Office de la Propriete Canadian CA 2111958 C 2003/08/05

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 1 1 1 958
g'rn(c)iL%?r?(iesgaenada ﬁrgijgt?;%/aa;da (12) BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de dépot PCT/PCT Filing Date: 1992/06/05 (51) Cl.Int.°/Int.CIl.° GOBF 11/34
(87) Date publication PCT/PCT Publication Date: 1993/01/07 | (72) Inventeur/Inventor:
(45) Date de délivrance/lssue Date: 2003/08/05 AASTINGS, REED, US
(85) Entrée phase nationale/National Entry: 1993/12/20 (73) Proprietaire/Owner:

RATIONAL SOFTWARE CORPORATION, US
(74) Agent: FETHERSTONHAUGH & CO.

(86) N° demande PCT/PCT Application No.: US 1992/0046772
(87) N° publication PCT/PCT Publication No.: 1993/000633
(30) Priorite/Priority: 1991/06/21 (718,573) US

(54) Titre : METHODE ET APPAREIL DE MODIFICATION DE FICHIERS DE CODES OBJET RELOGEABLES ET DE
PROGRAMMES MONITEURS

(54) Title: METHOD AND APPARATUS FOR MODIFYING RELOCATABLE OBJECT CODE FILES AND MONITORING
PROGRAMS

100
PREPARE

TABLES 120
W oo SELEGT FIRST
B ITEN
LOCATE | -
e | | k-
. FORM & STORE | 7
s NEW CODE BLOCK
PROGESS -
FUNCTIONS | -, | 0
, STORE LOGATION |
185 | OF ITEN
PROCESS - = 150

DATA L
STORE LOGATION OF
NEW GODE BLOCK

CORREGT
OFFSETS

=

leu

4l

GORRECT SYMBOLS
AND RELCCATION
STRUGTURES

YES
! 170

STORE LOCATION
220 OF OFFSET(S)
WRITE NEW AND BASE
0BJECT
CODE FILE

180 |

%s

YES

&

(57) Abrége/Abstract:

An object code expansion program (5) inserts new Instructions and data between preexisting instructions end data of en object
code file (l); offsets are modified to reflex new positions of the preexisting instructions and data. For each item of preexisting
object code (Instruction or data), the following steps are performed: making a new code block comprising any desired new
Instructions and the item, and storing it as new object code; tracking the location of the item and the new code block within the
new object code; and tracking items that contain inter-item offset. Then, each inter-item offset is updated using the new location
of the item or new code block, as required. Finally, offsets in symbol tables and relocation structures are updated with the new
location of the item. This extension program Is used to add instructions to object code files to monitor memory accesses of
another program.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

o 'mmd&emmmmmm-’mw

DEC 17 ‘93 14:51 TOWNSEND PALO ALTO 415-326-2422

PCI" WORLD INTELLECTUAL PROPERTY ORGANIZATION
2 intermational Buresu

~ +..fERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(8)) International Patent Classification 3 : (11) International Publication Number: WO 93/60633
GO6F 11/34 | (43) Intemational Publication Date: 7 January 1993 (07.01.93)

v

(21) Laternational Application Number: PCT/US92/04672 | (81) utd States: AT, AU. BB, BG, BR, CA, CH, CS,
DK, ES. Fl, GB, HU. JP, KP. KR, LK LU, MG,

(n)la«nadoul Filiag Date: § June 1992 (05.06.92) MN MW, NL, NO. PL. RO, R . S0, SE, US, 'Eure-

f“" patent (AT, BE, CH, DE. K. ES. FR. GB. GR,
T. LU, MC, NL, SE), OAPI patent (BF, BJ, CF, CG,

(30) Priority dats: | Cl CM. GA, GN, ML, MR, SN TD, TQG).
718,573 21 June 1991 (21.06.91) US
Published
(71) cant (for all. daignaud States except US): PURE SOF- With inernational seqrdo repori.

ARE, INC. (U
CA 94024 (US).

) Inventor; and

Iavontor/ mt (for US only) : RASTINGS, Reed [US/
US}); 21 Drive, La l'londa. CA 94020 (US).

(74) Agents: WILLGORS, Eric, H. et al.; Townsend and Town-
send, One Market Plaza - 2000 Steuart Tower, San Fran-

cisoo, CA 94108 (US).

/US); 2111 Grant Road, Los Altos,

M'ﬂth: METHOD AND APPARATUS FOR MODIFYING REI.OCATABLE OBJECT CODE FILES AND MONITOR-
ING PROGRAMS |

1 (57) Abetract

‘
¢
s
i
s
s

- Aa object code expansion program (5) hmm new
. :lm and data between mmms instructions

.M«m&efdmmnmmpdomd:uhu
& aew code block comprising any desired new instructions
and the itom, and storing it as new abject code; tracking

. _
s Lo
I

G DS OGS W A A S S e PR - .- - e ol

object code; and tracking itams that contain inter- w _
offects. Then, each inter-itemn offset is u uam
thg now location of the item or new code

. Finally, offsets in symbo! tables and nloﬂdon
are updated whh the aew location of the item.

expansion program is used 1o add instructions 10 ob-
code flles to monitor memory acoesses of anather Pro-

"'5

WO 93/00633

10

15

20

B

35

.......
¢¢¢¢¢¢¢¢¢¢

< Q' 1 : - PCT/US92/04672

BACKGROUND OF THE INVENTION

The present invention relates generally to a method
and Apparatus for modifying relocatable object files. 1In
particular, the present invention relates to a method for
inserting additional instructions and data into an eiisting
relocatable object file of a computer program, for any purpose.
Most particularly, this purpose is to monitor memory access by

the computer program.
Despite the recent increase in CPU speeds and

software complexity, most programmers continue to rely on |
development tools that were designed over fifteen years ago and
that have not changed significantly since then. These

‘development tools have serious inadequacies that exacerbate the
.fdifficulties of developing large, complex programs.

Problems with developing appli.cations in C/C++ are
often more serious than with other programming languages, but
are fairly typical. C/C++'s pointer and memory management

facilities make it difficult to build large, robust programs.
Q'Prudent C/C++ programmers currently hesitate to use many
”connercial object code libraries because they are worried they
'tnay lose weeks of time later on in tracking down wild-pointer
;bugs ‘introduced by their particular use of a given library.

The.difficulty'in.tracking down these kinds of programming bugs
and many others is directly tied to the manner in which

" ‘executable code is created from source code and to the
.1nadoquacios of current development tools.

" The process of transforming source code into
ﬂcxgcuthbae" code is, briefly, as follows. The source code for
a typical computer program is divided into many files. Some of

.these-files may contain high-level language code, such as C,

C++, Pascal, Fortran, Ada, or PL1l, and some may contain
assembly language code. Each high-level language file is

10

15

20

25

30

35

wooxeosss 21119 58 e PCT/US92/04672

-

2

translated by a language-specific compiler into either a
relocatable object file, or into an assembly language file. An
assembler translates the assembly language files into
relocatable object files. A linker merges all of the
relocatable object files into a single executable program.

As programs get larger and more complex, they become
more difficult to test and debug. If one wants to monitor or
analyze aspects of a program's behavior, the current practice
is to have the compiler output the extra instructions required
to implement the desired monitoring. One example of this
exists in many Pascal compilers; there is typically a way to
request the compiler to output the extra instructions required
to check array bounds at run time, and to signal an error if
there is a violation. Another example exists in many Unix/C
compilers; most compilers will, upon request, output extra
instructions to record how many times each function was called.

The approach of having the compiler output the extra
instructions required to implement a monitoring or analysis
scheme is, however, flawed in at least three significant ways:
First,'modifying the compiler to output new sequences is
difficult, and in practice, nearly impossible, because most
programmers don't have the source code to the compiler.
Second, recompiling all of a program's files just to get the
axtra instructions inserted can be very time consuming and
wasteful. Finally, not all code goes through a compiler; some
is written in assembly language and does not get the new
instructions inserted into it. Thus, any monitoring which

requires‘ggnplg;gcoverage'tO‘work correctly cannot be

- implemented through only the compiler.

- Some of the most vicious development problems relate

to the difficulty in finding and eliminating a large class of
memory-access related errors. Among the most important memory-
'access,rolated errors that a programmer needs to detect are
array bounds violations, uninitialized memory reads, free
memory access, and data changing strangely.

| Array bounds violations (where an array 1is any
collection of data contiguous in memory) occur on those

10

15

20

WO 93/00633 2111958 . PCT/US92/04672

3

occasions when a program reads or writes past the end, or
before the beginning, of an array and accesses whatever datum
happens to be in that memory location.

Uninitialized memory reads happen when a program
allocates some memory for data storage, but fails to initialize

it completely. Later, an uninjtjalized portion is read,
unintentionally providing a random value, which might sometimes

cause to the program to fail, and sometimes not.

Free memory access describes the situation where a
program deallocates some memory but incorrectly continues to
use it. If the program reallocates that memory for another
purpose, then it will be using the same memory for two
different purposes, and the program will probably perform

incorrectly.
"Data changing strangely" is a bit of a catch-all

expression. Often there are many ways to change a datum,
especiallf\a "global" datum. The programmer can have a
difficult time discovering which function is changing the datum
incorrectly, in a given run of the program. What the
programmer needs is to have a monitoring program tell him or
her whenever a specified datum changes (this is called a

 watchpoint).

25

30

35

A comprehensive way to monitor the execution of

today's and tomorrow's programs, in particular their memory
access, is clearly needed by the program developer.

SUMMARY .OF THE INVENTION
" According to one aspect of the invention, an object

 code file is expanded by inserting additional instructions
and/or data between preexisting instructions and data, which

may also be modified in some ways. A basically unlimited

varietY‘of*additioﬁal instructions and data can be inserted for
an equally wide variety of purposes. After the insertion step,
the offsets in the file are checked and modified, if necessary,

to reflect the new positions of the preexisting instructions

and data, so that the expanded code will execute properly. In
the preferred embodiment additional offsets in symbol tables,
data relocation tables and instruction relocation tables are

10

15

20

25

30

I

CA 02111958 2002-05-30

4
updated in the same general manner as the other offsets.
The basic method 1s as follows:

An old object code table is formed 1in memory
space, containing the preexisting instructions and data.
Space 18 also allocated for other tables: a new object
code table, an i1inter-item offset table. For each item in
the old object code table (whether instruction or datum),
the following four steps are performed: (1) making a new
code block comprising any desired additional instructions
and/or data and the item, and storing it into the new
object code table; (2) storing the location of the item
within the new object code table into the forward index
table; (3) storing the location of the new code block
within the new object code table into the forward control
index table; and (4) for items that contain inter-item
offsets, storing the location within the old object code
table, o©of the offset and the base from which it 1is
measured, 1nto the 1inter-item offset table. Then, for
each pair of offset/base 1locations in the inter-item
offset table, the offset stored in the new object code
table 1s updated using the 1index tables. Finally, the
offsets 1n any symbol tables, 1instruction relocation
structures, or data relocation structures in the old
object code file are updated so that the new offset
refers to the location in the object code table to where
the 1tem referred to was moved.

Accordingly, the present invention
provides A method for inserting new instructions into a
computer program between preexisting 1instructions, said

method comprising the steps of:

a) providing an old object code table

containing the preexisting instructions;

10

15

20

25

30

| -

CA 02111958 2002-05-30

b) providing a new object code table, an
inter-item offset table, a forward index table, and a
forward control 1index table, said tables being for
storing items in, said items having locations within said
tables;

C) performing the following steps for each
preexisting instruction in the old object code table:

1) storing a new code block into the new
object code table, said new code block comprising any
desired new instructions and the preexisting instruction;

1i) storing the location of the
preexisting 1instruction within the new object code table
into the forward index table;

11i) storing the location of the new code
block within the new object code table into the forward
control index table; and

iv) for preexisting instructions which
contain an 1nter-item offset, indicating the offset in
the inter-item offset table; and

d) for each inter-item offset indicated in
the inter-item offset table, updating the inter-item

offset, using the forward control index table for inter-

item offsets which are for program control transfer, and
using the forward index table otherwise.

The present invention also provides
method for inserting new instructions into a relocatable
object file having preexisting instructions, data, and
linking and debugging auxiliary structures having at
least some offsets associated with the preexisting
instructions and data, said method comprising the steps

of :

10

15

20

25

30

CA 02111958 2002-05-30

5a

a) providing an old object code table, a new
object code table, an 1inter-item offset table, a forward
index table, and a forward control 1index table, said
tables being for storing 1tems 1in, said 1tems having
locations within said tables;

b) copying the preexisting instructions and data
of the object file i1nto the old object code table;

C) performing the following steps for each item in
the old object code table;

1) storing a new code block into the new
object code table, said new code block comprising any
desired new instructions and the item;

11) storing the location of the item within
the new object code table into the forward index table;

111) storing the location of the new code block
within the new object code table into the forward control
index table; and

iv) for items which contain an inter-item
offset pointing to a target and referenced from a base,
indicating in the inter-item offset table the locations
of the target and base within the old object code table
and of the offset 1n the new object code table, and
modifying the item, 1f necessary, to be consistent with a
maximum-pbyte offset;

d) for each inter-item offset indicated in the
inter-item offset table, determining a forward location
for the base using the forward index table, determining a
forward location for the target using the forward control
index table for targets which are program control
transfer destinations and using the forward index table

otherwise, and updating the inter-item offset in the new

10

15

20

25

30

CA 02111958 2002-05-30

5b

object code table using the forward locations of the base
and target;

e) updating the offsets in the auxiliary
structures; and

f) creating a new relocatable object file
comprising the new object code table and the updated
auxiliary structure.

The present 1invention also provides a method for
inserting new instructions 1nto a relocatable object file
having preexisting 1instructions, data, and auxiliary
structure, said auxiliary structures having at least some
offsets and comprising text relocation structures, data
relocation structures, and symbol structures, said wmethod
comprising the steps of:

a) providing an entry point table, a new object
code table, an 1nter-item offset table, a forward 1index
table, and a forward control 1ndex table, said tables
being for storing i1tems 1in, saild i1tems having locations
within said tables;

b) providing an old object code table
containing the preexisting instructions and data of the
object file;

c) for each symbol structure associated with a
function and having a function entry address, storing the
function entry address 1n the entry point table, said
entry address indicating in the old object code table a
first instruction of the function, the function also
having a 1last instruction, all i1tems between the first
instruction and last instruction also being instructions

of the function;

d) performing the following steps for each

10

15

20

25

30

| .

CA 02111958 2002-05-30

5¢C

entry address stored in the entry point table:

1) prerforming the following steps for
each preexisting 1instruction of the function indicated by
the entry address:

1) storing a new code block into the
new object code table, said new code block comprising any
desired new instructions and the preexisting instruction;

2) storing the location of the
preexisting instruction within the new object code table
into the forward index table;

3) storing the location of the new
code block within the new object code table into the
forward control index table; and

4) for preexisting instructions that
contain an 1inter-item offset pointing to a target and
referenced from a base, 1indicating 1in the inter-item
offset table the locations of the target and base within
the old object code table and of the offset in the new
object code table, and modifying the preexisting
instructions 1in the new code block, if necessary, to be
consistent with a maximum-byte offset; and

11) performing the following steps
for each item in the old object code table after the last
preexisting instruction of the function indicated by the
entry address and before a closest next entry address:

1) copying the item into the new
object code table;

2) storing the location of the item

within the new object code table into the forward index

table;

10

15

20

29

30

I
CA 02111958 2002-05-30

5d

e) for each inter-item offset indicated in
the 1nter-item offset table, determining a forward
location for the base using the forward index table,
determining a forward location for the target using the
forward control index table for targets which are program
control transfer destinations and using the forward index
table otherwise, and updating the inter-item offset in
the new object code table using the forward locations of
the base and target;

f) updating offsets in the auxliliary
structures; and

g) creating a new relocatable object file
comprising the new object code table and the updated
auxliliary structures.

According to a second aspect of the invention,

aamd

all or substantially all the memory accesses of a given

program are monitored (not including the memory accesses
for 1instruction fetch), for the purposes of performing
error-checking. In one embodiment, all the object code
files for an executable program are processed, and
instructions are added to implement the following
monitoring scheme. A memory status array is established,
with an entry for most memory locations that are wvalidly
accessible by the program. Each entry 1indicates the
state of the corresponding memory location, and the state
can be one of the following three: unallocated and
uninitialized, allocated but uninitialized, and allocated
and 1nltialized. Before each preexisting instruction
which accesses memory or which can change memory status,
extra 1nstructions are added to maintain the memory

status array, and to use the memory status array to check

10

15

20

25

30

CA 02111958 2002-05-30

5e

for the errors of writing to unallocated memory and
reading from unallocated or uninitialized memory. In one
particular embodiment, the data sections of the object
code files are expanded with extra dummy entries between
each datum. These extra entries are assigned the status
of unallocated and uninitialized, and aid 1in the
detection of array bounds violations and similar data
errors. In another particular embodiment, a 1list is
stored o0of memory or datum locations which are to be
watchpoints with which more comprehensive monitoring is
to be performed.

Accordingly, the present 1invention provides a
method of modifying a computer program to have the
ability to monitor most of its own memory accesses, said
computer program having preexisting code items, said
method comprising the steps of

a) for most preexisting code i1tems the
performance of which involves a memory read, adding
memory read monitoring code located so that it will be
executed each time the memory read preexisting code item
1s executed; and

b) for most preexisting code items the performance
ot which 1involves a memory write, adding memory write
monitoring code located so that it will be executed each
time the memory write preexisting code item is executed.

The present 1nvention also provides a
computer 1mplemented method for producing a set of
modified machine 1instrucdtions from a set of preexisting
machine i1nstructions, sald set o0of modified machine

instructions having the ability to maintain memory status

10

15

20

29

30

l |

CA 02111958 2002-05-30

5f

information for a region of memory and having the ability
to check memory accesses to said region of memory, said

set of preexisting machine 1instructions corresponding to

a set of preexisting memory accessgses to region of memory,
said memory status information 1indicating at least two
memory states, said at least two memory states including
an allocated state and an unallocated state, salid
allocated state corresponding to a memory location
allocated by a computer program, and said unallocated
state corresponding to a memory location not allocated by
sald computer program, sald method comprising the steps
of:

providing 1n a computer storage medium, status
information maintenance machine instructions, wherein

at least a first portion of said status
information maintenance machine instructions is for being
executed 1in conjunction with memory allocation code, and
for wupdating to said allocation state said status
information for memory allocated within said memory
region by saild memory allocation code, and

at least a second portion of said status
information maintenance machine instructions is for being
executed 1n conjunction with memory deallocation code,
and for updating to salid unallocated state said status
information for memory deallocated within said memory
region by said memory deallocation code;

providing, 1n a computer storage medium, memory
access checking machine 1nstructions for being executed
in conjunction with a memory access i1instruction, for

checking said status information for memory within said

10

15

20

29

30

I

CA 02111958 2002-05-30

>g

memory region accessed by said memory access instructions
and for reporting an error if said status information for
sald accessed memory 1indicates said unallocated state;
and

modifying said set of ©preexisting machine
instructions to produce in a computer storage medium said
modified set of machine instructions including said
status 1nformation maintenance machine instructions, said
memory access checking machine instructions, and
instructions corresponding to at least a subset of said
set of preexisting machine instructions.

The step o©of providing status 1information
malntenance machine 1nstructions comprises providing
status i1nformation maintenance machine instructions for
storing any of a first predetermined set of bit patterns
in memory allocated by said memory allocation code, and
for storing any of a second predetermined set of bit
patterns in memory deallocated by said memory
deallocation code.

The present 1invention further provides a method
for modifying a computer program to have the ability to
monitor most of 1ts own memory accesses, wherein memory
access types 1nclude read and write, sald method
comprising the steps of:

performing the following steps for substantially all
relocatable object files for the program, said
relocatable object files containing instruction items of
preexisting object code, said 1instruction items having
locations within the preexisting object code:

a) providing a new object code table for

storing items 1in;

10

15

20

29

30

CA 02111958 2002-05-30

5h

b) storing, for each instruction item in the
preexisting object code, a new code block into the
new object code table, said new code Dblock
comprising the item and

i) memory read monitoring code for items
the performance of which 1nvolves a memory access of a
read type; and

11) memory write monitoring code for
items the performance of which i1involves a memory access
of a write type;

C) updating offsets 1in the new object code

table;
C) creating a new relocatable object file
comprising the code items from the new object éode file.

The present invention also provides a

computer 1mplemented method for producing a set of
modified machine 1instructions, said set of modified
machine instructions having the ability to maintain
memory status 1nformation for a region of memory and
having the ability to check memory accesses to said
region of memory, salid set of preexisting memory access
instructions corresponding to a set of preexisting
memory accesses, sald set of preexisting memory access
instructions comprising a first group of at least some
memory write 1nstructions, for which performance would
involve a write access to memory, said set of preexisting
memory access 1instructions further comprising a second
group of at least some memory read 1instructions, for
which performance would involve a read access to memory,
sald memory status information indicating at least two

memory states, said at least two states including an

10

15

20

25

30

I

CA 02111958 2002-05-30

51

initialized state and an uninitialized state, said
initialized state corresponding to a memory location
initialized by having data for a computer program written
thereto, said uninitialized state corresponding to a
memory location not having data for said computer program
written thereto, said method comprising the steps of:
providing, 1n a computer storage medium, memory

write monitoring machine i1instructions for updating said

status i1nformation, for memory 1in said memory region and
accessed by a memory write 1nstruction, from said
uninitialized state to sailid initialized state;

providing, 1in a computer storage medium, memory
read checking machine 1instructions for signalling an
error when memory, in salid memory region and accessed by
a memory read i1instruction, 1is not 1in said initialized
state;

modifying said set of preexisting machine
instructions to produce 1n a computer storage medium said
modified set of machine instructions, by

for each sald memory write instruction,
corresponding to a memory write access, modifying said
set of preexisting machine instructions to execute said
memory write monitoring machine 1instructions when said
memory write access 1s performed, and

for each said memory read instruction,
corresponding to a memory read access, modifying said set
or preexisting machine 1nstructions to eXxXecute said

memory read checking machine instructions when said

memory read access is performed.

10

15

20

29

| .

CA 02111958 2002-05-30

5]

A further understanding of the nature and advantages of
the invention may be realized by reference to the

remaining portions of the specification and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram a relocatable object
file being expanded by an embodiment of the 1invention

into a new relocatable object file;

Fig. 2 1s a block diagram showing the

relationship between a relocatable object file and an old

object code table’

Fig. 3 illustrates the general data/instruction

insertion method;

Fig. 4 1S a flowchart of the general

data/instruction insertion method;

Fig. 5 illustrates the general procedure for

implementing a monitoring scheme by modifying the object
files for an executable program;

Fig. 6 illustrates the different memory access

F

states used in a particular embodiment of the invention

directed to tracking memory access of a program;

Fig. 7 1is a wvirtual memory map showing the
portions of virtual memory available to a program;

Fig. 8 illustrates how <calls to operating
system routines are handled under an embodiment of the

invention directed to memory access monlitoring;

10

15

20

25

30

35

WO 93700633

o
- -
: ° . S ®)y sSe
t---l ' -~ - -

' expanding a relocatable object file, typically by inserting new

- 2R B PCT/US92/04672
21119353 6

Fig. 9 illustrates how the object files for an
executable program are prccessed by an embodiment of the
invention directed to memory access monitoring; and

Fig. 10 illustrates the formation of new code blocks

to implement the memory access monitoring of the preferred
embodiment. '

DESCRIPTION OF THE PREFERRED EMBODIMENT

One aspect of the present invention is a method for

instructions and data between preexisting instructions and data
of the file, without recompilation being necessary. Fig. 1
jllustrates a preexisting object code file 1 (“oldfile.o")
being augmented by expansion means 5 to form a new object code
file 1° ("newfile:o"). In the preferred embodiment, expansion
means 5 is a general purpose computer having a memory and
operating under the control of a computer program. Since

expansion means 5 takes object files as input, monitoring
- gschemes can be comprehensive; the method can be applied to all

code that goes into the final executable product, not just

" those portions for which source code is available.

The particular embodiment of expansion means 5
described herebelow is designed for a Sun3/60 running
sun O0S 4.1.1, using the C/C++ compilers available from Sun
Microsystems, Inc., of Mountain View, california; 80 the

~description is particular in some respects to that system. In
- that system, a standard format for relocatable object file 1

*

(.o £ile) has 7 parts, as shown in Fig. 2 ‘

« A 32 byte header 11, which describes the lengths of
the other parts.

- Binary machine instructions 12a.

« Binary data 12b.

Symbols 13, which have a name (an index into the

string section), a type, a value, and other minor

fields.

10

- 15

20

25

30

35

‘the preexisting instructions and data, and thus must be

WO 93/00633 _ 2 1 1 1 9 5 8 . 5 - PCT/US92/04672

7

. Instruction relocation data structures 14, which
specify which bytes in the instruction section are
unresolved references to other data or functions.

. Data relocation data structures 15, which specify
which bytes in the data section are unresolved
references to other data or functions.

« Strings 16, the names of the symbols.

The pre-existing instructions will generally contain many
references to o:her instructions in terms of offsets; that is,
in terms of the number of bytes separating the instructions in
the object code file. When new instructions are inserted into
the code, these offsets are corrected by expansion means 5.
Simply modifying instructions, as opposed to adding new ones,

may lengthen or. shorten the instruction and also require

offsets to be cbréected. Furthermore, the instructions,
symbols; and relocation structures also contain references to
data and instructions, and these references will often be in
the form of an offset from the beginning of the object file

- gection which contains the data and instructions. These are

updated in a similar manner.
" The value field of certain symbols is an offset into

replaced with the offset of the location to which the
preexisting item has been forwarded. The symbols that need
updating are those whose type field is one of: N TEXT, N_BSS,
N_DATA, N_STSSYM, N_LCSYM, N_SO, N_SOL, N_ENTRY, N_LBRAC,
N_RBRAC AND N _ECOMM. These symbol types are defined in the
sun-supplied include file Jjusr/include/stab.h (in which “text"
gonerallyvroférs.to instructions). Relocation structures have
a field named "r address" which (like the value field of
symbols) is an offset into the preexisting instructions and
data and must be updated with the new location to where the
bytés originally pointed to have been moved. In addition, for
local relocations, the bytes pointed to by the "r address"
field are themselves an offset that must be updated.

The extra instructions inserted are often associated
with particular pre-existing instructions and must be executed
every time that pre-existing instruction is executed, 1in some

10

- 15

20

25

30

35

WO 93/00633 PCT/US92/04672
2111958 N

8

cases just before that pre-existing instruction is executed.
Some of the references to instructions in preexisting obj)ect
code file 1 will be offsets used to transfer program control to
those points during execution. In this case the instruction
offsets are adjusted to point to the beginning of the extra
code associated with that pre-existing instruction. 1In other
cases, such when a references points to data, even if extra
data is inserted around a particular datum, the reference may
still need to point directly to that datum. The data and
instructions are generally treated as one section. References
to both data and instructions are indexed from the beginning of
the section containing the instructions and data. Data may be
intermingled with instructions, as well. Expansion means 5
determines whether a particular value in the object file is a
datum or an instruction, and also determines the purpose of

each reference offset.
unnamed data, such as constants referred to in the source code,

into the instruction section, but not inside a function. To

Furthermore, compilers often put

differentiate this data from actual instructions a simplified

dead-code analysis is used, starting from the named entry

points apecified by the symbols of type N_TEXT and the entry
points derived from the instruction relocation structures. Any

instructions that cannot be reached are considered to be data.

One exception is that some object code libraries of at least
one earlier sun 0S, 4.03, have several named entry points of
type N TEXT that are data, not entry points, and are therefore
ignored for these purposes. The names of these data are

_BYADDR", “_NETGROUP", "__ypsleeptime®, and
. % ypserv_timeout". Another exception is that at least one

compiler, gcc (from the Free Software Foundation), puts named

constant data into the instruction section. If the object file
was compiled by gcc, the first word of each named entry point

48 checked. If it is a link instruction, the entry point is

considered a function; otherwise, data.

The instruction insertion process of expansion means
5 will now be described in detail with reference to
Figs. 2 - 4. Fig. 2 shows a layout in storage media of a
relocatable object file 1 containing a section 12 of

10

15

20

25

30

35

WO 93/00633 2 1 1 1 9 5 8 | PCT/US92/04672

instructions 12a and data 12b. Section 12 is copied into a
block of memory allocated for the old object code table 20 (see
FILES.C, "Initialize"). Fach item in table 20 is indicated
generally by a horizontal line, and the byte location for each
jtem is shown to the left side (note: byte locations are. shown
in decimal); different items may have different lengths.
Expansion means 5 allocates memory for other tables, shown in
Fig. 3: a new object code table 30, a forward index table 40, a
forward control index table 50, and an inter-item offset

table 60, described below. Then, starting at the beginning of
the old object code table 20, each entry in table 20 is

processed.
Fig. 4 shows a general flowchart for the method

performed by expansion means 5. Block 100 indicates the
preparation of tables 20, 30, 40, S0 and 60, described above,
and block 110 indicates the step of identifying entry points to
functions (see INSERT.C, "FindFunctions"). Block 115 indicates
the expansion of all functibns; the details of the expansion
process perfotued on each function are shown in the loop
composed of blocks 120-190 (see INSERT.C, "DoOneFunction®).

' In step 120 of Fig. 4, the first item in the old
object code table is selected. Fig. 3 shows parts of memory
affected during steps 130 to 200 of the expansion process.
Locations (bytes) 1 to 125 of table 20 have already been
processed, and occupy locations 1 to 181 of new object code
table 30. The next entry (an object code instruction within a

“function, indicated by its mnemonic "BEQ +6") at location 126

in o0ld object code table 20 is then processed at step 130.°

‘This is a four byte instruction; it begins at location 126, and

the next instruction begins at location 126 + 4 = 130 -
(decimal). Two.opcodi bytes are shown simply as BEQ, and the
"e" ig a two byte offset pointing to the “RTS" instruction
beginning at location 132. Expansion means 5 forms a new code
block 33 (see INSERT.C, "“DoOnelInstruction"), containing just
the BEQ statement because no additional instructions or data
are inserted. The offset is indicated by a question mark in
table 30, because its new value is not yet known. Expansion
means 5 allocates the maximum of four bytes for the offset,

10

15

20

30

35

WO 93/00633 SR N

PCT/US92/04672

it

2111958 -

even though the original offset was only two bytes (and the BEQ

opcode is slightly modified to correspond to a four byte
offset). This is done because after expansion, the new offset
might be too large for the number of bytes of the previous

offset. o
Referring to Figs. 3 and 4 together, in step 140 the

location of the BEQ instruction within new object code table 30
(location = 182) is stored into location 126 of a forward index
table 40. In general, the new location of each byte of an
instruction is stored in table 40, but in this case, the only
entries that are significant are at location 126 of table 40,
which indicates that the BEQ statement now begins at location
182 of table 30, and location 128 of table 40, which indicates
that the-offset of the BEQ statement now begins at location 184
of table 30. The ellipses ("...") indicate that one or more
values are present but have no significance. For example,
location 129 of table 40 would correspond to the second byte of
the BEQ offset, at location 129 to table 20; however, the
offset gets expanded from two bytes to four, so the individual

bytes of the offset cannot be indexed separately.
' Next, in step 150, the location of new code block 33

(location = 182) is stored in forward index control table 50.
Even though there is space for the new locations for each byte
of the BEQ 6 statement, only the location of the beginning of
the statement is significant. Note that in some expansion
schemes, the preexisting instruction might always be located at

the beginning of the new code block, in which case the same
information would be recorded in both forward index table 40

-and in forward control index table 50; dual recordation of this

information would, however, be a waste of space. The best
approach; therefore, envisions a forward table which, as
explained above, may or may not need to include the two
separate sub-tables, forward index table 40 and forward control
index table 50.

. Next, in step 160, expansion means 5 determines that
this instruction contains an inter-item offset (an inter-item
offset is a reference to an instruction or datum expressed in
terms of its distance in bytes from a second instruction or

WO 93/00633 211195 B PCT/US92/04672

11

datum). This determination is made by examining the opcode of

the instruction (see INSERT.C, "RecordPcRelInstr"). Since this
instruction contains an inter-item offset, step 170 is
performed, whereby the old location of the offset (128 in table

$§ 20), the o0ld location of the base from which the offset was
measured (126 in table 20), and the old size of the offset (2
bytes) are all stored in inter-item offset table 60. For any
instruction which denotes the beginning of a switch table of
inter-item offsets, each offset is stored in table 60 as above,
10 with the beginning of the switch table entered as the base (see
INSERT.C, "DoSwitchTable"). In step 180 the loop 1s repeated
if any unprocessed items remain. Since there are still more
unprocessed items in table 20, step 190 selects the next itenm,
"Add 1, (AO)", and the loop is begun again at step 130.
- 15 Repeating steps 130-180, expansion means 5 forms a
new code block 35 from the add instruction and new instructions
a, 8, and 4, which in this particular case precede the add
instruction. This new code block is stored at location 188 of
| new object code table 30, with the add instruction located at
20 location 194. The location of the add instruction within new
object code table 30 (location = 194) is stored into location
130 of a forward index table 40. This indicates that the item
which was in location 130 of old object code table 20 is now in
‘location 194 of new object code table 30. The location of new
25 code block 35 within new chject code table 30 (location = 188)
~ is stored in location 130 of forward control index table 50.
This indicates that the new code block formed from the item
located at entry 130 of old object code table 20 is located at
entry 188 of new object code table 30. The add instruction
30 does not contain an inter-item offset, so nothing is entered

into table 60.
- ‘Now this cycle is repeated for the next item in old

. object code table 20, "RTS" (return from subroutine) at
| location 132. A new code block 37 is formed, but it is
15 determined that there are no new instructions to be inserted
with the return instruction, so new code block 37 consists only
of the return instruction. New code block 37 is stored at the
next available location within new object code table 30,

10

15

20

25

30

35

WO 93/00633 - o ka0 PCT/US92/04672

211195 2

location 198. The location of the return instruction within
new object code table 30 is stored into location 132 of forward
index table 40; the location of new code block 37 within new
object code table 30 is stored in location 132 of forward
control index table 50. Since the return instruction and new
code block 37 are the same, the number 198 gets stored iﬁto
location 132 of both index tables. In this example, the return
instruction does not contain an inter-item offset, so nothing
is stored in inter-item offset table 60. Unnamed constant data
is sometimes stored in between functions, after the last
instruction of a function and before the next entry point; it

may be processed as desired or simply copied directly into the

new object code table.
After steps 120-190 have been done for all items in

all functions, step 195 repeats the expansion process of blocks
120-190 for all named data. The expansion process is somewhat
simpler for data because it does not contain &ny offsets such
as handled by blocks 160-170. Next, in step 200, expansion
means 5 corrects the inter-item offsets (see PATCH.C,
npatchPcRel"). The inter-item offset table is examined, and
for each set of offset/base locations in that table, the inter-
jtem offset is patched by: first, adding the indicated offset
to its base to determine which item in old object code table 20
was targeted by the offset; next, looking up the new location
of the targeted item, using forward control index table 50 1if

the offset is used for program control transfer (such as a jump
or call), and using forward index table 40 otherwise; also,

- looking up the new locations of the offset and base, using

forward index table 40; and, finally, patching the offset in
new object code table 30 with the difference between the new
Yocation of the targeted item and the new location of the base.
~ In this particular example, step 200 involves the
of fset/base pair of 128/126. The offset is looked up at
ljocation 128 in table 20, where the value 6 is found. This is
added to the base of 126 to yield a target location of 132.
Because this offset is used in a program control transfer
statement (branch), the new target location is looked up 1in
table 50, which provides a new target location of 198. The new

' 30 thereby monitored, for the purposes of performing error

WO 93/00633 2 1 1 1 9 5 8 | PCT/US92/04672
13 -

offset and base locations are looked up in table 40, providing
a new base location of 182 and a new offset location of 184.
The difference of 198 minus 182, 16, 1s then stored at the new
offset location, 184. This process is repeated for all entries
5 1in table 60. |
Next, if the object file contains any symbol tables
or relocation tables which are to be corrected, these are
analyzed item by item in step 210, and corrected by replacing
old item locations with new item locations, as explained above
10 (see also PATCH.C, "“PatchTextReloc" and "PatchdataReloc"). The
new item locations are looked up in forward index table 40
(except for debugging symbols, the new locations for which are
looked up in forward control index table 50). A new object
code ‘file 1'.is.nqw'written, using the new object code table as
15 the data /instrudt{on section, using the new symbol and
relocation tables if corrected, and using the remaining

information from the old chject file 1.

—

20 This aspect of the invention is directed to a process of

tracking reads and writes of memory by an application program.
In the preferred embodiment, all object files of the
application program are processed by a memory monitor equipping
program that uses the above described expansion means and
25 data/instruction insertion process to insert a function call
‘before every instruction that includes a memory access, and
before some instructions that change the stack pointer. All or
..gubstantially all of the memory accesses of a given program
. (not including the memory accesses for instruction fetch) are

checking. All of the object code files for an executable
program are processed (excapt for a library of routines to be

added by the memory monitor equipping program), and
instructions are added to implement the monitoring scheme

35 described below. _
The general procedure of implementing a monitoring

scheme to discover errors in an executable program, by
modifying all of the object code files for the executable

10

15

20

25

30

35

WO 93/00633 N PCT/US92/04672

2111958 9

program, linking the modified program and then running it, is
ijllustrated in Fig. 5. A first object file or library for the
executable program is selected in block 300. If the file 1is
determined to be a simple object file rather than a library, in
block 310, then the object file is processed in block 320 to
implement a monitoring schieme, by the expansion process
described above; also, tunctions within the object file may be
renamed, as described below. If the file is determined to be a
library in block 310, then each object file that contributes to
the library is processed in block 330, in the same manner that
a simple object file is processed by block 320. Then, in block
340, the library is rebuilt from the modified object files.
After the object file or library has been processed, block 350
determines if any unprocessed files remain for the executable
file. If so, block 360 selects an unprocessed file and then
the steps of blocks 310-350 are repeated. Once it is
determined in block 350 that all files for the original
executable program have been processed, all necessary linkage
is performed in block 370, which may include linkage with an
extra library file including functions specially designed for
the'honitorinq scheme. The program is then executed in block
380; during this execution, the monitoring added by the
expansion process is performed.

In the memory access monitoring method of the
preferred embodiment, the expanded code establishes a memory
status array with an entry for most memory locations validly
accessible by the program, in which two-bit array entries are
allocated for each such memory location. Each entry indicates
the state of the corresponding memory location, and the state
can be one of the following three: (1) unallocated and
uninitialized (status bits = 11); (2) allocated and
uninitialized (status bits = 01); and (3) allocated and
initialized (status bits = 00). Before each preexisting
instruction that accesses memory or that can change memory
status, extra instructions are added to maintain the memory
status array, and to use the memory status array to check for
the errors of writing to unallocated memory and reading from
uninitialized or unallocated memory. A state transition

10

15

20

25

30

35

WO 93/00633 ' PCT/US92/04672

111953

diagram is shown in Fig. 6, which 1illustrates the three states
a memory location can have, and how states are changed.

State (1) is indicated by reference numeral 101; state (2),
102;'and state (3), 103. The first bit of a status code
indicates whether the memory location is unallocated; the
second bit indicates whether the memory location is
uninitialized. Memory locations in state 1 are unwriteable and
unreadable; those in state 2 are writable but unreadable; and
those in state 3 are writable and readable.

The status codes generally begin as 11 (state 1,
unallocated), and during execution of the modified application
program, change as follows: on a successful call to "malloc" (a
c memory allocation routine), the status bits for each byte are
set to 01; on a successful call to “free", the status bits for
each byte are set to 11; on a successful call to "realloc", the

‘status bits for the old memory are set to 11, and for the new,

to 01 (the bits for that part of the new memory that is
initialized from the old memory is set to 00). When the stack
pointer is decremented, the status bits for the bytes on the
stack now allocated are set to 01. When a byte is about to be
written, the first bit of its status bits is checked-- if the
bit ia'SQt. an error is signalled, else the readable bit is
cleared (since the byte will now be initialized). Similarly,
when a byte is about to he read, the second bit of its status
bits is checked-- if the bit is set, an error is signalled.
As a special case, when a byte is about to be copied from one

‘memory location to another, the read of uninitialized memory is
- allowed, but the destination is marked as uninitialized, so

that a copy operation on a structure with uninitialized bytes

such as those from compiler padding will not cause an error to

be signalled. In the preferred embodiment, status checking and
changing is handled by a group of speclalized runtime functions
which are called at the appropriate points.

Fig. 7 represents the entire 32-bit virtual address
space and is not to scale. The memory region 300 at the bottom

of the address space, which corresponds to the static
information in the program, begins and remains in State 3.

10

15

20

25

30

35

WO 93/00633 e PCT/US92/04672

16

9111958

Memory region 300 contains the instruction codes 301, the data
302, and the BSS data 303 (data loader-initialized to zero).
The bytes in heap 400, which are manipulated via the malloc,
realloc, and free functions, change state frequently. This
memory is in State 1 to start, then goes to State 2 when it is
malloc'd, and to State 3 once it has been written; it goes back
to State 1 when it has been freed. Memory region 500 1is
available to the stack. Memory 500 is in State 1 if it is
below the stack pointer. As the stack pointer moves down,
parts of this memory become "allocated", and are in State 2.
once the stack is written to the status goes to State 3. As
the stack pointer moves up, it goes back to State 1. It is
possible to treat every movement of the stack pointer as an
allocation or deallocation, and to call the same routines as
are called for malloc and free. This causes significant
performance degradation, however, because the stack pointer
changes frequently. A simplified way to track the status of
memory in this region with less status bit maintenance is to
compare the location of the referenced memory to the stack
pointer. Memory in this region and above the stack pointer is
looked up in the status bit table; memory in this region and
below the stack pointer is considered to be in state 1. The
method of stack pointer handling by the preferred embodiment
is: (a) On entry to a function, where a link instruction
allocates stack space for the function's local variables, a
call is inserted to mark this affected memory as state 2.

(b) When an argument is pushed onto the stack, a call is
inserted to mark the affected memory as state 3. (c) When the
stack pointer is incremented (reclaiming stack space) nothing
is done. This is tied to the method for looking up the status
bits for a given byte, which employs the rule, "if the byte is
on the stack, but below the stack pointer, then ignore the bit

"table, and use the state 1 (unallocatedq) bits." (d4d) Calls to

"alloca" are handled specially, and the affected memory is set

to status 2.
There is an additional complication for stack

variables. Optimizing compilers rearrange code to increase
performance; one of the optimizations that they make is to move

10

- 15

20

25

30

35

WO 93/60633 . 2111958 PCT/US92/04672

17

simple assignments out of loops. Sometimes this can result in
an uninitialized stack variable being accessed, but, the result
is not used. Unfortunately, a monitored program would not
determine that the result is not used, and would signal an
error. Such unnecessary signalling of errors is avoided by
inhibiting uninitialized stack variable checks in optimized
code by marking local variables in the optimized stack-frame as
initialized (i.e., in state 3).

The status bits for the memory from 0 to the top of
heap 400 are kept in a first bit-array; the status bits for
stack memory 500 are kept in a second bit-array. Virtual
memory outside of memory regions 300, 400, and 500 is obtained
for storing these bit arrays using the “mmap" system call. To
locate the status bits for an arbitrary byte at an address, the
method is: if the address is below the top of heap 400, then
the bit index is 2 times the address; if the address is in
stack memory region 500, then the bit index is the address
minus address of the bottom of stack region 500, then times 2;
otherwise, the address must be a special address, such as
shared memory, and is ignored.

The current state of a memory location could be
indicated without the use of status arrays. The value stored
at a memory location would indicate the status of that
location. One particular value would represent the unallocated
state (state 1), another particular value would represent the
allocated and uninitialized state (state 2), and all other
values would represent user data in state 3. Obviously,
however, single-byte values to not have a significant range, so
the values representing states 1 and 2 would often occur in
valid user data, causing errors to be incorrectly signalled.
This problem could be minimized by using two or four byte
sequences to indicate memory status, reducing the odds of

. random occurrence, but then single-byte access checking would

not be easily supported. For this reason, the use of one or
more separate status arrays is believed to be preferable.

The code for operating system routines does not get
linked into the user's program. This code 1s thus not

WO 93/00633 ERRTEL I O S , PCT/US92/04672

9111958 '8 A

available to be processed according to the invention, and the
memory status monitoring code cannot be inserted. For this
reason the monitor process must take special measures to track
system calls in which the operating system accesses the
5 program's memory directly. The same special measures are also
taken to track the heap management functions "malloc", "“free",
and “realloc".
These special measures are shown in Fig. 8, which
shows a process for intercepting all of the calls to a given
10 set of functions, by modifying the name of every definition
~ (usually there is only one) of these functions, and replacing
their old names with new names. Interceptor functions are then
‘provided under the old names; these interceptor functions
typically call the intercepted functions as well as having
15 other code. Given a function name, f, and its desired
replacemeht,-F, which must not have a longer string length than
f, each object file is scanned for external symbols (types
N TEXT and N_EXT) named f. For any such instances, the name F
is written over the name f. When the linker runs, the only
20 definition of f will be the interceptor function, and when the
program runs the interceptor function f will be called in place
of the original £, which has been renamed F. To support the
name of F being longer than f, the string table may copied and
extended, and then all of the old references, which are in the
25 symbol section, are patched into the new string table.

In the preferred embodiment the data sections of the
object code files are expanded with extra dummy entries between
each datum or array of data. These extra entries are assigned

30 the status of unallocated and uninitialized, and aid in the
detection of array bounds violations and similar data arrors.

The preferred embodiment also establishes a list of memory or
datum locations which are to be watchpoints with which more

comprehensive monitoring is to be performed. These additional
35 aspects of the preferred e¢nbodiment are described in more

detail below.
In order to detect many array bounds violations, 8

bytes of memory are allocated before and after each array 1in

10

15

20

25

30

35

CA 02111958 2001-11-16

Wu 93/00633 PCT/US92/04672

19

the heap, data and bss segments. These 8 bytes are marked as
State 1 (unallocated) so that if the program accesses off the
end of an array, it will access State 1 memory, and trigger the
signalling of an error. For heap arrays, the status bits are
set when the array is allocated. For statically allocated
arrays, a special 8 byte value (unlikely to be encountered
randomly) 1s inserted between each statically allocated datum.
When the monitored program starts execution, the statically
allocated memory is searched for occurrences of the 8 byte

value. The status bits for each such occurrence are set to

- state 1. The error signalling routine looks for the special 8

byte values to print more informative messages ("Array bound
violation", 1in place of "memory access violation"). Stack
arrays are not currently delimited with the 8 byte markers,
although they could be if so desired.

There are some further complications with this method
of tracking arrays, however. Occasionally, either the compiler
or the programmer computes the address of the end of an array
and uses 1t as an upper-limit pointer. If the array is defined
and the same file upper-limit pointer is used, then the
relocation information provided by the compiler is identical to
that provided for a reference to the beginning of the next
&rray.. In general, any link-time reference to an address
between two data could bec intended as either to the end of the
first datum or to the beginning of the second. When'the data
are separated, as described in the preceding paragraph, those
two points will no longer be identical. Almost always, the
reference 1s to the beginning of the second, and that
assumption can be made. It is possible to implement a check to

determine 1f the reference is used solely as an upper-limit

pointer or not, and have the reference patched . .accordingly.
Another alternative is to allow the programmer to suppress the
insertion of the 8 byte data separator in files that use an
upper-limit pointer for locally defined arrays.

Watchpoints are implemented by setting the read and
write status bits of the bytes to be watched to 11 (binary) and
by adding the location of the watchpoint to a watchpoint list.
When the error signallinc¢ routine is called, the address being

10

15

20

25

30

35

WO 93/00633

PCT/US92/04672

9111953 20

checked is compared against the list of current watchpoints.

If there is not a match, the error signalling routine continues
normally. If there is a match, then the status bits to be
manipulated are in a watchpoint-specific data structure, and
the error routine calls the watchpoint routine, which typically
prints a message, and returns without signalling an error.

The above described memory access monitoring of the
preferred embodiment is implemented by the methods illustrated
in Figs. 4 and 5, wherein the formation of new code blocks,
step 130 of Fig. 4, is performed according to the method
described hereinbelow witlh reference to Fig. 10, and wherein
function definitions of operating system routines that access
memory are intercepted as described above. Also, the original
initial entry point to the program is redefined to point to
monitoring setup code, which when finished, transfers to the
original initial entry point. The monitoring setup code is
thus the first code executed in the modified executable

program, and establishes the memory status arrays.

Referring to Fig. 10, for this formation of new code
blocks, block 130.1 determines the processing of the item

according to whether it is an instruction (part of a function)
or a datum. If it is a datum, blocks 130.2 to 130.4 copy the

‘datum into the new code block with a dummy entry before and

after, to enable the array bounds checking described above.
For instructions, it is determined in block 130.5 if they
access memory. If so, block 130.6 adds an instruction to push
onto the stack the memory address(es) to be accessed, and block
130.7 adds a call to the appropriate special runtime function
that will check and set the appropriate status bits as well as
signal errors and handle watchpoints. Finally, in block 130.8,
the item itself (the preexisting original instruction) is
copied into the new object code table, and the procedure of new
code block formation step 130 is completed. The remainder of
the method of modifying the executable program and monitoring
its execution is as described above with reference to Figs. 4

and 5.

WO 93/00633 " PCT/US92/04672

£ 111958

Alt ativ odj ts
Rather than being added through object code
processing, the instructions used to implement monitoring could
be added in a compiler based or precompiler based manner, both
5 of which have some advantages and significant disadvantages,
however. A compiler normally generates during compilation all
the necessary information to implement this monitoring; what 1is
lacking, basically, is for the compiler to add extra code as
illustrated in Fig. 10. The disadvantages of this approach are
10 that recompilation for error checking consumes much more time
than the above described object code processing, and that
source code access to all involved libraries is necessary to
ensure comprehensive and accurate error checking. A
precompiler based approach, which would insert extra source
15 code statements into source code files, would suffer all of the
disadvantages of a compiler based approach, although it would
have portability advantagaes.
Yet another alternative approach would be for the
invention to add the monitoring code directly into a previously
20 linked program. Since an executable program has the same basic
format as a relocatable object file, the program could be
processed as one large object file. This would entail a more
involved dead code analysis to distinguish data from
instructions, and there would be both relative and absolute

25 addresses to be updated rather than just relative addresses
(offsets). |

It is to be understood that the above description 1is
intended to be illustrative and not restrictive. Many other
30 embodiments will be apparent to those of skill in the art upon
| reviewing the above description. For instance, provisions for
shared memory could be made, such as with yet another bit
table, but the bit tables should then also be shared, and all
programs which access the shared memory should correctly
35 maintain the status codes. Also, another example of a

monitoring scheme especially suitable for implementation
tarough the above object code expansion would be standard
profiling. The scope of the invention should, therefore, be

3 [

i, PCT/US92/04672. ;.

0111958 -

22

WO 93/00633

determined with reference to the appended claims, along with
the full scope of equivalents to which such claims are

entitled.

10

15

20

25

30

| -

CA 02111958 2002-05-30

23

WHAT IS CLAIMED IS:

1. A method for inserting new instructions into a
computer program between preexisting instructions, said
method comprising the steps of:

a) providing an old object code table
containing the preexisting instructions;

b) providing a new object code table, an
inter-item offset table, a forward 1index table, and a
forward control 1ndex table, said tables being for
storing items in, said items having locations within said
tables;

C) performing the following steps for each
preexisting instruction in the old object code table:

1) storing a new code block into the new
object code table, said new code block comprising any
desired new instructions and the preexisting instruction;

11) storing the location of the
preexisting instruction within the new object code table
into the forward index table;

i11) storing the location of the new code
block within the new object code table into the forward
control index table; and

1v) for preexisting instructions which
contain an inter-item offset, 1ndicating the offset in
the i1nter-item offset table; and

d) for each inter-item offset 1indicated in
the inter-item offset table, updating the 1inter-item
offset, using the forward control 1ndex table for inter-
item offsets which are for program control transfer, and

using the forward i1ndex table otherwise.

10

l -
CA 02111958 2002-05-30

23a

2. A method for inserting new instructions 1nto a
relocatable object file having preexisting 1instructions,

data, and 1linking and debugging auxililiary structures

having at least some offsets associated with the

preexisting 1nstructions and data, said method comprising

the steps of.:

a) providing an old object code table, a new

object code table, an inter-item offset table, a forward

index table,

10

15

20

25

30

35

]

CA 02111958 2002-05-30

24

and a forward control index table, said tables being for
storing items in, said items having locations within said
tables;

b) copying the preexisting instructions and data of
the object file into the old object code table;

c) performing the following steps for each item in
the old object code table:

i) storing a new code block into the new object
code table, said new code block comprising any desired new
instructions and the itemn;

ii) storilic the location of the item within the
new object code table into the forward index table;

' iii) storing the location of the new code block
within the new object code table into the forward control index
table; and

iv) for items which contain an inter-item offset
pointing to a target and referenced from a base, indicating in
the inter-item offset table the locations of the target and
base within the old object code table and of the offset in the
new object code table, and modifying the item, if necessary, to
be consistent with a maximum-byte offset;

d) for each inter-item offset indicated in the inter-
item offset table, determining a forward location for the base
using the forward index table, determining a forward location
for the target using the forward control index table for
targets which are program control transfer destinations and
using the forward index table otherwise, and updating the
inter-item offset in the new object code table using the
forward locations of the base and target;

e) updating the offsets in the auxiliary structures;

and

f) creating a new relocatable object file comprising
the new object code table and the updated auxiliary structures

3. A method for inserting new instructions into a
relocatable object file having preexisting instructions, data,
and auxiliary structures, said auxiliary structures having at
least some offsets and comprising text relocation structures,

10

15

20

25

30

35

1o

CA 02111958 2002-05-30

25

data relocation structures, and symbol structures, said method
comprising the steps of:

a) providing an entry point table, a new object code
table, an inter-item offset. table, a forward index table, and a
forward control index table, said tables being for storing
items in, said items having locations within said tables;

b) providing an old cbject code table containing the
preexisting instructions and data of the object file;

c) for each symbol structure associated with a
function and having a function entry address, storing the

 function entry address in the entry point table, said entry

address indicating in the o0ld object code table a first
instruction of the function, the function also having a last
instruction, all items between the first instruction and last
instruction also being instructions of the function;

d) performing the following steps for each entry
address stored in the entry point table:

i) performing the following steps for each
preexisting instruction of the function indicated by the entry
address:

1) storing a new code block into the new
object code table, said new code block comprising any desired
new instructions and the preexisting instruction;

2) storing the location of the preexisting
instruction within the new object code table into the forward:
index table;

3) storing the location of the new code

block within the new object code table into the forward control
index table; and

4) for preexisting instructions that
contain an inter-item offset pointing to a target and
referenced from a base, indicating in the inter-item offset
table the locations of the target and base within the old
object code table and of the offset in the new object code
table, and modifying the preexisting instruction in the new

code block, if necessary, to be consistent with a maximum-byte
offset; and

10

15

20

25

30

S

CA 02111958 2002-05-30

26

1i) performing the following steps for
each 1item 1in the o0ld object code table after the last

preexisting instruction of the function indicated by the

entry address and before a closest next entry address:

1) copying the 1tem 1nto the new
object code table;

2) storing the location of the item
within the new object code table into the forward index
table;

e) for each inter-item offset indicated in
the 1inter-item offset table, determining a forward
location for the base using the forward index table,
determining a forward location for the target using the
forward control i1ndex table for targets which are program
control transfer destinations and using the forward index
table otherwise, and updating the inter-item offset in
the new object code table using the forward locations of
the base and target;

f) updating offsets in the auxiliary
structures; and

g) creating a new relocatable object file
comprising the new object code table and the updated

auxiliary structures.

4 . A method of modifying a computer program to
have the ability to monitor most of its own memory
accesses, sald computer program having preexisting code
items, said method comprising the steps of

a) for most preexisting code items the
performance of which involves a memory read, adding
memory read monitoring code located so that it will be
executed each time the memory read preexisting code item

1s executed; and

10

15

20

25

30

CA 02111958 2002-05-30

27

b) for most preexisting code items the

performance of which 1involves a memory write, adding

memory wrlite monitoring code located so that it will be

executed each time the memory write preexisting code item

i1s executed.

5. The method of claim 4, wherein the computer

program has a structured representation constructed by a

compller, and whereiln

a) preexisting code 1tems the performance of

which 1nvolves a memory read or a memory write are

ldentified by examining the structured representation;

and

b) sald structured representation 18

augmented to 1include the memory read monitoring code and

the memory write monitoring code.

6 . A method for modifying a computer program to

have the ability to monitor most of its own memory

accesses, whereln memory access types 1include read and

write, sailid method comprising the steps of:

performing the following steps for substantially all

relocatable object files for the program, sald

relocatable object files containing 1instruction items of
preexisting object code, said instruction items having
locations within the preexisting object code:

a) providing a new object code table for
storing i1tems 1in;

b) storing, for each instruction item in the

preexisting object code, a new code block into the new

object code table, said new code block comprising the

item and

10

| .

CA 02111958 2002-05-30

28

1) memory read monitoring code for items
the performance of which involves a memory access of a
read type; and
il) memory write monitoring code @ for
items the performance of which 1nvolves a memory access
of a write type;
C) updating offsets 1n the new object code
table;
d) creating a new relocatable object file

comprising the code items from the new object code file.

10

15

20

25

o

CA 02111958 2002-05-30

29

7. The method of claim ¢, wherein said computer program
is capable of accessing a set of memory regions, said method
further comprising the step of

adding code to establish memory access status
information for substantially all memory locations in the set
of accessible memory regions, said status information
indicating three states of dynamically allocated'memory, said
states being allocated-and-initialized,
allocated-and-uninitialized, and unallocated; and

wherein

the storing step comprises

i) adding allocation indicating code for items
the performance of which would involve allocating memory, said
code updating the status information for the allocated memory
to be in the allocated-ard-unitialized state;

ii) adding deallocation indicating code for
items the performance of which would involve deallocating
memory, said code updating the status information for the
allocated memory to be in the unallocated state;

iii) for adding memory read monitoring code,
adding code to signal an error if the accessed memory is not in
the allocated-and-initialized state;

iv) for adding memory write monitoring code,
adding code signalling an error if the accessed memory is in
the unallocated state, otherwise updating the status
information for the allocated memory to be in the allocated-
and-initialized state if the accessed memory is not in the
unallocated state.

10

15

20

25

30

35

. .

CA 02111958 2002-05-30

30

8. A computer implemented method for producing a
set of modified machine instructions from a set of
preexisting machine instructions, said set of modified
machine instructions having the ability to maintain
memory status information for a region of memory and
having the ability to check memory accesses to said
region of memory, said set of preexisting machine
instructions corresponding to a set of preexisting memory
accesses to region of memory, said memory status
information indicating at least two memory states, said
at least two memory states including an allocated state
and an unallocated state, sald allocated state
corresponding to a memory location allocated by a
computer program, and said unallocated state
corresponding to a memory location not allocated by said
computer program, said method comprising the steps of:

providing in a computer storage medium, status
information maintenance machine instructions, wherein

at least a first portion of said status
information maintenance machine instructions is for being
executed in conjunction with memory allocation code, and
for updating to said allocation state said status
information for memory allocated within said memory
region by said memory allocation code, and

at least a second portion of said status
information maintenance machine instructions is for being
executed in conjunction with memory deallocation code,
and for updating to said unallocated state said status
information for memory deallocated within said memory
region by said memory deallocation code;

providing, in a computer storage medium, memory
access checking machine instructions for being executed
in conjunction with a memory access instruction, for
checking said status information for memory within said
memory region accessed by said memory access instruction

and for reporting an error if said status information for

10

15

20

25

30

S

CA 02111958 2002-05-30

31

sald accessed memory indicates said unallocated state;
and

modifying said set of preexisting machine
instructions to producé in a computer storage medium said
modified set of machine instructions including said
status information maintenance machine instructions, said
memory access checking machine instructions, and
instructions corresponding to at least a subset of said

set of preexisting machine instructions.

9. The computer implemented method of claim.B;
wherein said step of providing said status information
maintenance machine instructions comprises providing
status information maintenance machine instructions for
maintaining at least a portion of said memory status

information in a table having entries indexed by memory
address.

10. The computer implemented method of claim 8,
wherein said step of providing said status information
maintenance machine instructions comprises providing
status information maintenance machine instructions for
storing any of a first predetermined set of bit patterns
in memory allocated by said memory allocation code, and
for storing any of a second predetermined set of bit
patterns in memory deallocated by said memory
deallocation code.

11. The computer implemented method of claim g,
wherein memory access types include read and write,
wherein said allocated state further includes an
allocated-and-initialized state and an allocated-and-
uninitialized state, said allocated-and-initialized state
corresponding to a memory location allocated by said
computer program and initialized by having data for said
computer program but not having data for said computer
program written thereto, said at least some preexisting

10

15

20

25

30

35

do

CA 02111958 2002-05-30

32

memory access instructions including a set of memory
write instructions, for which performance would involve a
write access to memory, said at least some preexisting
memory access instructions further including a set of

memory read instructions, for which performance would
involve a read access to memory, wherein

sald step of providing memory access checking
code comprises:

providing memory write checking machine
instructions for updating said status information, for
memory in said memory region and accessed by a memory
write instruction, from said unallocated state to said
allocated-and-initialized state, and

providing memory read checking machine
instructions for signalling an error when memory in said

memory region and accessed by a memory read instruction
is not in said allocated-and-initialized state; and

said step of modifying said set of preexisting
machine instructions further comprises:

for each memory write instruction of said set
of memory write instructions, said each memory write
instruction corresponding to a memory write access,
modifying said set of preexisting machine instructions to
execute said memory write checking machine instructions
when said memory write access is performed, and

for each memory read instruction of said set of
memory read instructions, said each memory read
instruction corresponding to a memory read access,
modifying said set of preexisting machine instructions to
execute said memory read checking machine instructions

when said memory read access 1s performed.

12. The computer implemented method of claim 11,
wherein said step of providing said status information
maintenance machine instructions comprises providing
status information maintenance machine instructions for

maintaining at least a portion of said memory status

CA 02111958 2002-05-30

33

information in a table having entries indexed by memory

address.

13. The method of claim 11, wherein said step of

providing said memory access checking machine

5 instructions comprises providing memory access checking
machine instructions for checking for at least some of
said status information as a predetermined bit pattern

stored in said accessed memory.

14. A computer implemented method for producing a
10 set of modified machine instructions from a set of
preexisting machine instructions, said set of modified
machine instructions having the ability to maintain
memory status information for a region of memory and
having the ability to Check*memory accesses to said
15 region of memory, said set of preexisting machine

instructions comprising a set of preexisting memory
access instructions corresponding to a set of preexisting

memory accesses, said set of preexisting memory access
instructions comprising a first group of at least some
20 memory write instructions, for which performance would
involve a write access to memory, said set of preexisting
memory access instructions further comprising a second
group of at least some memory read instructions, for
which performance would involve a read access to memory,
25 said memory status information indicating at least two
memory states, said at least two states including an
initialized state and an uninitialized state, said
initialized state corresponding to a memory location
initialized by having data for a computer program written
30 thereto, said uninitialized state corresponding to a
memory location not having data for said computer program
written thereto, said method comprising the steps of:
providing, in a computer storage medium, memory
write monitoring machine instructions for updating said
35 status information, for memory in said memory region and

IR
CA 02111958 2002-05-30

34

accessed by a memory write instruction, from said
uninitialized state to said initialized state;

providing, in a computer storage medium, memory
read checking machine instructions for signalling an
5 error when memory, in said memory region and accessed by
a memory read instruction, 1s not in said initialized
state;
modifying said set of preexisting machine
instructions to produce in a computer storage medium said
10 modified set of machine instructions, by
for each said memory write instruction,
corresponding to a memory write access, modifying said
set of preexisting machine instructions to execute said
memory write monitoring machine instructions when said
15 memory write access is performed, and
for each said memory read instruction,
corresponding to a memory read access, modifying said set
of preexisting machine instructions to execute said
memory read checking machine instructions when said

20 memory read access is performed.

15. ‘The computer implemented method of claim g,9,
10, 11, 12, 13 or .14, " wherein sald set of modified
machine instructions are in relocatable machine
instruction format, said step of modifying said set of
25 preexisting machine instructions further comprising the
steps of:
linking a set of relocatable object files with
said set of modified machine instructions to form an
executable computer program; and

30 executing said executable computer program.

16.. The computer implemented method of claim 8,
9, 10, 11, 12, 13 or 14, wherein said set of preexisting
machine instructions and said set of modified machine
instructions are in executable machine instruction

35 format, wherein an executable computer program comprises

I
CA 02111958 2002-05-30

35

sald set of modified machine instructions, said method
further comprising the step of executing said executable

computer program.

WO 93/00633 ' ' 2111958 PCT/US92/04672
/8
|
(_ | ;
Fl6. [

INSTRUGTION

RELOCATION
STRUCTURES

DATA
RELOCGATION
STRUGTURES

SUBSTITUTE SHEET

PCT/US92/04672
WO 93/00633 2111958
217 -
30
0~_ 1
122
126 BEQ : ©
130 ADD 1, (AQ)
132 RTS
36 | —
38 | —
401 so]
ey — 122 S—
126 | 182 183 ; 184
130 | 84

132 | 198 . .. 132

136
138

40

60\ —e

128 : 126 : 2

SUBSTITUTE SHEET

WO 93/00633 . 211 1 958" PCT/US92/04672
3/

100

PREPARE
TABLES 120

d0 (""" SELECT FIRST
. - - ITEN
LOCATE

ENTRY POINTS
(FUNGTIONS)

NEXT |90
130 ITEN

140

FORM & STORE
NEW GODE BLOCK

o

l
!

PROGESS
FUNCTIONS

STORE LOGATION

195 OF ITEN

..

PROGESS

DATA 150

STORE LOCATION OF
NEW CODE BLOCK

~n
=

CORRECT
OFFSETS

210

CORRECT SYMBOLS
AND RELOCATION

= - -~ - _..__.._.._-__._..___l_.|_'

YES

STORE LOCATION
OF OFFSET(S)

170

-~

STRUGTURES

220

WRITE NEW AND_BASE
= 180
WS @ NO
FlG. 4.

SUBSTITUTE SHEET

WO 93/00633 21119538 PCT/US92/04672

4/8
300

SELECT FIRST OBJECT
FILE OR LIBRARY

S _~~ LIBRARY
FILE?

310
YE
. 330 190 360
PROCESS NEXT
EACH OBJECT FILE - PROCESS FILE
WITHIN LIBRARY 0BJECT FILE

340

REBUILD
LIBRARY

‘4

~ 350
AL FILES N0
PROCESSED?
YES
370

SUBSTITUTE SHEET

WO 93/00633 S/ 2 1 1 1 9 5 8 PCT/US92/04672

UNALLOCATED (UNWRITEABLE AND UNREADABLE)
STATE |, STATUS BITS= I

INITIALIZE

102~ LOGATED-AND-UNINITIALIZED (WRITEABLE AND UNREADABLE)
STATE 2, STATUS BITS=0!

F1G. 6.

0t

103
ALLOGATED-AND- INITIALIZED (WRITEABLE AND
READABLE). STATE 3, STATUS 8iT5-00

ref fo f

ref to f \ def of f
Linker matches these with ftc
NORMAL LINK

ref fof t
def-of-f def of F

speciol intercept definition of f
/ (typically calls F ot seme peint)

Link offer speciel processing
FlG. &.

SUBSTITUTE SHEET

WO 93/00633 211195 8 PCT/US92/04672
: 618

OxffEEfEEE

N

SUBSTITUTE SHEET

2 1 1 1 9 5 8 PCT/US92/04672

413

WO 93/00633

J18ViN333

\\i/

b}

RNDIQ AUOZIY AN

I Al AU AU
0"3qY oMy 0Ny 013y

A

iy

0
Sy YOIy $194

023 M0y

L

3

NOLNIANI SNISO QTing

6 I

NN |

GNUINGO SNITBNESSY NOLLNJAN

318viM3X3

oqy opdy 09y oY

$0 .
74 BRI L ! B

g1

>
Yol

2l
728

e N

SUBSTITUTE SHEET

WO 93/00633

7/% - 211 19 58 PCT/US92/04672
130

1S THE
ITEN AN
INSTRUCTION?

ADD DUNNY
ENTRIES

130.5

DOES

ITEM ACCESS
NEMORY?

YES

l
|
i
I
|
|
l
|
|
i
I
|
!
{
I
I
|
]
|
l
|
|
|
!
A
|
|
|
ADD INSTRUCTION '
) PUSH ADDRESS(ES) .
~ ON STACK :
|

I

|

|

|

I

|

|

}

:

\

!

|

!

|

|

|

\

!

\

|

ADD INSTRUCTION
TO CALL RUNTINE
FUNCTION TO CRECK

BITS

SUBSTITUTE SHEETY

. - POV . EEE | - - S DR \'\ . N x 'l"’ ‘\ L 1. cq o . . | b . |
-\ . N B N “h.w N AL T] r\ - Lot . .. ?"\ P . . N . . . ‘ : 5 A L I . -H iy Ny . L . b
h .\“ | B R ' ‘.\:.‘-\ ‘\ \\ .\\’S“ " . “ \ . . o . . N\, <. : 's "\ ¥ . _‘\‘ . ‘. . . - . ' _ N
' v N . \ =N T \ s, LI v \ l’% t ot .. A R \ h B " & . | : | ') ‘
"y * \\\a\-\s. . '..-] .\\0Q~.\(~\- \‘ v LA ,}- .o ~ . . N . TN t"l\ }& \\\ A o N " | .) iy |
. ' a N ‘. > 3‘ ‘ LI R Y “ I S D ‘ k; - . . s LY [L N . - \ “w 'y &N % K - o \.‘ PR *_\ A " . ' ~ \.‘ |) | |

PREPARE

100

TABLES

LOCATE
ENTRY POINTS
(FUNGTIONS)

PROGESS
FUNCTIONS

PROGESS
DATA

CORRECT
OFFSETS

=

110

on

195

210

CORRECT SYMBOLS
AND RELOGATION

STRUCTURES

WRITE NEW
0BJECT
CODE FILE

220

[
!

= m

[= - - - """""‘---"‘——""""-“"“l" i

20

""" SELECT FIRST
[TEM

NEXT 190
130 ITEN
FORM & STORE
40

!
l

NEW CODE BLOCK

STORE LOGATION J
OF ITEM

Lo ..

150
STORE LOGATION OF
NEW GODE BLOCK
@ I6U
m
YES
! 170
STORE LOCATION

OF QFFSET(S)
AND BASE

180
S ® N0

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - abstract drawing

