wO 2016/004086 A1 |1 I})T 0O 000 R O AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/004086 A1

7 January 2016 (07.01.2016) WIPO | PCT
(51) International Patent Classification: (US). CHEN, Jianle; 5775 Morehouse Drive, San Diego,
HO04N 19/593 (2014.01) HO04N 19/70 (2014.01) California 92121-1714 (US). KARCZEWICZ, Marta,
(21) International Application Number: 5775 Morehouse Drive, San Diego, California 92121-1714
’ PCT/US2015/038629 (US). HSIEH, Cheng-Teh; 5775 Morehouse Drive, San
Diego, California 92121-1714 (US). ZOU, Feng; 5775
(22) International Filing Date: Morehouse Drive, San Diego, California 92121-1714 (US).
30 June 2015 (30.06.2015) SOLE ROJALS, Joel; 5775 Morehouse Drive, San Diego,
. California 92121-1714 (US).
(25) Filing Language: English
L . (74) Agent: ABUMERI, Mark M.; Knobbe Martens Olson &
(26) Publication Language: English Bear LLP, 2040 Main Street, Fourteenth Floor, Irvine,
(30) Priority Data: California 92614 (US).
62/020,340 2 July 2014 (02.07.2014) us (81) Designated States (uniess otherwise indicated, for every
62/028,039 23 July 2014 (23.07.2014) us kind of national protection available): AE, AG, AL, AM,
14/754,577 29 June 2015 (29.06.2015) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY.
(71) Applicant: QUALCOMM INCORPORATED [US/US]; BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
ATTN: International IP Administration, 5775 Morehouse DO, DZ, EC, EE, EG, ES, FIL, GB, GD, GE, GH, GM, GT,
Drive, San Diego, California 92121-1714 (US). HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(72) Imventors: PU, Wei; 5775 Morehouse Drive, San Diego, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
California 92121-1714 (US). JOSHI, Rajan Laxman; PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
5775 Morehouse Drive, San Diego, California 92121-1714
[Continued on next page]
(54) Title: METHOD FOR PALETTE MODE CODING

600

N

601

605

PARSING A PALETTE ASSOCIATED WITH THE CU PROVIDED
IN THE BITSTREAM, THE PALETTE INCLUDING A PLURALITY OF
PALETTE ENTRIES THAT ARE EACH ASSOCIATED WITH AN INDEX
VALUE AND A PIXEL VALUE ASSOCIATED WITH THE INDEX VALUE

l 810

PARSING ONE OR MORE RUN LENGTHS PROVIDED IN THE BITSTREAM
THAT ARE ASSOCIATED WITH A CU, EACH RUN LENGTH INDICATING
A NUMBER OF CONSECUTIVE POSITIONS, STARTING FROM AND
INCLUDING A CURRENT POSITION IN THE CU, THAT ARE ASSOCIATED
WITH A COPY-LEFT MODE OR A COPY-ABOVE MODE

l 815

PARSING ONE OR MORE INDEX VALUES PROVIDED IN THE BITSTREAM
THAT ARE ASSOCIATED WITH THE CU. EACH INDEX VALUE
INDICATING A PIXEL VALUE IN THE PALETTE THAT IS
ASSOCIATED WITH THE CURRENT POSITION IN THE CU

l 820

PARSING CNE OR MORE ESCAPE PIXEL VALUES PROVIDED
IN THE BITSTREAM THAT ARE ASSOCIATED WITH THE CU, EACH
ESCAPE PIXEL VALUE INDICATING A PIXEL VALUE THAT IS NOT IN A
PALETTE ASSOCIATED WITH THE CU, WHEREIN THE ESCAPE PIXEL
VALUES ARE PARSED FROM CONSECUTIVE POSITIONS IN THE BITSTREAM,
THE CONSECUTIVE POSITIONS BEING IN THE BITSTREAM AFTER ALL OF
THE RUN LENGTHS AND THE INDEX VALUES ASSOCIATED WITH THE CU

l 625

DECODING THE CU BASED ON THE PARSED PALETTE, PARSED RUN
LENGTHS, PARSED INDEX VALUES, AND PARSED ESCAPE VALUES

(57) Abstract: A method for decoding video data provided in a bitstream,
where the bitstream includes a coding unit (CU) coded in palette mode, in-
cludes: parsing a palette associated with the CU provided in the bitstream;
parsing one or more run lengths provided in the bitstream that are associated
with the CU; parsing one or more index values provided in the bitstream that
associated with the CU; and parsing one or more escape pixel values provided
in the bitstream that are associated with the CU. The escape pixel values may
be parsed from consecutive positions in the bitstream, the consecutive posi-
tions being in the bitstream atter all of the run lengths and the index values as-
sociated with the CU. The method may further include decoding the CU based
on the parsed palette, parsed run lengths, parsed index values, and parsed es-
cape values.

WO 2016/004086 A1 |IIIWAT 00T 00N O A

84)

SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2016/004086 PCT/US2015/038629

METHOD FOR PALETTE MODE CODING

TECHNICAL FIELD

[0001] This disclosure relates to the field of video coding and compression,

and particularly to screen content coding.

BACKGROUND

[0002] Digital video capabilities can be incorporated into a wide range of
devices, including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, digital cameras,
digital recording devices, digital media players, video gaming devices, video game
consoles, cellular or satellite radio telephones, video teleconferencing devices, and the
like. Digital video devices implement video compression techniques, such as those
described in the standards defined by Moving Picture Experts Group-2 (MPEG-2),
MPEG-4, International Telegraph Union-Telecommunication Standardization Sector
(ITU-T) H.263, ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the
High Efficiency Video Coding (HEVC) standard, and extensions of such standards. The
video devices may transmit, receive, encode, decode, and/or store digital video
information more efficiently by implementing such video coding techniques.

[0003] With the prevalence of high speed Internet access, emerging video
applications such as remote desktop sharing, virtual desktop infrastructure, and wireless
display require high compression efficiency of screen contents. However, additional intra
and inter video coding tools were designed primarily for natural contents. Screen
contents have significantly different characteristics compared with natural contents (e.g.,
sharp edges and less or no noise), which makes those traditional coding tools less

sufficient.

SUMMARY
[0004] The systems, methods and devices of this disclosure each have several
innovative aspects, no single one of which is solely responsible for the desirable attributes

disclosed herein.

WO 2016/004086 PCT/US2015/038629

[0005] In one aspect, a method of decoding video data in a bitstream, where
the bitstream includes a coding unit (CU) coded in palette mode, includes: parsing a
palette associated with the CU provided in the bitstream, the palette including a plurality
of palette entries that are each associated with an index value and a pixel value associated
with the index value; parsing one or more run lengths provided in the bitstream that are
associated with the CU, each run length indicating a number of consecutive positions,
starting from and including a current position in the CU, that are associated with a copy-
left mode or a copy-above mode; parsing one or more index values provided in the
bitstream that associated with the CU, each index value indicating a pixel value in the
palette that is associated with the current position in the CU; parsing one or more escape
pixel values provided in the bitstream that are associated with the CU, each escape pixel
value indicating a pixel value that is not in the palette, wherein the escape pixel values are
parsed from consecutive positions in the bitstream, the consecutive positions being in the
bitstream after all of the run lengths and the index values associated with the CU; and
decoding the CU based on the parsed palette, parsed run lengths, parsed index values, and
parsed escape values.

[0006] In another aspect, an apparatus for decoding video data provided in a
bitstream includes a memory and a processor in communication with the memory. The
memory is configured to store video data associated with the bitstream, the bitstream
including a coding unit (CU) coded in palette mode. The processor is configured to:
parse a palette associated with the CU provided in the bitstream, the palette including a
plurality of palette entries that are each associated with an index value and a pixel value
associated with the index value; parse one or more run lengths provided in the bitstream
that are associated with the CU, each run length indicating a number of consecutive
positions, starting from and including a current position in the CU, that are associated
with a copy-left mode or a copy-above mode; parse one or more index values provided in
the bitstream that associated with the CU, each index value indicating a pixel value in the
palette that is associated with the current position in the CU; parse one or more escape
pixel values provided in the bitstream that are associated with the CU, each escape pixel
value indicating a pixel value that is not in the palette, wherein the escape pixel values are
parsed from consecutive positions in the bitstream, the consecutive positions being in the

bitstream after all of the run lengths and the index values associated with the CU; and

WO 2016/004086 PCT/US2015/038629

decode the CU based on the parsed palette, parsed run lengths, parsed index values, and
parsed escape values.

[0007] In one aspect, a method of encoding video data in a bitstream includes:
analyzing a plurality of pixels in a coding unit (CU), each pixel having a pixel value
associated therewith; generating a palette based on the plurality of pixels in the CU, the
palette including a plurality of palette entries that are each associated with an index value
and a pixel value associated with the index value; determining one or more run lengths
associated with the CU in the bitstream, each run length indicating a number of
consecutive positions, starting from and including a current position in the CU, that are
associated with a copy-left mode or a copy-above mode; determining one or more index
values associated with the CU in the bitstream, each index value indicating a pixel value
in the palette that is associated with the current position in the CU; determining one or
more escape pixel values associated with the CU in the bitstream, each escape pixel value
indicating a pixel value that is not in the palette; and encoding the CU based on the
generated palette, determined run lengths, determined index values, and determined
escape pixel values, wherein the escape pixel values are encoded in consecutive positions
in the bitstream, the consecutive positions being in the bitstream after all of the run
lengths and the index values associated with the CU.

[0008] In another aspect, an apparatus for encoding video data in a bitstream
includes a memory and a processor in communication with the memory. The memory is
configured to store video data associated with the bitstream, the bitstream including a
coding unit (CU) coded in palette mode. The processor is configured to: analyze a
plurality of pixels in a coding unit (CU), each pixel having a pixel value associated
therewith; generate a palette based on the plurality of pixels in the CU, the palette
including a plurality of palette entries that are each associated with an index value and a
pixel value associated with the index value; determine one or more run lengths associated
with the CU in the bitstream, each run length indicating a number of consecutive
positions, starting from and including a current position in the CU, that are associated
with a copy-left mode or a copy-above mode; determine one or more index values
associated with the CU in the bitstream, each index value indicating a pixel value in the
palette that is associated with the current position in the CU; determine one or more
escape pixel values associated with the CU in the bitstream, each escape pixel value

indicating a pixel value that is not in the palette; and encode the CU based on the

WO 2016/004086 PCT/US2015/038629

generated palette, determined run lengths, determined index values, and determined
escape pixel values, wherein the escape pixel values are encoded in consecutive positions
in the bitstream, the consecutive positions being in the bitstream after all of the run

lengths and the index values associated with the CU.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1A is a block diagram illustrating an example video encoding and
decoding system that may utilize techniques in accordance with aspects described in this
disclosure.

[0010] FIG. 1B is a block diagram illustrating another example video
encoding and decoding system that may perform techniques in accordance with aspects
described in this disclosure.

[0011] FIG. 2 is a block diagram illustrating an example of a video encoder
that may implement techniques in accordance with aspects described in this disclosure.

[0012] FIG. 3 is a block diagram illustrating an example of a video decoder
that may implement techniques in accordance with aspects described in this disclosure.

[0013] FIG. 4 is a block diagram illustrating an input CU, an index block, an
escape pixel, and a palette associated with the CU.

[0014] FIG. 5 is a flowchart illustrating a method for coding video data in a
bitstream in accordance with aspects described in this disclosure.

[0015] FIG. 6 is a flowchart illustrating a method for decoding video data in a
bitstream in accordance with aspects described in this disclosure.

[0016] FIG. 7 is a flowchart illustrating another method for decoding video
data in a bitstream in accordance with aspects described in this disclosure.

[0017] FIG. 8 is a flowchart illustrating another method for coding video data
in a bitstream in accordance with aspects described in this disclosure.

[0018] FIG. 9 is a flowchart illustrating a method for encoding video data in a

bitstream in accordance with aspects described in this disclosure.

DETAILED DESCRIPTION

[0019] In existing implementations of screen content coding, there may be
some redundancies in the bitstream. These redundancies may be removed by skipping

certain syntax element signaling when certain conditions are satisfied. In addition, some

WO 2016/004086 PCT/US2015/038629

syntax elements may introduce parsing dependency. For example, a syntax element for
indicating the run mode may not need to be signaled if the current pixel is in the first line
of the block, since the decoder may infer the run mode to be index copy mode (e.g., copy
left mode). In addition, in a case where the decoder decodes the index value first, and
depending on the decoded index value, the decoder decides whether the mode is index
copy mode or escape mode (e.g., based on whether or not the index value represents an
escape index value). If the decoder determines the mode to be index copy mode, the
decoder parser continues to parse run length. If the decoder determines the mode to be
escape mode, the decoder parser may continue to parse escape values and/or run length.
Since parsers usually operate at a much higher speed than decoders, such dependency
between decoding engine and parsing engine may affect parser’s throughput (e.g., since
the parsing engine may need to wait for the decoding engine to decode the parsed bits).
Thus, an improved method of processing blocks coded in palette coding mode is desired.
In this application, several novel methods for organizing the palette elements in the
bitstream to avoid or reduce the parsing dependency in palette mode are described.

[0020] In the description below, H.264/Advanced Video Coding (AVC)
techniques related to certain embodiments are described; the HEVC standard and related
techniques are also discussed. While certain embodiments are described herein in the
context of the HEVC and/or H.264 standards, one having ordinary skill in the art would
appreciate that systems and methods disclosed herein may be applicable to any suitable
video coding standard. For example, embodiments disclosed herein may be applicable to
one or more of the following standards: International Telecommunication Union (ITU)
Telecommunication Standardization Sector (ITU-T) H.261, International Organization for
Standardization/International Electrotechnical Commission (ISO/IEC) MPEG-1 Visual,
ITU-T H.262 or ISO/TEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and
ITU-T H.264 (also known as ISO/IEC MPEG-4 AVC), including the range extension.

[0021] HEVC generally follows the framework of previous video coding
standards in many respects. The unit of prediction in HEVC is different from the units of
prediction (e.g., macroblocks) in certain previous video coding standards. In fact, the
concept of a macroblock does not exist in HEVC as understood in certain previous video
coding standards. A macroblock is replaced by a hierarchical structure based on a
quadtree scheme, which may provide high flexibility, among other possible benefits. For

example, within the HEVC scheme, three types of blocks, Coding Unit (CU), Prediction

WO 2016/004086 PCT/US2015/038629

Unit (PU), and Transform Unit (TU), are defined. CU may refer to the basic unit of
region splitting. CU may be considered analogous to the concept of macroblock, but
HEVC does not restrict the maximum size of CUs and may allow recursive splitting into
four equal size CUs to improve the content adaptivity. PU may be considered the basic
unit of inter/intra prediction, and a single PU may contain multiple arbitrary shape
partitions to effectively code irregular image patterns. TU may be considered the basic
unit of transform. TU can be defined independently from the PU; however, the size of a
TU may be limited to the size of the CU to which the TU belongs. This separation of the
block structure into three different concepts may allow each unit to be optimized
according to the respective role of the unit, which may result in improved coding

efficiency.

Video Coding Standards

[0022] A digital image, such as a video image, a TV image, a still image or an
image generated by a video recorder or a computer, may include pixels or samples
arranged in horizontal and vertical lines. The number of pixels in a single image is
typically in the tens of thousands. FEach pixel typically contains luminance and
chrominance information. Without compression, the sheer quantity of information to be
conveyed from an image encoder to an image decoder would render real-time image
transmission impractical. To reduce the amount of information to be transmitted, a
number of different compression methods, such as JPEG, MPEG and H.263 standards,
have been developed.

[0023] Video coding standards include ITU-T H.261, ISO/IEC MPEG-1
Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4
Visual and ITU-T H.264 (also known as ISO/IEC MPEG-4 AVC), and HEVC including
the range extension.

[0024] In addition, a video coding standard, namely HEVC, has been
developed by the Joint Collaboration Team on Video Coding (JCT-VC) of ITU-T Video
Coding Experts Group (VCEG) and ISO/IEC MPEG. The full citation for the HEVC
Draft 10 is document JCTVC-L1003, Bross et al.,, “High Efficiency Video Coding
(HEVC) Text Specification Draft 10,” Joint Collaborative Team on Video Coding (JCT-
VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 12th Meeting: Geneva,

WO 2016/004086 PCT/US2015/038629

Switzerland, January 14, 2013 to January 23, 2013. The range extension to HEVC is also
being developed by the JCT-VC.

Video Coding System

[0025] Various aspects of the novel systems, apparatuses, and methods are
described more fully hereinafter with reference to the accompanying drawings. This
disclosure may, however, be embodied in many different forms and should not be
construed as limited to any specific structure or function presented throughout this
disclosure. Rather, these aspects are provided so that this disclosure will be thorough and
complete, and will fully convey the scope of the disclosure to those skilled in the art.
Based on the teachings herein one skilled in the art should appreciate that the scope of the
disclosure is intended to cover any aspect of the novel systems, apparatuses, and methods
disclosed herein, whether implemented independently of, or combined with, any other
aspect of the present disclosure. For example, an apparatus may be implemented or a
method may be practiced using any number of the aspects set forth herein. In addition,
the scope of the present disclosure is intended to cover such an apparatus or method
which is practiced using other structure, functionality, or structure and functionality in
addition to or other than the various aspects of the present disclosure set forth herein. It
should be understood that any aspect disclosed herein may be embodied by one or more
elements of a claim.

[0026] Although particular aspects are described herein, many variations and
permutations of these aspects fall within the scope of the disclosure. Although some
benefits and advantages of the preferred aspects are mentioned, the scope of the
disclosure is not intended to be limited to particular benefits, uses, or objectives. Rather,
aspects of the disclosure are intended to be broadly applicable to different wireless
technologies, system configurations, networks, and transmission protocols, some of
which are illustrated by way of example in the figures and in the following description of
the preferred aspects. The detailed description and drawings are merely illustrative of the
disclosure rather than limiting, the scope of the disclosure being defined by the appended
claims and equivalents thereof.

[0027] The attached drawings illustrate examples. Elements indicated by
reference numbers in the attached drawings correspond to elements indicated by like

reference numbers in the following description. In this disclosure, elements having

WO 2016/004086 PCT/US2015/038629

names that start with ordinal words (e.g., “first,” “second,” “third,” and so on) do not
necessarily imply that the elements have a particular order. Rather, such ordinal words
are merely used to refer to different elements of a same or similar type.

[0028] FIG. 1A is a block diagram that illustrates an example video coding
system 10 that may utilize techniques in accordance with aspects described in this

3

disclosure. As used described herein, the term ‘“video coder” or “coder” refers
generically to both video encoders and video decoders. In this disclosure, the terms
“video coding” or “coding” may refer generically to video encoding and video decoding.
In addition to video encoders and video decoders, the aspects described in the present
application may be extended to other related devices such as transcoders (e.g., devices
that can decode a bitstream and re-encode another bitstream) and middleboxes (e.g.,
devices that can modify, transform, and/or otherwise manipulate a bitstream).

[0029] As shown in FIG. 1A, video coding system 10 includes a source
device 12 that generates encoded video data to be decoded at a later time by a destination
device 14. In the example of FIG. 1A, the source device 12 and destination device 14
constitute separate devices. It is noted, however, that the source device 12 and
destination device 14 may be on or part of the same device, as shown in the example of
FIG. 1B.

[0030] With reference once again, to FIG. 1A, the source device 12 and the
destination device 14 may respectively comprise any of a wide range of devices,
including desktop computers, notebook (e.g., laptop) computers, tablet computers, set-top
boxes, telephone handsets such as so-called “smart” phones, so-called “smart” pads,
televisions, cameras, display devices, digital media players, video gaming consoles, video
streaming device, or the like. In various embodiments, the source device 12 and the
destination device 14 may be equipped for wireless communication.

[0031] The destination device 14 may receive, via link 16, the encoded video
data to be decoded. The link 16 may comprise any type of medium or device capable of
moving the encoded video data from the source device 12 to the destination device 14. In
the example of FIG. 1A, the link 16 may comprise a communication medium to enable
the source device 12 to transmit encoded video data to the destination device 14 in real-
time. The encoded video data may be modulated according to a communication standard,
such as a wireless communication protocol, and transmitted to the destination device 14.

The communication medium may comprise any wireless or wired communication

WO 2016/004086 PCT/US2015/038629

medium, such as a radio frequency (RF) spectrum or one or more physical transmission
lines. The communication medium may form part of a packet-based network, such as a
local area network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from the source device 12 to
the destination device 14.

[0032] Alternatively, encoded data may be output from an output interface 22
to a storage device 31 (optionally present). Similarly, encoded data may be accessed
from the storage device 31 by an input interface 28, for example, of the destination device
14. The storage device 31 may include any of a variety of distributed or locally accessed
data storage media such as a hard drive, flash memory, volatile or non-volatile memory,
or any other suitable digital storage media for storing encoded video data. In a further
example, the storage device 31 may correspond to a file server or another intermediate
storage device that may hold the encoded video generated by the source device 12. The
destination device 14 may access stored video data from the storage device 31 via
streaming or download. The file server may be any type of server capable of storing
encoded video data and transmitting that encoded video data to the destination device 14.
Example file servers include a web server (e.g., for a website), a File Transfer Protocol
(FTP) server, network attached storage (NAS) devices, or a local disk drive. The
destination device 14 may access the encoded video data through any standard data
connection, including an Internet connection. This may include a wireless channel (e.g.,
a wireless local area network (WLAN) connection), a wired connection (e.g., a digital
subscriber line (DSL), a cable modem, etc.), or a combination of both that is suitable for
accessing encoded video data stored on a file server. The transmission of encoded video
data from the storage device 31 may be a streaming transmission, a download
transmission, or a combination of both.

[0033] The techniques of this disclosure are not limited to wireless
applications or settings. The techniques may be applied to video coding in support of any
of a variety of multimedia applications, such as over-the-air television broadcasts, cable
television transmissions, satellite television transmissions, streaming video transmissions,
e.g., via the Internet (e.g., dynamic adaptive streaming over Hypertext Transfer Protocol
(HTTP) , etc.), encoding of digital video for storage on a data storage medium, decoding

of digital video stored on a data storage medium, or other applications. In some

WO 2016/004086 PCT/US2015/038629

examples, video coding system 10 may be configured to support one-way or two-way
video transmission to support applications such as video streaming, video playback, video
broadcasting, and/or video telephony.

[0034] In the example of FIG. 1A, the source device 12 includes a video
source 18, video encoder 20 and the output interface 22. In some cases, the output
interface 22 may include a modulator/demodulator (modem) and/or a transmitter. In the
source device 12, the video source 18 may include a source such as a video capture
device, e.g., a video camera, a video archive containing previously captured video, a
video feed interface to receive video from a video content provider, and/or a computer
graphics system for generating computer graphics data as the source video, or a
combination of such sources. As one example, if the video source 18 is a video camera,
the source device 12 and the destination device 14 may form so-called “camera phones”
or “video phones”, as illustrated in the example of FIG. 1B. However, the techniques
described in this disclosure may be applicable to video coding in general, and may be
applied to wireless and/or wired applications.

[0035] The captured, pre-captured, or computer-generated video may be
encoded by the video encoder 20. The encoded video data may be transmitted to the
destination device 14 via the output interface 22 of the source device 12. The encoded
video data may also (or alternatively) be stored onto the storage device 31 for later access
by the destination device 14 or other devices, for decoding and/or playback. The video
encoder 20 illustrated in FIG. 1A and 1B may comprise the video encoder 20 illustrated
FIG. 2 or any other video encoder described herein.

[0036] In the example of FIG. 1A, the destination device 14 includes the
input interface 28, a video decoder 30, and a display device 32. In some cases, the input
interface 28 may include a receiver and/or a modem. The input interface 28 of the
destination device 14 may receive the encoded video data over the link 16 and/or from the
storage device 31. The encoded video data communicated over the link 16, or provided
on the storage device 31, may include a variety of syntax elements generated by the video
encoder 20 for use by a video decoder, such as the video decoder 30, in decoding the
video data. Such syntax elements may be included with the encoded video data
transmitted on a communication medium, stored on a storage medium, or stored a file
server. The video decoder 30 illustrated in FIG. 1A and 1B may comprise the video

decoder 30 illustrated FIG. 3 or any other video decoder described herein.

-10-

WO 2016/004086 PCT/US2015/038629

[0037] The display device 32 may be integrated with, or external to, the
destination device 14. In some examples, the destination device 14 may include an
integrated display device and also be configured to interface with an external display
device. In other examples, the destination device 14 may be a display device. In general,
the display device 32 displays the decoded video data to a user, and may comprise any of
a variety of display devices such as a liquid crystal display (LCD), a plasma display, an
organic light emitting diode (OLED) display, or another type of display device.

[0038] In related aspects, FIG. 1B shows an example video coding system 10’
wherein the source device 12 and the destination device 14 are on or part of a device 11.
The device 11 may be a telephone handset, such as a “smart” phone or the like. The
device 11 may include a controller/processor device 13 (optionally present) in operative
communication with the source device 12 and the destination device 14. The video
coding system 10’ of FIG. 1B, and components thereof, are otherwise similar to the video
coding system 10 of FIG. 1A, and components thercof.

[0039] The video encoder 20 and the video decoder 30 may operate according
to a video compression standard, such as HEVC, and may conform to a HEVC Test
Model (HM). Alternatively, the video encoder 20 and the video decoder 30 may operate
according to other proprietary or industry standards, such as the ITU-T H.264 standard,
alternatively referred to as MPEG-4, Part 10, AVC, or extensions of such standards. The
techniques of this disclosure, however, are not limited to any particular coding standard.
Other examples of video compression standards include MPEG-2 and ITU-T H.263.

[0040] Although not shown in the examples of FIGS. 1A and 1B, the video
encoder 20 and the video decoder 30 may each be integrated with an audio encoder and
decoder, and may include appropriate MUX-DEMUX units, or other hardware and
software, to handle encoding of both audio and video in a common data stream or
separate data streams. If applicable, in some examples, MUX-DEMUX units may
conform to the ITU H.223 multiplexer protocol, or other protocols such as the user
datagram protocol (UDP).

[0041] The video encoder 20 and the video decoder 30 cach may be
implemented as any of a variety of suitable encoder circuitry, such as one or more
microprocessors, digital signal processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), discrete logic, software, hardware,

firmware or any combinations thereof. When the techniques are implemented partially in

-11-

WO 2016/004086 PCT/US2015/038629

software, a device may store instructions for the software in a suitable, non-transitory
computer-readable medium and execute the instructions in hardware using one or more
processors to perform the techniques of this disclosure. Each of the video encoder 20 and
the video decoder 30 may be included in one or more encoders or decoders, either of

which may be integrated as part of a combined encoder/decoder in a respective device.

Video Coding Process

[0042] As mentioned briefly above, the video encoder 20 encodes video data.
The video data may comprise one or more pictures. Each of the pictures is a still image
forming part of a video. In some instances, a picture may be referred to as a video
“frame.” When the video encoder 20 encodes the video data, the video encoder 20 may
generate a bitstream. The bitstream may include a sequence of bits that form a coded
representation of the video data. The bitstream may include coded pictures and
associated data. A coded picture is a coded representation of a picture.

[0043] To generate the bitstream, the video encoder 20 may perform encoding
operations on each picture in the video data. When the video encoder 20 performs
encoding operations on the pictures, the video encoder 20 may generate a series of coded
pictures and associated data. The associated data may include video parameter sets
(VPS), sequence parameter sets (SPSs), picture parameter sets (PPSs), adaptation
parameter sets (APSs), and other syntax structures. An SPS may contain parameters
applicable to zero or more sequences of pictures. A PPS may contain parameters
applicable to zero or more pictures. An APS may contain parameters applicable to zero
or more pictures. Parameters in an APS may be parameters that are more likely to change
than parameters in a PPS.

[0044] To generate a coded picture, the video encoder 20 may partition a
picture into equally-sized video blocks. A video block may be a two-dimensional array
of samples. Each of the video blocks is associated with a treeblock. In some instances, a
treeblock may be referred to as a largest coding unit (LCU). The treeblocks of HEVC
may be broadly analogous to the macroblocks of previous standards, such as H.264/AVC.
However, a treeblock is not necessarily limited to a particular size and may include one or
more coding units (CUs). The video encoder 20 may use quadtree partitioning to
partition the video blocks of treeblocks into video blocks associated with CUs, hence the

name “treeblocks.”

-12-

WO 2016/004086 PCT/US2015/038629

[0045] In some examples, the video encoder 20 may partition a picture into a
plurality of slices. Each of the slices may include an integer number of CUs. In some
instances, a slice comprises an integer number of treeblocks. In other instances, a
boundary of a slice may be within a treeblock.

[0046] As part of performing an encoding operation on a picture, the video
encoder 20 may perform encoding operations on each slice of the picture. When the
video encoder 20 performs an encoding operation on a slice, the video encoder 20 may
generate encoded data associated with the slice. The encoded data associated with the
slice may be referred to as a “coded slice.”

[0047] To generate a coded slice, the video encoder 20 may perform encoding
operations on each treeblock in a slice. When the video encoder 20 performs an encoding
operation on a treeblock, the video encoder 20 may generate a coded treeblock. The
coded treeblock may comprise data representing an encoded version of the treeblock.

[0048] When the video encoder 20 generates a coded slice, the video encoder
20 may perform encoding operations on (e.g., encode) the treeblocks in the slice
according to a raster scan order. For example, the video encoder 20 may encode the
treeblocks of the slice in an order that proceeds from left to right across a topmost row of
treeblocks in the slice, then from left to right across a next lower row of treeblocks, and
so on until the video encoder 20 has encoded each of the treeblocks in the slice.

[0049] As a result of encoding the treeblocks according to the raster scan
order, the treeblocks above and to the left of a given treeblock may have been encoded,
but treeblocks below and to the right of the given treeblock have not yet been encoded.
Consequently, the video encoder 20 may be able to access information generated by
encoding treeblocks above and to the left of the given treeblock when encoding the given
treeblock. However, the video encoder 20 may be unable to access information generated
by encoding treeblocks below and to the right of the given treeblock when encoding the
given treeblock.

[0050] To generate a coded treeblock, the video encoder 20 may recursively
perform quadtree partitioning on the video block of the treeblock to divide the video
block into progressively smaller video blocks. Each of the smaller video blocks may be
associated with a different CU. For example, the video encoder 20 may partition the
video block of a treeblock into four equally-sized sub-blocks, partition one or more of the

sub-blocks into four equally-sized sub-sub-blocks, and so on. A partitioned CU may be a

13-

WO 2016/004086 PCT/US2015/038629

CU whose video block is partitioned into video blocks associated with other CUs. A non-
partitioned CU may be a CU whose video block is not partitioned into video blocks
associated with other CUs.

[0051] One or more syntax elements in the bitstream may indicate a maximum
number of times the video encoder 20 may partition the video block of a treeblock. A
video block of a CU may be square in shape. The size of the video block of a CU (e.g.,
the size of the CU) may range from 8x8 pixels up to the size of a video block of a
treeblock (e.g., the size of the treeblock) with a maximum of 64x64 pixels or greater.

[0052] The video encoder 20 may perform encoding operations on (e.g.,
encode) cach CU of a treeblock according to a z-scan order. In other words, the video
encoder 20 may encode a top-left CU, a top-right CU, a bottom-left CU, and then a
bottom-right CU, in that order. When the video encoder 20 performs an encoding
operation on a partitioned CU, the video encoder 20 may encode CUs associated with
sub-blocks of the video block of the partitioned CU according to the z-scan order. In
other words, the video encoder 20 may encode a CU associated with a top-left sub-block,
a CU associated with a top-right sub-block, a CU associated with a bottom-left sub-block,
and then a CU associated with a bottom-right sub-block, in that order.

[0053] As a result of encoding the CUs of a treeblock according to a z-scan
order, the CUs above, above-and-to-the-left, above-and-to-the-right, left, and below-and-
to-the left of a given CU may have been encoded. CUs below and to the right of the
given CU have not yet been encoded. Consequently, the video encoder 20 may be able to
access information generated by encoding some CUs that neighbor the given CU when
encoding the given CU. However, the video encoder 20 may be unable to access
information generated by encoding other CUs that neighbor the given CU when encoding
the given CU.

[0054] When the video encoder 20 encodes a non-partitioned CU, the video
encoder 20 may generate one or more prediction units (PUs) for the CU. Each of the PUs
of the CU may be associated with a different video block within the video block of the
CU. The video encoder 20 may generate a predicted video block for each PU of the CU.
The predicted video block of a PU may be a block of samples. The video encoder 20 may
use intra prediction or inter prediction to generate the predicted video block for a PU.

[0055] When the video encoder 20 uses intra prediction to generate the

predicted video block of a PU, the video encoder 20 may generate the predicted video

-14-

WO 2016/004086 PCT/US2015/038629

block of the PU based on decoded samples of the picture associated with the PU. If the
video encoder 20 uses intra prediction to generate predicted video blocks of the PUs of a
CU, the CU is an intra-predicted CU. When the video encoder 20 uses inter prediction to
generate the predicted video block of the PU, the video encoder 20 may generate the
predicted video block of the PU based on decoded samples of one or more pictures other
than the picture associated with the PU. If the video encoder 20 uses inter prediction to
generate predicted video blocks of the PUs of a CU, the CU is an inter-predicted CU.

[0056] Furthermore, when the video encoder 20 uses inter prediction to
generate a predicted video block for a PU, the video encoder 20 may generate motion
information for the PU. The motion information for a PU may indicate one or more
reference blocks of the PU. Each reference block of the PU may be a video block within
a reference picture. The reference picture may be a picture other than the picture
associated with the PU. In some instances, a reference block of a PU may also be
referred to as the “reference sample” of the PU. The video encoder 20 may generate the
predicted video block for the PU based on the reference blocks of the PU.

[0057] After the video encoder 20 generates predicted video blocks for one or
more PUs of a CU, the video encoder 20 may generate residual data for the CU based on
the predicted video blocks for the PUs of the CU. The residual data for the CU may
indicate differences between samples in the predicted video blocks for the PUs of the CU
and the original video block of the CU.

[0058] Furthermore, as part of performing an encoding operation on a non-
partitioned CU, the video encoder 20 may perform recursive quadtree partitioning on the
residual data of the CU to partition the residual data of the CU into one or more blocks of
residual data (e.g., residual video blocks) associated with transform units (TUs) of the
CU. Each TU of a CU may be associated with a different residual video block.

[0059] The video encoder 20 may apply one or more transforms to residual
video blocks associated with the TUs to generate transform coefficient blocks (e.g.,
blocks of transform coefficients) associated with the TUs. Conceptually, a transform
coefficient block may be a two-dimensional (2D) matrix of transform coefficients.

[0060] After generating a transform coefficient block, the video encoder 20
may perform a quantization process on the transform coefficient block. Quantization
generally refers to a process in which transform coefficients are quantized to possibly

reduce the amount of data used to represent the transform coefficients, providing further

-15-

WO 2016/004086 PCT/US2015/038629

compression. The quantization process may reduce the bit depth associated with some or
all of the transform coefficients. For example, an n-bit transform coefficient may be
rounded down to an m-bit transform coefficient during quantization, where n is greater
than m.

[0061] The video encoder 20 may associate each CU with a quantization
parameter (QP) value. The QP value associated with a CU may determine how the video
encoder 20 quantizes transform coefficient blocks associated with the CU. The video
encoder 20 may adjust the degree of quantization applied to the transform coefficient
blocks associated with a CU by adjusting the QP value associated with the CU.

[0062] After the video encoder 20 quantizes a transform coefficient block, the
video encoder 20 may generate sets of syntax elements that represent the transform
coefficients in the quantized transform coefficient block. The video encoder 20 may
apply entropy encoding operations, such as Context Adaptive Binary Arithmetic Coding
(CABAC) operations, to some of these syntax elements. Other entropy coding techniques
such as context-adaptive variable-length coding (CAVLC), probability interval
partitioning entropy (PIPE) coding, or other binary arithmetic coding could also be used.

[0063] The bitstream generated by the video encoder 20 may include a series
of Network Abstraction Layer (NAL) units. Each of the NAL units may be a syntax
structure containing an indication of a type of data in the NAL unit and bytes containing
the data. For example, a NAL unit may contain data representing a video parameter set, a
sequence parameter set, a picture parameter set, a coded slice, SEI, an access unit
delimiter, filler data, or another type of data. The data in a NAL unit may include various
syntax structures.

[0064] The video decoder 30 may receive the bitstream generated by the video
encoder 20. The bitstream may include a coded representation of the video data encoded
by the video encoder 20. When the video decoder 30 receives the bitstream, the video
decoder 30 may perform a parsing operation on the bitstream. When the video decoder
30 performs the parsing operation, the video decoder 30 may extract syntax elements
from the bitstream. The video decoder 30 may reconstruct the pictures of the video data
based on the syntax elements extracted from the bitstream. The process to reconstruct the
video data based on the syntax elements may be generally reciprocal to the process

performed by the video encoder 20 to generate the syntax elements.

-16-

WO 2016/004086 PCT/US2015/038629

[0065] After the video decoder 30 extracts the syntax clements associated
with a CU, the video decoder 30 may generate predicted video blocks for the PUs of the
CU based on the syntax elements. In addition, the video decoder 30 may inverse quantize
transform coefficient blocks associated with TUs of the CU. The video decoder 30 may
perform inverse transforms on the transform coefficient blocks to reconstruct residual
video blocks associated with the TUs of the CU. After generating the predicted video
blocks and reconstructing the residual video blocks, the video decoder 30 may reconstruct
the video block of the CU based on the predicted video blocks and the residual video
blocks. In this way, the video decoder 30 may reconstruct the video blocks of CUs based

on the syntax elements in the bitstream.

Video Encoder

[0066] FIG. 2 is a block diagram illustrating an example of the video encoder
20 that may implement techniques in accordance with aspects described in this
disclosure. The video encoder 20 may be configured to process a single layer of a video
frame, such as for HEVC. Further, the video encoder 20 may be configured to perform
any or all of the techniques of this disclosure. In some examples, the techniques
described in this disclosure may be shared among the various components of the video
encoder 20. In some examples, additionally or alternatively, a processor (not shown) may
be configured to perform any or all of the techniques described in this disclosure.

[0067] For purposes of explanation, this disclosure describes the video
encoder 20 in the context of HEVC coding. However, the techniques of this disclosure
may be applicable to other coding standards or methods. The example depicted in FIG. 2
is for a single layer codec. However, in certain embodiments, some or all of the video
encoder 20 may be duplicated for processing of a multi-layer codec.

[0068] The video encoder 20 may perform intra- and inter-coding of video
blocks within video slices. Intra coding relies on spatial prediction to reduce or remove
spatial redundancy in video within a given video frame or picture. Inter-coding relies on
temporal prediction to reduce or remove temporal redundancy in video within adjacent
frames or pictures of a video sequence. Intra-mode (I mode) may refer to any of several
spatial based coding modes. Inter-modes, such as uni-directional prediction (P mode) or
bi-directional prediction (B mode), may refer to any of several temporal-based coding

modes.

-17-

WO 2016/004086 PCT/US2015/038629

[0069] In the example of FIG. 2, the video encoder 20 includes a plurality of
functional components. The functional components of the video encoder 20 include a
prediction processing unit 100, a residual generation unit 102, a transform processing unit
104, a quantization unit 106, an inverse quantization unit 108, an inverse transform unit
110, a reconstruction unit 112, a filter unit 113, a decoded picture buffer 114, and an
entropy encoding unit 116. Prediction processing unit 100 includes an inter prediction
unit 121, a motion estimation unit 122, a motion compensation unit 124, an intra
prediction unit 126, and an inter-layer prediction unit 128. In other examples, the video
encoder 20 may include more, fewer, or different functional components. Furthermore,
motion estimation unit 122 and motion compensation unit 124 may be highly integrated,
but are represented in the example of FIG. 2 separately for purposes of explanation.

[0070] The video encoder 20 may receive video data. The video encoder 20
may receive the video data from various sources. For example, the video encoder 20 may
receive the video data from video source 18 (e.g., shown in FIG. 1A or 1B) or another
source. The video data may represent a series of pictures. To encode the video data, the
video encoder 20 may perform an encoding operation on each of the pictures. As part of
performing the encoding operation on a picture, the video encoder 20 may perform
encoding operations on each slice of the picture. As part of performing an encoding
operation on a slice, the video encoder 20 may perform encoding operations on treeblocks
in the slice.

[0071] As part of performing an encoding operation on a treeblock, prediction
processing unit 100 may perform quadtree partitioning on the video block of the treeblock
to divide the video block into progressively smaller video blocks. Each of the smaller
video blocks may be associated with a different CU. For example, prediction processing
unit 100 may partition a video block of a treeblock into four equally-sized sub-blocks,
partition one or more of the sub-blocks into four equally-sized sub-sub-blocks, and so on.

[0072] The sizes of the video blocks associated with CUs may range from 8x8
samples up to the size of the treeblock with a maximum of 64x64 samples or greater. In
this disclosure, “NxN” and “N by N may be used interchangeably to refer to the sample
dimensions of a video block in terms of vertical and horizontal dimensions, e.g., 16x16
samples or 16 by 16 samples. In general, a 16x16 video block has sixteen samples in a

vertical direction (y = 16) and sixteen samples in a horizontal direction (x = 16).

-18-

WO 2016/004086 PCT/US2015/038629

Likewise, an NxN block generally has N samples in a vertical direction and N samples in
a horizontal direction, where N represents a nonnegative integer value.

[0073] Furthermore, as part of performing the encoding operation on a
treeblock, prediction processing unit 100 may generate a hierarchical quadtree data
structure for the treeblock. For example, a treeblock may correspond to a root node of the
quadtree data structure. If prediction processing unit 100 partitions the video block of the
treeblock into four sub-blocks, the root node has four child nodes in the quadtree data
structure. Each of the child nodes corresponds to a CU associated with one of the sub-
blocks. If prediction processing unit 100 partitions one of the sub-blocks into four sub-
sub-blocks, the node corresponding to the CU associated with the sub-block may have
four child nodes, ecach of which corresponds to a CU associated with one of the sub-sub-
blocks.

[0074] Each node of the quadtree data structure may contain syntax data (e.g.,
syntax elements) for the corresponding treeblock or CU. For example, a node in the
quadtree may include a split flag that indicates whether the video block of the CU
corresponding to the node is partitioned (e.g., split) into four sub-blocks. Syntax
clements for a CU may be defined recursively, and may depend on whether the video
block of the CU is split into sub-blocks. A CU whose video block is not partitioned may
correspond to a leaf node in the quadtree data structure. A coded treeblock may include
data based on the quadtree data structure for a corresponding treeblock.

[0075] The video encoder 20 may perform encoding operations on each non-
partitioned CU of a treeblock. When the video encoder 20 performs an encoding
operation on a non-partitioned CU, the video encoder 20 generates data representing an
encoded representation of the non-partitioned CU.

[0076] As part of performing an encoding operation on a CU, prediction
processing unit 100 may partition the video block of the CU among one or more PUs of
the CU. The video encoder 20 and the video decoder 30 may support various PU sizes.
Assuming that the size of a particular CU is 2Nx2N, the video encoder 20 and the video
decoder 30 may support PU sizes of 2Nx2N or NxN, and inter-prediction in symmetric
PU sizes of 2Nx2N, 2NxN, Nx2N, NxN, 2NxnU, nLx2N, nRx2N, or similar. The video
encoder 20 and the video decoder 30 may also support asymmetric partitioning for PU
sizes of 2NxnU, 2NxnD, nLx2N, and nRx2N. In some examples, prediction processing

unit 100 may perform geometric partitioning to partition the video block of a CU among

-19-

WO 2016/004086 PCT/US2015/038629

PUs of the CU along a boundary that does not meet the sides of the video block of the CU
at right angles.

[0077] Inter prediction unit 121 may perform inter prediction on each PU of
the CU. Inter prediction may provide temporal compression. To perform inter prediction
on a PU, motion estimation unit 122 may generate motion information for the PU.
Motion compensation unit 124 may generate a predicted video block for the PU based the
motion information and decoded samples of pictures other than the picture associated
with the CU (e.g., reference pictures). In this disclosure, a predicted video block
generated by motion compensation unit 124 may be referred to as an inter-predicted video
block.

[0078] Slices may be I slices, P slices, or B slices. Motion estimation unit 122
and motion compensation unit 124 may perform different operations for a PU of a CU
depending on whether the PU is in an I slice, a P slice, or a B slice. In an I slice, all PUs
are intra predicted. Hence, if the PU is in an I slice, motion estimation unit 122 and
motion compensation unit 124 do not perform inter prediction on the PU.

[0079] If the PU is in a P slice, the picture containing the PU is associated
with a list of reference pictures referred to as “list 0.” Each of the reference pictures in
list O contains samples that may be used for inter prediction of other pictures. When
motion estimation unit 122 performs the motion estimation operation with regard to a PU
in a P slice, motion estimation unit 122 may search the reference pictures in list O for a
reference block for the PU. The reference block of the PU may be a set of samples, e.g., a
block of samples that most closely corresponds to the samples in the video block of the
PU. Motion estimation unit 122 may use a variety of metrics to determine how closely a
set of samples in a reference picture corresponds to the samples in the video block of a
PU. For example, motion estimation unit 122 may determine how closely a set of
samples in a reference picture corresponds to the samples in the video block of a PU by
sum of absolute difference (SAD), sum of square difference (SSD), or other difference
metrics.

[0080] After identifying a reference block of a PU in a P slice, motion
estimation unit 122 may generate a reference index that indicates the reference picture in
list 0 containing the reference block and a motion vector that indicates a spatial
displacement between the PU and the reference block. In various examples, motion

estimation unit 122 may generate motion vectors to varying degrees of precision. For

20-

WO 2016/004086 PCT/US2015/038629

example, motion estimation unit 122 may generate motion vectors at one-quarter sample
precision, one-eighth sample precision, or other fractional sample precision. In the case
of fractional sample precision, reference block values may be interpolated from integer-
position sample values in the reference picture. Motion estimation unit 122 may output
the reference index and the motion vector as the motion information of the PU. Motion
compensation unit 124 may generate a predicted video block of the PU based on the
reference block identified by the motion information of the PU.

[0081] If the PU is in a B slice, the picture containing the PU may be
associated with two lists of reference pictures, referred to as “list 0” and “list 1.” In some
examples, a picture containing a B slice may be associated with a list combination that is
a combination of list 0 and list 1.

[0082] Furthermore, if the PU is in a B slice, motion estimation unit 122 may
perform uni-directional prediction or bi-directional prediction for the PU. When motion
estimation unit 122 performs uni-directional prediction for the PU, motion estimation unit
122 may search the reference pictures of list O or list 1 for a reference block for the PU.
Motion estimation unit 122 may then generate a reference index that indicates the
reference picture in list O or list 1 that contains the reference block and a motion vector
that indicates a spatial displacement between the PU and the reference block. Motion
estimation unit 122 may output the reference index, a prediction direction indicator, and
the motion vector as the motion information of the PU. The prediction direction indicator
may indicate whether the reference index indicates a reference picture in list O or list 1.
Motion compensation unit 124 may generate the predicted video block of the PU based
on the reference block indicated by the motion information of the PU.

[0083] When motion estimation unit 122 performs bi-directional prediction
for a PU, motion estimation unit 122 may search the reference pictures in list 0 for a
reference block for the PU and may also search the reference pictures in list 1 for another
reference block for the PU. Motion estimation unit 122 may then generate reference
indexes that indicate the reference pictures in list 0 and list 1 containing the reference
blocks and motion vectors that indicate spatial displacements between the reference
blocks and the PU. Motion estimation unit 122 may output the reference indexes and the
motion vectors of the PU as the motion information of the PU. Motion compensation unit
124 may generate the predicted video block of the PU based on the reference blocks

indicated by the motion information of the PU.

21-

WO 2016/004086 PCT/US2015/038629

[0084] In some instances, motion estimation unit 122 does not output a full set
of motion information for a PU to entropy encoding unit 116. Rather, motion estimation
unit 122 may signal the motion information of a PU with reference to the motion
information of another PU. For example, motion estimation unit 122 may determine that
the motion information of the PU is sufficiently similar to the motion information of a
neighboring PU. In this example, motion estimation unit 122 may indicate, in a syntax
structure associated with the PU, a value that indicates to the video decoder 30 that the
PU has the same motion information as the neighboring PU. In another example, motion
estimation unit 122 may identify, in a syntax structure associated with the PU, a
neighboring PU and a motion vector difference (MVD). The motion vector difference
indicates a difference between the motion vector of the PU and the motion vector of the
indicated neighboring PU. The video decoder 30 may use the motion vector of the
indicated neighboring PU and the motion vector difference to determine the motion
vector of the PU. By referring to the motion information of a first PU when signaling the
motion information of a second PU, the video encoder 20 may be able to signal the
motion information of the second PU using fewer bits.

[0085] As part of performing an encoding operation on a CU, intra prediction
unit 126 may perform intra prediction on PUs of the CU. Intra prediction may provide
spatial compression. When intra prediction unit 126 performs intra prediction on a PU,
intra prediction unit 126 may generate prediction data for the PU based on decoded
samples of other PUs in the same picture. The prediction data for the PU may include a
predicted video block and various syntax elements. Intra prediction unit 126 may
perform intra prediction on PUs in I slices, P slices, and B slices.

[0086] To perform intra prediction on a PU, intra prediction unit 126 may use
multiple intra prediction modes to generate multiple sets of prediction data for the PU.
When intra prediction unit 126 uses an intra prediction mode to generate a set of
prediction data for the PU, intra prediction unit 126 may extend samples from video
blocks of neighboring PUs across the video block of the PU in a direction and/or gradient
associated with the intra prediction mode. The neighboring PUs may be above, above
and to the right, above and to the left, or to the left of the PU, assuming a left-to-right,
top-to-bottom encoding order for PUs, CUs, and treeblocks. Intra prediction unit 126
may use various numbers of intra prediction modes, e.g., 33 directional intra prediction

modes, depending on the size of the PU.

22

WO 2016/004086 PCT/US2015/038629

[0087] Prediction processing unit 100 may select the prediction data for a PU
from among the prediction data generated by motion compensation unit 124 for the PU or
the prediction data generated by intra prediction unit 126 for the PU. In some examples,
prediction processing unit 100 selects the prediction data for the PU based on
rate/distortion metrics of the sets of prediction data.

[0088] If prediction processing unit 100 selects prediction data generated by
intra prediction unit 126, prediction processing unit 100 may signal the intra prediction
mode that was used to generate the prediction data for the PUs, e.g., the selected intra
prediction mode. Prediction processing unit 100 may signal the selected intra prediction
mode in various ways. For example, it may be probable that the selected intra prediction
mode is the same as the intra prediction mode of a neighboring PU. In other words, the
intra prediction mode of the neighboring PU may be the most probable mode for the
current PU. Thus, prediction processing unit 100 may generate a syntax element to
indicate that the selected intra prediction mode is the same as the intra prediction mode of
the neighboring PU.

[0089] As discussed above, the video encoder 20 may include inter-layer
prediction unit 128. Inter-layer prediction unit 128 is configured to predict a current
block (e.g., a current block in the EL) using one or more different layers that are available
in SHVC (e.g., a base or reference layer). Such prediction may be referred to as inter-
layer prediction. Inter-layer prediction unit 128 utilizes prediction methods to reduce
inter-layer redundancy, thereby improving coding efficiency and reducing computational
resource requirements. Some examples of inter-layer prediction include inter-layer intra
prediction, inter-layer motion prediction, and inter-layer residual prediction. Inter-layer
intra prediction uses the reconstruction of co-located blocks in the base layer to predict
the current block in the enhancement layer. Inter-layer motion prediction uses motion
information of the base layer to predict motion in the enhancement layer. Inter-layer
residual prediction uses the residue of the base layer to predict the residue of the
enhancement layer.

[0090] After prediction processing unit 100 selects the prediction data for PUs
of a CU, residual generation unit 102 may generate residual data for the CU by
subtracting (e.g., indicated by the minus sign) the predicted video blocks of the PUs of
the CU from the video block of the CU. The residual data of a CU may include 2D

residual video blocks that correspond to different sample components of the samples in

03

WO 2016/004086 PCT/US2015/038629

the video block of the CU. For example, the residual data may include a residual video
block that corresponds to differences between luminance components of samples in the
predicted video blocks of the PUs of the CU and luminance components of samples in the
original video block of the CU. In addition, the residual data of the CU may include
residual video blocks that correspond to the differences between chrominance
components of samples in the predicted video blocks of the PUs of the CU and the
chrominance components of the samples in the original video block of the CU.

[0091] Prediction processing unit 100 may perform quadtree partitioning to
partition the residual video blocks of a CU into sub-blocks. FEach undivided residual
video block may be associated with a different TU of the CU. The sizes and positions of
the residual video blocks associated with TUs of a CU may or may not be based on the
sizes and positions of video blocks associated with the PUs of the CU. A quadtree
structure known as a “residual quad tree” (RQT) may include nodes associated with each
of the residual video blocks. The TUs of a CU may correspond to leaf nodes of the RQT.

[0092] Transform processing unit 104 may generate one or more transform
coefficient blocks for each TU of a CU by applying one or more transforms to a residual
video block associated with the TU. Each of the transform coefficient blocks may be a
2D matrix of transform coefficients. Transform processing unit 104 may apply various
transforms to the residual video block associated with a TU. For example, transform
processing unit 104 may apply a discrete cosine transform (DCT), a directional transform,
or a conceptually similar transform to the residual video block associated with a TU.

[0093] After transform processing unit 104 generates a transform coefficient
block associated with a TU, quantization unit 106 may quantize the transform coefficients
in the transform coefficient block. Quantization unit 106 may quantize a transform
coefficient block associated with a TU of a CU based on a QP value associated with the
CU.

[0094] The video encoder 20 may associate a QP value with a CU in various
ways. For example, the video encoder 20 may perform a rate-distortion analysis on a
treeblock associated with the CU. In the rate-distortion analysis, the video encoder 20
may generate multiple coded representations of the treeblock by performing an encoding
operation multiple times on the treeblock. The video encoder 20 may associate different
QP values with the CU when the video encoder 20 gencrates different encoded

representations of the treeblock. The video encoder 20 may signal that a given QP value

24

WO 2016/004086 PCT/US2015/038629

is associated with the CU when the given QP value is associated with the CU in a coded
representation of the treeblock that has a lowest bitrate and distortion metric.

[0095] Inverse quantization unit 108 and inverse transform unit 110 may
apply inverse quantization and inverse transforms to the transform coefficient block,
respectively, to reconstruct a residual video block from the transform coefficient block.
Reconstruction unit 112 may add the reconstructed residual video block to corresponding
samples from one or more predicted video blocks generated by prediction processing unit
100 to produce a reconstructed video block associated with a TU. By reconstructing
video blocks for each TU of a CU in this way, the video encoder 20 may reconstruct the
video block of the CU.

[0096] After reconstruction unit 112 reconstructs the video block of a CU,
filter unit 113 may perform a deblocking operation to reduce blocking artifacts in the
video block associated with the CU. After performing the one or more deblocking
operations, filter unit 113 may store the reconstructed video block of the CU in decoded
picture buffer 114. Motion estimation unit 122 and motion compensation unit 124 may
use a reference picture that contains the reconstructed video block to perform inter
prediction on PUs of subsequent pictures. In addition, intra prediction unit 126 may use
reconstructed video blocks in decoded picture buffer 114 to perform intra prediction on
other PUs in the same picture as the CU.

[0097] Entropy encoding unit 116 may receive data from other functional
components of the video encoder 20. For example, entropy encoding unit 116 may
receive transform coefficient blocks from quantization unit 106 and may receive syntax
elements from prediction processing unit 100. When entropy encoding unit 116 receives
the data, entropy encoding unit 116 may perform one or more entropy encoding
operations to generate entropy encoded data. For example, the video encoder 20 may
perform a CAVLC operation, a CABAC operation, a variable-to-variable (V2V) length
coding operation, a syntax-based context-adaptive binary arithmetic coding (SBAC)
operation, a Probability Interval Partitioning Entropy (PIPE) coding operation, or another
type of entropy encoding operation on the data. Entropy encoding unit 116 may output a
bitstream that includes the entropy encoded data.

[0098] As part of performing an entropy encoding operation on data, entropy
encoding unit 116 may select a context model. If entropy encoding unit 116 is

performing a CABAC operation, the context model may indicate estimates of

25

WO 2016/004086 PCT/US2015/038629

probabilities of particular bins having particular values. In the context of CABAC, the

term “bin” is used to refer to a bit of a binarized version of a syntax element.

YVideo Decoder

[0099] FIG. 3 is a block diagram illustrating an example of the video decoder
30 that may implement techniques in accordance with aspects described in this
disclosure. The video decoder 30 may be configured to process a single layer of a video
frame, such as for HEVC. Further, the video decoder 30 may be configured to perform
any or all of the techniques of this disclosure. In some examples, the techniques
described in this disclosure may be shared among the various components of the video
decoder 30. In some examples, additionally or alternatively, a processor (not shown) may
be configured to perform any or all of the techniques described in this disclosure.

[0100] For purposes of explanation, this disclosure describes the video
decoder 30 in the context of HEVC coding. However, the techniques of this disclosure
may be applicable to other coding standards or methods. The example depicted in FIG. 3
is for a single layer codec. However, in certain implementations, some or all of the video
decoder 30 may be duplicated for processing of a multi-layer codec.

[0101] In the example of FIG. 3, the video decoder 30 includes a plurality of
functional components. The functional components of the video decoder 30 include an
entropy decoding unit 150, a prediction processing unit 152, an inverse quantization unit
154, an inverse transform unit 156, a reconstruction unit 158, a filter unit 159, and a
decoded picture buffer 160. Prediction processing unit 152 includes a motion
compensation unit 162, an intra prediction unit 164, and an inter-layer prediction unit 166.
In some examples, the video decoder 30 may perform a decoding pass generally
reciprocal to the encoding pass described with respect to video encoder 20 of FIG. 2. In
other examples, the video decoder 30 may include more, fewer, or different functional
components.

[0102] The video decoder 30 may receive a bitstream that comprises encoded
video data. The bitstream may include a plurality of syntax elements. When the video
decoder 30 receives the bitstream, entropy decoding unit 150 may perform a parsing
operation on the bitstream. As a result of performing the parsing operation on the
bitstream, entropy decoding unit 150 may extract syntax elements from the bitstream. As

part of performing the parsing operation, entropy decoding unit 150 may entropy decode

06-

WO 2016/004086 PCT/US2015/038629

entropy encoded syntax elements in the bitstream. Prediction processing unit 152,
inverse quantization unit 154, inverse transform unit 156, reconstruction unit 158, and
filter unit 159 may perform a reconstruction operation that generates decoded video data
based on the syntax elements extracted from the bitstream.

[0103] As discussed above, the bitstream may comprise a series of NAL units.
The NAL units of the bitstream may include video parameter set NAL units, sequence
parameter set NAL units, picture parameter set NAL units, SEI NAL units, and so on. As
part of performing the parsing operation on the bitstream, entropy decoding unit 150 may
perform parsing operations that extract and entropy decode sequence parameter sets from
sequence parameter set NAL units, picture parameter sets from picture parameter set
NAL units, SEI data from SEI NAL units, and so on.

[0104] In addition, the NAL units of the bitstream may include coded slice
NAL units. As part of performing the parsing operation on the bitstream, entropy
decoding unit 150 may perform parsing operations that extract and entropy decode coded
slices from the coded slice NAL units. Each of the coded slices may include a slice
header and slice data. The slice header may contain syntax elements pertaining to a slice.
The syntax elements in the slice header may include a syntax element that identifies a
picture parameter set associated with a picture that contains the slice. Entropy decoding
unit 150 may perform entropy decoding operations, such as CABAC decoding operations,
on syntax elements in the coded slice header to recover the slice header.

[0105] As part of extracting the slice data from coded slice NAL units,
entropy decoding unit 150 may perform parsing operations that extract syntax elements
from coded CUs in the slice data. The extracted syntax elements may include syntax
elements associated with transform coefficient blocks. Entropy decoding unit 150 may
then perform CABAC decoding operations on some of the syntax elements.

[0106] After entropy decoding unit 150 performs a parsing operation on a
non-partitioned CU, the video decoder 30 may perform a reconstruction operation on the
non-partitioned CU. To perform the reconstruction operation on a non-partitioned CU,
the video decoder 30 may perform a reconstruction operation on each TU of the CU. By
performing the reconstruction operation for each TU of the CU, the video decoder 30 may
reconstruct a residual video block associated with the CU.

[0107] As part of performing a reconstruction operation on a TU, inverse

quantization unit 154 may inverse quantize, e.g., de-quantize, a transform coefficient

27

WO 2016/004086 PCT/US2015/038629

block associated with the TU. Inverse quantization unit 154 may inverse quantize the
transform coefficient block in a manner similar to the inverse quantization processes
proposed for HEVC or defined by the H.264 decoding standard. Inverse quantization unit
154 may use a quantization parameter QP calculated by the video encoder 20 for a CU of
the transform coefficient block to determine a degree of quantization and, likewise, a
degree of inverse quantization for inverse quantization unit 154 to apply.

[0108] After inverse quantization unit 154 inverse quantizes a transform
coefficient block, inverse transform unit 156 may generate a residual video block for the
TU associated with the transform coefficient block. Inverse transform unit 156 may
apply an inverse transform to the transform coefficient block in order to generate the
residual video block for the TU. For example, inverse transform unit 156 may apply an
inverse DCT, an inverse integer transform, an inverse Karhunen-Loeve transform (KLT),
an inverse rotational transform, an inverse directional transform, or another inverse
transform to the transform coefficient block. In some examples, inverse transform unit
156 may determine an inverse transform to apply to the transform coefficient block based
on signaling from the video encoder 20. In such examples, inverse transform unit 156
may determine the inverse transform based on a signaled transform at the root node of a
quadtree for a treeblock associated with the transform coefficient block. In other
examples, inverse transform unit 156 may infer the inverse transform from one or more
coding characteristics, such as block size, coding mode, or the like. In some examples,
inverse transform unit 156 may apply a cascaded inverse transform.

[0109] In some examples, motion compensation unit 162 may refine the
predicted video block of a PU by performing interpolation based on interpolation filters.
Identifiers for interpolation filters to be used for motion compensation with sub-sample
precision may be included in the syntax elements. Motion compensation unit 162 may
use the same interpolation filters used by the video encoder 20 during generation of the
predicted video block of the PU to calculate interpolated values for sub-integer samples
of a reference block. Motion compensation unit 162 may determine the interpolation
filters used by the video encoder 20 according to received syntax information and use the
interpolation filters to produce the predicted video block.

[0110] If a PU is encoded using intra prediction, intra prediction unit 164 may
perform intra prediction to generate a predicted video block for the PU. For example,

intra prediction unit 164 may determine an intra prediction mode for the PU based on

8-

WO 2016/004086 PCT/US2015/038629

syntax elements in the bitstream. The bitstream may include syntax elements that intra
prediction unit 164 may use to determine the intra prediction mode of the PU.

[0111] In some instances, the syntax elements may indicate that intra
prediction unit 164 is to use the intra prediction mode of another PU to determine the
intra prediction mode of the current PU. For example, it may be probable that the intra
prediction mode of the current PU is the same as the intra prediction mode of a
neighboring PU. In other words, the intra prediction mode of the neighboring PU may be
the most probable mode for the current PU. Hence, in this example, the bitstream may
include a small syntax element that indicates that the intra prediction mode of the PU is
the same as the intra prediction mode of the neighboring PU. Intra prediction unit 164
may then use the intra prediction mode to generate prediction data (e.g., predicted
samples) for the PU based on the video blocks of spatially neighboring PUs.

[0112] As discussed above, the video decoder 30 may also include inter-layer
prediction unit 166. Inter-layer prediction unit 166 is configured to predict a current
block (e.g., a current block in the enhancement layer) using one or more different layers
that are available in SHVC (e.g., a base or reference layer). Such prediction may be
referred to as inter-layer prediction. Inter-layer prediction unit 166 utilizes prediction
methods to reduce inter-layer redundancy, thereby improving coding efficiency and
reducing computational resource requirements. Some examples of inter-layer prediction
include inter-layer intra prediction, inter-layer motion prediction, and inter-layer residual
prediction. Inter-layer intra prediction uses the reconstruction of co-located blocks in the
base layer to predict the current block in the enhancement layer. Inter-layer motion
prediction uses motion information of the base layer to predict motion in the enhancement
layer. Inter-layer residual prediction uses the residue of the base layer to predict the
residue of the enhancement layer. Each of the inter-layer prediction schemes is discussed
below in greater detail.

[0113] Reconstruction unit 158 may use the residual video blocks associated
with TUs of a CU and the predicted video blocks of the PUs of the CU, e.g., either intra
prediction data or inter-prediction data, as applicable, to reconstruct the video block of
the CU. Thus, the video decoder 30 may generate a predicted video block and a residual
video block based on syntax elements in the bitstream and may generate a video block

based on the predicted video block and the residual video block.

29

WO 2016/004086 PCT/US2015/038629

[0114] After reconstruction unit 158 reconstructs the video block of the CU,
filter unit 159 may perform a deblocking operation to reduce blocking artifacts associated
with the CU. After filter unit 159 performs a deblocking operation to reduce blocking
artifacts associated with the CU, the video decoder 30 may store the video block of the
CU in decoded picture buffer 160. Decoded picture buffer 160 may provide reference
pictures for subsequent motion compensation, intra prediction, and presentation on a
display device, such as display device 32 of FIG. 1A or 1B. For instance, the video
decoder 30 may perform, based on the video blocks in decoded picture buffer 160, intra

prediction or inter prediction operations on PUs of other CUs.

Palette Coding Mode

[0115] In contrast to conventional intra and inter prediction that mainly
removes redundancy between different coding units, palette coding targets the
redundancy of repetitive pixel values/patterns within the coding unit. In the palette
coding mode, a lookup table called a palette that maps pixel values into table indices (also
called palette indices) is signaled first. In some implementations, the palette has a
specified maximum size (e.g., 32 pixel values). The palette includes entries numbered by
the table indices representing color component (e.g., RGB, YUV, etc.) values or
intensities that can be used as predictors for block samples or as final reconstructed block
samples. In some implementations, samples in a palette block are coded using three run-
modes, i.e. ‘copy-left mode’ (or run mode), ‘copy-above mode’, and ‘escape mode’ (or
pixel mode).

[0116] For a position in the palette block that is coded in copy-left mode, a
palette index is first signaled followed by “run_length” (or “palette_run”) (e.g., M). No
additional information needs to be signaled for the current position and the following M
positions in the palette block because the current position and the following M positions
in the palette block have the same palette index that is signaled for the current position.
The palette index (e.g., 1) is shared by all three color components, which means that the
reconstructed pixel values are (Y, U, V) = (palettey[i], palettey[i], palettev[i]) (assuming
the color space is YUV).

[0117] For a position in the palette block that is coded in copy-above mode, a
value “run_length” (or “copy_run”) (e.g., V) is signaled to indicate that for the following

N positions (N + 1 positions in total, including the current one) in the palette block, the

-30-

WO 2016/004086 PCT/US2015/038629

palette index is equal to the palette index of the position that is directly above in the
palette block.

[0118] For a position in the palette block that is coded in escape mode (or
pixel mode), a pixel value corresponding to the current position in the palette block is
signaled. Escape mode may be signaled using an escape flag (e.g., a flag value of 1
indicates that the current position is coded in escape mode) or a palette index (e.g., an
index value that does not correspond to any of the palette entries or an index value that is

greater than or equal to the palette size).

Palette Bitstream

[0119] In existing implementations, a palette bitstream (e.g., a bitstream that

includes coding units coded in palette coding mode) is organized as follows:

palette_entries

palette_index map

Table 1. Palette mode bitstream

[0120] palette_entries includes one or more pixel values each mapped to a
table index. For example, if a given coding unit includes three unique pixel values (e.g.,
red, green, and blue), the palette entries may include three entries, (0, red), (1, green), and
(2, blue). palette_index_map includes one or more palette blocks coded using the palette
entries, where palette table indices (e.g., 0, 1, and 2 in the example above) are used to
indicate the pixel values in the palette block.

[0121] FIG. 4 illustrates an example configuration of input CU 410, index
block 420, escape pixel 430, and palette 440. As shown in FIG. 4, the input CU 410
contains three unique pixel values: white, grey, and black. Based on the frequency of
white and grey, only white and grey pixel values are included in the palette 440, where an
index value of 0 is associated with the white pixel value and an index value of 1 is
associated with the grey pixel value. The black pixel value that is not included in the
palette is labeled as an escape pixel 430, which is coded independently of the palette. As
shown in FIG. 4, the index block 420 includes an index value for each position in the
block. Two positions in the index block 420 are coded as in escape mode (e.g., without
referring to palette indices 0 or 1). Although only a single escape pixel and only two

palette entries are used in the example of FIG. 4, the embodiments of the present

31-

WO 2016/004086 PCT/US2015/038629

application are not limited as such, and any number of escape pixels and palette entries
may be used. In some embodiments, the palette size is limited to 32 entries, and any
pixel values not associated with one of the 32 entries become escape pixels. The
maximum palette size may be set to any number. Further, the CU size is not limited to 8

pixels by & pixels, and may be 16x16 or any other size.

Example Syntax of Palette Bitstream

[0122] In some implementations, in the palette index map, a block coded in

palette coding mode may take the following form in the bitstream:

while (not end) {

run_mode_flag

if (run_mode flag ==COPY_ ABOVE)

run_length

else if (run_mode flag = COPY_LEFT) {

index

if (index == ESCAPE_INDEX)

escape_pixel value

else

run_length

Table 2. palette_index map bitstream (default setting)

[0123] In the example illustrated in Table 2, depending on the value of
run_mode flag, different syntax elements are signaled in the bitstream. If the run mode
flag indicates that the current position in the palette block is coded in copy-above mode,
the run body includes a run length value (the first instance of “run_length” above). If the
run mode flag indicates that the current position in the palette block is coded in ‘copy-
left’ mode, the run body includes an index value (“index”) followed by a run length value
(the second instance of “run_length” above), unless the index value corresponds to an
escape index, in which case quantized escape pixel values (“escape pixel value™) are
signaled.

[0124] In an alternative implementation, an explicit escape flag is used. More

specifically, the palette index map may take the following form in the bitstream:

230

WO 2016/004086 PCT/US2015/038629

while (not end) {

escape_flag

if (escape_flag)

escape_pixel value

else {

run_mode_flag

if (run_mode flag == COPY_ LEFT)

index

run_length

Table 3. palette_index map bitstream (alternative setting)

[0125] In the example illustrated in Table 3, depending on the value of
escape_flag, different syntax elements are signaled in the bitstream. If the escape flag has
a value of 1, the run body includes quantized escape pixel values. If the escape flag has a
value of 0, a run mode flag is signaled to differentiate ‘copy above’ and ‘copy left’
modes. If the run mode flag indicates that the current position in the palette block is
coded in ‘copy-left’ mode, the bitstream includes an index value followed by a run length
value. Otherwise, only a run length value is signaled in the bitstream.

[0126] FIG. 5 is a flowchart illustrating a method 500 for coding non-natural
video data in a bitstream in accordance with aspects of the present disclosure. The steps
illustrated in FIG. 5 may be performed by a video encoder (e.g., the video encoder 20), a
video decoder (e.g., the video decoder 30), or any other component. For convenience,
method 500 is described as performed by a video coder (also simply referred to as coder),
which may be the video encoder 20, the video decoder 30, or another component.

[0127] The method 500 begins at block 501. At block 505, the coder
processes a coding unit (CU) having a plurality of pixels based on a palette associated
with the CU. As described above, an encoder may derive the palette based on the content
of the CU and signal the palette in the bitstream so that a decoder may process the CU
using the palette associated with the CU. The palette may include a plurality of palette
entries that are each associated with an index value and a pixel value. The pixel value

may be associated with one of the pixels in the CU. In some embodiments, each palette

233

WO 2016/004086 PCT/US2015/038629

entry is associated a unique pixel value that is found in the CU. Block 505 may comprise
one or more steps and/or methods described with reference to FIGS. 6-8. The method

ends at block 510.

Grouping Bypass Bins
[0128] In H.264, HEVC, and many other modern video coding standards, for

a syntax element, after binarization, the 0/1 bin stream is fed into the context adaptive
binary arithmetic coder (CABAC), in which the probability model (named “context”) is
adaptively selected and updated to track the non-stationary probability distribution. As a
special case, the probability model may not be updated to improve the entropy coder’s
throughput. Bins coded using such a simplified method without context update is called
bypass bins.

[0129] In the examples of Tables 2 and 3, there may be some redundancies in
the bitstream. These redundancies may be removed by skipping to signal certain syntax
elements when certain conditions are satisfied. In addition, some syntax elements may
introduce parsing dependency. For example, in Table 2, syntax element run_mode_flag
may not need to be signaled if the current pixel is in the first line of the block, since the
decoder may infer the run mode to be index copy mode (e.g., copy left mode). In
addition, in the example of Table 2, the decoder decodes the index value first, and
depending on the decoded index value, the decoder decides whether the mode is index
copy mode or escape mode (e.g., based on whether or not the index value represents an
escape index value). If the decoder determines the mode to be index copy mode, the
decoder parser continues to parse run length. If the decoder determines the mode to be
escape mode, the decoder parser may continue to parse escape values and/or run length.
Since parsers usually operate at a much higher speed than decoders, such dependency
between decoding engine and parsing engine may affect parser’s throughput (e.g., since
the parsing engine may need to wait for the decoding engine to decode the parsed bits).
Thus, an improved method of processing blocks coded in palette coding mode is desired.
In this application, several novel methods for organizing the palette elements in the

bitstream to avoid or reduce the parsing dependency in palette mode are described.

-34-

WO 2016/004086 PCT/US2015/038629

Embodiment #1: put quantized escape pixel values at the end of a palette mode

block

[0130] In some embodiments, all quantized escape pixel values are signaled at
the end of a palette mode block in the bitstream. In such embodiments, entropy coder
resetting may be applied after the (index, run-length) coding. For example, after coding
all of the possible (index, run-length) pairs in the block, the arithmetic coding engine’s
ivlCurrRange variable (e.g., a variable specifying the range of the current arithmetic
coding interval) is set to 256. With this method, the decoder may read the bits from the
bitstream and treat them as they are without needing to invoke the CABAC coder.
Without this procedure of resetting the variable to 256, while the context may not need to
be updated, the decoder may still need to invoke the CABAC coder to make binary
decisions. Therefore, the quantized escape pixel values can be parsed in parallel after
parsing and/or decoding all the (index, run-length) pairs. In one embodiment, if the
escape pixels are coded using fixed length code, then the escape pixels can be parsed and
decoded in parallel after parsing the index-run block.

[0131] In another embodiment, if the escape pixels are coded using truncated
binary code, then each color component of the escape pixel may take ‘4” or ‘k + 1’ bits
depending on its quantized intensity. For example, in truncated binary encoding, for a
syntax element with value X, assuming that its maximum possible value Max is known
and that » = Max + 1 and k& = floor(log(n)) such that F<n<2landletu=2k+1- n,
if X <u, the truncated binary codeword is specified by the binary representation of X with
length £ Otherwise, the truncated binary codeword is specified by the binary
representation of X + u with length £+ 1. In such an embodiment, the first ‘4” bits of
each color component for all the escape pixels in the current block may be grouped
together, followed by the optional (k + 1)™ bit. With such organization, the first ‘A’ bits
of each color component for all the escape pixels can be parsed and decoded in parallel.
Some dependency may still exist in parsing the optional (k + 1) bit.

[0132] FIG. 6 is a flowchart illustrating a method 600 for decoding non-
natural video data in a bitstream in accordance with aspects of the present disclosure.
The steps illustrated in FIG. 6 may be performed by a video decoder (e.g., the video
decoder 30) or any other component. For convenience, method 600 is described as
performed by a video coder (also simply referred to as coder), which may be the video

decoder 30 or another component.

-35-

WO 2016/004086 PCT/US2015/038629

[0133] The method 600 begins at block 601. At block 605, the coder parses a
palette associated with the cu provided in the bitstream. The palette may include a
plurality of palette entries that are each associated with an index value and a pixel value
associated with the index value. An example of the palette is illustrated in FIG. 4.

[0134] At block 610, the coder parses one or more run lengths associated with
a CU. As described above, each run length indicates the number of consecutive positions,
starting from and including a current position in the CU, that are associated with a copy-
left mode or a copy-above mode.

[0135] At block 615, the coder parses one or more index values associated
with the CU. As described above, each index value indicates a pixel value in the palette
that is associated with the current position in the CU. In the example of FIG. 4, an index
value of 0 indicates that the current position in the CU has a white pixel value, and an
index value of 1 indicates that the current position in the CU has a grey pixel value.

[0136] At block 620, the coder parses one or more escape pixel values
associated with the CU. As described above, each escape pixel value indicates a pixel
value that is not in the palette associated with the CU. In the example of FIG. 4, the two
positions in the CU having black pixel values are coded in escape mode and the coder
signals the black pixel values in the bitstream as escape pixel values. In some
embodiments, the escape pixel values are parsed from consecutive positions in the
bitstream (e.g., at the end of the portion of the bitstream associated with the CU). For
example, the consecutive positions of the escape pixel values appear in the bitstream after
all the run lengths and index values associated with the CU. In such embodiments, after
all the run lengths and the index values have been parsed, the escape pixel values can be
processed (e.g., parsed) in parallel. At block 625, the coder decodes the CU based on the
parsed palette, parsed run lengths, parsed index values, and parsed escape values. The
method ends at block 630.

[0137] In the method 600, one or more of the blocks shown in FIG. 6 may be
removed (e.g., not performed) and/or the order in which the method is performed may be
switched. For example, block 610 and block 615 may be performed together to parse
each run length and index value pair associated with the CU. In some embodiments,
additional blocks may be added to the method 600. The embodiments of the present
disclosure are not limited to or by the example shown in FIG. 6, and other variations may

be implemented without departing from the spirit of this disclosure.

-36-

WO 2016/004086 PCT/US2015/038629

Embodiment #2: put index values at the end of a palette mode block

[0138] In some embodiments, all index values are signaled at the end of a
palette mode block in the bitstream. In one embodiment, all quantized escape values are
signaled at the end of the palette mode block in the bitstream, following the group of all
occurrences of index values. In another embodiment, all index values are signaled just
before the quantized escape values in the bitstream.

[0139] Entropy coder resetting may be applied after the run-length coding.
For example, after coding all of the possible run-lengths in the block, the arithmetic
coding engine’s ivlCurrRange variable (e.g., a variable specifying the range of the current
arithmetic coding interval) is set to 256. Therefore, the index values and/or the escape
values can be parsed in parallel after parsing and/or decoding all the run-lengths in the
palette block. In one embodiment, if the index values are coded using fixed length code,
then the index values can be parsed and decoded in parallel after parsing the run-length
block.

[0140] In another embodiment, if the index values are coded using truncated
binary code, then indexes may take ‘k” or ‘k + 1’ bits depending on its value. In such an
embodiment, the first ‘4’ bits of each color component for all the index values and/or the
escape pixels in the current block may be grouped together, followed by the optional (k +
1) bit. With such organization, the first ‘4* bits of all the index values and/or the escape
values in the current block can be parsed and decoded in parallel. Some dependency may
still exist in parsing the optional (k + 1)™ bit.

[0141] FIG. 7 is a flowchart illustrating a method 700 for decoding non-
natural video data in a bitstream in accordance with aspects of the present disclosure.
The steps illustrated in FIG. 7 may be performed by a video decoder (e.g., the video
decoder 30) or any other component. For convenience, method 700 is described as
performed by a video coder (also simply referred to as coder), which may be the video
decoder 30 or another component.

[0142] The method 700 begins at block 701. At block 705, the coder parses a
palette associated with the cu provided in the bitstream. The palette may include a
plurality of palette entries that are each associated with an index value and a pixel value
associated with the index value. An example of the palette is illustrated in FIG. 4.

[0143] At block 710, the coder parses one or more run lengths associated with

a CU. As described above, each run length indicates the number of consecutive positions,

-37-

WO 2016/004086 PCT/US2015/038629

starting from and including a current position in the CU, that are associated with a copy-
left mode or a copy-above mode.

[0144] At block 715, the coder parses one or more index values associated
with the CU. As described above, each index value indicates a pixel value in the palette
that is associated with the current position in the CU. In the example of FIG. 4, an index
value of 0 indicates that the current position in the CU has a white pixel value, and an
index value of 1 indicates that the current position in the CU has a grey pixel value. In
the example of FIG. 7, the index values may be parsed from consecutive positions in the
bitstream (e.g., after all of the run lengths associated with the CU). In such embodiments,
after all the run lengths have been parsed, the index values can be processed (e.g., parsed)
in parallel. For example, the index values may be provided immediately before the
escape pixel values in the bitstream.

[0145] At block 720, the coder parses one or more escape pixel values
associated with the CU. As described above, each escape pixel value indicates a pixel
value that is not in the palette associated with the CU. In the example of FIG. 4, the two
positions in the CU having black pixel values are coded in escape mode and the coder
signals the black pixel values in the bitstream as escape pixel values. In some
embodiments, the escape pixel values maybe parsed from consecutive positions in the
bitstream (e.g., at the end of the portion of the bitstream associated with the CU). For
example, the consecutive positions of the escape pixel values may appear in the bitstream
after all the run lengths and index values associated with the CU. In such embodiments,
after all the run lengths and the index values have been parsed, the escape pixel values
can be processed (e.g., parsed) in parallel. At block 725, the coder decodes the CU based
on the parsed palette, parsed run lengths, parsed index values, and parsed escape values.
The method ends at block 730.

[0146] In the method 700, one or more of the blocks shown in FIG. 7 may be
removed (e.g., not performed) and/or the order in which the method is performed may be
switched. In some embodiments, additional blocks may be added to the method 700. The
embodiments of the present disclosure are not limited to or by the example shown in FIG.
7, and other variations may be implemented without departing from the spirit of this

disclosure.

-38-

WO 2016/004086 PCT/US2015/038629

Embodiment #3: use offsets to specify position of index value and escape pixel value

[0147] In some embodiments, two offsets may be signaled at the beginning of
a palette mode block in the bitstream, where the two offsets specify the starting positions
of the index value group and the escape pixel value group discussed above, denoted, for
example, by SO and S1, respectively. In the case that the index value group is ahead of
the escape pixel value group, only the delta value between the two starting positions may
be signaled for the second offset (e.g., offsets SO and S1-SO may be signaled). The two
offsets can be signaled using various entropy coding methods, e.g., Truncated-Rice,
Exponential-Golomb, Truncated-Binary, Fixed Length, Unary, Truncated Unary, etc. In
some embodiments, an offset value S2 indicating the end of the palette mode block may
also be signaled. Alternatively, the delta value between the second offset and S2 may be

signaled (e.g., S2-S1).

Implementation of Grouping Bypass Bins

[0148] According to Embodiments #1 and #3 described above, the

palette_index map bitstream may be modified as follows:

while (byte position != S0) {

run_mode_flag

if (run_mode flag ==COPY_ ABOVE)

run_length

else if (run_mode flag = COPY_LEFT) {

index

if (index '= ESCAPE_INDEX)

run_length

}

while (not end of block) {

escape_pixel value

Table 4. example of modified palette_index_map bitstream

[0149] According to Embodiments #1, #2, and #3 described above, the

palette_index map bitstream may be modified as follows:

-39-

WO 2016/004086 PCT/US2015/038629

while (byte position != S0) {

escape_and run_mode_flag /*CAN BE ‘17 ‘01” ‘00°*/

if (escape_and run_mode flag !=1) /*NOT AN ESCAPE PIXEL*/

run_length

}

while (byte position != S1) {

index

}

while (byte position != S2) {

escape_pixel value

Table 5. example palette_index_map bitstream

Index Redundancy Check

[0150] In some embodiments, when coding the index values, a redundancy
check may be applied. For example, if the previous neighboring position in raster
scanning order (denoted as position ‘x - 1°) is the end of a copy-left run mode, then the
current index value cannot be the same as its previous neighboring position’s index value.
In other words, if the position ‘x - 1’ is valid (e.g. is within the current block or is outside
the current block but has a deterministic value, for example, through border padding) and
is the end of a copy-left run, then the index value for position ‘x’ cannot be equal to the
index value at position ‘x - 1’ (Case 1). The reason is that if the two index values were
the same, they would have been merged into a longer copy-left run. In another example,
if the previous neighboring position in raster scanning order is the end of a copy-above
run mode, and/or if an additional restriction that the current position’s above neighbor not
be an escape pixel is satisfied, then the current value cannot be the same as its top
neighbor’s index value. In other words, if the position ‘x - 1° is valid and is the end of a
copy-above run, and/or if an additional restriction that the pixel value above position ‘x’
not be an escape pixel is satisfied, then the index value for position ‘x’ cannot be equal to
its above neighbor’s index value (Case 2). The reason is that if the two index values were
the same, they would have been merged into a longer copy-above run. Thus, these

examples assume that the encoder follows the ‘longest possible run’ principle. In either

-40-

WO 2016/004086 PCT/US2015/038629

of these cases, the range (e.g., Max value described above) can be reduced by one and bit
savings may be achieved.

[0151] However, for Case 1, the decoding of the index value at position ‘x’
depends on the reconstruction of the index value at position ‘x - 1’ (e.g., since the decoder
needs to know the index value at position ‘x - 1’ to determine what the index value at
position ‘x’ cannot be). However, the index value for position ‘x-1" may not be readily
available by the time the index value at position ‘x’ is being decoded. Thus, this
dependency may cause some delay in the decoding process. In order to remove this
dependency, in some embodiments, the conditional check for Case 1 may be disabled. In
some of such embodiments, the conditional check for Case 2 may still be performed (e.g.,
since the index value of a position above the current pixel is more likely to be available).
In such embodiments, the conditional check for Case 1 is completely disabled.
Alternatively, the conditional check for Case 1 may be disabled only for a specific case.
For example, the conditional check for Case 1 may be disabled only when the ‘limited
run’ feature is enabled, where the maximum palette index value for which the run length
is coded (or the minimum palette index value for which the run length is not coded) is
indicated.

[0152] In Case 2, the checking of whether the pixel above position ‘x’ is an
escape pixel or not can be removed if the escape pixel is admitted into copy-left or copy-
above runs. For example, the escape pixels may be assigned one or more index values
that are not in the palette and have their own runs (e.g., just like pixel values in the
palette). Similarly, the checking of whether the pixel to the left of position ‘x’ is an
escape pixel or not (e.g., a step that may need to be performed before parsing the current
index value at position x, if the given implementation does not allow escape pixels to be
copied from the left or from the above) can be removed if the escape pixel is admitted
into copy-left or copy-above runs.

[0153] FIG. 8 is a flowchart illustrating a method 800 for coding non-natural
video data in a bitstream in accordance with aspects of the present disclosure. The steps
illustrated in FIG. 8 may be performed by a video encoder (e.g., the video encoder 20), a
video decoder (e.g., the video decoder 30), or any other component. For convenience,
method 800 is described as performed by a video coder (also simply referred to as coder),

which may be the video encoder 20, the video decoder 30, or another component.

41-

WO 2016/004086 PCT/US2015/038629

[0154] The method 800 begins at block 801. At block 805, the coder
determines that a position to the left of a current position in the CU is associated with the
end of a copy-above run. As described above, when one or more positions in the CU are
coded in copy-above mode, a run length indicating the number of consecutive positions,
starting from and including the initial position in the CU, that are associated with the
copy-above mode is signaled. Based on the run length, the coder may determine that a
given position (e.g., a position that immediately precedes the current position in the CU)
is the end of a copy-above run.

[0155] At block 810, the coder, in response to determining that the position to
the left of the current position is associated with the end of a copy-above run, determines
the index value associated with the current position without determining whether the
position above the current position is associated with an escape pixel value. As described
above, typically, the coder needs to determine whether the position above the current
position is associated with an escape pixel value before determining the index value of
the current pixel (e.g., if the position above the current position is associated with an
escape pixel, the assumption that the index value of the current position does not equal
the index value of the position above the current position may become inaccurate.
However, in some embodiments of the present disclosure, escape pixels can be part of
copy-left or copy-above runs. Thus, a separate check on the position above the current
position is not needed. The method ends at block 815.

[0156] In the method 800, one or more of the blocks shown in FIG. 8 may be
removed (e.g., not performed) and/or the order in which the method is performed may be
switched. In some embodiments, additional blocks may be added to the method 800. The
embodiments of the present disclosure are not limited to or by the example shown in FIG.
8, and other variations may be implemented without departing from the spirit of this

disclosure.

Keeping Maximum Number of Index Bins as Constant

[0157] In some implementations of palette mode coding, palette indices are
coded using truncated binary code. Assuming that the largest index in the current CU is
N (e.g., index value is chosen from {0, 1, 2, ..., N}, inclusively, then the number of bins

to code each index can be figg ¥ + £ or flag (¥ + £}, if these two values are not

&

equal. As the escape pixel is assigned the largest index (e.g., after all the pixel values in

42

WO 2016/004086 PCT/US2015/038629

the palette are assigned their index values), coding the escape pixel takes Hag (¥ =+ 13

bins.
[0158] In some cases, by exploiting dependencies, such as the methods
described above, the largest symbol value for the current index may be reduced by one.

In other words, the escape pixel may take [i@ggq\’g or flug.{¥ - 13 bins depending on

whether the redundancy removal condition is enabled or not. As a result, the decoder
may first need to calculate whether the largest index symbol value is N or N-1 to
determine how many bins are need to decode the index. This introduced additional on
chip delay and has negative effect to the decoder pipelining. In some embodiments, in
order to remove this delay and any negative effects on the decoder pipelining, this
redundancy removal mechanism may be restricted. For example, the maximum number
of bins used for index coding may be set to a constant. In one example, the escape pixel’s
index value may always use ceil(log2(N + 1)) bins. In another example, if ceil(log2(N +
1)) is equal to ceil(log2(¥)), the redundancy removal procedure for escape pixels is

enabled, and otherwise, the redundancy removal procedure for escape pixels is disabled.

Encoder Side Flowchart

[0159] FIG. 9 is a flowchart illustrating a method 900 for encoding video data
in a bitstream in accordance with aspects of the present disclosure. For example, the
video data may be non-natural video data that includes computer-generated screen
contents. The steps illustrated in FIG. 9 may be performed by a video encoder (e.g., the
video encoder 20) or any other component. For convenience, method 900 is described as
performed by a video coder (also simply referred to as coder), which may be the video
encoder 20 or another component.

[0160] The method 900 begins at block 901. At block 905, the coder analyzes
a plurality of pixels in a coding unit (CU). Each pixel in the CU may be associated with a
pixel value. For example, multiple pixels in the CU may have the same pixel value.

[0161] At block 910, the coder generates a palette based on the plurality of
pixels in the CU. The palette may include a plurality of palette entries that are each
associated with an index value and a pixel value associated with the index value. An

example of the palette is illustrated in FIG. 4.

-43-

WO 2016/004086 PCT/US2015/038629

[0162] At block 915, the coder determines one or more run lengths associated
with the CU. As described above, each run length indicates the number of consecutive
positions, starting from and including a current position in the CU, that are associated
with a copy-left mode or a copy-above mode.

[0163] At block 920, the coder determines one or more index values
associated with the CU. As described above, each index value indicates a pixel value in
the palette that is associated with the current position in the CU. In the example of FIG.
4, an index value of 0 indicates that the current position in the CU has a white pixel value,
and an index value of 1 indicates that the current position in the CU has a grey pixel value.

[0164] At block 925, the coder determines one or more escape pixel values
associated with the CU. As described above, each escape pixel value indicates a pixel
value that is not in the palette associated with the CU. In the example of FIG. 4, the two
positions in the CU having black pixel values are coded in escape mode and the coder
signals the black pixel values in the bitstream as escape pixel values.

[0165] At block 930, the coder encodes the CU based on the generated palette,
determined run lengths, determined index values, and determined escape pixel values. In
some embodiments, the escape pixel values are encoded in consecutive positions in the
bitstream (e.g., at the end of the portion of the bitstream associated with the CU). For
example, the consecutive positions of the escape pixel values appear in the bitstream after
all the run lengths and index values associated with the CU. In such embodiments, after
all the run lengths and the index values have been parsed by a decoder, the escape pixel
values can be processed (e.g., parsed) in parallel. The method ends at block 935.

[0166] In the method 900, one or more of the blocks shown in FIG. 9 may be
removed (e.g., not performed) and/or the order in which the method is performed may be
switched. In some embodiments, additional blocks may be added to the method 900. The
embodiments of the present disclosure are not limited to or by the example shown in FIG.
9, and other variations may be implemented without departing from the spirit of this

disclosure.

Other Considerations

[0167] Information and signals disclosed herein may be represented using any
of a variety of different technologies and techniques. For example, data, instructions,

commands, information, signals, bits, symbols, and chips that may be referenced

-44-

WO 2016/004086 PCT/US2015/038629

throughout the above description may be represented by voltages, currents,
electromagnetic waves, magnetic fields or particles, optical fields or particles, or any
combination thereof.

[0168] The various illustrative logical blocks, and algorithm steps described in
connection with the embodiments disclosed herein may be implemented as electronic
hardware, computer software, or combinations of both. To clearly illustrate this
interchangeability of hardware and software, various illustrative components, blocks, and
steps have been described above generally in terms of their functionality. Whether such
functionality is implemented as hardware or software depends upon the particular
application and design constraints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for each particular application, but
such implementation decisions should not be interpreted as causing a departure from the
scope of the present disclosure.

[0169] The techniques described herein may be implemented in hardware,
software, firmware, or any combination thereof. Such techniques may be implemented in
any of a variety of devices such as general purposes computers, wireless communication
device handsets, or integrated circuit devices having multiple uses including application
in wireless communication device handsets and other devices. Any features described as
devices or components may be implemented together in an integrated logic device or
separately as discrete but interoperable logic devices. If implemented in software, the
techniques may be realized at least in part by a computer-readable data storage medium
comprising program code including instructions that, when executed, performs one or
more of the methods described above. The computer-readable data storage medium may
form part of a computer program product, which may include packaging materials. The
computer-readable medium may comprise memory or data storage media, such as random
access memory (RAM) such as synchronous dynamic random access memory (SDRAM),
read-only memory (ROM), non-volatile random access memory (NVRAM), electrically
erasable programmable read-only memory (EEPROM), FLASH memory, magnetic or
optical data storage media, and the like. The techniques additionally, or alternatively,
may be realized at least in part by a computer-readable communication medium that
carries or communicates program code in the form of instructions or data structures and
that can be accessed, read, and/or executed by a computer, such as propagated signals or

Wwaves.

45-

WO 2016/004086 PCT/US2015/038629

[0170] The program code may be executed by a processor, which may include
one or more processors, such as one or more digital signal processors (DSPs), general
purpose microprocessors, an application specific integrated circuits (ASICs), field
programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic
circuitry. Such a processor may be configured to perform any of the techniques described
in this disclosure. A general purpose processor may be a microprocessor; but in the
alternative, the processor may be any conventional processor, controller, microcontroller,
or state machine. A processor may also be implemented as a combination of computing
devices, e.g., a combination of a DSP and a microprocessor, a plurality of
MICroprocessors, one or more microprocessors in conjunction with a DSP core, or any
other such configuration. Accordingly, the term “processor,” as used herein may refer to
any of the foregoing structure, any combination of the foregoing structure, or any other
structure or apparatus suitable for implementation of the techniques described herein. In
addition, in some aspects, the functionality described herein may be provided within
dedicated software or hardware configured for encoding and decoding, or incorporated in
a combined video encoder-decoder (CODEC). Also, the techniques could be fully
implemented in one or more circuits or logic elements.

[0171] The techniques of this disclosure may be implemented in a wide
variety of devices or apparatuses, including a wireless handset, an integrated circuit (IC)
or a set of ICs (e.g., a chip set). Various components, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the disclosed
techniques, but do not necessarily require realization by different hardware units. Rather,
as described above, various units may be combined in a codec hardware unit or provided
by a collection of inter-operative hardware units, including one or more processors as
described above, in conjunction with suitable software and/or firmware.

[0172] Although the foregoing has been described in connection with various
different embodiments, features or elements from one embodiment may be combined
with other embodiments without departing from the teachings of this disclosure.
However, the combinations of features between the respective embodiments are not
necessarily limited thereto. Various embodiments of the disclosure have been described.

These and other embodiments are within the scope of the following claims.

-46-

WO 2016/004086 PCT/US2015/038629

WHAT IS CLAIMED I8S:

1. A method for decoding video data provided in a bitstream, the bitstream
including a coding unit (CU) coded in palette mode, the method comprising:

parsing a palette associated with the CU provided in the bitstream, the
palette including a plurality of palette entries that are each associated with an
index value and a pixel value associated with the index value;

parsing one or more run lengths provided in the bitstream that are
associated with the CU, each run length indicating a number of consecutive
positions, starting from and including a current position in the CU, that are
associated with a copy-left mode or a copy-above mode;

parsing one or more index values provided in the bitstream that associated
with the CU, each index value indicating a pixel value in the palette that is
associated with the current position in the CU;

parsing one or more escape pixel values provided in the bitstream that are
associated with the CU, each escape pixel value indicating a pixel value that is not
in the palette, wherein the escape pixel values are parsed from consecutive
positions in the bitstream, the consecutive positions being in the bitstream after all
of the run lengths and the index values associated with the CU; and

decoding the CU based on the parsed palette, parsed run lengths, parsed
index values, and parsed escape values.

2. The method of claim 1, further comprising resetting an arithmetic coding
variable specifying a range of a current interval associated with the CU after parsing all
of the run lengths and the index values associated with the CU.

3. The method of claim 1, wherein the escape pixel values associated with
the CU are parsed in parallel after parsing all of the run lengths and the index values
associated with the CU.

4, The method of claim 1, wherein the index values are parsed from the
consecutive positions in the bitstream that are before the escape pixel values associated

with the CU but after all the run lengths associated with the CU.

47-

WO 2016/004086 PCT/US2015/038629

5. The method of claim 4, further comprising resetting an arithmetic coding
variable specifying a range of a current interval associated with the CU after parsing all
of the run lengths and the index values associated with the CU.

6. The method of claim 4, wherein the index values associated with the CU
are parsed in parallel after parsing all of the run lengths associated with the CU.

7. The method of claim 1, further comprising:

determining that a first position in the CU that immediately precedes the
current position is associated with an end of a copy-above run; and

in response to determining that the first position in the CU is associated
with an end of a copy-above run, determining an index value associated with the
current position without determining whether a second position immediately
above the current position in the CU is associated with an escape pixel value.

8. The method of claim 1, wherein the CU includes one of a copy-above run
or a copy-left run that includes an escape pixel value.

9. An apparatus for decoding video data provided in a bitstream, comprising:

a memory configured to store video data associated with the bitstream, the
bitstream including a coding unit (CU) coded in palette mode; and

a processor in communication with the memory and configured to:

parse a palette associated with the CU provided in the bitstream,
the palette including a plurality of palette entries that are each associated
with an index value and a pixel value associated with the index value;

parse one or more run lengths provided in the bitstream that are
associated with the CU, each run length indicating a number of
consecutive positions, starting from and including a current position in the
CU, that are associated with a copy-left mode or a copy-above mode;

parse one or more index values provided in the bitstream that
associated with the CU, each index value indicating a pixel value in the
palette that is associated with the current position in the CU;

parse one or more escape pixel values provided in the bitstream
that are associated with the CU, each escape pixel value indicating a pixel
value that is not in the palette, wherein the escape pixel values are parsed

from consecutive positions in the bitstream, the consecutive positions

-48-

WO 2016/004086 PCT/US2015/038629

being in the bitstream after all of the run lengths and the index values
associated with the CU; and

decode the CU based on the parsed palette, parsed run lengths,
parsed index values, and parsed escape values.

10. The apparatus of claim 9, wherein the processor is further configured to
reset an arithmetic coding variable specifying a range of a current interval associated with
the CU after parsing all of the run lengths and the index values associated with the CU.

11. The method of claim 9, wherein the processor is configured to parse the
escape pixel values associated with the CU in parallel after parsing all of the run lengths
and the index values associated with the CU.

12. The method of claim 9, wherein the processor is configured to parse the
index values from the consecutive positions in the bitstream that are before the escape
pixel values associated with the CU but after all the run lengths associated with the CU.

13. The method of claim 12, wherein the processor is further configured to
reset an arithmetic coding variable specifying a range of a current interval associated with
the CU after parsing all of the run lengths and the index values associated with the CU.

14. The method of claim 12, wherein the processor is configured to parse the
index values associated with the CU in parallel after parsing all of the run lengths
associated with the CU.

15. The method of claim 9, wherein the processor is further configured to:

determine that a first position in the CU that immediately precedes the
current position is associated with an end of a copy-above run; and

in response to determining that the first position in the CU is associated
with an end of a copy-above run, determine an index value associated with the
current position without determining whether a second position immediately
above the current position in the CU is associated with an escape pixel value.

16. The method of claim 9, wherein the CU includes one of a copy-above run
or a copy-left run that includes an escape pixel value.

17. A method for encoding video data in a bitstream, comprising;:

analyzing a plurality of pixels in a coding unit (CU), each pixel having a

pixel value associated therewith;

-49-

WO 2016/004086 PCT/US2015/038629

generating a palette based on the plurality of pixels in the CU, the palette
including a plurality of palette entries that are each associated with an index value
and a pixel value associated with the index value;

determining one or more run lengths associated with the CU in the
bitstream, each run length indicating a number of consecutive positions, starting
from and including a current position in the CU, that are associated with a copy-
left mode or a copy-above mode;

determining one or more index values associated with the CU in the
bitstream, each index value indicating a pixel value in the palette that is associated
with the current position in the CU;

determining one or more escape pixel values associated with the CU in the
bitstream, each escape pixel value indicating a pixel value that is not in the
palette; and

encoding the CU based on the generated palette, determined run lengths,
determined index values, and determined escape pixel values, wherein the escape
pixel values are encoded in consecutive positions in the bitstream, the consecutive
positions being in the bitstream after all of the run lengths and the index values
associated with the CU.

18. The method of claim 17, wherein the index values are encoded in
consecutive positions in the bitstream, the consecutive positions being in the bitstream
before the escape pixel values associated with the CU but after all the run lengths
associated with the CU.

19. The method of claim 17, further comprising:

determining that a first position in the CU that immediately precedes the
current position is associated with an end of a copy-above run; and

in response to determining that the first position in the CU is associated
with an end of a copy-above run, determining an index value associated with the
current position without determining whether a second position immediately

above the current position in the CU is associated with an escape pixel value.

-50-

WO 2016/004086 PCT/US2015/038629

20. The method of claim 17, wherein the CU includes one of a copy-above run
or a copy-left run that includes an escape pixel value.

21. The method of claim 17, further comprising determining a first offset
indicating a position in the bitstream that corresponds to an index value having an earliest
position among the index values associated with the CU.

22. The method of claim 17, further comprising determining a second offset
indicating a position in the bitstream that corresponds to an escape pixel value having an
earliest position among the escape pixel values associated with the CU.

23. An apparatus for encoding video data in a bitstream, comprising:

a memory configured to store video data associated with the bitstream, the
bitstream including a coding unit (CU) coded in palette mode; and

a processor in communication with the memory and configured to:

analyze a plurality of pixels in a coding unit (CU), each pixel
having a pixel value associated therewith;

generate a palette based on the plurality of pixels in the CU, the
palette including a plurality of palette entries that are each associated with
an index value and a pixel value associated with the index value;

determine one or more run lengths associated with the CU in the
bitstream, each run length indicating a number of consecutive positions,
starting from and including a current position in the CU, that are
associated with a copy-left mode or a copy-above mode;

determine one or more index values associated with the CU in the
bitstream, each index value indicating a pixel value in the palette that is
associated with the current position in the CU;

determine one or more escape pixel values associated with the CU
in the bitstream, each escape pixel value indicating a pixel value that is not
in the palette; and

encode the CU based on the generated palette, determined run
lengths, determined index values, and determined escape pixel values,
wherein the escape pixel values are encoded in consecutive positions in
the bitstream, the consecutive positions being in the bitstream after all of

the run lengths and the index values associated with the CU.

-51-

WO 2016/004086 PCT/US2015/038629

24. The apparatus of claim 23, wherein the processor is configured to encode
the index values in consecutive positions in the bitstream, the consecutive positions being
in the bitstream before the escape pixel values associated with the CU but after all the run
lengths associated with the CU.

25. The apparatus of claim 23, wherein the processor is further configured to:

determine that a first position in the CU that immediately precedes the
current position is associated with an end of a copy-above run; and

in response to determining that the first position in the CU is associated
with an end of a copy-above run, determine an index value associated with the
current position without determining whether a second position immediately
above the current position in the CU is associated with an escape pixel value.

26. The apparatus of claim 23, wherein the CU includes one of a copy-above
run or a copy-left run that includes an escape pixel value.

27. The apparatus of claim 23, wherein the processor is further configured to
determine a first offset indicating a position in the bitstream that corresponds to an index
value having an earliest position among the index values associated with the CU.

28. The apparatus of claim 23, further comprising determining a second offset
indicating a position in the bitstream that corresponds to an escape pixel value having an

earliest position among the escape pixel values associated with the CU.

-50-

PCT/US2015/038629

WO 2016/004086

1/10

0l

8¢
JOV4H3LNI
1NdNI

Vi "OId

0¢
433003d
O3dIA

43
J0IN3IA AV1dSIA

i

30IA3A NOILVYNILS3A

(44
JOV4H3LNI
1NdLno

0c
d3d0ON3
O3dIA

8l
304dNOS O3dIA

4
30I1A3Ad 304dN0OS

PCT/US2015/038629

WO 2016/004086

al 'Old

8¢ 44
JOVAYTINI | FOVAYTLNI
LNdNI 1Nd1NO
[|
| |
| — |
| €l “
A|L 30IA3d rlv
— | ¥37T0HLNOD ! L
0c | / 40SSI00Hd ! 0C
43d003d I I H¥3A0OON3
o O3diA e O3AIA
=
N
7= 8l
301A30 AV1dSIa . omww_w_/%m ain
2 4
30IA3A NOILVYNILS3a 30IA3A I0UNOS
1
30I1A3a

0l

PCT/US2015/038629

WO 2016/004086

3/10

¢ 'Old

NV3I41S119

91l
1INN

ONIAOON3 A

AdOd1NS

801
1INN

2
d344N49
34N12Id
d3aoo3aa

A

[T
1INN
d31114

NOILVZILNVNO N

JASHIANI

4

Ol
1INN
dO4SNVHL
JASH3IANI

49

8cl
1INN NOILOId3dd
HIAVI-d3LNI

9cl
1INN NOILOId3dd VHLNI

i1
1INN
NOILVSN3IdINOD
NOILOW

%

44
1INN
NOILVINILST NOILON

N\

90}
1INN

NOILVZILNVNO

SIN3IN3TT3
XVLINAS

¥0l

1INN
ONISS3O0dd
NJO4SNVHL

¢0l

7o

0¢
d3Ad0ON3 O3AdIA

1cl
1INN NOILOId3dd d31NI

001
1INN ONISS3O0Hd
NOILOId3dd

4

V1va O3dIN—

PCT/US2015/038629

WO 2016/004086

€ '9Old

| i m
< Y344ng LINA | 1INN 1INN
O3AIA 3YNLOId N INHOASNYHL NOILYZILNYNO
qaaonzal [a3aaooaa oG | 3ISHIANI 3ISHIANI
A
"443900
o 997 ZILNYNO
5 1INN
NOILOIATYd HIAVT-YILNI —
vor ~ SININITT @zm”___m_uwm_o
LINN NOILDITdd VHLNI VTS OMING
291
1INN
NOILYSNIdINOD NOILOW
4 0¢

1INN ONISSFO0dd NOILIId3dd

d33003d O3dIA

NV3I41S1ig
O3dIA
d3dooON3

PCT/US2015/038629

WO 2016/004086

5/10

3001g Xapu|

— | OO |0 |0

— [~ |O|O|O|O

OO OO |~~~]|~ |+
OO OO |~~~]|~ |+

OO~~~]CO

OO~~~]CO

Ol |~ |~ |~ |O|O|O

O|IO|0O|O|O |0 |0 |0

0cy \

¥ "Old

o)9|ed

ovy \

|oxi1d adeos3

0197

N Indu|

oLy \

WO 2016/004086 PCT/US2015/038629
6/10

500

\/\

Vs 501

C START)

v ~ 505

PROCESSING A CODING UNIT (CU) HAVING A PLURALITY OF PIXELS
BASED ON A PALETTE ASSOCIATED WITH THE CU, THE PALETTE
INCLUDING A PLURALITY OF PALETTE ENTRIES THAT ARE EACH

ASSOCIATED WITH AN INDEX VALUE AND A PIXEL VALUE ASSOCIATED
WITH ONE OF THE PLURALITY OF PIXELS OF THE CU

FIG. 5

WO 2016/004086 PCT/US2015/038629

710
600

\,\

7~ 601

(START)
|

PARSING A PALETTE ASSOCIATED WITH THE CU PROVIDED
IN THE BITSTREAM, THE PALETTE INCLUDING A PLURALITY OF
PALETTE ENTRIES THAT ARE EACH ASSOCIATED WITH AN INDEX
VALUE AND A PIXEL VALUE ASSOCIATED WITH THE INDEX VALUE

/ 605

/ 610

PARSING ONE OR MORE RUN LENGTHS PROVIDED IN THE BITSTREAM
THAT ARE ASSOCIATED WITH A CU, EACH RUN LENGTH INDICATING
A NUMBER OF CONSECUTIVE POSITIONS, STARTING FROM AND
INCLUDING A CURRENT POSITION IN THE CU, THAT ARE ASSOCIATED
WITH A COPY-LEFT MODE OR A COPY-ABOVE MODE

~ 615

PARSING ONE OR MORE INDEX VALUES PROVIDED IN THE BITSTREAM
THAT ARE ASSOCIATED WITH THE CU, EACH INDEX VALUE
INDICATING A PIXEL VALUE IN THE PALETTE THAT IS
ASSOCIATED WITH THE CURRENT POSITION IN THE CU

s 620

PARSING ONE OR MORE ESCAPE PIXEL VALUES PROVIDED
IN THE BITSTREAM THAT ARE ASSOCIATED WITH THE CU, EACH
ESCAPE PIXEL VALUE INDICATING A PIXEL VALUE THAT IS NOT IN A
PALETTE ASSOCIATED WITH THE CU, WHEREIN THE ESCAPE PIXEL
VALUES ARE PARSED FROM CONSECUTIVE POSITIONS IN THE BITSTREAM,
THE CONSECUTIVE POSITIONS BEING IN THE BITSTREAM AFTER ALL OF
THE RUN LENGTHS AND THE INDEX VALUES ASSOCIATED WITH THE CU

~ 625

DECODING THE CU BASED ON THE PARSED PALETTE, PARSED RUN
LENGTHS, PARSED INDEX VALUES, AND PARSED ESCAPE VALUES

l ~ 630

(END

FIG. 6

WO 2016/004086 PCT/US2015/038629
8/10
700

\\ 7~ 701
(START)
v

PARSING A PALETTE ASSOCIATED WITH THE CU PROVIDED
IN THE BITSTREAM, THE PALETTE INCLUDING A PLURALITY OF
PALETTE ENTRIES THAT ARE EACH ASSOCIATED WITH AN INDEX
VALUE AND A PIXEL VALUE ASSOCIATED WITH THE INDEX VALUE

~ 705

~ 710
PARSING ONE OR MORE RUN LENGTHS PROVIDED IN THE BITSTREAM
THAT ARE ASSOCIATED WITH A CU, EACH RUN LENGTH INDICATING A

NUMBER OF CONSECUTIVE POSITIONS, STARTING FROM AND INCLUDING A

CURRENT POSITION IN THE CU, THAT ARE ASSOCIATED WITH A COPY-LEFT

MODE OR A COPY-ABOVE MODE

| / 715

PARSING ONE OR MORE INDEX VALUES PROVIDED IN THE BITSTREAM
THAT ARE ASSOCIATED WITH THE CU, EACH INDEX VALUE INDICATING A
PIXEL VALUE IN THE PALETTE THAT IS ASSOCIATED WITH THE CURRENT

POSITION IN THE CU, WHEREIN THE INDEX VALUES ARE PARSED FROM

FIRST CONSECUTIVE POSITIONS IN THE BITSTREAM, THE FIRST
CONSECUTIVE POSITIONS BEING IN THE BITSTREAM AFTER
ALL OF THE RUN LENGTHS ASSOCIATED WITH THE CU

~ 720

PARSING ONE OR MORE ESCAPE PIXEL VALUES PROVIDED IN THE
BITSTREAM THAT ARE ASSOCIATED WITH THE CU, EACH ESCAPE PIXEL
VALUE INDICATING A PIXEL VALUE THAT IS NOT IN A PALETTE ASSOCIATED
WITH THE CU, WHEREIN THE ESCAPE PIXEL VALUES ARE PARSED FROM
SECOND CONSECUTIVE POSITIONS IN THE BITSTREAM, THE SECOND
CONSECUTIVE POSITIONS BEING IN THE BITSTREAM AFTER ALL OF THE
RUN LENGTHS AND THE INDEX VALUES ASSOCIATED WITH THE CU

~ 725

DECODING THE CU BASED ON THE PARSED PALETTE, PARSED RUN
LENGTHS, PARSED INDEX VALUES, AND PARSED ESCAPE VALUES

l ~ 730

(END

FIG. 7

WO 2016/004086 PCT/US2015/038629
9/10

800

\\

Vs 801

(START)

~ 805

DETERMINING THAT A POSITION TO THE LEFT OF A CURRENT
POSITION IS ASSOCIATED WITH THE END OF A COPY-ABOVE RUN

. 810

DETERMINING THE INDEX VALUE ASSOCIATED WITH THE CURRENT
POSITION WITHOUT DETERMINING WHETHER THE POSITION ABOVE THE
CURRENT POSITION IS ASSOCIATED WITH AN ESCAPE PIXEL VALUE

FIG. 8

WO 2016/004086 PCT/US2015/038629

10/10
900

\,\

901
(ST,IRT />

ANALYZING A PLURALITY OF PIXELS IN A CODING UNIT (CU),
EACH PIXEL HAVING A PIXEL VALUE ASSOCIATED THEREWITH

l / 910

GENERATING A PALETTE BASED ON THE PLURALITY OF PIXELS
IN THE CU, THE PALETTE INCLUDING A PLURALITY OF PALETTE
ENTRIES THAT ARE EACH ASSOCIATED WITH AN INDEX VALUE AND
A PIXEL VALUE ASSOCIATED WITH THE INDEX VALUE

l / 915

DETERMINING ONE OR MORE RUN LENGTHS ASSOCIATED
WITH THE CU, EACH RUN LENGTH INDICATING A NUMBER
OF CONSECUTIVE POSITIONS, STARTING FROM AND INCLUDING
A CURRENT POSITION IN THE CU, THAT ARE ASSOCIATED WITH
A COPY-LEFT MODE OR A COPY-ABOVE MODE

~ 905

~ 920

DETERMINING ONE OR MORE INDEX VALUES ASSOCIATED WITH THE CU,
EACH INDEX VALUE INDICATING A PIXEL VALUE IN THE PALETTE THAT IS
ASSOCIATED WITH THE CURRENT POSITION IN THE CU

l e 925

DETERMINING ONE OR MORE ESCAPE PIXEL VALUES ASSOCIATED WITH
THE CU, EACH ESCAPE PIXEL VALUE INDICATING A PIXEL VALUE THAT IS
NOT IN A PALETTE ASSOCIATED WITH THE CU

l ~ 930

ENCODING THE CU BASED ON THE GENERATED PALETTE, DETERMINED
RUN LENGTHS, DETERMINED INDEX VALUES, AND DETERMINED ESCAPE
PIXEL VALUES, WHEREIN THE ESCAPE PIXEL VALUES ARE ENCODED IN
CONSECUTIVE POSITIONS IN THE BITSTREAM, THE CONSECUTIVE
POSITIONS BEING IN THE BITSTREAM AFTER ALL OF THE RUN
LENGTHS AND THE INDEX VALUES ASSOCIATED WITH THE CU

~ 935

(END)

FIG.9

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/038629

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4N19/593 HO4N19/70
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y XIU X ET AL:

InterDigital",

ITU-T SG.16); URL:
no. JCTVC-Qo0037,

A paragraph [3.1.4]

"Description of screen
content coding technology proposal by

17. JCT-VC MEETING; 27-3-2014 - 4-4-2014;
VALENCIA; (JOINT COLLABORATIVE TEAM ON
VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,

18 March 2014 (2014-03-18), XP030115927,

1-3,7,
9-11,
15-17,
19,20,
22,23,
25,26,28

4-6,
12-14,
18,21,
24,27

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

23 September 2015

Date of mailing of the international search report

07/10/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Oelbaum, Tobias

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/038629

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

X,P

X,P

ZHU J ET AL: "AHG10: Modified copy above
mode for palette based coding",

17. JCT-VC MEETING; 27-3-2014 - 4-4-2014;
VALENCIA; (JOINT COLLABORATIVE TEAM ON
VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND
ITU-T SG.16); URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-Q0174-v2,

29 March 2014 (2014-03-29), XP030116122,
the whole document

XU M ET AL: "Non-CE6: Simplification on
Escape Coding of Palette Mode in HEVC
scec,

19. JCT-VC MEETING; 17-10-2014 -
24-10-2014; STRASBOURG; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-S0150,

8 October 2014 (2014-10-08), XP030116920,
the whole document

XIU X ET AL: "Non-CE6: Removal of parsing
dependency in palette-based coding",

19. JCT-VC MEETING; 17-10-2014 -
24-10-2014; STRASBOURG; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-S0181-v4,

17 October 2014 (2014-10-17), XP030116964,
the whole document

1-3,7,
9-11,
15-17,
19,20,
22,23,
25,26,28

1-28

1-28

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - wo-search-report
	Page 66 - wo-search-report

