(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(51) Internationale Patentklassifikation:
H01M 4/86 (2006.01) H01M 4/88 (2006.01)
H01M 4/88 (2006.01) H01M 4/92 (2006.01)

(21) Internationales Aktenzeichen: PCT/DE2005/001300

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): SCHLUMBOHM, Carola [DE/DE]; Schurzeler Strasse 198, 52074 Aschen (DE); KALKREUTH, Denise [DE/DE]; Theodor-Heuss-Strasse 81, 52428 Jülich (DE).

(74) Gemeinsamer Vertreter: FORSCHUNGSZENTRUM JULICH GMBH; Fachbereich Patente, 52425 Jülich (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: FIBRES FOR A TEXTILE MATERIAL PRODUCTION AND USE THEREOF

(54) Bezeichnung: FASERN FÜR EIN TEXTILES GEWEBE SOWIE DEREN HERSTELLUNG UND VERWENDUNG

(57) Abstract: The invention relates to functionalised fibres for the production of a textile, said functionalised fibres comprising a conducting textile support material, completely or partly coated or treated with a catalyst and/or a fluorocarbon polymer and/or an ionicomer. Said fibres may be processed to produce textiles by various methods, which are particularly suitable for application as a gas diffusion layer, catalytic layers, or combined electrodes in a fuel cell. Defined properties such as, for example, proton-conducting properties, hydrophobic properties, or also lyophilic properties can be generated within a textile layer by means of the use of said fibres. Property gradients can also be advantageous generated.

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.
Beschreibung

Fasern für ein textiles Gewebe
sowie deren Herstellung und Verwendung

Die Erfindung betrifft Fasern, aus denen Textilien hergestellt werden können, insbesondere Textilien, die in Brennstoffzellen eingesetzt werden.

Stand der Technik

Bei der Herstellung einer Brennstoffzelle wird üblicherweise eine entsprechende Membran mit Katalysator beschichtet oder eine Katalysatorschicht aufgebracht, und anschließend die Gasdiffusionsschichten darauf angeordnet. Alternativ werden die Katalysatorschichten auf die Gasdiffusionsschicht aufgetragen und anschließend mit der Membran verpresst.

In US 2003/0209428 A1 wird eine Gasdiffusionsschicht aus einem kohlenstoffhaltigen, gewebten, textilen Gewebe beschrieben, welche eine hohe elektrische Leitfähigkeit aufweist. Dieses Gewebe ist aus sehr dünnen Kohlenstofffasern aufgebaut, weist einen Faseranteil von weniger als 60 %, ein Gewicht von 50 bis 150 g/m², eine Dicke von 0,05 bis 0,33 mm und einen Widerstand von weniger als 0,1 Ω auf. Das Gewebe zeigt vorteilhaft eine für den Einsatz in einer Brennstoffzelle geeignete Steifigkeit.

Der gleiche Effekt kann auch durch eine Gasdiffusionsschicht erzeugt werden, bei der zwei verschiedene Polymermaterialien eingesetzt werden, die jeweils einen unterschiedlichen Kristallisationsgrad oder unterschiedliche Durchlässigkeitskoeffizienten für Feuchtigkeit aufweisen.
Bei allen vorbeschriebenen Papieren und textilen Geweben, die für den Einsatz in einer Brennstoffzelle geeignet sind, erfolgte die Funktionalisierung beispielsweise eine wasserabweisende Beschichtung erst nach der Herstellung des Papiers bzw. des Gewebes.

Aufgabe und Lösung
Aufgabe der Erfindung ist es, ein Textil zur Verfügung zu stellen, welches einzeln als Gasdiffusionsschicht und/oder Katalysatorschicht und/oder Elektrodenschicht oder auch als eine kombinierte Struktur mit der Funktion einer Gasdiffusionsschicht, einer Katalysatorschicht und einer Elektrode in einer Brennstoffzelle eingesetzt werden kann, und welches eine gezielte, definierte Einstellung von Eigenschaften, wie beispielsweise die elektrische Leitfähigkeit oder katalytische Eigenschaften, innerhalb des Textils bzw. der Textilien ermöglicht.

Gegenstand der Erfindung
Die grundlegende Idee dieser Erfindung ist es, anstelle eines komplexen textilen Gewebes, welches zur Erlangung von funktionellen Eigenschaften nachträglich getrünt oder beschichtet wird, einzelne funktionalisierte Fasern vorzusehen, die vorteilhaft zu einem textilen Gewebe mit definier- ten Eigenschaften verarbeitet werden können.
Unter einem Textil ist ein Gewebe bzw. ein textiles Produkt zu verstehen, das mit unterschiedlichen Textilverarbeitungs-
techniken hergestellt sein kann, z. B. durch Weben, Stricken oder ähnliches.

Als funktionelle Eigenschaften sind im Rahmen dieser Erfin-
dung insbesondere katalytische Eigenschaften, protonenlei-
tende Eigenschaften, hydrophobe, d. h. Wasser abweisende
Eigenschaften oder auch lyophobe, d. h. jegliche Flüssigkeit
abweisende Eigenschaften und damit beispielsweise Methanol-
resistente Eigenschaften zu verstehen.

Im Sinne dieser Erfindung ist eine Faser ein verhältnismäßig
langes, dünnnes, flexibles Gebilde aus natürlichem oder
künstlichem Material, dessen Moleküle sich in Längsrichtung
orientieren. Fasern können in der Regel nur minimale Druck-
dafür aber hohe Zugkräfte aufnehmen. Gemeinsam bilden mehre-
re Fasern größere Strukturen. Ein Faden entsteht aus der
weitgehend parallelen Anordnung von Fasern.

Eine Faser zu funktionalisieren bedeutet, sie mit einem
funktionalen Material zu beschichten oder zu belegen. Be-
schichten bzw. Belegen bedeutet dabei, eine partielle, punk-
tuelle, abschnittsweise oder vollflächige Auftragung eines
oder mehrerer Materialien auf ein Trägermaterial mit ver-
schiedenen Verfahren, z. B. Sprühen, Tränken, Streichen,
Wickeln, Metallisieren, Bedampfen oder ähnliches. Auf diese
Weise lassen sich beispielsweise Fasern aus Kohlenstoff
elektrochemisch, galvanisch oder über Metallbedampfung me-
tallisieren, wodurch ein Katalysator direkt auf die Fäden
aufgebracht wird. Ferner kann durch eine komplette oder
teilweise Beschichtung einer Faser mit einem Ionomer die
Eigenschaft der Protonenleitung sichergestellt werden. Zur
Lyophobisierung bietet sich eine Belegung mit einem lyopho-
ben Material, insbesondere einem Polymer auf Fluorcarbonbasis an.

Alternativ zu einer direkten Beschichtung des Trägermaterials mit dem funktionalen Material ist auch eine Ausgestaltung der Belegung möglich, bei der das funktionale Material in Form einer weiteren Faser um die Trägerfaser gewickelt oder geschlungen ist, oder das Trägermaterial in anderer Form in einer weiteren, das funktionale Material aufweisenden Faser eingebettet ist. Es entsteht in jedem Fall die erfindungsgemäße funktionalisierte Faser, die zumindest ein Trägermaterial aufweist sowie zusätzlich wenigstens ein funktionales Material aufweist.

Sowohl Kurzfasern als auch Langfasern können mit einer statistischen Verteilung zu lockeren Faserlagen, sogenannten Vliesen, verarbeitet werden. Ein funktionalisiertes Vlies würde dann im Sinne dieser Erfindung aus funktionalisierten Fasern bestehen. Im Folgenden wird die Erfindung anhand von funktionalisierten Fasern näher erläutert, wobei aber ausdrücklich sowohl funktionalisierte Fasern als auch funktionalisierte Fäden mit im Sinne der Erfindung umfasst sein sollen.

Bei der Herstellung eines erfindungsgemäßen Textils können die funktionalisierten Fasern vorteilhaft sehr genau und definiert eingearbeitet werden. Dies hat beispielsweise beim Einsatz in einer Brennstoffzelle den Vorteil, dass z. B. die Belegung mit Katalysator nicht nur quantitativ sehr genau erfolgen kann, sondern zudem auch die Lage des Katalysators und damit die Dreiphasenzone zwischen Protonenleiter (Ionomer), Elektronenleiter (Ruß) und Katalysator (Reaktionszone) exakt eingestellt werden kann. Insbesondere Gradienten sind so problemlos zu realisieren. Als mögliche Katalysatoren sind im Rahmen dieser Erfindung beispielsweise alle für den
Einsatz in einer Niedertemperatur-Brennstoffzelle denkbaren Katalysatoren, insbesondere Platin-Ruthenium und Platin mit umfasst.

Bei der Herstellung eines Textils umgeht man bei der Verwendung der erfindungsgemäßen funktionalisierten Fasern viele Probleme, die sich sonst bei der Fertigung ergeben können. Dies sind insbesondere die Einhaltung der Edelmetall-, Ionomer- und Teflonanteile und -auftragsmengen, die gleichmäßige Verteilung der Einzelkomponenten einer Katalysator- und/oder Microlayerdispersion, die Dicke der Schichten, die mechanische Stabilität, die Haftung, die Rissfestigkeit, die Rauhigkeit, die Oberflächenstruktur, das Penetrationsverhalten, die Oberflächenspannung und vieles mehr.

Beispielsweise entfällt vorteilhaft die sonst übliche Pastaentherstellung, welches für eine nachträgliche Beschichtung des kompletten Gewebes notwendig wäre. Diese Pastenherstellung führt häufig zu agglomerierten Strukturen, und im Falle der Katalysatorpaste damit regelmäßig zu einer verminderten Katalysatorleistung.

Die Erfindung ermöglicht vorteilhaft die Verwendung einer Kombination von verschiedenen funktionalisierten Textilien oder die Vereinigung definierter Eigenschaften von verschiedenen Fasern in einem Textil. Insbesondere ermöglichen die
funktionalisierten Fasern dieser Erfindung einen Einsatz als Gasdiffusionsschicht, als Gasdiffusionselektrode oder einfach als Elektrode in einer Brennstoffzelle.

5 Spezieller Beschreibungsteil
Nachfolgend wird der Gegenstand der Erfindung anhand von Figuren und Ausführungsbeispielen näher erläutert, ohne dass der Gegenstand der Erfindung dadurch beschränkt wird.

Es zeigt die

Figur 1: elektrisch leitfähiges Trägermaterial (Trägerfaser) in Form
a) eines komplett elektrisch leitfähigen Fadens und
b) eines Fadens mit einer elektrisch leitfähigen Beschichtung.

Figur 2: Ausführungsformen der erfindungsgemäß funktionalisierten Faser mit einer Beschichtung des elektrisch leitfähigen Trägermaterials (Grundeinheit) aus:

a) Katalysator,
b) Polymer auf Fluorocarbon-Basis und
c) Ionomer.

Figur 4: Ausführungsformen einer erfindungsgemäß funktionalisierten Faser mit einer Belegung mit einer weiteren Faser wobei bei a) die Trägerfaser (TF) den Katalysator (B) aufweist, und diese mit einer Polymerfaser (PF) umwickelt ist, und bei b) die Trägerfaser (TF) mit einer Polymerfaser (PF) umwickelt ist, die ihrerseits den Katalysator (B) aufweist.

Ziel der Erfindung ist es, einzelne Fasern, als Grundeinheiten eines Textils gezielt zu modifizieren bzw. zu funktionalisieren, um daraus einzelnen Schichten oder gradierte
Schichten mit definierten Eigenschaften herzustellen, und
insbesondere daraus komplette Elektroden und/oder Diffusi-
onsschichten und/oder Katalysatorschichten für Brennstoff-
zellen zu fertigen.

Die Vorteile des Einsatzes solcher funktionalisierten Fasern
sind:
- die gezielte Einstellung von Eigenschaften und ein ge-
zielter Struktueraufbau schon in der Diffusionsschicht und
oder Gasdiffusionselektroden,
- eine verbesserte Versorgung der Elektroden und eine höhe-
re Katalysatorausnutzung durch optimierte Dreiphasenzonen
und
- einfache Fertigung der Brennstoffzelle, die relativ un-
empfindlich gegenüber verschiedenen Fertigungsparametern
ist.

Ausführungsformen am Beispiel einer Brennstoffzelle
a) Trägermaterial

Für den Einsatz in einer Brennstoffzelle ist insbesondere
die elektrische Leitfähigkeit der Katalysatorschicht ent-
scheidend. Daher bietet es sich an, ein elektrisch leitfähi-
ges Trägermaterial zur Herstellung der erfindungsgemäßen
funktionalisierten Fäden zu verwenden. Dafür geeignete Trä-
germaterialien sind beispielsweise metallisierte Kunststoff-
fäden oder auch schon von sich aus elektrisch leitende Fäden
aus Metall, z. B. Platin, oder aus Kohlenstofffasern. Als
Katalysatorbelegung bzw. -beschichtung kommen alle in einer
Brennstoffzelle üblichen Katalysatoren in Frage, insbesonde-
re Platin und Ruthenium.

Für die in einer Brennstoffzelle notwendige 3-Phasenzone ist
es insbesondere notwendig, einen Protonenleiter zur Verfü-
gung zu stellen, der die Protonen in geeigneter Weise von
der Membran zur Katalysatorschicht, bzw. von dieser zur Membran transportiert. Dafür bietet sich die Funktionalisierung des Trägermaterials mit einem Ionomer an. Üblicherweise kommt dafür Nafion® als ein dafür geeignetes Ionomer zum Einsatz.

b) 3-Phasenzone

c) Diffusionsschicht
Auch eine Diffusionsschicht zur Verteilung der Betriebsmittel für die Brennstoffzelle kann durch die Verwendung der erfindungsgemäßen funktionalisierten Fasern sehr leicht realisiert werden. In einer Brennstoffzelle werden für die Zufuhr und Abfuhr von Betriebsmitteln in Form von Brennstoffen und Reaktionsprodukten in der Regel unterschiedliche Oberflächen auf den Substraten und in den Schichten benötigt. So erweist sich für die Zufuhr von Methanol eine hydrophil Struktur als vorteilhaft, während die Abfuhr von CO₂ besser mit einer lyophoben Struktur zu bewerkstelligen ist.

Bislang erfolgte eine derartige Lyophobisierung der Struktur üblicherweise durch Sprühen, Tränken oder Tauchen der gesamten Struktur in Form des kompletten Gewebes. Zur Lyophobi-
sierung geeignete Materialien sind beispielsweise Polymere auf Fluorocarbon-Basis, wie z. B. Polytetrafluorethylen (PTFE) oder auch Tetrafluorethylen-Perfluorpropylen (FEP). Diese können insbesondere als Lösungen eingesetzt werden.

Erfindungsgemäß erfolgt eine Hydrophobisierung nun durch hydrophobe Fasern, bei denen das Trägermaterial beispielsweise in einer PTFE-Lösung getränkt wird. Durch entsprechende Web- und/oder Strickvorgänge, bei denen ein Textil dann aus diesen erfindungsgemäßen funktionalierten Fasern hergestellt wird, lassen sich insbesondere leicht Lyrophobisierungsgradienten einbauen.

Dazu erhalten beispielsweise die Fasern, die nahe an einer Katalysatorschicht liegen, andere Lyrophobisierungsstärken als Fasern, die weiter von der Katalysatorschicht entfernt liegen. Oder der Anteil an lyophobisierten Fasern in dem Textil wird kontinuierlich in Richtung auf die Katalysatorschicht reduziert. Als Katalysatorschicht kommt sowohl eine herkömmlich herstellbare Schicht mit Katalysator, als auch eine Katalysatorschicht aus einem Textil, insbesondere einem Gewebe aus erfindungsgemäßen Fasern, in Betracht.

Durch spezielle oberflächenmodifizierte Fasern, die partiell oder komplett lyophob und damit insbesondere Methanolresistent hergestellt werden, können in Kombination mit hydrophilen Fasern beliebige 2- und 3-dimensionale Strukturen hergestellt werden, die exakt die geforderten hydrophilen und/oder hydrophoben Eigenschaften, insbesondere auch Gradienten aufweisen. Dadurch kann auf einfache Weise eine methanolresistente, gasdurchlässige Diffusionsschicht verwirklicht werden.

Neben der Verwendung komplett mit Katalysator oder mit Ionomer oder lyophob modifizierter Fasern ist auch eine partiel-

In speziellen Fällen kann die funktionalisierte Faser auch alle drei geforderten Eigenschaften aufweisen, die durch die Art des Gewebes und den Anteil an funktionalisierten Fasern und dem Trägerfaden eingestellt werden können.

Die vielfältigen Webe- und Strickverfahren ermöglichen es auf einfache Weise vorteilhaft Funktionsschichten mit gut definierten Eigenschaften herzustellen. Zudem überwindet die Herstellung solcher funktionaler Schichten auf einfache Weise die sonst schwierig einzustellenden Fertigungsparameter, wie beispielsweise eine konstante oder definiert gradiente Katalysatorbelegung, Ionomerbelegung oder auch PTFE Belegung.
Patentansprüche

1. Funktionalisierte Faser umfassend ein leitfähiges, textiles Trägermaterial, dadurch gekennzeichnet, dass das Trägermaterial ganz oder teilweise mit einem Katalysator und/oder mit einem Polymer auf Fluorocarbon-Basis und/oder mit einem Ionomer beschichtet oder belegt ist.

2. Funktionalisierte Faser nach Anspruch 1, bei dem das Trägermaterial eine leitfähige Faser oder eine leitfähig beschichtete Faser umfasst.

3. Funktionalisierte Faser nach Anspruch 1 oder 2, bei der die leitfähig beschichtete Faser Baumwolle oder Kunststoff umfasst.

4. Funktionalisierte Faser nach Anspruch 1 oder 2, bei der das Trägermaterial Kohlenstoff umfasst.

5. Funktionalisierte Faser nach einem der Ansprüche 1 bis 4, bei dem das Trägermaterial abschnittsweise mit einem Katalysator und/oder mit einem lyophoben Polymer auf Fluorocarbon-Basis und/oder mit einem Ionomer beschichtet oder belegt ist.

6. Funktionalisierte Faser nach einem der Ansprüche 1 bis 5, mit Platin und/oder Ruthenium als Katalysator.

7. Funktionalisierte Faser nach einem der Ansprüche 1 bis 6, mit Polytetrafluorethyl (PTFE) oder Tetrafluorethylen-Perfluorpropylen (FEP) als Polymer auf Fluorocarbon-Basis.

8. Funktionalisierte Faser nach einem der Ansprüche 1 bis 7, mit Nafion® als Ionomer.
9. Verwendung einer funktionalisierten Faser nach einem der Ansprüche 1 bis 8, zur Herstellung eines Textils.

11. Verwendung nach Anspruch 9 bis 10 derart, dass das Textil einen Gradienten bezüglich des Katalysators, und/oder des Polymers auf Fluorocarbon-Basis und/oder des Ionomers aufweist.

12. Verwendung einer funktionalisierten Faser nach einem der Ansprüche 1 bis 8, zur Herstellung eines Textils für eine Brennstoffzelle.

13. Verfahren zur Herstellung einer funktionalisierten Faser gemäß einem der Ansprüche 1 bis 8, wobei zunächst eine leitfähige Faser vollständig oder teilweise mit Katalysator beschichtet wird, und anschließend mit einem Polymerfaden belegt wird.

14. Verfahren zur Herstellung einer funktionalisierten Faser gemäß einem der Ansprüche 1 bis 8, wobei eine leitfähige Faser mit einem Polymerfaden belegt wird, der selbst vollständig oder teilweise mit Katalysator beschichtet ist.
Figur 3

Figur 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
H01M4/86 H01M4/88 H01M4/92 H01M8/10 H01M8/02

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 444 339 B1 (ESHRAGHI RAY R)</td>
<td>1-10, 12-14</td>
</tr>
<tr>
<td></td>
<td>3 September 2002 (2002-09-03)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract; figures 19-29, 40-49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 10, lines 20-23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 12, lines 40-51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 26, lines 23-41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 29, lines 1-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 30, lines 27-55</td>
<td></td>
</tr>
</tbody>
</table>

X	WO 92/02301 A (HEYWOOD, ALAN, EDWARD)	1-9-11
	20 February 1992 (1992-02-20)	
	abstract; claims 1, 8-11, 28-32; figures 1-6	

[X] Further documents are listed in the continuation of box C.
[X] Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 A document member of the same patent family

Date of the actual completion of the international search: 14 November 2005

Date of mailing of the international search report: 23/11/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5016 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer
Chmela, E

Form PCT/ISA/21 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 089 830 A (JOHNSON MATTHEY PUBLIC LIMITED COMPANY) 28 September 1983 (1983-09-28) abstract; figure 3 page 8, paragraph 3 - page 9, paragraph 2 page 11, paragraph 2</td>
<td>1–14</td>
</tr>
<tr>
<td>A</td>
<td>US 4 313 998 A (PIVOT ET AL) 2 February 1982 (1982-02-02) abstract; claim 6; figures 1-6 column 6, lines 53-58</td>
<td>1–14</td>
</tr>
<tr>
<td>X</td>
<td>US 2004/096607 A1 (KELLEY RONALD JAMES ET AL) 20 May 2004 (2004-05-20) abstract; figures 2,3,9-11 paragraphs '0036!', '0037!', '0045!'</td>
<td>1,2,4,7, 9,12</td>
</tr>
<tr>
<td>X</td>
<td>US 6 087 549 A (FLICK ET AL) 11 July 2000 (2000-07-11) abstract; claims 1,3,15 column 2, lines 40-60 column 9, lines 37-55</td>
<td>1–3,5,6, 9,11</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 298 745 A (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD) 2 April 2003 (2003-04-02) cited in the application claims 1–3,7,8</td>
<td>1–4,6–8</td>
</tr>
<tr>
<td>A</td>
<td>DE 195 39 257 C1 (DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT, 80804 MÜNCHE, DE) 31 October 1996 (1996-10-31) abstract; claim 4; figure 2</td>
<td>1–14</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 6444339</td>
<td>03-09-2002</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8326491 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2088150 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0544710 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 930374 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 912688 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6503744 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9106028 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1228217 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3363696 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 124483 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 8500864 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 830901 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 54140 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3053906 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 58216720 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 830970 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 2036068 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 8301762 A</td>
</tr>
<tr>
<td>US 4313998</td>
<td>02-02-1982</td>
<td>FR 2438114 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1563556 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004047198 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005035003 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005053836 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 9573498 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9815382 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2307040 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1023003 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002516120 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9915101 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005244484 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003064279 A1</td>
</tr>
<tr>
<td>DE 19539257</td>
<td>31-10-1996</td>
<td>NONE</td>
</tr>
</tbody>
</table>
INTERNATIONALE RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

HO1M4/86 HO1M4/88 HO1M4/92 HO1M8/10 HO1M8/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

HO1M

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data

C. ALS WESENTLICH ANGEGENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe darin Betracht kommenenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 92/02301 A (HEYWOOD, ALAN, EDWARD) 20. Februar 1992 (1992-02-20) Zusammenfassung; Ansprüche 1,8-11,28-32; Abbildungen 1-6</td>
<td>1,9-11</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

| X | Siehe Anhang Patentfamilie |

* Besondere Kategorien von angegebenen Veröffentlichungen:
 A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutend angesehen ist
 E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung beliebt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgetrennt)
 O Veröffentlichung, die auf eine mündliche Offenbarung, eine Benützung, eine Ausstellung oder andere Maßnahmen bezogen ist
 P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem bezugsuchten Prioritätsdatum veröffentlicht worden ist

X	Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis der Erfindung grundlegenden Prinzipien oder der ihr zugrundeliegenden Theorien angegeben ist
X	Veröffentlichung von besonderer Bedeutung; die beantragte Erfindung kann allein aufgrund dieser Veröffentlichung, nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
X	Veröffentlichung von besonderer Bedeutung; die beantragte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
X	Veröffentlichung, die Mitglied derselben Patentfamilie ist

Absenddatum des internationalen Recherchenberichts: 23/11/2005

Name und Postanschrift der Internationalen Recherchebehörde

Europäisches Patentamt, P.B. 5818 Patentan 2 NL-2230 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fac. (+31-70) 340-3016

Bevollmächtigter Biedensteher
Chmela, E
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Drt. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 089 830 A (JOHNSON MATTHEY PUBLIC LIMITED COMPANY) 28. September 1983 (1983-09-28) Zusammenfassung; Abbildung 3 Seite 8, Absatz 3 - Seite 9, Absatz 2 Seite 11, Absatz 2</td>
<td>1-14</td>
</tr>
<tr>
<td>A</td>
<td>US 4 313 998 A (PIVOT ET AL) 2. Februar 1982 (1982-02-02) Zusammenfassung; Anspruch 6; Abbildungen 1-6 Spalte 6, Zeilen 53-58</td>
<td>1-14</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 298 745 A (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD) 2. April 2003 (2003-04-02) in der Anmeldung erwähnt Ansprüche 1-3,7,8</td>
<td>1-4,6-8</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglieder der Patentfamilie</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>US 6444339 B1</td>
<td>03-09-2002</td>
<td>KEINE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8326491 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2088150 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0544710 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 930374 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 9126688 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6503744 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9106028 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1228217 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3363696 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 124483 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 8500864 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 830901 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 54140 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3053906 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 58216720 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 830970 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 203608 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 8301762 A</td>
</tr>
<tr>
<td>US 4313998 A</td>
<td>02-02-1982</td>
<td>FR 2438114 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1563556 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004047198 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005035003 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005053836 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 9573498 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9815382 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2307040 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1023003 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002516120 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9915101 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005244484 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003064279 A1</td>
</tr>
<tr>
<td>DE 19539257 C1</td>
<td>31-10-1996</td>
<td>KEINE</td>
</tr>
</tbody>
</table>