
US 2003.0167455A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0167455A1

IbOrra et al. (43) Pub. Date: Sep. 4, 2003

(54) AUTOMATIC SOFTWARE PRODUCTION Publication Classification
SYSTEM

(51) Int. Cl." ... G06F 9/44
(76) Inventors: Jose borra, Denia Alicante (ES);

Oscar Pastor, Valencia (ES) (52) U.S. Cl. .. 717/105

Correspondence Address:
EALKAND FISH
16590 OAK VIEW CIRCLE (57) ABSTRACT
MORGAN HILL CA 95037 (US)

(21) Appl. No.: 09/872,087 An automated Software production System is provided, in
which System requirements are captured, converted into a

(22) Filed: Jun. 1, 2001 formal Specification, and validated for correctness and com
pleteness. In addition, a translator is provided to automati
cally generate a complete, robust Software application based

(63) Continuation-in-part of application No. 09/543,085, on the validated formal Specification, including user-inter
filed on Apr. 4, 2000. face code and error handling code.

RECUREMENTS
200

AUTOMATIC
SOFTWARE
PRODUCTION CASE TOOL 210
SYSTEM 202

FORMAL SPECIFICATION 215

VALIDATOR 220

Related U.S. Application Data

SYSTEM
LOGIC

APPLICATION
CODE 204

DOCUMENTATION
208 DATABASE

SCHEMA206

Patent Application Publication Sep. 4, 2003 Sheet 2 of 25 US 2003/0167455A1

RECQUIREMENTS
200

AUTOMATIC
SOFTWARE
PRODUCTION CASE TOOL 210
SYSTEM 202

FORMAL SPECIFICATION 215

VALIDATOR 220

SYSTEM
LOGIC

APPLICATION DOCUMENTATION
CODE 204 DATABASE 208

SCHEMA 206

FIG. 2

US 2003/0167455A1 Sep. 4, 2003 Sheet 3 of 25 Patent Application Publication

US 2003/0167455A1

O

Sep. 4, 2003 Sheet 4 of 25 Patent Application Publication

US 2003/0167455A1 Sep. 4, 2003 Sheet 5 of 25

BEITE Iubaeriae uerbeg uogele?u! (!!OI

Patent Application Publication

US 2003/0167455A1 Sep. 4, 2003 Sheet 6 of 25

¿?

Patent Application Publication

Patent Application Publication Sep. 4, 2003 Sheet 7 of 25 US 2003/0167455A1

FLOWCHART OF THE FUNCTIONS THAT ALL SPECIES OF SYSTEM LOGIC
TRANSLATORS WILL PREFORM

600

WRITE CODE THAT WILL
IDENTIFY AND

AUTHENTCATE THE USER
(OPTIONAL BUT ALMOST
ALWAYS REQUIRED)

602

WRITE CODE THAT WILL QUERYTHE
HIGH LEVEL REPOSITORY FORMAL
SPECIFICATION AND DETERMINE
ALL OBJECTATTRIBUTES THIS

USER HAS PRIVILEGES TO SEE AND
ALL SERVICES THIS USER CAN
INVOKE (PROVIDE THE SYSTEM

VIEW FOR THIS USER)

604

WRITE CODE TO DENTIFY THE
OBJECT SERVER FOR EVERY

SERVICE ANY AUTHORIZED USER
MAY WISH TO INVOKE

606

WRITE CODE TO RETRIEVE SERVICE
ARGUMENTS FROM USER OR
ANOTHER OBJECT SERVER OFR

ANOTHER PROCESS

608

WRITE CODE THAT ALLOWSA
USER OR ANOTHER PROCESS TO

INVOKE A SERVICE - WHEN
SERVICE INVOKED, WRITES

MESSAGES TO INVOKE SERVICE
AND SEND IT THE PROPER

ARGUMENTS

F.G. 6

60

WRITE CODE THAT
MPLEMENTS OBJECT
SERVER FOREVERY

SERVICE, EACH OF WHICH
FIRST CHECKS TOVERIFY
THAT STATE TRANSiTIONS

AREVALID, LE, MAKE SENSE
FOR THE CURRENT STATE OF
OBJECTS THE OBJECT SERVER

S ALTERIng THE STATE
F

612

WRITE CODE FOR EVERY
OBJECT SERVER THAT

ERIFIES PRECONDITIONS ARE
SATSFED BEFORE MAKING
STATE TRANSiTIONS OF ANY
OBJECTS THE STATES OF
WHICHARE ACTED UPON

614

WRITE CODE TO MAKE ALL
VALUATION CALCULATIONS

RECQUIRED OF EACH
OBJECT SERVER

66

WRITE CODE TO VERIFY
THAT INTEGRITY

CONSTRAINTS HAVE BEEN
SATISFED AFTER

EXECUTION OF A SERVICE

618

WRITE CODE FOR EVERY
OBJECT SERVER TO TEST
TRIGGER RELATIONSHIPS
AFTER EXECUTION OF A
SERVICE AND CARRY OUT
APPROPRIATE ACTION IF
A TRIGGER EVENT HAS
OCCURRED

Patent Application Publication Sep. 4, 2003 Sheet 8 of 25 US 2003/0167455 A1

FLOWCHART OF THE FUNCTIONS THAT ALL SPECIES IN THE USER INTERFACE
TRANSLATOR SUBGENUS WILL PREFORM

700

IDENTFY AND
AUTHENTCATE THE

USER

702

PROVIDE THE APPROPRIATE
SYSTEM VIEW FOR THIS PARTICULAR

USER THAT ONLY ALLOWS THE
USER ACCESS TO FUNCTIONS

APPROPRIATE TO THIS
USER'S PRIVLEGE LEVEL

704

LOCATE THE APPROPRIATE
OBJECT SERVER CODE IN THE

PREVIOUSLY GENERATED SYSTEM
LOGIC CODE WHICH CANIMPLEMENT
EACHSERVICE OR FUNCTION THIS
USERS ALLOWED TO INVOKE AND
WRITE CODE TO DISPLAY SERVICE
ACTIVATION FORMS AND SETUP
POINTERS TO APPROPRIATE
OBJECT SERVER CODE

WRITE CODE TO GENERATE
OUERY/SELECTION FORMTO
ALLOW USER TO GUERYDATA

INSTANCES AND SEARCH
FOR INSTANCES THAT FULFILL
A GIVEN CONDITION AND KNOW
WHICH SERVICES OF AN OBJECT
CAN BE INVOKED GIVEN THE

CURRENT STATE OF THE OBJECT

708

WRITE CODE TO FURNISH NITIAL
VALUES FOR OBJECT-VALUED
ARGUMENTS OF SERVICES AND

RECEIVE ANY USER INPUT
ARGUMENTS

FIG.

710

WRITE CODE TO CHECK DATA
TYPE FORWALIDITY FOR THE
ARGUMENT THE DATA FILLS,
AND MAKE SURE THE INPUT
VALUE SWITHNAVALD

RANGE FOR THE ARGUMENT
THE DATA FILLS. WRITE CODE
TO CHECK FOR DEPENDENCES
BETWEEN ARGUMENTS, AND,
IFADEPENDENCY EXISTS, AND
USER INPUT DATA TRIGGERS
THE DEPENDENCY, TO DISPLAY

AN APPROPRIATE FORM
REGUESTING THE USER

TO INPUT DATA TO SATSFY
THE DEPENDENCY

72

WRITE CODE TO INVOKE
THE APPROPRIATE OBJECT
SERVER CODE WHEN A
USER MAKES AN INPUT
INDICATING A DES RE TO
INVOKEANY SERVICE THAT
USER IS AUTHORIZED TO

INVOKE, AND PASS THE OBJECT
SERVER THE APPROPRIATE

ARGUMENT(S)

714

WRITE CODE TO WAIT FOR
RESULTS AND DISPLAY AN

ERROR MESSAGE
FANERROR OCCURRED.
OTHERWISE WAIT FOR
FURTHER USER INPUT

Patent Application Publication Sep. 4, 2003 Sheet 9 of 25 US 2003/0167455A1

FLOWCHART OF THE FUNCTIONS THAT ALL SPECIES IN THE DATABASE
GENERATOR TRANSLATOR SUBGENUS WILL PERFORM

720

GET ALL THE ATTRIBUTES,
IDENTIFICATION FUNCTIONS,

AGGREGATION AND INHERITANCE
RELATIONSHIPS OF ALL THE CLASSES

STORE THE VALUES OF ALL THE GATHERED
INFORMATION OF ALL THE CLASSES AT ANY
PONT IN TIME IN ANY DATASTRUCTURE
FORMAT, INCLUDING ARELATIONAL

DATABASE, SUCH THAT THE VALUES OF ALL
THE GATHERED INFORMATION CAN BE

SUBSEOUENTLY READ AND WRITTEN BY AT
LEAST THE SYSTEM LOGIC

FIG. 8

US 2003/0167455 A1 Sep. 4, 2003 Sheet 10 of 25 Patent Application Publication

WELSÅS
| NHWEÐVNV/W ESNEdXE NI CJELLY/E|{-}O CÌNW CIEC?BEN SESSWTO TTV

US 2003/0167455A1 Sep. 4, 2003 Sheet 11 of 25 Patent Application Publication

US 2003/0167455A1 Sep. 4, 2003 Sheet 12 of 25 Patent Application Publication

SESSWTO NEBWA LE18 Sc}{HSNO||\/TEH Å-||CIOWN GNW ELVEHO O_L SOOT\/IC]

US 2003/0167455A1 Sep. 4, 2003 Sheet 13 of 25 Patent Application Publication

CIELVEHO OS Á
BH L WOHS ÅTTVOIHdVH9 , CJN\/ SESSWTO º NEHENW LB& (Sd?HSNO|| LWTHH ! ELVEHO O L _ ?OTVICI OIHdVH9 #,

US 2003/0167455A1 Sep. 4, 2003. Sheet 14 of 25 Patent Application Publication

US 2003/0167455 A1 Sep. 4, 2003 Sheet 15 of 25 Patent Application Publication

~~~~ ~~~~ ******************************* 
· · · · · · · · §§ 

  

  

  

      

  

  

  

  

  

  

  

    

  



*****---- 

„ESNEdXE, 
SSWTO -JO SECIABES 

US 2003/0167455A1 

********** 

Sep. 4, 2003 Sheet 16 of 25 Patent Application Publication 

  





US 2003/0167455A1 Sep. 4, 2003. Sheet 18 of 25 Patent Application Publication 

  

  





US 2003/0167455A1 Sep. 4, 2003 Sheet 20 of 25 Patent Application Publication 

  



US 2003/0167455A1 Sep. 4, 2003 Sheet 21 of 25 Patent Application Publication 

  



US 2003/0167455A1 Sep. 4, 2003 Sheet 22 of 25 Patent Application Publication 

NOH LICINO OB?dd { 
  





US 2003/0167455A1 Sep. 4, 2003. Sheet 24 of 25 Patent Application Publication 

* 

  



Patent Application Publication Sep. 4, 2003 Sheet 25 of 25 US 2003/0167455A1 

FLOWCHART OF THE FUNCTIONS THAT ALL SPECIES IN THE 
DOCUMENTATION GENERATOR TRANSLATOR SUBGENUS WILL PERFORM 

800 

DETERMINETYPE OF 
SUPPORT DOCUMENTATION 
TO BE WRITTENAND THE 
RECQUESTED FILE FORMAT 

GET ALL THE APPROPRIATE INFORMATION 
NEEDED FOR DOCUMENT TYPES TO BE 
PRODUCED, INCLUDING TYPICALLY 

CLASSES, ATTRIBUTES, RELATIONSHIPS, 
SERVICES AND ARGUMENTS FROM FORMAL 

SPECIFICATION 

WRITE FILES IN THE APPROPRIATE FILE 
FORMAT 

FIG. 21 

  

  

    

    

    

    

    

    

  

    

  



US 2003/0167455 A1 

AUTOMATIC SOFTWARE PRODUCTION SYSTEM 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This is a continuation-in-part application of a prior 
U.S. patent application filed Apr. 4, 2000, Ser. No. 09/543, 
085. The present invention relates to computer Systems and 
more particularly to an automatic Software production SyS 
tem and methodology. 
0002 This application claims subject matter that is 
related to the Subject matter claimed in two other continu 
ation-in-part applications entitled “Automatic Software Pro 
duction System”, filed on and , and having 
Ser. NOS. and 

COMPUTER PROGRAM LISTING APPENDIX 

0003) 1. Field of the Invention 
0004. The assembly code computer program listing hav 
ing file name TOTAL.ASM size 39,107,073 bytes, created 
on May 23, 2001 which was submitted in duplicate with this 
patent application on a Single CD-ROM is hereby incorpo 
rated by reference. The file is in TXT format on a disc 
compatible with IBM-PCs and the Windows 98 operating 
System, and can be opened by any word processor. 
0005 2. Background of the Invention 
0006 Software engineering is the application of a sys 
tematic and disciplined approach to the development and 
maintenance of computer programs, applications, and other 
Software Systems. Due to the increasing computerization of 
the World's economy, the need for effective Software engi 
neering methodologies is more important than ever. 
0007. The traditional software development process 
involves a number of phases. First, the requirements of the 
program are specified, typically in the form of a written 
Specification document based on customer needs. Then, a 
Software developer writes Source code to implement the 
requirements, for example, by designing data Structures and 
coding the System logic. Finally, the Software developer 
undergoes an extensive testing and debugging phase in 
which mistakes and ambiguities in the requirements are 
identified and errors in the Software code are fixed. Having 
to refine the System requirements is one of the most Serious 
problems that might occur, because any modification to the 
requirements necessitates a redevelopment of the Source 
code, Starting the process all over again. Thus, the testing 
and debugging phase is the longest phase in the Software 
engineering process and the most difficult to estimate 
completion times. 
0008 For the past forty years, there have been many 
attempts to improve isolated portions of the Software engi 
neering process. For example, the creation of first higher 
level languages such as FORTRAN and then of structured 
programming languages Such as ALGOL has helped ease the 
burden of implementing the System logic. AS another 
example, the introduction of object-oriented methodologies 
has helped in the design and implementation of the data 
Structures. These improvements in the Software engineering 
proceSS have lessened the mismatch between the problem 
Space, which is the Conceptual Model for the application, 
and the Solution Space, which is the actual Software code. 

Sep. 4, 2003 

Nevertheless, Some mismatch between the problem Space 
and the Solution Space remains, which gives rise to an 
opportunity for programming errors. Because of the pro 
gramming errors, it is necessary to undergo an extensive 
testing and debugging phase to isolate and fix the Software 
faults. 

0009 Lately, there has been some interest in the use of 
“requirements analysis” and Computer Aided Software 
Engineering (CASE) to facilitate the first phase of the 
Software engineering process, which is the identification and 
Specification of the requirements. In particular, these 
approaches attempt to allow for Software engineers to for 
mally Specify the requirements and build a prototype to 
validate and test the requirements. After the requirements are 
tested, the prototype is discarded and the Software engineer 
develops the complete Software application based on the 
requirements. 

0010. One example is known as “OMTROLL', whose 
objective is to assist Software designers by means of an 
Object Modeling Technique (OMT)-compliant graphical 
notation to build the formal specification of the system. This 
Specification is based on the TROLL Specification language 
and has to be refined to a complete System Specification. In 
addition, OMTROLL has a CASE support called TrollWork 
bench, which provides a prototyping function by generating 
an independently executable prototype from a graphical 
conceptual Specification. The prototype generated is a C++ 
program that includes the Static/dynamic aspects of the 
System and uses an IngreSS database as a repository of the 
Specification. 
0011 OBLOG is another object-oriented approach for 
Software development that falls within the scope of the 
European ESPRIT project IS-CORE (Information Sys 
tems-Correctness and Reusability). The OBLOG seman 
ticS is formalized in the context of the theory of categories. 
OBLOG also employs a CASE tool for introducing the 
Specifications that has been introduced, and enables a devel 
oper to build a prototype by Supplying rewrite rules to 
convert the Specifications into code for the prototype. The 
rewrite rules must be written using a Specific language 
provided by OBLOG. 
0012 Another approach that focuses more on levels of 
formalism is the Object System Analysis model (OSA). The 
aim of OSA is to develop a method that enables system 
designers to work with different levels of formalism, ranging 
from informal to mathematically rigorous. In this context, 
this kind of tunable formalism encourages both theoreticians 
and practitioners to work with the same model allowing 
them to explore the difficulties encountered in making model 
and languages equivalent and resolve these difficulties in the 
context of OSA for a particular language. OSA also has a 
CASE Support tool called IPOST, which can generate a 
prototype from an OSA model to validate the requirements. 
0013 A different approach has been proposed by SOFL 
(Structured-Object-based-Formal Language), whose aim is 
to address the integration of formal methods into established 
industrial Software processes using an integration of formal 
methods, Structured analysis and Specifications, and an 
object-based method. SOFL facilitates the transformation 
from requirements specifications in a structured Style to a 
design in an object-based Style and facilitates the transfor 
mation from designs to programs in the appropriate Style. In 



US 2003/0167455 A1 

accordance with the previous arguments, the SOFL proposal 
attempts to overcome the fact that formal methods have not 
been largely used in industry, by finding mechanisms to link 
object-oriented methodology and Structured techniques with 
formal methods, e.g. VDM (Vienna Development Method) 
Style Semantics for its specification modules. Combining 
Structured and objected-oriented techniques in a Single 
method, however, makes it difficult to clarify the method 
Semantics, thus, effective tool Support is necessary for 
checking consistency. 

0014) Still another approach is known as TRADE (Tool 
kit for Requirements and Design Engineering), whose con 
ceptual framework distinguishes external System interac 
tions from internal components. TRADE contains 
techniques from Structured and object-oriented Specification 
and design methods. A graphical editor called TCM (Toolkit 
for Conceptual Modeling) is provided to Support the 
TRADE framework. 

0.015 Although these approaches are of some help for the 
first phase, i.e. in refining the requirements before the 
computer application is coded, they do not address the main 
Source for the lack of productivity during later phases of the 
Software engineering process, namely the programming and 
testing/debugging phases. For example, once the require 
ments are identified, the Software engineer typically discards 
the prototype generated by most of these approaches and 
then designs and implements the requirements in a Standard 
programming language Such as C++. The newly developed 
code, due to the mismatch between the problem Space and 
the Solution space, will commonly contain coding errors and 
will need to be extensively tested and debugged. 
0016 Even if the prototype is not discarded and used as 
skeleton for the final application, the Software developer 
must Still develop additional code, especially to implement 
the user interface and error processing. In this case, there 
Still remains the need for testing and debugging the code the 
programmer has written. The rule-rewriting approach of 
OBLOG, moreover, fails to address this need, because the 
difficulties associated with programming are merely shifted 
one level back, to the development of the rewriting rules in 
an unfamiliar, proprietary language. 

0.017. Other approaches include those of Rational and 
Sterling, but these are not based on a formal language. 
0.018. Therefore, there exists a long-felt need for improv 
ing the Software engineering process, especially for reducing 
the amount of time spent in the programming and testing 
phases. In addition, a need exists for a way to reducing 
programming errors during the course of developing a 
robust Software application. Furthermore, there is also a 
need for facilitating the maintenance of Software applica 
tions when their requirements have changed. 

SUMMARY OF THE INVENTION 

0019. These and other needs are addressed by the present 
invention. 

0020. There are at least three points of novelty that 
represent Separate Subsytems or Subgenus inventions in an 
overall System employing the teachings of the invention. 
0021. The first point of novelty is the front end process 
ing to create what is referred to herein as the Conceptual 

Sep. 4, 2003 

Model in a formal language or Symbology (that can be 
represented by a data Structure in a computer and which has 
rules that can be used for validation) that can be validated to 
make Sure the Conceptual Model is Syntactically complete, 
Semantically correct and not ambiguous. That is, the Vali 
dation proceSS finds holes left in information needed to 
complete the Conceptual Model of the problem, makes Sure 
everything in the formal specification makes sense (seman 
tically correct) and makes Sure no ambiguities exist. The 
Conceptual Model is typically written as Statements in any 
known or new formal language which has rules of Syntax 
and Semantics (together referred to as grammar) which are 
known to the validator. It is these rules of Syntax and 
Semantics that the validator uses to Verify the completeness, 
correctness and lack of ambiguity of the formal Specifica 
tion. 

0022. A formal language is a language: 1) there is an 
agreed upon Syntax to every Statement defining the proper 
Structure of the component parts of the statement; and 2) 
there is agreed upon Semantics meaning that every term is 
defined and has one and only one meaning. An example of 
known formal language is Oasis. It is these characteristics of 
the formal language in which the Conceptual Model is 
recorded in a high level repository which allow the Con 
ceptual Model to be validated. Validation is an important 
process in the front end processing, because it is validation 
which guarantees that the problem to be solved by the code 
to be written has been Stated in complete, correct and non 
ambiguous terms, and it is these factors which lead to 
complete, correct and bug-free code. 
0023 Known formal languages do not have to be used, 
and Some new Symbology may be used to record the 
Conceptual Model. However, whatever symbology is used, 
it must have the three above defined characteristics of a 
formal language and therefore the Symbology would be a 
new formal language of its own. Thus, the term formal 
language in the claims is intended to mean any known or 
new formal language which is defined by the following 
characteristics: 1) there is an agreed upon Syntax to every 
Statement; and 2) there is agreed upon Semantics to every 
Statement. Syntax is the fixed and agreed upon Structure of 
Statements in the model. In the non formal English language, 
Syntax is defined in the American Heritage Dictionary as 
“The study of the rules whereby words or other elements of 
Sentence Structure are combined to form grammatical Sen 
tences.” Alternatively, syntax is defined as “The pattern of 
formation of Sentences or phrases in a language.” Semantics 
is the meaning of various parts of the formal language or 
Symbology Statements. In a formal language or Symbology 
that must be used to practice the invention, Semantics means 
everything is defined and has one and only one meaning So 
there can be no ambiguity caused by multiple meanings for 
the same term. 

0024. The combination of syntax and semantics is 
referred to herein as the grammar of the formal language. A 
formal language may, in Some ways, be thought of as 
mathematically based Such that it can be mathematically 
validated to make Sure that every needed concept, argument 
or value is present and there are no inconsistencies in the 
information gathered and the gathered information is not 
ambiguous. 
0025. In the preferred species described herein, the pro 
ceSS of creating the Conceptual Model is done using a 



US 2003/0167455 A1 

graphical user interface to represent the various objects, etc. 
that comprise the model Visually. In other embodiments, the 
Conceptual Model may be drafted directly in a formal 
language using a plain old text-based interface or any word 
processing application. This is done by a SOSY modeler 
after determining the nature of the problem to be solved and 
all the other information needed to model the code to be 
written in a formal language. AS long as the Conceptual 
Model is written in a formal language, it can be validated, 
and that validation process is a key factor in generating 
complete and error free code. This Substantially reduces the 
time to market for the application's final code. 
0026. The applicants feel that the front end processing to 
generated a high level repository in a formal language that 
records the details of the Conceptual Model is an invention 
Standing alone. This is because this high level repository can 
be coded manually and there will be far fewer errors caused 
by incomplete information, ambiguous terms, etc. 
0027. To automatically write a complete working pro 
gram from the formal Specification requires at least one 
translator program that controls said computer to process the 
formal specification into working code in Some target com 
puter language Such as Visual Basic, C++, assembly code for 
any microprocessor, etc. At least a System logic translator is 
required to convert the requirements of the formal Specifi 
cation into working code that can be interpreted or compiled 
into a program that can control a computer to do the 
functions modelled in the Conceptual Model. In some appli 
cations where, for example, the program to be written is 
buried inside a big machine such as an MRI machine and 
there is no user interface and no data structure or persistence 
layer needed, the Single translator may be enough. 
0028. However, the preferred species uses four transla 
tors which process the high level repository into working 
System logic code in the target language, a user interface, a 
database Schema and documentation. In other words, regard 
less of how the Conceptual Model created by the front end 
processing is translated into working code, the process of 
creating the Conceptual model (comprised of the Object 
Model, the Dynamic Model, the Functional Model and the 
Presentation Model) and validating it is believed to be new. 
0029. It is the agreed upon syntax and semantics of the 
formal language or Symbology in which the data elements in 
the Conceptual Model are expressed which allows the 
Conceptual Model of the problem to be solved to be vali 
dated. Validation means that there are no missing elements 
of data needed to complete the model, all mathematical 
expressions are well formed and make Sense, and all State 
ments in the model are Semantically correct and made in the 
correct Syntax, and that there are no ambiguities. For 
example, if a Statement in the model attempted to add a 
floating point number to an alphanumeric String, that would 
be semantically incorrect, and would be detected in the 
validation process. 
0030 All species in the front end subgenus will share the 
characteristic of creating a Conceptual Model of the problem 
to be Solved in an already known formal language or in a 
new language with agreed upon Syntax and Semantics Such 
that the model can be validated as complete, correctly Stated 
Semantically speaking and not ambiguous. 
0031. The validation process does not confirm that the 
model created correctly models the problem. That is up to 

Sep. 4, 2003 

the SOSY modeler, also referred to herein as the “user” (a 
person trained in creation of Conceptual Models and trained 
in the Syntax and Semantics of the formal language or 
Symbology being used if a graphical user interface is not 
being used) that gathers the data and rules of the problem 
that get encoded into the Conceptual Model. The validation 
process simply applies all the rules of the Syntax and 
Semantics to the Statements in the formal language that give 
the definition of every object and class to make Sure all 
Statements are complete, Semantically correct and not 
ambiguous. 

0032. The second point of novelty subgenus relates to 
how the Conceptual Model is actually built by the SOSY 
modeler. In the preferred species within this first Subgenus, 
the Conceptual Model is built by using a graphical user 
interface to define objects and relationships between objects, 
State transitions and most if not all the other items that go 
into the Conceptual Model that is encoded into the formal 
language. This just makes it easier for the SOSY modeler to 
use the formal language by alleviating the need for the 
SOSY modeler to know all the details of the syntax and 
Semantics of the formal language. In other species within the 
first subgenus however, the SOSY modeler can use a text 
based interface or any other type of interface to record the 
Statements which together comprise the Conceptual Model. 

0033. The only things that are essential to the invention 
of the first point of novelty are that the Conceptual Model be 
recorded in Some formal language and that it be validated. 
Exactly how these events occur in a particular species within 
the first Subgenus is not critical. For example, Some valida 
tion processes within the first Subgenus may start with one 
rule and apply it to every Statement in the high level 
repository (the formal language Statements that encode the 
Conceptual Model) in a first pass and then do the same thing 
for every other rule of Syntax and Semantics in the formal 
language definition. Other Species may start with the first 
Statement in the high level repository and apply all the rules 
against it and repeat this process for every Statement. Other 
Species may start at the first Statement and process it to make 
Sure it complies with every applicable rule and then repeat 
this process for every other Statement. 
0034. The third point of novelty is the backend process 
ing to convert the Statements in the high level repository to 
working System logic code targeted for Some specific plat 
form, operating System and high level language, and a user 
interface (if applicable) and a database (if applicable) and 
documentation (if applicable). This is the work done by 
translators. 

0035. There are four translators used in most applica 
tions: a System logic translator; a user interface translator, a 
database generator; and a documentation generator. The 
System logic translator represents one or more processes that 
convert the Statements in the high level repository into 
computer code that implements the System logic in the target 
language that makes the correct function calls to the target 
operating System to accomplish various functions required 
by the Conceptual Model. In other words, the system logic 
translator is a translator that writes the code that actually 
carries out the processing of all the Services defined in the 
objects defined by the Conceptual Model to alter the values 
of attributes of various objects, call Services of other objects, 
etc. to carry out the Overall function of the program. 



US 2003/0167455 A1 

0.036 An object is a programming construct that has data 
in the form of attributes and Services which are programs 
which control the computer to do whatever function the 
Service is designed to do. The Services defined for an object 
carry out processing appropriate to the existence and mean 
ing of the object in the overall Conceptual Model and, 
generally, are invoked through application programmatic 
interfaces or APIs. 

0037. The details of the structure and operation of the 
translator Species within the Subgenus "system logic trans 
lator' Vary from one input formal language and one output 
target language to the next, but all Species within the “system 
logic translator Subgenus share certain characteristics. All 
Species will have to: provide the object System view, iden 
tify the object Server code that executes each Service defined 
for each object, receive the Service arguments, Send a 
message to each object Server; check the State transitions, 
check the preconditions, fulfill valuations defined in each 
object; check integrity constraints, and test trigger relation 
ships. What these characteristics mean will be described in 
greater detail in the detailed description Section. 

0.038. There is also a translator that defines the structure 
of a database (referred to herein as a persistence) that stores 
the values of all the attributes of all objects thereby defining 
the state of every object. Although the details of various 
Species vary with formal language of the input and the target 
database type, all Species within this Subgenus of database 
translators share the following characteristics: 1) all species 
will get the values of all attributes of all the objects in all the 
classes; and 2) all species will Store these attribute values at 
any particular point in time in the desired form or data 
Structure Such that the value of any attribute of any object 
can be obtained by the System logic. 

0.039 There is also a translator that creates documenta 
tion. Again, the details of the Species within this Subgenus 
vary from one type of target language and desired docu 
mentation to the next, but all Species within this Subgenus 
will share the following characteristics: 1) all species will go 
to the four models that are part of the Conceptual Model and 
copy the information from the models that is needed to 
generate the required documentation Such as object defini 
tions, class names and definitions, etc.; and 2) write the 
required documentation in a predetermined file format. In 
Some Species, the System will go to a data model or 
configuration data to determine which documentation to 
produce, and then perform StepS 1 and 2 above. 

0040 Finally, there is also a genus of translators that 
create code to implement the user interface if a user interface 
is needed for the program being developed. However, Some 
Species of the overall System of the invention create code 
which works inside Some apparatus in a manner which is not 
Visible to the user So there is no user interface. Such System 
Species do not need a user interface translator. All Species 
within the Subgenus of user interface translators will share 
the following characteristics: 1) all species will at least 
identify the user; 2) provide a object System view that is 
appropriate to the user that logged in and only allows that 
user to perform functions within that user's privilege level; 
3) write code to identify the correct object server(s), i.e., the 
computer program that implements the particular Service(s) 
the user is allowed to and has elected to invoke; 4) write 
code to request and receive or retrieve from Sources other 

Sep. 4, 2003 

than the user the Service arguments needed to invoke the 
Service the user wishes to invoke and check whether the 
input received is valid or within a valid restricted range and 
to check for dependencies (if dependencies exist) between 
arguments and, if a dependency exists, and a user input 
triggers a dependency, to display the appropriate field to 
enter the needed to satisfy the dependency; 5) write code to 
invoke the Service and Send the Service the appropriate 
arguments, and 6) wait for results and display an error 
message if an error has occurred, or, if no error has occurred, 
display any results which result from execution of the 
Service and then wait for another user input. 
0041. Each species in a subgenus will do the generically 
stated functions that define the subgenus, but will do them 
in a different way which is dependent upon the target 
platform, operating System and high level language in which 
the output is to be generated. 

0042. The system of the example described in the 
detailed description below, both the front end and back end 
(translation) processing is implemented. The front end pro 
cessing captures the System requirements graphically (e.g. 
through a graphical user interface), converts the four models 
So created into a formal Specification, and validates a high 
level repository written in a formal language from the four 
models for correctness and completeneSS. In the back end 
processing, a translator is provided to automatically generate 
a complete, robust Software application based on the Vali 
dated formal Specification. 

0043. By generating the application code from the vali 
dated formal Specification, error-free Source code Strategies 
can be employed, freeing the developer from having to 
manually produce the Source code or extend an incomplete 
prototype. Therefore, the error-prone, manual programming 
phase of the traditional Software engineering proceSS is 
eliminated, and the testing and debugging time is greatly 
reduced. In one example, the Software development time of 
an application was reduced to 2.02% (or 8.5% worst case) of 
the original time. In other words, performance has been 
benchmarked by a reputable Software tool evaluation com 
pany to be 12 to 47 times faster than Similar projects using 
other competing Software products. Software maintenance is 
also reduced, because the traditional coding, testing, and 
revalidation cycles are eliminated. 
0044 One aspect of the present invention springs from 
the insight that ambiguity is a major Source of programming 
errors associated with conventional object-oriented and 
higher-order programming languages Such as C++. Accord 
ingly, an automated Software production tool, Software, and 
methodology are provided, in which a graphical user inter 
face is presented to allow a user to input unambiguous 
formal requirements for the Software application. Based on 
the formal requirements input for the Software application, 
a formal Specification for the Software application is pro 
duced and validated, from which the Software application is 
generated. By generating the Software application directly 
from an unambiguous, validated formal Specification, the 
Software developer can avoid the programming errors asso 
ciated with conventional programming languages, and 
instead work directly in the problem Space. In one embodi 
ment, error handling instructions are also produced when the 
Software application is generated So as to create a robust, 
final Software application. 



US 2003/0167455 A1 

0.045 Another aspect of the present invention stems from 
the realization that a major Source of inadequacy of con 
ventional prototyping techniques is that these techniques 
lack the capability to Specify the user interface aspects. 
Thus, Such conventional prototypes have primitive user 
interfaces that are unacceptable for final, customer-ready 
Software application. Accordingly, this aspect of the inven 
tion relates to an automated Software production tool, Soft 
ware, and methodology that includes a formal Specification 
of a Conceptual Model that specifies requirements for a 
Software application. The Conceptual Model includes a 
presentation model that Specifies patterns for a user interface 
of the Software application. The formal Specification, which 
also specifies the presentation model is validated; and the 
Software application is then generated based on the validated 
formal Specification. As a result, the generated Software 
application includes instructions for handling the user inter 
face in accordance with the patterns Specified in the presen 
tation model. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0046) The present invention is illustrated by way of 
example, and not by way of limitation, in the figures of the 
accompanying drawings and in which like reference numer 
als refer to Similar elements and in which: 

0047 FIG. 1 depicts a computer system that can be used 
to implement an embodiment of the present invention. 
0.048 FIG. 2 is a schematic block diagram illustrating the 
high-level architecture and data flows of an automatic Soft 
ware production System in accordance with one embodiment 
of the present invention. 
0049 FIG. 3 illustrates an example of an object model 
for a library System with readers, books, and loans. 
0050 FIG. 4A illustrates an exemplary state transition 
diagram in accordance with one embodiment of the present 
invention. 

0051 FIG. 4B illustrates an exemplary object interaction 
diagram in accordance with one embodiment of the present 
invention. 

0.052 FIG. 5 illustrates an exemplary dialog for receiv 
ing input for the functional model. 
0.053 FIG. 6 is a flow diagram illustrating the high level 
View of the operation of translating a formal Specification 
into a full application by following what it is referred to as 
“execution model'.” 

0.054 FIG. 7 is a flow diagram representing the sequence 
of functions that all translators in the Subgenus of user 
interface translators will perform. 

0055 FIG. 8 is a flowchart of the functions that all 
Species of the Subgenus database translator 236 must per 
form. 

0056 FIG. 9A is a screenshot of the dialog box to create 
the class which simply involves giving it a name. 

0057 FIG. 9B is screenshot of a graphic interface box 
showing the classes that have been defined to Store the 
pertinent information and provide the pertinent Services to 
implement a computer program that meets the above defined 

Sep. 4, 2003 

requirements. Defining these classes Starts the process of 
building the Formal Specification in the high level reposi 
tory. 

0.058 FIG.9C is a screenshot of the dialog box to modify 
the properties of an aggregation relationship between any 
two classes Specified in the dialog box. 
0059 FIG. 10 is a dialog box to create the relationships 
between specified classes and which graphically shows the 
relationships. So created and all the properties of those 
relationships. 

0060 FIG.11(A) shows the dialog box used to define the 
attributes for the Expense class with their properties. This 
dialog box is used to define whether each attribute is 
constant, variable or derived, the type of data it contains and 
other things. 
0061 FIG. 11(B) is the dialog box used to fill in the 
formulas used for derivation of the values of attributes of 
classes from the values of other attributes. 

0062 FIG. 12 shows a dialog box which a SOSY mod 
eler uses to define the Services of the Expense class with 
their arguments. 
0063 FIG. 13 is a screenshot of the dialog box used to 
create one formula in a local transaction carried out by a 
composed Service (single Services are called events, and 
composed Services are called local transactions). 
0064 FIG. 14 a dialog box used by the modeler to enter 
the integrity constraint formula and error message text of 
“Expense' class. 
0065 FIG. 15 is a dialog box to enter the functional 
model formulas that define evaluation of the attribute 
“cause” with the “modify” event (an event is a single 
Service). The functional model relates Services mathemati 
cally through well-formed formulas to the values of 
attributes these Services act upon. 
0.066 FIG. 16 is a dialog box which can be used by the 
SOSY modeller to establish the services the user “accoun 
tuser' can access and the visibility of class attributes for this 
user on the user interface. 

0067 FIG. 17 is one of the two graphical user interface 
diagrams of the dynamic model on which the SOSY modeler 
has drawn a graphic illustrating the State transitions for the 
“expense’ class. 
0068 FIG. 18 is a dialog box used by the SOSY modeler 
to establish this precondition. 
0069 FIG. 19 is a dialog box used by the SOSY modeler 
to establish the set of attributes which will be displayed for 
the “expense' class. 
0070 FIG. 20 shows the dialog box used by the SOSY 
modeler to establish the Searching criteria for the expense 
class, and indicate the filter formula to use and which 
variables to request from the user. 
0071 FIG. 21 is a flow diagram defining the character 
istics that all Species in the genus of user documentation 
translators will share. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

0072 An automatic Software production system is 
described. In the following description, for the purposes of 



US 2003/0167455 A1 

explanation, numerous specific details are Set forth in order 
to provide a thorough understanding of the present inven 
tion. It will be apparent, however, to one skilled in the art 
that the present invention may be practiced without these 
Specific details. In other instances, well-known Structures 
and devices are shown in block diagram form in order to 
avoid unnecessarily obscuring the present invention. 
0073 Hardware Overview 
0.074 FIG. 1 is a block diagram that illustrates a com 
puter system 100 upon which an embodiment of the inven 
tion may be implemented. Computer system 100 includes a 
bus 102 or other communication mechanism for communi 
cating information, and a processor 104 coupled with bus 
102 for processing information. Computer system 100 also 
includes a main memory 106, Such as a random acceSS 
memory (RAM) or other dynamic Storage device, coupled to 
bus 102 for storing information and instructions to be 
executed by processor 104. Main memory 106 also may be 
used for Storing temporary variables or other intermediate 
information during execution of instructions to be executed 
by processor 104. Computer system 100 further includes a 
read only memory (ROM) 108 or other static storage device 
coupled to buS 102 for Storing Static information and instruc 
tions for processor 104. A storage device 110, such as a 
magnetic disk or optical disk, is provided and coupled to bus 
102 for storing information and instructions. 
0075 Computer system 100 may be coupled via bus 102 
to a display 112, such as a cathode ray tube (CRT), for 
displaying information to a computer user. An input device 
114, including alphanumeric and other keys, is coupled to 
buS 102 for communicating information and command 
Selections to processor 104. Another type of user input 
device is cursor control 116, Such as a mouse, a trackball, or 
cursor direction keys for communicating direction informa 
tion and command Selections to processor 104 and for 
controlling cursor movement on display 112. This input 
device typically has two degrees of freedom in two axes, a 
first axis (e.g., X) and a second axis (e.g., y), that allows the 
device to specify positions in a plane. 
0.076 The invention is related to the use of computer 
system 100 for automatic Software production. According to 
one embodiment of the invention, automatic Software pro 
duction is provided by computer system 100 in response to 
processor 104 executing one or more Sequences of one or 
more instructions contained in main memory 106. Such 
instructions may be read into main memory 106 from 
another computer-readable medium, Such as Storage device 
110. Execution of the Sequences of instructions contained in 
main memory 106 causes processor 104 to perform the 
proceSS Steps described herein. One or more processors in a 
multi-processing arrangement may also be employed to 
execute the Sequences of instructions contained in main 
memory 106. In alternative embodiments, hard-wired cir 
cuitry may be used in place of or in combination with 
Software instructions to implement the invention. Thus, 
embodiments of the invention are not limited to any specific 
combination of hardware circuitry and Software. 
0077. The term “computer-readable medium' as used 
herein refers to any medium that participates in providing 
instructions to processor 104 for execution. Such a medium 
may take many forms, including but not limited to, non 
Volatile media, Volatile media, and transmission media. 

Sep. 4, 2003 

Non-volatile media include, for example, optical or mag 
netic disks, Such as Storage device 110. Volatile media 
include dynamic memory, Such as main memory 106. Trans 
mission media include coaxial cables, copper wire and fiber 
optics, including the wires that comprise buS 102. Trans 
mission media can also take the form of acoustic or light 
waves, Such as those generated during radio frequency (RF) 
and infrared (IR) data communications. Common forms of 
computer-readable media include, for example, a floppy 
disk, a flexible disk, hard disk, magnetic tape, any other 
magnetic medium, a CD-ROM, DVD, any other optical 
medium, punch cards, paper tape, any other physical 
medium with patterns of holes, a RAM, a PROM, and 
EPROM, a FLASH-EPROM, any other memory chip or 
cartridge, a carrier wave as described hereinafter, or any 
other medium from which a computer can read. 

0078 Various forms of computer readable media may be 
involved in carrying one or more Sequences of one or more 
instructions to processor 104 for execution. For example, the 
instructions may initially be borne on a magnetic disk of a 
remote computer. The remote computer can load the instruc 
tions into its dynamic memory and Send the instructions over 
a telephone line using a modem. A modem local to computer 
system 100 can receive the data on the telephone line and 
use an infrared transmitter to convert the data to an infrared 
Signal. An infrared detector coupled to buS 102 can receive 
the data carried in the infrared signal and place the data on 
bus 102. Bus 102 carries the data to main memory 106, from 
which processor 104 retrieves and executes the instructions. 
The instructions received by main memory 106 may option 
ally be stored on storage device 110 either before or after 
execution by processor 104. 

0079 Computer system 100 also includes a communica 
tion interface 118 coupled to bus 102. Communication 
interface 118 provides a two-way data communication cou 
pling to a network link 120 that is connected to a local 
network 122. For example, communication interface 118 
may be an integrated services digital network (ISDN) card 
or a modem to provide a data communication connection to 
a corresponding type of telephone line. AS another example, 
communication interface 118 may be a local area network 
(LAN) card to provide a data communication connection to 
a compatible LAN. Wireless links may also be implemented. 
In any Such implementation, communication interface 118 
Sends and receives electrical, electromagnetic or optical 
Signals that carry digital data Streams representing various 
types of information. 

0080 Network link 120 typically provides data commu 
nication through one or more networks to other data devices. 
For example, network link 120 may provide a connection 
through local network 122 to a host computer 124 or to data 
equipment operated by an Internet Service Provider (ISP) 
126. ISP 126 in turn provides data communication services 
through the Worldwide packet data communication network, 
now commonly referred to as the “Internet'128. Local 
network 122 and Internet 128 both use electrical, electro 
magnetic or optical signals that carry digital data Streams. 
The Signals through the various networks and the Signals on 
network link 120 and through communication interface 118, 
which carry the digital data to and from computer System 
100, are exemplary forms of carrier waves transporting the 
information. 



US 2003/0167455 A1 

0.081 Computer system 100 can send messages and 
receive data, including program code, through the net 
work(s), network link 120, and communication interface 
118. In the Internet example, a server 130 might transmit a 
requested code for an application program through Internet 
128, ISP 126, local network 122 and communication inter 
face 118. In accordance with the invention, one Such down 
loaded application provides for automatic Software produc 
tion as described herein. The received code may be executed 
by processor 104 as it is received, and/or Stored in Storage 
device 110, or other non-volatile storage for later execution. 
In this manner, computer System 100 may obtain application 
code in the form of a carrier wave. 

0082 Conceptual Overview 
0.083 FIG. 2 is a schematic block diagram illustrating the 
high-level architecture and data flows of an automatic Soft 
ware production System 202 in accordance with one embodi 
ment of the present invention. The automatic Software 
production System 202 is configured to accept requirements 
200 as input, and produce a complete, robust application 204 
(including both System logic and user-interface code), a 
database schema 206, and documentation 208. In one imple 
mentation, the automatic Software production System 202 
includes a Computer Aided Software Engineering (CASE) 
tool 210 front end to allow a user to input the requirements, 
a validator 220 for validating the input requirements 200, 
and Several translators to convert the validated input require 
ments 200 into a complete, robust application 204. These 
translators may include a System logic translator 232, a 
user-interface translator 234, a database generator 236, and 
a documentation generator 238. 
0084. During operation of one embodiment, require 
ments 200 specifying a Conceptual Model for the applica 
tion are gathered using diagrams and textual interactive 
dialogs presented by the CASE tool 210. Preferably, the 
CASE tool 210 employs object-oriented modeling tech 
niques to avoid the complexity typically associated with the 
use of purely textual formal methods. In one implementa 
tion, the Conceptual Model is subdivided into four comple 
mentary models: an object model, a dynamic model, a 
functional model, and a presentation model. These models 
are described in greater detail hereinafter. After gathering the 
requirements 200, the CASE tool 210 stores the input 
requirements as a formal Specification 215 in accordance 
with a formal Specification language, for example, the 
OASIS language, which is an object-oriented language for 
information Systems developed at developed at the Techni 
cal University of Valencia, Spain. Using extended grammar 
defined by the formal language, the validator 220 Syntacti 
cally and semantically validates the formal specification 215 
to be correct and complete. If the formal specification 215 
does not pass validation, no application is allowed to be 
generated; therefore, only correct and complete applications 
are allowed be generated. 

0085) If, on the other hand, the formal specification 215 
does indeed pass validation, automatic Software production 
processes, Some of the referred to as “translators' (system 
logic and user interface ones) are employed to implement a 
precise execution model that corresponds to the validated 
formal specification 215. In particular, translators 232 and 
234 produce application Source code 204 in a high-order 
language Such as C++, Visual Basic or JAVA for the appli 

Sep. 4, 2003 

cation's System-logic and user-interface, respectively. In one 
implementation, a database generator 236 also produces 
instructions in, for example, a Structure Query Language 
(SQL) Scripting language to create the data model for the 
application in an industry-standard ANSI-92 SQL Relational 
Database Management System (RDBMS). However, in 
other embodiments, the database translator 236 just outputs 
a file having a file Structure that is known to the System logic 
created by the System logic translator 232. Basically, the 
Structure of the database or table or other data Structure that 
database generator 236 creates is defined by the objects and 
classes defined in the Conceptual Model. The only thing that 
is necessary is that translator 236 provide at least a place to 
Store the States of the objects in the System as defined by 
their attribute values and that the attribute values be stored 
in Some format known to the System logic translator Such 
that the values of attributes can be retrieved from whatever 
data Structure is created by translator 236. In other species, 
the database generator creates a data Structure defined by the 
Conceptual Model as well as for storing other data from 
other Sources or entered by remote client computers for use 
by the code created by the System logic translator 232. 
0086. In addition, one implementation also employs a 
document generator 238 to automatically generate Service 
able System documentation from the information introduced 
in the Conceptual Model. 
0.087 Case Modeler 
0088 As mentioned herein above, the CASEtool 210 
preferably employs object-oriented modeling techniques to 
avoid the complexity typically associated with the use of 
purely textual formal methods. Rather, four complementary 
models, that of the object model, the dynamic model, the 
functional model and the presentation model, are employed 
to allow a designer to specify the System requirements. In 
contrast with conventional techniques, however, the CASE 
tool 210 actually captures a formal specification of the 
designer's System “on the fly according to a formal Speci 
fication language, while the designer is specifying the Sys 
tem with the CASE tool 210. 

0089. This feature enables the introduction of well-de 
fined expressions in the Specification, which is often lacking 
in the conventional methodologies. In particular, the CASE 
tool 210 enforces the restriction that only the information 
relevant for filling a class definition in the formal Specifi 
cation language can be introduced. The use of a formal 
specification, input by means of the CASE tool 210, there 
fore provides the environment to validate and verify the 
System in the Solution Space, thereby obtaining a Software 
product that is functionally equivalent to the Specification as 
explained hereinafter. Nevertheless this is always done pre 
Serving this external view which is compliant with the most 
extended modeling techniques, as Stated before. In this way, 
the arid formalism characteristic of many conventional 
approaches is hidden from the designer, who is made to feel 
comfortable using a graphical modelling notation. 
0090. With respect to the notation, conceptual modelling 
in one embodiment employs diagrams that are compliant 
with the Unified Modelling Language (UML); thus, system 
designers need not learn another graphical notation in order 
to model an information System. In accordance with the 
widely accepted object oriented conceptual modeling prin 
ciples, the Conceptual Model is subdivided into an object 



US 2003/0167455 A1 

model, a dynamic model, and a functional model. These 
three models, however, are insufficient by themselves to 
Specific a complete application, because a complete appli 
cation also requires a user interface. Therefore, the CASE 
tool 210 also collects information about user-interface pat 
terns, in a fourth model referred to as “Presentation Model”, 
which will be translated into the code for the application. In 
one embodiment, the CASE tool 210 collects information 
organized around projects which correspond to different 
applications. Each project built by the CASE tool 210 can 
include information about classes, relationships between 
classes, global transactions, global functions, and ViewS. 
0.091 “Each class contains attributes, services, deriva 
tions, constraints, transaction formulas, triggers, display 
Sets, filters, population Selection patterns, a State transition 
diagram and formal interfaces. In addition to the information 
in these lists, a class can also store a name, alias and a default 
population Selection interface pattern. Extra information is 
Stored as remarks that the designer can input information 
about why a class does exist in a model. 
0092. Each attribute can have the following characteris 

tics: name, formal data type (e.g. constant, variable, 
derived), data type (real, String, ...), default value, whether 
the attribute is an identifier for distinguishing the objects of 
the class, length, whether the attribute is required when the 
object is created, whether the attribute can be assigned a 
NULL value, and a field to introduce Some remarks about 
why the attribute has been created. Each attribute can also 
include a list of valuations, which are formulas that declare 
how the objects state is changed by means of events. 
Valuation formulas are structured in the following parts: 
condition (that must be satisfied to apply the effect), event 
and effect of the event to the particular attribute. An attribute 
may also include user interface patterns belonging to the 
presentation model to be applied in the corresponding Ser 
vices arguments related to the attribute. 
0.093 Services can be of two types: events and transac 
tions. Events are atomic operations while transactions are 
composed of Services which can be in turn events or 
transactions. Every Service can have the following charac 
teristics: name, type of Service (event or transaction), Service 
alias, remarks and a help message. Events can be of three 
types: new, destroy or none of them. Events can also be 
shared by Several classes of the project. Shared events 
belong to all classes sharing them. Transactions have a 
formula that expresses the composing of Services. In addi 
tion to this information, Services Store a list of arguments 
whose characteristics are: name, data type, whether nulls are 
allowed as a valid value, whether the argument represents a 
Set of objects (collection), default value, alias and remarks. 
Additionally, for each argument user-interface patterns 
related to arguments are: introduction pattern, population 
Selection pattern, defined Selection pattern and dependency 
pattern. The class can also store a list of derivations, and 
constraints. Each derivation Specifies a list of pairs condi 
tion-formula, Specifying which formula will be applied 
under every condition. Each constraint is a well formed 
formula plus the error message that will be displayed when 
the constraint was violated. For the dynamic constraints, the 
formula will be internally translated into a graph which 
constitutes the guide for its evaluation. 
0094. A class can also store triggers. Each trigger may be 
composed of trigger target Specified in terms of Self, class or 

Sep. 4, 2003 

object, trigger condition, triggered action (Service plus a list 
of possible agents) to be activated and a list of default values 
asSociated with the arguments of the related Service. A class 
can also have display Sets, filters and population Selection 
patterns as user-interface patterns of the presentation model 
affecting the class. Each display Set can Store elements of 
Visualization (attributes to be displayed to the user). Each 
filter is composed of a well formed formula and a list of 
auxiliary variables that are useful to define the formula. The 
population Selection pattern is related to a display Set and a 
filter. Classes also have a State Transition Diagram which is 
a Set of States and transitions between them. Each State 
transition is related to an action (Service plus list of possible 
agents) that can change the State of the object. Actions may 
have preconditions and the corresponding error message (to 
be displayed if the precondition does not hold). Precondi 
tions are formulas that need to be Satisfied in order to 
execute the corresponding action. In case of non-determin 
istic transitions, determinism is achieved by means of label 
ling each transition with a control condition. A control 
condition is a formula that Specifies which State transition 
will take effect.Finally, a class can Store a list of interfaces. 
Each interface Stores the list of Services that an actor can 
execute (agents) and the list of attributes that can be 
observed. 

0095 The model also maintains information on relation 
ships between classes, which can be of two types: aggrega 
tion and inheritance. Each aggregation relationship captures 
the information about cardinalities, whether the aggregation 
is static or dynamic, whether the aggregation is inclusive or 
referential, whether the aggregation has an identification 
dependence, and a grouping clause when the aggregation is 
multi-valued. Each inheritance relationship Stores the name 
of the parent class, the name of the child class and whether 
the Specialization is temporary or permanent. Finally, if the 
Specialization is permanent it stores a well formed formula 
on constant attributes as Specialization condition. If the 
Specialization is temporary it stores either condition or the 
list of events that activate/deactivate the child role. 

0096 Finally, the project can also capture a list of global 
transactions in which the relevant characteristics to be Stored 
include the name of the global interaction, the formula, and 
the list of arguments. A list of global functions can also be 
captured, in which each function Stores a name, a data type 
of the returned value, a set of arguments (similar to Ser 
vices), and comments about the function. 
0097. A project may have a set of views, that constitute 
the particular vision that a Set of Selected agent classes has 
of the system. That is, the set of formal interfaces (attributes 
and Services) allowed per agent class. Each agent class has 
a list of interfaces. 

0.098 Object Model 
0099. The object model is a graphical model that allows 
the System designer to specify the entities employed in the 
application in an object-oriented manner, in particular, by 
defining classes for the entities. Thus, the class definitions 
include, for example, attributes, Services and class relation 
ships (aggregation and inheritance). Additionally, agent rela 
tionships are specified to State which Services that objects of 
a class are allowed to activate. 

0100 FIG. 3 illustrates an example of an object model 
diagram 300 for the library system example with readers, 



US 2003/0167455 A1 

books, and loans which shows the agent relationships 
between classes. An agent relationship between classes 
means one class can invoke the Services of another class. 
FIG. 3 is included here to show that classes have attributes 
and Services and they have relationships to other classes. 
Classes, in the object model 300, are represented as rect 
angles with three areas: the class name, the attributes and the 
services. In the example, the object model 300 includes a 
loan class 310 with attributes to indicate a loan code 312 and 
a loan date 314 for when the loan was made. The loan class 
310 also includes two services (methods) including one for 
loaning a book 316 and another for returning the book 318. 
0101 The object model 300 also includes a book class 
320 having attributes that specify the author 322 of the book, 
a book code 324, and a state 326 (e.g. reserved, in circula 
tion, checked out, etc.) and Services Such as new book 328 
for creating a new book. Another class is a librarian class 
330, whose name 332 is specified by an attribute and whose 
creation is done by a new librarian service 334. 
0102) Each reader belonging to the library is described 
with the reader class 340, whose attributes include the age 
342, the number of books 344 checked out by the reader, and 
the name 346 of the reader. Readers may be created with a 
new reader service 348. An unreliable reader class 350 is 
also part of the object model to indicate for those readers 340 
who cannot be trusted (e.g. due to unpaid fees for overdue 
books). An unreliable reader 350 may be forgiven 352 by a 
librarian 330. 

0103) In an object model 300, inheritance relationships 
are represented by using arrows to link classes. For example, 
the unreliable reader class 350 is connected to the reader 
class 340 with an arrow; thus, the unreliable reader class 350 
is Specified to inherit from, or in other terms is a Subclass of, 
the reader class 340. The arrow linking the subclass and the 
base class can be leveled with a specialization condition or 
an event that activates or cancels the child role. In the 
exemplary object model 300, the arrow between the unre 
liable reader class 350 and the reader class 340 is labeled 
with a “readerpunish/forgive” service. Thus, if a reader 340 
is punished, that person becomes an unreliable reader 350. 
Conversely, if an unreliable reader 350 is forgiven 352, that 
person becomes a normal reader 340. 
0104 Aggregation relationships are represented in the 
object model 300 by using a line with a diamond. 
0105 The class which has a diamond closest to it is called 
the composite class and the other class is the component 
class. The aggregation determines how many components 
can be attached to a given composite and Vice versa (car 
dinality is the minimum and maximum numbers of compo 
nents and composites that can participate in the relation 
ship). In the example, a book 320 and a reader 340 are 
aggregated in a loan 310, because a loan 310 involves 
lending a book 320 to a reader 340 of the library. “The 
representation of aggregation also includes its cardinalities 
in both directions (i.e. minimum and maximum numbers), 
role names, and relationship name. In the example, the 
cardinality of the loan:book relationship from loan to book 
is 1:1 because exactly one book is the Subject of a loan in this 
Conceptual Model, and from book to loan is 0:1 because a 
book can be lent or not in a certain moment.” 

0106 “Furthermore, agent relationships are represented 
by using dotted lines that connect the associated client class 
and Services of the Server class.” 

Sep. 4, 2003 

0107. In the example, a librarian 330 is an agent of a 
forgive service 352 of the unreliable reader class 350; thus, 
there is a dotted line between the forgive service 352 and the 
librarian class 330. As another example, readers 340 are 
agents of the loan book 316 and return book 318 services. 
0.108 “Finally, shared events are represented by using 
Solid lines that connect the associated events between two 
classes. In the example, the loan book event is a shared 
event due to the Solid line connecting Said events in the book 
class 320 and the reader class 340.” 

0109 Additional information in the object model is 
Specified to complete the formal description of the class. 
Specifically, for every class in the object model, the follow 
ing information is captured as shown in TABLE 1. 

TABLE 1. 

ITEM DESCRIPTION 

Attributes All the aforementioned properties and/or characteristics 
Services All the aforementioned properties and/or characteristics 
Derivations derivation expressions for the derived attributes 

(those whose value is dependent on other attributes) 
Constraints well-formed formulas stating conditions 

that objects of a class must satisfy 
Complex specific information associated to aggregation and 
Relationships inheritance hierarchies 
Agents services that can be activated by this class 

0110. Additional information associated with aggrega 
tion and inheritance is also collected. For aggregated classes, 
the additional information can specify if the aggregation is 
an association or a composition in accordance with the UML 
characterization, or if the aggregation is Static or dynamic. 
For inheritance hierarchies, the additional information can 
Specify if a Specialization produced by the inheritance is 
permanent or temporal. If the Specialization is permanent, 
then the corresponding conditions on the constant attributes 
must characterize the Specialization relationship. On the 
other hand, it the Specialization is temporary, then the 
condition based on variable attributes or the events that 
activate/deactivate the child role must be specified. 
0111 Some applications may require a large number of 
classes to fully specify. In this case, classes may be gathered 
into clusters. Clusters make it easier for the designer or 
System analyst to understand the application, one cluster at 
a time. Thus, clusters help reduce the complexity of the view 
of the object model. 
0112 Dynamic Model 
0113. The system class architecture is specified with the 
object model. Additional features, however, Such as which 
object life cycles can be considered valid, and which inter 
object communication can be established, also have to be 
input in the System specification. For this purpose, a 
dynamic model is provided. 

0114. The dynamic model specifies the behavior of an 
object in response to Services, triggerS and global transac 
tions. In one embodiment, the dynamic model is represented 
by two diagrams, a State transition diagram and an object 
interaction diagram. 

0115 The state transition diagram (STD) is used to 
describe correct behavior by establishing valid object life 



US 2003/0167455 A1 

cycles for every class. A valid life refers to an appropriate 
Sequence of States that characterizes the correct behavior of 
the objects that belong to a specific class. Transitions rep 
resent valid changes of State. A transition has an action and, 
optionally, a control condition or guard. An action is com 
posed of a Service plus a Subset of its valid agents defined in 
the Object Model. If all of them are marked, the transition 
is labeled with an asterisk (*). Control conditions are well 
formed formulas defined on object attributes and/or service 
arguments to avoid the possible non-determinism for a given 
action. Actions might have one precondition that must be 
Satisfied in order to accept its execution. A blank circle 
represents the State previous to existence of the object. 
Transitions that have this State as Source must be composed 
of creation actions. Similarly, a bull's eye represent the State 
after destruction of the object. Transitions having this State 
as destination must be composed of destruction actions. 
Intermediate States are represented by circles labeled with an 
State name. 

0116. Accordingly, the state transition diagram shows a 
graphical representation of the various States of an object 
and transitions between the states. FIG. 4A illustrates an 
exemplary State transition diagram 400 in accordance with 
one embodiment of the present invention. States are 
depicted in the exemplary state transition diagram 400 by 
means of a circle labeled with the State name. Referring to 
FIG. 4A, the “book0” state 404 is indicated by a circle with 
the name “book0.” Before an object comes into existence, a 
blank circle 402 is used to represent this “state' of nonex 
istence, “which is the source of the initial transition 410 
labeled by a corresponding creation action. Abull's eye 406 
is used to represent the State after which an object has been 
destroyed, as by a transition 416 occasioned by the *): 
destroy book action.” 
0117 Transitions are represented by Solid arrows from a 
Source State to a destination State. 

0118. The middle of the transition arrow is labeled with 
a text displaying the action, precondition and guards (if 
proceeds). In the example, transition 412 is labeled with a 
loan book action associated with the transition 412 and a 
precondition if state="available'. Thus, the system will 
only accept the execution of the action if the State attribute 
of the book is “available.” In other words, the Conceptual 
Model requires that a book can only be loaned if the book 
is available. “As another example, transition 414 is labeled 
with a return book action associated with the transition 414” 
and a precondition if state="lent”. In other words, the 
Conceptual Model requires that a book can only be returned 
if the book has been lent. 

0119) The object interaction diagram specifies interobject 
communication. Two basic interactions are defined: triggers, 
which are object Services that are automatically activated 
when a pre-specified condition is Satisfied, and global trans 
actions, which are themselves Services involving Services of 
different objects and or other global transactions. There is 
one State transition diagram for every class, but only one 
object interaction diagram for the whole Conceptual Model, 
where the previous interactions will be graphically specified. 

0120 In one embodiment, boxes labeled with an under 
lined name represent class objects.Trigger Specifications 
follow this Syntax:destination:action if trigger-condition. 
The first component of the trigger is the destination, i.e., the 

Sep. 4, 2003 

object(s) to which the triggered Service is addressed. The 
trigger destination can be the Same object where the condi 
tion is Satisfied (i.e. Self), a specific object, or an entire class 
population if broadcasting the Service. Finally, the triggered 
Service and its corresponding triggering relationship are 
declared. Global Transactions are graphically Specified by 
connecting the actions involved in the declared interaction. 
These actions are represented as Solid lines linking the 
objects (boxes) that provide them. 
0121 Accordingly, communication between objects and 
activity rules are described in the object interaction diagram, 
which presents graphical boxes, graphical triggers, and 
graphical interactions. FIG. 4B illustrates an exemplary 
object interaction diagram 420 in accordance with one 
embodiment of the present invention. 
0122) In the object interaction diagram 420, the graphical 
interactions is represented by lines for the components of a 
graphical interaction. Graphical boxes, Such as reader box 
422, are declared, in this case, as Special boxes that can 
reference objects (particular or generic) Such as a reader. 
Graphical triggers are depicted using Solid lines that have a 
text displaying the Service to execute and the triggering 
condition. Components of graphical interactions also use 
Solid lines. Each one has a text displaying a number of the 
interaction, and the action that will be executed. In the 
example, trigger 424 indicates that the reader punish action 
is to be invoke invoked when the number of books that a 
reader is currently borrowing reaches 10. 
0123 Functional Model 
0.124 Many conventional systems take a shortcut when 
providing a functional model, which limits the correctness 
of a functional Specification. Sometimes, the model used 
breaks the homogeneity of the object-oriented models, as 
happened with the initial versions of OMT, which proposed 
using the structured DFDS as a functional model. The use of 
DFD techniques in an object modeling context has been 
criticized for being imprecise, mainly because it offers a 
perspective of the System (the functional perspective), which 
differs from the other models (the object perspective). Other 
methods leave the free-specification of the System opera 
tions in the hands of the designer, which leads to inconsis 
tencies. 

0.125 One embodiment of the present invention, how 
ever, employs a functional model that is quite different with 
respect to these conventional approaches. In this functional 
model, the Semantics associated with any change of an 
object State is captured as a consequence of an event 
occurrence. Basically, the functional model allows a SOSY 
modeler to specify a class, an attribute of that class and an 
event of that class and then define a mathematical or logical 
formula that defines how the attribute’s value will be 
changed when this event happens. An "event' as used in the 
claims means a Single Service and not a transaction which is 
defined as a composed or complex Service (which means 
more than one Service executes). In the preferred embodi 
ment, condition-action pair is Specified for each valuation. 
The condition is a single math or logic formula is Specified 
which specifies a condition which results in a value or 
logical value which can be mapped to only one of two 
possible values: true or false. The action is a Single math or 
logical formula which specifies how the value of the 
attribute is changed if the Service is executed and the 



US 2003/0167455 A1 

condition is true. In other embodiments, only a single 
formula that specifies the change to the attribute if the 
Service is executed is required. 
0.126 The functional model is built in the preferred 
embodiment by presenting a dialog box that allows the user 
to choose a class, an attribute of that class and a Service of 
that class and then fill in one or more formula or logical 
expressions (condition-action or only action) which controls 
how the value of that attribute will be changed when the 
Service is executed. The important thing about this is that the 
user be allowed to specify the mathematical or logical 
operation which will be performed to change the value of the 
attribute when the Service is executed, and it is not critical 
how the user interface is implemented. Any means to allow 
a user to specify the class, the attribute of that class and the 
Service of that class and then fill in a mathematical or logical 
expression which controls what happens to the Specified 
attribute when the Service is executed will Suffice to practice 
the invention. Every one of these mathematical expressions 
is referred to as a valuation. Every valuation has to have a 
condition and action pair in the preferred embodiment, but 
in other Species, only an action need be specified. The 
condition can be any well formed formula resulting in a 
Boolean value which can be mapped to only one of two 
possible conditions: true or false. The action Specified in the 
pair is any other well-formed mathematical and/or logical 
formula resulting in a new value for the variable attribute, 
said new value being of the attribute’s same data type (type 
of data of action must be compatible with the type of data of 
the attribute). This valuation formula can be only math 
ematical or only a Boolean logical expression or a combi 
nation of both mathematical operators and Boolean logical 
expressions. 
0127 Regardless of the user interface used to gather data 
from the user to define the valuations in the functional 
model, all Species within the genus of the invention of 
generating functional models will generate a data structure 
having the following content: data defining the valuation 
formula which affects the value of each variable attribute 
(the data that defines the valuation formula identifies the 
Service and the attribute affected and the mathematical 
and/or logical operations to be performed and any operands 
needed). This data structure can be any format, but it must 
contain at least the above identified content. 

0128. To define the functional model, the following infor 
mation is declaratively specified by the SOSY modeler: how 
every event changes the object State depending on the 
arguments of the involved event, and the object's current 
state. This is called “valuation'. 

0129. In particular, the functional model employs the 
concept of the categorization of valuations. Three types of 
valuations are defined.:push-pop, State-independent and dis 
crete-domain based. Each type fixes the pattern of informa 
tion required to define its functionality. 
0130 Push-pop valuations are those whose relevant 
events increase or decrease the value of the attribute by a 
given quantity, or reset the attribute to a certain value. 
0131 State-independent valuations give a new value to 
the attribute involved independently of the previous 
attribute’s value. 

0132) Discrete-domain valuations give a value to the 
attributes from a limited domain based on the attribute’s 

Sep. 4, 2003 

previous value. The different values of this domain model 
the valid situations that are possible for the attribute. 

0133) To illustrate these features, TABLE 2 shows a 
functional model for a “book number' attribute 344 of the 
reader class 340, in a Conceptual Model representing a 
typical library. 

TABLE 2 

CLASS: Reader ATTRIBUTE: book number CATEGORY: push-pop 

Event Quantity Effect 

loanO 1. Increase 
ReturnO 1. Decrease 

0134) These valuations are categorized as a push-pop 
because their relevant events increase or decrease the value 
of the book number attribute 344 by a given quantity (1). In 
the example, its related event loan() has the increasing effect 
and returns has the decreasing effect. 

0.135 This categorization of the valuations is a contribu 
tion of one aspect of the present invention that allows a 
complete formal Specification to be generated in an auto 
mated way, completely capturing a events functionality 

0.136 Accordingly, the functional model is responsible 
for capturing the Semantics of every change of State for the 
attributes of a class. It has no graphical diagram. Textual 
information is collected through an interactive dialog that 
fills the corresponding part of the Information Structures 
explained before. FIG. 5 illustrates an exemplary dialog for 
receiving input for the functional model. 

0137 Presention Model 
0.138. The presentation model is a set of pre-defined 
concepts that can be used to describe user interface requi 
Sites. These concepts arise from distilling and abstracting 
repetitive Scenarios in developing the user interfaces. These 
abstractions of the repetitive Scenarios are called patterns. A 
Set of patterns is called a pattern language. 

0.139. In this sense, the presentation model is a collection 
of patterns designed to reflect user interfaces requirements. 
A pattern is a clear description of a recurrent problem with 
a recurrent Solution in a given restricted domain and giving 
an initial context. The documented patterns abstract the 
essence of the problem and the essence of the Solution and 
therefore can be applied Several times to resolve problems 
that match with the initial context and domain.The pattern 
language is composed of a plurality of patterns. The present 
invention is not limited to any particular list of patterns, but 
the following is a brief description of Some user interface 
patterns that have been found to be useful: Service presen 
tation pattern, Instance presentation pattern, class population 
presentation pattern, master-detail presentation pattern and 
action Selection presentation pattern. 

0140. A service presentation pattern captures how a ser 
Vice will enquire data to the final user. This patterns controls 
the filling out of Service arguments and contains actions to 
launch the Service or to exit performing no action. It is based 
on other lower level patterns that refer to more specific 
interface tasks like: 



US 2003/0167455 A1 

0141 An introduction pattern that handles with restric 
tions to input data that must be provided to the System by the 
final user (i.e., the user who employs the final application). 
In particular, edit-masks and range-values are introduced, 
constraining the values that can validly be input in the 
interface. In this manner, the user-entry errors are reduced. 
This pattern can be applied to arguments in Services or to 
attributes in classes to improve data input process through 
validating input arguments. 

0142. A defined selection pattern that specifies a set of 
valid values for an argument. When the input data items are 
Static, are a few, and are well known, the designer can 
declare by enumeration a Set containing Such valid values. 
This pattern is similar to those that define an enumerated 
type and an optional default value. Accordingly, the final 
user can only Select an entry from the pre-Specified Set, 
thereby reducing error prone input. For example, one rep 
resentation of this pattern could be a Combo-Box. This 
pattern can be applied to arguments in Services or to 
attributes in classes to improve data input process. 
0143 A population selection pattern that handles the 
Situation of observing and Selecting objects in a multiple 
objects Society. Specifically, this pattern contains a filter, a 
display Set, and an order criterion, which respectively deter 
mine how objects are filtered (Filter Expression), what data 
is displayed (Display Set), and how objects are ordered 
(Order Criteria). This pattern may be thought of as a SQL 
Select Statement with columns, where and order by clauses, 
and can be applied to object-valuated arguments in Services 
whenever it is possible to select an object from a given 
population of living objects. 
0144. A dependency pattern, that is a set of Event 
Condition-Action (ECA) rules allowing the specification of 
dependency rules between arguments in Services. When 
arguments are dependent on others, these constraints use this 
kind of rules. 

0145 Astatus recovery pattern, that is an implicit pattern 
that recoverS data from object attributes to initialize Service 
arguments. This can be modeled as an implicit Set of 
dependency patterns. For example, to change the data asso 
ciated of a Customer object, a form to launch the change 
service appears. If the user provides the Customer OID 
(Object Identifier), the interfaces can use this OID to search 
the object and recover the data associated to the Customer, 
Such as name, telephone, address, etc. 
0146 A Supplementary information pattern, that handles 
with feedback data that must be provided to final users in 
order to assure they choose or input the correct OID (object 
identified) for an existent object. For example, to select a 
Customer, an OID must be provided. If the name of the 
Customer is automatically displayed as answer to an OID 
input, the user receives a valuable feedback data that assures 
him in Selection or corrects the input data. The Supplemen 
tary information pattern is applicable to object-valuated 
arguments. 

0147 An argument grouping presentation pattern, that 
captures how to group the requested Service arguments 
according to the user wishes. 
0.148. An instance presentation pattern captures how the 
properties of an object will be presented to the final user. In 
this context, the user will be able to launch services or to 

Sep. 4, 2003 

navigate to other related objects. The instance presentation 
pattern is a detailed View of an instance. 
0149. A class population presentation pattern captures 
how the properties of multiple objects of one class will be 
presented to the final user. In this context, once an object is 
Selected, the final user will be able to launch a service or to 
navigate to other related objects. The objects can also be 
filtered. 

0150. A master-detail presentation pattern captures how 
to present a certain object of a class including other related 
objects that may complete the full detail of the object. To 
build this pattern the following patterns are used: instance 
presentation, class population presentation and, recursively, 
master-detail presentation. In this manner, multi-detail (mul 
tiples details) and multi-level master-detail (multiples levels 
recursively) can be modeled. For example, one Scenario 
involves an invoice header followed by a set of invoice lines 
related to the invoice. 

0151. An action selection pattern captures how the ser 
vices are going to be offered to final users following the 
principle of gradual approach. This pattern allows, for 
example, generating menus of application using a tree 
structure. The final tree structure will be obtained from the 
Set of Services Specified in the classes of the Conceptual 
Model. The user could launch services or queries (observa 
tions) defined in the Conceptual Model. 
0152. A Filter Expression is a well-formed formula that 
evaluates to a Boolean type. This formula is interpreted as 
follows: the objects that satisfy the formula pass the filter; 
the ones that do not fulfill the condition do not pass the filter. 
Consequently, the filter acts like a Sift that only allows 
objects that fulfill the formula to pass. These formulas can 
contain parameters that are resolved at execution time, 
providing values for the variables or asking them directly to 
the final user. A filter pattern may be thought of as an 
abstraction of a SQL where clause, and is applied in a 
population Selection pattern. 

0153. A Display Set is an ordered set of attributes that is 
shown to reflect the status of an object. A Display Set may 
be thought of as an abstraction of the columns in a SQL 
clause, and is applied in a population Selection pattern. 

0154) The Order Criterion is an ordered set of tuples that 
contain: an attribute and an order (ascending/descending). 
This set of tuples fixes an order criterion over the filtered 
objects. An order criterion pattern may be thought of as an 
abstraction of an order by SQL clause, and is applied in a 
population Selection pattern. 

0155 Formal Specification 
0156 The CASE tool 210, after presenting a user inter 
face for capturing System requirements 200, converts the 
System requirements into a formal Specification 215 in a 
formal language having a Syntax and Semantics that are 
known to the validator 220. Although the formal specifica 
tion 215 must be in a formal language, it need not be in a 
known formal language, and any formal language including 
newly invented formal languages will Suffice. The only thing 
that is necessary to practice the invention is that the Syntax 
and Semantics of whatever formal language in which formal 
specification 215 is written, the validator 220 must know 
that Syntax and Semantics So that it may validate the formal 



US 2003/0167455 A1 

Specification for completeness, mathematical and Semantic 
and Syntactical correctness and lack of ambiguity. In par 
ticular the CASE tool 210 builds upon the previously 
described models as a Starting point and automatically 
generates a corresponding formal and object-oriented Speci 
fication 215, which acts as a high-level System repository. In 
a preferred embodiment, the formal language being 
employed is OASIS, in its version 2.2, published in October 
1995 by the “Servicio de Publicaciones de la Universidad 
Politecnica de Valencia” (legal deposit number: V-1285 
1995). 
O157 Conversion of captured system requirements 200 
into a formal language Specification 215 is a main feature of 
one aspect of the invention: each piece of information 
introduced in the conceptual modeling Step has a corre 
sponding formal language counterpart, which is represented 
as formal language Statements having Syntax and Semantics 
known to the validator. The graphical modeling environment 
asSociated with one embodiment of the invention may be 
thus viewed as an advanced graphical editor and composi 
tion tool to allow a SOSY modeler to graphically generate 
images and data Structures through a graphical user interface 
which are then converted (on a real time basis) into a formal 
language specification which may be validated. 

0158 As an example of syntax and semantics of formal 
languages and how the validator 220 can validate Such a 
formal language Specification, consider Table 3 below. Table 
3 is a formal specification in the OASIS formal language of 
the reader class of the hypothetical library management 
application detailed above. TABLE 3 shows a formal speci 
fication 215 for the reader class that was automatically 
obtained from the Conceptual Model: 

TABLE 3 

CONCEPTUAL SCHEMA library 
domains natbool,int,date, string 
class reader 
identification 
by reader code: (reader code); 
constant attributes 
age : String; 
reader code : String 
name : String ; 
variable attributes 
book count : Int 
private events 
new reader() new; 
destroy reader() destroy; 
punish(); 
shared events 
loan () with book; 
return( ) with book; 
constraints 
static book count < 10; 
valuation 
loan () book count= book count + 1, 
return () book count= book count - 1; 
preconditions 
librarian:destroy reader () if 
book number = 0; 
triggers 
Self:: punish () if book count = 10; 
process 
reader = librarian:new reader() readerO; 
readerO= librarian:destroy reader() + 
loan () reader1; 
reader1= if book count=1 returnO reader0 
+ (if book count > 1 return ( ) 

Sep. 4, 2003 

TABLE 3-continued 

+ if book count < 10 loan ()) reader1; 
end class 

0159) End Conceptual Schema 
0160 Consider the following statement from the high 
level repository formal specification of Table 3: 

0161 loan() book count=book count--1; 
0162 The semantics of this formal language statement 
indicate by the () that loan is a service which performs the 
mathematical computation represented by the equation out 
Side the Square brackets. This mathematical formula means 
that the value of the attribute book count will be incre 
mented by 1 when this service is executed. The formula 
could be any other formula where one attribute is Set equal 
to the value of another attribute plus the value of some other 
attribute or user input value. However, to be Semantically 
correct, an integer or floating point number cannot be added 
to an alphanumeric String or any other type of attribute 
which has no meaning when attempting to add it to an 
integer or floating point number. 

0163 As another example of validation of the semantics 
of the formal language specification, when an integer is 
added to a floating point number, the result must be a 
floating point number and not an integer. 

0164. Another example of validation of the semantics 
involves verifying that for every attribute that has been 
defined as a variable, there is a Service which changes the 
value of that attribute. Another example of Semantic vali 
dation is verifying that for every constant attribute, there is 
no Service which attempts to change its value. Another 
example of Semantic validation is if a Service “destroy 
erases or eliminates an attribute, it makes no Sense to modify 
the attribute after it no longer exists. The validator would 
flag as an error any formal Specification Statement which 
attempted to do So. 

0.165. One of the functions of the validator is to check the 
Semantics of every Statement to make Sure that no math 
ematical formulas attempt to combine entities that are not 
mathematically combinable, that combining different types 
of numbers results in the correct type of output number, that 
nothing gets divided by Zero, and that other operations that 
are mathematically undefined are not required by the formal 
Specification. Stated another way, one function of the Vali 
dator is to make Sure that every formula is well formed, 
complete and consistent. 

0166 The validator has a number of rules stored in it that 
are dependent upon the Semantics and Syntax of the formal 
language in use. These rules are used to accomplish the 
purpose of the validator 220. That purpose is to Semantically 
and Syntactically validate every Statement of every class 
definition in the formal Specification as well as verifying that 
the interclass actions between any of the classes are Seman 
tically meaningful and Syntactically correct. Any process 
which checks all the formal language Statements in the 
formal Specification against at least the pertinent rules to 
accomplish the above Stated purpose will Suffice. This can be 
accomplished after iterative passes or all on one pass. AS 



US 2003/0167455 A1 

long as this purpose is accomplished, the details of how it is 
accomplished are not critical. 
0167 The meaning of the different sections that integrate 
the formal description of the exemplary reader class Speci 
fication is as follows. A class in OASIS is made up of a class 
name “reader', an identification function for instances 
(objects) of the class, and a type or template that all the 
instances share. 

0168 The identification function by reader code, char 
acterizes the naming mechanism used by objects and yields 
a set of Surrogates belonging to a predefined Sort or to a Sort 
defined by the user (the so-called domains in OASIS). These 
domains are imported in the class definition. The most usual 
are predefined as int, nat, real, bool, char, String and date. 
They represent numbers, boolean values, characters, Strings 
and dates in a particular format. New domains can be 
introduced in a specification by defining the corresponding 
abstract data type. 
0169. A type is the template that collects all the properties 
(structure and behavior) which are shared by all the potential 
objects of the class being considered. Syntactically, the type 
can be formalized as a signature, which contains Sorts, 
functions, attributes and events to be used, a set of axioms, 
which are formulas in a dynamic logic, a process query as 
a set of equations with variables of a Sort process that are 
Solved in a given proceSS algebra. When these variables are 
instantiated, we have the ground terms that represent poS 
Sible lives of instances (objects). 
0170 A class signature contains a set of sorts with a 
partial order relation. Among this Set of Sorts is the Sort of 
interest (the class name) associated with the class being 
defined. A class signature also contains a Set of functions 
including those functions included in the definition of the 
(predefined) Sorts and the identification function whose Sort 
is the ADT (Abstract Data Type) for identities implicitly 
provided with a class Specification. The identification func 
tion provides values of a given Sort to identify objects in 
order to assure that any object of a given class has a unique 
identity. For Specification purposes, an identification is intro 
duced mechanism comprising a declaration of one or more 
key maps used as aliases for identifying objects. The key 
maps are Similar to the candidate key notion of the relational 
model. From a given key value, these maps return an 
asSociated object identity. Key maps will be declared as 
(tuples of) constant attributes. 
0171 A class signature also contains a set of (constant, 
variable, and derived) attributes, see constant attributes and 
variable attributes sections in TABLE 3. These attributes all 
have the Sort of the class as domain, and the given Sort 
asSociated to the attribute being considered as codomain. 
0172 A set of events is also contained in the class 
Signature (see private events and shared events in TABLE 3), 
with the Sort of the class as the domain, plus any additional 
Sort representing event information, and with the Sort of the 
class (Sort of interest) as the codomain. This so-called Sort of 
interest can be seen as a SubSort of a general Sort proceSS 
when objects are viewed as processes. 
0173 Each event occurrence is labeled by the agent that 
is allowed to activate it. When dealing with this actor notion, 
if the agent X initiates event a is written X:a and called an 
action; X could be the environment or any object of a System 

Sep. 4, 2003 

class. In one embodiment, an event always is associated with 
an agent. When defining an event, the designer is therefore 
forced to state which agent will be able to activate it. 
Consequently, a Set A of actions may be defined and 
obtained from and attached to the initial set of events. 

0.174. In this way, the notion of the set of object services 
can be represented as an interface that allows other objects 
to access the State. The object Services can be events (server 
View) or actions (client view) depending on whether these 
Services are offered or requested. Actions become Services 
requested by an object, by which the object can consult or 
modify States of other objects (or its own State). 
0175. In OASIS, there are the following kinds of 
dynamic formulas (set of class axioms):Start here 
0176) Evaluations are formulas of the form a whose 
Semantics is given by defining a function that, from a 
ground action a returns a function between possible Worlds. 
In other words, being a possible world for an object any 
valid State, the function determines which transitions 
between object States are valid after the execution of an 
action a. In the example,there are the following evaluations: 

0177 loan() book count=book count--1; 
0178 returns()) book count=book count-1; 

0179 Within this dynamic logic environment, the formu 
laisevaluated in S W, and is evaluated in (a), with (a) 
being the world represented by the object state after the 
execution in S of the action considered. 

0180 Derivations are formulas of the type -> "...They 
define derived attributes in terms of the given derivation 
condition (stated in ). Derivations basically differ from the 
evaluation formulas in that this derived evaluation is done in 
a unique State. 
0181 Integrity constraints are formulas that must be 
Satisfied in every world. Static and dynamic integrity con 
Straints may be distinguished. Static integrity constraints are 
those defined for every possible world. They must always 
hold. On the other hand, dynamic integrity constraints are 
those that relate different worlds. They require the use of a 
temporal logic, with the corresponding temporal logic 
operators. 

0182 Preconditions are formulas with the template a 
false, where is a formula that must hold in the world 
previous to the execution of action a. Only in the Worlds 
where holds,is a allowed to occur. If holds, the occurrence 
of a gives no State as Successor. We have the following 
precondition in the reader Specification: 

0183 book number=0 librarian:destroy reader() 
false; 

0.184 or, in a more convenient way for specification 
purposes, we can write librarian:destroy reader() if 
book number=0 

0185. Triggers are formulas of the form Lafalse, 
where a is the action negation. This formula means that a 
does not occur, and what does occur is not specified. 
If holds and an action other than a occurs, then there is no 
Successor State. This forces a to occur or the System remains 
in a blocked State. For instance, using the appropriate 
dynamic formula where we include in the triggered Service 



US 2003/0167455 A1 

information about the destination (according to the trigger 
expressiveness presented when the object interaction dia 
gram 420 was introduced), we will declare: 

0186 book count=10 Self::punish() false 
0187. This trigger may be written in an equivalent but 
more conventional way for Specification purposes as: 

0188 Self::punish( ) if book count=10; 
0189 Thus, triggers are actions activated when the con 
dition Stated in holds.The main difference between precon 
ditions and triggerS comes from the fact that in triggers there 
is an obligation to activate an action as Soon as the given 
condition is Satisfied. In this way triggerS allow us to 
introduce internal activity in the Object Society that is being 
modeled. 

0190. In any of these dynamic formulas, are well 
formed formulas in a first order logic that usually refer to a 
given System State characterized by the Set of values 
attached to attributes of objects in the State or world con 
sidered. 

0191 In OASIS, an object is defined as an observable 
process. The proceSS Specification in a class allows us to 
Specify object dynamicS and determines the access relation 
ship between the States of instances. Processes are con 
Structed by using events as atomic actions. However, the 
designer also has the choice of grouping events in execution 
units, which are called transactions. 

0.192 The molecular units that are the transactions have 
two main properties. First, they follow an all-or-nothing 
policy with respect to the execution of the involved events: 
when a failure happens during a transaction execution, the 
resultant state will be the initial one. Second, they exhibit the 
non-observability of intermediate States. 
0193 We will finish this section introducing the process 
specification of the reader class in TABLE 4: 

TABLE 4 

reader = librarian:new reader() reader 0; 
reader 0 = librarian:destroy reader() + loan () 

reader 1; 
reader 1 = if book count=1 return () reader 0 

+ (if book count > 1 return ( ) 
+ if book count < 10 loan ()) reader 1; 

0194 The execution of processes are represented by 
terms in a well-defined algebra of processes. Thus, possible 
object lives can be declared as terms whose elements are 
transactions and events. Every process can be rewritten to a 
term in a basic process algebra BPA, with the O (sequence) 
and+(alternative) process operations. This provides an 
implementation of concurrence based on arbitrary interleav 
Ing. 

0.195. After having presented Conceptual Model and the 
OASIS formal concepts associated with them in accordance 
with one embodiment of the present invention, the mappings 
will now be discussed that generate a textual System repre 
sentation 215 (that is a specification in OASIS) taking as 
input the graphical information introduced in the Conceptual 
Model. This formal specification 215 has in fact been 
obtained using CASE tool 210, and constitutes a solid 

Sep. 4, 2003 

System documentation to obtain a final Software product 
which is compliant with the initial requirements, as repre 
sented in the source Conceptual Model. 
0196. According to the class template introduced in the 
previous Section, the Set of conceptual patterns and their 
corresponding OASIS representation. 
0197) The system classes are obtained from the object 
model. For each class, there are a set of constant, variable or 
derived attributes: a Set of Services, including private and 
shared events and local transactions: integrity constraints 
Specified for the class: and derivation expressions corre 
sponding to the derived attributes. For a complex class 
(those defined by using the provided aggregation and inher 
itance class operators), the object model also provides the 
particular characteristics Specified for the corresponding 
complex aggregated or Specialized class. 
0198 The information given by the object model basi 
cally specifies the System class framework, where the class 
Signature is precisely declared. The dynamic model uses two 
kind of diagrams, the State transition diagram and the object 
interaction diagram. From the State transition diagram, the 
following are obtained: event preconditions, which are those 
formulas labeling the event transitions: the process defini 
tion of a class, where the template for valid object lives is 
fixed. From the object interaction diagram, two other fea 
tures of an OASIS class Specification are completed: trigger 
relationships and global transactions, which are those 
involving different objects. 
0199 Finally, the functional model yields the dynamic 
formulas related to evaluations, where the effect of events on 
attributes is specified. 
0200 Having thus clearly defined the set of relevant 
information that can be introduced in a Conceptual Model in 
accordance with an embodiment of the present invention, 
the formal Specification 215 corresponding to the require 
ments 200 provides a precise system repository where the 
System description is completely captured, according to the 
OASIS object-oriented model. This enables the implemen 
tation process (execution model) to be undertaken from a 
well-defined Starting point, where the pieces of information 
involved are meaningful because they come from a finite 
catalogue of conceptual modeling patterns, which, further 
more, have a formal counterpart in OASIS. 
0201 Model Validation 
0202 Automatic Software production of a complete, 
robust application from a Conceptual Model to an imple 
mentation language (Such as a third generation languages 
like C, C++, or Java) requires the Conceptual Model to be 
both correct and complete. In this Section, the terms “cor 
rect' and “complete' have the following meanings depen 
dent on the Specific needs for the automated Software 
production process System as: 

0203) A Conceptual Model is “complete' when there is 
no missing information in the requirements specification. In 
other words, all the required properties of the Conceptual 
Model are defined and have a value. This means that every 
concept introduced during the modeling proceSS will be fully 
Specified in all its properties or the validator will reject it. 
0204 A Conceptual Model is “correct” when the infor 
mation introduced in the Conceptual Model is Syntactically 



US 2003/0167455 A1 

and Semantically consistent and not ambiguous. In other 
words, all the properties defined in the Conceptual Model 
have a value and that value is valid. 

0205 There is a partial validation process each time an 
element is added, modified or deleted to the Conceptual 
Model and is converted to a portion of the formal specifi 
cation. During the partial validations that occur as elements 
are added, modified and deleted, no error messages are 
generated (because that would driver the modeler crazy), but 
portions of the Formal Specification are marked as rendered 
invalid by changes that have been made. When the Concep 
tual Model is completed, the SOSY modeler requests full 
validation. At this point, every Statement and formula in the 
Formal Specification is revalidated, and error messages and 
warnings are generated for any element which is Syntacti 
cally or Semantically incomplete or incorrect or ambiguous. 
0206 Referring back to FIG. 2, the validator 220 
receives as input the formal specification 215 of the Con 
ceptual Model using an Object-Oriented Formal Specifica 
tion Language (such as OASIS) as high level data repository. 
From a formal point of view, a validated OASIS specifica 
tion 215 is correct and complete because the Specification 
215 is formally equivalent to a dynamic logic theory, using 
a well-defined declarative and operational Semantics. 
0207 Formal specification languages benefit from the 
ability of formal environments to ensure that formal Speci 
fications 215 are valid or can be checked to be valid. Formal 
languages define a grammar that rules language expressive 
CSS. 

0208. Two procedures are used for Conceptual Model 
validation. For completeness, validation rules are imple 
mented by directly checking the gathered data for the 
Conceptual Model, e.g., a class must have name, one 
attribute being its identifier and one Service. CompleteneSS 
of the formal language Specification of the Conceptual 
model, as checked by the validation process. means that: 1) 
there is no missing information in the formal Specification 
detailing the requirements the code must meet: 2) Stated in 
another way, all the required properties of the Conceptual 
Model encoded in the formal language Specification are 
defined and they have a value. Correctness of the formal 
language Specification of the Conceptual model, as checked 
by the validation process, means that: 1) when the State 
ments in the formal language Specification of the Conceptual 
model are both Syntactically and Semantically consistent and 
not ambiguous: 2) Stated in another way, all the properties 
introduced in the conceptual model have a valid value. For 
correctness, an extended formal Specification language 
grammar (Syntax plus Semantics) is implemented in order to 
validate the Syntax and meaning of all the formulas in the 
Conceptual Model. 
0209 Correctness 
0210 More specifically, for completeness, the validtor 
functions to ensure that all the elements in a formal Speci 
fication language have a Set of properties that both exist and 
have a valid value. Most of the properties are strictly 
implemented to have a full definition and valid values. 
However, the CASE tool 210 allows, for easy of use during 
a model inputting, to leave Some properties incomplete or 
with invalid values. These properties will be checked by the 
validator 220 to be complete (and correct) prior to any 
automatic Software production process. 

Sep. 4, 2003 

0211 The elements which are used to validate a Concep 
tual Model are described next. For each element it is stated 
if validation will be strict (e.g. when all his properties have 
to exist and must have a valid value at creation time) or 
flexible (e.g. validation will be accomplished at a later time). 
Some properties are optional, (e.g. that may not exist) but if 
they are ify defined, they must be validated. These elements 
are given in TABLE 5: 

TABLE 5 

Class 
Name. 
ID function 
Attributes (at least one) 
Services (at least Create service). 
Static and Dynamic Integrity Constraints (optional) 

Their formula 
Attribute 
Name. 

Type (Constant, Variable, Derived). 
Data-type (Real, integer, etc). 
Default Value. 
Size (if proceeds) 
Request in Creation service. 
Null value allowed. 
Evaluations (variable attributes). 
Derivation formula (derived attributes). 

Evaluation 
One variable attribute of a class 
One service of the same class 
Condition (optional). 
Formula of evaluation. 

Derivation 
Formula. 

Condition (optional). 
Service 
Name. 
Arguments. 

argument's name 
data-type 
default value (optional) 
null value 
size (if proceeds) 

For a transaction, its formula. 
Preconditions of an action 

Formula. 
Agents affected by condition 

Relationship: Aggregation 
Related classes (component & composite) 
Relationship name. 
Both directions Role names. 
Cardinality. 
Inclusive or referential. 
Dynamic. 
Clause “Group By” (Optional). 
Insertion and deletion events (if proceed) 

Relationship: Inheritance 
Related classes (parent & child) 
Temporal (versus permanent) 
Specialization condition or events 

Relationship: Agent 
Agent class and service allowed to activate. Stric 

State Transition Diagram (STD) 
All states of class (3 at least). Flexible 

State in STD 
Name. 

Transition in STD 
Estate of origin. 
Estate of destination. 
Service of class. 

Control condition (optional). 
Trigger 

Condition. 
Class or instance of destination. 
Target (self, object, class) 
Activated service. 

ric 
exible 
exible 
exible 

S ric 

ric 
ric 
ric 
ric 
ric 
ric 
ric 
exible 
exible 

ric 
ric 
ric 
ric 

ric 
ric s 

S ric 

ric 
ric 
ric 
ric 
ric 
exible 

S ric 
ric S 

ric 
ric 
ric 
ric 
ric 
ric 
ric 
ric 

ric 
ric 
ric s 

S ric 

ric 
ric 
ric 
ric 

ric 
ric 
ric 
ric 



US 2003/0167455 A1 

TABLE 5-continued 

Service arguments initialization (Optional) 
Arguments values 

Global Interactions 
Name. 
Formula. 

User exit functions 
Name. 
Return data-type 
Arguments, (Optional) 

Argument's name 
Argument's data-type 

Strict 

Strict 
Strict 

Strict 
Strict 

Strict 
Strict 

0212 Some properties of components in formal specifi 
cation languages are “well formed formulas” that follow a 
well defined Syntax. It is therefore, a requirement to ensure 
that all introduced formulas in the Conceptual Model were 
both Syntactical and Semantically correct. 

0213 Not all formulas used in the Conceptual Model 
have the same purpose. Therefore, there will be Several types 
of formulas. Depending of formula's type, the use of certain 
operators and terms (operands, like: constants, class 
attributes, user-functions, etc.) are allowed. A process and a 
Set of rules in grammar to validate every type of formula in 
the Conceptual Model also exists. 
0214) More specifically, the Conceptual Model includes 
formulas of the following types as shown in TABLE 6: 

TABLE 6 

Default Value Calculation of 
Class Attributes (Constant and Variable) 
Service and Transaction Arguments 

Inheritance: Specialization condition 
Static and Dynamic Integrity Constraints 
Derivations and Valuations: 

Calculation formula 
(Derived or Variable attributes respectively) 
Conditions (optional) 

Preconditions for actions (Services or Transactions) 
Control Conditions for transitions in State Transitions Diagram 
Triggering conditions 
Local and Global Transactions formulas 

0215. These formulas are validated at the time they are 
introduced, by preventing the designer from leaving an 
interactive textual dialog if formula is not Syntactically and 
Semantically correct. 
0216) In general, every formula must be syntactically 
correct; every class must have an identification function; 
every class must have a creation event; every triggering 
formula must be semantically correct (e.g. Self triggers to an 
unrelated class are forbidden); and every name of an aggre 
gation must be unique in the conceptual Schema. If these 
conditions are not Satisfied, then an error is raised. 

0217. A warning may be raised, on the other hand, if any 
of the following do not hold: every class should have a 
destroy event; every derived attribute should have at least a 
derivation formula; every Service should have an agent 
declared to execute it; and every argument declared in a 
Service should be used. 

0218 Validation process will also be invoked every time 
the designer performs a change into the model that may 

17 
Sep. 4, 2003 

invalidate one or more formulas. AS mentioned earlier, for 
ease of use, certain type of formulas are allowed to be 
incorrect, which the designer will have to review at a later 
time. The automatic Software production proceSS in accor 
dance with one embodiment of the present invention, how 
ever, will not continue to code generation, if not all the 
formulas are correct. Each time the designer introduces a 
modification in the Conceptual Model Specification, all 
affected formulas will be checked. As a result, the following 
cases may happen: 

0219 1. If any of the affected formulas makes 
reference to a “Strict” property, the change will be 
rejected. An error will be raised to inform the 
designer. 

0220 2. If none of the affected formulas references 
a “Strict’ property, modification to Conceptual 
Model will be accepted. An action-confirmation dia 
log is showed before any action is taken. 

0221) 3. If there is no affected formula, modification 
is performed Straightaway. In order to validate the 
user interface information, the validator 220 checks 
the following for errors: the patterns defined must be 
well constructed with no essential information lack 
ing; the attributes used in filters must be visible from 
the definition class, the attributes used in order 
criteria must be visible from the definition class; the 
formula in a filter must be a well-formed formula 
using the terms defined in the model; the action 
Selection pattern must use as final actions objects 
defined in the Conceptual Model; and the set of 
dependency patterns must be terminal and have 
confluence. Warnings may be generated under the 
following conditions: if a pattern is defined but not 
used (applied), if an instance pattern is duplicated. 

0222 Automatic software production from Conceptual 
Models requires these Conceptual Models to be correct and 
complete. Applying the characteristics and properties of 
formal Specification languages makes it possible to effec 
tively validate a Conceptual Model. The validation process 
is based on the grammar defined by the formal Specification 
language, and partial validation is to be invoked any time the 
designer introduces modifications to the Conceptual Model 
Specification. Prior to any automatic Software production 
process, Conceptual Model will be validated in a full vali 
dation as a pre-requisite. 
0223 Working Example of How to Use the Invention to 
Create a Conceptual Model for a Software Program to 
Manage Expense Reporting by Employees, Expense Report 
Approvals and Payments 
0224 Requirements: The Problem to be Managed by the 
Computer Program to be Automatically Generated 
0225. The system will manage the expense reporting of 
employees, expense approvals and payments. 
0226 Expenses will reflect both: pattern currency and its 
equivalent to other currency. Expense line for user input of 
an expense will only allow input in the pattern currency. 
0227 Employees may present an expense report when 
they have Supported expenses on behalf of the company. 
Typically, the expenses are associated to a certain project or 
Specific task. 



US 2003/0167455 A1 

0228. At presenting the expense report, Supporting tickets 
and receipts will be attached and prior expense advances 
will be reflected. Advances must be discounted out from the 
expense report balance. 
0229. The expense report, once presented, must be autho 
rized by a manager responsible for payment of expenses. 
The authorization process will allow rejection of the 
expenses if there is the appearance of impropriety. 
0230. Once authorized, the expense report will be 
approved for payment by a perSon in accounting responsible 
for writing checks. Once paid, it will be marked as So. 
0231. The Procedure will be as follows: 

0232 Prior to any expense, the employee may 
request money in advance. This will not be reflected 
in the Expenses Management System program to be 
written. 

0233. The employee will provide receipts for all 
expenses and advances to the System operator (may 
be himself). It will include explanations for expenses 
when required. 

0234. Once all the expenses are entered, the 
employee will issue the expense report thereby clos 
ing the expenses report. Then the expense report will 
be in a status of pending approval. 

0235 A person responsible for expenses will autho 
rise the expense report if the expenses appear legiti 
mate, and the expense report will transition to a state 
pending payment. If the report is not approved, it 
will be rejected with a comment indicating why it 
has been rejected. The expenses report will be then 
put back in an open Status to be modified. 

0236 Accounts payable will approve the payment. 
Once approved, the expense report will be marked as 
paid and locked. Only accounts payable will be able 
to unlock the expense reports in case of error. 

0237. Once the payment has been done, the 
Expenses Report is marked as paid indicating date 
and payment media. If balance was debit, i.e., 
advances were bigger that expenses, a warning mes 
Sage will require confirmation of payment. 

0238) Detailed Information to be Captured 
0239 Expense: 
0240 Header and footer: General information of the 
Expense. 

0241 Employee: Code and Name. 
0242 Trip cause, visit to or general expense cause. 
0243 Project to charge expenses to. 

0244 Total advanced amount. Both currencies 
0245 Total expenses. Both currencies 
0246 Balance. Both currencies 
0247 
0248 
0249 

Date of Expenses Report issuing. 
Expenses approval date. 

Payment date and media. 

Sep. 4, 2003 

0250 Payment comments, if paid. 
0251 Rejection cause, if rejected. 

0252) Expense Line: 
0253 Each line details a certain expense. 
0254) 

0255 Expense date. 
Including: 

0256 Expense Type: (Car usage in Km, allowance, 
etc.) Some expense types will have a fixed price, 
Some will perform a calculation, other will let opera 
tor to include the amount from figures on ticket or 
receipt. 

0257 Units. The meaning will depend on expense 
type. Some types will not allow operator to use this. 

0258 Prize to apply. Prize per unit in pattern cur 
rency. Depends on expense type. 

0259 Expense description. 
0260 Expense Line total. Both currencies 

0261) 
0262) 
0263) 
0264) 
0265 
0266 The results of any search in the application may be 
considered as a report So it must be possible to be printed as 
well as exported to Office tools like Word, Excel. It would 
be desirable to be ordered by any column while it is in the 
Screen and exported or printed in that order. 

Employee: 
Employee code. This must be unique in the System. 
Name and First name 

Site, phone numbers, email. 
Querying and Reporting Facilities: 

0267 The Expense Reports will be selected under any of 
the following criteria or a combination of them: by project, 
employee, issuing date, authorization date and payment 
date. Dates Searching facilities will be better introduced as 
a period. 
0268. The Expense Report will show the following infor 
mation: 

0269 Project 
0270 Employee name 
0271 Status 
0272) Approval Date 
0273 Paid 
0274 Payment Date 
0275 Total expenses 
0276 Balance 

0277. The Expense Report will be printed under specific 
format including the Expense lines. 
0278 Employees will allow to be searched by a combi 
nation of any data contained in Employee definition. 
0279) Modelling with SOSY Modeller 
0280 Phase 1: Classes identification. The process of 
class identification is a process of finding relevant entities 



US 2003/0167455 A1 

that will hold the System information. These will be 
obtained from Requirements definition above defining what 
the program to be written must be able to do. The following 
chart has class identifications underScored: 

0281. The system will manage the expense reporting 
of employees, expense approvals and payments. 

0282 Expenses will reflect both: pattern currency 
and its equivalent to other currency. Expense line 
will only allow input in pattern currency. 

0283 Employees may present an expense report 
when they have Supported expenses on behalf of the 
company. Typically, the expenses are associated to a 
certain project or specific task. 

0284. At presenting the expense report, associated 
tickets or receipts will be attached and advances will 
be reflected. Advances must be discounted out from 
the expense report balance. 

0285) The expense report, once presented, must be 
authorized by a perSon responsible for the expenses. 
The authorization process will allow rejection of the 
expenses if necessary. 

0286 Once authorized, the expense report will be 
approved for payment by a perSon responsible for 
accounting, Once paid, it will be marked as paid. 

0287. The Procedure will be as follows: 
0288 Prior to any expense, the employee may request 
money in advance. This will not be reflected in the Expenses 
Management System program. 

0289. The employee will provide all expenses and 
advances tickets to the System operator (may be 
himself). It will include explanations for expenses 
when required. 

0290. After entering expenses in the system, the 
employee will issue the expense report closing the 
expenses report. Then it will be pending approval 
Status. 

0291. A responsible of expenses (employee's man 
ager) will authorise the expense report if the 
expenses appear legitimate, and it will thereafter be 
in a pending payment Status. If no approval is 
granted, the expense report will be rejected with a 
comment indicating why it has been rejected. The 
expenses report will then be set back to an open 
status to be modified. 

0292 Payments responsible (an accounts payable 
person) will approve the payment. Once approved, 
the expense report will be marked as paid and 
locked. Only payments responsible will be able to 
unlock the expenses reports in case of error. 

0293. Once the payment has been done, the 
Expenses Report is marked as paid indicating date 
and payment media. If balance was debit, advances 
were bigger that expenses, a warning message will 
require confirmation of payment. 

Sep. 4, 2003 

0294) Detailed Information to be Captured 
0295 Expense: 
0296 Header and footer: General information of the 
Expense. 

0297) 
0298) 
0299) 
0300 
0301) 
0302) 
0303) 
0304 
0305 
0306 
0307) 

0308 Expense Line: 
0309 Each line details a certain expense. 
0310 

0311 Expense date. 

Employee: Code and Name. 
Trip cause, Visit to or general expense cause. 
Project to charge expenses to. 
Total advanced amount. Both currencies 

Total expenses. Both currencies 
Balance. Both currencies 

Date of Expenses Report issuing. 
Expenses approval date. 
Payment date and media. 
Payment comments, if proceeds. 
Rejection cause, if proceeds. 

Including: 

0312 Expense Type: (Car usage in Km, allowance, 
etc.) Some expense types will have a fixed price, 
Some will perform a calculation, other will let opera 
tor to include the amount as figures in ticket. 

0313 Units. The meaning will depend on expense 
type. Some types will not allow operator to use this. 

0314 Prize to apply. Prize per unit in pattern cur 
rency. Depends on expense type. 

0315 Expense description. 
0316 Expense Line total. Both currencies 

0317) 
0318) 
0319) 
0320 
0321) 
0322 The results of any search in the application may be 
considered as a report So it must be possible to be printed as 
well as exported to Office tools like Word, Excel. It would 
be desirable to be ordered by any column while it is in the 
Screen and exported or printed in that order. 
0323 The Expense Reports will be selected under the 
following criteria or a combination of them: by project, 
employee, issuing date, authorization date and payment 
date. Dates Searching facilities will be better introduced as 
a period. 

Employee: 
Employee code. This must be unique in the System. 
Name and First name 

Site, phone numbers, email. 
Querying and Reporting facilities: 

0324. The Expense Report will show the following infor 
mation: 

0325 Project 
0326 Employee name 



US 2003/0167455 A1 

0327 Status 
0328 Approval Date 

0329 Paid 
0330 Payment Date 

0331) 
0332) 

Total expenses 
Balance 

0333. The Expense Report will be printed under specific 
format including the Expense lines. 
0334 Employees will allow to be searched by a combi 
nation of any data contained in Employee definition. 
0335 FIG. 9A is a screenshot of the dialog box to create 
the class which simply involves giving it a name. 
0336 FIG. 9B is screenshot of a graphic interface box 
showing the classes that have been defined to Store the 
pertinent information and provide the pertinent Services to 
implement a computer program that meets the above defined 
requirements. Defining these classes Starts the process of 
building the Formal Specification in the high level reposi 
tory. 

0337 FIG.9C is a screenshot of the dialog box to modify 
the properties of an aggregation relationship between any 
two classes specified in the dialog box. Both inheritance and 
aggregation relationships have to have been previously 
created using a dialog box similar to FIG. 9A. 
0338 Phase 2: Relationships between classes. This pro 
ceSS involves finding Aggregations and Inheritances includ 
ing their properties. 
0339. The following chart will underscore these relation 
ships: 

0340. The system will manage the expense reporting 
of employees, expense approvals and payments. 

0341 Expenses will reflect both: pattern currency 
and its equivalent to other currency, Expense line 
will only allow input in pattern currency. 

0342 Employees may present an expense report 
when they have Supported expenses on behalf of the 
company. Typically, the expenses are associated to a 
certain project or specific task. 

0343 At presenting the expense report, associated 
tickets or receipts will be attached and advances will 
be reflected. Advances must be discounted out from 
the expense report balance. 

0344) The expense report, once presented, must be 
authorized by a responsible of the expenses (employ 
ees manager typically). The authorization process 
will allow rejection of the expenses if necessary. 

0345 Once authorized, the expense report will be 
approved for payment by a responsible of accounting, Once 
paid, it will be marked as So. 
0346) The Procedure will be as follows: 

0347 Prior to any expense, the employee may 
request money in advance. This will not be reflected 
in the Expenses Management System. 

20 
Sep. 4, 2003 

0348 The employee will provide all expenses and 
advances tickets to the System operator (may be 
himself). It will include explanations for expenses 
when required. 

0349. Once introduced the information in the sys 
tem, the employee will issue it closing the expenses 
report. Then it will be pending to be approved. 

0350 A responsible of expenses will authorise the 
expenses if proceeds and it will be pending to be 
payment approved. If not, it will be rejected with a 
comment indicating why it has been rejected. The 
expenses report will be then back open to be modi 
fied. 

0351 Payments responsible will approve the pay 
ment. Once approved, it will lock to be marked as 
paid. Only payments responsible will be able to 
unlock the expenses reports back in case of error. 

0352 Once the payment has been done, the 
Expenses Report is marked as paid indicating date 
and payment media. If balance was debit, advances 
were bigger that expenses, a warning message will 
require confirmation of payment. 

0353 Detailed Information to be captured 
0354) Expense: 
0355 Header and footer: General information of the 
Expense. 

0356 
0357) 
0358) 
0359 
0360) 
0361) 
0362 
0363) 
0364) 
0365) 
0366) 

0367 Expense Line: 

Employee: Code and Name. 
Trip cause, Visit to or general expense cause. 
Project to charge expenses to. 
Total advanced amount. Both currencies 

Total expenses. Both currencies 
Balance. Both currencies 

Date of Expenses Report issuing. 
Expenses approval date. 
Payment date and media. 
Payment comments, if proceeds. 
Rejection cause, if proceeds. 

0368 Each line details a certain expense. 
0369) 

0370 Expense date. 
0371 Expense Type: (Car usage in Km, allowance, 
etc.) Some expense types will have a fixed price, 
Some will perform a calculation, other will let opera 
tor to include the amount as figures in ticket. 

Including: 

0372 Units. The meaning will depend on expense 
type. Some types will not allow operator to use this. 

0373) Prize to apply. Prize per unit in pattern cur 
rency. Depends on expense type. 

0374 Expense description. 
0375 Expense Line total. Both currencies 



US 2003/0167455 A1 

0376 Employee: 
0377 Employee code. This must be unique in the system. 
0378 Name and First name 
0379 Site, phone numbers, email. 
0380 Querying and Reporting Facilities: 
0381. The results of any search in the application may be 
considered as a report So it must be possible to be printed as 
well as exported to Office tools like Word, Excel. It would 
be desirable to be ordered by any column while it is in the 
Screen and exported or printed in that order. 
0382. The Expense Reports will be selected under the 
following criteria or a combination of them: by project, 
employee, issuing date, authorization date and payment 
date. Dates Searching facilities will be better introduced as 
a period. 
0383. The Expense Report will show the following infor 
mation: 

0384) Project 

0385 Employee name 

0386 Status 
0387 Approval Date 

0388 Paid 
0389) Payment Date 

0390) 

0391) 

Total expenses 
Balance 

0392 The Expense Report will be printed under specific 
format including the Expense lines. 
0393 Employees will allow to be searched by a combi 
nation of any data contained in Employee definition. 
0394. No inheritance relationship used in this model. 
0395 FIG. 10 is a dialog box to create the relationships 
between specified classes and which graphically shows the 
relationships. So created and all the properties of those 
relationships. 

0396 Phase 3: Filling in all classes details. This process 
involves dentifying attributes, Services and integrity con 
Straints for each class. We will focus in Expense class, mark 
attributes by underScore and mark Services in italics. 
0397) The system will manage the expense reporting of 
employees, expense approvals and payments. 

0398 Expenses will reflect both: pattern currency and its 
equivalent to other currency. Expense line will only allow 
input in pattern currency. 
0399 Employees may present an expense report when 
they have Supported expenses on behalf of the company. 
Typically, the expenses are associated to a certain project or 
Specific task. 

0400. At presenting the expense report, associated tickets 
will be attached and advances will be reflected. Advances 
must be discounted out from the expense report balance. 

Sep. 4, 2003 

04.01 The expense report, once presented, must be autho 
rized by a responsible of the expenses. The authorization 
process will allow reject the expenses if necessary. 
0402. Once authorized, the expense report will be 
approved for payment by a responsible of accounting, Once 
paid, it will be marked as So. 
0403. The Procedure will be as follows: 

04.04 Prior to any expense, the employee may 
request money in advance. This will not be reflected 
in the Expenses Management System. 

04.05 The employee will provide all expenses and 
advances tickets to the System operator (may be 
himself). It will include explanations for expenses 
when required. 

0406. Once introduced the information in the sys 
tem, the employee will issue it closing the expenses 
report. Then it will be pending to be approved. 

0407. A responsible of expenses will authorise the 
expenses if proceeds and it will be pending to be 
payment approved. If not, it will be rejected with a 
comment indicating why it has been rejected. The 
expenses report will be then back open to be modi 
fied. 

0408 Payments responsible will approve the payment. 
Once approved, it will lock to be marked as paid. Only 
payments responsible manager will be able to unlock the 
expenses reports in case of error. 
04.09. Once the payment has been done, the Expenses 
Report is marked as paid indicating date and payment media. 
If balance was debit, advances were bigger that expenses, a 
warning message will require confirmation of payment. 
0410 Detailed Information to be Captured 
0411 Expense: 
0412 Header and footer: General information of the 
Expense. 

0413 Employee: Code and Name. 
0414 Trip cause, visit to or general expense cause. 
0415 Project to charge expenses to. 
0416 Total advanced amount. Both currencies 
0417 Total expenses. Both currencies 
0418 Balence. Both currencies 
0419) Date of Expenses Report issuing. 
0420 Payment date and media. 
0421 Payment comments, if proceeds. 
0422) Rejection cause, if proceeds. 

0423 Expense Line: 
0424. Each line details a certain expense. 
0425) 

0426 Expense date. 
Including: 

0427 Expense Type: (Car usage in Km, allowance, 
etc.) Some expense types will have a fixed price, 



US 2003/0167455 A1 

Some will perform a calculation, other will let opera 
tor to include the amount as figures in ticket. 

0428 Units. The meaning will depend on expense 
type. Some types will not allow operator to use this. 
Prize to apply. Prize per unit in pattern currency. 
Depends on expense type. 

0429 Expense description. 
0430 Expense Line total. Both currencies 

0431) Employee: 
0432) Employee code. This must be unique in the 
System. 

0433 Name and First name 
0434 Site, phone numbers, email. 

0435 Querying and Reporting facilities: 
0436 The results of any search in the application may be 
considered as a report So it must be possible to be printed as 
well as exported to Office tools like Word, Excel. It would 
be desirable to be ordered by any column while it is in the 
Screen and exported or printed in that order. 
0437. The Expense Reports will be selected under the 
following criteria or a combination of them: by project, 
employee, issuing date, authorization date and payment 
date. Dates Searching facilities will be better introduced as 
a period. 
0438. The Expense Report will show the following infor 
mation: 

0439) Project 
0440 Employee name 
0441 Status 
0442 Approval Date 
0443) Paid 
0444 Payment Date 
0445 Total expenses 
0446 Balance 

0447 The Expense Report will be printed under specific 
format including the Expense lines. 
04.48 Employees will allow to be searched by a combi 
nation of any data contained in Employee definition. 
0449 FIG. 11 is comprised of FIG.11(A) and FIG. 11B. 
FIG. 11(A) shows the dialog box used to define the 
attributes for the Expense class with their properties. This 
dialog box is used to define whether each attribute is 
constant, variable or derived, the type of data it contains and 
other things. FIG. 11B is the dialog box used to fill in the 
formulas used for derivation of the values of attributes of 
classes from the values of other attributes. The difference 
between the derivation formulas and the formulas defined in 
the functional model dialog box is that the formulas defined 
using the functional model dialog box change the values of 
attributes when services are performed while derivation 
formulas change the value of attributes only when the values 
of the other attributes used in the derivation formula change. 
That is, the formulas defined using the functional model 

22 
Sep. 4, 2003 

relate Services to the values of attributes they operate upon. 
Formulas defined by the derivation dialog box relate the 
value of one or more attributes to the values of other 
attributes. 

0450) Note that some services force the existence of an 
attribute. Note also that items above that seem to the reader 
to be attributes probably are attributes but not for the 
expense class and therefore were not marked. 
0451. The value of some attributes depends on the value 
of other attributes of the class Expense. These attributes are 
called Derived. For example the attribute Balance is derived 
from the attributes Total Expenses and Total Advances and 
has the formula: Balance=Total expenses-Total Advances, 
as illustratrated in FIG.11(B) which is a dialog box in which 
the formula to derive this attribute is defined by the mod 
eller. 

0452 We will model the status of a expense report 
according to the marked situations with one attribute called 
“Status” which has arbitrarily decided possible values of: 
0=Open (modifying the expense report), 1=Closed (pending 
to be authorized), 2=Authorized (pending to be approved), 
3=Rejected (not authorized), 4=Payment pending (payment 
approved but not paid), 5=Payment Rejected (not allowed to 
be paid) and 6=Paid (the expense has been paid) 
0453 FIG. 1 shows a dialog box which a SOSY modeler 
uses to define the Services of the Expense class with their 
arguments. 

0454. Single services detected, known as events: 
0455 newexpense: Allows to create a new Expense 
Report. It’s a special service marked as “New” event. 

0456 delexpense: Allows to delete an existing 
Expense Report. It's a special Service marked as 
“Destroy” event. 

0457 modify: Allows to change some data of an 
existing Expense Report. It will change the value of 
the attributes Cause, Advances and EXchange. 

0458 eclose: Mark an existing Expense Report as 
ready to authorize. 

04.59 authorize: Mark an existing Expense Report 
as authorized and ready to be approved. 

0460 approve: Mark an existing Expense Report as 
approved for payment. 

0461) pay: Mark an existing Expense Report as paid 
indicating the date and optional comments. 

0462 rejectautho: Reject the authorization for an 
existing Expense Report marking it as "Rejected” 
with optional comments. 

0463 rejectpayment. Reject the payment for an 
existing Expense Report with optional comments 

0464) 
0465 Complex services detected, marked as local trans 
actions: 

0466 TNEW: Create an new Expense Report. It will 
use the “newexpense' event, that will be marked as 
internal (the interface will not offer the service 
marked as “internal'). This service has not be 

cancelapprove: Unlocks the expenses report 



US 2003/0167455 A1 

expressed in Requirements but it's necessary accord 
ing to the aggregation relationship with the "Pay 
mentType' class. The properties of this relationship 
allows to “New” event to set the relationship with 
“PaymentType', it has no sense until it has been 
paid. Encapsulating the “New” event we can Set the 
value of this relatioship to Null. 

0467 DELETEALL: Delete an existing Expense 
Report and all its lines. It will use the “deleteex 
pense' event, that will be marked as internal (the 
interface will not offer the service marked as “inter 
nal'). This service has not be expressed in Require 
ments but it's necessary according to the aggregation 
relationship with the “Expensel ine” class. The prop 
erties of this relationship express that an existing 
Expense Report can not be delete while having lines. 

0468 TPAY. According to the requirement “Once 
the payment has been done, the Expenses Report is 
marked as paid indicating date and payment media” 
we need to encapsulated Several Services. 

0469 FIG. 13 is a screenshot of the dialog box used to 
create one formula in a local transaction carried out by a 
composed Service (single Services are called events, and 
composed Services are called local transactions). 
0470 FIG. 14 a dialog box used by the modeler to enter 
the integrity constraint formula and error message text of 
“Expense” class. 

0471. It’s obvious, the value of the attribute “Exchange” 
always must be greater than Zero. FIG. 14 is a screenshot of 
the dialog box the SOSY modeler uses to define the formula 
that encodes the integrity constraint and the corresponding 
error meSSage. 

0472 Phase 4: Express evaluations. During this phase, 
one or more dialog boxes are presented to the SOSY 
modeler wherein he or she expresses evaluations of what 
will be the effect of all event for each variable attributes of 
each class. 

0473. This is the process of building the functional model 
portion of the Conceptual Model. The value change of an 
attribute when an event happens is known as “evaluation'. 
0474 FIG. 15 is a dialog box to enter the functional 
model formulas that define evaluation of the attribute 
“cause” with the “modify” event (an event is a single 
Service). The functional model relates Services mathemati 
cally through well-formed formulas to the values of 
attributes these services act upon. Note that at box. 724, the 
SOSY modeler has not filled in an evaluation formula that 
could be encoded in the final code to do a calculation to 
change the value of “cause” when the modify event occurs. 
Instead, as seen from box. 726, the value of “cause” will be 
changed to whatever the value of the argument "p cause” of 
the event “modify” when “modify” is executed. 
0475 Phase 5: Agent relationships. A big benefit of our 
Modeler is that the users of the system are part of it. Users 
are active objects (request Services of other classes) and the 
different "profiles', i.e., users, are represented as agent 
classes. We must express which Services of any class can be 
executed by every “profile'. Also, we must express the 
visibility of class attributes for every “profile” so that the 

23 
Sep. 4, 2003 

object System view can be presented properly by the user 
interface when the user logs in 
0476 FIG. 16 is a dialog box which can be used by the 
SOSY modeller to establish the services the user “accoun 
tuser' can access and the visibility of class attributes for this 
user on the user interface. 

0477 Phase 6: State transition diagram. It’s required for 
proper construction of the Conceptual Model to express the 
correct life cycle for every class of the model, indicating the 
correct order of execution for all the class Services. Also, we 
can express conditions that must be Satisfied in order to 
allow the execution of a Service, which are called “precon 
ditions'. 

0478 FIG. 17 is one of the two graphical user interface 
diagrams of the dynamic model on which the SOSY modeler 
has drawn a graphic illustrating the State transitions for the 
“expense’ class. Each State in the State transition diagram 
represents a valid State for the object and represents one of 
the “valid lives” and really is one of the unseen attributes of 
the expense class. An object can only enter one of the 
displayed States if the corresponding Service has been 
thrown to transition to it from a previous State. 
0479. According to last paragraph of the Procedure in the 
requirements, if the Advances are greater 25 than total 
expenses, the System must force the confirmation of the 
account user. It is expressed as a precondition in the “TPAY.” 
transaction. FIG. 18 is a dialog box used by the SOSY 
modeler to establish this precondition. 
0480 Phase 7: Presentation Model. Finally, we can com 
plete the Conceptual Model with the user interface require 
ments. We focus on Expense class. The following chart will 
mark by underScore the Set of attributes to be displayed and 
will mark the Searching criteria by Setting them offin italics 
0481. The system will manage the expense reporting of 
employees, expense approvals and payments. 
0482 Expenses will reflect both: pattern currency and its 
equivalent to other currency. Expense line will only allow 
input in pattern currency. 
0483 Employees may present a expense report when 
they have Supported expenses on behalf of the company. 
Typically, the expenses are associated to a certain project or 
Specific task. 
0484. At presenting the expense report, associated tickets 
will be attached and advances will be reflected. Advances 
must be discounted out from the expense report balance. 
0485 The expense report, once presented, must be autho 
rized by a responsible of the expenses. The authorization 
process will allow reject the expenses if proceed. 
0486 Once authorized, the expense report will be 
approved for payment by a responsible of accounting, Once 
paid, it will be marked as So. 
0487. The Procedure will be as follows: 

0488 Prior to any expense, the employee may 
request money in advance. This will not be reflected 
in the Expenses Management System. 

0489. The employee will provide all expenses and 
advances tickets to the System operator (may be 
himself). It will include explanations for expenses 
when required. 



US 2003/0167455 A1 

0490 Once introduced the information in the sys 
tem, the employee will issue it closing the expenses 
report. Then it will be pending to be approved. 

0491. A responsible of expenses will authorise the 
expenses if proceeds and it will be pending to be 
payment approved. If not, it will be rejected with a 
comment indicating why it has been rejected. The 
expenses report will be then back open to be modi 
fied. 

0492 A payments responsible will approve the pay 
ment. Once approved, it will locked to be marked as 
paid. Only a payments responsible will be able to 
unlock the expenses reports back in case of error. 

0493) Once the payment has been done, the 
Expenses Report is marked as paid indicating date 
and payment media. If balance was debit, advances 
were bigger that expenses, a warning message will 
require confirmation of payment. 

0494 Detailed Information to be captured 
0495 Expense: 
0496 Header and footer: General information of the 
Expense. 

0497 
0498) 
0499) 
0500 
0501) 
0502) 
0503) 
0504) 
0505) 
0506) 
0507) 

05.08 Expense Line: 

Employee: Code and Name. 
Trip cause, Visit to or general expense cause. 
Project to charge expenses to. 
Total advanced amount. Both currencies 

Total expenses. Both currencies 
Balance. Both currencies 

Date of Expenses Report issuing. 
Expenses approval date. 
Payment date and media. 
Payment comments, if proceeds. 
Rejection cause, if proceeds. 

05.09 Each line details a certain expense. 
0510) 

0511 Expense date. 
Including: 

0512 Expense Type: (Car usage in Km, allowance, 
etc.) Some expense types will have a fixed price, 
Some will perform a calculation, other will let opera 
tor to include the amount as figures in ticket. 

0513 Units. The meaning will depend on expense 
type. Some types will not allow operator to use this. 

0514 Prize to apply. Prize per unit in pattern cur 
rency. Depends on expense type. 

0515 Expense description. 
0516 Expense Line total. Both currencies 

0517 Employee: 
0518 Employee code. This must be unique in the system. 
0519) Name and First name 

24 
Sep. 4, 2003 

0520 Site, phone numbers, email. 
0521 Querying and Reporting Facilities: 
0522 The results of any search in the application may be 
considered as a report So it must be possible to be printed as 
well as exported to Office tools like Word, Excel. It would 
be desirable to be ordered by any column while it is in the 
Screen and exported or printed in that order. 
0523 The Expense Reports will be selected under the 
following criteria or a combination of them: by project 
employee issuing date authorization date and payment date. 
Dates Searching facilities will by better introduced as a 
period 
0524. The Expense Report will show the following infor 
mation: 

0525) Project 
0526 Employee name 
0527 Status 
0528 Approval Date 
0529) Paid 
0530 Payment Date 
0531) Total expenses 

0532 Balance 
0533. The Expense Report will be printed under specific 
format including the Expense lines. 
0534 Employees will allow to be searched by a combi 
nation of any data contained in Employee definition. 
0535 FIG. 19 is a dialog box used by the SOSY modeler 
to establish the set of attributes which will be displayed for 
the “expense' class. 
0536 FIG. 20 shows the dialog box used by the SOSY 
modeler to establish the Searching criteria for the expense 
class, and indicate the filter formula to use and which 
variables to request from the user. 
0537 Translation Overview 
0538. The validated formal specification 215 is the source 
for an execution model that handles the implementation 
dependent features associated with a particular machine 
representation. To implement the Specified System, the way 
in which users interact with 35v system objects is pre 
defined. FIG. 6 is a flow diagram illustrating the high level 
View of the operation of translating a formal Specification 
into working System logic computer code to what it is 
referred to as “execution model” by the System logic trans 
lator 232 in FIG. 2. FIG. 6 does not set out the details of any 
Specific translator to translate the high level repository for 
any specific formal Specification into any specific target 
language working computer. Instead, FIG. 6 defines the 
Steps or functions that all Species in the Subgenus of System 
logic translators would carry out in one way or another, 
maybe not in the same exact Sequence. But at least these 
functions must be performed. The applicants believe that the 
translators alone may be novel in generating error-free 
output files from a validated formal language specification. 
The invention of this System logic translator Subgenus is this 
collection of functions working together to create a working 



US 2003/0167455 A1 

computer program and not the details of how the functions 
are actually performed for a particular Source formal lan 
guage and a particular target language Source code output, 
although Such details are believed to be separately patent 
able for every formal language and target Source code 
combination. 

0539 System Logic Translator Genus Defined 
0540. The process starts by logging the user into the 
system and identifying the user (step 600). Although this 
Step might be optional in Some embodiments, and thus 
should not be considered a defining characteristic of the 
Subgenus, most applications require the user to be identified 
and authenticated So that privilege or access privileges can 
be implemented to code the System logic to block unautho 
rized users from performing certain functions. 
0541. An object system view is provided (step 602), 
determined by the set of object attributes and services that 
the user can see or activate. In other words, step 602 
represents the process of writing code that will query the 
high level repository formal Specification and determine all 
the objects and attributes thereof this user has privileges to 
See and all the Services of those objects this user has 
privileges to invoke. 
0542. After the user is connected and has a clear object 
System View, he can then activate any available Service in the 
user's worldview. Among these Services, there will be 
observations (object queries), local Services, or transactions 
served by other objects. 
0543. Any service activation requires two steps: build the 
message to Send to the object Server including the values for 
the arguments needed by the Service, and then Send the 
message to the appropriate object Server. The object Server 
is a piece of computer code that actually controls the 
computer to perform the service. In order to build the 
message, code must be written to identify the object Server 
for every Service any authorized user may wish to invoke 
(step 604). Steps 608 through 618 actually write the code of 
the object Servers that will execute each available Service. 
The existence of the object Server is an implicit condition for 
executing any Service, except for the Service new. 
0544 Services need arguments to execute. These argu 
ments may come from the data Structure Stored attribute 
values. Also, the user may need to introduces Service argu 
ments for the Service being activated. In the library loan 
example, the Service loan needs the arguments as to the 
identity of the borrower, the title of the book loaned, and the 
date of the loan. So to build the Service activation message, 
step 606 writes code to retrieve the appropriate service 
arguments from the requester (which may be the user or 
another Service) for each Service. Thus, the arguments will 
be Supplied from another object Server, another program or 
will be from the user, typically via a interprocess data 
transfer path from the user interface code written by the user 
interface translator. Note, in Some embodiments, the System 
logic translator might be combined with the user interface 
translator, So Step 606 represents the process of writing code 
to gather the arguments from the user directly or from 
another process. Step 606 also writes code to write the 
Service invocation messages that are directed to the proper 
object Server and which contain the proper arguments Such 
that each Service may be properly invoked when a request to 
do So is received. 

Sep. 4, 2003 

0545 Step 608 represents the process of writing code that 
allows a user or another process to invoke a Service, and 
when the Service is invoked, writes a message with the 
proper arguments needed by the Service and sends it to the 
object Server that carries out the Service. Once the message 
is sent, the Service execution is characterized by the occur 
rence of the following Sequence of actions in the Server 
object which are the actions that the code written by Steps 
610 through 618 must control the computer to perform in 
implementing the object server. In other words, steps 610 
through 618 write object servers that have the following 
behaviors. First, the state transitions of every object which 
the object Server can alter are checked So as to verify that a 
valid transition exists for the current object State in the 
formal Specification for the Selected. In other words, Step 
610 represents the step of writing object server code for 
every Service which verifies State transitions can be validly 
made (make Sense) for the current state of every object the 
object Server is altering the State of before actually altering 
the state of the object. 
0546) Second, step 612 writes code for every object 
Server which checks preconditions to ensure their Satisfac 
tion before acting upon an object to making a State transition 
thereof. In other words, the code written by step 612 makes 
Sure the precondition associated with each Service are Sat 
isfied before the service can be invoked. If either of these 
events is true (a State transition does not make Sense, or a 
precondition has not been Satisfied), the code written by 
StepS 610 and 612 ignores the Service invocation message, 
and the service will not be executed. 

0547 Next, step 614 writes codes that computes all the 
valuation calculations required of each object Server. To 
ensure that the Service execution leads the object to a valid 
State, the integrity constraints (step 616) are verified in the 
final state. In other words, step 616 writes code for every 
object Server which verifies that any integrity constraints on 
results are Satisfied, and takes Some appropriate action if 
they are not Such as flagging an error, etc. If the constraint 
does not hold, an exception will arise in the code written, 
and the code written will control the computer such that the 
previous change of State is ignored. 
0548 Step 618 writes code for each object server that 
will test for the occurrence of trigger events after an object's 
State has been changed and take appropriate action if a 
trigger event has occurred. In other words, the code written 
by step 618 will have the following behavior. After a valid 
change of State occurs, the Set of condition-action rules 
(triggers) that represents the internal System activity are 
verified. If any of them hold (a trigger event is satisfied), the 
Specified Service in the condition-action rules will be trig 
gered. 

0549. Accordingly, the steps illustrated in FIG. 6 guide 
the implementation of any program to assure the functional 
equivalence between the object System specification col 
lected in the Conceptual Model and its implementation in an 
actual programming environment. 
0550. In one embodiment of the present invention, sev 
eral translators may be used to complement the CASE tool 
210 to constitute an automatic Software production System. 
In one implementation, for example, the translators produce 
an application in accordance with a three-tiered architecture. 
Particularly, three different translators arise, corresponding 



US 2003/0167455 A1 

to each tier: a System logic translator 232, a user-interface 
translator 234, and a database generator 236. In addition, a 
fourth translator is used, documentation generator 238. 
These different translators are characterized by the output 
produced and, though potentially having the same input, 
each translator focuses on a particular Subset of information 
in the above mentioned high level repository 215. 
0551 System Logic Translation: the Details 
0552. The system logic translator 232 automatically gen 
erates code for a third generation programming language 
from information in the high level repository. The output of 
the System logic translator 232 corresponds with the middle 
tier in a three-tiered architecture. 

0553. In one embodiment, the system logic translator 232 
produces Source code that covers the following: (1) com 
munications Subsystem, (2) access to and communication 
with the persistence layer (the database or other file structure 
in which the values of all attributes of all objects are stored), 
(3) standard query Services for reading the persistence layer 
contents, and (4) error handling produced by the persistence 
layer and client communications. 
0554. The communications subsystem is configured for 
receiving requests from a client, invoking internal methods, 
and returning replies to requestors, that verify the request 
or's existence and authorization to perform the requested 
Service; verify the existence and validity of the requested 
Server instance; create a copy of the requested Server 
instance in memory accessing the persistence layer for 
persistent attributes or calculating the value of derived ones, 
validate State transition for the requested Service as Specified 
in the state transition diagram 400 in the Conceptual Model; 
Verify that the requested Service's preconditions hold; per 
form all valuations related to the requested Service as 
Specified in the functional model; Verify constraints for the 
new State achieved by the requested Server instance, check 
trigger conditions to execute the corresponding actions, and 
make changes in the requested Server instance persistent. 

0555. In addition, code is generated for access to and 
communication with the persistence layer, Service Standard 
queries to read persistence layer contents, and handle errors 
produced by the persistence layer and communications with 
client. 

0556. In one embodiment, the first phase of code gen 
eration is the retrieval of information from the Conceptual 
Model 215 and storage of this information in code genera 
tion Structures in memory. Three kinds of elements guide the 
retrieval of information: classes, global transactions, and 
global functions. Relevant information to be obtained from 
classes in the Conceptual Model include: name, constant 
attributes (name, type, requested upon creation, and initial 
ization value formula), variable attributes (name, type, 
requested upon creation, initialization value formula, and 
null values admittance), derived attributes (name, type, and 
derivation formula), identification function, events (name, 
arguments: name and type, and precondition formula), trans 
actions (name, type, arguments: name and type, precondi 
tion formula, and transaction formula), valuation formulae, 
State transitions (initial State, final State, Service name, valid 
agents, and transition condition formula), Static constraints 
formulae, dynamic constraints formulae, trigger conditions 
formulae, ancestor class (name), specialized classes (name, 

26 
Sep. 4, 2003 

Specialization condition formula, precondition redefinitions, 
and valuation redefinitions), aggregation relationships 
(related class, cardinalities, static or dynamic, and role 
names), and population selection patterns (filter: name and 
filter variables, order criteria). 
0557. Relevant information to be obtained from global 
interactions in the Conceptual Model include: name, argu 
ments (name and type), and global interaction formula. 
Relevant information to be obtained from global functions in 
the Conceptual Model: include: name, return type, and 
arguments (name and type). 
0558 Generated code follows a component-based struc 
ture, based on the main unit of information that is found in 
the Conceptual Model, that is: the class. Each class in the 
Conceptual Model yields, in a first approach, Several of 
Software components. For example, one component, 
referred to as a "server component' has an interface com 
prising a method for each Service present in the Signature of 
the corresponding class. Another component, whose inter 
face comprises the methods necessary to query the popula 
tion of the corresponding class, is called a "query compo 
nent.” A particular kind of executive component is the 
component relating to global interactions defined in the 
Conceptual Model, whose interface consists of a method per 
global interaction. 
0559 These components constitute the two access points 
the second or middle tier offered to the first or presentation 
tier. Server components receive requests from the presenta 
tion tier that relate to the execution of Services, and query 
components receive requests from the presentation tier that 
relate with querying the persistence tier. Nevertheless these 
are not the only components generated. 

0560 Another generated component directly related to a 
class of the Conceptual Model is the one called “Executive 
Component' and is responsible for resolving or executing 
each of the Services in the Signature of the corresponding 
class. This component receives request from its correspond 
ing Server component or from other executive components. 
0561 Since a main purpose of the executive component 
is to resolve the Services offered in the class Signature, the 
interface presented by the executive component to the other 
components comprises of a method per Service. Each of 
these methods is structured according to the execution 
model in accordance with an embodiment of the invention. 

0562. In other words, the executive component is respon 
Sible for the following operations: Verify the existence and 
validity for the requested Server instance, create a copy of 
the requested Server instance in memory accessing the 
persistence layer (by means of the above mentioned corre 
sponding query component) to retrieve the values of con 
Stant and variable attributes, validate State transition for the 
requested Service and the present State of the requested 
Server instance as Specified in the corresponding State tran 
Sition diagram in the Conceptual Model, Verify the Satisfac 
tion of the requested Service preconditions, modify the value 
of the instance variable attributes by performing all valua 
tions affected by the Service as Specified in the functional 
model of the Conceptual Model, thus changing the State of 
the requested Server instance, validate the new State 
achieved by the requested Server instance by Verifying its 
Static and dynamic restrictions, check trigger conditions to 



US 2003/0167455 A1 

determine which actions should be triggered if needed; 
communicate with the persistence layer for all persistent 
attributes of the requested Server instance. Additionally, if 
the class is an agent of any Service, another method is added 
to the interface whose purpose is that of validating the 
requestor's existence. 
0563 Another kind of executive component is a compo 
nent related to global interactions defined in the Conceptual 
Model, whose interface consists of a method per global 
interaction. 

0564) If the class belongs to an inheritance hierarchy, all 
executive components of the same hierarchy are grouped 
into a single, Special executive component. Nevertheless 
there would still be one Server component per class in the 
hierarchy. 

0565 Another component to which a class in the Con 
ceptual Model gives rise is a component called the “T 
component'. This component is used to Store a copy of the 
constant and variable attributes of an instance of the corre 
sponding class, as well as the methods to calculate the value 
of its derived attributes. The corresponding query compo 
nent implements a collection whose items are T components. 
0566. Another component to which a class in the Con 
ceptual Model may give rise is a component called “P 
component'. This component is used to Store in memory the 
values needed to initialize the constant and variable 
attributes of the corresponding class when creating an 
instance of it, or just the values of the attributes that 
constitute the class identification mechanism. Such a com 
ponent appears whenever the corresponding class is a multi 
valued component of an aggregation relationship. 
0567 Another component to which a class in the Con 
ceptual Model may give rise is a component called “PL 
component'3. This component implements a collection 
whose items are P components, as well as the methods 
needed to add and get items from the collection, and get the 
number of items in the collection. Such a component appears 
whenever the corresponding class is a multi-valued compo 
nent of an aggregation relationship. 
0568 Another component to which a class in the Con 
ceptual Model may give rise is a component called “C 
Components'. This component is used to Store in memory 
the values needed to initialize the constant and variable 
attributes of the corresponding class when creating an 
instance of it. Such a component appears whenever the 
corresponding class is a temporal or permanent, condition 
based, specialization. 
0569. Additional components includes a CC component, 
an error component, a trigger component, a trigger list 
component, an instance list component, and condition, dis 
junction, and conjunction components. 

0570. The CC component appears whenever there is, at 
least one temporal or permanent, condition-based, Special 
ization in the Conceptual Model. The CC component imple 
ments a collection whose items are C components, a pair of 
methods to add and get items to the collection (one pair per 
C component generated), and a method to get the number of 
items in the collection. 

0571. The error component always appears and is used to 
Store information about the Success or failure of a Service 

27 
Sep. 4, 2003 

execution. The trigger component Stores information about 
a Satisfied trigger condition So that the corresponding action 
can be later executed. The trigger list component imple 
ments a collection whose items are trigger components, as 
well as the methods to add an item to the collection, get any 
item from the collection, get the first item and get the 
number of items in the collection. 

0572 The instance list component implements a collec 
tion whose items are executive components playing in the 
execution of a given Service. In addition to methods used to 
add an item to the collection, get an item, and get the number 
of items in the collection, this component implements a 
method to empty the collection and another one to look for 
an instance by its identification function. 
0573 The condition, disjunction and conjunction Com 
ponents are always generated and Support the construction 
of complex boolean expressions, used to query the persis 
tence layer, Structured as a conjunction of disjunctions. The 
condition component Stores information about a simple 
boolean condition, that is: two operands and an operator (+, 
-, *, /, =, <>, <, <=, >=, > . . . ). The disjunction component 
implements a collection whose items are condition compo 
nents (that is, a disjunction of conditions), as well as 
methods to add and get a condition from the collection and 
a method to get the number of conditions in the collection. 
The conjunction component implements a collection whose 
items are disjunction components (that is, a conjunction of 
disjunctions), as well as methods to add and get a disjunction 
from the collection and a method to get the number of 
disjunctions in the collection. 
0574. In addition, two modules are also generated: a 
global module for grouping attributes and methods shared 
through the generated code, and a global functions module 
that groups the code of all global functions defined in the 
Conceptual Model. 
0575 Translation Strategy and Architecture 
0576. In accordance with one embodiment, code genera 
tion is driven by the information retrieved from the high 
level repository 215. The translation process can be divided 
into four phases: validation of the Conceptual Model (per 
formed by validator 220), translation of the corresponding 
data model into a relational database management System 
(performed by database generator 236), retrieval of infor 
mation from the Conceptual Model and storage of this 
information in memory Structures and finally, generation of 
files from the information Stored in memory (e.g. reading the 
information in memory Structures to generate code in the 
target programming language). 
0577 Validation of the Conceptual Model is mandatory, 
while data model translation is optional, but both can be 
considered as prerequisites to the other two phases which are 
the ones Strictly related to code generation. Translation 
Structures are designed to Store input information from the 
Conceptual Model and all have a method that uses this 
information to generate Source code in the target program 
ming language. 

0578. These translation structures include: a class to store 
information needed to generate server components (server 
class), a class to store information needed to generate Server 
components for global interactions (global interactions 
Server class), a class to Store information needed to generate 



US 2003/0167455 A1 

executive components (analysis class), a class to store 
information needed to generate executive components for 
global interactions (global interactions analysis class), a 
class to Store information needed to generate executive 
components for inheritance hierarchies (inheritance hierar 
chy analysis class), a class to Store information needed to 
generate query components (query class), a class to Store 
information needed to generate T components (T class), a 
class to Store information needed to generate C components 
(C class), a class to Store information needed to generate CC 
component (CC class), a class to Store information needed to 
generate P components (P class), a class to store information 
needed to generate PL components (PL class), a class to 
Store information on the arguments for every Service of 
every class in the Conceptual Model (arguments list class), 
a class to Store information on the identification function of 
every class in the Conceptual Model (analysis class list 
class), classes to generate the methods needed to resolve a 
Service in executive components (event class, shared event 
class, transaction class, interaction class), classes to generate 
the auxiliary methods needed to resolve a Service in both 
executive components and executive components for inher 
itance hierarchies (precondition class, Static constraints 
class, dynamic constraints class, ... etc.). classes to generate 
methods needed in query and T components (T & Q method 
classes), a class to generate inheritance-specific methods 
(inheritance method class), and a class to monitor the 
generation process (code generation class). 
0579. The code generation class is responsible for retriev 
ing all the information needed to generate code and for doing 
So in the appropriate order, for writing to files the generated 
code and organizing it into files properly according to the 
component-based Structure. The code generation class main 
tains lists of the above mentioned generation Structures in 
memory in which information retrieved from the Conceptual 
Model is to be stored and it later loops through these lists to 
write the appropriate files. 

0580. The information retrieval process basically com 
prises a Series of loops through the classes in the Conceptual 
Model to gather all information needed, a loop trough global 
interactions and a loop through global functions in the 
Conceptual Model. 

0581. The last phase in the code generation process 
covers writing to files according to the component-based 
Structure presented herein. This process comprises: looping 
through the lists of instances above described that maintain 
the information needed to generate components and their 
attributes and methods, and call each element's code gen 
eration method; generating global interactions executive 
component; generating global interactions Server compo 
nent; generating global functions module; and generating 
Standard components. 

0582 For each global function in the Conceptual Model, 
a method is generated in this module that: has a global 
function name, has an argument. For each argument in that 
global function with the same name and whose type is 
translated into the corresponding one in the target program 
ming language, and its return type is translated too. 

0583. User-Interface Translation 
0584) The user-interface translator 234 automatically 
generates Source code for a third generation programming 

28 
Sep. 4, 2003 

language from information in the high level repository. Its 
output corresponds with the presentation tier in a three 
tiered architecture. Thus, the user-interface translator 234 
provides as output the Source code of a component that 
implements the user interface functionality. This component 
is automatically generated without human intervention. The 
user-interface translator 234 uses as input data a validated 
Conceptual Model 215 and offers as output data, source code 
in a third generation language that implements an equivalent 
functional prototype related to the Conceptual Model the 
component is derived from. 

0585. In one embodiment of the present invention, the 
user-interface translator 234 produces Source code to per 
form the following: a communications Subsystem able to 
Send requests to a business component, and receive replies: 
a logon to System for user authentication: and a menu of 
available Services for Specific authenticated user. For each 
available Service, frame, Screen or data collection dialog of 
all Service arguments, the user-interface translator 234 gen 
erates code that Sets initial values for arguments, validates 
introduced data (type, range, object existence, etc.), and 
calling to Server activation. In addition, the user-interface 
translator 234 generates code for Standard query Services 
that list all instances Status in a class and error handling. 

0586. Additionally, code is generated for a wider and 
flexible user-interface operation. In a query Service frame, 
form or screen, the following functionality will be available 
when a certain instance has been Selected: navigation 
through relationships with related Selected object. This navi 
gation is used to browse among related data items following 
its related linkS. Additional functionality includes Services 
activation for Selected object; advanced query Services 
including: filters (population Selection), Views (status Selec 
tion), and Sorting criteria; and context keeping for filling-in 
known Services arguments. Context keeping is a user-facil 
ity. Context is data associated to the working user environ 
ment. This data is useful to provide default values for service 
arguments. 

0587 For its input, the user-interface translator 234 reads 
specification 215 of a Conceptual Model and stores this kind 
of information in intermediate Structures in memory. The 
user-interface translator 234 is independent of the input 
medium in which the Conceptual Model is provided. In this 
way, the intermediate Structures can be loaded from different 
data Sources. The model is iterated in Several passes to 
extract the relevant information in each phase of the trans 
lation process from the formal Specification, including infor 
mation about classes, aggregation relationships, inheritance 
relationships, agent relationships, global interactions, user 
defined functions, and interface patterns. 

0588 Translated applications are composed by forms that 
contain the user-interface offered to final user. A form, in 
abstract Sense, is the interaction unit with the final user. 
Forms are translated depending on capabilities of the target 
environment to match the requirements: e.g. windows dia 
logues for Windows environments, HTML pages in Web 
platforms, applets in Java, etc. 

0589 FIG. 7 is a flow diagram representing the sequence 
of functions that all translators in the Subgenus of user 
interface translators will perform. The details of how each 
function is performed will vary from one target Source code 



US 2003/0167455 A1 

type to the next, but all Species will share the characteristics 
of performing the functions of FIG. 7, possibly not in the 
Same order. 

0590 Translated applications supply the user connection 
to the System. The user connection is resolved using an 
access form to identify and authenticate the user, block 700. 
In addition, the translated application provides a System user 
view, block 702. A user must be able to access services the 
user can launch, but should be presented with a System view 
that is appropriate to the user's privilege level. Block 702 
represents the process of looking up the user's privilege 
level and determining which objects the user can have 
access and presenting a System view to the user which only 
allows the user to invoke functions that are appropriate to the 
user's privilege level. The main form is designed to accom 
plish this task. 
0591 For each service that can be executed by a user, the 
translated application locates the appropriate object Server 
code in the System logic code previously generated, and 
generates an activation Service form which points to the 
appropriate object Server for each Service the user can 
invoke, block 704. 
0592 For each class, the translated application generates 
a query/Selection form. This form allows users to query data 
instances, Search instances that fulfill a given condition, 
observe related instances and know which Services can be 
launched for a given object in its current state, block 706. 
For each Service, the translated application furnishes initial 
ization values for object-valued arguments. Initial data is 
provided too by managing information obtained from the 
browse made by the user, and any user input arguments for 
Services are checked to make Sure they are valid data types 
for the arguments the data is intended to Supply, and within 
valid ranges for the arguments the user input data is intended 
to fill. Blocks 708 and 710. The process represented by block 
710 also represents the process of writing code to check for 
dependencies between arguments. If this code finds that a 
dependency exists, and a user input triggers a dependency, 
it displays an appropriate form requesting the user to input 
data to Satisy the dependency and check that data for valid 
data type and within an acceptable range. 
0593 Block 712 represents the process of writing code to 
invoke the appropriate object Server code when a user makes 
and input indicating a desire to invoke any Service that the 
user is authorized to invoke, and to pass to that object Server 
the appropriate arguments. Block 714 represents the proceSS 
of writing code to wait for results and display an error 
message if an error occurred. If no error occurred, the code 
waits for further user input. 
0594. The user encounters different scenarios interacting 
with the application. These Scenarios lead to defining dif 
ferent types of forms. In the next Section, each kind of form 
will be described. 

0595. In the Conceptual Model 215, some classes are 
defined as agents of Services classes (called agent classes). 
That is, if an object is a Service agent it is allowed to request 
the Service. Each agent object must be validated, i.e., authen 
ticated before trying to request Services. The AcceSS Form 
requests an agent class (selected from a list of valid agents 
classes), an object identifier and a password. The data 
collected is used to Verify if there exists a valid agent object 
that is allowed to access the System. 

29 
Sep. 4, 2003 

0596) The Application Main Form contains a menu, 
where user can view the Services he is allowed to execute. 
The Source code required to implement each action 
requested by user is automatically generated. 

0597 For each accessible service for at least one agent, 
a Service Form is generated. These forms have an introduc 
tion field for each argument the user must provide. This 
argument's fields have attached code to validate data-types, 
sizes, value-ranges, nulls, etc. (block 710 process). Object 
valued fields provide facilities to search the object browsing 
information and filter it. Code is generated to accomplish 
this task. 

0598. Each service argument can take its initial value in 
three different ways: 

0599) 1. By Initial values. In the Conceptual Model, 
the designer can provide default values for attributes 
and arguments. If Such value exists, code must be 
generated to supply the value (block 708). 

0600 2. By Context. Context information (for 
example, a list of recently observed objects) is useful 
to Suggest values to object-valued arguments that 
have the same type as collected ones. A function is 
generated to Search appropriate values in the recently 
visited objects list. 

0601 3. By Dependency Pattern. In the Conceptual 
Model, the System designer can define Dependency 
Patterns. The Status Recovery pattern is an implicit 
Set of dependency patterns too. In both cases, the 
change on an argument, can affect values in other 
arguments. So, the processing of block 710 is per 
formed. 

0602 Data Validation (block 710) can occur just after 
data input, interactively warning the user and just before 
Sending data to System-logic. Object-valued arguments vali 
dation requires checking object existence. To Support Vali 
dation, a function is generated for each Service argument. 
The function is invoked before Sending a request to System 
logic. 

0603 The code written by one species of the user inter 
face translator works in the following way. When the user 
requests Service execution, the Service arguments are vali 
dated by the code written by block 710. It the service 
arguments are valid, System logic is invoked to accomplish 
the service by code written by the process of block 712. The 
message built to invoke the System-logic uses the formal 
order to Sort the arguments. 
0604. After executing the service, the user is informed 
whether the service succeeded or not (block 714). Accord 
ingly, code to validate arguments and Code to invoke the 
System-logic with necessary arguments in the formal order 
are generated. Furthermore, possible errors are returned to 
inform the user. 

0605. The Query/Selection Form permits the querying of 
objects (that can be restrained by filters) and the selection of 
an object. When an object is Selected, the user can browse 
to other data items related to the object. In the same way, the 
user can launch a Service of the Selected object. 
0606. These query/selection forms include graphic items 
representing filters. A visual component is used to filter the 



US 2003/0167455 A1 

population of a class. Filters may contain variables. In Such 
cases, fields for the variables are requested to users in order 
to form the condition of the filter. For example: Find cars by 
color, by type and model. 

0607. These query/selection forms also include a visual 
component to show objects. Inside this component objects 
that fulfill the filter condition (or every class population if 
filters are not defined) appear. The attributes displayed in the 
component are fixed by a Display Set. 

0608. These query/selection forms also include a visual 
component to launch Services. For example: given a car, the 
user can launch Services in order to rent the car, return, or 
sell it. This task is achieved by a function that determines 
which Service to launch of what object. The corresponding 
Service Form is invoked for each exposed service. These 
query/Selection forms also include a component to initiate 
browsing. For example: given a car, the user can view the 
driver, the driver's Sons, etc. When the user navigates 
(follows a link from an object) a new query/Selection form 
is displayed. In the same way that the previous component, 
there exists code to invoke the next form to display when 
user browses objects. When a query/Selection form is 
reached by navigation, the form receives information about 
the previous object in order to display only the data related 
to that initial object. 

0609. In the applications, visited objects and navigation 
paths followed by users are Stored in Some embodiments. 
This information is named Context Information. When the 
user browses data between query/Selection forms, the path 
followed is stored. Finally, when the user tries to invoke a 
Service and a Service form is needed, the application can 
provide, as an extra input to the Service form, this contextual 
information. Then, the Service Form uses this data to 
provide initial values for object-valuated arguments. 

0610 User-Interface Translation Architecture 
0611) Using the Conceptual Model 215 used as input, the 
user-interface translator 234 can retrieve information from 
memory structures, a relational database, using a query API 
or any other input Source. An intermediate Structure in 
memory is filled with the Conceptual Model data relevant 
for translating the user-interface component. Intermediate 
Structure follows an architecture to the one defined in the 
Conceptual Model schema in which can be queried for 
classes, Services, and attributes for a specific Conceptual 
Model. 

0612. When data is loaded in the intermediate structure, 
the real translation phase begins. Inside the Source code files 
of the generated application, two types of files can be 
distinguished. One type of file is a set of files having fixed 
contents. These files correspond to Structures or auxiliary 
functions widely used that are always produced in the same 
way. These files are generated by dumping byte Streams 
directly from the translator to final files in order to create 
them. Other files strongly depend from the Conceptual 
Model that is being processed. Therefore, although these 
files have a well-defined structure (detailed in the previous 
Section), they have variable parts depending on the pro 
cessed model. The user-interface translator 234 iterates the 
Conceptual Model to extract the relevant data to generate 
these variable parts. 

30 
Sep. 4, 2003 

0613. The translation process for the user-interface trans 
lator 234 has the following tasks for the preferred species as 
part of the genus processing symbolized by FIG. 7: 

0.614 1. Generate the fixed files, e.g. headers, defi 
nitions, constants, and auxiliary functions to its 
respective files. 

0615 2. Generate auxiliary widgets (controls or 
Java Beans) depending on the application 

0616) 3. For each class, generate a query/Selection 
form, an instance Selection component, a specializa 
tion component (if class is specialized from other 
class and requires extra initialization). For each 
Service class, also generate a Service form. 

0617 4. Generate an access form (identification). 
0.618) 5. Generate a main form containing the menu 
application (block 702). 

0619. 6. Generate communication functions to reach 
system-logic server (block 704). These functions 
encapsulate the invocation of Services available in 
the prototypes. 

0620. The Access Form generated as by the code written 
by block 700 is a little dialog box containing: a list of agent 
classes (from this list, the user chooses one), a field where 
the user provides OID for a valid object instance belonging 
to the previously Selected class and a field for password. This 
form is mostly generated in a fixed way. The only varying 
Section for each model is the mentioned agent classes list. 
By iterating over the model classes list and by checking 
which classes are agents Such agent classes list can be 
obtained. 

0621. In order to provide access to the applications 
functionality (block 704), the services are arranged in an 
access-hierarchy to be converted to menu bars (Visual Basic 
client), HTTP pages (Web client) or any other structure that 
allows browsing. By default, the hierarchy is built by 
iterating the classes and Services in the Conceptual Model. 
The hierarchy can be seen as an access tree to the applica 
tion. For each class, a tree item is built labeled with class 
alias. For each built-in item, this mode has the following 
items as descendents: an item labeled as 'Query to acceSS a 
query form; an item for each Service defined in the current 
class labeled with the Service alias, and, in the case of 
inheritance relationship with other classes, an item is built 
for each direct Subclass labeled with Subclass alias. Recur 
Sively, the same algorithm is applied until the inheritance 
tree is fully explored. 
0622 A Service Form requires the following input data 
extracted from the Conceptual Model: Service to generate, 
Service class, arguments list, interface patterns linked to 
arguments. For each Service, a form is generated that con 
tains a graphic part and a functional part. The graphic part 
includes a widget attached to each argument that needs input 
from the user and a pair of widgets to accept or cancel the 
Service launch. The functional part includes code to imple 
ment the event-drivers for the previous widgets, to initialize 
the properties of these widgets with default values, to 
validate introduced values, and to invoke the Service in the 
System-logic component. 
0623) A detailed explanation of how to generate a Service 
Form follows. First, two argument lists are obtained. The 



US 2003/0167455 A1 

first one corresponds to the arguments defined in the Service 
declaration (FL, Formal List). In this list, the arguments are 
sorted by its formal declaration order. The second one 
contains the same arguments Sorted by the presentation 
order (PL, Presentation List). Both orders are specified in the 
Conceptual Model. 
0624. Iterating through the formal List and for each 
argument: create a widget for each argument that has to be 
obtained from the user (block 708) and set relevant proper 
ties to arguments like: type, size, can be null, Introduction 
Pattern, Defined Selection Pattern or Population Selection 
Pattern Widgets are added for OK and Cancel commands, 
and graphic positions of widgets are arranged So they do not 
overlap. In one implementation, the form is divided in a 
logical grid of n columns by n rows and assign positions 
from left to right and from top to bottom to conveniently 
arrange the widgets. The logical positions are translated to 
physical position in the target language and rearrange action 
commands in the bottom-right corner of the form. Finally, 
the form is resized to adjust the Size of data contained 
therein. 

0625 For output, the standard header of a form is 
dumped to a file. This step is dependent of the target 
language Selected. Then, the graphic part of form is dumped 
to the file, including the definition of basic form properties, 
the definition of each widget., and the widgets actions. 
0626. Finally, the source code attached to this form is 
translated and dumped. This process includes translating 
generic functions to manage events in the form, Such as open 
and close events and produce code to assign and free 
resources. Also, functions to handle the Status Recovery 
Pattern and dependencies between widgets are translated. 
Depending on the Status Recovery Pattern attached to the 
Service, and possible Dependency Patterns defined in the 
Service, code for changing argument values must be gener 
ated and the code that triggerS Such dependencies. The 
validation code is translated too. There are validation meth 
ods to check the values gathered in the widgets are right. 
Finally, a function to invoke the appropriate object Server of 
the System-logic Services is generated. The function built 
contains: a reference to System-logic object where the Ser 
Vice is going to be executed; the invocation to a method that 
implements the Service in the System-logic, and the argu 
ments necessary to Such function, constructed from values 
supplied from the user through widgets (block 712). 
0627. In order to generate a query/selection form, the 
following Conceptual Model information is required: a class 
and its properties (alias), and the list of the Population 
Selection interface patterns defined for the class. Each 
pattern contains: a display Set, a filter, and a Sort criterion. In 
case there is no visualization Set defined, the list of attributes 
belonging to the class is assumed. If a class lacks a popu 
lation Selection pattern, the following default values will be 
assumed: every attribute defined in the class is considered as 
part of the display set, and neither a filter (in this case the 
whole population of the class is returned) nor a Sort criteria 
are attached. 

0628 Generating a query/Selection form also requires 
information about the relationships of the class. For every 
class, a form is generated based on this information and 
contains a tabular representation of the display Sets of the 
class, a Set of grouped filters that allow to restrict Search 

Sep. 4, 2003 

through the population, and a pop-up menu including navi 
gability links to the classes related to the first one and 
available Services to be launched over instances of the class. 

0629. The generated software component, which has 
been described before, provides the user-interface client 
functionality that includes all the required functionality for 
both validating and executing a prototype compliant to the 
Conceptual Model it has been derived from. The applica 
tions of the component are: prototyping, to validate the 
Conceptual Model before the user for capturing new require 
ments; testing to validate the Conceptual Model by the 
analysts to verify that the model faithfully reflects the 
requirements, and ultimate application production, once the 
process of requirements capture is completed, the generated 
component can be considered as a final version implement 
ing a functionally complete and ergonomic user interface. 
The component can be edited to customize the application to 
users desires with very little effort. 
0630 Data Model Translation 
0631. In the preferred species, the database generator 236 
automatically defines a data model in a Relational Database 
Management System (RDBMS) according to the validated 
specification in the high level repository 215. In other 
Species, any data Structure that at least Stored the values of 
all object attributes in a manner that allows at least the 
System logic code and, preferably, the user interface code to 
retrieve them at will may be coded. The output of the 
database generator 236 corresponds with the persistence tier 
(database or shared data structure) in a multi-tiered archi 
tecture. In one embodiment this may be true, but it is not 
mandatory that the persistence tier in a multi-tiered archi 
tecture corresponds with a Relational Database Management 
System. 

0632 Referring to FIG. 8, there is shown a flowchart of 
the functions that all Species of the Subgenus database 
translator 236 must perform. The details regarding how each 
function is performed will depend upon the formal language 
of the high level repository, the Source code type of the 
System logic, the operating System in use and the data 
Structure being created, but all Species will perform the two 
basic functions of FIG. 8. Block 720 represents the process 
of getting the values of all the attributes of all the classes at 
the initial time. Block 722 represents storing the values of 
the attributes So obtained in any data Structure format, which 
could include a relational database. The only thing that is 
important is that a data Structure be created that Stores the 
entire initial State of all attributes in a structure which can be 
used by the System logic to Subsequently read and write the 
values of these attributes. 

0633 From the information in the high level repository 
about a given Conceptual Model, Scripts are generated in 
order to create and delete tables, constraints (primary and 
foreign keys) and indexes. Scripts can optionally be 
executed in a Relational Database Management System to 
effectively create Said data model. 
0634) From the point of view of relational databases, data 
is stored in tables with relationships between them. How 
ever, from the object oriented programming point of View, 
data is Stored in object hierarchies. 
0635 Although the automatic Software production sys 
tem in accordance with one embodiment of the present 



US 2003/0167455 A1 

invention is based on an object oriented methodology, it is 
necessary to find a physical data Storage System to perma 
nently Store data managed by generated applications. Rela 
tional databases are preferred, because they are the industry 
Standard way to Store data and, consequently, use of tables 
instead of objects would be desirable. Nevertheless, many 
object-oriented applications, like those produced in accor 
dance with an embodiment of the present invention, can be 
compatible with the Relational Model, since the static 
aspects of objects can be Stored in tables following a 
translation process. 
0636. The generated data model comprises a set of tables 
and the corresponding relationships, as well as constraints 
on primary and foreign keys and indexes. The generated data 
model reflects system data with the attributes defined in the 
classes Specification and other class instances properties like 
their State, role if they are agents. 
0637 Information, gathered from the high level reposi 
tory 215 and needed to produce the corresponding data 
model, focuses on classes and include the name, constant 
attributes (either emergent or inherited); variable Attributes 
(either emergent or inherited); identification function; inher 
ited identification function; aggregation relationships (either 
emergent or inherited); and agent information. 
0638 Preferably, the generated Scripts follow a standard: 
ANSI SQL 92. This fact means that the generated data 
model can fit any database management System based on 
ANSI SQL 92, particularly most well known relational 
database management Systems. 

0639 The process to obtain the data model follows these 
Steps: For each elemental class of the Conceptual Model, a 
table in the Selected relational database is created. For each 
constant or variable attribute in the class Specification, a field 
in the table corresponding to the class is created. The field 
data type depends on Conceptual Model attribute data type 
translated into the target relational database. Derived 
attributes are not Stored in the database Since their value will 
be calculated upon request by Special methods in the Server 
code generated. 

0640 Primary keys are determined by attributes marked 
in the Conceptual Model as being identification attributes. 
Thus table fields corresponding to this attributes will con 
Stitute the primary key of the table. As a particular case, 
tables corresponding to Specialized classes, in addition to 
fields representing emergent attributes, have fields that cor 
respond to attributes that constitute the primary key of the 
table representing their ancestor class. If a specialized class 
does not have an identification function of its own, these 
fields, copied from the ancestor class, constitute the Special 
ized table primary key. At the same time, they constitute the 
foreign key to the parent class table. On the other hand, if a 
Specialized class has its own identification function, these 
fields only constitute a foreign key to the parent class table. 
0641 Aggregation case is more complicated, because 
aggregation has more dimensions. The aggregation relation 
ship dimensions determine its cardinalities which in turn 
determine representation in the database: If the relationship 
is multivalued (maximum cardinality set to M) in both 
Senses a new table is added in order to represent this 
aggregation relationship. This table has a field for each one 
that constitutes the primary key of related tables. The set of 

32 
Sep. 4, 2003 

all these fields constitutes the primary key and, individually, 
fields coming from each related table's primary key, con 
Stitute foreign keys to each related table. 
0642) If the relationship is univalued (maximum cardi 
nality Set to 1) in one sense, the class related with only one 
instance of the other one copies the fields of the primary of 
the other one. These fields constitute a foreign key to the 
related class table. 

0.643. If the relationship is univalued in both senses, any 
of the tables could have the foreign key to the other. The 
adopted option in this case is that the aggregate class has the 
reference to the component class. With respect to minimum 
cardinalities, if minimum cardinality is 0 then the corre 
sponding field will take null values. Otherwise it will not. If 
identification dependence exists between two classes then 
fields of the primary key of the non-dependent class are 
copied to the table corresponding to the dependent class. 
They will be part of its primary key, and be a foreign key to 
the table of the non-depending class. 
0644 Indexes may be generated to optimize Searches and 
reduce response time. For each foreign key, an indeX will be 
generated So foreign keys will also be search indexes. 

0.645 So far the static aspects of an object have been 
covered, but Some dynamic aspects need also be discussed. 
The occurrence of Services characterize the evolution in an 
object's life for an object's State changes whenever a Service 
happens Since the value of its attributes characterize its State. 
The State transition diagram determines valid lives for an 
object. In order to monitor State transition, a new field will 
be added to each table corresponding to a class, to Store the 
name of the State in the State transition diagram in which an 
object is at a given instant. 

0646 Generated applications must perform user authen 
tication by requesting identification and password to agents 
logging on to the System. A new field will be added to tables 
corresponding to classes that are agents of any Service in the 
System, to Store the password of Said agent. 

0647 Documentation Translation 
0648. The CASE tool 210 allows for additional informa 
tion to be introduced at analysis time, which can be used to 
generate System's documentation. Accordingly, the docu 
mentation generator 238 automatically produces a set of 
documents including the formal Specification, full Concep 
tual Model details documentation, user's help, and others, 
from information in the high level repository 215. 

0649 FIG. 21 is a flowchart of the processing steps that 
every Species in the Subgenus documentation translators will 
have to perform. Step 800 represents the process of deter 
mining from configuration data or other user input which 
types of Support documents are going to be generated. Step 
802 represents the process of getting from the Formal 
Specification all the appropriate information needed for the 
requested documents. Typically the information gathered is 
classes, attributes, relationships, Services, arguments, etc. 
Step 804 represents the process of writing the Support 
documentation in files of the appropriate format. 

0650 Due to their different nature, there is a specific 
generation proceSS for the formal System Specification. The 
rest of produced documents are based in a generic data 



US 2003/0167455 A1 

process. This process allows to obtain the same documents 
in different formats and define any new type of document. 
0651 CASE tools must provide multiple documents that 
can be automatically generated from Conceptual Models 
previously gathered. The documentation generator 238 
answers the need for information requests and queries 
performed on a Conceptual Model. The documentation 
generator 238 allows generation of queries, Specific manu 
Scripts or well-formed documents in order to document 
properly a project. 
0652) In a preferred embodiment, complete generation of 
Conceptual Model is generated in an ASCII format with 
OASIS syntax. OASIS is a formal specification in an object 
oriented language. The OASIS Specification comprises the 
part of the Conceptual Model related to analysis of the 
problem. Other parts, like interface patterns, are not included 
in the OASIS specifications. 
0653 Document generator provides, by default, general 
documents, Services documents, and help documents. The 
general documents include a natural language Specification 
description. The Services documents include a detailed 
description of classes and Services. The help documents 
contain an on-line help for generated prototypes. 
0654 The Documentation Generator uses as target lan 
guages. Some recognized Standard formats for documenta 
tion: ASCII, plain text, navigational HTML with multiple 
documents, navigational HTML with one document, LaTeX, 
and Rich Text Format (RTF). 
0655 This Documentation System is scalable and can be 
extended to add a new kind of document or target language. 
Adding a new target language allows all defined documents 
to be generated with this new language. In the same way, 
adding a new document type will be generated to any 
Supported target language. 
0656. In order to produce an OASIS specification, a 
proceSS iterates over the information Structures and writes to 
a file the corresponding text Strings in the OASIS language. 
In the inner process, the iteration over the Structures can be 
detailed as: (1) write specification headers; (2) For all class 
selected to be described: write its OASIS template 
(attributes, events, derivations, restrictions, preconditions, 
triggers and process); (3) for all global transaction, write its 
declaration and OASIS definition; and (4) write the end 
Spec. 

0657. A document is generated in an intermediate block 
language (IBL). In Such language the document is a block of 
document type and contains n child blockS. Recursively, by 
continence relation and having fixed a block taxonomy, 
documents can be defined based on block's Structures. A 
block is a structure that contains the following properties: 
name, category, block type, block text, and list of contained 
blocks. 

0658. The generation is supported by an algorithm that 
implements loops iterating over the Conceptual Model fol 
lowing the order fixed by the document. In these iterations, 
the document is built creating and linking the blocks that 
constitute the document. 

0659 When the block structure is built, the resultant 
Structure, a tree of blockS, is processed by a translator to 
convert it to a document in the Selected target language. This 

Sep. 4, 2003 

algorithm using recursive descent analysis is capable to 
convert the blocks to tags in the target language depending 
on the information Stored in the block and contained blockS. 

0660. As example, a block of type MM SECCION1 and 
containing the text “Title” will be translated to the next 
string HTML equivalent: <H1>Title.</H1> 
0661 Generating Full Applications 
0662 Accordingly, an automatic Software production 
tool is described that captures information requirements, 
also referred to as “busineSS processes' from a triple per 
Spective: Static, dynamic and functional. This allows System 
designers and analysts to fully capture every aspect of the 
reality they model. 
0663 System Logic Translator is then responsible for 
gathering all this information, which would have been 
previously validated to assure correctness and completeness, 
and automatically produce code that implements every 
aspect of the modeled reality. This System logic code has the 
following features: 
0664) The system logic code is complete and correct. 
Since information gathered by the System Logic Translator 
has been previously validated, produced code can be assured 
to be both complete and correct thanks to the Set of trans 
lation recipes provided. The Set of translation recipes cover 
every aspect that can be modeled by an analyst, So every 
thing that can be expressed and captured in a Conceptual 
Model can be translated into Source code. Every translation 
recipe assures for correct translation thus resulting in error 
free Source code. 

0.665. The system logic code is for a full application, not 
just a prototype. Generated code can be compiled (with the 
appropriate compiler depending on the target programming 
language) and executed "as-is' because it is fully translated 
from the Conceptual Model information input. Generated 
code is not a mere collection of method skeletons but 
complete methods. Furthermore, no useleSS code is pro 
duced and no line of code is generated more than once. In 
addition to this, even being the generated code well Struc 
tured and readable, comments can be automatically gener 
ated as a means of internal code documentation thus improv 
ing readability. 

0.666 The system logic code is robust and includes error 
checking and handling. Correctness and completeneSS allow 
for the production of robust code. According to the infor 
mation in the Conceptual Model, errors fall into two cat 
egories: model or internal errors and external errors. Internal 
errors correspond to properties that must hold at a given 
instant according to the Conceptual Model (e.g.: a precon 
dition that does not hold, an integrity constraint, violation of 
a maximum cardinality of an aggregation relationship, etc.) 
External errors correspond to causes alien to the Conceptual 
Model (e.g.: a System failure, a database failure, . . . etc.). 
0667 The generated code handles errors according to this 
classification as follows: For internal errors, the System logic 
translator identifies every point where an internal error 
might occur then produces error checking and handling code 
to notify the client about Such an errors occurrence. Again, 
internal errors can be categorized and given a specifically 
defined treatment, Such as customizable error messages and 
error codes. For external errors, the System logic translator 



US 2003/0167455 A1 

identifies every point where an external error might occur 
then produces error checking and handling code to notify the 
client about Such an error's occurrence. Since external errors 
cannot be categorized, they are treated in the same Standard 
way. 

0668. Therefore, the automatic production of error check 
ing and handling code for every possible situation can assure 
any translation of a Conceptual Model to be robust. 
0669 The system logic code handles transactional behav 

ior. The generated code presents transactional behavior in 
the Sense that the code provides clients a well-defined 
interface, which allows them to request Services from the 
System. Those Services are executed in a transactional way: 
every input argument of the Service must be provided by the 
client, then System logic performs the corresponding opera 
tions and replies to the client. Services in a Conceptual 
Model can be in turn decomposed into actions. The gener 
ated code assures for all actions composing a Service be 
Successfully accomplished or none of them. In addition, 
changes to objects affected by the actions a Service is divided 
into do not effectively take place until all these actions have 
Successfully terminated. Transactional behavior also 
enhances integration with legacy Systems. 

0670 The system logic code is independent from the user 
interface. The generated code provides a well-defined inter 
face allowing for clients to request Services. But this inter 
face does not depend on the clients interacting with it. This 
allows for a heterogeneous Set of clients interacting with the 
Same System logic. Thus, clients for a Specific System logic 
need only know the interface it will present to them. This 
feature also enhances integration with legacy Systems and 
decomposition of huge information Systems or Conceptual 
Models into Smaller ones, which, thanks to their well 
defined interfaces, can interact with each other. 

0671 The system logic code is independent from the 
persistence layer. The generated code is responsible for 
interacting with the persistence layer implementing what is 
regarded as “persistence Services'. These Services are 
responsible for: adding, retrieving, updating, and deleting 
information in the persistence layer. These Services are 
necessary for the System logic to perform its tasks but, in 
addition to this, System logic hides the persistence layer to 
clients by providing Services to perform queries on the 
persistence layer. This implies that clients need not know the 
physical location of the persistence layer, need not know the 
Structure of the persistence layer, because they are provided 
with Services to perform queries on the persistence layer; 
need not be authorized users of the persistence layer because 
access to the persistence layer is entirely managed by the 
System logic, and need not even know that there is a 
persistence layer. 

0672 To sum up, the code automatically produced by the 
automatic Software production System of one embodiment of 
the present invention corresponds to that of a true final 
Software application, instead of that of just a prototype. To 
maintain this distinction, Some of the differences between 
the generated System logic code from that of a prototype are 
explained. 

0673 (1) Completeness: A prototype does not fully cover 
functionality of an information System, nor is it intended for 
every possible flow of execution, while our automatically 

34 
Sep. 4, 2003 

generated code, being a final application, totally covers the 
functionality captured in the corresponding Conceptual 
Model, as well as every possible flow of execution. 
0674) (2) Correctness: A prototype aims to verify user's 
needs and requirements and Verify correctness of execution. 
The automatically generated code in accordance with an 
embodiment of the present invention, on the other hand, 
aims to verify user's needs and requirements, for it is 
correctly generated. 

0675 (3) Robustness: A prototype is not robust, because 
the prototype is not produced with error checking and 
handling code. Rather, this code is not produced, typically 
by hand, until the very last Step of codification, where user's 
needs and requisites have proven to be Satisfied and a final 
application can then be produced. A final application, Such 
is the case of our automatically generated code, must come 
with all the code necessary to assure robustness. Since this 
is usually codified by hand, programmerS often forget to add 
Such code in many places where needed. This leads to high 
costs of maintenance and disrupts the balance between 
System logic code and error checking and handling code. 
The System logic translators described herein provides all 
the necessary (and just than the necessary) code to deal with 
error checking and handling. 
0676 (4) Scalability: Prototypes are not scalable because 
they tend to be discarded during the process of validating 
user's needs and requisites. Final applications can be 
designed to be Scalable because they aim to last much longer 
than a prototype. Nevertheless Scalability implies following 
certain guidelines during design phase. With embodiments 
of the invention, System analysts need not worry about 
Scalability because Such a task falls under the System Logic 
Translator 232 responsibilities. So, analysts focus on analy 
sis matters knowing that the resulting code will be Scalable. 
Furthermore, different Conceptual Models translated by the 
System Logic Translator can interact with each other 
through their well-defined interfaces. 
0677 Appendix A attached is a set of power point slides 
printed on paper which explain the operation of the System 
and give Some specific examples of key operations. 

0678 While this invention has been described in connec 
tion with what is presently considered to be the most 
practical and preferred embodiment, it is to be understood 
that the invention is not limited to the disclosed embodi 
ment, but on the contrary, is intended to cover various 
modifications and equivalent arrangements included within 
the Spirit and Scope of the appended claims. 

What is claimed is: 
1. An apparatus for creating a graphical user interface to 

allow user requirements for a computer program to be 
written by an automated Software production tool to be 
entered and converted to a formal language specification, 
comprising: 

a Software-generating computer programmed to: 
display a plurality of dialog boxes and/or graphic 

Screens each of which has boxes which can be filled 
in with data or menu Selections, tools or icons which 
can be invoked to allow a user to enter information 
defining classes, attributes, events, relationships 
between classes, valuation formulas for events that 



US 2003/0167455 A1 
35 

affect the value of variable attributes and all the other 
information needed to define a conceptual model of 
the requirements a computer program to be written 
by Said Software generation tool must comply with. 

2. A method for using a computer to display a graphical 
user interface to allow user requirements for a computer 
program to be written by an automated Software production 
tool to be entered, comprising: 

displaying a plurality of dialog boxes and/or graphic 
Screens each of which has boxes which can be filled in 
with data or menu Selections, tools or icons which can 
be invoked to allow a user to enter information and/or 
create graphic objects which define classes, attributes, 
events, relationships between classes, valuation formu 
las for events that affect the value of variable attributes 
and all the other information needed to define a con 
ceptual model of the requirements a computer program 
to be written by Said Software generation tool must 
comply with; and 

as a user fills in data or makes Selections or creates 
graphic objects, displaying the data filled in or Selected 
and the graphic object created in the location on the 
dialog box and/or graphic Screen where the data was 
filled in or Selected or the graphic object was created. 

3. The process of claim 2 further comprising the Step of 
using a computer to automatically translate the data filled in 
or Selected and/or graphic objects created into a Specification 
for the computer program to be generated written in a formal 
language or other Symbology which has predefined rules of 
Syntax and Semantics which can be used to verify that the 
Specification So written is Syntactically and Semantically 
correct, complete and not ambiguous 

4. A computer-readable medium containing instructions 
for controlling a computer System to display a graphical user 
interface through which a user can enter data to create a 
formal language Specification defining a computer program, 
Said Specification to be automatically translated by a com 
puter into a computer program that implements the require 
ments of Said Specification by: 

displaying a plurality of dialog boxes and/or graphics 
Screens and displaying boxes where data can be filled 
in, boxes where data can be chosen from a menu of 
choices, tools, icons or menu choices or Some combi 
nation of the above in connection with display of Said 
dialog boxes and/or graphics Screens which allow a 
user to enter and/or Select data and/or draw graphic 
objects to define classes of objects having attributes of 
fixed, variable and other types, and having Services, 
and define mathematical and/or logical formulas con 
trolling how services affect the values of variable 
attributes, and define relationships between classes, and 
enter data or draw graphics which represent all con 
cepts necessary to complete a conceptual model of Said 
computer program to be written. 

5. The computer-readable medium of claim 4 further 
containing instructions for controlling a computer to auto 
matically translate Said specification into working computer 
code, by: 

controlling Said computer to automatically translating 
Said conceptual model into a specification of Said 
computer program written in a formal language or 
Symbology having predefined rules of Syntax and 
Semantics, 

Sep. 4, 2003 

controlling Said computer to use Said rules of Syntax and 
Semantics to validate Said Specification to Verify that is 
Syntactically and Semantically complete, correct and 
not ambiguous, and 

controlling Said computer to translate Said Specification 
into working computer code. 

6. A process carried out in a computer for translating a 
formal language Specification Stored in Said computer's 
memory and defining the requirements for a user interface of 
a computer program, into working computer code that can 
control a computer to implement Said user interface, com 
prising: 

write code to display requests for a user name and 
password and receive inputs in response thereto and 
authenticate the user; 

write code to determine the privilege level of a user who 
has logged in and determine the classes of objects, 
attributes and Services this user has privileges to access, 
retrieve the appropriate data from Said Specification and 
display the appropriate System view to Said user; 

write code to link each Service of each object to an 
appropriate object Server program which can control a 
computer to carry out Said Service; 

write code to display query/Selection Search forms to 
allow users to enter data to define a Search for data 
instances that Satisfy the Search criteria entered by the 
user and conduct Such a Search when requested for all 
instances that Satisfy the user-specified search criteria; 

write code to determine automatically which Services of 
an object can be invoked given the current State of the 
object and only allow those Services to be invoked; 

write code to furnish initial values for object-valued 
arguments of Services and receive any user input argu 
ments, 

write code to check data type entered by a user for validity 
for the argument the data fills and make Sure the entered 
data is within a valid range for the argument the data is 
intended to fill; 

write code to check for dependencies between arguments, 
and, if a dependency exists, and user input data triggers 
the dependency, to enable/disable the dependent argu 
ments or fill in values of the dependent arguments, and 
consequently triggering other dependency rules, 

write code to invoke the appropriate object Server code 
linked to a particular Service when a user makes an 
input indicating a desire to invoke that Service and to 
pass the object Server code the appropriate arguments 
for the Service; 

write code to wait for results of execution of a Service, and 
to display an error message if an error occurred, but, if 
no error occurred, to wait for further user input. 

7. An apparatus for translating a formal language speci 
fication Stored in Said computer's memory and defining the 
requirements for a user interface of a computer program, 
into working computer code that can control a computer to 
implement Said user interface, comprising: 

a computer programmed to perform the following func 
tions: 



US 2003/0167455 A1 

write code to display requests for a user name and 
password and receive inputs in response thereto and 
authenticate the user; the appropriate data from Said 
Specification and display the appropriate System 
View to Said user; 

write code to link each Service of each object to an 
appropriate object Server program which can control 
a computer to carry out Said Service; 

write code to display query/Selection Search forms to 
allow users to enter data to define a Search for data 
instances that Satisfy the Search criteria entered by 
the user and conduct Such a Search when requested 
for all instances that Satisfy the user-specified Search 
criteria; 

write code to determine automatically which Services 
of an object can be invoked given the current State of 
the object and only allow those services to be 
invoked; 

write code to furnish initial values for object-valued 
arguments of Services and receive any user input 
arguments, 

write code to check data type entered by a user for 
validity for the argument the data fills and make Sure 
the entered data is within a valid range for the 
argument the data is intended to fill; 

write code to check for dependencies between argu 
ments, and, if a dependency exists, and user input 
data triggers the dependency, to display an appro 
priate dialog box prompting the user to enter input 
data needed to Satisfy the dependency; 

write code to invoke the appropriate object Server code 
linked to a particular Service when a user makes an 
input indicating a desire to invoke that Service and to 
pass the object Server code the appropriate argu 
ments for the Service; 

write code to wait for results of execution of a Service, 
and to display an error message if an error occurred, 
but, if no error occurred, to wait for further user 
input. 

8. A computer-readable medium containing instructions to 
control a computer to translate a specification for a user 
interface for a computer program written in a formal lan 
guage into computer code which can control a computer to 
implement the Specified interface, by: 

36 
Sep. 4, 2003 

Writing code to display requests for a user name and 
password and receive inputs in response thereto and 
authenticate the user; 

Writing code to determine the privilege level of a user who 
has logged in and determine the classes of objects, 
attributes and Services this user has privileges to access, 
retrieve the appropriate data from Said Specification and 
display the appropriate System view to Said user; 

Writing code to link each Service of each object to an 
appropriate object Server program which can control a 
computer to carry out Said Service; 

Writing code to display query/Selection Search forms to 
allow users to enter data to define a Search for data 
instances that Satisfy the Search criteria entered by the 
user and conduct Such a Search when requested for all 
instances that Satisfy the user-specified Search criteria; 

Writing code to determine automatically which Services of 
an object can be invoked given the current State of the 
object and only allow those Services to be invoked; 

Writing code to furnish initial values for object-valued 
arguments of Services and receive any user input argu 
ments, 

Writing code to check data type entered by a user for 
validity for the argument the data fills and make Sure 
the entered data is within a valid range for the argument 
the data is intended to fill; 

Writing code to check for dependencies between argu 
ments, and, if a dependency exists, and user input data 
triggers the dependency, to display an appropriate dia 
log box prompting the user to enter input data needed 
to Satisfy the dependency; 

Writing code to invoke the appropriate object Server code 
linked to a particular Service when a user makes an 
input indicating a desire to invoke that Service and to 
pass the object Server code the appropriate arguments 
for the Service; 

Writing code to wait for results of execution of a Service, 
and to display an error message if an error occurred, 
but, if no error occurred, to wait for further user input. 


