wO 2008/013826 A2 |10 00 00T

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘d”Ij,

International Bureau

(43) International Publication Date
31 January 2008 (31.01.2008)

(10) International Publication Number

WO 2008/013826 A2

(51) International Patent Classification:
HO4L 9/32 (2006.01)

(21) International Application Number:

PCT/US2007/016672
(22) International Filing Date: 24 July 2007 (24.07.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
2006-201037 24 July 2006 (24.07.2006) JP
60/859,673 17 November 2006 (17.11.2006) US

(71) Applicant (for all designated States except US): APLIX
CORPORATION [US/US]; 650 Townsend Street, San
Francisco, CA 94103 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LAM, loi [CN/US];
118 Montelena Court, Mountain View, CA 94040 (US).
MONMA, Junichi [JP/JP]; 2-18-18 Nishi-Waseda, Shin-
juku-Ku, Tokyo 169-0051 (JP).

(74) Agents: SALTZBERG, Robert, A. et al.; Morrison &
Foerster LLP, 425 Market Street, San Francisco, CA 94105-
2482 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,

[Continued on next page]

(54) Title: USER SPACE VIRTUALIZATION SYSTEM

T

Take out native instructions from
application \/\ST‘I 01

ST102

The native code taken out
executes the ing that
could affect security?

Yes

ST103

CPU executes the native
instruction

Dynamic compiler
compiles the native code

native instructions

|

taken out to generate safe \/\ST1 04

(57) Abstract: A user-space virtualization (USV)
program to allow legacy applications in embedded
systems to share resources without modification
without compromising security is provided. A
computer- implemented USV program may be
characterized by a method in a user-space including
retrieving a native code of an application, and
identifying an instruction sequence. Further,
identifying the instruction sequence includes, first,
determining if executing the instruction sequence to
perform processing is a possible security risk. If it
is a possible security risk, then confirming that there
is an execute authority for an active application.
Execute authority may be confirmed by a security

L]

inguiry to security manager to
ST1 05\/-\ check whether application has
authority to execute the
instruction

Execute safe native
instructions by CPU

Security manager to check
whether application has authority
to execute the instruction

ST107

Reject the execution of the
native instruction taken out by
CPU

Execute the native instruction

1aken out by CPU

ST106

ST108

manager or a processor. If it is confirmed by the
security manager that the active application has the
execute authority for processing, then executing the
instruction sequence with a processor. If the active
application has no execute authority for processing,
then not executing the instruction sequence. On the
other hand, if executing the instruction sequence
to perform processing is not a possible security risk,
then executing the instruction sequence with the
processor.

WO 2008/01.3826 A2 {000 00000000 O

PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, For two-letter codes and other abbreviations, refer to the "Guid-
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.
— without international search report and to be republished
upon receipt of that report

WO 2008/013826 PCT/US2007/016672

USER SPACE VIRTUALIZATION SYSTEM
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a U.S. non-provisional application, which claims priority to U.S.
Provisional Patent Application No. 60/859,673, filed November 17, 2006, and further claims
priority to Japanese patent application No. 2006-201037, filed July 24, 2006, both of which are

hereby incorporated by reference in their entirety.
BACKGROUND OF THE INVENTION

[0002] This invention is related to emulation and dynamic compiling technology used to

create a user-space virtualization program.

[0003] The latest platforms used for embedded systems require a resource management
system to arbitrate and protect system resources. Such resource management systems often
provide application programming interfaces (API) for arbitrating or protecting system resources.
-‘However, to maximize the functionality of embedded systems, it is sometimes desirable to
execute untrusted applications, or legacy applications, that do not use the resource management
systems of the platform. Therefore, 2 method to control the system resources of the platform and
extend its security policy for the aforementioned applications is also required in embedded

systems.

[0004] Traditionally, access control mechanisms have been incorporated in many existing
operating systems except embedded products. Well-known examples include user permission
checks in Linux™. In this case, each file is related to owner user’s ID and permission mode,
which serves as an indication of whether certain users are accessible to the file. Additionally, it
is possible to restrict certain system calls so that they are called only from a super user ID.
Furthermore, the Linux “chroot” system call can restrict a portion of file system from being

viewable from certain processes.

[0005] A problem in a method utilizing a user ID and permissions in existing Linux is that it

cannot control restriction granularity adequately. For example, regardless of a security policy,

WO 2008/013826 PCT/US2007/016672

whoever owns a file can access his/her own file and arbitrarily change access restriction. The
SELinux subsystem copes with this problem by implementing Mandatory Access Control. With
Mandatory Access Control, users cannot freely change access restriction even with their own
files. Moreover, access can be restricted even for privileged users such as root authorities.
However, with SELinux, the Linux kernel has to be arranged and recompiled, which requires a

complicated setup and process.

[0006) On the contrary, there are many embedded operating systems that do not incorporate
access control mechanisms. For example, Symbian (versions 9.1 and lower), or WinCE do not

include the idea of a user ID. Most of their file systems (except the system files only accessible
from the kernel) are accessible in the user-mode process. In SymbianOS version 9.1, the kernel

is modified to reinforce OS security.

[0007) However, a significant modification is needed for the OS kernel to implement such
OS security. Therefore, it is difficult to avoid the risk of bugs occurring from the modifications.
Furthermore, the risk of bugs occurring is inevitable upon each modification of access control
features in the kernel, which would accordingly require high cost and may result in a loss of
flexibility in the design of access control features. However, regardless of SELinux or the latest
SymbianOS, both the access control system and the resource management system are OS-
dependent implemented, and such access control systems are nof commonly applicable

irrespective of OS types.

[0008] Recently, virtualization technologies such as VMWare and Xen have been proposed
for partitioning resources on desktop and server systems. These technologies can realize access
control features. However, because these approaches require duplication of almost an entire
operation system image, they are not ideal for embedded platforms with limited computing

resources (e.g. memory, etc.).

10009] Therefore, methods and apparatus are desired to allow legacy applications to share

resources without modification in embedded systems.

{0010] All patents, applications, published applications and other publications referred to

herein are incorporated by reference herein in their entirety, including the following references:

2

WO 2008/013826 PCT/US2007/016672

. SELinux, Kerry Thompson, System Admin Magazine, March 2003,
http://www.samag.com/documents/s=7835/sam0303a/0303a.htm

. Platform Security - a Technical Overview, Version 1.2, Mark Shackman, Symbian Ltd,

http://www.symbian.com/developer/techlib/papers/plat_sec_tech_overview/platform_security_a

_technical_overview.pdf

. QEMU Internals, Fabrice Bellard, http://fabrice.bellard.free.fr/gemu/qemu-tech.html
. The Xen Virtual Machine Monitor, http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
. VMWare, http://vmware.com/User-Mode Linu, http://user-mode-linux.sourceforge.net/

BRIEF SUMMARY OF THE INVENTION

[0011] Embodiments of this invention share resources without modification in embedded
systems as User-space Virtualization (USV), used in cell phones and personal digital assistants,
for example. Embodiments of this invention also allow the applications that could contain
untrusted and malicious code to be executed without affecting system security or privacy.
Furthermore, embodiments of invention use the techniques of emulation and dynamic
compilation to strictly control the use of resources by applications and enable high performance
for execution speed close to the speed of execution of original native code. User-space
virtualization is a novel method for resource arbitration and protection on embedded platforms.
It is implemented in user space and is flexible to be customized according to operator/OEM
resource management policies. It requires little operating system support, so it can run on many
popular smartphone platforms. At the same time, it uses dynamic compilation techniques to
achieve the same level of performance as alternative techniques (such as modifying the OS

kernel).

[0012] Embodiments of this invention provide a user-space virtualization (USV) program to
allow legacy applications to share resources without modification in embedded systems. A
computer-implemented USV program may be characterized by a method in a user-space

including retrieving a native code of an application, and identifying an instruction sequence.

WO 2008/013826 PCT/US2007/016672

Identifying the instruction sequence includes, first, determining if executing the instruction
sequence to perform processing is a possible security risk. If it is a possible security risk, then
confirming with a security manager, or processor, that there is an execute authority for an active
application. If it is confirmed that the active application has the execute authority for
processing, then executing the instruction sequence with a processor. If the active application
has no execute authority for processing, then not executing the instruction sequence. On the
other hand, if executing the instruction sequence to perform processing is not a possible security

risk, then executing the instruction sequence with the processor.

[0013]) Furthermore, following not executing the instruction sequence if the active
application has no execute authority for processing, the method may include executing an error
in the case where the active application has no execute authority for processing. Additionally,
following not executing the instruction sequence if the active application has no execute
authority for processing, the method may further include executing replacing the instruction
sequence with an instruction sequence that executes the processing. The execute authority is
associated with the active application, and executing the replaced instruction sequence with the
processor. It may also be possible to allow the configuration where the native code having been
confirmed for the execute authority of the application if it is confirmed by the security manager
that the active application has the execute authority for processing, then executing the instruction
sequence with a processor above is directly executed with the processor without confirming with
security manager the next time. In this case, it is possible to reduce overhead that is caused by

¢
confirming authority for the same command with the security manager multiple times.

[0014] Furthermore, in other embodiments, it may be possible to allow detection of an
instruction sequence to execute the processing that could affect security of the native code of an
application. Additionally, it may be possible to generate native code of the instruction sequence
to execute processing that could affect security after confirming execute authority of the
application from the native code of the detected instruction sequence, and executing the

generated code with CPU.

WO 2008/013826 PCT/US2007/016672

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 illustrates a schematic view that shows configuration of an embedded system

according to embodiments of the invention;

[0016] Figure 2 illustrates a block diagram of the interaction of each software module

according to embodiments of the invention;

[0017) Figure 3 illustrates a flow chart of behavior of each module according to

embodiments of the invention;
[0018] Figure 4 illustrates an embodiment of the generation of a safe check instruction;

[0019]) Figure 5 illustrates execution of an instruction sequence after a safe check instruction

has previously been generated according to embodiments of the invention;

[0020] Figure 6 illustrates an instruction sequence that calls a system call according to

embodiments of the invention;

[0021] Figure 7 illustrates handling of open() system call according to embodiments of the

invention;
[0022] Figure 8 illustrates an example of an native instruction sequence before compiling;

[0023] Figure 9 illustrates a safe native instruction generated after compiling the code in

Figure 4 according to embodiments of the invention;

[0024] Figure 10A illustrates an embodiment used for multiple resource arbitration;

[0025] Figure 10B illustrates an embodiment used for device diagnostics;

[0026] Figure 10C illustrates an embodiment used for safety control by a home gateway; and

[0027] Figure 11 illustrates a computer system that may be employed to implement

embodiments of the invention.

WO 2008/013826 PCT/US2007/016672

DETAILED DESCRIPTION OF THE INVENTION

[0028] As briefly described above, embodiments of the invention allow legacy applications
to share resources without modification and applications that could contain untrusted and

malicious code to be executed without affecting system security or privacy.

[0029] Additionally, the embodiments of the user-space virtualization program can be
implemented without modifying the OS kemel. In particular, this can avoid complicated
modifications to the kernel that may cause difficulty in system maintenance. Furthermore,
applications are executed in the form of native code. Therefore, overhead can be reduced to the
minimum level in the user-space virtualization program. In addition, because the user-space
virtualization program of this invention can be used regardless of the type of an operating system
insomuch as the native code is the same, it can be utilized in platforms with the same CPU
regardless of the type of an operating system. Modification may be required, but it would be of
a minimal amount. Exemplary embodiments are described as follows with reference to

drawings.

[0030] Figure 1 is a schematic view of the configuration of an embedded system, both
hardware and software 100. The operating system (OS) 102 is implemented on CPU 101 and
security manager 105. A native instruction handler 106, and dynamic compiler 107 are utilized
by the operating system 102. Application 111 is stored in an untrusted region 110 and is
executed in the user-space virtualized by the security manager 105, the native instruction handler

106, and the dynamic compiler 107.

[0031] With reference to Figure 1, functional blocks OS 102, security manager 105, native
instruction handler 106, dynamic compiler 107 and application 111 are implemented as software.
As a result, these functional blocks are implemented by executing its corresponding software
programs by CPU 101.

[0032] Embodiments of the invention, in particular, the CPU 101, are described according to
ARM processor architecture and ARM instruction sets. However, the CPU 101 according to

embodiments of the invention is not limited to ARM. All software programs are stored in

WO 2008/013826 PCT/US2007/016672

memory 103 (ROM/RAM) connected to CPU 101. Memory 113 is accessed by CPU 101 as

needed.

[0033] OS 102 is embedded in an operating system such as Linux, WinCE, or Symbian, for
example. Embodiments of the invention are based on the premise that OS 102 has the following
or substantially equivalent functions described below. In other words, an OS having the
following or substantially equivalent function may be used according to embodiments of the
invention even if the OS is an OS other than described in this document. The functions of the

OS, according to embodiments of the invention, are described as follows:

[0034] User mode: OS 102 can run corresponding programs of Security manager 105,
native instruction handler 106, dynamic compiler 107, and application 111 in user mode so as to
prohibit these programs from directly performing privileged instructions such as MMU register

modifying instruction.

[0035] Memory protection: A memory space of the application 111 is separated from other

applications, such as in the kernel.

[0036] I/O protection: 1/0 operations must be performed in supervisor mode and cannot be

directly performed by the application 111 (except for memory-mapped I/O of the user-mode).

[0037) Well-defined system call interface: OS 102 must use a well-defined interface for the
application to issue system calls. In the ARM architecture, normally the system call is invoked

by an SWI instruction or invoked by a branch instruction to an address not specifically mapped.

[0038) Page protection modification API: the OS102 must provide an API for the user-

mode application to modify the protection mode of the memory pages that it is allowed access.

[0039] The above-mention functions of OS 102 allow applications in user mode to interact

outside the user-space via system calls only.

[0040] By detecting and managing system calls, it is possible to accurately monitor and
control the use of system resources by applications. This helps prevent system security and

privacy from being exposed to possible risks.

WO 2008/013826 PCT/US2007/016672

[0041] One method of detecting the system calls to manage the detected system call is to
“hook™ and control system calls by modifying the source code of the OS kernel in order to
qualify system calls and check the security of the system calls before execution. However,
“hooking™ system calls in embedded systems can significantly lower the performance of
applications, such as execution speed or response speed. In addition, modifying the kernel to

introduce the hooking mechanism, increases the risk of introducing bugs into the system.

[0042] Therefore, embodiments of this invention ensure system security by user-space
virtualization (USV), as opposed to utilizing system call hooks, as described above. The idea
that constitutes the core of USV is “native emulation”. The application of USV is the same with
existing systems when it comes to executing the program of an application compiled with native
instructions. However, in this case, with reference to Figure 1, the native instruction of
application 111 is executed in the system virtualized by USV instead of direct execution by CPU

101, which is significantly different than existing systems.

[0043] In addition to the virtualization of embedded systems, USV has the following two
important functions: capturing system calls to verify security and resource sharing, and

dynamically compiling hot spots to be directly executed by the CPU.

[0044) The following explains each software function as embodiments of the USV

invention. In some embodiments, all the software is executed in the user space.

[0045] With reference to Figure 2, the native instruction handler 106 is used when executing
application 111 in the user space. The native instruction handler 106 retrieves, or reads, the
native instructions sequences in application 111. If it is detected that an instruction sequence,
which when executed, is capable of affecting security, dynamic compiler 107 compiles the

instruction sequence and CPU101 executes the compiled code.

[0046] On the other hand, other native instruction sequences that are not detected to be
capable of affecting security, will be directly executed by CPU 101. For example, the
instruction sequence to execute the processing that could affect security may be an instruction
sequence that includes SWI command to execute system calls, or code, as in the code shown in

Figure 6, which executes system calls.

WO 2008/013826 PCT/US2007/016672

[0047] With reference to Figure 2 and 4, the dynamic compiler 107 compiles an instruction
sequence in 402 detected by the native instruction handler 106 into a safe native instruction.
Although we refer to “compiling”, the actual process is generating another sequence of the same
native instruction in which security check processing is added 408 from the native instruction
sequence of CPU101. -

[0048] With reference to Figure 2, Figure 8, and Figure 9, the effects of the compiling by
dynamic compiler 107, according to embodiments of the invention, are illustrated. Figure 8
illustrates the code before compiling. Figure 9 shows a safe native instruction after compiling
respectively in mnemonic code, a programming code that is easy to remember because the codes
resemble the original words. The “intercept_open()” instruction in the Figure 9 is a virtual
mnemonic that holds “system call open()”, and calls a routine to perform a security check. Ifthe

security check yields a satisfactory result, then “system call open()” is called.

[0049] As this embodiment shows, the safe native instruction is rewritten from the pre-
compile code to execute the processing equivalent of the pre-compile code after checking
security. By comparing the codes in Figure 8 and Figure 9, it is shown that the dynamic
compiler 107 compiles the instruction sequence, which will call a system call, into an instruction
sequence that checks security before calling a system call. Therefore, instruction-sequences that
could affect security never always undergoes security checks before execution. The “safe native
instruction” generated through such a compile is stored in a designated memory area that is

separate from the memory where the original code of application 111 is stored.

[0050] In contrast to traditional compilers that generate native code from the source code of
a high level language, the dynamic compiler 107 handles simple processing and does not

perform complicated optimization processing.

[0051] Accordingly, the complexity of dynamic compiler 107 is less than the usual
compilers, which may reduce overhead that could affect a system by compiling. Therefore, it is

appropriate for use in embedded systems, where resources are limited.

[0052] If native instruction handler 106 detects an unsafe instruction sequence during

execution of application 111, application 111 is suspended and dynamic compiler 107 compiles

9

WO 2008/013826 PCT/US2007/016672

the instruction sequence to generate a safe native instruction sequence. The generated safe
instruction sequence is stored in a designated memory address. Subsequently, CPU 101
executes the generated safe native instruction sequence and execution of application 111
resumes. Therefore, when the execution of the generated safe native instruction sequence is
completed 502, the native instruction sequence of application 111 is executed with CPU 101 at

506 while the subsequent instruction sequence is checked by native instruction handler 106.

[0053] The security manager 105 has a security configuration file that includes information
of instruction sequences of application 111 stored in untrusted area 110 for determining the
possibility of the execution of the instruction sequence will affect security by application 111, as
described above. The information contained in the security configuration file may help to
determine if execution of the instruction sequence is authorized, or permitted. The format of a
security configuration file may be, for example, in XML format. However, other formats may
be used. Further, the security configuration file may be configured to contain information
related to accessible address ranges, file types, or hardware resources for each application.
Moreover, the security configuration file may be used to determine whether or not access is

permitted in accordance with the address ranges, file types, or hardware resources specified.

[0054]) The following describes the operations of the native instruction handler 106 and
dynamic compiler 107 in the user mode executes by the user space virtualization according to
embodiments of the invention. In particular, operations performed when the native instruction
handler 106 and dynamic compiler 107, execute application 111 by interacting with security
manager 105 through the user-space virtualization according to embodiments of this invention.
Figure 2 illustrates interaction of the software modules illustrated in Figure 1. Figure 3

illustrates a flow chart showing which operations are performed by respective software modules.

[0055] First, native instruction handler 106 retrieves a native instruction to be executed from
the program code of application 111 loaded into the user-space (ST 101). Native instructions

may be taken out either individually or collectively.

[0056] Then, native instruction handler 106 determines whether or not the retrieved native

instruction, when executed, performs a process that could affect security (ST 102). With

10

WO 2008/013826 PCT/US2007/016672

reference to Figure 4, the compiler 402 will detect patterns within the native instruction that may
indicate a possible security risk 404. This decision is based on whether any native instruction, or
sequence, has been registered, such in a security configuration file, as one, that when executed,

performs a process that could affect security, and is included in the retrieved native instruction.

[0057] If, in ST102, the decision is that the native instruction taken out does not execute any
process that could affect security, the native instruction retrieved by native handler 106 is

directly executed with CPU101 (ST103).

[0058] In contrast, if in ST102 it is decided that the retrieved native instruction executes a
process that could affect security, dynamic compiler 107 compiles the retrieved native
instruction to generate a safe native instruction 109, which, when executed, performs a process

equivalent to the native instruction before the compile, and stores it in a designated address
(ST104).

[0059] Subsequently, the safe native instruction 109, generated in ST104, is executed with
CPUI101. As aresult, first, an inquiry is generated to security manager 105 to check whether
application 111 has authority to execute a process capable of affecting security (ST105). In
response to this inquiry, security manager 105 refers to the security configuration file 108 that

contains information of the instruction sequence to authorize, or not to authorize, the application
111 (ST106).

[0060] In ST106, if security manager 105 determines that application 111 has authorization
to execute, the code corresponding to the retrieved native instruction from application 111 in
ST101 is executed with CPU101 (ST107). With additional reference to Figure 2, the system call
is issued to the OS kemel 103, which accesses the resource 104 in the kernel space. On the other
hand, when application 111 is détermined to be not have authorization, the process
corresponding to the retrieved native instruction is not executed (ST108). Figure 2 also

illustrates an example when a system call is rejected.

[0061] After executing the retrieved native instruction from application 111 as described
above, the native instruction to be executed next is processed by repeating the process from

ST101. Note that if the retrieved native instruction is not executed in ST108, after notifying

11

WO 2008/013826 PCT/US2007/016672

application 111 of the occurrence of an error due to authority violation, the execution of
application 111 may be cancelled. In other cases, the execution of application 111 may

continue, if possible, with a substitute process for which application 111 has authorization for.

[0062] The processirig described above allows sequential security check of the program of
application 111 that consists of native instructions, which enables legacy applications to share
resources without modification. Additionally, applications that could contain untrusted and

malicious code can also be executed without affecting system security or privacy.

[0063] Furthermore, the sequential security check allows for possible overhead to be
dispersed more efficiently compared to batch security checks before execution. Moreover, the
security check is targeted only to the code to be actually executed, so system load due to a

security check can be reduced to a minimum.

[0064] Furthermore, the embodiments of this invention may be implemented without
modifying the OS kernel, which decreases the risk for introducing bugs. In addition, because
application 111 is executed in the form of native code, the performance of application execution
is high enough regardless of the system load caused by the native instruction handler 106 or
dynamic compiler 107. Furthermore, because the basic architecture of this invention is

independent from operating systems or CPU, embodiments of the invention are applicable to

diverse platforms.

[0065] The foregoing description of the preferred embodiments of the invention has been
presented for the purposes of illustration and description. It is not intended to be exhaustive or
to limit the invention to the precise form disclosed. Many modifications and variations are
possible in light of the above teaching. For example, it is also possible to interpret and execute
native instructions by native handler 106, and omit a dynahlic compiler. Additionally, caching
and reuse of the safe native instruction 109 generated by dynamic compiler 107 is possible.
Furthermore, when the security checking is performed safely at least once, it may be possible to
modify to add a deletion/simplification or the like, of the instruction to perform security
checking. The modified safe native instruction 109 may be saved. Alternatively, the native

instruction of the application 111 may be executed by the CPU 101 as it is.

12

WO 2008/013826 PCT/US2007/016672

[0066] Further, controlling uses of resources function by the application may be provided to
the security manager 105 in addition to the confirming the authority of the application function.
Therefore, when arbitration of a problem caused by the sharing of the resource in the embedded
system is to be conducted (i.e., when a plurality of applications are concurrently using the same
resource), authority to allocate use of the resource is implemented in accordance with the

purpose of each application and setting of the system.

[0067] Also, as illustrated in Figure 10A, it possible to set up a function to control resource
use of applications in security manager 105 in addition to the function to check application
authority. This allows assignment of user rights of resources according to application properties
or system settings when several applications simultaneously try to use the same resource. In
particular, what is called a resource adjustment becomes a problem in resource sharing in
embedded systems. By using a multitask method, you can efficiently develop complicated
embedded systems to run several applications. With reference to Figure 10B, it is possible to set
up device diagnostic systems, in which the operator can analyze what user operation actually
caused a system crash. Logging would allow a user to discover which system call command was
delivered to cause damage to the kernel. Additionally, with reference to Figure 10C, it is also
possible to implement a safety control system by a home gateway for appliances that can receive
settings, such as thermostats 1008, microwaves 1010, smart kitchen systems 1012, and showers

1014, for example.

[0068] Those skilled in the art will recognize that the operations of the various embodiments
may be implemented using hardware, software, firmware, or combinations thereof, as
appropriate. For example, some processes can be carried out using processors or other digital
circuitry under the control of software, firmware, or hard-wired logic. (The term “logic” herein
refers to fixed hardware, programmable logic and/or an appropriate combination thereof, as
would be recognized by one skilled in the art to carry out the recited functions.) Software and
firmware can be stored on computer-readable media. Some other processes can be implemented
using analog circuitry, as is well known to one of ordinary skill in the art. Additionally, memory
or other storage, as well as communication components, may be employed in embodiments of

the invention.

13

WO 2008/013826 PCT/US2007/016672

[0069] Figure 11 illustrates a typical computing system 1100 that may be employed to carry
out processing functionality in embodiments of the invention. Those skilled in the relevant art
will also recognize how to implement the invention using other computer systems or
architectures. Computing system 1100 may represent, for example, a desktop, laptop or
notebook computer, hand-held computing device (PDA, cell phone, palmtop, etc.), mainframe,
supercomputer, server, client, or any other type of embedded system or general purpose
computing device as may be desirable or appropriate for a given application or environment.
Computing system 1100 can include one or more processors, such as a processor 1104, which
may be a CPU. Processor 1104 can be implemented using a general or special purpose
processing engine such as, for example, a microprocessor, controller or other control logic. In

this example, processor 1104 is connected to a bus 1102 or other communication medium.

[0070} Computing system 1100 can also include a main memory 1108, preferably random
access memory (RAM) or other dynamic memory, for storing information and instructions to be
executed by processor 1104. Main memory 1108 also may be used for storing temporary
variables or other intermediate information during execution of instructions to be executed by
processor 1104. Computing system 1100 may likewise include a read only memory (“ROM”) or
other static storage device coupled to bus 1102 for storing static information and instructions for

processor 1104.

[0071] The computing system 1100 may also include information storage mechanism 1110,
which may include, for example, a media drive 1112 and a removable storage interface 1120.
The media drive 1112 may include a drive or other mechanism to support fixed or removable
storage media, such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical
disk drive, a CD or DVD drive (R or RW), or other removable or fixed media drive. Storage
media 1118, may include, for example, a hard disk, floppy disk, magnetic tape, optical disk, CD
or DVD, or other fixed or removable medium that is read by and written to by media drive 1114.
As these examples illustrate, the storage media 1118 may include a computer-readable storage

medium having stored therein particular computer software or data.

[0072] In alternative embodiments, information storage mechanism 1110 may include other

similar instrumentalities for allowing computer programs or other instructions or data to be

14

WO 2008/013826 PCT/US2007/016672

loaded into computing system 1100. Such instrumentalities may include, for example, a
removable storage unit 1122 and an interface 1120, such as a program cartridge and cartridge
interface, a removable memory (for example, a flash memory or other removable memory
module) and memory slot, and other removable storage units 1122 and interfaces 1120 that
allow software and data to be transferred from the removable storage unit 1118 to computing

system 1100.

[0073] Computing system 1100 can also include a communications interface 1124.
Communications interface 1124 can be used to allow software and data to be transferred
between computing system 1100 and external devices. Examples of communications interface
1124 can include a modem, a network interface (such as an Ethernet or other NIC card), a
communications port (such as for example, a USB port), a PCMCIA slot and card, etc. Software
and data transferred via communications interface 1124 are in the form of signals which can be
electronic, electromagnetic, optical or other signals capable of being received by
communications interface 1124. These signals are provided to communications interface 1124
via a channel 1128. This channel 1128 may carry signals and may be implemented using a
wireless medium, wire or cable, ﬁbef optics, or other communications medium. Some examples
of a channel include a phone line, a cellular phone link, an RF link, a network interface, a local

or wide area network, and other communications channels.

[0074] In this document, the terms “computer program product” and “computer-readable
medium” may be used generally to refer to media such as, for example, memory 1108, storage
device 1118, storage unit 1122, or signal(s) on channel 1128. These and other forms of
computer-readable media may be involved in providing one or more sequences of one or more
instructions to processor 1104 for execution. Such instructions, generally referred to as
“computer program code” (which may be grouped in the form of computer programs or other
groupings), when executed, enable the computing system 1100 to perform features or functions
of embodiments of the present invention. These instructions may be included in applications for

executing in computer system 1100.

[0075]) In an embodiment where the elements are implemented using software, the software .

may be stored in a computer-readable medium and loaded into computing system 1100 using,

15

WO 2008/013826 PCT/US2007/016672

for example, removable storage drive 1114, drive 1112 or communications interface 1124. The
control logic (in this example, software instructions or computer program code), when executed
by the processor 1104, causes the processor 1104 to perform the functions of the invention as

described herein.

[0076] It will be appreciated that, for clarity purposes, the above description has described
embodiments of the invention with reference to different functional units and processors.
However, it will be apparent that any suitable distribution of functionality between different
functional units, processors or domains may be used without detracting from the invention. For
example, functionality illustrated to be performed by separate processors or controllers may be
performed by the same processor or controller. Hence, references to specific functional units are
only to be seen as references to suitable means for providing the described functionality, rather

than indicative of a strict logical or physical structure or organization.

[0077] Although the present invention has been described in connection with some
embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the
scope of the present invention is limited only by the claims. Additionally, although a feature
may appear to be described in connection with particular embodiments, one skilled in the art
would recognize that various features of the described embodiments may be combined in

accordance with the invention.

[0078] Furthermore, although individually listed, a plurality of means, elements or method
steps may be implemented by, for example, a single unit or processor. Additionally, although
individual features may be included in different claims, these may possibly be advantageously
combined, and the inclusion in different claims does not imply that a combination of features is
not feasible and/or advantageous. Also, the inclusion of a feature in one category of claims does
not imply a limitation to this category, but rather the feature may be equally applicable to other

claim categories, as appropriate.

16

WO 2008/013826 PCT/US2007/016672

CLAIMS

What is claimed is:

1. A computer-implemented method for controlling system resources and system
security utilizing a user space virtualization program in a user space, the method comprising:

retrieving a native code of an application;

identifying an instruction sequence from the native code, wherein identifying the
instruction sequence includes:

(1): if executing the instruction sequence to perform processing is a possible
security risk, confirming there is an execute authority for the application;

(1-1): if the application has the execute authority for processing, executing the
instruction sequence with a processor;

(1-2): if the application has no execute authority for processing, not executing the
instruction sequence; and

(2): if executing the instruction sequence to perform processing is not a possible

security risk, executing the instruction sequence with the processor.

2. The method of claim 1 further comprising, wherein following (1-2),
(1-3): providing an error indication, if the application has no execute authority for

processing.

3. The method of claim 1, wherein confirming there is an execute authority for the
application includes adding a security check instruction to the instruction sequence to generate a

safe instruction sequence.

4. The method of claim 3, wherein the safe instruction sequence is executed in a

user space.

5. The method of claim 3, wherein the safe instruction sequence initiates the

confirming the execute authority of the application.

6. The method of claim 1, wherein the execute authority for the application is

confirmed by the security manager.

17

WO 2008/013826 PCT/US2007/016672

7. The method of claim 1, wherein the execute authority for the application is

confirmed by the processor.

8. The method of claim 1, further comprising:

detecting an instruction sequence to execute processing, associated with security,
from the native code of an application;

generating native code of the instruction sequence that executes processing,
associated with security, after confirming that there is the execute authority of the active
application from the native code of the detected instruction sequence; and

executing the generated code with the processor.

9. The method of claim 8, wherein detecting the instruction sequence comprises

checking a security configuration file for registration of the instruction sequence.

10. A computer-readable medium encoded with instructions for performing a method
for utilizing a user space virtualization program in a user space through execution with a
computer, the method comprising:

retrieving a native code of an application;

identifying an instruction sequence from the native code, wherein identifying the
instruction sequence includes:

(1): if executing the instruction sequence to perform processing is a possible
security risk, confirming there is an execute authority for the application;

(1-1): if the application has the execute authority for processing, executing the
instruction sequence with a processor;

(1-2): if the application has no execute authority for processing, not executing the
instruction sequence; and

(2): if executing the instruction sequence to perform processing is not a possible

security risk, executing the instruction sequence with the processor.

11. The computer-readable medium of claim 10 wherein the method is further

comprising, wherein following (1-2),

18

WO 2008/013826 PCT/US2007/016672

(1-3): providing an error indication, if the application has no execute authority for

processing.

12. The computer-readable medium of claim 10, wherein confirming there is an
execute authority for the application includes adding a security check instruction to the

instruction sequence to generate a safe instruction sequence.

13. The computer-readable medium of claim 12, wherein the safe instruction

sequence is executed in a user space.

14. The computer-readable medium of claim 12, wherein the safe instruction

sequence initiates the confirming the execute authority of the application.

15. The computer-readable medium of claim 10, wherein the execute authority for

the application is confirmed by the security manager.

16. The computer-readable medium of claim 10, wherein the execute authority for

the application is confirmed by the processor.

17. The computer-readable medium of claim 10, wherein the method is further
comprising:

detecting an instruction sequence to execute processing, associated with security,
from the native code of an application;

generating native code of the instruction sequence that executes processing,
associated with security, after confirming that there is the execute authority of the active
application from the native code of the detected instruction sequence; and

executing the generated code with the processor.

18. The computer-readable medium of claim 17, wherein detecting the instruction
sequence comprises checking a security configuration file for registration of the instruction

sequence.

19. An apparatus for controlling system resources and system security utilizing a

user space virtualization program in a user space, the apparatus comprising:

19

WO 2008/013826 PCT/US2007/016672

a native instruction handler for retrieving a native code of an application and
identifying an instruction sequence from the native code associated with security;

a dynamic compiler for determining if executing the instruction sequence to perform
processing is a possible security risk;

a security manager for determining if the application has authority for executing

instruction sequences; and

a processor for executing the instruction sequence.

20. The apparatus of claim 19, wherein the dynamic compiler is further operable

for generating a safe instruction sequence that executes the processing.

21. The apparatus of claim 20, wherein the dynamic compiler is further operable for
initiating a confirming of an execute authority of the application with the safe instruction

sequence.

22. The apparatus of claim 19, wherein identifying an instruction sequence associated
with security comprises checking a security configuration file for registration of the instruction

sequence.

20

WO 2008/013826 PCT/US2007/016672

1/9
110
— 111 (J°°
[})
E application :
i S 106
native instruction handler Dynamic Compiler L~_ 107
security manager ~— 105
oS |~ 102
CPU L~ 101

'Figure 1

WO 2008/013826 PCT/US2007/016672
2/9
vreeeees Untrusted space
P — 110
/— . — 108
: security
: 111 configuration file
application &
— 105
security manager
~. ,— 108 _— 107
natnvg;aztl:ictnon Dynamic Compiler
4 l7 % g reject the
L 109 system call
execute by Safe native
CPU instruction
user space
kernel space
OS kermel
[— 104

system resource

Figure 2

WO 2008/013826

ST103

3/9

PCT/US2007/016672

Take out native instructions from \/—\
application

ST101

No The native code taken out
executes the processing that
could affect security?
 J
CPU executes the native
instruction

ST102

Yes

A

Dynamic compiler

native instructions

compiles the native code
taken out to generate safe \/\ST‘l 04

y

Execute safe native

instructions by CPU ST105
f

Inquiry to security manager to

| check whether application has

authority to execute the
instruction

ST107

-

I
Execute the native instruction
taken out by CPU

Security manager to check

whether application has authority

to execute the instruction

ST106

ST108

Reject the execution of the
native instruction taken out by
CPU

Figure 3

WO 2008/013826 PCT/US2007/016672

4/9

Compiler /L 402

404

Detect patterns of code
related to system calls that
could be possible security
risks

Replace with safe 4
406 /\/ instruction subroutines Copy /\/ 08

Figure 4

502

2

Check for a safe

instruction at
runtime
: r\}5 ”
. Open
504 /\/ Fail system call

Figure 5

WO 2008/013826 PCT/US2007/016672

5/9

str 1lr, [sp, #-4]!

str 1r2, [sp, #-4]!

str ril, [sp, #-4]!

str 0, [sp, #-4]!

mvn x0, #61440

mov 1lxr, pc

sub pc, r0, #31 ; <= trap to kernel

Figure 6

/* handles the case of pc = reg - #imm */
void sub_pc reg imm(Register reg, Imm32 imm) {
if (reg == RO && imm == 32 &&
registers[RO] == -61440) {
/* app issues open() system call*/
check open_syscall params();
do_real_ open_syscall();

}

Figure 7

WO 2008/013826

PCT/US2007/016672

6/9
str 1lr, [sp, #-4]1!
str r2, [sp, #-4]!
str rl, [sp, #-4]!
str r0, [sp, #-4]!
mvn r0, #61440
mov lr, pc
sub pc, r0, #31 ; <= trap to kernel
Figure 8
str 1lr, [sp, #-4]!
str r2, [sp, #-4}!
str rl, [sp, #-4]!
str x0, [sp, #-4)!
mvn 0, #61440
ldr 1lx, [pc, #48]
b intercep;_open

Figure 9

WO 2008/013826 PCT/US2007/016672

7/9

Application

System call (?
<.
S 3
o
< 3
o
reject <=
Application
System call

Figure 10A

Q
=
3
Application 2
' : System call cC &
@
Z :
< 2
Application) °¢§
it i y System call

Figure 10B

WO 2008/013826 PCT/US2007/016672

8/9

4

. el o
Application Pl &
S v System call C g <
2 & §
rejecth-- Z (1] %

System call I

Figure 10C

WO 2008/013826

BUS
1102

PCT/US2007/016672

9/9

1100
/’—

» PROCESSOR 1104

— MEMORY 11

=]

8

STORAGE DEVICES
1110

MEDIP‘;1[1)2RIVE — MEDIA 1118

STORAGE UNIT STORAGE
iV F1120 - UNIT 1122

COMMUNICATIONS
 F1124 < CHANNEL 1128 >

Figure 11

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings

