ACC-embedded dies that it encounters.
Depending on how the FCT 50 is used, there may be some server side optimization that can take place
when performing step 1).

Discussion of Underlying Cryptographic Algorithms

[00421] A discussion of the underlying cryptographic algorithms used herein will now be
provided. As noted above, EC arithmetic is advantageously utilized. It is widely held that ECC offers
the most security-per-bit of any public key cryptographic scheme. In addition, it can be implemented
in hardware quite efficiently, leading to a very small core in terms of silicon area. The ECC
parameters utilized by the system 10 are in this example, set according to the sect283k]1 F,*** Koblitz
curve recommend by the Standards for Efficient Cryptography Group (SEGC). This curve is selected
to facilitate an overall strength that is equivalent to 128-bit strength. If this level of security is not
needed in a particular application, the field parameters may be reduced to use smaller numbers.
[00422] The block cipher function chosen to be used in the ACC 12 is, in this example, an AES
symmetric key block cipher. Further detail can be found by referring to [FIPS 197] for the AES
specification, as well as the [SP800-38A] and [SP800-38C] for the definition of the CTR and CCM
block cipher modes. The parameters for AES where ever it is used in the ACC 12 will, in this
embodiment, be a 128-bit key, blocks of 128 bits of data as input, and blocks of 128-bit bit stream as
the output. If the input data stream does not fit into a 128-bit block, 128 bits can be broken off at a
time.

[00423] In the context of the ACC 12, the block cipher may be used in several different ways:
a) condition the random bits obtained from the RNG ring oscillators to produce the random strings
used as private keys; b) use as a hash function in the Key Derivation Function (KDF) when generating
the shared key in ECMQV; ¢) use as a hash function when verifying the authenticity of a FCT 50
signature; d) decrypting a FCT 50 in counter mode; and €) encrypt and provide message
authentication of the response to a FCT 50.

[00424] AES CCM* mode may be used to provide authentication and encryption for the
responses to FCT 50 commands. CCM mode, as described in [SP800-38C], is essentially two AES
modes that are defined in [SP800-38A], the Counter (CTR) and the CBC-MAC mode, combined
together, with some additional formatting and transformations as described in appendix A of [SP800-
38C]. The ACC 12 in this embodiment implements CCM*, which is CCM mode with additional
formatting and transformation to be compliant with other real-world implementations of CCM mode,

such as it is described in Zigbee.

-81-

WO 2010/057312 PCT/CA2009/001686

[00425] Inputs to the AES CCM*, in this embodiment, are:

[00420] a)128-bit session key, k.

[00427] b) an 8-byte nonce, unique to each message that uses the same key. The nonce is
initialized with the message counter, msgID, in the first 4 bytes concatenated with 4 zeros after that.
[00428] ¢) input payload data, x=(Xg, Xi..., Xp.1)-

[00429] The output is cipher text, Co|| Cy|| ... || Cy, followed by the encrypted MAC, C,. The
encrypted MAC, or the tag as referred to in [SP800-38C], would be fixed to be 128-bits long.
Although the CCM* specification allows for the option to turn oft encryption, the ACC 12 should be
configured to always encrypt. The specification also allows for an optional “associated data” input
which in this embodiment is chosen not to be used. As such, the associated data string will always
have a length of 0.

[00430] Turning now to Figure 65, the Matyas-Meyer-Oseas Modification Detection Code
(MMO_MDC) function is shown, which is based on AES-128 block cipher, and is the hash scheme
deployed in the ACC 12 in this example. The inputs comprise an input bit stream, X; and the output is
a hash digest. A constant value of the 0’ is used as the initial vector (hashg). For each block ‘i’ of the
input bit stream, the bit stream text x; gets sent in as the input to the AES along with the previous
block’s hash value as the cipher key. The output of the AES block is XOR’ed with the input, x, to
form the hash result, hash;. This is repeated until the entire message is processed. After sending the
entire message through, the final hash value is output as the digest.

[00431] As discussed above, the ACC 12 in this embodiment will have an on-chip ring
oscillator source of entropy, which relies on the fact that there is phase jitter between the oscillator
samples. The ACC firmware collects oscillator output data values from the ring oscillator hardware,
and uses an AES block cipher for conditioning. The ACC RNG hardware 58 provides at least %2 bit of
entropy for each bit read from the RNG hardware 58. The ACC 12 in this example will follow NIST
SP800-90 such that:

[00432] 1) Update() function will be defined according to 10.2.1.2 (NIST SP800-90).

[00433] 2) Obtain 256 bits from ACC HW RNG 58 (entropy_input, to be used in 3)), that
contain at least 128 bits of entropy.

[00434] 3) Follow 10.2.1.3.1 (NIST SP800-90) for CTR_DRBG instantiation ("The Process
Steps for Instantiation When Full Entropy is Available for the Entropy Input, and a Derivation
Function is Not Used") where entropy_input is a random bit stream from 2), personalization_string is
null,and Update() function, specified in 1). It may be noted that the following values inside Update()
during this step Block Encrypt(Key=0,IV=1), and Block Encrypt(Key=0,IV=2), can be pre-

computed for speed-ups.

-82 -

WO 2010/057312 PCT/CA2009/001686

[00435] 4) Since the "full" entropy is not used as input in 3), finish instantiation by generating
1 byte of random data (see 5)) and discarding it.

[00436] 5) Define CTR_DRBG_Generate_algorithm() as 10.2.1.5.1 (NIST SP800-90) ("The
Process Steps for Generating Pseudorandom Bits When a Derivation Function is Not Used for the
DRBG Implementation").

[00437] The procedure may be summarized as follows. The firmware enables the RNG 58 to
start capturing data. The RNG hardware 58 performs self calibration with respect to the ACC’s
system clock, and determines how many system clock cycles are needed between sampling the ring
oscillator outputs. The hardware captures one entropy bit per sample period and notifies firmware
when it has 8 entropy bits by asserting a Ready flag. The firmware polls the RNG 58 for the
RNGReady flag and reads the 8 bits. The firmware repeats this until it has obtained 256 bits from
ACC’s RNG 58. Meanwhile, firmware continuously verifies that the RNG hardware 58 is healthy by
checking the RngError flag. The TR DRBG_Generate_algorithm() as 10.2.1.5.1 (NIST SP800-90) is
then executed with the parameters listed above.

[00438] Elliptic Curve key generation may refer to how a key pair is created from random
number stream. A prerequisite is that previously agreed upon EC curve parameters have been
selected. The input is a random bit stream, and the output is SUCCESS and a key pair, (d, Q), or
FAIL. 1) construct a 283-bit bit stream by perform the random number generation described above,
to form the private key, d. 2) Repeat step 1) if d == 0. 3) Perform an EC point multiplication with the
generating point of the EC parameter to create the public key, Q = d x G. 4) Repeat from step 1) if Q
is not a valid point on the EC. 5) If this key pair is to be used as the static key, store (dg;, Q) in NVM
62. 6) If an error occurred during any step of the process, return FAJL; otherwise, return successful,
and the key pair (d, Q).

[00439] ECMQYV - The goal for key agreement is for two parties to independently derive a
shared secret that can then be used as a symmetric key for bulk data encryption. It requires each party
to use two pairs of keys, one static and one ephemeral, where each key pair comprising of a secret
private key, and a public key. In the present embodiment, a variant to the two-pass ECMQV protocol
is utilized, skipping the explicit key confirmation step. It has been recognized that the keys can be
implicitly confirmed when messages cannot be decoded properly, i.e., we will know if the keys don’t
match when FCT 50 messages starts failing to be verified unsuccessfully.

[00440] The Key Derivation Function (KDF) is used to derive a key from a shared secret bit
string. In the context of this example, the shared key may use the MMO hashing technique as the
KDF. The input is a 283 bit string as the shared secret value x, and the output is a 128 bit string as the
shared key, k. k=MMO MDC(x).

-83-

WO 2010/057312 PCT/CA2009/001686

[00441] The Associated Value Function (AVF) is used to truncate the x-coordinate of an
elliptic curve point according to ANSI X9.63 ECMQV AVF. The high half of the x-coordinate is
truncated and then the lowest bit of the highest half is forced to be '1" to avoid obtaining all 0's.
[00442] The public key validation step is to verify that the public key was generated and
received properly. The key validation step checks to see if it meets some basic properties of a valid
key. The inputs are EC Domain Parameters, and a candidate public key, Q. The output is either
ACCEPT or REJECT. 1) Verify that Q != 0. 2) Verify that x and yg are elements of the underlying
field F. 3) Verify that Q satisfies the EC equation defined by the EC domain parameters. 4) Verify
that 4*Q != 0. 5) Return ACCEPT if satisfies all of the above, else REJECT.

[00443] The ECMQYV shared key generation is a way for two parties to derive a shared secret
key. After each party derives the shared secret key, there is an optional additional exchange to provide
key confirmation. The following describes how party (1) is to compute the shared key with party (2).
The inputs are EC Domain Parameters, two validated EC private keys (ds;) and (d.;) owned by party
(1), two validated EC public keys, Qs and Q.; owned by party (2). The outputs are session private
key, k »; and a status SUCCESS | FAIL. The procedure is as follows. 1) Compute the integer s = d,,
+ (avi{Qe) x dg;) (mod n). 2) Compute the EC point: Z=h x s x (Q; + (avf{Q.2) x Q)). 3) Check
if Z = 0, output FAIL and stop. 4) Let x; be the x-coordinate of Z, and compute (k; ») = kdf(xz). Key
generation is sometimes followed by an explicit key confirmation to make sure both parties arrived at
the same k;;, but may be omitted due to performance concerns. One can also implicitly rely on the fact
that if keys were not the same, messages could not be decrypted properly.

[00444] The Elliptic Curve Digital Signature Algorithm (ECDSA) is an efficient method to
check data integrity, data authentication and provides non-repudiation. The ACC 12 may use the
ECDSA algorithm, where the hash function utilized is MMO_MDC described earlier.

[00445] As discussed above, the root CA certificate can be signed using ECDSA, and the
Appliance 18 can sign FCTs using ECDSA, as such an overview of ECDSA will be provided. The
inputs comprise EC Domain Parameters, private key d, and message M. The output is a digital
Signature (T, s). 1) Select a random number k in [1, n — 1]. 2) Generate an ephemeral key pair Q =k
x G. 3) Take the x-coordinate of Q, x;, and convert it into an integer, x;” = int(x,). 4) Compute r = x;’
mod n. 5) Compute e = MMO_MDC (M). 6) Compute s = (k"' x (e +d x r)) mod n. 7) If s == 0, then
go to step 1. 8) Return (r, s).

[00446] For each message that the ACC 12 receives from the appliance 18, it will need to
verify the signature to make sure the message comes from the appliance 18 it thinks is sending the
message and that it has not been altered while in transit. This is the purpose of the signature
verification step. The inputs comprise EC Domain Parameters, public key Q, message M, and

signature: (r, s). The output is either ACCEPT or REJECT. The signature verification using ECDSA

-84 -

WO 2010/057312 PCT/CA2009/001686

may proceed as follows. 1) Verify that r and s are integers in the interval [1, n-1]. Return REJECT if
either criteria fails. 2) Compute e = MMO_MDC (M). 3) Compute w = s mod n. 4) Compute ul = (e
x w) mod n. 5) Compute u2 = (r x w) mod n. 6) Compute (X1, y;) = (u; x G) +(u; x Q).) If (X ==
0), then return REJECT. 8) Take the x-coordinate, x;, and convert it into an integer, x,” = int(x;). 9) If
(r ==x;" mod n) return ACCEPT; else return REJECT.

Example Sequence of Operations

[00447] Turning now to Figures 66a through 66f, an example sequence of operations is
provided, which illustrates the use of the system 10 in provisioning, delivering, and implementing a
FCT 50 in an ACC 12. The example describes a way of utilizing virtual inventory by permitting
controlled and secure feature activation using the ACC 12.

[00448] Referring first to Figure 66a, it can be seen that the backend infrastructure 11, which
may represent the original manufacturer, would first define a product, define FCTs 50, and assign
such FCTs 50 to the product (e.g. refer back to Figure 10A and use of the controller 22). As discussed
above, the system 10 may comprise multiple appliances 18 at multiple locations. The backend 11
would then assign a product to an appliance 18 and provide credits for producing an agreed upon or
stipulated number of that product, as well as the product ID, and the FCTs 50 to appliance j. The
backend 11 at this time may log the event to record which appliance 18 is associated with which
product, how many credits were provided, and the number and nature of the FCTs 50 for that product.
The appliance 18, upon receipt, would store the product ID, FCTs 50 and retain a record of the
number of credits it has received.

[00449] The agent 20 then determines the product ID associated with the product being
provisioned or communicated with and sends the command cmd[EXITTEST] to transition the ACC
12 into the Initialization State 82. The ACC 12, upon transitioning, generates its static private key dsi
and its static public key Qsi and transitions into the Functional State 84. A first loop, Loop 1, now
begins, which comprises a series of transactions between the appliance 18, agent 20 and ACC 12 that
represent a complete feature provisioning operation defined by either the INITFCT or FCT
commands. Loop 1 in this example is an outer loop based on a single INITFCT command to initialize
an encrypted tunnel 29 for processing FCTs 50. Loop 1 would be repeated for each ACC 12 (e.g. in a
production line), or anytime the secure tunnel 29 needs to be established by deriving a shared secret
with an ECMQV handshake between the ACC 12 and appliance 18. The derivation of the shared
secret requires the INITFCT command. Loop 1 begins with the agent 20 sending a STARTACC
command to the ACC 12 and, now that the ACC 12 has transitioned into the Functional State 84
(moving now to Figure 66b), the ACC 12 can generate an ephemeral private key dei and an ephemeral

public key Qei.

-85 -

WO 2010/057312 PCT/CA2009/001686

[00450] The agent 20 sends the command cmd[REQRESP] to the ACC 12 to obtain the ACC’s
public keys Qei and Qsi and the ACC 12 responds by providing such keys to the appliance 18 via the
agent 20. The agent 20 logs the event and also provides the product ID associated with the ACC 12
and its public keys to the appliance 18. The appliance 18 logs this event, generates its own ephemeral
key pair dej, Qej; generates the shared key kij; and searches FCT 1 by product ID to ensure that the
feature associated with FCT 1 is intended to be used in that product. The appliance 18 then generates
the CERT] using a combination of VER, CID, Qsj and the SIGcertj, in this case by concatenating such
components. The UID, msgID, some padding, the FCT 1, and the static private key dsj of the
appliance 18 are then combined (e.g. concatenated) and signed using the ECDSA_SIGN function to
generate the signature SIGnjj.

[00451] Using the FCT 1, the shared key kij, the nonce n, and SIGnij; (Enij, MACnij) is
generated using the AES CCM* ENC function as shown in Figure 66b. The FCT 50 is then
metered to indicate consumption of one credit, and the ephemeral public key Qej, the appliance’s
certificate CERT], the encrypted message/MAC pair (EMnij, MACnij), and EM_len are then sent to
the ACC 12 via the agent 20 (moving now to Figure 66¢) . The agent 20 would log this event and
also send the command cmd[INITFCT] to the ACC 12 to begin the feature activation procedure.
[00452] The ACC 12 begins by verifying CERT]j using CERT[CA] to thus verify that it is
communicating with the proper appliance 18. Once CERT] is verified, the ACC 12 then generates the
shared key kij. FCT1, SIGnij and the nonce n are then recovered using the AES CCM* DEC
function, using the pair (EMnij, MACnij) and the shared key kij. The signature SIGnij is then verified
using Qsj obtained from CERT], and the nonce n is verified. The FCT 1 may then be executed. An
encrypted response pair (ERnij, MACnij) is then generated using the AES_ CCM* ENC function,
which takes the FCTRSPni, the nonce n, and the shared key kij as inputs. At some point, the agent 20
then sends the command cmd[REQRESP] to the ACC 12, from which the ACC 12 responds by
providing the pair (ERnij, MACnij). The agent 20 logs the event and forwards (ERnij, MACnij) to
the appliance 18 (moving now to Figure 66d).

[00453] The appliance 18 then decrypts (ERnij, MAChnij) using the shared key kij as an input
into the AES_CCM*_DEC function to obtain the FCTRSPni message and the nonce n. The appliance
then verifies n and logs the event. Next, an optional second loop, Loop 2 may then be executed for
FCTN =2 to M additional FCTs 50 as required. Since the INITFCT command has already run,
namely in the outer-loop, Loop 1, the ephemeral keys and shared secret already exist in the ACC 12
and appliance 18, so further provisioning can be done with the FCT 50 command or multiple FCT 50
commands. Once all FCT 50 commands have been executed Loop 2 finishes and then Loop 1 can
repeat for a new ACC 12. It can be seen that for each additional FCT 50, that FCT 50, e.g. FCTN is
searched by product ID and then the appliance 18 can proceed directly to the generation of SIGnij and

- 86 -

WO 2010/057312 PCT/CA2009/001686

the process described above repeated wherein various components already exchanged (e.g. Qe;j,
CERT])) need not be sent again. Loop 2 and then Loop 1 ends on Figure 66e. Turning now to Figure
66f, the agent 20 then logs the event, issues the command cmd{STOPACC], at which time ACC 12
destroys the ephemeral keys dei, Qei. The agent 20 then sends its accumulated logs to the appliance
18. The backend 11 may then request the logs of the agent 20 and appliance 18 by requesting same
from the appliance 18. The appliance 18 then sends the agent logs and the appliance logs to the
backend 11, and the backend 11 can make a final log of this event.

Summary of Advantages

[00454] It can therefore be seen that the ACC 12 provides a hardware-based point of trust on
the silicon die and using the system 10 described above, can be used to perform various tasks
throughout the manufacturing process, as well as the entire product lifecycle, from manufacture
through retail channels, to consumer consumption onto “end-of-life”; in a secure, reliable and
auditable fashion. It can also be seen that the ACC 12 can be designed to provide the following
capabilities: managing accesses to the NVM 62 and protecting certain regions of the NVM 62 from
being accessed by unauthorized agents; self-contained generation of a UID used to uniquely identify
the ACC 12; self-contained generation of keys used to open up a secure communication channel with
a trusted server; ensuring that the enabling and disabling of features are done using trusted equipment
by trusted sources; the ability to initiate or disable device self tests and health checks to make sure
device has not been tampered with; and locking out the device whenever too many invalid commands
are attempted.

[00455] Additionally, it may be noted that the ACC 12 can be extended to implement the
following features: having the appliance 18 inject the UID instead of limiting the capabilities to only a
self-generated UID; and securely booting and authenticating firmware upgrades through code signing.
[00456] As discussed, the ACC 12 is typically embedded and integrated in a SoC die, which is
then packaged into a chip 40, which is mounted on a printed circuit board (PCB) 44 and eventually
assembled into an electronic device 14 or “product”. Every chip that has an ACC 12 in it can be
registered and logged in the backend database as soon as it has passed wafer testing, which in turn can
track every chip manufactured that underwent wafer testing. The ACC 12 may be designed to work in
any electronics manufacturing test environment since the security features of the system 10 do not
rely on the data link between the appliance 18 and ACC 12 to be trusted, but rather the security is
built-in to the communication protocols cryptographically.

[00457] Furthermore, if an end-customer wants to reprogram the feature set of his/her
particular device, there is the flexibility in the system 10 to allow him or her to connect to an
appliance 18 using whatever device programmer 26 the equipment vendor deems fit and the appliance

18 can open up a secure channel by itself. As a result, the system 10 provides the ability to allow

-87-

WO 2010/057312 PCT/CA2009/001686

provisioning to occur in a completely secure, auditable manner anywhere — from the wafer fab to the
ODM to the OEM to end user.

[00458] For the fabless chip manufacturer, this provisioning flexibility means that the fabless
chip vendor can produce base chips and then have them provisioned at the distributor/ODM/OEM as
they need specific features enabled for specific product builds. This greatly reduces the number of
mask turns per year per product line saving significant cost. It reduces SKUs and simplifies supply
chain management. It can eliminate grey market overstock sales by OEMs. Because the chips can be
made so that they will not work unless they are programmed by system 10, this can eliminate illegal
overproduction by foundries. In addition, the solution described herein enables aftermarket revenue
from the end user directly to the fabless chip vendor — something that is difficult if not impossible
using traditional programming solutions. With the system 10, if an end customer wishes to enables a
feature contained on a chip (e.g., enhanced graphics capability from his video card), he can order that
feature over the web and the chip vendor can issue the command to enable it remotely.

[00459] For a device vendor, the benefits can be similar — simplified SKUs and more efficient
supply chain management. Just-in-time provisioning is possible to facilitate last minute changes in
orders. Inventory of raw components is simplified with the system 10 because the components can be
provisioned as needed for the current production. Revenue can also protected because hackers can’t
find ways to reprogram the devices in an unauthorized way.

Security Model

[00460] The objective of a security system such as the system 10 is to prevent an adversary
from tampering with the device 14. If a threat is to be treated seriously, it would have to jeopardize
the ACC 12 from performing its primary functions. To this end, it makes sense to consider the cost of
an attack. There are two parts to the cost equation: 1) The initial effort to probe, research, and reverse
engineer our design to have one modified chip; and 2) The incremental effort to repeat that attack on
each successive chip if: a) the result of the initial effort was published and made public, and b) he has
access the all the equipment necessary to perform the attack readily available.

[00461] An attack is considered to be too difficult and non-effective if the incremental cost to
enact the attack is more than the retail cost of the chip, or if the attack is limited to a specific feature,
then the retail cost of that feature. Thus, we can think of an attack as too difficult if: ${cost to repeat
the exploitation] > $[value of all features of a device]. From this perspective, a break that requires
modifying each chip individually using techniques involving FIBs or E-beams is not a concern
because it is not cost effective. It can be appreciated that in many cases, the occasional single break is
acceptable because it would not affect the manufacturer’s revenue stream significantly. The most
serious threat would be a system-wide break that would enable a hack to be published that would

allow many people to repeat the steps with very little effort. However, if an adversary is to spend the

-88 -

WO 2010/057312 PCT/CA2009/001686

time and effort and somehow manage to successfully defeat the first devices 14, it would not be much
of a concern if he is unable to utilize the knowledge he gained on the first attempt and repeat on
successive devices, in a cost effectively manner.

[00462] Basic Assumptions:

[00463] a) The ACC 12 is a closed system and all sensitive operations and data are private and
inaccessible from other logic on the die.

[00464] b) The rest of the system 10 is secure and is not subject to tampering, so one would not
be able to use it to facilitate hash collision finding.

[00465] ¢) The system in which the ACC 12 is embedded has taken the proper precautions
such that it does not bypass the suggested/required security measures.

[00466] d) The ability to read or write static memory elements using e-beam or lasers and other
similar techniques is possible, but it will be difficult and expensive.

[00467] ¢) The ability to read or write ephemeral memory elements outside of ACC 12
programming is outside the scope of our security model.

[00468] A list of techniques an adversary might physically attempt to break the system 10 have
been identified. An adversary might utilize multiple methods in concert with each other to attempt a
break, such as: Inter-chip probing (Oscilloscopes, Logic analyzer, Wafer/Die Testers); Board level
JTAG debugger; Modifying ACC ROM 60 (content tempering/replacement at the mask level);
Device removal and substitution — (replacing a chip that has the ACC 12 with a device that did not
have an ACC 12, swapping one chip with another, connecting multiple chips in parallel); Off line
NVM 62 modification; using a forged appliance 18 to communicate with the ACC 12; and injecting
glitches on the power and clock signals while ACC 12 is running. Such threats should be considered
when implementing the system 10.

[00469] Additionally, a separate list of techniques an adversary might use to break the system’s
protocols has also been identified. An adversary would need to use one or more of the physical
threats to attack the protocol: side-channel observation; message forging; message replay; message
interleaving; passive attack; identity spoofing; key snooping; and timing attacks. As with physical
threats, such threats should be considered when implementing the system 10.

[00470] Accordingly, the ACC 12 should provide secure tamper-free storage of the CA Public
Key, the ACC 12 should provide secure tamper-free storage of ACC'’s static key pair, the ACC 12
should be able to enable the default set of features without a FCT 50 for a particular device 14, there
should be a way to establish a confidential and authenticated channel between the ACC 12 and the
appliance 18, there should be a way to issue authenticated commands with ability to verify message
integrity from appliance 18 to ACC 12, the communication protocol between the ACC 12 and the

appliance 18 should be designed such that it can prevent replay of commands and acknowledgements,

-89 -

WO 2010/057312 PCT/CA2009/001686

steps taken to break one ACC 12 cannot be replicated cost-effectively nor does it lead to a systemic
break of mass quantities of parts, and devices should have statistically unique private keys and public
identifiers. However, if a very small number of chips, (est. <500 parts), end up with duplicated UIDs
it should still be considered acceptable. These capabilities can be provided by implementing the
embodiments discussed herein.

[00471] In general there is provided a method of programming features on a device, the method
comprising: providing a hardware module on the device, the hardware module comprising non
volatile memory (NVM) for storing feature activation information, at least a portion of the NVM
being protected, and a cryptographic controller for performing cryptographic operations; the hardware
module receiving a first command for establishing a secure session with an agent connected to the
hardware module; the hardware module generating one or more public keys using the cryptographic
controller, and providing the one or more public keys to the agent to enable the agent to provide the
public keys to an appliance to generate a shared secret key; the hardware module obtaining an
encrypted set of features from the agent; the hardware module using the shared secret to decrypt the
set of features; and the hardware module programming one or more features on the NVM of the
device according to the set of features.

[00472] There is also provided a method of programming features on a device, the method
comprising: providing a connection to a hardware module on the device through an agent in
communication with the hardware module, the hardware module comprising non volatile memory for
storing feature activation information; obtaining from the agent, one or more public keys generated by
the hardware module using a cryptographic controller; using the one or more public keys to generate a
shared secret key; using the shared secret key to encrypt a set of features; providing an encrypted set
of features to the hardware module through the agent; and metering a credit pool indicative of a
quantity of hardware modules to be programmed.

[00473] There is also provided a method of programming features on a device, the method
comprising: providing a first connection to a hardware module on the device and a second connection
to an appliance, the appliance comprising sets of features to be programmed on the device, the
hardware module comprising non volatile memory for storing feature activation information; sending
a command to the hardware module to initiate a secure session therewith; obtaining, from the
hardware module, one or more public keys generated by the hardware module; providing the public
keys to the appliance; obtaining, from the appliance, an encrypted set of features; providing the
encrypted set of features by establishing a feature programming session with the hardware module;
and obtaining a response from the hardware module pertaining to application of the set of features.
[00474] There is also provided a hardware module for controlling assets to be applied to a

device, the hardware module configured to be incorporated into the device, the hardware module

-90 -

WO 2010/057312 PCT/CA2009/001686

comprising: a cryptographic controller for performing cryptographic operations; a random number
generator for generating a unique identifier; non volatile memory (NVM), at least a portion thereof
being protected for storing feature activation information; and a provisioning interface providing one
or more outputs to the device indicating which of a set of features are enabled and which are disabled.
[00475] There is also provided a method of programming features on a device, the method
comprising: determining a set of features to be enabled on the device; populating a feature register
according to which features are to be enabled; preparing a feature control ticket using the feature
register; encrypting the feature control ticket; and providing one or more feature control tickets to an
appliance for delivery to one or more devices capable of being programmed with the features.
[00476] There is also provided a method of exchanging information with a device, the method
comprising: providing a hardware module on the device; providing an appliance in communication
with the hardware module; establishing a secure communication channel between the appliance and
the hardware module; and utilizing messages sent between the appliance and the hardware module
over the secure communication channel to exchange information therebetween.

[00477] There is also provided a computer readable medium comprising computer executable
instructions for exchanging information with a device, the computer executable instructions
comprising instructions for: providing a hardware module on the device; providing an appliance in
communication with the hardware module; establishing a secure communication channel between the
appliance and the hardware module; and utilizing messages sent between the appliance and the
hardware module over the secure communication channel to exchange information therebetween.
[00478] There is also provided a system for exchanging information with a device, the system
comprising: a hardware module to be embedded on the device, wherein the hardware module is
configured to establish a secure communication channel with an appliance, wherein the hardware
module is further configured to exchange messages sent between the appliance and the hardware
module; and wherein the hardware module is further configured to utilize the messages to obtain or
provide information.

[00479] It will be appreciated that any module or component exemplified herein that executes
instructions may include or otherwise have access to computer readable media such as storage media,
computer storage media, or data storage devices (removable and/or non-removable) such as, for
example, magnetic disks, optical disks, or tape. Computer storage media may include volatile and
non-volatile, removable and non-removable media implemented in any method or technology for
storage of information, such as computer readable instructions, data structures, program modules, or
other data. Examples of computer storage media include RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic

cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other

-97 -

WO 2010/057312 PCT/CA2009/001686

medium which can be used to store the desired information and which can be accessed by an
application, module, or both. Any such computer storage media may be part of the modules shown
herein, or accessible or connectable thereto. Any application or module herein described may be
implemented using computer readable/executable instructions that may be stored or otherwise held by
such computer readable media.

[00480] Although the above system has been described with reference to certain specific
embodiments, various modifications thereof will be apparent to those skilled in the art as outlined in

the claims appended hereto.

-92 .

WO 2010/057312 PCT/CA2009/001686

Claims:

1. A method of programming features on a device, the method comprising:

providing a hardware module on said device, said hardware module comprising non volatile
memory (NVM) for storing feature activation information, at least a portion of said NVM being
protected, and a cryptographic controller for performing cryptographic operations;

said hardware module receiving a first command for establishing a secure session with an
agent connected to said hardware module;

said hardware module generating one or more public keys using said cryptographic controller,
and providing said one or more public keys to said agent to enable said agent to provide said public
keys to an appliance to generate a shared secret key;

said hardware module obtaining an encrypted set of features from said agent;

said hardware module using said shared secret to decrypt said set of features; and

said hardware module programming one or more features on said NVM of said device

according to said set of features.

2. The method according to claim 1 wherein said shared secret key is generated using Elliptic

Curve Menezes-Qu-Vanstone protocol.

3. The method according to claim 1 or claim 2 wherein said NVM comprises a test state for
allowing tests to be run on said hardware module, an initialization state for generating a static key and
a unique identifier, and a functional state for participating in said secure session.

4. The method according to claim 3 wherein upon detecting a predetermined number of illegal
commands, said hardware module transitions into a locked-out state to protect further access to said

NVM.

5. The method according to any one of claims 1 to 4 wherein said hardware module is

incorporated into a wafer, chip, printed circuit board or electronic device.

6. A computer readable medium comprising computer executable instructions that include

instructions for performing the method according to any one of claims 1 to 5.

7. A method of programming features on a device, the method comprising:

-93

WO 2010/057312 PCT/CA2009/001686

providing a connection to a hardware module on said device through an agent in
communication with said hardware module, said hardware module comprising non volatile memory
for storing feature activation information;

obtaining from said agent, one or more public keys generated by said hardware module using
a cryptographic controller;

using said one or more public keys to generate a shared secret key;

using said shared secret key to encrypt a set of features;

providing an encrypted set of features to said hardware module through said agent; and

metering a credit pool indicative of a quantity of hardware modules to be programmed.

8. The method according to claim 7 wherein said shared secret key is generated using Elliptic

Curve Menezes-Qu-Vanstone protocol.

9. The method according to claim 7 or claim 8 wherein said shared secret and said metering are

performed with a hardware security module.

10. The method according to any one of claims 7 to 9 further comprising logging an event

pertaining to said metering of said credit pool.

11. The method according to claim 10 further comprising obtaining one or more logs from said
agent and upon receiving a request from a controiler, providing said logs from said agent and logs

generated for said metering to said controller.

12. A computer readable medium comprising computer executable instructions that include

instructions for performing the method according to any one of claims 7 to 11.

13. A server appliance comprising a processor, memory, and a connection to an agent, said server

appliance being configured to perform the method according to any one of claims 7 to 11.

14. A method of programming features on a device, the method comprising:

providing a first connection to a hardware module on said device and a second connection to
an appliance, said appliance comprising sets of features to be programmed on said device, said
hardware module comprising non volatile memory for storing feature activation information;

sending a command to said hardware module to initiate a secure session therewith;

-94 -

WO 2010/057312 PCT/CA2009/001686

obtaining, from said hardware module, one or more public keys generated by said hardware
module;

providing said public keys to said appliance;

obtaining, from said appliance, an encrypted set of features;

providing said encrypted set of features by establishing a feature programming session with
said hardware module; and

obtaining a response from said hardware module pertaining to application of said set of

features.

15. The method according to claim 14 wherein said shared secret key is generated using Elliptic

Curve Menezes-Qu-Vanstone protocol.

16. The method according to claim 14 or claim 15, wherein said method is performed by an agent

comprising a software library.

17. The method according to any one of claims 14 to 16, further comprising generating a log

upon delivery of said encrypted set of features, and providing said log to said appliance.

18. A computer readable medium comprising computer executable instructions that include

instructions for performing the method according to any one of claims 14 to 17.

19. A hardware module for controlling assets to be applied to a device, said hardware module
configured to be incorporated into said device, said hardware module comprising:

a cryptographic controller for performing cryptographic operations;

a random number generator for generating a unique identifier;

non volatile memory (NVM), at least a portion thereof being protected for storing feature
activation information; and

a provisioning interface providing one or more outputs to said device indicating which of a set

of features are enabled and which are disabled.

20. The hardware module according to claim 19 wherein said hardware module is integrated into

a wafer, chip, printed circuit board or an electronic device through said provisioning interface.

21. The hardware module according to claim 19 or claim 20 wherein said cryptographic

controller is configured to use the Elliptic Curve Menezes-Qu-Vanstone protocol.

-95 .

WO 2010/057312 PCT/CA2009/001686

22. The hardware module according to any one of claims 19 to 21 wherein said NVM comprises a
test state for allowing tests to be run on said hardware module, an initialization state for generating a

static key and a unique identifier, and a functional state for participating in said secure session.

23. The hardware module according to claim 22 wherein upon detecting a predetermined number
of illegal commands, said cryptographic controller is configured to transition into a locked-out state to

protect further access to said NVM.

24. A method of programming features on a device, the method comprising:
determining a set of features to be enabled on said device;
populating a feature register according to which features are to be enabled;
preparing a feature control ticket using said feature register;
encrypting said feature control ticket; and
providing one or more feature control tickets to an appliance for delivery to one or more

devices capable of being programmed with said features.

25. The method according to claim 24 wherein said preparing is performed within a hardware

security module.

26. The method according to claim 24 or claim 25 further comprising logging an event upon

providing said feature control tickets, and obtaining logs from said appliance.

27. The method according to claim 26 further comprising storing said logs in a database.

28. A computer readable medium comprising computer executable instructions that include

instructions for performing the method according to any one of claims 24 to 27.

29. A controller server comprising a processor, memory, and a connection to an appliance server,
said controller server being configured to perform the method according to any one of claims 24 to

217.
30. A method of exchanging information with a device, the method comprising:

providing a hardware module on said device;

providing an appliance in communication with said hardware module;

-96 -

WO 2010/057312 PCT/CA2009/001686

establishing a secure communication channel between said appliance and said hardware
module; and
utilizing messages sent between the appliance and the hardware module over said secure

communication channel to exchange information therebetween.

31. The method according to claim 30 further comprising providing an agent between said

appliance and said hardware module to distribute said messages on behalf of said appliance.

32. The method according to claim 30 or claim 31 wherein said messages comprise one or more

assets to be associated with said device.

33, The method according to claim 32 wherein said assets are any one or more of serial numbers,

keys, or feature sets.

34. A computer readable medium comprising computer executable instructions for exchanging
information with a device, said computer executable instructions comprising instructions for:

providing a hardware module on said device;

providing an appliance in communication with said hardware module;

establishing a secure communication channel between said appliance and said hardware
module; and

utilizing messages sent between the appliance and the hardware module over said secure

communication channel to exchange information therebetween.

35. A system for exchanging information with a device, the system comprising:

a hardware module to be embedded on said device,

wherein said hardware module is configured to establish a secure communication channel
with an appliance,

wherein said hardware module is further configured to exchange messages sent between said
appliance and said hardware module; and
wherein said hardware module is further configured to utilize said messages to obtain or provide

information.

-97.

PCT/CA2009/001686

WO 2010/057312

E

oov] | |B9Y | ...
2oIne(] |« 9oInaq | - - . 901N ¢ 301N | . . . pl —101ea adIne(
L . 7
14" * d) / 14" H vl \
191S9) «}»| WSbY Lo 19)S9] «}» WuSbY L 19)S9] <t Wby I
 0¢ j 02 . ' 02
A\ e\ 7 S 1 Y
AN 9l 9l
9l
| @oueiddy
X ®dueyddy gL —T | 81
8L — T LINSH 7]
_>_WI/1/ 6l \ _e U._/n_
/9
ee@o 6l el
6l
weud oAe0
2SU

\ 9 Q L 1o WSH | \ \Z

oL 14 /

19|j013u0) aINpop

verd |euonouny

WSH

1/73

WO 2010/057312 PCT/CA2009/001686
Control Channel R
Controller | — 22 Appliance [— 18 Agent |— 20
I
Define product
T V—
Define asset type
T W
Import assets ,J
1
Bind asset to produﬁ
|
Bind product to appllanﬁj (products, assets)
Store assets J
Log event ,,J
ACK
ittt B Request assets
Meter and obtainJ
I
Log event ,J (assets)
Loop
Apply assets to device| «------ >
I <~ Exchange
with
Log event ACC
(agent logs)
Store logs ‘ ACK
(request for logs) [T >
(appliance logs, agent logs)
Store logs J FIG. 2
|
Controller| _— 29 Appliance | —— 18 Agent |_— 20
Audit Channel

3

2/73

PCT/CA2009/001686

WO 2010/057312

/

€ "OId

8l

oLl
aseqejeq

leuonjejoy
J1ajj0u0)

|00] Buinoday

801

3/73

A

souelddy 1_J uowise(19]|0)u0)
“T s
w/ S\
Aun 110 [1OMSS GOM
Vd
0l
2o / INo
g
; sdny
2z |
Jajjonuo) 00L — | sesmoiq gopn

Sany

1asmolq gapp

.oor\

PCT/CA2009/001686

WO 2010/057312

Vv "Old

gy "Old

e YR

aseqgeje(
[euohejdy
aouelddy

143

uowae(q aouelddy

A

I

aouelddy

4/73

N_‘_‘\

A

lg|jonuo)n

(A4

WO 2010/057312

ACC

12 /
Soft ACC

{

12’

Tester

/20

Agent

18
/

Appliance

573

PCT/CA2009/001686

FIG. 5

PCT/CA2009/001686

WO 2010/057312

1974

eOL1

Le Yd)

N

SIWY
IdY uowsaeq

cel

N AN

g9 "'Old

IdV

A 4

waby

A

uonjeolddy
18]

QoL

/

19ssy

\ uowae(q

o€l

)senbay
jessy

144

¢cl

60

A 4

A

2/ /

G¢

V9 'Old

0cl

uonesiddy
1sa]

0cl 4+

}sanbay
6o

wtoamm_\ \

aouelddy

| sjassy

}sanbay
6o

T o2l gl

[921

sjessy

IdV Jusby

Le

r4A) _\

}senbay

aouelddy

Jossy /
spoday

L 6o

8l
144"

6/73

PCT/CA2009/001686

WO 2010/057312

soueyddy

BOZUDADUIAS i slel vy 0} BRUNHES (U0 SRMITRE [S0GOS FNEU0

V. 'Old

pnpoxd
swali waby

SRASREANNY SNy ke prpoid
gk OF DOIIDIUDLIANYE DER PRIGDIICH &1 LB 1D0003dg RPN} GUYH0
i
WASEHAUY Y L Rusalog
1 03 PRMESINURLND DUE PRIUSILIOND 5§ UDBLILSD PUIRDe UOBBZICLIAS BN
o : ™,
JOIRASIUILIPY SHY JefpuRpy ssRuISng
0c / 8l N ré /
< AN <
Juaby ’ souenddy | J9)j01u09
"SON Bwayos
[euss uoljezijeuas
T~ el

uonezijeuss

773

PCT/CA2009/001686

PCT/CA2009/001686

WO 2010/057312

ocl

N\
0z 9.9l , .
4} N \ // // /
N7
99y o| weby | souelddy | 19]|01U0D
uoljeAljoe ainjes -
uonelausb £y - S104 s104
UONBANDY ainjes AN
6¢cl
\ \
wuojsuel |
[wuojsuesy A
da.old RGN
2z 7 10npoid | g adA| Aoy
0¢ / ol \mmr g 10npoid zodAl Aoy peq—
. AMe L v 1onpoid e | 2dAL Aoy ||
by J . ;
7 I8 , 9]|04)U0
(1) shoxfs’ | __soumddy [| @V [e]
/
orl mm\r ocl

uonoafuj Ay

8/73

o173

WO 2010/057312 PCT/CA2009/001686
Controller| — 22 Appliance |— 18 Agent [— 20
I
Define product’J
|
Define serial
number schema
I L
Bind serial number
schema to product
I L
Bind product to applianie_'
(products, schemas) Store schema ﬂ
Log event ’J FIG. 8
ACK
ettty Request serial nos.
Meter and generatpej
1
L t | |
og even (serial nos.)
Loop
Inject serial nos.
l
Log event
(agent logs)
Store logs J ACK
(request for logs) e >
(appliance logs, agent logs)
Store logs J
I
Controller_/ 29 Appliance| - 4g Agent | o

WO 2010/057312 PCT/CA2009/001686
Controller —" 22 Appliance — 18 Agent — 20
|
Define product

| W

Define key types
| V-

Import keys from ﬁle’J
I

Bind key type to produactj
I
Bind product to appliance (products, keys)
Store keys J
Log event ’J
ACK
I Request keys
Meter and retriev?’J
1
Log event ,,J
g even (keys)
Loop

Perform key injection

Log event

V-

(request for logs)

(agent logs)

Store logs J
|

Controller| — 22

(appliance logs, agent logs)

A 4

Appliance

— 18

10/73

FIG. 9

Agent

WO 2010/057312 PCT/CA2009/001686
— 20
22 | — 18
Controller | Appliance Agent ACC
| /
Define producﬂ 12
|
Define features
to be activated
| L7
Bind features
to product
| L
Bind product to applianﬁJ
(products, features) Store fe atures’J
Log event J
ACK
< ________________________________
Loop 1 Key Generation cmd[STARTACC]
Loop 2
Feature Programming
cmd[STOPACC]
(agent logs)
FIG. 10A
Store logs ,,J ACK
(request for logs) [Tt >
(appliance logs, agent logs)
12
Store logs ’J
I 18 20 \
Controller -— 22 Appliance— | Agent ACC

11/73

WO 2010/057312 PCT/CA2009/001686
1—18
Controller Appliance Agent T 20 ACC
\\ /
22
12
Loop 1 cmd[STARTACC]
Generate public keysz
cmd[REQRESP]
 ACC public keys
ACC public keys
Generate shared ka/J
I
Meter and encrypt featuﬁ
l
Log event ’l
Appliance public keys,
encrypted features
Loop 2

cmd[INITIAL FCT | FCT]

Program featureﬂ

cmd[REQRESP]

encrypted response

Log event J

22 18
Controller Appliance Agent ACC
/
FIG. 10B 12

12/73

PCT/CA2009/001686

WO 2010/057312

00¢
/

A L O § WA

S IPeHeS L 03

A SIS AR

18

Old

woipAnoYdiug B N wiosluifeyn . il .

SLONI0YE SV 10 8ALVIS

S SV 0 SNV

RISAS JuamIBRUI JI5SE

_W0(343) »33»

13/73

PCT/CA2009/001686

WO 2010/057312

Ote 0zZ 2l 'Old

ROTES § O 3 wRles N UCRE L £ § LDREIR T

IR JSSH SU ISIGHUOD Of POIRLULD

note BEanX

Q- O

i

8i¢

vic

o

FIHMD

DI S,

GHOUID : .
poouenddy o

R osemweg | semuesn

wnshs Judsabrusn Jasse

AM021)49) »

aads
T

14/73

PCT/CA2009/001686

WO 2010/057312

4

gy

SUORDE IO

Olid

.

=

Bufus
[T
FTRIESL

ddwisal

KUY

DEDBULGTS

MRIAPOIL g poull »

sopuBaliy ot

o

= x

SABIA

Poseawmas | smmonuen

wRlsAs Jusmafivur 19532 44

0313433 »

A
¢

15/73

PCT/CA2009/001686

WO 2010/057312

¥L 'Old

G OB L VOISR O | P EG | 4 LSRR S0y wAIasE)

S0 LU O PO UL

ARIBOD pooll o

peourjiddy

RS N

a0

oossorusg | mpaws

wivyshs Junuebeuni Jesse
WI021349) »3

16/73

PCT/CA2009/001686

WO 2010/057312

aa -

i AED

gL 'Old

23 Y AT

oo i

Sty ; booseormss | ssuomen

waysds Jawalieurs jasse

0313493

29
2459
25

17173

PCT/CA2009/001686

WO 2010/057312

e0ve 9l "Old

UGy

B e Ewmuw 250 . . e - = v U worg mempeie poib e
«]
-~ GUFIEPL LT D B00T MG

s | SMES ARG = use e gy

TUpsTELETIOB00Z pUT 31z uogena SRRINGD
NEERC L EZ tOB00Z LR Anesanons oelduis SoiBg siaduy waoefuiiey S

HEA0r P EX PUB0LE | pul B2 LR Feiioitice]
QErseey T T 8002 VRS FrgseRions paitduld | sming uadwy 108fuihey N

001
£ u002inG TansRuG
Jupyssoans peeiduls snies R0 %osUD WSS
OFSR080 P2 ED BU0T (AU LRI IBHOINCD : o : - et Gy
AEER080 PZ E0BO0Z | HRID ZUNSERNS pOKIUD: | SRS soaud weishs : o NG
090980 77 505002 U3 SLIUONG | asueyddy . R . Sropin 2
DYOrEBOPIROBODZ VOB TavisEmons peerdis | smey

. ‘ . o
o
Y UOAEEN] FHDINOD AFHEF UBENS | RO 7

panent | SMS Hadyus waishs

o
&3
(4]
oy

4

e,

Sty i, | oswessg | mpoaven

whyths Juswbeun Jasse 44

03134193 »

18/73

PCT/CA2009/001686

WO 2010/057312

q0vZ Ll 'Old

PS4 G L

e e) ; - WHDR BN SR ISHOHUGT U PRIIGUUDD

agwa mmsiﬁ»mwm ae . , . 28 . b . o woi g mmapowi e poefl g

poiiel adueycde aAs g 1eovenday WAS akBNSIO

JUAB e BlAeN LN

mm&mmvu%m ﬁﬁumaamu i aa ik .(LRty

ks ﬁﬁﬁww«n&@ L Y

%agzaw pordiion 85..&@ JUAS .0 1aduenddy

e . i SR
%Qm@wxg vmmw.aég wwa e av FBEORNOD

LAME IOT &,

voas_ %ﬁuw&vx f

e

Kyryssenans pasaphuoa) sha %&ﬁ N B0

sdox podun LN SROAU00

ANiSs33308 DABIGWOD Vod 190k & N

Aimissaaans oo #eud weishs ¢y | 00 Hoeud uieishs .I

Suyssaans posidnioy EIUD WOISAS ol SN xwvﬁ né&m LY ©
AInissa33ns poraiduo aoueydde Sud gy 12aueday \ Bt wy
o B B - - E e B

IERIEOD HIBLED WIBAG 5

NIBUT WMBAS fel

mmaﬁ Tiv

SRBIA

| osuogse | prees b oseweg | semaen

wiashs Juawmbrueiu ypsse 0,9

AM021119D »

19/73

PCT/CA2009/001686

WO 2010/057312

Qs o I

81 "Old

108 vid 80002 8002 02 widy Aepsanuy

Hendyy e

302

10T v S00F 2 8002 02 wdy Aensaig

103 Hid 9P B8 T 8007 07 wdy Appsinul

iy i

ssa:fioi

Apnpssaaons permidiin)

sAay Lodu N

Hosug aggox

G

SR

RO RBIBEDW @

P

ool

oseanses | s

5
b
i

(] PRIIOLLOTE

wapsAs Jumupabeueus 19538

W0313432 »

20/73

PCT/CA2009/001686

WO 2010/057312

61 'Old

$ 01w

HUGTY OF DA RaUI0

Hey

worg wempoui g poef g

fiosze Ag sBol wisle Unieag . DR 5\

Opsse Ay sBorunbe Bussy o 10eleley .=

S

Gasse Ao sBop uabe sipandng ﬁgmcm%x N -

f1omposd ad) senss: wele 1B L w.10shuiey \N =

Y SR % i
fanposd sad) sanss: Rl

A NS S % N

{enuds a0l SONSHLISHOAU0D IBI0) W YRING o =

e

{panposdd sadh SONSSLIBERNNYT SR TR0 o=

mgvo& s0d) sidmies s3URIO0R 0101 wXEWAD @ W
oy |

finpod adt sichenss aovedde g e o =

SLUGd R

SutRY R0y, Vo osevasg | senssuen

wagshs wawelizuew sse 40

0313433 »

21/73

PCT/CA2009/001686

WO 2010/057312

0¢ 'Ol

G 4 0) MOBEN 0 | VEOTTE L 0 L VORER Si6y WAL

et

U0 0 PO Ty

wolg BRBIOW ¢ posfi g

o

s

003 | podas s spaoday SR B

1pnatid| 19000

o STAHBOOT, M0 PUZ

]
A s

e

JHOJAY ALVHENGL

Bk SUGRY wa, j

washs juduabeunsijasse 44

01343 »

»
*

22/73

PCT/CA2009/001686

WO 2010/057312

1Z "Old

Ly PR R R R L LA

€ ASN §Y QUG O R RUUO0

g}

ELo¥ Y BRIBDVH g pendl p

ARG PEGRIRGY

...... w.VN

00 ¢ G oy IRBBS
PRISRIA j i] BEATING REIDIDG

(ewiayos Ag) $onss| Jj0IJU0D BIOL w XBISIO

winysAs junaaBeunu asse

S14043¥ SWY LAMODILIBY »

JHOGEY M- WZ: w

diap I osuege | s b osewewey |

wiaysAs JusBrung 195IR

10313493 »3

»

900

2

23/73

PCT/CA2009/001686

WO 2010/057312

. 22 'Ol

PP 1 OL R R

B 60y Hhegay

LU 134

»
WOy Woana | WBUCh Sl
¢ | pod dlns
VOGLTL | SS000R Jd NS
o) NG | IRAIDRIMIMID LIPIBAG
S ———— — i iy o
Z | sasr samy
: : Sl saorny
i v
0§ sk

488807

OIS IBA BISH

e

(iR B

UOISOA TIBNYOS

N

a: BYBAIID % s 1oBiAaN N, RO @

- PRSUINT SRR

e TS 1

Duo8

SRS PisH

¥

FETLEITE O

 SSRINNR

5
JRIAVDY | liey

s

Ay
VIOHINGD

ot | oswemy | P

S SHICIIUO O POTISUU0D

BRIy HRIDOU g poul

s
i

SIIRE

5
E 4

&

ko
o]
Vi

2 5

eI

SRR

031343 »3

wapAs Junwabourus Josse 94

il
»%

24/73

PCT/CA2009/001686

WO 2010/057312

€¢ 'Old

B G PE DA

RS L &

® muspout g

R ; Ay

WwPIBAIOVAIID @ i 0RMUIABY N W XBNRIQ @ posueIT sames

| WO WO AR IBNIOANIBS| $53PIE 01

: _ WO WIS g@“mwom.,_oﬁ:i SSAIDDR WOL4
w&

_ wod ont»u* LRGND JAVIS
~ 5zl pod gims : @
w LOD 224 SERDRE o AITIS -
SpUoYas | 00592 tEARIUs N3aUs Wnshs B
SPUODBS | 00024 BUI} 123D 407 m

ABORUODL SeH

A
g

SOy Ajt 1 INCD
| oswonn | s, I ossmpen | sassesn
wxshs Juswabeuew Josse 4N
0313433 232+

25/73

PCT/CA2009/001686

WO 2010/057312

vZ 'Old

0 1 G IO | FRGT 8% L 0) VO SINY LRG0T

e Gy : i) 1 48 1}] POSuBe s

pore mempoi e pnf e

RBEUHBAOITUN '
rlnzegissy . A
zosuenddy &

’ z semsiity wh

8RO «‘mv

[03150.3 "
LROIRIBY / m@ SIRCHEES
pesueyddy & .

SR o]

GAREA

i

SUBIY [osesweg | siosuen

wiopshs uswsbauRii Jasie AN

U021)19) 2322

26/73

PCT/CA2009/001686

WO 2010/057312

gZ 'Old

M Jan S¥ BTGNS O B8130LuG

BRALOW 8 poofi g

.
T
c

. > : i
. » i
- Ny .

e &
. , §
. . L L g

2 5 3 &%
SUGHIR B20M

R———————

... - m
.

SuGgyy

g | mwoann

woleds Juaiusbeurii Josie 4

0213433 »

27173

PCT/CA2009/001686

WO 2010/057312

PTG L & & et

QR = IS

9Z "Old

ﬂw«_m

000 1000 1

DL WBINIES

DIOBIEAR IDBIT

BARERAR ARy

PR

800 180008 PO 2I8ds %8I0
ERER U s | VOSIEA RIS
POSEE E 0L | MORIBA BIBRNDS
MO § STURIS BH
RS AR s R S SR s
AN | SHIBIS
D08 1 Ud
VOGEL | BSRpRR d
e i
QWO L

UDBEI0T

WA
e

ASBAIWAND f, w IR « @ XEHR0 g

R

ssmaRnuRE
BRAADS

Bl BRIBPHUL S sl g

SEONES | SRRRNED

washs jupmsbevew1osse 90

.WI0313483 »

28/73

PCT/CA2009/001686

WO 2010/057312

Poean sl o 0 § W0 ST WD RS

waagy

Wiy

LZ "Old

e fasn

ST = Uk OT=5NAG Laauendy wog Adex [y 158 80ra]
SWEY = UM OZeERAG pRuRndhy wog Aten: [y £4.9 Borair)

SUIGLL = DUk OZ=%00A0 Rauendty wos Ade ey £ 8 B0 e

Jnsas ma_&

ABNUESadINs DBIBITWO)

$63:8014

WY
G L @

weoges %

Leournddy 3
Y Ok -

| suegoe

oL WMRIBEOW g

o

ol @

BIRUUOD

Foeid

SRDIA

Poosmmeg | saoamn

wiaysAs JawaBeuriu Jasse

_WI023.433 »

2
>

-
m‘

29/73

PCT/CA2009/001686

WO 2010/057312

AGCHG b D) LRI QY @

sy Ay

8¢ 'Old

GO OF POLIBtIU0TY

2T g BRIBEON B pooll g

-
reysioy 0l 0AS LMY 85 01 80Tt
£RORSIING (AR . BEADYRED 02 9obang Y §5.01 0P80
papavrIng (kS e 2o aubang o 25 08 S0
wapadIng (U8 L 00ARNS 1% auhang Inty 90 05 BT
w an Sueass a0l 0usg Irpy 9503 B0ETY]
LAUAS o 2o aobans Buiess oy S50 ovTiyl
{3uks 4, 10BN 12 Golans Bunies Iy 9208 6087 WY
(a8 o miay prchtes op sobans Bubiwis v 8008 80T
SuAs popasd sy s ereentdie WS Y 99 .01 80TET e
MBI SRS Gavendde AT Iuv 98 .08 GOrSr
SHes souputdie WAG vty 9803 eoiriitl)
paeRuos sBumas BruenddR DUAS PN 95 05 OBIETIE
A2 BIBARL URBID LAY 95 O QP
sBumss srumudde AG ¥ 204 BOTZT
Yol QUAS 3B BIURIKER 2ULD (Y 9% 01 BGTET)
. Thseioukg ¢ SEEETY
ss3.fioig g =
PISSBIINS PRI .
S #
g s Y G : e fp
24 " g T BUSIDL aw. W
: s
1

ol - 3 peouenddy . @

SMBA

TV ONAS -

SUGHSy e Pooseves | s

wagshs Juswabeuswidasse 4

0313493 »

30/73

PCT/CA2009/001686

WO 2010/057312

6Z 'Old

Wyupe Josn su

D1 BZIS H2010 1355y

.3 UAS R Amn e

SPUOIBS . O wrsRi 2UAS By

¥ $als NONISUUED

sidwane

spucoas|

. 02089 Hod

10D 2TA SSRIDOR ot

i
™y

QJUGIO L UORRY

,

WeRLDIY SBBEIRIAUeNH

Suﬁﬁa@ Buweu slueddy

NVFIddV ASICON * S30RVIIdAY

NI T e

RPN

b s

mrspo g ool

22}

139L807

5 | FERIET

wishs JuniaBrusus Josse

24
JWI013433 +33»

31/73

PCT/CA2009/001686

WO 2010/057312

0¢ "Old

AN Ry WA

PRI EE L (3 1 WEreRa

e oy 573 Of PIIIHTIOTS

ML RSO g poul g

o

.

7 s53uB50 e
e LeauR
AV ALVAL Vi kiddy
JLITons [ty oy, i saoemen |

wayshs Jusiabeur 19530

WI013433 233>

32/73

WO 2010/057312 PCT/CA2009/001686

E—

o
0
.

FIG. 31

1hesissauGa
utprisionsd

S

@ Appliance2
Letticorn

%

é ~
¥ —
“w
£
hid
OF | & :
W < [
- C‘% i
g} :
e E
W . :
Uiz L8 R o
L g Do % ; .
299 | = & o I
PP § PR . w | owm s o =
> & 2 R ’ (A e o @ 3

33/73

PCT/CA2009/001686

T

PHOEEEG b O L uOness Lgf

A

§ asm i
sy gide |

ALY
21041

ey
SULE oA R
INpold 0

LauRdy
Bnueidde s

AT
S8 |

s

WO 2010/057312

gl e gty
HEse e 2

| LG
SRUIPUES VIIRTE U |

P
3

SuC Ry

UHRUDE 19571 Y] J0HU00 O DO RRIGT

34/73

wagsAs JusiaBuew Josse

0213490 »

PCT/CA2009/001686

WO 2010/057312

%gﬁu«_

€€ 'Old

saml

P e %

HHUOE IG5 6 i3] SaU000

»R @ R e

LRSS oy

«@wﬁmaa«_

X4 dogH)

P b

VRIS

WG g

% gy 13

Zonpoid oy
Lnptud pp -
i
t

SMI

Pooswrssn | sdomenn

mNehs pwabeurui jasse 40

JUO0D1YIAD »

35/73

PCT/CA2009/001686

WO 2010/057312

¥¢ "Old

BGETEG 5 (3 4 METR ¢

158

WY 13 0TS 0F D

e e WD

CREN < [X_1J< @

'Y

o

HOl g WRIBIDU B poul g

DO00LOD0E %4 LN LIS

0u2 k
BUALEY. DUE DO & YRIU B3 DA UL Ui 2aouRasdy - 007 DUty UL 0401 YEW 60; DA LW Ui 123uenddy 3
1 i . o V.@r

LRUBIR | SRS IS LONRBIRLAS

(GO TR BRI
- 3

£ SRSl TF

AP0 @

(S 11]

1anpdig

S

SRR

ey boossameg] semw

3

wmysAs JumuaBeurul Jasse

2
0213133 2332

36/73

PCT/CA2009/001686

WO 2010/057312

G¢ "'Old

LU B350 SY T3 O} PRI

mpiapnit g pofi g

AT Y

G2 GulRs DU G0 L YOUS D04 18401 UL ZR0UE N30
§0.2 SaoURsA DUS DO L XOU Q0L 18091 LI 128 LOUBHIDy

00| Xew | ooy U [+ | seouRaddy

ZEWRLE

npoly T3

¥y

| ewsis vonezeneg

M » =
s
= e Ll e

[a" w BRG] 2oming

L1IND0ICH BBl

&

LONCOU GOV * §LONAOU

I osenvasy |

Ger | swey |

wshs yupafievens psse Ay

0211480 »

37173

PCT/CA2009/001686

WO 2010/057312

9¢ "Old

i) 1) GORER GYE WY

occamorionaono’

e ey) ol gdageY : iy VRUPE JSN S8 IICHU0D 01 PRIT0UU0D

<1 REgramliast - -

#55 BRIBDOUL et d
L] L]

«,

ZO0ITOC0D0NE
LRODZ00000NE QO0°0 L WRBT St ~ S TG
SO00ZOGBO0NE D SRNWES LHOGT BAS 2 SITETETS) BRI IS U YRan

£o01000000S 01 9seg ~ sy
700010003048 20001 wRes ! . : R
1000100000148 | saKwED L000L Vel i

e

LHOSOUCO00HS oy as2g
ZOO0CUS000S L0090, WD
LGOL0ON00RHS | SIS

)
G

Poswmrmg | wnosen

waysAs Jusateun Jasse

WI013133 »33+

38/73

PCT/CA2009/001686

WO 2010/057312

L€ "Old

LREOE JASI € IHUGT O DRISUINND

ROy HABRU pond g

L o
CRMOF R R Q)

el

20002000008 " LH00Z00000HS 000020000018} LRURES g

SRR R i 5 e e

£00000000NS "Z000L00000NS | LO00I00000KS Zewsus @ con
SOOGOCO0CONS "EB000000CCHS ' O00000DDBNE , RIS g e
. e y . — — . N

. el

Poosspaeg | maesuen

wshs Juauabeutw wste 44

L02149D »

39/73

PCT/CA2009/001686

WO 2010/057312

PR L B L

s Bees

CQAER - <[

8¢ "Old

1 AR

£O00000000NS TODODOOD0ONS " LOUODO0DO0NHS | Soxkue

=

0 uesod 18 e | shuus wes

Qi * BIORIRUI 0L

a4+

WSO

MR

SRSy

HUE ks

wale MR

y RIS et @

poofl g

boosmemsg | maosuen

WiysAs Juswalieuews Josse

WI0J1343d »

e &4
254
i d

40/73

PCT/CA2009/001686

WO 2010/057312

6€ "Old

wume UG OF DRI

JRIBOL g w9l

£000000000NS! waues
Z000000000NS
[~ £ 000000000NS]

0 uonisod je 1S

sPus s

;

4 GBI ushepEnsl 8

T . ¢ TR D g

G

.(ﬁwzwm &Q&. “YWREHOS NOLLVZTIVIEIS

Sy | osuesm | R, Posmweeg | sepeasn

WASAS JUMUIBRURIL JASIE

JAMO0D1)A9D »

41/73

PCT/CA2009/001686

WO 2010/057312

o "Old

Y ORI s G0 OF Ra3UUa)

no @ WRIBDOU & poul g

e FI LN
. z sadhpde Ny
e 7) 5 o

v Whum aaDesy ol S R0A00Z. BIED Sy 2 e
D40 0890 Nt USEH 82798 rley 3 : : ; £
Pori3 BT D Q0T INCINOUSEH s0c ey i

S Eeie & B B e i

b egfus; BDERY B § 50 Q082 ity G2y e ‘ o
D % 9BET waldt BN Danugfey . s,
VoS BET 4% 802 LIDGRD USeH §oE * ufiue) , w ,
g Z

Saay

s

P oswweg | esoaen

wayshs Jusuabeurul Jasse

JWi0313433 +32»

DID

42/73

PCT/CA2009/001686

WO 2010/057312

Lv "OId

R AR R

o Bivy v i ¢ Y : 3 2 38N SP IS0 RUOT O DOYTRAIIO

2RI

o] < [Ty e

-
o
o

oy

e

s

poid g

Poossowey | mauiuen

worsAs uaisbeuri 1sse

LAM021}490

2%
el L&

2

43/73

PCT/CA2009/001686

WO 2010/057312

¢y "Old

g o : UIUDE S5 B1 IRHGHUGE OF DRI

Q- = EDED

gy ysey

piep

weBep i Lo

e

s S i S R S =
WOCU 156118 UBAR SADN OO0 LAOD0'

e

podicn iser e jeag sAI

v 1 wBus Jeneoy Mg

Q19S50 188900 58T | indul ysel

whino usen

P syHS BIISN $97 1951 1R $9IA0 02

gresyo e soiin o | v Aoy

019540 IR S8 B

s@ha g

Z

xe"goH | ewen

SddAL

| sy |

25 BRIBPIL B ool g

Fooswwses | spommen

wiapshs Juawabsueis 1asse

JWi0213433 »33»

»

44773

PCT/CA2009/001686

WO 2010/057312

€y 'Old

POTYE L Dy vonaat

faouey

e UseL

3 BEIRUUeg

#0] g BLIBDOW w5l B

_ +| wibuar sppeay 3

198310 1B $9)4g sad A o usen

[swms] Buisn [3g7] 19540 J€ SOIAq | 07 4 wdino usen

z 3&#@& N

o e Awy

E 198410 12 $8140 E 25 3051081 ABY

308} 42% 10 wBus

S

JAL AT OOV - STIAL ATH

| swesm |} e Poosemmisg | ageseen

wapsAs Jupabeuein joste g

AMO0D1349D 23

N’
%\

45/73

PCT/CA2009/001686

WO 2010/057312

VRUENG L 6 b SO SR

ieaysy

o sutprehi R0

GOOGOD 00 OGN 00 G By
FRAPD PUBLANAD

Q0 00 00 06 00 DO 00 00 00 00 0% 20 06 34 6O 00
L0 HS N 00U DE SE R AL N 6L 00 00 O
e,

e

1448

Old

o susneln ey

GO 0D 00 0080 00 00.00 158
8418 PUBIHILD

U0 D00 SR DO OO D0 000000 0050 0N 00
G2 0000000000 B0 00 0RO R0 DDA R0 00 00
emes

0 suephEi gy
60 00 060 05 00 00 00 00 By
WRPE PURMALDY

SOOOOLI0 OB DU G0 00 00 CO A SO DR G0 B0 B
QS G0 OC LG GO NEN0 N G0 QO UL 20 0V OO L0 0T
aRs,

HARLNOGO

| suoun

i, b ossmueg |

3 O POLIBUUOT

pvel o

¢ B L IR SRR

SRBIA

wayshs Judwabeuaw Psse

0211490

2335
2%

46/73

PCT/CA2009/001686

WO 2010/057312

AR R S

s

L
L
\§

Wi

[P et e geigie

T T

Gy "Old

=

-

=
G

S

Eaay 3 Logleniin 'y

¢ EPeyDL MY AHRR
1904 195 i
i
’D 1308 ZIWABL 0.
We. 19g PMEARL O i
AL HOUINGD S SMBIA
Ak fuopy I ossmmsg 1 sgsasn
wesAs juswatisue Jasse 4

41021343

A

44

~
»

47173

PCT/CA2009/001686

WO 2010/057312

9% "Old

PR

ysassy

e oo

dounia #hea

O | suonoshe 201

B0 00

e

8OO0 ob B0 o0 o0 | Bel

GOO0G0B0G0C000CD00 005 COQDO000Q0CNS00000C0CE00

S0 00 G0 OG0 CO D0 | ANBA

wegies

€

£304

SAE

e L

BUBEry

WP JONT S8 ASIOHLGT OF B

MEI @ WMRBIOU g

UL

sl g

g By 100

i emae] By

Ioseommg | sensamn

WAISAS JudaBRUMA Josse

0313433 »

-
FOETE
25

48/73

PCT/CA2009/001686

WO 2010/057312

Ly "Old

T EG & O L U I I Felel L O

LERI B RY § 4

oy ; HEsHeN

Qe = ey

#OL g BEAIDY g pool

£ BIREY ‘

kS

0
w3
o

B Hdy K

St : s e

S £ b

s

Tl e

AT ————

SHAGN

e T osewmsn | mgogenn

wagshs juaunbieurw asie 49

_WI03}3433 »

E i A
o . >y
... ki

r
>

Z

49/73

PCT/CA2009/001686

WO 2010/057312

8y "'Old

55038 43| SUCIESINLAY 4 BIBARIVERD

M

nesede pue Mbis | SUDmSIILS 5, 10500AeN

2ns pue wms L SUBISSIULSY o XPIRIG

5

o mmal sumssaisd wasn

g

wnds pue v | suossiuiad seaurkdy

g

seoe pue von | SUoESILOY JBE0SU0C

g

.:o....m OSSR U0

coitov»om DHONER8

%#2.19p| BURUIASA

UISOH OOV

suegn | 28,

20 @

aRIapE

s

5 O PO} FIL0

poul g

e

&

e

P

bosmees | mamp

wiapshs suatalisumu Jpsse

0313493 »

-

I

2
L4
»

50/73

PCT/CA2009/001686

WO 2010/057312

6 "Old

BEE S & [wiesie

08 G4y e

POUES WG

ssao0e ot | SUDISSIUIRG Rl AIVOD

—
41

S3EY o:m sunssauind ek

sses3e o] suBssuLSd W XRNMG

E

ss20e on} susssued sssn

o

s eae | SUOSIIIRT SaMBHIdY

)

A vans | SUGISSIUST JRIORUDD

=

URIEDE Jash s¢

peserersl piosissR IIIOD

o.oo..cam DIORSSEY

%ww& e

o booosweasr | P

HHEOTS O 134

BRIBEOUS @

E2aE 3

Poswemg | smpmemen

wiysAs Jusiualizuei e

24

JUODIIDD »

51/73

PCT/CA2009/001686

WO 2010/057312

0S 'Old

YUY O} PAIGULIGT

Ay j $ L . / UL BERntEl g

855008 ot SUDISSHIAT s BBMIIVINS

fa s5930¢ on] suossLed L rekiden

7y $33008 SN SUCISSIILIDY o SWIBI

fa” 288007 o suoissniad 2980

= fua e | suossiuied saneioty

00 v | SLDISSIRd BIDIRIOD

T—

HASH UV

2 PN

BIEED *

8

LT | swegs | w § [smnesuasy
washs paunfeusw jasie 98
.WI0213433 +33»

52/73

PCT/CA2009/001686

LG ainbi4

e .m.< -~ U7
Jawweibouid
20IAa(g
¥z o7
pe A
)
1op
[[ddvlLy30 18D P | S
[volLy3o 1SO < W N
ANV QC 19189 |
D
291na(g cl 7 ._.ow

WO 2010/057312

S

145

aouelddy

53/73

WO 2010/057312 PCT/CA2009/001686

and/or device
programmer

To WAN

Device

A 4

90BUBJU| ‘WHWUO)D

e 48

PCB

14

A

y v
soepalu| !
wwon
]

IC

Figure 52

§4O

© «
(O\—

N

aoepalu| [9)eled

ACC

aoeualU| }so |

00
(9]

\
N
N~

To Appliance

54/73

PCT/CA2009/001686

WO 2010/057312

€G ainbi4

V.
MNJ 89— soepenl L
\ \ juswsajqeus
sieysibay ’ 18
. llouod
+,_wn_w_,hm%o ONY Juswa|qeuy
.va Y Y A
i ‘ 1 ! @NJ
19)|0uU0) \ onosuo0 eieUdked s OME, ¢l
| Om aoeuBY|
r pwo | O
> 0. S
. ey 19||0u0) J W
¥9 Kiowe somonon| e | 5
A R W > | ssoov | B 7 99
99 nun e e g
SHEI P
pioi 4 Y 89—
~ 1y Wod Ny
2S weiboid ejeq WAN
zL U 99V / L

55/73

PCT/CA2009/001686

WO 2010/057312

G @inbi4

(8)8)S INO-%007 0} UOIHISURI) B 8010}

(lasaiyos e
p|NOS SpUBWWOD pljeAul Auew 001) A

§9910 8u0q 1S18)

aeIs

............................... Co_“NN__m_#_C_
Iojsuel] puag pue 0) uonysuel]
snjejs 104 fjelsusn wW>
TIv4 yum A A
, puodsey abueyoxgy Aoy i
sSpuewwod Aoy oners
1e aioub) Aoy} |eseweydy SCIENEYS)
alessusn) unio} g
" S159) MO||Y
alels ; a)eg
INO-4007 oIes
|euonoun4 uolezijeniui 9le)g Ise
98~ ' g 28 08
” aleIs~_
paJos 1se|
10} WAN
3o0yo
Uonassesq
mocwhcww -« Jesay
Joog dn Jamod

56/73

PCT/CA2009/001686

WO 2010/057312

GG ainbi4

{leuonouny)
auinoigns
uopIsuesy
aje)g ojob

(noo07)
asunnoJgns
uonisues)
a)els ojob

Qjels |euoijound

L e)eis Inoxo0T

WAN
Ul pBIoIS onjeA

ajels 8PAD
~8Ji7 %08Yd

(uoneziemu)) (1sa1)

aunnoigns aunnoigns
uonisuesj uonisuel)
a)e)g o0j0b ajejs 0job

sjelS uonezieniu|

Juswe|qeusy
ainjead yoayn

ajelS 1s9

{ 19594/4E)S)

57173

PCT/CA2009/001686

WO 2010/057312

96 ainbi4

[DovLidViSipwo
e ybnouy; uayome sjab
3 [un epow uojewsqiy
ojut ob 1M DDV (Jesel
paey) dn semod uodn

suinoIgns
ajels 0job

dupnoign
ajeulaqiq
o106

Bey
josaypIieH Jeap

pue sjelg
uonoun

AlInjssaodons
paJo)s sem
9)e)S Mau KJuap ou

WAN
0} 3jelS MBN 3l

A

sak

21BISMEN
S| 'WAN
u| PaIO}S)]s
yImareduon

(sreISMBN)
sunnoigns
uonisuel |
ajels

58/73

PCT/CA2009/001686

WO 2010/057312

q.G ainbi4

(leuonouny)
aunnoigns
uonisuel|
ajels ojob

ssed

Bey
ssaiboiduipwd
Jesd

)

Jed
Aay ajeaud-olgnd
ofe)s ajelssuan

"au) 11 oy}
SHie}) 41 1n0 PaY0| ag [|im DY !80Uo
padwage aq Ajuo | uoneziiegiu

(InOx207)
aunnoigns
uofjisuel]
sje)s ojob

e}

sak

u éissLpayxy

f

WAN
ut 1s8) peyix3 jes

Bey
§8316014ujpwd)
1es

sunnoiqns
ajelg
uonezyenu

(a)

e/G ainbi4

(Inoxo07)
aunnosgns
uomIsuel |
[1S3L1Ix3lpwo e paniesqo \ 81EIS 0j00
sey)i J1 AInyssaoons aje)s 158 |

8y} JO JNO Yea4q Auo ued noA
ey

ipassed jsa)

ssed

aupnoiqns
19)21disiu|
puewiwon
ed

aunnoiqns
sjelsisal

(v)

59/73

PCT/CA2009/001686

WO 2010/057312

p.G @inb14

auynoiqns
ajeulaqiy
o} of

Lunwiuw aleq ay)
ydeoxs sainjes;
e aonay

%

Bey
ssaiBoidquipwd
Jes|d

asunoigns

(@ nower (0)

9)6 ainbi4

aulnhoigns
Js)aidiayuy
UBLLIWOY) ({BY

payiwsuel)
aq 0} peojied
asuodsal ay)

10} @y |esawsyds
oY) asedalid

auynoiqns
ajels
Jeuonound

60/73

PCT/CA2009/001686

WO 2010/057312

uinjey

A

lted = snjeig paplwsuel) aqg 0}
peojAed asuodsai

ay) asedaid wm @-— : m_ m

$5990Ng = snjeis 1/YNq NVY Ul
peojAed aneg DIlEA
Ja|pueH asuodsal ‘snje)s) TOING < _
Joug swnjal ‘sugnoiqng ajeso|je pue peojked
ed L] puuo j1eo puelwod ul s| ejep 9JB]S JUaLIND UO paseq
yonw moy dn %007 ajgenoaxa pue pleA

S PUBWILLIOD JI Y080
pue uonsnsul 8povaq

pleAyl

[sp]
J9|pueH W
Jou3 Beyy o
Ied Apeoaydsy Jea|o
uinjay ey}
ssalboiquipw)
TS
A
peojfed ssuodsai - osuodsoy 1OUFMH paIBiunoots PaAUIE SBY PWd mau
snjejs- < puag
pusg 2)es beyy ;1os be|4 L1es Beyy

MONdsHpuag s 10L3MH St HeAypwWIMaN S|

éuinoign

ssalboidqu|pw) Jesfo 19)01d19)U]

Apesay))V 1es

PCT/CA2009/001686

WO 2010/057312

09 ainbi4

uoneuieqly
40 1IN0 99V sbuug
19501 10 [0OVLYV1SIPWO
J}UR JBAC SB)E)

auiyoew ajels
alempley

apow
Buines jamod ojui
J8)ud 0} 19)sIbay
juswabeuepy
18MOd O} 3JLIM

Aowaw
2AI)ISUSS Bseld

aunnoiqns
sjewaqy

65 2inbi4

wnjel

ou

(noxooT)
aunnoigns
uomsues)
a)els ojob

;sI0118
J0 Jagqwinu
wnwixew

sak

JoMIeW JUnod
10112 BWNSUOD

18|pueH
J043

62/73

PCT/CA2009/001686

WO 2010/057312

19 ainbi4

‘peojhed :
asuodsai sy} 4o }sai 8y} Aq | ‘asuodsal ajen(end
MO||0} ‘SNJE)S LINI3I PUSS (4S . pue peojked-JO-LEIS 19018p (9
“Ja)lew peojAed
-JO-Hels puss 18s Yyjoq

ale 4S3HOIY pue Apeaydsy —

aouQ "Apeal jou s| DOV !

se OCO_ Se §,0, swinjey (eg - _..memommu_ﬂs_o spuss (p

euop usym beyy

|

!

m
Apeoydsy sjes pue puewwiod | -*sbuiyy 18yjo op pue
ajnoexe esemulllH (¢ | Ho ob o} pemoyje site)se] (€

|

i
Aowswl yojelos ! Q01 Bunm

0} peojhed a1jua AdoD (AT -— £q peojhed aigus puss (7
‘peojhed jsenbal

qiosqe 03 aledaid pue abelols
Kelodwsa)} ybnoua sjeoo|e
‘pueWILIOd 3pods (ql

(M) 49381621 uononisuy
-@—— 0} 9p0O PUBWIWOD anss| (B

1010)

19)s9]
| nuaby/aouerddy

63/73

PCT/CA2009/001686

WO 2010/057312

29 ainbi4

9)e)S jeuoioun4 ul mv:mEEnj JO8UUOISIP 10 SPUBWIWLOD
Jayjo ssassaooid D9y (Isod |euonippe sanss| (3sod

‘|suUBYD UOIIBOIUNLULLOD
! painoas ysijqe)se
| way) asn [dS3HOIHIPwWwo
[dS3HO3Ylpwo seas yusym | | wouy "°D **p 1091109 (6

asuodsal pasedaid pusg (g "
< ‘asuodsal ay)

10} syem pue [dS3HOIH]Pwo
sanss| 48)sa) (L

2)e)s siy} Ul asuodsal)sily

ay) se °p || *p aJedaid (09

(°p “°p) ejeIBUAD) (a9

/ a)e)S Jeuonound \

|
|
|
|
|
|
|
|
“ [Dov.LdvLSlPwo
_ mmmsmm:mﬁm;s.:mo
_
4
_
.
_
_
_
_
_
_

Wunos uononpoud
32IASp Juswaiduf (I

pasn sem
\ aje)s [euonound 0} WAN 1BU} SOV 8u} Jo d| 8y} 2103 (1!
10 a)eys abueyo ‘led Asy onels din 81018 (1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t
[
t
!
t
!
t
1
i
)
|
|
|
|
|
|

‘SNVYD
<4— ojejep pue q|n ssed pue —_—
[dSTy03YlPwo enss| (eg

oy} saAes pue sajesaushb (f :Aq aseqejep

alojeq ut 90V siy} saysibey (qg
OOV sty} azijeinul o) Jdwaye

snoinald e uasq jou sey
218y} aIns axew 0} ¥oayd (¢

‘sjooqgal

pue [1S31 11X3]pwo

8y} Buini@oal uodn aje)s
az||eniu| 0} seAow DY (2

Bunse) auop

s} uaym [1831 11X3]pwo
sanss| Jv)sa] (|

seig ezl /|

/ Wby dy

suonouny 140 ‘uonepiieA DOV ul ejedioed
awos wiopad DY (aud _ 1918 pue Doy (a:d
eoefeju; joudieyd
_ eomswmeL Ul s
! i
! JEICETN _ pug-yoeg
'OOV ! |
! |
!)

64/73

PCT/CA2009/001686

WO 2010/057312

peojied

[LO41INIPwWD 8y} ut 104
8y} ssao0ud 0} pels (ay

("y) Aoy uoissag

!
1
1
[
!
1
i
|
!
|
|
|
|
|
|
I
I
1
I
t
|
|
|
i
i
i
1
!
i
1

€9 ainbi4

paJeys aindwod (ey ———p»

[sovliyao

i
1
t
i
!

[LO41INIIpwo puesg (2

*p sepieA (¢ ¢———

'OV

oumfss

t
1
l
(
(
1
l
164561

(o ‘p) uoissas sy} 10}

‘Juabeyaouelidde

SOV siy} sjeonuayine
0} pasn aqg ued yoIym
‘sovILH3D ‘sjeoyR0

foy |esowayde sjesousD (| g—0 B aAIb 0} vD Joos ay)
I SYSE J9j|0)uod SWYD (aud

Jawwelbold
201N

/ dv

65/73

PCT/CA2009/001686

WO 2010/057312

asuodsai puag

asuodsay aiedaid
‘104 8y} oeugy

194 dAoeq

ainjeubig AJusa

016))

9 ainbi4

‘Aessaosu

—— P 1 uoge 1o Aijas ‘|nyssesons I

AI[
|
|
|
|
|
|
I
|
I
|
I
I
I
|
I
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1
eoegeuy
k&#o 7

|
|
i
|
1
)
|

anuyuod ‘esuodsal ss820.d

[dS3HOIY]IPWD pusg

104 ubig pue jdAiou3

/ilswweiboliyd
adlneqnuaby
Jaouelddy

m ‘aseqejep
[

— SNV 8y} 03 Xoeq
s)nsaJ podau Ajlenjusag

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
1
!
|
|
b

- 104 10n55U00

189S 9INJES) MU B UIM
| 221A8p € uoisiroid pjnoys
jeuieyd 1 yely) UONEOIPUI SAAIS08Y

ainveg
|

i
i
|

pua-yoeg|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
t
I
|
I
|
1
|
t
1
(
{
i
(
(
(
(
|
|
|
|
|
|
|
|
|
|
|
)
|
I
|
|
I
|
I
t
1
1
i

66/73

WO 2010/057312

v

AES-128
Cipher

delay

hashn .

67/73

hash;

PCT/CA2009/001686

Figure 65

PCT/CA2009/001686

WO 2010/057312

A

e99 ainbi4

m [00VLYv.LSlPwo m m
3181 [BuoHoUN .} doon uibeg m :
oju| m m "
(SO 15P) m m m
:a)elauab ' | '
3jels uonezieniu| m m m
o " " |
) [LsaLLix3lpwo m m m
m (@i onpoid) m |
! aulwslaq ' X
" “ cent [Ho: OLQ "
" | (NLO4 _P_ww_uem_ po.d) Jusne 601
m | ! (NLO4'""*1104 ‘@l 1onpoud m
! ! ! 0 0 _Awu_wm Low aoueldde o)
' ! ' ‘ 19npouid ubissy
m m m 1onpoud 0}
" ! ! s104 ubissy
m m m 8104 auyeq
: ! ! yonpoud suyeq
_ R4 : _
1010/ 9l ‘0z —~| 1oIse 1 Quaby 8L~ aouelddy 2z —~| Puaoeg

68/73

PCT/CA2009/001686

WO 2010/057312

e e TR TR et

q99 ainbi4

(lupwy ‘iun3)

‘ual N3 '1143D'PD

104 8y sejew

(I ‘u “uols || LLDH) ONT LNDD STV = (lupwin ‘luy3)

(fsp ‘1104 |l Buipped || @iBsw || IN) NOIS ¥SAD3 = lluo|s

weoos Il Iso Il @10 Il ¥3A =1y¥30

qal Hoﬁ__voa
Aq 1104 yosees

Ny :o1019U6

(leoTep)
:e)elousb

juane 6o

juanes 607
SO 180 >
o®p | ldS3u0IxlPwo m
:e)jesouab m
" x4 _
1010) 4 oL ‘0z —~| 1eIs8 1 Ausby

ISD 190 ‘Qi yonpoud

. 4

69/73

8L

aouelddy

¢l

puaoeq

PCT/CA2009/001686

WO 2010/057312

299 a.nbi4

70/73

m _ (luoy'fiuy3) f
' Juane 607 “
w (huovw uy3) g :
v [dS3axDINlPWo m m
(1 'u udSHLDA)ONT WD SAV=(luowyin‘fiuy3) : m
| 104 SInoaxe ! :
[143D woy fsp Buisn uo|s Auen ! !
u AjIaA m m
(54 ‘(huOVIN luWa)) O3A.WDD SV = u fiuois Il 1104 | ! :
iy :2)es8uab m m
[v0lLy30 Buisn (1439 Ajuen m !
v (luow ‘luw3) ‘ue w3 ! !
m 1430 ‘[LO4LINI]pwo m m
m juans 6o m
* N 4" _ _
070"/ 91 ‘0z —~| Jo1se L Auaby gl aouelddy

¢C A

puaxoeq

PCT/CA2009/001686

WO 2010/057312

P99 ainbi4

A (luDv ‘luna) ! m
! [Lodlpwo | udne BoT ! “
: A (hupww ‘hup3) ! m
! " 104 8y} Jejew “
: ! (I ‘u “luols |l NLOH) ONI.WDD ™SV = (ludwiy ‘lun3T) m
m m (fsp ‘NLO4 || Buipped || @ifsw || Qin) NOIS ¥sA03 = luols m -
m m _ 5
" " aionpod _ NG
! ! AQ NLD4 youees !
WOlZ=NLOd 104 |
Z doo uibag
m m e 607 m
m m u AJLIaA m
m m (' (huoww'luy3))03a™.NDD™STV= U IUdSH LD m
" NF n i _
0%0) "/ 9l ‘0z —~1 19188 | Auaby gL~ aoue|ddy 7z ~| pusyoeg

PCT/CA2009/001686

999 ainbi4

} doo pu3

Z doo1 pu3

Jane 607

u Ajuon

(' (huoww‘luy3))03d . WDD SavV=u 'dSH1D4

(huoyy‘luy3)

Juana 6o

(luowyw‘huy3)
[dSadOIN]PWo

A

(I'u *dSHLD4)ONT LNOD SaV=(luDyIN'liuy3)

T

NLD4 8jnoaxs

(1430 woly f[sp Buisn fluo|s Ayuien

TWSTIEY

(i “(uow ‘luNE))D3A ™ .NDD S3V=u ‘uo|s || NLDAH

72/73

WO 2010/057312

T
I

010)

T

VDL N, A

9l ‘02 ~

18)s9 | uaby

U

8l

aoue|ddy

2C

puaoeq

PCT/CA2009/001686

WO 2010/057312

(19D'1ep) Aonsep

J99 ainbi4

73/73

juans bo

(sbo| @oueidde ‘sbo| Jusbe)

- -

010)

[00VdOLSIpwo
JuaAs 6o
 AYd (4 .
9l ‘0z —~_| 1918 1 Ausby

(sboj yuabe)

Y

1
]
'
o
w
'
]
t
!
1
I
1
1
1
1
]
]
1
1
]
'
t
b
1
1
]
'
]
'
i

8L —~

aouel|ddy

s60] Joj 1s@nbay

¢

puayoeg

INTERNATIONAL SEARCH REPORT International application No.
PCT/CA2009/001686

A CLASSIFICATION OF SUBJECT MATTER
IPC: GO6F 21/00 (2006.01) , GO6F 9/445 (2006.01) , HOAL 9/30 (2006.01)
According to International Patent Classitication (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GOGF (2006.01), HO4L (2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the mternational search (name of database(s) and, where practicable, search terms used)

IEEE Xplore, Google Patents, Pluspat (programming/distributing/download features, non volatile memory, secure session/channel, keyvs,
encrvption, crvptographic, random number generator, unique id, feature control tickets, enable/disable)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Categorv* | Citation of document, with mdication, where appropriate, of the relevant passages Relevant to claim No.

P, X WO 2009/073969 Al (Daskalopoulos et al.) 18 June 2009 (18-06-2009) 1-35
*entire document *

P. X Rawlings, C. “Securing SoC Platform Oriented Architectures with a hardware 1-35
Root of Trust™ July 6, 2009
http.//www.embedded.com/design/embeddeddsp/2 18400593
* entire document *

P, X Rawlings, C. “Product Authentication Certicom AMS”, NIST Product 1-35
Authentication Information Management Workshop, February 17-18, 2009
http://dom.semi.org/web/wstandards.nsf/6FCC44 1 7E3638E7F8825756800829C3
5/8$tile/NIST _PA WrkGrp_CerticomAMS . pdf

* entire document *

P. X US 2009/0102505 Al (Anderson et al.) 23 April 2009 (23-04-2009) 19-23
* abstract and claims *

[X] Further documents are listed in the continuation of Box C. [X] See patent tamily annex.
* Special categories of cited documents “T” later document published after the mternaticnal filing date or priority
) o) date and not in conflict with the aln]lvllgatlon but cited to understand
CAT document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
) X document of particular relevance; the claimed invention cannot be
“E” earlier application or patent but published on or after the mternational considered novel or cannot be considered to mvolve an inventive
tiling date step when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is “Y" document of particular relevance; the claimed invention cannot be
cited to establish the publication date of another citation or other considered to mvolve an inventrve step when the document is
special reagon {as specified) combined with one or more other such documents, such combination
. being obvious to a person skilled in the art
0" document referring to an oral disclosure, use, exhibition or other means N o
“&” document member of the same patent tamily
P document published prior to the iternational filing date but later than
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
4 March 2010 (04-03-2010) 17 March 2010 (17-03-2010)
Name and mailing address of the ISA/CA Authorized officer
Canadian Intellectual Property Oftfice
Place du Portage I, C114 - 1st Floor, Box PCT Nicholas Tsagaris (819) 953-0790
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 001-819-953-2476

Form PCT/ISA/210 (second sheet) (July 2009) Page 3 of 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2009/001686

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages |Relevant to claim No.

Y US 2006/0131743 (Erickson et al.) 22 June 2006 (22-06-2006) 19-23

* abstract, figure 1 and associated text *
Y.L Rawlings, C. “Raising the Bar for Hardware Security: Physical Layer Securityin =~ |19-23

Standard CMOS, 2008 IEEE Conference on Technologies for Homeland Security,
March 3, 2008, pages 263-268
* figures 2 and 4 *

X US 2004/0127196 Al (Dabbish et al.) 1 July 2004 (01-07-2004) 19-29
* par. [0022] *

A US 6.966.002 (Torrubia-Saez) 15 November 2005 (15-11-2005)
* abstract, claims *

X WO 03/077498 Al (Struik et al.) 18 September 2003 (18-09-2003) 30-35
* abstract and claims *

X Certicom’s Bulletin of Security and Crvptography, “Code&Cipher”, Vol. 1, no. 2, [30-35
copvright 2003,
http://www.certicom.com/index php/code-and-cipher-vol-1-no-2

A Certicom KevInject datasheet

http://www.certicom.com/images/pdfs/KI_datasheet.pdf

Publication date unkown. KevInject referenced on page 268 of Rawlings. C.
“Raising the Bar for Hardware Security: Physical Laver Security in Standard
CMOS, 2008 TEEE Conference on Technologies for Homeland Security, March 3,
2008

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

Page 4 of 5

INTERNATIONAL SEARCH REPORT International application No.
PCT/CA2009/001686

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of the first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following
reasons :

||] Claim Nos. :

because they relate to subject matter not required to be searched by this Authority, namely :

2. |] Claim Nos. :

because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent
that no meaningful international search can be carried out, specifically

3. [] Claim Nos. :

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. IIT Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows :

Group A: claims 1 - 23 are directed to a method and hardware module for programming features on a device.

Group B: claims 24 - 29 are also directed to a method of programming features on a device characterized by the use of feature control tickets.

Group C: claims 30 - 35 are directed to a method of exchanging information between an appliance and hardware module by establishing a secure communication
channel.

The general concept of programming features on a device is known from the prior art (see ISR) thus cannot be used to link groups A and B. Exchanging information

by way of a secure channel is also known from the prior art (see ISR) thus cannot be used to link groups A and C. No relationship among these groups mvolving one
or more of the same or corresponding special technical features could be identified (see PCT Rule 13.2)

L. [] Asall required additional search fees were timelyv paid by the applicant, this international search report covers all

searchable claims.

2. [X] Asall searchable claims could be searched without effort justifving additional fees, this Authority did not invite

pavment of additional fees.

3. [] Asonlysome of the required additional search fees were timely paid by the applicant, this international search report
covers only those claims for which fees were paid, specifically claim Nos. :

4. |] No required additional search fees were timely paid by the applicant. Consequently, this international search report is

restricted to the invention first mentioned in the claims; it is covered by claim Nos. :

Remark on Protest | | The additional search fees were accompanied by the applicant’s protest and. where applicable,

the pavment of a protest fee.

[] The additional search fees were accompanied by the applicant's protest but the applicable protest

fee was not paid within the time limit specified in the invitation.

[] No protest accompanied the pavment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009) Page 2 of' 5

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/CA2009/001686

Patent Document Publication Patent Family Publication
Cited in Search Report Date Member(s) Date
WO2009073969A1 18-06-2009 US2009292926A1 26-11-2009
WO2009073969A1 18-06-2009
US2009102505A1 23-04-2009 US2009102505A1 23-04-2009
US2006131743A1 22-06-2006 US2006131743A1 22-06-2006
US87268577B2 11-09-2007
US2007241768A1 18-10-2007
US7336095B2 26-02-2008
US2008061817A1 13-03-2008
US2004127196A1 01-07-2004 AU2003297854A1 29-07-2004
AU2003297854A8 09-10-2008
BR0317870A 06-12-2005
CN101375542A 25-02-2009
EP1579617A2 28-09-2005
US2004127196A1 01-07-2004
WO2004062164A2 22-07-2004
WO2004062164A3 18-09-2008
US6966002B1 15-11-2005 AU4499900A 17-11-2000
CA2369834A1 09-11-2000
EP1185915A1 13-03-2002
IL145937D0 25-07-2002
JP2002543511T 17-12-2002
US6591415B1 08-07-2003
US6683546B1 27-01-2004
US6966002B1 15-11-2005
US87360252B1 15-04-2008
US2005246549A1 03-11-2005
US2005251686A1 10-11-2005
US2006005021A1 05-01-2006
US2007271191A1 22-11-2007
WO0087095A1 09-11-2000
WO03077498A1 18-09-2003 AU2003209876A1 22-09-2003
CA2487912A1 18-09-2003
EP1516474A1 23-03-2005
US2003235309A1 25-12-2003
US2009296939A1 03-12-2009
WO03077498A1 18-09-2003

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings
	Page 159 - drawings
	Page 160 - drawings
	Page 161 - drawings
	Page 162 - drawings
	Page 163 - drawings
	Page 164 - drawings
	Page 165 - drawings
	Page 166 - drawings
	Page 167 - drawings
	Page 168 - drawings
	Page 169 - drawings
	Page 170 - drawings
	Page 171 - drawings
	Page 172 - drawings
	Page 173 - wo-search-report
	Page 174 - wo-search-report
	Page 175 - wo-search-report
	Page 176 - wo-search-report

