Office de la Propriete Canadian

Intellectuelle Intellectual Property
du Canada Office

Un organisme An agency of
d'Industrie Canada Industry Canada

CA 2393035 A1 2004/01/11

(21) 2 393 035

12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION

(13) A1

(22) Date de depot/Filing Date: 2002/07/11
(41) Mise a la disp. pub./Open to Public Insp.: 2004/01/11

(51) Cl.Int.”/Int.Cl.” GOBF 9/44 GOBF 9/45

(71) Demandeur/Applicant:

IBM CANADA LIMITED-IBM CANADA LIMITEE, CA

(72) Inventeurs/Inventors:
SALTER, CRAIG, CA;

LAU, CHRISTINA P., CA
(74) Agent: SAUNDERS, RAYMON

D H.

(54) Titre : CONVERSION DE FICHIERS EN LANGAGE DE BALISAGE

(54) Title: CONVERTING MARKUP LANGUAGE FILES

400

f START) /

402

RECEIVE INPUT HTML FILE

_ 3

404

EMBED TAGS

| (REGIONAL AND VALUE TAGS)

406

FILE

PROCESS "TAGGED" INPUT HTML

;

408
FILE(S)

OUTPUT XML FILE AND XSL

(57) Abrége/Abstract:

The invention provides for the separation of formatting and content data in a first markup file (e.g., an HTML file) so that a
second markup language file (e.g., an XML file) containing the content data and formatting or presentation data file (e.g., an XSL
file) can be created. Content data in the first file that Is to be converted is tagged. The tagged data may be included in an HTML
file. The Invention processes the tagged data so that content data Is identified and used to generate a file in the second format
(e.g., an XML file). The presentation or formatting data Is also identified and used to generate the presentation data file (e.g., an
XSL file). The invention can be employed to convert the existing data files (e.g., HTML files) into files which are separated into
content data files (e.g., XML files) and presentation data files (e.g., XSL files).

C an adg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

OPIC - CIPO 191

OPIC

B
.
'
e
ok [[f
BTN .
N "'c‘-‘-.u:-:{\: e L~
Bo
.
.

A7 /7]
o~

10

CA 02393035 2002-07-11

CONVERTING MARKUP LANGUAGE FILES

ABSTRACT

The invention prOvides for the separation of formatting and content data in a first markup
file (e.g., an HTML file) so that a sécond markup language file (e.g., an XML file) containing the
content data and fonnatting or presentation data file (e.g., an XSL file) can be created. Content data
in the first file that is to be converted is tagged. The tagged data may be included in an HTML file.
The invention processes the tagged data so that content data is identiﬁed and used to generate a file
in the second format (e.g., an XML file). The presentation or formatting data is also identified and
used to generate the presentation data file (e.g., an XSL file). The invention can be employed to
convert the existing data files (e.g., HTML files) into files which are separated into content data
files (e.g., XML files) and presentation data files (e.g., XSL files).

CA9-2002-0040

T —— VR G Rl — =

10

15

20

25

CA 02393035 2002-07-11

CONVERTING MARKUP LANGUAGE FILES

FIELD OF THE INVENTION

The invention relates generally to the conversion of files from one format to another and,

more particularly, relates to converting markup language files from one format to another.

BACKGROUND OF THE INVENTION

The Internet and, more particularly, the world wide web (WWW) portion, has developed
tremendously over the past decade. The development of the WWW 1is now one of the primary
means for people and various organizatiohs (e.g., companies, not-for-profit organizations,
individuals, etc.) to communicate and contact persons or other organizations. The interaction
between a web site provider and a reader may be predominately one-way (e.g., data flowing

predominately from the web site provider to the reader) or two-way.

As a result of the explosive development and use of the WWW, the use of markup
languages has become quite common. Most common amongst these 1s the HyperText Markup
Language (HTML). Many web sites are simply a collection of hyperlinked (or “linked”) HTML
files. The individual HTML files typiéally include both content (e.g., information that is being
conveyed to the reader) and formatting information (e.g., display data used to format the visual
characteristics of the content on a screen). There has been some use of stylesheets (a stylesheet 1s a
file that is used to store margins, tab s, fonts, headers, footers and other layout settings for a
particular category of document. When a style sheet is selected, its format settings are applied to all
the documents created uhder it, saving the page designer or programmer from redefining the same
settings over and over again for each page) to generate web sites but the use of these stylesheets is
not particularly common and certainly not widespread. Implementations of stylesheets for HTML
include the Cascading Style Sheets (CSS) language. '

CA9-2002-0040 | 1

AP re mch s i e, S) . b A e areere e e Aerrrrre e v sk = e—a s 8 e e ey, ¢ ——— e NS WA 14

10

15

20

25

CA 02393035 2002-07-11

HTML files requested by a user of web browser (e.g., Netscape Navigator, Microsoft
Internet Explorer, Opera, Mozilla, etc.) are parsed by the web browser to generate (i.e., render) the

visual display of data presented on the display device of the user (e.g., CRT, LCD display, etc.).

Resulting from the ubiquity of web browsers, the use of the WWW and HTML files, many
people (often non-computer programmers/developers) have developed an understanding of HTML

and, to a lesser extent, CSS.

Recently, the use of the eXtensible Markup Language (XML) has become .more common
and is expected to become the lingua franca of the WWW particularly and the Internet generally in
the near future. XML is used for defining data elements on a Web page and business-to-business
documents. It uses a similar tag structure as HTML; however, whereas HTML defines how
elements are displayed, XML defines what those elements .'contain. HTML uses predefined tags, but
XML allows tags to be deﬁned by the xdeveloper of the page. Thus, virtually any data items, such as
product, sales rep and amount due, can be identified, allowing Web pages to function like database
records. By providing a common method for identifying data, XML supports business-to-business
transactions and is expected to become the dominant format for electronic data interchange.

However, XML can also be used to generate HTML files that can be displayed by web browsers.

Similar to the relationship between CSS and HTML, the eXtensible Stylesheet Language
(XSL) relates to XML. XSL is commonly applied to the task of transforming XML data into HTML

data that is suitable for presentation in a web browser through use of an eXtensible Stylesheet

Language Transformation (XSLT) processor. A web developer that chooses to make use of XSL
needs to be able to write XSL code that will proCess XML data to produce a visually appealing web
page. In order to write this code, an XSL programmer will typically work from an HTML template.
This HTML template provides an example to the XSL programmer of the kind of result that the
transformation should produce. This HTML template may be created from scratch by the developer
(or perhaps by a graphic designer or other non-computer programmers) most often using a
WYSIWYG HTML editor. Often in cases where developers are migrating from other technologies
to XML/XSL these HTML templates will already éxist. After acquiring an appropriate HTML

CA9-2002-0040 ' 2

10

15

20

CA 02393035 2002-07-11

template the XSL programmer is faced with the task of writing the code to present the XML input
in the form specified by the HTML template.

The most common approach that is currently used to perform this task of creating the XSL
data involves copying ‘ sections of HTML code into XSL template bodies. This approach suffers
from the fact that the presentation logic (HTML tags) and the data logic (XPaths, etc.) are jumbled
together. Because the | HTML code i1s now broken into dispersed fragments, a WYSIWYG editor
can no longer be used to maintain the HTML code. Similarly the concerns of presentation and data

logic can no longer be divided and assigned to different parties.

Additionally, since much of the creation of content and formatting data contained within
HTML files is created by non-computer programmers (e.g., graphic designers, content creators,
etc.), requiring these creators to learn, understahd and develop XSL code is a monumental
undertaking. Additionally, the number of developers available that have a cornpetént understanding

of XSL, XML and HTML to generate XSL so that XML files can be used to generate HTML files

is not sufficient.

At least two approaches to the problems noted above in converting XML data into HTML
data files are known to the inventors of the present application . In the first approach as described
above, HTML data and XSL data are mixed into.a single file. However, this approach has some
significant drawbacks. Notably, the mixed HTMIL/XSL file cannot be mailitained ' or edited using
known WYSIWYG HTML editors. In the secoild approach, using an HTML template, the HTML
template 1s processed to generate XSL code. This second approach while having certain advantages

over the first, also has some notable shortcomings.

Accordingly, it would be desirable to provide solution which addresses these shortcomings,

at least in part.

CA9-2002-0040 3

10

15

20

25

CA 02393035 2002-07-11

SUMMARY OF THE INVENTION

The present invention is directed to providing for the conversion of markup language files

or data.

The invention provides for the separation of formatting and content data in a first markup
file (e.g., an HTML file) so that a second markup language file (e.g., an XML {file) containing the
content data and formatting or presentation data file (e.g., an XSL file) can be created.

Content data in the first file that 1s to be converted 1s tagged. The tagged data may be
included in an HTML file. The invention processes the tagged data so that content data is identified '
and used to generate a file in the second format (e.g., an XML file). The presentation or formattihg
data is also identified and used to generate the presentation data file (e.g., an XSL file). The
invention can be employed to convert the existing data files (e.g., HTML files) into files which are

separated into content data files (e.g., XML files) and presentation data files (e.g., XSL files).

In one aspect of the present invention there is provided encouragement to move from the
HTML-centric space where content and presentation data are combined to the XML, XSL-centric
space which separates the content from the presentation data. The XML data can then be used

purposes other than the simple generation of HTML files using an XSLT processor.

Advantageously, content creators can continue to use their skills and tools which are
directed towards HTML. Embodiments of the invention are able to transform the HTML files into
XML and XSL files thus providing a separation between style (1.e., presentation or formatting) and

data (e.g., content).

Advantageously, the inventors have recognized that the second approach described above
requires significant development complexity in that the XSL processor must handle two inputs - the
original XML file and the processed HTML file. This results in more complicated XSL code.
Additionally, the second approach requires additional CPU time at runtime which caﬁ be a
significant detriment. Specifically, at runtime, the XSL processor must manipulate both the XML
and HTML files. In a further shortcoming recognized by the present inventors, the second approach

CA9-2002-0040 - 4

10

15

20

25

CA 02393035 2002-07-11

includes much of the code in the HTML template file. Unfortunately, many common XSL
processors/compilers have been developed to pre-compile XSL code into Java to improve service
side performance. By including much of the code in the HTML file which the XSL processor must
handle in conjunction with an input XML file, the benefit of this pre-compilation into Java is lost.
The present invention; in some embodiments, only a single input (e.g., an XML file) is required.
Moreover, the inventidn provides. improved runtime performance since much of the computation
(e.g., CPU time) that is required can be performed 'at. development time (e.g., by a developer) rather
than at runtime which would result in users desiring to view the HTML generated from an XML

Input receiving a quicker response to their request.
Other advantages and aspects will be apparent to those of ordinary skill in the art.

In. accordance with an aspect of the present invention there is provided a method for
converting a first markup file to a second markup file, said method comprising generating said
second markup file from data elements extracted from said first markup file using tags in said first
markup file; and generating a conversion file using tags in said first markup file, said conversion
file, when processed with said second markup file, adapted to generate a third markup file similar

to said first markup file.

In accordance with another aspect of the present invention there is provided a computer
readable media product storing data and instructions, said data and instructions, when processed by
a computer system adap.t said computer system to convert a first markup file to a second markup
file, said conversion comprising generating said second markup file from data elements extracted
from said first markup file using tags in said first markup file; and generating a conversion file
using tags in said first markup file, said conversion file, when processed with said second markup

file, adapted to generate a third markup file similar to said first markup file.

In accordance with still another aspect of the present invention there is provided a method
for converting a first markup file to a second markup file, said method comprising means for
generating said second markup file from data elements extracted from said first markup file using

tags in said first markup file; and means for generating a conversion file using tags in said first

CA9-2002-0040 5

o A H"NM”M*WMWWWWWM - -—rtau. e s . .. e T L TR PR Ay s = = = = amm e SR B s o ke o

CA 02393035 2002-07-11

markup file, said conversion file, when processed with said second markup file, adapted to generate

a third markup file similar to said first markup file.

Other aspects and features of the present invention will become apparent to those ordinarily
skilled in the art upon review of the following description of specific embodiments of the invention

5 in conjunction with the accompanying figures.
BRIEF DESCRIPTION OF THE DRAWINGS
In the figures which illustrate an example embodiment of this invention:
FIG. 1 schematically illustrates a computer system embodying aspects of the invention;

FIG. 2 schemati\cally illustrates, 1n greater detail, a portion of the computer system of FIG.
10 1; '

FIG. 3 illustrates, in functional block form, a portion of FI1G. 2;
FIG. 4 is a flowchart of exemplary operations of the computer system of FIG. 1;

FIG. 5 is a flowchart illustrating more detailed operations performed during the operations

illustrated in FIG. 4;
15 FIG. 6 is an exemplary illustration of a rendered HTML file;

FIG. 7, which comprises FIGS. 7A and 7B due to space limitations, 1s the HTML source

code 1llustrated in rendered form in FIG. 6;

FIG. 8 illustrates the modifications performed on the HTML source file of FIG. 7 resulting

from some operations illustrated in FIG. 4;

20 FIG. 9, which comprises FIGS. 9A a:nd 9B due to space limitations, illustrates an XML file,
forming part of FIG. 3, generated during the operations of FIG. 4 on the HTML source file of FIG.
7

CA9-2002-0040 :

. " o ABAM: & emp aE e e . e R e e ——_— — - g g = P p— - . . .
mmmwm,ﬁw Ty e \“WWMWWWWWM‘ e i - A - Ll LT Sk S AR A s et i B A TP T g | YA CAdge g A PRI W el iie e e ve e L R s M S IS wp— S S (VRN P VR W U i S— .~ B T [i
] . . ~ -

10

15

20

25

CA 02393035 2002-07-11

FIG. 10 illustrates a first XSL file, forming part of FIG. 3, generated during the operations
of FIG. 4 on the HTML source file of FIG. 7;

FIG. 11, which comprises FIGS. 11A and 11B due to space limitations, illustrates a second
XSL file, forming part of FIG. 3, generated during the operations of FIG. 4 on the HTML source

file of FIG. 7: and

FIG. 12 illustrates an XML file used during the operations of FIG. 4.

DETAILED DESCRIPTION

It is to be understood that the particular orders of steps or operations described or shown
herein are not to be understood as limiting the scope of the general aspects of the mvention
provided that the result for the intended purpose is similar. As will be understood by those skilled
in the art, it is often possible to perform steps or operations in a different order yet obtain the same
result. This is often particularly true when implementing a method of steps or operations using

computer technology.

To better understand the various portions described below, a general overview is provided
so as to provide an overall context for ease of understanding. It is to be understood that this

overview is exemplary of an embodiment of the invention is not to be limiting on the scope of the

ivention.

In overview, an HTML file is input to the HTML-XML-XSL processor (hereinaﬂer the
“code generator”) which generates -the XML and XSL code which separates the content and
presentation data (or logic) contained within the HTML file. In many instances, the input HTML
file will be a “skeleton” or template HTML file with 'little or no content data.

Initially, portions or regions of the input HTML file are marked to identify those sections
that are to be processed by the code generator. In the exemplary embodiment, two different tags are

used: a Regional tag; and a Value tag. The Regional tag identifies a section of the input HTML file

CA9-2002-0040 , 7

10

15

20

25

CA 02393035 2002-07-11

that are used for a pafticular task (e.g., generating and populating a table). For each regional tag
added to the input HTML file, an XSL template will be created. In addition to the regional tags,
value tags are embedded in the input HTML file and identify the position of where a data value

- should be substituted during runtime processing of the generated XML and XSL files by the XSLT
processor (the XML and XSL files created by the code generator). In the XSL file created by the

code generator, each value tag will be used to define a template. The templates created by the code

generator (one for each of the region tags and value tags) form part of the XSL file that 1s created

by the code generator.

The tags embedded in the input file can be created either by user mput received by code
generator or created by the code generatdr itself. In the latter embodiment, 1t may be preferable for
the automatically created to tags (i.e., those tags embedded in the mmput HTML file by the code
generator) to b-e verified as satisfactory by receipt of user confirmation data - e.g., receiving user

input indicating acceptance of the embedded tags.

Given the general overview provided above, the description of the various components of
the embodiments of the invention described herein can now be better understood by those of

ordinary skill in the art. '

An embodiment of the invention, computer system 100, is illustrated in FIG.1. Computer
system 100, illustrated for exemplary purposes as a networked computing device, is in
communication with other networked computing devices (not shown) via network 108. As will be
appreciated by those of ordinary skill in the art, network 108 may be embodied using conventional
networking technologies and may include one or more of the following: local area networks, wide
area networks, intranets -public Internet and the like. Computer system 100 may interact with other
networked computer systems (not shown) thus providing the functions descnbed herein in a
distributed environment. That is, although throughout the descrlptlon herein an embodiment of the
invention is 1llustrated with aspects of the 1nvent10n embodied solely on computer system 100, as
will be appreciated by those of ordinary skill in the art, aspects of the invention may be distributed

amongst one or more networked computing devices which interact with computer system 100 via

CA9-2002-0040 o g

10

15

20

25

CA 02393035 2002-07-11

one or more data networks such as, for example, network 108. However, for ease of understanding,

aspects of the invention have been embodied in a single computing device - computer system 100.

Computer system 100 includes processing system 102 which communicates with various
input devices 104, output devices 106 and network 108. Input devices 104, two of which are
shown, may include, for example, a keyboard, a mouse, a scanner, an 1imaging system (e.g., a
camera, etc.) or the like. Similarly, output devices 106 (only one of which is illustrated) may
include displays, information display unit printers and the like. Additionally, combination
input/output (/O) devices may also be in communication with processing system 102. Examples of
conventional I/O devices include removable and fixed recordable media (e.g., floppy disk drives,

tape drives, CD-ROM drives, DVD-RW drives, etc.), touch screen displays and the like.

Exemplary processing system 102 is illustrated in greater detail in FIG. 2. As illustrated,
processing system 102 includes several components - central processing unit (CPU) 202, memory
204, network interface (I/F) 208 and I/O I/F 210. Each component is in communication with the

other components via a suitable communications bus 206 as required.

CPU 202 1s a processing unit, such as an Intel Penttum™, IBM PowerPC™, Sun
Microsystems UltraSparc™ processor or the like, suitable for the operations described herein. As
will be appreciated by those of ordinary skill in the art, other embodiments of processing system
102 could use alternative CPUs and may include embodiments in which one or more CPUs are
employed. CPU 202 may include various support circuits to enable communication between itself

and the other components of processing system 102.

Memory 204 includes both volatile and persistent memory for the storage of: operational
mstructions for execution by CPU 202, data registers, application storage and the like. Memory 204
preferably includes a combination of random access memory (RAM), read only memory (ROM)

and persistent memory such as that provided by a hard disk drive.

Network I/F 208 enables communication between computer system 100 and other network
computing devices (not shown) via network 108. Network I/'F 208 may be embodied in one or more

conventional communication devices. Examples of a conventional communication device include

CA9-2002-0040 ~ 9

10

15

20

25

CA 02393035 2002-07-11

an Ethernet card, a token ring card, a modem or the like. Network I/F 208 may also enable the
retrieval or transmission of instructions for execution by CPU 202 from or to a remote storage

media or device via network 108.

[/O I/F 210 enables communication between processing system 102 and the various I/O
devices 104, 106. VO I/F 210 may include, for .example, a video card for interfacing with an
external display such as output device 106. Additionally, /O I/F 210 may enable communication
between processing syétem 102 and a removable media 212. Although removable media 212 i1s
illustrated as a conventional diskette other removable memory devices such as ZipT\M drives, tlash
cards, CD-ROMs, static inemory devices and the like may also be employed. Removable media 212

may be used to provide instructions for execution by CPU 202 or as a removable data storage

device.

The computer instructions/applications stored in memory 204 and executed by CPU 202
(thus adapting the operation of computer system 100 as described herein) are illustrated in
functional block form in FIG. 3. As will be appreciated by those of ordinary skill in the art, the
delineation between aépects of the applicatiohs illustrated as functional blocks in FIG. 3 is
somewhat arbitrary as f:he various operations attributed to a particular application as described

herein may, in alternative embodiments, be subsumed by another application.

As illustrated, for exemplary purposes only, memory 202 stores operating system (OS) 302,
communications suite 304, code generator 306, input HTML file 308, output XML file 310, output
XSL file(s) 312 and general data storage (which includes an XLST processor) 314.

OS 302 1s an operating system suitable for operation with a selected CPU 202 and the
operations described herein. Multitasking, multithreaded OSes such as, for example, IBM AIX™,

Microsoft Windows NT™, Linux or the like, are expected in many embodiments to be preferred.

Communication Suite 304 provides, through, interaction with OS 302 and network I/F 208
(FIG. 2), suitable communication protocols to enable communication with other networked
computing devices via network 108 (FIG. 1). Communication suite 304 may include one or more of

such protocols such as TCP/IP, ethernet, token riilg and the like.

CA9-2002-0040 10

10

15

20

25

CA 02393035 2002-07-11

Code generator 306 1s adpated to receive an input HTML file 308 and output an XML file
310 and one or more .‘XSL files 312. In the exeinplary embodiment code generator 306 is also
adapted to receive user input (such as from mouse 106B, FIG. 1). The user mput received by code
generator 306 identifies those portions of input HTML file 308 that should be tagged as “regions”
or “values”. In alternative embodi’rnents, code geherator 306 may be adapted to identify portions of
input HTML file 308 as “regions” or “values” autdmatically. In this alternative embodiment, such
identified portions could require user input to verify that the automatically identified portions are
suitable or desirable. The operations of code generator 306 are better understood with reference the

operations illustrated in flow chart form in FIGS. 4 and 5.

Input HTML file 308 is a conventional HTML file that includes both content and

presentation data.

Output XML tile 310 1s generated by code generator 306 based on mput HTML file 308.
XML file 310 contains the content data of HTML file 308.

In the exemplary embodiment, XSL files 312 includes two separate XSL files: a data logic
XSL file and a presentation logic XSL file. However, it should be noted that these two separate
XSL files could be combined into a single file in\altcma.tive embodimenté. Separating XSL file 312
into two files enables a first file (the data logic file : hereinafter XSL data logic 312a) to include the
navigation logic to navigate the generated XML file 310 and calls the templates defined in the
second file (the presentation logic file - hereinafter XSL presentation logic 312b). Advantageously,
the creation of XSL files 312a, 312b distills from a the stylesheet the logical aspects (stored in XSL
data logic 312a) from thé presentation aspects (stored in XSL presentation logic 312b).

Operations 400, which are performed by\ code generator 306, are illustrated in flow chart
form in FIGS. 4 and 5. However, an understanding and detailed description of code generator 306
will be better understood with reference to an exemplary ihput HTML file 308 and the resulting
output files - XML file 310, XSL data logié file 312a and XSL presentation logic file 312b.
Accordingly, an exemplary HTML input file 308 (hereinafter “SkiResort.html 308”) is illuétrated in
source code form in F IG; 7. When SkiResorf.htnﬂ 308 1s rendered by an HTML browser (such as
those 1dentified above), the rendered image generated 1s illustrated in FIG. 6. The exemplary XML

CA9-2002-0040 - 11

10

15

20

25

CA 02393035 2002-07-11

output file 310 (hereinafter “SR-Data.xml 310”) generated by code generator 306 as a resuit of
processing SkiResort.html 308 is illustrated in FIG. 9. An exemplary intermediate file (hereinafier
“SR-Template.xhtml 800”) generated during the processing of SkiResort.html 308 1s illustrated in
FIG. 8. The exemplary data and presentation logic XSL files 312 (hereinafter “SR-Datal.ogic.xsl
312a” and “SR-PresentationLogic.xsl 312b”, fespectively) also generated by cede generator 306 are

1llustrated in FIGS. 10 and 11, respectively.

As 1illustrated in FIG. 6, the rendered SkiResort.hUnl 308 1s a table which includes a number
of rows of data providing ski data about the various ski resorts in British Columbia. SkiResort.html

308 would typically be generated on request to provide potential resort customers (e.g., skiers,

vacationers, etc.) with up to the moment data about the ski conditions. However, in HTML format,

SkiResort.html 308 is not in a format that would easily enable or support web services to be
developed which exploits the data contained in rendered report and included in the source file
illustrated in FIG. 7. Accordingly, it would advantageous to transform the data in SkiResort.html
308 into an XML file that would support such a desirable use.

Accordingly, SkiResort.html 308 is input into code generator 306 (operation 402 - FIG. 4).
Code generator 306 alse reeeives user input during operation identifying those portions that are to
be transformed into XML and XSL files (i.e., those regions from which presentation and data logic
are to be extracted). In SkiResort.html 308, the user mput indicates a selection of region 702 (FIG.
7) which spans FIGS. 7A and 7B. The user input may be provided by the selection of an extraction
region using a graphical user interface (GUI) which presents the source code illustrated in FIG. 7 to
the user. The user may then highlight, in manners known'to those of ordinary s‘kill, those portions

of interest.

As a result of receipt of user input, code generator 306 will insert additional “tags” which
1dentify the start and termination points of individual regions mentioned above as “Regional tags”.
Accordingly, a regional tag is inserted at the start of a each identified region (“<Template Region
name="TagName”>" - where TagName is an identifier for a selected region) and at the termination

of each identified region (“</TemplateRegion>"). The TagName, which uniquely identifies a

selected region, may be created by code generator 306 and, if desired, modified by a user. -

CA9-2002-0040 ' 12

10

15

20

25

CA 02393035 2002-07-11

Accordingly, a start and termination regional tag would be inserted in the exemplary embodiment at
the start and termination points -6f region 702. It is to be noted that although only one such region is
selected from the SkiResort.html 308 source code (FIG. 7), more than one region could be selected
(and would be expected to be selected in other situations). Additionally, regions can be nested. That
1S, a portion of selected region 702 could be'. ~ sel_eCted to form a second region within the first
selected region, if desired. In such a situation a second region would be contained within a first
region. As will be appreciated by those of ordinary skill in the art, the second region should be
contained wholly or completely within the first region otherwise malformed XML code will be
generated. It a user selects a second region which is not wholly contained within a first region (1.e.,
there 1s only a partial overlap), the user may be provided with an error or warning message or,
alternatively, the second region could be automatically separated into two regions (e.g., regions
three and four) by code generator 306. In the latter instance, region three would be completely or
wholly contained within the first region and the fourth region would be wholly or completely

without (i.c., outside) the first region.

As noted above, 1n alternative embodiments, a GUI may be provided to a user so as to assist

the user in the selection and embedding of tags into the input HTML file 308

Once the regions have been “tagged” by code generator 306 (404), code generator 306
parses the input HTML file 308 to remove portions of HTML source code which are repeated.
Referencing FIG. 7, it is to be noted that much of selected region 702 repeats with only the data
changing. For example, data portions 704a - 704g identified in FIG. 7 (and correspond to rendered
rows 604a-604g) repeat with only the data values associ_atéd with the various columns 602a-602e
(e.g., resort name, snow depth, primary surface, lifts open and runs open) changing between the
various data regions 704. Consequently, code genératdr 306 will parse SkiResort.html 308 and
delete additional copies of the data poftions 704. That 1S, code generator 306 will keep the first
repeating data portion 704 (i.e., data portion 704a) and delete those data portions 704 that are
repetitive (1., data portions 704b-704g).

Following the removal of repetitive data in the selected region 702 of SkiResort.html 308,

code generator 306 replaces the data values (i.e., those values which fall under columns 602 in FIG.

CA9-2002-0040 ~ 13

CA 02393035 2002-07-11

6) with “value tags”. Each value tag in the exemplary embodiment follows the form
“ValueTagName}”’ where the ValueTagName uniquely identifies data that would otherwise be -
present in the selected regiori 702. The unique identifiers for ValueTagName are, 1n the exemplary
embodiment, suggested by code generator 306 and may be modified by user mnput to provide a

5 more descriptive and easily understood identifier.

The intermediate data file generated as a result of the performance of operations 402 aﬁd
404 is illustrated as SR-Template.xhtml 800 in FIG. 8. As should be apparent to those of ordinary
skill in the art, selected region 702 (FIG. 7) has been transformed into regional template region 808
in SR—Template..xhtmli 800. Regional template re gion’ 808 includes a start regional tag 802
10 (“<TemplateRegion name="SkiResort”>") and a termination regional tag 806
(“</TemplateRegion>”). The repetitive data portions 704b-704g have been removed and the
remaining data portion 704a has been modiﬁed to become modified data portion 804. As will be
noted, the data values m data portiori 704a (i.e., Apex Mountain, 79-85”, Pack Powder, 3 of 5, and
60 of 60) have been replaced with value tags in 'portio\hs 810a-810¢ where the ValueTagNames are

15 {Resort}, {SnowDepth}, {PrixnarySurfaée}, {LiftsOpen}, and {RunsOpen}, respectively.

The intermediate file -SR-Template.xhmtl 800 - may only exist as a temporary file in either

or both volatile and persistent memory 204.

Once SR-Template.xhtml 800 has been created (as é, result of operations 402, 404 - FIG. 4),
the mput file, SkiResort.htlnl 308 is processed (operation 406) by code generator 306 to create

20 output files 310 and 312 (operation 408) - SR-Data.xml 310 (FIG. 9), SR-Datal.ogic.xsl 312a (FIG.
10) and SR-Presentationlogic.xsl 312b (FIG. 11), respectively.

The generation of the output files 310 and 312 1s better understood with reference to FIG. 5.

Code generator 306 during operation 406 performs operations 502-514 to process the intermediate

file 312 and the input HTML file 308 to generate output files 310, 312.

25 Code generator 306 parses the itermediate SR-Template.xhtml file 800 to identify all of
the tags (regional and Va.lue tags) in the SR-Template file 800 (502). In the exemplary embodiment,
one regional tag pair (start and termination tags 802, 806, respectively) and the value tags

CA9-2002-0040 . 14

S

10

15

20

25

CA 02393035 2002-07-11

810a2-810e¢ ({Resort}, {SnowDepth}, {PrimarySurface}, {LiftsOpen}, and {RunsOpen},
respectively) will be identified.

Using the infofmation from the parsing (502), code generator 306 is effectively using
SR-Template.xhmtl 800 as an HTML template file. Code generator 306 extracts the content data
from input HTML file 308 and generates a conventional XML file as output - i.e., XML file 310.

The extraction of content data from input HTML file 308 so as to generate XML file 310 is
performed in the exem_pla;ry embodiment by code generator 306. However, a separate extractor

component could be used to implement this functionality in alternative embodiments.

In the described implementation, code generator 306 creates an intermediate XSL file
(illustrated as intermediéte XSL file 1200 in F iG. 12). In the exemplary embodiment, intermediate
XSL file 1200 is used for internal processing only and is not exposed to a user. However,
intermediate file 1200 could, 1n altei'native ' embodiments, be presented (i.€., exposed) to the user so

that the user input could be received to modify the behaviour of file 1200. That is, moditications to
file 1200 responsive to user input could be accepted by code generator 306 so as to enable different

or more precise data extraction.

Intermediate XSL file 1200 is used by code generator 306 to extract the data from the
HTML input file. After analyzing the HTML template, code generator 306 determineé XPaths that
specify the positions where data and repeating blocks of HTML may occur. Region tags in the
HTML template file (e.g., SR-Template.xhtml 800 illustrated in FIG. 8) are used to identify the
positions where blocks of HTML occur that require extraction. Value tags in the HTML template
are used to identify where a piece of data (typically a text node or attribute node) 1s located within

the block of HTML.

This generated XSL file 1200 provides the logic to perform the task extracting the
embedded data from the original HTML file. The format of the XML file generated from
extracting the data depends on the structure ahd naming of the Region and Value tags that have
been used to specify the HTML template. .

CA9-2002-0040 ‘ 15

R a0 X MNPt A Y5 At T VIR N VAo T s e AR g~ e g v 1~ P s B o oo e BN e iy ‘WWWMWWWMWMW'WWW""““""*""" MAMNER RS s niBE e s B8 R ek e A - dvsn alpafberirm SR T P TITTY A T A e P 3 a4 A 7= e e, Y p— .

10

15

20

25

30

CA 02393035 2002-07-11

To generate the intermediate XSL file 1200 (FIG. 12) xsl:transform ahd xsl:output
structures are initially created. Additionally, a “seed” xsl:template structure is also create which is
matched to the root of the mmput HTML file and is used to invoke the “Root” xsl:templiate also
forming part of the created XSL file 1200. Once th,ese. initial struétllres have been created, an
xsl:template structure is created for each region tag (including the “Root” region tag) m the HTML

template file (e.g., SRj-Template.xhtml 800 illustrated .‘m‘ FIG. 8). Each xsl:template structure so

created is named to correspond to the name of the associated region tag. If a region tag is nested
within another region tag, then the XPath is determined to specify the position of the nested region

tag’s content relative to its parent region tag. Code generator 306 will generate the following

structure for each nested region tag using the determined (i.e., computed) XPath:

<xsl:for-each select="computed-XPath-for-nested-region-tag">

e § 4

<xsl:call-template name="nested-region-name"/>
</xsl:for-each>
For each nested value tag (i.e., a value tag within a region tag), the XPath 1s determined by code
generator 306 and used to specify the value tag’s content relative to its parent region tag. The

determined XPath will then be used by code generator 306 to generate the following structure
within intermediate XSL file 1200:

<Value-Tag-Name>
<xsl:copy-of select="computed-XPath-for-value-tag">
</Value-Tag-Name>
As a result of the generation of the intermediate XSL file, output file 310 (see FIG. 9) can

be generated by code generator 306 processing intermediate XSL file 1200 and input HTML 308.

In addition to generating an XML file from the input HTML file 308, code generator 306 is

adapted to create two XSL files - SR-DataLogic.:,xsl\ 312a (FIG. 10) and SR-Presentationl.ogic.xsl
312b (FIG. 11), respectively (504 - FIG. 5). The XSL files will include templates that will
encapsulate the presentation details of the input HTML file 308. During operation 504, code
generator simply creates the data and presentaﬁon logic XSL files which contain initially only

minimal XSL information - the header and root elements 1002, 1102, respectively. Additionally,

those non-selected regions (i.e., those portions \oﬁtside of selected region 702 - FIG. 7) in the input

CA9-2002-0040 16

" NOI(Em APt — L T T T T, v o kg i Ay O AP) " ; v "y ey g feremrassd

10

15

20

25

CA 02393035 2002-07-11

HTML file 308 are efféctively' copied from the input HTML file 308 to the output XSL file 312 (if
there is only one file created) or the presentation logic file (i.e., SR-PresentationLogic.xsl file 312b)
if two XSL files are created. '

Code generator 306 performs operations 506-514 to populate the XSL files 312. For each
regional tag pair 802, '860 (FIG. 8) 1dentitied by code generator 306 (506), code generator 306
creates print template 1004 and handle temp_lates 1006, 1106 (FIGS. 10 and 11, respectively) (508).
Print templates (e.g., pfint template 1004) are responsible for producing the HTML nodes that are
enclosed within a regional tag pair of the intermediate file 800. As those of ordinary skill are aware,
XML documents are modeled as a tree of nodes. The XML document is the parent node and each
clement 1s also node. Although, HTML typically is referred to as included “tags”, the production of

the phrase “HTML nodes” is used in view of the terminology “nodes” common in describing XML

and XSL.

The print templates are employed by code generator 306 to construct the XML tree in XML
output file 310 and each print template consists of an start tag (“<xsi:call-template
name="PrintName”>"") and a termination tag (“</xsl:call-tempfare>”). Handle templates (e.g.,
handle template 1006) are employed simply to call the associated print template (i.é., those
templates using the same identifier - e.g., “SkiResort™). Each handle template consists of an start
tag (“<xsl:template name="HandleName”>"") -an_d a termination tag (“</xsi:template>"’). In the
exemplary files used for example purposes only, the regional tag pair 802, 806 (FIG. 8) identified

s “SkiResort” results in the creation during operation 508 by code generator 306 of handle
template 1006 (FIG. 10) identified as “handleSkiReSort” (1.e., “handle” concatenated with the
identifier of the selected regional tag pair) and the print template' 1004 1dentified as
“printSkiResort” (i.e., “print” concatenated with the identifier of the selected regional tag pair) in
the SR-Datalogic.xsl file 312a. Code generator 306 also creates the handle template 1104 in the
SR~PresentationLogic.xsi file 312b. * ‘

During the proceSsing of a selected regional tag pair (e.g., regional tag pair 802, 806) code
generator 306 processes any value tags identified in the region bounded by the selected regional tag

pair (510). For each value tag identified in the selected region (there are five such value tags -

CA9-2002-0040 : 17

1TV W I ST A~

10

15

20

25

CA 02393035 2002-07-11

810a-810e - in the exemplary intermediate file 800), an “xsl:param” code is added to the print
template in the data logic file 312a. The format of the “xsl:param” code added to the print template
comprises a start tag (“<xs{.*wfth-param name= “ValuergIden‘tifer ”>) and a termination tag
(“</xsl:with-param>"). Within the “xsl:param"’ code of the print handle a “xsl:value-of’ > code 1S
added (following the form “<xsl.*valueéof select= “./ValueTagldentifier "/>"). The “xsl:value-of”

code will be used to output the value of the associated parameter.

In the example, five value tags are identified in the selected region. Accordingly, five value
tag templates (comprising the “xsl:param” and “xsl:value-of” codes) are added to SR-DataLogic.xsl

file 312a - namely value tag templates 1008a—-1008e;

After processing each value tag within the. selected region (510), code generator determines
if there are any nested regions (i.e., regions contamed within) the region being processed (514). In
the example files, no such nested regions exist and since there is only one region (region 702), code

generator 306 ceases operation having created XSL files 312.

However, assuming that a nested regidn did exist, code generator would perform operations
508-514 for that nested région. Additionally, code generator 306 would add code to invoke the print
template for the nested region inside the print template of the containing region. That is, assume
region 702 included a nested region. In this assumed example, code generator would add XSL code
inside the print template for region 702 (i.e., print template 1004) to invoke the pi'int template of the

nested region.

As a result of the foregoing, the presentation logic, data logic and content data that was
originally mixed into a single file (inpﬁt HTML file 308) has been separated into three files - an
XML file 310 that contains only content data; a first XSL file - SR-Datal.ogic.xsl file 312a - that
includes the navigation logic to navigate the generated XML file 310 and calls the templates
defined in the second XSL file; and a second XSL ﬁle' - SR-Presentationlogic.xsl file 312b - that
includes the formatting or presentation logic contained in the input \HTML file 308.

As will be appreciated by those ordinary skill i the art, when a user requests to view a web

page (1.e., a rendering of the data originally present in the mput HTML file 308), the web page

CA9-2002-0040 ' 18

. N - —— P e S = = g ces o . . o o . @es
o " e " v "WWWMWWW e e ATENOAA O WA AP ar AT, LA vy VAR FRrT. & 5, e 81 B 21" 1A o pp— N, p el —artin e . ' A iyt M S A AP ——

10

15

20

25

CA 02393035 2002-07-11

server will need to process XML file 310 and XSL files 312. Responsive to such a runtime request,

a web server will use an XSL processor to generate an HTML file from XML and XSL files 310,

312, respectively. Unlike alternative approaches known by the inventors of the present invention,
the XSL processor need handle only one data file related to content data (i.e., only XML file 310) in
contrast to other approaches which require two files - an HTML template and an XML input file.
As will be understood, the data logic file 312a; when processed by the XSL processor, imports the
presentation logic file 312b, thus enabling a runtime HTML file to be generated responsive to a
user request without significant CPU. processing required. That is, the HTML file generated at
runtime 1s similar to the 'original input HTML file. The output displayed by rendering (i.e.,
processing) the HTML: file generated\ at runtime will appear identical in most instances to the

output generated by rendering the original input HTML file.

Those of ordinary skill in the art will understand that the two output XSL files 312a, 312b
could be combined into a single XSL file. However, there are advantages which may be obtained in
some environments by separating the logic related to the data from the logic related to the

presentation of the data.

In the embodiment described herein, the print template is not invoked directly but indirectly
by calling the handle template which correspondS to the print templafe. This indirect invocation
enables the insertion of “hooks™ to be added. These hooks are code inserted by other processes
(e.g., another application) or by user input. Since in one embodii:nent the data logic XSL file
imports the presentation logic XSL file, any templates which are similarly named in both files are
redefined in the XSL data logic file (i.e., if any templates exist in both the data logic and
presentation logic XSL files, the template in the data logic XSL file takes precedence and overrides
the similarly named templateé included in the presentation logic XSL file). Accordingly, custom
logic code can easily be inserted in the data Iogic XS_L file without any modification required of the
presentation logic file. As persons of ordinary skill in the art will appreciate, alternative

embodiments of the invention may not implement the indirect invocation of the print template.

In further alternatives and as will be appreciated, the order of some operations 400 and 406

(FIGS. 4 and 5) could be rearranged and redefined. For example, operation 502 could-be removed

CA9-2002-0040 19

19 Ve Ak s A o gt b | b o

10

15

20

CA 02393035 2002-07-11

and replaced or redeﬁﬁed- such that code creator 300, after creating the base XSL files (operation
504) could parse the intermediate file ‘800 to identify and then process regional tag pairs
individually. That is, code generatdr 306 could identify a first regional tag pair, perform operations
508-514 and then parse intermediate file 800 to identify and prdcess the next regional tag pair as

recquired.

Those skilled in the art will understand that modifications to the above-described
embodiment can be made withdut depart_ing tfrom the éssence of the invention. For example, in one
alternative, an embodiment of the present invention may utilize the tagged HTML file at runtime.
In such an embodiment,: the presentation.xsl file (i.e., an embodiment of XSL presentation logic file
312b - FIG. 3) Would not be generated (since the presentatioh information would be accessed at
runtime directly from the tagged HTML file). ’The-'dataLogic.st file (i.e., an embodiment of XSL
data logic file 312a - F IG 3) would be generated appropriately to operate on two dbcument_ trees
(the input XML document and the tagged HTML document). As noted above, this approach may

have an impact on runtime performance of the transfonnation).

While one (or more) embodiment(s) of this invention has been illustrated in the
accompanying drawings and described above, it will 'be evident to those skilled in the art that
changes and modifications may be made therein without departing from the essence of this
mvention. All such modifications or variations are believed to be within the sphere and scope of the
invention as defined by the claims appended hereto. Other modifications will be apparént to those

skilled in the art and, thefefore, the invention is defined in the claims.

CA9-2002-0040 ' 20

10

15

20

Ay i Nr— e . -

CA 02393035 2002-07-11

What is claimed is:

1. A method for converting a first markup file to a second markup file, said method

comprising:

generating said second markhp file from data elements extracted from said first markup file

using tags in said first markup file; and

generating a conversion file using tags in said first markup file, said conversion file, when
processed with said second markup file, adapted to generate a third markup file similar to said first

markup file.
2. The method of claim 1 further comprising embedding said tags in said first markup file.

3. The method of claims 1 or 2 wherein said tags comprise a first tag identifying data elements

to be extracted from said first markup file and a second tag identifying a portion of said first

markup file which requires conversion.

4. The method of claim 3 wherein said first tag comprises a value tag and said second tag

comprises a regional tag.

5. The method of claim 3 wherein said first markup file comprises an HTML file, said second

markup file comprises an XML file and said conversion file comprises an XSL file.

6. The method of plaim 3 wherein said generating said second markup file comprises:
extracting said data elements 1dentified By jsaid first tag.

7. The method of claim 6 wherein said generéting sald conversion file comprises:

generating a template of said portion identified by said second tag, said template for

producing nodes identified by said second tag.

CA9-2002-0040 21

10

15

20

CA 02393035 2002-07-11 |

8. The method of claim 7 wherein said generating said conversion file further comprises:

for each of said first tags in said portion identified by said second tag, copying the portion
identified by said first tag and replacing said data element with an identifier for said data element,
said identifier replaced during processing to generate said third markup file by a corresponding data

element from said second markup file.

0, The method of claim 1, 2, 3, 4, 5, 6, 7 or 8 wherein said conversion file comprises a first
conversion file and a second conversion file; said first conversion file comprising data logic and

said second conversion file comprising presentation logic.

10. A computer readable media product storing data and instructions, said data and instructions,
when processed by a computer system adapt said computer system to convert a first markup file to

a second markup file, said conversion comprising:

generating sald second markup file from data elements extracted from said first markup file

using tags in said first markup file; and

generating a conversion file using tags in said first markup file, said conversion file, when
processed with said second markup file, adapted to generate a third markup file similar to said first

markup file.

11. The computer readable media product of claim 10 wherein said conversion further

comprising embedding said tags in said first markup file. ’

12. The computer readable media product of claims 10 or 11 wherein said tags comprise a first
tag 1dentifying data elements to be extracted from s aid first markup file and a second tag identifying

a portion of said first markup file which requires conversion.

13. The computer readable media product of claim 12 wherein said first tag comprises a value

tag and said second tag comprises a regional.tag. |

CA9-2002-0040 22

10

15

CA 02393035 2002-07-11

14. The computer readable media product of claim 12 wherein said first markup file comprises

an HTML file, said second markup file comprises an XML file and said conversion file comprises

an XSL file.

15. The computer readable media product of claim 12 wherein said generating said second

markup file comprises:
extracting said data elements identified by said first tag.

16. The computer readable media product of claim 15 wherein said generating said conversion

file comprises:

generating a template of said portion 'identiﬁed by said second tag, said template for

producing nodes 1dentified by said second tag.

17. The computer readable media product of claim 16 wherein said generating said conversion

file further comprises:

for each of said first tags in said portion identified by said second tag, copying the portion
identified by said first tag and replacing said data element with an identifier for said data element,
said identifier replaced during processing to generate said third markup file by a corresponding data

element from said second markup file.

18. The computer readable media product of any one of claims 10 - 17 wherein said
conversion file comprises a first conversion file and a second conversion file; said first conversion

file comprising data logic and said second conversion file comprising presentation logic.

CA9-2002-0040 23

CA 02393035 2002-07-11

19. A method for converting a first markup file to a second markup file, said method

comprising:

means for generating said second markup file from data elements extracted from said first

markup file using tags in said first markup file; and

S means for generating a conversion file using tags in said first markup file, said conversion
file, when processed with said second markup file, adapted to generate a third markup file similar

to said first markup file.

20. The method of claim 19 wherein said tags comprise a first tag identifying data elements to
be extracted from said first markup file and a second tag identifying a portion of said first markup

10 file which requires conversion.

21. The method of claim 20 wherein said first tag comprises a value tag and said second tag
comprises a regional tag and wherein said first markup file comprises an HTML file, said second

markup file comprises an XML file and said conversion file comprises an XSL file.
22. The method of claim 20 wherein said generating said second markup file comprises:
15 extracting ;aid data elements identified by said tirst tag;
and wherein said generating said conversion file compr_ises:

generating a template of said portion identified by said second tag, said template for
producing nodes identified by said second tag and for each of said first tags in said
portion 1dentified by said second tag, copying the portion identified by said first tag
20 and replacing said data 'elemen.t\ with an identifier for said data element, said
identifier replaced during processing to generate said third markup file by a

corresponding data element from séid second markup file.

CA9-2002-0040 24

kg e— ~~ 1o ———e I T B Py .
. rvirnge o 1\ = gl ¢ WOr, v oo s oy W Y e e At gty Bl W I N A R T I e, . .
h ’ ' veseame ™ S A p— MiNecis sndh & 0, S & fhenl o8 o - e . PEE BT e ant i e L PR AR o vekme b e R T B RIE CA L e s o memedles sem s seme sy o g b . o s mun

CA 02393035 2002-07-11

Application number / numéro de demande: " 923930345
Figmesz__L______ o o

Pages: e

Unscannable items
received with this application _
(Request original documents in File Prep. Section on the 1 §" floor)

Documents recu avec cette demande ne pouvant €tre balayées
(Commander les documents originaux dans la section de préparation des dossiers au
' 10eme ¢étage)

CA 02393035 2002-07-11

Figure 2

| 102
TO /O DEVICES /

TO NETWORK 110 104, 106

208 210
NETWORK INTERFACE /O INTERFACE '

Vaiatile Persistent
202A 202A
Memory Memory
see |
CPU CPU | 214 212

204 J
MEMORY

T Ve M g — |8 - L OOB Dbl WO g, P,

308

INPUT HTML FiLE

M EEEEEEE A EE SR ERE R EENEERNE SRR AN BN EREENEERE SN RN EREER IR RN R EREEA N RN R R RRENRNE NN,

T T e e o AT SN ST R TR M TR A MG ATTe? AN W ey werram Sy = =

CA 02393035 2002-07-11

Figure 3

314

GENERAL DATA STORAGE & XSLT
PRCCESSOR

310

QUTPUT XML FILE QUTPUT XSL FILE(S)

308

"‘“”W“"—mﬁwmwwqm&mwwmmMwmqmwnmmmmwmﬁwmunﬂuﬂmwmm——uw*mhv—numwwvmuhw-nuu

(L R RN Y R Y R P N IR P R N RN Y R N $ePOJeaaPREICEDPESINS BER ISP AIAAREP T FAAP ISP I ERAP IS RAINANCETACTATNAP I GIGCSICIADPECAAAP RPN APE IPPAPRAGOIRGETN S

312

SRR3R0 5002000083040 0000%0%00n0e0wa

CODE :
ZINERAJOR :
COMMUNICATION
SUITE :

%04 :
OPERATING
SY§IEM :

r h%ﬂ“mmwwmm‘v prieory

CA 02393035 2002-07-11

Figure 4

402
RECEIVE INPUT HTML FILE

404
EMBED TAGS
(REGIONAL AND VALUE TAGS)

406

PROCESS "TAGGED" INPUT HTML
FILE

408

OUTPUT XML FILE AND XSL
FILE(S)

400

CA 02393035 2002-07-11

406

502
IDENTIFY ALL TAGS IN "TAGGED' INPUT HTML FILE

504
CREATE XSL HEADER AND ROOT ELEMENT IN XSL FILE

506

FOR EACH IDENTIFIED
REGIONAL TAG

o508

CREATE PRINT AND HANDLE TEMPLATES

510

FOR EACH VALUE TAG WITHIN REGION, ADD "XSL :
PARAM" TO THE PRINT TEMPLATE, REPLACE VALUE
TAG WITH "XSL : VALUES-OF" TAG

912

ANY NESTED REGIONS
WITHIN REGION TAG?

NO

YES

514

FOR EACH NESTED REGION, THE CONTAINING REGION
INVOKES "PRINT TEMPLATE" BY REPLACING IT WITH A
"XSL : CALL-TEMPLATE" |

CA 02393035 2002-07-11

00230 007
L0130 £01
00130 001
£930 £9
90130 901
21130 211

093° 09
wad(y sumyy

\
2209

£8 3oLl
6306
01301
830 L
0130 01
cl1iegl
(3¢
uaid(y s

~

P209

JPMOJ
pMod payIed
muo.u%aoo 3undg
SUOTIPUO.) SULIAS
muOﬂ%ao,O Buudg
J3pMOJ PINIL]
Japamod payoed

3IRJIMY ATRWILLY
\\\

g 91nbi14

S11-GI1
56716
14726
6969

FL-p]

911-911
S8-6L

dagy soug

e
0209 4209

QUIOIHILITHPSYM, ~ 6109
TS IARS 1905
UREJUNOTA] BURIOUE ~
. 9700
ASPRQUIY] ~

URIUNOTA] Xady ~_ ar09
Mosay . ep09

ez09”"

eIqum{o;) ysyug - Hoday oy

CA 02393035 2002-07-11

Figure 7A

308

<html|> o ,
<head> '

<meta http-equiv="content-type" content="text/html; charset=1S0-8859-1"/>
<title>SkiReport</titie>

</head>
<body> |
 Ski Report - British Columbia

<table cellpadding="2" cellspacing="2" border="0" width="100%">
<tbody>
<tr> .
<th valign="Middle" align="Center">Resort</th>
<th valign="Top" align="Center">Snow Depth</th>
<th valign="Top" aligh="Center">Primary Surface</th>
<th valign="Top" align="Center">Lifts Open</th>
<th valign="Top" align="Center">Runs Open</th>
<Ar>
<tr> .
<td valign="Middle" align="Center">Apex Mountain</td>
7043 <td valign="Top" align="Center">79-85"</td>
\ <td valign="Top" align="Center">Packed Powder</ta>
<td valign="Top" align="Center">3 of 5</td> ~
<td valign="Top" align="Center">60 of 60</td> 702
<ftr> .
<tr> /
<td valign="Middle" align="Center">Big White</td>
204 <td valign="Top" align="Center">1 16-116"</td>
\ <td valign="Top" align="Center">Packed Powder</td>
<td valign="Top" align="Center'>13 of 13</td>
<td valign="Top" align="Center'>112 of 112</d>
<ftr>

CA 02393035 2002-07-11

Figure 7B '

<tr> _

<td valign="Middle" align="Center">Fernie Alpine</td>
<td valign="Top" align="Center">144-144"</td>
<td valign="Top" align="Center">Spring Conditions</td>
<td valign="Top" align="Center">10 of.10</td>
<td valign="Top" al|gn-"Center“>1 06 of 106</td>

</tr>

<tr>
<td valign="Middle" align="Center">Kimberiey</td>
<td valign="Top" align="Center">69"-69"</td>
<td valign="Top" align="Center">Spring Conditions</td>
<td valign="Top" align="Center">7 of 8<fd>

7040

704d

<td valign="Top" align="Center">67 of 67</td> 702

</tr> . ' | ‘ /

<{r>
<td valign="Middle" align="Center">Panorama Mountain</td>
<td valign="Top" align="Center">52-71"<ftd>
i; <td valign="Top" align="Center">Spring Conditions</td>
<td valign="Top" align="Center">10 of 10</td>
<td valign="Top" allgn-"Center">100 of 100</td>
</tr>
<tr>
<td valign="Middle" align="Center">Silver Star</td>
<td valign="Top" align="Center">91-95"</Ad>
<td valign="Top" align="Center">Packed Powder</td>
<td valign="Top" align="Center">5 of 9</td>
<td valign="Top" allgn“"Center">107 of 107</Ad>
</tr>
<tr>
<td valign="Middle" align="Center">Whistler/Blackcomb</td>
<td valign="Top" align="Center">115-115"</td>
<td valign="Top" align="Center">Powder</td>
<td valign="Top" align="Center">33 of 33</td>
<td valign="Top" allgn--"Center">200 of 200</td>
</tr>
</tbody>
</table>
</body>
</html>

704e

704f

7049

o O eyt O MRSV TEEEAEZE: “ AR SR AR ST I e A Ak £ bAoA ¥ o N IS 00 P B A TSI RS0 MR YAl T vy - A Pt e o e A derry g b o i

CA 02393035 2002-07-11

Figure 8

800
<?HTMLTemplate version="0.1"7> /
<TemplateRegion name="Root">
<html|>
<head>

<meta http-equiv="content-type" content—“text/html charset=1S0-8859-1"/>
<title>SkiReport</title>

</head>
<body> ’
 Ski Report - British Columbia

<table cellpadding="2" cellspacing="2" border-"O" width="100%">
<tbody>
<tr>
<th valign="Middle" align="Center">Resort</th>
<th valign="Top" align="Center">Snow Depth</th>
<th valign="Top" align="Center">Primary Surface</th>
<th valign="Top" align="Center">Lifts Open</th>
<th valign="Top" align="Center">Runs Open</th>

<ftr> |
<TemplateRegion name="SkiResort"> ~ <-—— 802 ans
<tr>
<td valign="Middle" align="Center">{Resor}</td> /
<td valign="Top" align="Center">{SnowDepth}</td> | 804

<td valign="Top" align="Center">{PrimarySurface}</td> /
<td valign="Top" align="Center">{LiftsOpen}</td>
<td valign="Top" align="Center">{RunsOpen}</td>
<Kr>
</TemplateRegion> «——— gpg
</ftbody> '
</table>
</body>
</html>
</TemplateRegion>

CA 02393035 2002-07-11

Figure 9A

310

e

<?xml version="1.0" encoding="UTF-8"7>
<Root>

<SkiResort>
<Resort>Apex Mountain</Resort>
<SnowDepth>79-85"</SnowDepth>
<PrimarySurface>Packed Powder</PrimarySurface>
<LiftsOpen>3 of 5</LiftsOpen>
<RunsOpen>60 of 60</RunsOpen>

</SkiResort> -

<SkiResort> .
<Resort>Big White</Resort>
<SnowDepth>116-116"</SnowDepth>
<PrimarySurface>Packed Powder</PrimarySurface>
<LiftsOpen>13 of 13</LiftsOpen>
<RunsOpen>112 of 112</RunsOpen>

</SkiResort>

<SkiResort>
<Resort>Fernie Alpine</Resort>
<SnowDepth>144-144"</SnowDepth>
<PrimarySurface>Spring Conditions</PrimarySurface>
<LiftsOpen>10 of 10</LiftsOpen>
<RunsOpen>106 of 106</RunsOpen>

</SkiResort>

<SkiResort> _
<Resort>Kimberley</Resort>
<SnowDepth>69"-69"</SnowDepth>
<PrimarySurface>Spring Conditions</PrimarySurface>
<LiftsOpen>7 of 8</LiftsOpen>
<RunsOpen>67 of 67</RunsOpen>

</SkiResort>

CA 02393035 2002-07-11

Figure 9B

- 310

<SkiResort>

<Resort>Panorama Mountain</Resort>
<SnowDepth>52-71"</SnowDepth>
<PrimarySurface>Spring Condltlons</anarySurface>
<LiftsOpen>10 of 10</LiftsOpen>
<RunsOpen>100 of 100</RunsOpen>

</SkiResort>

<SkiResort>
<Resort>Silver Star</Resort>
<SnowDepth>91-95"</SnowDepth>
<PrimarySurface>Packed Powder</PrimarySurface>
<LiftsOpen>5 of 9</LiftsOpen>
<RunsOpen>107 of 107</RunsOpen>

</SkiResort> - -

<SkiResort> .
<Resort>Whistler/Blackcomb</Resort>
<SnowDepth>115-115"</SnowDepth>
<PrimarySurface>Powder</PrimarySurface>
<LiftsOpen>33 of 33</LiftsOpen>
<RunsOpen>200 of 200</RunsOpen>

</SkiResort>

</Root>

A T P T & B A TN MY P T TT TN A STV IR 2 Y T TAR S0 PO P T Y i W ey TTTm o e oot S=. TR LRV SO e Y MR AT AN DR TR IR BT Fyptefsb ettt i i e S s

CA 02393035 2002-07-11

Figure 10
' | 312a

<?xml version="1.0"?>

<xsl:transform version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:import href="sr-presentationLogic.xs!"/> '

<xsl:template match="/"">
<xsl.call-template name="printRoot"/>
</xsl:template>

<xsl.template name="handleSkiResort">
<xsl:for-each select="SkiResort">
<xsl:call-template name="printSkiResort">
<xsl:with-param name="Resort">
<xsl:value-of select="./Resort"/>
</xsl:with-param>
<xsl:with-param name="SnowDepth">
<xsl:value-of select="./SnowDepth"/>
</xsl:with-param> |
<xslwith-param name="PrimarySurface">
<xsl:value-of select="./PrimarySurface"/>
</xslwith-param>
<xsl:with-param name="LiftsOpen">
<xsl.value-of select="/LiftsOpen'/>
</xsk:with-param> '
<xslwith-param name="RunsOpen">
<xsl:.value-of select="./RunsOpen"/>
</xskwith-param>
</xsl.call-template>
</xsl.for-each>
</xsl.template>

- <xsl.tempiate name="handleRoot">
<xsl:for-each select="Root">
<xsl.call-template name="printRoot"/>
</xsl:-for-each> |
</xsl:template>

<fxsl:transform>

CA 02393035 2002-07-11

<aje|dwiayisx/>
<[uiy/>
<Apoq/>
<3|qey>
<Apoqy/>
</ HOSaXNSoIpuRY, =aweu a)ejduss]-j|ed:|sx>
- <d)>
<yl/>uadQ suny<,do],=ubijea Jsuusan, =ubye yp
<y)/>uadQ syii<,doi, =ubyea Jsiusn,=uble Y-
<yy/>90eung Alewid<,do |, =ubijea Jauen,=ubie yi>
<Yy>yideg moug<,do, =ubjjea ao1us)d,=ubie yi>
<y}/>H0S9¥ <, 3IPPIN, =ubljea ,jajuan, =ubije yi»
<H>
<ApOQ}>
<,%001.=UIpMm .z, =buipeds)9o ,z,=6uippedjjoo ,0,=18p10q 3jqel>
<[Ng>
<[IQ>
<Q/>BIqQUINJOD Ysiug - Hoday NS<q>
<ApoQ>
- <pesy/>
Uoday S <S>

&..maz-wc&coo._é:cm-o_z; +1-8588-OS|=19S184D JUY/IX8], =]udjuod elslu>

<pesy>
<|Wiy>
<, JOOX UL, =atueu aje|dwua):|sx>

<éul 0,=UOISIOA Sje|dwa | TINIHE>

<, I0SURILFISX/666 :90 CM 333\\ diy, =|sX:SUjtiX , 0’ L,=UOISIaA Wwiojsuely: _wxv

qcle

<é. | 0,=UoISION djejdwd ._.._ NLH>
<60’ L, =UOISIOA |LUX;,>

Vil @Inbig

Sl e

YRR AW L ABLE M o N s

CA 02393035 2002-07-11

§ &

<ULIOJSURBLjSX/>

<oejdwalisx/>

</, 0sayISIuLd, =sweu ojejdwel-||ed:|sX>

<, HOSOM NS SjpuURY, =oWeu dje|dway|SX>

A..'Hu".huu.hun“ﬂﬂuuﬂuHﬂu“ﬂﬂﬂﬂunﬂ"Hﬂ"ﬂuununﬂHHHH“HHHHHunﬂuﬂuuuuunﬂunﬂuunuﬂﬂﬂHuﬂﬂuuﬂﬂﬂﬁi_V
< 5160] MOJ} j0J3U02 pue s1sjeweled Ajoads 0} SPoYISLl 9Say} SPUBAD (>
AIH.I..HHHHH-I..“".Iunu.u"""unnﬂunﬂuuﬂﬂuﬂuﬂﬂﬂuﬂﬂﬂ...I.HH..I..HH..I.,HﬂﬂunﬂﬂuuﬂﬂﬂﬂﬂﬂHHH“HHHHHHHHHHUIMV

APUD GEED I W SR W v s T SR B R are wpyny gpp sy TS BEPNN UUTIP SRRY Gpe—" m—_ —— assed SEENY SN G USRS W e apppey et EENNN SN E—

Qcle

<ole|dilsyisx/>
<J}/>

<pi/>

</ uadOsunig, =109]9s JO-9njeA.|SX>
<,do},=ubjjea Joja),=ubie pi>
| | <pP)>

</, uadOSyITg, =100]9S JO-8NjRAI|SX>
<,do =ublen Jewa),=ubie pi>

- <p¥>

A_.momtzwamﬁumw..nﬁﬁmwu._o..w:_mzﬁxv \

<,do} zubjjea Jajus),=uble p1>
| . <py/>

</, Yldamougs,=108|as JO-aN|eA|SX>
<, do1,=ubiea Jews),=ubie pi>
<py>

</, H0S9YS, =1008}9S JO-BN|BA ISX>
<,9|PPIN.=ubljea ,ssjua),=ubie pl>

<lP>
</, JOSDY, =aweu weled:sx>
</ idegmoug, =osweu wesed:sx>
</ eunshleuu d,=sweu wesed:;sx>
</, uadOsyll, =suwieu wesed:|sx>
</, UadsuUNy, =aweu weied:|sxs>
< HOSayNSIuULd, =oweu ajejdway|sX>

o S ' SN S St s teied e sy dewd GPRF Gy G D TEE TED WED WA AT G AP AES LN S D SRS AP il WIEE A W AN S0 S SMP SR R SR S S eyl d-dy

S e —— - — — S by sl A Sl slipiis il dleniipny Sukl Gl Shidg: nile Sl ey L g

i>

posaypsiuLd >

g1 @4nbi4

whien Jhet VN .

VAT IR AP e VA *-mnwwwmwwmmwmmm
» ; < T TR I R A T A o T S M T VR PR

gAY S

L I AT EMTTM T M WA b Wt e R PPV 8 T - T

CA 02393035 2002-07-11

a

<WwiojsuellSX/>

<aejdwal:|sx/>
<HOSaYHDIS/>
<uadosuny/>
</, Oxayislpy ,=108}9s Jo-Adod:isX>
<uadQsuny>
<uadQsyiy/>
</.0wxaylviIpy =309l9s Jo-Adooiisx>
| <uadOsy 1>
<ddeungitewind/>
<. Owxay[clpy =109j8s Jo-Adoa:|sx>
<ddeungiiewilds
. <pdogmous/>
</ Oaylcivy . =108i9s ..wo-naoou_wxv
<idagmous>
.Atommm\v
</ 03xay/[LIPY =109]0s8 Jo0-Adod'|SX>
<HOosaY>
002} | <HosayIS>
‘ | <, HOSayNIS, =aweu ajejdwayisx>

<9)ejdd}:|sX/>
| <JO0Y/>
<|oes-10)|sX/>
</, HOSaMNS, =aweu ajejdwa}-|jeo:|sx>
<. [slpind L JApoay/(LJeiqey/{11Apod/ ,=103f9s Yyoes-JoL|sx:>
<}O0¥M >
<, JO0OY,=oWeu ajejdwal.|sx>

¢l 24nbi . <ojejdwayisx/>
. </,)00Y,=9weu aje|dwa}-jjed:|sx>

< JUU/.=yojew ajejdway|sx>
<-- dje|dws) poss «-j>

</,.Z,=JUNoWe-juspurueex Jwx, =poyaw ,sek, =juspul ,8-41N,=buipoous ndno:isx>
<, ULI0jSUR | [ISX/666 1/010° M mmmy/ ARy, =ISX SUjWX
Ysx/610°syoede juxy.dpy,=ueex:sujux ,0° 1, =UoISIOA UIOjSUBL(SX>
<éa0’ L,=UOISIOA JWIX{, >

Vo - -

.
.

'

® b e v s sy A 'HMMWWM'“

START

402
RECEIVE INPUT HTML FILE

A ——u—ererre————— ——

'

404
EMBED TAGS
(REGIONAL AND VALUE TAGS)

406

PROCESS "TAGGED" INPUT HTML
FILE

#

408

OUTPUT XML FILE AND XSL
FILE(S)

400

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - abstract drawing

