| WV AP O OO
US 20030167455A1
a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2003/0167455 Al

Iborra et al. (43) Pub. Date: Sep. 4, 2003
(54) AUTOMATIC SOFTWARE PRODUCTION Publication Classification
SYSTEM
(51) INte CL7 oo GOG6F 9/44

(76) Inventors: Jose Iborra, Denia Alicante (ES);
Oscar Pastor, Valencia (ES) (52) US. Cli vvvcecerecrevneveerecenees 717/105

Correspondence Address:

FALK AND FISH

16590 OAK VIEW CIRCLE 57 ABSTRACT
MORGAN HILL, CA 95037 (US)

(21) Appl. No.: 09/872,087 An automated software production system is provided, in
which system requirements are captured, converted into a
(22) Filed: Jun. 1, 2001 formal specification, and validated for correctness and com-

pleteness. In addition, a translator is provided to automati-
cally generate a complete, robust software application based

(63) Continuation-in-part of application No. 09/543,085, on the validated formal specification, including user-inter-
filed on Apr. 4, 2000. face code and error handling code.

Related U.S. Application Data

REQUIREMENTS

200
AUTOMATIC *
SOFTWARE
PRODUCTION / CASE TOOL 210 /
SYSTEM 202

'

FORMAL SPECIFICATION 215

VALIDATOR 220

Y Y v Y

SYSTEM USER- DATA- DOGU-
LOGIC INTER- BASE MENT-
FACE ATION
TRANS-
TRANS- GENE- GENE-
LATOR LATOR RATOR RATOR
232 234 236 238

APPLICATION
CODE 204

DOCUMENTATION

DATABASE 208

SCHEMA 206

US 2003/0167455 Al

Sep. 4,2003 Sheet 1 of 25

Patent Application Publication

ver
1SOH

dSi

8cl

13NYH3LNI

(48
HIAH3S

o]
8T
> 0T
IOVAHILNI
NOILVDINNWWOD HOSS300Hd
cot sng
ort 807 90T
JoIA3d AHOWIN
3IOVHOLS WOH NIV

9rt

TOHLNOD
HOSHNO

VIt
30IA3A LNdNI

¢t
AV1dSIa

Patent Application Publication Sep. 4, 2003 Sheet 2 of 25 US 2003/0167455 A1

REQUIREMENTS

200
AUTOMATIC Y
SOFTWARE
PRODUCTION CASE TOOL 210
SYSTEM 202 l
FORMAL SPECIFICATION 215
VALIDATOR 220
SYSTEM USER- DATA- DOCU-
LOGIC INTER- BASE MENT-
FACE ATION
TRANS-
TRANS- GENE- GENE-
LATOR LATOR RATOR RATOR
232 234 236 238
APPLICATION DOCUMENTATION
CODE 204 208

DATABASE
SCHEMA 206

FIG. 2

US 2003/0167455 Al

Sep. 4,2003 Sheet 3 of 25

Patent Application Publication

0SE reeramemm
AAIDHOIMHSINNG '3avad .o

mvmu/
m#m »f.hm—ummu iyt {

vmm \mumﬁdlhounmmﬂ
mb«muouf,.{f Nmmw

B TISXGLT ASw

meu W TIRIqTT

D N

SATBAOT] \ Nmmw

Hoog weoT

e 3OO0 UEOT
.V.V@ ceax Koxasepl”

Sooq Aoxasep

P

oye umﬁmmuMMﬂ
ZYE ~— e

b HOOG WAMISL
f— Hooq ueoT

[~ a3ep ueoT
. 2pop LEOT
-

IS

PR3 sjgRleun

jerydaauo] eurenbsg g

iapeal B3
:mQ_ m

ueneiqy B i
oq B i

US 2003/0167455 Al

Sep. 4,2003 Sheet 4 of 25

Patent Application Publication

v
Ol

yoou~Aonsap . yooo—maul,

)
907 mzk \ Olv 2oV

U3l = apRls 4 Yoo uinad JAleeae,=ajege Jf qood ueof (]

.v_nv.\ NEwl\

US 2003/0167455 Al

Sep. 4,2003 Sheet 5 of 25

Patent Application Publication

dv Old

LW

Liapeaisyl diysundispead [= OQUNUY00G] <=3{@5 = e

T S ——

L deHDylgsse

(0744

e _.:mﬁn_w_._,_, u:o:um_ﬂﬁ

E _

L _

—En.a_ \._.w N.rm...,_.__ Em_mm—ﬂ :a:m_mu:_ aum_an__

Tafale ol @ E,

%I .{_%.:.? Em,n.i ..sm_} %M mﬁ

US 2003/0167455 Al

Sep. 4,2003 Sheet 6 of 25

Patent Application Publication

g ()1 T AT) o Rpe B S ST
g 3 iy,
&;_,wm;vn

. e PRI

gl

i A . Yedra (VL A
K A e

G Old

R R
AR TELY S G R EE R AN
g ER AR LTI By el

SR LN i Ao
< WA AT

S

NN

SRS kA G g Al 3 : e
R N W N LR e A

i

B R
SeE ot (AT ; AT A R
EL A ; e

e

Xk
o2 2 LIS
AR e T X : e Cesel
W L g ey r "
W . Lo 4 et
Ly < 2 i

e PN s
b1)
AN 3 ey

wausasou | ooq

Ly

£

A E

Gy Sl St 13
IR R LI AT R T g S
SRR E N AL R T B

R

T

Ty - £

Bendy ERRA Gt XA

sl Bl e Sl A
PSR .

N LrE ; ; Frevind g P

g D R : S RN

Ui A R : B

N DRl gl g : : iy

o T e G g R P

pRPTEN U Wy AT i %
il s S i K

Rt gmget S0 2
Rk A ;
a0y O ﬁm . . iy
Lo : e TavEd
N o : o
st A S S Ll TC .
ST] ot S : g
; W < B S
T T SENER RSk
X 4 : ks

&

R

T e

s o

T 258 AR ol
s e

£

. s
Sy ; N ; A B

i
DAY

RS
Leds gt e
R
T uﬂﬁ{m

LN

SIS
P

)
Ay G, o R i
iy S

B PO S SRERt Ve P
" e . T iR 8 PN - PO A SN
o ,:,.?f,u@?x"

o
s

WANEL G
S A
ST ; (&5 S

PPN

3

s 5 Y % EGy
T AW
St R

Patent Application Publication

Sep. 4,2003 Sheet 7 of 25

US 2003/0167455 Al

FLOWCHART OF THE FUNCTIONS THAT ALL SPECIES OF SYSTEM LOGIC

TRANSLATORS WILL PREFORM
600

WRITE CODE THAT WILL
IDENTIFY AND
AUTHENTICATE THE USER
(OPTIONAL BUT ALMOST
ALWAYS REQUIRED)

/‘ 602

(WRITE CODE THAT WILL QUERY THE)
HIGH LEVEL REPOSITORY FORMAL
SPECIFICATION AND DETERMINE
ALL OBJECT ATTRIBUTES THIS
USER HAS PRIVILEGES TO SEE AND
ALL SERVICES THIS USER CAN

| THAT STATE TRANSITIONS

INVOKE (PROVIDE THE SYSTEM
_ VIEW FOR THIS USER) .

l s 604

WRITE CODE TO IDENTIFY THE
OBJECT SERVER FOR EVERY
SERVICE ANY AUTHORIZED USER
MAY WISH TO INVOKE

06
f6

WRITE CODE TO RETRIEVE SERVICE
ARGUMENTS FROM USER OR
ANOTHER OBJECT SERVER OR
ANOTHER PROCESS

608
r

WRITE CODE THAT ALLOWS A
USER OR ANOTHER PROCESS TO
INVOKE A SERVICE - WHEN
SERVICE INVOKED, WRITES
MESSAGES TO INVOKE SERVICE
AND SEND IT THE PROPER
ARGUMENTS

FIG. 6

r610

(" WRITE CODE THAT }
IMPLEMENTS OBJECT
SERVER FOR EVERY
SERVICE, EACH OF WHICH
FIRST CHECKS TO VERIFY

ARE VALID, LE., MAKE SENSE
FOR THE CURRENT STATE OF
OBJECTS THE OBJECT SERVER
IS ALTERING THE STATE

_ OF i,

| o

WRITE CODE FOR EVERY
OBJECT SERVER THAT
ERIFIES PRECONDITIONS ARE
SATISFIED BEFORE MAKING
STATE TRANSITIONS OF ANY
OBJECTS THE STATES OF
WHICH ARE ACTED UPON

l /614

WRITE CODE TO MAKE ALL
VALUATION CALCULATIONS
REQUIRED OF EACH
OBJECT SERVER

f616

WRITE CODE TO VERIFY
THAT INTEGRITY
CONSTRAINTS HAVE BEEN
SATISFIED AFTER
EXECUTION OF A SERVICE

618
/.

(WRITE CODE FOR EVERY)
OBJECT SERVER TO TEST
TRIGGER RELATIONSHIPS
AFTER EXECUTION OF A
SERVICE AND CARRY OUT
APPROPRIATE ACTION IF
A TRIGGER EVENT HAS

| OCCURRED

_J

Patent Application Publication Sep. 4, 2003 Sheet 8 of 25 US 2003/0167455 A1

FLOWCHART OF THE FUNCTIONS THAT ALL SPECIES IN THE USER INTERFACE
TRANSLATOR SUBGENUS WILL PREFORM

/700
IDENTIFY AND
AUTHENTICATE THE /710
USER - ~N
WRITE CODE TO CHECK DATA
L ARGUMENT THE DATA FILLS,
PROVIDE THE APPROPRIATE AND MAKE SURE THE INPUT
SYSTEM VIEW FOR THIS PARTICULAR VALUE 1S WITHIN A VALID
USER THAT ONLY ALLOWS THE RANGE FOR THE ARGUMENT
USER ACCESS TO FUNCTIONS | THE DATA FILLS. WRITE CODE
APPROPRIATE TO THIS TO CHECK FOR DEPENDENCIES
USER'S PRIVILEGE LEVEL BETWEEN ARGUMENTS, AND,
‘ IF A DEPENDENCY EXISTS, AND
/704 USER INPUT DATA TRIGGERS
(~ LOCATETHEAPPROPRIATE) | [THE R PN e FOR
PREVIOUSLY GENERATED SYSTEM 7O INPUT DATA TO SATISFY
LOGIC CODE WHICH CAN IMPLEMENT THE DEPENDENCY)
EACH SERVICE OR FUNCTION THIS
USER IS ALLOWED TO INVOKE AND + 712
WRITE CODE TO DISPLAY SERVICE - N
ACTIVATION FORMS AND SET UP WRITE CODE TO INVOKE
POINTERS TO APPROPRIATE THE APPROPRIATE OBJECT
_ OBJECT SERVERCODE /J SERVER CODE WHEN A
USER MAKES AN INPUT
/706 INDICATING A DESIRE TO
s N INVOKE ANY SERVICE THAT
WRITE CODE TO GENERATE USER IS AUTHORIZED TO
QUERY/SELECTION FORM TO INVOKE, AND PASS THE OBJECT
ALLOW USER TO QUERY DATA SERVER THE APPROPRIATE
INSTANCES AND SEARCH ARGUMENT(S)
FOR INSTANCES THAT FULFILL _
A GIVEN CONDITION AND KNOW
RGeS T
TA WRITE CODE TO WAIT FOR
_CURRENT STATE OF THE OBJECT/ T O S T ok
l 708 ERROR MESSAGE
IF AN ERROR OCCURRED.
WRITE CODE TO FURNISH INITIAL OTHERWISE WAIT FOR
VALUES FOR OBJECT-VALUED FURTHER USER INPUT

ARGUMENTS OF SERVICES AND
RECEIVE ANY USER INPUT
ARGUMENTS

FIG. 7

Patent Application Publication Sep. 4, 2003 Sheet 9 of 25 US 2003/0167455 A1

FLOWCHART OF THE FUNCTIONS THAT ALL SPECIES IN THE DATABASE
GENERATOR TRANSLATOR SUBGENUS WILL PERFORM

720

GET ALL THE ATTRIBUTES,
IDENTIFICATION FUNCTIONS,
AGGREGATION AND INHERITANCE
RELATIONSHIPS OF ALL THE CLASSES

722
/

(" STORE THE VALUES OF ALL THE GATHERED)
INFORMATION OF ALL THE CLASSES AT ANY
POINT IN TIME IN ANY DATA STRUCTURE

FORMAT, INCLUDING A RELATIONAL
DATABASE, SUCH THAT THE VALUES OF ALL
THE GATHERED INFORMATION CAN BE
SUBSEQUENTLY READ AND WRITTEN BY AT
LEAST THE SYSTEM LOGIC

o

FIG. 8

US 2003/0167455 Al

Sep. 4,2003 Sheet 10 of 25

Patent Application Publication

V6 'Old

B07vId
NOILY3HO SSY10

Jioday asuady 3 ue arssi

Ae1y uiaysde aY) L oy 1o duedwod sy Jo) Bupiom suasiad

AR

US 2003/0167455 Al

Sep. 4,2003 Sheet 11 of 25

Patent Application Publication

g6 Oid

WN3ILSAS
INIWIOVYNYIN
JSNddXA

NI 331v3dO
ANV a3d3=aN
S3SSVI0 TV

US 2003/0167455 Al

Sep. 4,2003 Sheet 12 of 25

Patent Application Publication

06 'Ol

S3ASSV10
N3aImi3d
SdIHSNOILY 134
AJIQOW

aNV 31v3HO
Ol DOovIa

2tALxd VLR

adh | pinseg |

QA0 1 :

.o\ v aioid 1) ;

SN waﬁﬁ [“,wx,mﬁ%qj 4 Brydaauay Buants 3 3
,4 T S

US 2003/0167455 Al

Sep. 4,2003 Sheet 13 of 25

Patent Application Publication

01 'Ol

Q3aLlvado 0s:

SdIHSNQILY13d
3IHL MOHS
ATIVOIHAYHD
ANV S3SSV10
N3I=ami3g
SdIHSNOLLY 134
31v3HO OL

BOVIA OIHAVHD |

2

o

o

salfj a7

I E”_”w
sourToSHINT

b

1 _,J@..._,miau SEtiguht W

1
A1 sestiadg . vokaidugosuadig Jodlaidsastadxg

US 2003/0167455 Al

Sep. 4,2003 Sheet 14 of 25

Patent Application Publication

Vil

Ol

opeAlIa (],

DB

[que s
" opeAus(

ke,
opeAuag

opeAla(]
E=TsTT=F
ajqeiiep,
Sjkue i

ajgEues

aygkue A
ajqkie i

N nseauRApGh

sanLBARGY
nseslisda o |
" saftied¥ g |

" sjuewuoie 4
" e gusnide b
SjUBUC oL
T apgoung
asheny”

selgh

| SURRLIDT

A quasaldy

s

US 2003/0167455 Al

Sep. 4,2003 Sheet 15 of 25

Patent Application Publication

all

Old

a nxu

N

SIIURADY - 395

e

1

US 2003/0167455 Al

Sep. 4,2003 Sheet 16 of 25

Patent Application Publication

¢l Ol

EINER)ER
SSV10 40 S3VIAEITS

um.cu._xuw

oty
ey
fung
mmcmnxm._/

abueyod3™d |

saDURAR

" adngydl

‘asuads 35ty d

ueny
uel| - . Tw3LI13a
add | uswidBg L um_mﬁm add [juawde Jiog

ady j uawdey Uainn patey s’ add | wawdegsuf

pawdediaalal
ouynejoalal

C fed
asoudde
azioyine g
asoj9

asUadixalap;
asuadiamay

US 2003/0167455 Al

Sep. 4,2003 Sheet 17 of 25

Patent Application Publication

el ol

NOILOVSNYH.L
~TTY31373d,

HOH VINNHOS
3NI430 OL BOWIA

T o

US 2003/0167455 Al

Sep. 4,2003 Sheet 18 of 25

Patent Application Publication

vi Ol

SSV10 ISNIdX3
40 SLINIVHLSNOD
ALIHOILNI

32 LigLy)

v

iaeaifl aq nw afieyox]

1 < aBuey

o

US 2003/0167455 Al

Sep. 4,2003 Sheet 19 of 25

Patent Application Publication

gL 'Old

T3AONW TYNOILONNA

40 1HVd WHO- OL IN3A3
wAdIQOW. SHL HLIM SLNEIHLLY
«3SNVO 40 NOILVNTVYAS
J1v3HO OL X0g DOTvId

asuads 3

wse

US 2003/0167455 Al

Sep. 4,2003 Sheet 20 of 25

Patent Application Publication

91 'Ol

435N SIHL HOd
SALNGIHLLY SSV10
30 ALMIEISIA ANV
88300V NvD 38N
1NNODOV. SFDIAHIES
HOIHM 13S OL a3sn
39 NvO 1VH1 ©O1vIa
dIHSNOILVY13Y INIOV

" ,Evm‘_JE.:a

aay

T

sanuURADYFasUS]

In7sasuads 30) dsuads g
sasuadu)0 | asuads]
spqoyingrasuadxy
suawwofed asuads
e quawied asuads
shipyg asusds
ezl asuads]

Apd | Ssusdigl
" siludedioalarasuads 3f;

aaodde-asuarkiy

US 2003/0167455 Al

Sep. 4,2003 Sheet 21 of 25

Patent Application Publication

L1 "Old

«ISNIdXF. SSVIO
HO4 WydbvIa
NOILLISNVHL 3LVLS

\m}o..o_nw_mu:mu”?

am}oan{

(A\//mpﬁa% Te

" A AvdLL

[©

. RELETERElE

S waL3aald

Adpourf,]

aypy

e L e

é%gnﬁ\h §§§§g§3
R A S e SR T S Sty

US 2003/0167455 Al

Sep. 4,2003 Sheet 22 of 25

Patent Application Publication

8L Ol

NOILIANQO3Hd
13a0N
Ol X04g ©OTviId

Y] = sousapyuinRY sd Y < souejeq
: S uoipuodet]

sza0xe dauow peoueape au yoay]l
R AT » z

US 2003/0167455 Al

Sep. 4,2003 Sheet 23 of 25

Patent Application Publication

61 Old

SSV10 «ISNIAdXH, IHL
HOd A3AV1dSId 39 Ol
S3aLngidlly

40 13S V¥ HSINAY.1S3 OL

H313dONW ASOS
Ad d3sn Xog ©Qvid

- Bumg,

ey
- Buigg
, an,

INJsaoUeARY

5AURADY
O ngsasuads o
' immm:mn_xmzn_ i

ST R §

ajegayiny

| _um_..__w

P

Aeq a Hmmas?

wy @ o SHIEG
Buig - ingduigaadoduwy

* Buig awepdugaadojdu]

mc_:m mEmzﬁmEE ﬁ_m.En_

US 2003/0167455 Al

Sep. 4,2003 Sheet 24 of 25

Patent Application Publication

0¢ 9id

d3LN3 OL H3sn 3H1
1S3N0FY OL S31gVIHVA
3HL ANV 3sn O1
VINNHOL 1317114 3HL
HSIMav.LS3 OL ANY SSY10
3SNIdX3 FHL HOA
VIH3LIHO ONIHOHY3S
3HL HSINgv1s3 OL
H37300N ASOS

A€ d3IsSN Xod vovIa

sjeq, ' Busoiddy el ddgugieg A
Qp(@R Dunss| Uy ,msmm_vcumuma 1A
seq Seq Bunss|jenu] anssjuiEd A
 uglaeiqoy 1Bg - sefodwy gafoduy gadoduly I

:Qum_n_an_ ,._mm. o T ‘paloig

ANy _._.m.%cw_mama A = ﬁm_uEmEmm.n_ oz{ %m_c_mﬁa ? =< m.m@:ms%n_ B
(N ddgpuzeq s => aqoyny gy ddglupiejn =< ARgoyIng|:
Ny anssjpugsie s => eequasald Ny SnsspuBe s =<)P quasaly

(N safojdwg) = sadojdwy Ny Pajoid s = 1sloig

asuadn3 "l

Patent Application Publication Sep. 4, 2003 Sheet 25 of 25 US 2003/0167455 Al

FLOWCHART OF THE FUNCTIONS THAT ALL SPECIES IN THE
DOCUMENTATION GENERATOR TRANSLATOR SUBGENUS WILL PERFORM

[800

DETERMINE TYPE OF
SUPPORT DOCUMENTATION
TO BE WRITTEN AND THE
REQUESTED FILE FORMAT

02
/‘8

GET ALL THE APPROPRIATE INFORMATION
NEEDED FOR DOCUMENT TYPES TO BE
PRODUCED, INCLUDING TYPICALLY
CLASSES, ATTRIBUTES, RELATIONSHIPS,
SERVICES AND ARGUMENTS FROM FORMAL
SPECIFICATION

‘—’ [804

WRITE FILES IN THE APPROPRIATE FILE
FORMAT

FIG. 21

US 2003/0167455 Al

AUTOMATIC SOFTWARE PRODUCTION SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This is a continuation-in-part application of a prior
U.S. patent application filed Apr. 4, 2000, Ser. No. 09/543,
085. The present invention relates to computer systems and
more particularly to an automatic software production sys-
tem and methodology.

[0002] This application claims subject matter that is
related to the subject matter claimed in two other continu-
ation-in-part applications entitled “Automatic Software Pro-
duction System”, filed on and , and having
Ser. Nos. and

COMPUTER PROGRAM LISTING APPENDIX

[0003] 1. Field of the Invention

[0004] The assembly code computer program listing hav-
ing file name TOTAL.ASM size 39,107,073 bytes, created
on May 23, 2001 which was submitted in duplicate with this
patent application on a single CD-ROM is hereby incorpo-
rated by reference. The file is in TXT format on a disc
compatible with IBM-PCs and the Windows 98 operating
system, and can be opened by any word processor.

[0005] 2. Background of the Invention

[0006] Software engineering is the application of a sys-
tematic and disciplined approach to the development and
maintenance of computer programs, applications, and other
software systems. Due to the increasing computerization of
the world’s economy, the need for effective software engi-
neering methodologies is more important than ever.

[0007] The traditional software development process
involves a number of phases. First, the requirements of the
program are specified, typically in the form of a written
specification document based on customer needs. Then, a
software developer writes source code to implement the
requirements, for example, by designing data structures and
coding the system logic. Finally, the software developer
undergoes an extensive testing and debugging phase in
which mistakes and ambiguities in the requirements are
identified and errors in the software code are fixed. Having
to refine the system requirements is one of the most serious
problems that might occur, because any modification to the
requirements necessitates a redevelopment of the source
code, starting the process all over again. Thus, the testing
and debugging phase is the longest phase in the software
engineering process and the most difficult to estimate
completion times.

[0008] For the past forty years, there have been many
attempts to improve isolated portions of the software engi-
neering process. For example, the creation of first higher-
level languages such as FORTRAN and then of structured
programming languages such as ALGOL has helped ease the
burden of implementing the system logic. As another
example, the introduction of object-oriented methodologies
has helped in the design and implementation of the data
structures. These improvements in the software engineering
process have lessened the mismatch between the problem
space, which is the Conceptual Model for the application,
and the solution space, which is the actual software code.

Sep. 4, 2003

Nevertheless, some mismatch between the problem space
and the solution space remains, which gives rise to an
opportunity for programming errors. Because of the pro-
gramming errors, it is necessary to undergo an extensive
testing and debugging phase to isolate and fix the software
faults.

[0009] Lately, there has been some interest in the use of
“requirements analysis” and Computer Aided Software
Engineering (CASE) to facilitate the first phase of the
software engineering process, which is the identification and
specification of the requirements. In particular, these
approaches attempt to allow for software engineers to for-
mally specify the requirements and build a prototype to
validate and test the requirements. After the requirements are
tested, the prototype is discarded and the software engineer
develops the complete software application based on the
requirements.

[0010] One example is known as “OMTROLL”, whose
objective is to assist software designers by means of an
Object Modeling Technique (OMT)-compliant graphical
notation to build the formal specification of the system. This
specification is based on the TROLL specification language
and has to be refined to a complete system specification. In
addition, OMTROLL has a CASE support called TrollWork-
bench, which provides a prototyping function by generating
an independently executable prototype from a graphical
conceptual specification. The prototype generated is a C++
program that includes the static/dynamic aspects of the
system and uses an Ingress database as a repository of the
specification.

[0011] OBLOG is another object-oriented approach for
software development that falls within the scope of the
European ESPRIT project IS-CORE (Information Sys-
tems—Correctness and Reusability). The OBLOG seman-
tics is formalized in the context of the theory of categories.
OBLOG also employs a CASE tool for introducing the
specifications that has been introduced, and enables a devel-
oper to build a prototype by supplying rewrite rules to
convert the specifications into code for the prototype. The
rewrite rules must be written using a specific language
provided by OBLOG.

[0012] Another approach that focuses more on levels of
formalism is the Object System Analysis model (OSA). The
aim of OSA is to develop a method that enables system
designers to work with different levels of formalism, ranging
from informal to mathematically rigorous. In this context,
this kind of tunable formalism encourages both theoreticians
and practitioners to work with the same model allowing
them to explore the difficulties encountered in making model
and languages equivalent and resolve these difficulties in the
context of OSA for a particular language. OSA also has a
CASE support tool called IPOST, which can generate a
prototype from an OSA model to validate the requirements.

[0013] A different approach has been proposed by SOFL
(Structured-Object-based-Formal Language), whose aim is
to address the integration of formal methods into established
industrial software processes using an integration of formal
methods, structured analysis and specifications, and an
object-based method. SOFL facilitates the transformation
from requirements specifications in a structured style to a
design in an object-based style and facilitates the transfor-
mation from designs to programs in the appropriate style. In

US 2003/0167455 Al

accordance with the previous arguments, the SOFL proposal
attempts to overcome the fact that formal methods have not
been largely used in industry, by finding mechanisms to link
object-oriented methodology and structured techniques with
formal methods, ¢.g. VDM (Vienna Development Method)
style semantics for its specification modules. Combining
structured and objected-oriented techniques in a single
method, however, makes it difficult to clarify the method
semantics; thus, effective tool support is necessary for
checking consistency.

[0014] Still another approach is known as TRADE (Tool-
kit for Requirements and Design Engineering), whose con-
ceptual framework distinguishes external system interac-
tions from internal components. TRADE contains
techniques from structured and object-oriented specification
and design methods. A graphical editor called TCM (Toolkit
for Conceptual Modeling) is provided to support the
TRADE framework.

[0015] Although these approaches are of some help for the
first phase, i.e. in refining the requirements before the
computer application is coded, they do not address the main
source for the lack of productivity during later phases of the
software engineering process, namely the programming and
testing/debugging phases. For example, once the require-
ments are identified, the software engineer typically discards
the prototype generated by most of these approaches and
then designs and implements the requirements in a standard
programming language such as C++. The newly developed
code, due to the mismatch between the problem space and
the solution space, will commonly contain coding errors and
will need to be extensively tested and debugged.

[0016] Even if the prototype is not discarded and used as
skeleton for the final application, the software developer
must still develop additional code, especially to implement
the user interface and error processing. In this case, there
still remains the need for testing and debugging the code the
programmer has written. The rule-rewriting approach of
OBLOG, moreover, fails to address this need, because the
difficulties associated with programming are merely shifted
one level back, to the development of the rewriting rules in
an unfamiliar, proprietary language.

[0017] Other approaches include those of Rational and
Sterling, but these are not based on a formal language.

[0018] Therefore, there exists a long-felt need for improv-
ing the software engineering process, especially for reducing
the amount of time spent in the programming and testing
phases. In addition, a need exists for a way to reducing
programming errors during the course of developing a
robust software application. Furthermore, there is also a
need for facilitating the maintenance of software applica-
tions when their requirements have changed.

SUMMARY OF THE INVENTION

[0019] These and other needs are addressed by the present
invention.

[0020] There are at least three points of novelty that
represent separate subsytems or subgenus inventions in an
overall system employing the teachings of the invention.

[0021] The first point of novelty is the front end process-
ing to create what is referred to herein as the Conceptual

Sep. 4, 2003

Model in a formal language or symbology (that can be
represented by a data structure in a computer and which has
rules that can be used for validation) that can be validated to
make sure the Conceptual Model is syntactically complete,
semantically correct and not ambiguous. That is, the vali-
dation process finds holes left in information needed to
complete the Conceptual Model of the problem, makes sure
everything in the formal specification makes sense (seman-
tically correct) and makes sure no ambiguities exist. The
Conceptual Model is typically written as statements in any
known or new formal language which has rules of syntax
and semantics (together referred to as grammar) which are
known to the validator. It is these rules of syntax and
semantics that the validator uses to verify the completeness,
correctness and lack of ambiguity of the formal specifica-
tion.

[0022] A formal language is a language: 1) there is an
agreed upon syntax to every statement defining the proper
structure of the component parts of the statement; and 2)
there is agreed upon semantics meaning that every term is
defined and has one and only one meaning. An example of
known formal language is Oasis. It is these characteristics of
the formal language in which the Conceptual Model is
recorded in a high level repository which allow the Con-
ceptual Model to be validated. Validation is an important
process in the front end processing, because it is validation
which guarantees that the problem to be solved by the code
to be written has been stated in complete, correct and non
ambiguous terms, and it is these factors which lead to
complete, correct and bug-free code.

[0023] Known formal languages do not have to be used,
and some new symbology may be used to record the
Conceptual Model. However, whatever symbology is used,
it must have the three above defined characteristics of a
formal language and therefore the symbology would be a
new formal language of its own. Thus, the term formal
language in the claims is intended to mean any known or
new formal language which is defined by the following
characteristics: 1) there is an agreed upon syntax to every
statement; and 2) there is agreed upon semantics to every
statement. Syntax is the fixed and agreed upon structure of
statements in the model. In the non formal English language,
syntax is defined in the American Heritage Dictionary as
“The study of the rules whereby words or other elements of
sentence structure are combined to form grammatical sen-
tences.” Alternatively, syntax is defined as “The pattern of
formation of sentences or phrases in a language.” Semantics
is the meaning of various parts of the formal language or
symbology statements. In a formal language or symbology
that must be used to practice the invention, semantics means
everything is defined and has one and only one meaning so
there can be no ambiguity caused by multiple meanings for
the same term.

[0024] The combination of syntax and semantics is
referred to herein as the grammar of the formal language. A
formal language may, in some ways, be thought of as
mathematically based such that it can be mathematically
validated to make sure that every needed concept, argument
or value is present and there are no inconsistencies in the
information gathered and the gathered information is not
ambiguous.

[0025] In the preferred species described herein, the pro-
cess of creating the Conceptual Model is done using a

US 2003/0167455 Al

graphical user interface to represent the various objects, etc.
that comprise the model visually. In other embodiments, the
Conceptual Model may be drafted directly in a formal
language using a plain old text-based interface or any word
processing application. This is done by a SOSY modeler
after determining the nature of the problem to be solved and
all the other information needed to model the code to be
written in a formal language. As long as the Conceptual
Model is written in a formal language, it can be validated,
and that validation process is a key factor in generating
complete and error free code. This substantially reduces the
time to market for the application’s final code.

[0026] The applicants feel that the front end processing to
generated a high level repository in a formal language that
records the details of the Conceptual Model is an invention
standing alone. This is because this high level repository can
be coded manually and there will be far fewer errors caused
by incomplete information, ambiguous terms, etc.

[0027] To automatically write a complete working pro-
gram from the formal specification requires at least one
translator program that controls said computer to process the
formal specification into working code in some target com-
puter language such as Visual Basic, C++, assembly code for
any microprocessor, etc. At least a system logic translator is
required to convert the requirements of the formal specifi-
cation into working code that can be interpreted or compiled
into a program that can control a computer to do the
functions modelled in the Conceptual Model. In some appli-
cations where, for example, the program to be written is
buried inside a big machine such as an MRI machine and
there is no user interface and no data structure or persistence
layer needed, the single translator may be enough.

[0028] However, the preferred species uses four transla-
tors which process the high level repository into working
system logic code in the target language, a user interface, a
database schema and documentation. In other words, regard-
less of how the Conceptual Model created by the front end
processing is translated into working code, the process of
creating the Conceptual model (comprised of the Object
Model, the Dynamic Model, the Functional Model and the
Presentation Model) and validating it is believed to be new.

[0029] Tt is the agreed upon syntax and semantics of the
formal language or symbology in which the data elements in
the Conceptual Model are expressed which allows the
Conceptual Model of the problem to be solved to be vali-
dated. Validation means that there are no missing elements
of data needed to complete the model, all mathematical
expressions are well formed and make sense, and all state-
ments in the model are semantically correct and made in the
correct syntax, and that there are no ambiguities. For
example, if a statement in the model attempted to add a
floating point number to an alphanumeric string, that would
be semantically incorrect, and would be detected in the
validation process.

[0030] All species in the front end subgenus will share the
characteristic of creating a Conceptual Model of the problem
to be solved in an already known formal language or in a
new language with agreed upon syntax and semantics such
that the model can be validated as complete, correctly stated
semantically speaking and not ambiguous.

[0031] The validation process does not confirm that the
model created correctly models the problem. That is up to

Sep. 4, 2003

the SOSY modeler, also referred to herein as the “user” (a
person trained in creation of Conceptual Models and trained
in the syntax and semantics of the formal language or
symbology being used if a graphical user interface is not
being used) that gathers the data and rules of the problem
that get encoded into the Conceptual Model. The validation
process simply applies all the rules of the syntax and
semantics to the statements in the formal language that give
the definition of every object and class to make sure all
statements are complete, semantically correct and not
ambiguous.

[0032] The second point of novelty subgenus relates to
how the Conceptual Model is actually built by the SOSY
modeler. In the preferred species within this first subgenus,
the Conceptual Model is built by using a graphical user
interface to define objects and relationships between objects,
state transitions and most if not all the other items that go
into the Conceptual Model that is encoded into the formal
language. This just makes it easier for the SOSY modeler to
use the formal language by alleviating the need for the
SOSY modeler to know all the details of the syntax and
semantics of the formal language. In other species within the
first subgenus however, the SOSY modeler can use a text
based interface or any other type of interface to record the
statements which together comprise the Conceptual Model.

[0033] The only things that are essential to the invention
of the first point of novelty are that the Conceptual Model be
recorded in some formal language and that it be validated.
Exactly how these events occur in a particular species within
the first subgenus is not critical. For example, some valida-
tion processes within the first subgenus may start with one
rule and apply it to every statement in the high level
repository (the formal language statements that encode the
Conceptual Model) in a first pass and then do the same thing
for every other rule of syntax and semantics in the formal
language definition. Other species may start with the first
statement in the high level repository and apply all the rules
against it and repeat this process for every statement. Other
species may start at the first statement and process it to make
sure it complies with every applicable rule and then repeat
this process for every other statement.

[0034] The third point of novelty is the backend process-
ing to convert the statements in the high level repository to
working system logic code targeted for some specific plat-
form, operating system and high level language, and a user
interface (if applicable) and a database (if applicable) and
documentation (if applicable). This is the work done by
translators.

[0035] There are four translators used in most applica-
tions: a system logic translator; a user interface translator; a
database generator; and a documentation generator. The
system logic translator represents one or more processes that
convert the statements in the high level repository into
computer code that implements the system logic in the target
language that makes the correct function calls to the target
operating system to accomplish various functions required
by the Conceptual Model. In other words, the system logic
translator is a translator that writes the code that actually
carries out the processing of all the services defined in the
objects defined by the Conceptual Model to alter the values
of attributes of various objects, call services of other objects,
etc. to carry out the overall function of the program.

US 2003/0167455 Al

[0036] An object is a programming construct that has data
in the form of attributes and services which are programs
which control the computer to do whatever function the
service is designed to do. The services defined for an object
carry out processing appropriate to the existence and mean-
ing of the object in the overall Conceptual Model and,
generally, are invoked through application programmatic
interfaces or APIs.

[0037] The details of the structure and operation of the
translator species within the subgenus “system logic trans-
lator” vary from one input formal language and one output
target language to the next, but all species within the “system
logic translator” subgenus share certain characteristics. All
species will have to: provide the object system view; iden-
tify the object server code that executes each service defined
for each object; receive the service arguments; send a
message to each object server; check the state transitions;
check the preconditions; fulfill valuations defined in each
object; check integrity constraints; and test trigger relation-
ships. What these characteristics mean will be described in
greater detail in the detailed description section.

[0038] There is also a translator that defines the structure
of a database (referred to herein as a persistence) that stores
the values of all the attributes of all objects thereby defining
the state of every object. Although the details of various
species vary with formal language of the input and the target
database type, all species within this subgenus of database
translators share the following characteristics: 1) all species
will get the values of all attributes of all the objects in all the
classes; and 2) all species will store these attribute values at
any particular point in time in the desired form or data
structure such that the value of any attribute of any object
can be obtained by the system logic.

[0039] There is also a translator that creates documenta-
tion. Again, the details of the species within this subgenus
vary from one type of target language and desired docu-
mentation to the next, but all species within this subgenus
will share the following characteristics: 1) all species will go
to the four models that are part of the Conceptual Model and
copy the information from the models that is needed to
generate the required documentation such as object defini-
tions, class names and definitions, etc.; and 2) write the
required documentation in a predetermined file format. In
some species, the system will go to a data model or
configuration data to determine which documentation to
produce, and then perform steps 1 and 2 above.

[0040] Finally, there is also a genus of translators that
create code to implement the user interface if a user interface
is needed for the program being developed. However, some
species of the overall system of the invention create code
which works inside some apparatus in a manner which is not
visible to the user so there is no user interface. Such system
species do not need a user interface translator. All species
within the subgenus of user interface translators will share
the following characteristics: 1) all species will at least
identify the user; 2) provide a object system view that is
appropriate to the user that logged in and only allows that
user to perform functions within that user’s privilege level;
3) write code to identify the correct object server(s), i.e., the
computer program that implements the particular service(s)
the user is allowed to and has elected to invoke; 4) write
code to request and receive or retrieve from sources other

Sep. 4, 2003

than the user the service arguments needed to invoke the
service the user wishes to invoke and check whether the
input received is valid or within a valid restricted range and
to check for dependencies (if dependencies exist) between
arguments and, if a dependency exists, and a user input
triggers a dependency, to display the appropriate field to
enter the needed to satisfy the dependency; 5) write code to
invoke the service and send the service the appropriate
arguments; and 6) wait for results and display an error
message if an error has occurred, or, if no error has occurred,
display any results which result from execution of the
service and then wait for another user input.

[0041] Each species in a subgenus will do the generically
stated functions that define the subgenus, but will do them
in a different way which is dependent upon the target
platform, operating system and high level language in which
the output is to be generated.

[0042] The system of the example described in the
detailed description below, both the front end and back end
(translation) processing is implemented. The front end pro-
cessing captures the system requirements graphically (e.g.
through a graphical user interface), converts the four models
so created into a formal specification, and validates a high
level repository written in a formal language from the four
models for correctness and completeness. In the back end
processing, a translator is provided to automatically generate
a complete, robust software application based on the vali-
dated formal specification.

[0043] By generating the application code from the vali-
dated formal specification, error-free source code strategies
can be employed, freeing the developer from having to
manually produce the source code or extend an incomplete
prototype. Therefore, the error-prone, manual programming
phase of the traditional software engineering process is
eliminated, and the testing and debugging time is greatly
reduced. In one example, the software development time of
an application was reduced to 2.02% (or 8.5% worst case) of
the original time. In other words, performance has been
benchmarked by a reputable software tool evaluation com-
pany to be 12 to 47 times faster than similar projects using
other competing software products. Software maintenance is
also reduced, because the traditional coding, testing, and
revalidation cycles are eliminated.

[0044] One aspect of the present invention springs from
the insight that ambiguity is a major source of programming
errors associated with conventional object-oriented and
higher-order programming languages such as C++. Accord-
ingly, an automated software production tool, software, and
methodology are provided, in which a graphical user inter-
face is presented to allow a user to input unambiguous
formal requirements for the software application. Based on
the formal requirements input for the software application,
a formal specification for the software application is pro-
duced and validated, from which the software application is
generated. By generating the software application directly
from an unambiguous, validated formal specification, the
software developer can avoid the programming errors asso-
ciated with conventional programming languages, and
instead work directly in the problem space. In one embodi-
ment, error handling instructions are also produced when the
software application is generated so as to create a robust,
final software application.

US 2003/0167455 Al

[0045] Another aspect of the present invention stems from
the realization that a major source of inadequacy of con-
ventional prototyping techniques is that these techniques
lack the capability to specify the user interface aspects.
Thus, such conventional prototypes have primitive user
interfaces that are unacceptable for final, customer-ready
software application. Accordingly, this aspect of the inven-
tion relates to an automated software production tool, soft-
ware, and methodology that includes a formal specification
of a Conceptual Model that specifies requirements for a
software application. The Conceptual Model includes a
presentation model that specifies patterns for a user interface
of the software application. The formal specification, which
also specifies the presentation model is validated; and the
software application is then generated based on the validated
formal specification. As a result, the generated software
application includes instructions for handling the user inter-
face in accordance with the patterns specified in the presen-
tation model.

BRIEF DESCRIPTION OF THE DRAWINGS

[0046] The present invention is illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer-
als refer to similar elements and in which:

[0047] FIG. 1 depicts a computer system that can be used
to implement an embodiment of the present invention.

[0048] FIG. 2 is a schematic block diagram illustrating the
high-level architecture and data flows of an automatic soft-
ware production system in accordance with one embodiment
of the present invention.

[0049] FIG. 3 illustrates an example of an object model
for a library system with readers, books, and loans.

[0050] FIG. 4A illustrates an exemplary state transition
diagram in accordance with one embodiment of the present
invention.

[0051] FIG. 4B illustrates an exemplary object interaction
diagram in accordance with one embodiment of the present
invention.

[0052] FIG. 5 illustrates an exemplary dialog for receiv-
ing input for the functional model.

[0053] FIG. 6 is a flow diagram illustrating the high level
view of the operation of translating a formal specification
into a full application by following what it is referred to as
“execution model”.”

[0054] FIG. 7 is a flow diagram representing the sequence
of functions that all translators in the subgenus of user
interface translators will perform.

[0055] FIG. 8 is a flowchart of the functions that all
species of the subgenus database translator 236 must per-
form.

[0056] FIG. 9A is a screenshot of the dialog box to create
the class which simply involves giving it a name.

[0057] FIG. 9B is screenshot of a graphic interface box
showing the classes that have been defined to store the
pertinent information and provide the pertinent services to
implement a computer program that meets the above defined

Sep. 4, 2003

requirements. Defining these classes starts the process of
building the Formal Specification in the high level reposi-
tory.

[0058] FIG. 9C is a screenshot of the dialog box to modify
the properties of an aggregation relationship between any
two classes specified in the dialog box.

[0059] FIG. 10 is a dialog box to create the relationships
between specified classes and which graphically shows the
relationships so created and all the properties of those
relationships.

[0060] FIG. 11(A) shows the dialog box used to define the
attributes for the Expense class with their properties. This
dialog box is used to define whether each attribute is
constant, variable or derived, the type of data it contains and
other things.

[0061] FIG. 11(B) is the dialog box used to fill in the
formulas used for derivation of the values of attributes of
classes from the values of other attributes.

[0062] FIG. 12 shows a dialog box which a SOSY mod-
eler uses to define the services of the Expense class with
their arguments.

[0063] FIG. 13 is a screenshot of the dialog box used to
create one formula in a local transaction carried out by a
composed service (single services are called events, and
composed services are called local transactions).

[0064] FIG. 14 a dialog box used by the modeler to enter
the integrity constraint formula and error message text of
“Expense” class.

[0065] FIG. 15 is a dialog box to enter the functional
model formulas that define evaluation of the attribute
“cause” with the “modify” event (an event is a single
service). The functional model relates services mathemati-
cally through well-formed formulas to the values of
attributes these services act upon.

[0066] FIG. 16 is a dialog box which can be used by the
SOSY modeller to establish the services the user “accoun-
tuser” can access and the visibility of class attributes for this
user on the user interface.

[0067] FIG. 17 is one of the two graphical user interface
diagrams of the dynamic model on which the SOSY modeler
has drawn a graphic illustrating the state transitions for the
“expense” class.

[0068] FIG. 18 is a dialog box used by the SOSY modeler
to establish this precondition.

[0069] FIG. 19 is a dialog box used by the SOSY modeler
to establish the set of attributes which will be displayed for
the “expense” class.

[0070] FIG. 20 shows the dialog box used by the SOSY
modeler to establish the searching criteria for the expense
class, and indicate the filter formula to use and which
variables to request from the user.

[0071] FIG. 21 is a flow diagram defining the character-
istics that all species in the genus of user documentation
translators will share.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0072] An automatic software production system is
described. In the following description, for the purposes of

US 2003/0167455 Al

explanation, numerous specific details are set forth in order
to provide a thorough understanding of the present inven-
tion. It will be apparent, however, to one skilled in the art
that the present invention may be practiced without these
specific details. In other instances, well-known structures
and devices are shown in block diagram form in order to
avoid unnecessarily obscuring the present invention.

[0073] Hardware Overview

[0074] FIG. 1 is a block diagram that illustrates a com-
puter system 100 upon which an embodiment of the inven-
tion may be implemented. Computer system 100 includes a
bus 102 or other communication mechanism for communi-
cating information, and a processor 104 coupled with bus
102 for processing information. Computer system 100 also
includes a main memory 106, such as a random access
memory (RAM) or other dynamic storage device, coupled to
bus 102 for storing information and instructions to be
executed by processor 104. Main memory 106 also may be
used for storing temporary variables or other intermediate
information during execution of instructions to be executed
by processor 104. Computer system 100 further includes a
read only memory (ROM) 108 or other static storage device
coupled to bus 102 for storing static information and instruc-
tions for processor 104. A storage device 110, such as a
magnetic disk or optical disk, is provided and coupled to bus
102 for storing information and instructions.

[0075] Computer system 100 may be coupled via bus 102
to a display 112, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
114, including alphanumeric and other keys, is coupled to
bus 102 for communicating information and command
selections to processor 104. Another type of user input
device is cursor control 116, such as a mouse, a trackball, or
cursor direction keys for communicating direction informa-
tion and command selections to processor 104 and for
controlling cursor movement on display 112. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0076] The invention is related to the use of computer
system 100 for automatic software production. According to
one embodiment of the invention, automatic software pro-
duction is provided by computer system 100 in response to
processor 104 executing one or more sequences of one or
more instructions contained in main memory 106. Such
instructions may be read into main memory 106 from
another computer-readable medium, such as storage device
110. Execution of the sequences of instructions contained in
main memory 106 causes processor 104 to perform the
process steps described herein. One or more processors in a
multi-processing arrangement may also be employed to
execute the sequences of instructions contained in main
memory 106. In alternative embodiments, hard-wired cir-
cuitry may be used in place of or in combination with
software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific
combination of hardware circuitry and software.

[0077] The term “computer-readable medium” as used
herein refers to any medium that participates in providing
instructions to processor 104 for execution. Such a medium
may take many forms, including but not limited to, non-
volatile media, volatile media, and transmission media.

Sep. 4, 2003

Non-volatile media include, for example, optical or mag-
netic disks, such as storage device 110. Volatile media
include dynamic memory, such as main memory 106. Trans-
mission media include coaxial cables, copper wire and fiber
optics, including the wires that comprise bus 102. Trans-
mission media can also take the form of acoustic or light
waves, such as those generated during radio frequency (RF)
and infrared (IR) data communications. Common forms of
computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, any other
magnetic medium, a CD-ROM, DVD, any other optical
medium, punch cards, paper tape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.

[0078] Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 104 for execution. For example, the
instructions may initially be borne on a magnetic disk of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 100 can receive the data on the telephone line and
use an infrared transmitter to convert the data to an infrared
signal. An infrared detector coupled to bus 102 can receive
the data carried in the infrared signal and place the data on
bus 102. Bus 102 carries the data to main memory 106, from
which processor 104 retrieves and executes the instructions.
The instructions received by main memory 106 may option-
ally be stored on storage device 110 either before or after
execution by processor 104.

[0079] Computer system 100 also includes a communica-
tion interface 118 coupled to bus 102. Communication
interface 118 provides a two-way data communication cou-
pling to a network link 120 that is connected to a local
network 122. For example, communication interface 118
may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to
a corresponding type of telephone line. As another example,
communication interface 118 may be a local area network
(LAN) card to provide a data communication connection to
a compatible LAN. Wireless links may also be implemented.
In any such implementation, communication interface 118
sends and receives electrical, electromagnetic or optical
signals that carry digital data streams representing various
types of information.

[0080] Network link 120 typically provides data commu-
nication through one or more networks to other data devices.
For example, network link 120 may provide a connection
through local network 122 to a host computer 124 or to data
equipment operated by an Internet Service Provider (ISP)
126. ISP 126 in turn provides data communication services
through the worldwide packet data communication network,
now commonly referred to as the “Internet”128. Local
network 122 and Internet 128 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 120 and through communication interface 118,
which carry the digital data to and from computer system
100, are exemplary forms of carrier waves transporting the
information.

US 2003/0167455 Al

[0081] Computer system 100 can send messages and
receive data, including program code, through the net-
work(s), network link 120, and communication interface
118. In the Internet example, a server 130 might transmit a
requested code for an application program through Internet
128, ISP 126, local network 122 and communication inter-
face 118. In accordance with the invention, one such down-
loaded application provides for automatic software produc-
tion as described herein. The received code may be executed
by processor 104 as it is received, and/or stored in storage
device 110, or other non-volatile storage for later execution.
In this manner, computer system 100 may obtain application
code in the form of a carrier wave.

[0082] Conceptual Overview

[0083] FIG. 2 is a schematic block diagram illustrating the
high-level architecture and data flows of an automatic soft-
ware production system 202 in accordance with one embodi-
ment of the present invention. The automatic software
production system 202 is configured to accept requirements
200 as input, and produce a complete, robust application 204
(including both system logic and user-interface code), a
database schema 206, and documentation 208. In one imple-
mentation, the automatic software production system 202
includes a Computer Aided Software Engineering (CASE)
tool 210 front end to allow a user to input the requirements,
a validator 220 for validating the input requirements 200,
and several translators to convert the validated input require-
ments 200 into a complete, robust application 204. These
translators may include a system logic translator 232, a
user-interface translator 234, a database generator 236, and
a documentation generator 238.

[0084] During operation of one embodiment, require-
ments 200 specifying a Conceptual Model for the applica-
tion are gathered using diagrams and textual interactive
dialogs presented by the CASE tool 210. Preferably, the
CASE tool 210 employs object-oriented modeling tech-
niques to avoid the complexity typically associated with the
use of purely textual formal methods. In one implementa-
tion, the Conceptual Model is subdivided into four comple-
mentary models: an object model, a dynamic model, a
functional model, and a presentation model. These models
are described in greater detail hereinafter. After gathering the
requirements 200, the CASE tool 210 stores the input
requirements as a formal specification 215 in accordance
with a formal specification language, for example, the
OASIS language, which is an object-oriented language for
information systems developed at developed at the Techni-
cal University of Valencia, Spain. Using extended grammar
defined by the formal language, the validator 220 syntacti-
cally and semantically validates the formal specification 215
to be correct and complete. If the formal specification 215
does not pass validation, no application is allowed to be
generated; therefore, only correct and complete applications
are allowed be generated.

[0085] 1If, on the other hand, the formal specification 215
does indeed pass validation, automatic software production
processes, some of the referred to as “translators” (system
logic and user interface ones) are employed to implement a
precise execution model that corresponds to the validated
formal specification 2185. In particular, translators 232 and
234 produce application source code 204 in a high-order
language such as C++, Visual Basic or JAVA for the appli-

Sep. 4, 2003

cation’s system-logic and user-interface, respectively. In one
implementation, a database generator 236 also produces
instructions in, for example, a Structure Query Language
(SQL) scripting language to create the data model for the
application in an industry-standard ANSI-92 SQL Relational
Database Management System (RDBMS). However, in
other embodiments, the database translator 236 just outputs
a file having a file structure that is known to the system logic
created by the system logic translator 232. Basically, the
structure of the database or table or other data structure that
database generator 236 creates is defined by the objects and
classes defined in the Conceptual Model. The only thing that
is necessary is that translator 236 provide at least a place to
store the states of the objects in the system as defined by
their attribute values and that the attribute values be stored
in some format known to the system logic translator such
that the values of attributes can be retrieved from whatever
data structure is created by translator 236. In other species,
the database generator creates a data structure defined by the
Conceptual Model as well as for storing other data from
other sources or entered by remote client computers for use
by the code created by the system logic translator 232.

[0086] In addition, one implementation also employs a
document generator 238 to automatically generate service-
able system documentation from the information introduced
in the Conceptual Model.

[0087] Case Modeler

[0088] As mentioned herein above, the CASEtool 210
preferably employs object-oriented modeling techniques to
avoid the complexity typically associated with the use of
purely textual formal methods. Rather, four complementary
models, that of the object model, the dynamic model, the
functional model and the presentation model, are employed
to allow a designer to specify the system requirements. In
contrast with conventional techniques, however, the CASE
tool 210 actually captures a formal specification of the
designer’s system “on the fly” according to a formal speci-
fication language, while the designer is specifying the sys-
tem with the CASE tool 210.

[0089] This feature enables the introduction of well-de-
fined expressions in the specification, which is often lacking
in the conventional methodologies. In particular, the CASE
tool 210 enforces the restriction that only the information
relevant for filling a class definition in the formal specifi-
cation language can be introduced. The use of a formal
specification, input by means of the CASE tool 210, there-
fore provides the environment to validate and verify the
system in the solution space, thereby obtaining a software
product that is functionally equivalent to the specification as
explained hereinafter. Nevertheless this is always done pre-
serving this external view which is compliant with the most
extended modeling techniques, as stated before. In this way,
the arid formalism characteristic of many conventional
approaches is hidden from the designer, who is made to feel
comfortable using a graphical modelling notation.

[0090] With respect to the notation, conceptual modelling
in one embodiment employs diagrams that are compliant
with the Unified Modelling Language (UML); thus, system
designers need not learn another graphical notation in order
to model an information system. In accordance with the
widely accepted object oriented conceptual modeling prin-
ciples, the Conceptual Model is subdivided into an object

US 2003/0167455 Al

model, a dynamic model, and a functional model. These
three models, however, are insufficient by themselves to
specific a complete application, because a complete appli-
cation also requires a user interface. Therefore, the CASE
tool 210 also collects information about user-interface pat-
terns, in a fourth model referred to as “Presentation Model”,
which will be translated into the code for the application. In
one embodiment, the CASE tool 210 collects information
organized around projects which correspond to different
applications. Each project built by the CASE tool 210 can
include information about classes, relationships between
classes, global transactions, global functions, and views.

[0091] “Each class contains attributes, services, deriva-
tions, constraints, transaction formulas, triggers, display
sets, filters, population selection patterns, a state transition
diagram and formal interfaces. In addition to the information
in these lists, a class can also store a name, alias and a default
population selection interface pattern. Extra information is
stored as remarks that the designer can input information
about why a class does exist in a model.

[0092] Each attribute can have the following characteris-
tics: name, formal data type (e.g. constant, variable,
derived), data type (real, string, . . .), default value, whether
the attribute is an identifier for distinguishing the objects of
the class, length, whether the attribute is required when the
object is created, whether the attribute can be assigned a
NULL value, and a field to introduce some remarks about
why the attribute has been created. Each attribute can also
include a list of valuations, which are formulas that declare
how the object’s state is changed by means of events.
Valuation formulas are structured in the following parts:
condition (that must be satisfied to apply the effect), event
and effect of the event to the particular attribute. An attribute
may also include user interface patterns belonging to the
presentation model to be applied in the corresponding ser-
vices arguments related to the attribute.

[0093] Services can be of two types: events and transac-
tions. Events are atomic operations while transactions are
composed of services which can be in turn events or
transactions. Every service can have the following charac-
teristics: name, type of service (event or transaction), service
alias, remarks and a help message. Events can be of three
types: new, destroy or none of them. Events can also be
shared by several classes of the project. Shared events
belong to all classes sharing them. Transactions have a
formula that expresses the composing of services. In addi-
tion to this information, services store a list of arguments
whose characteristics are: name, data type, whether nulls are
allowed as a valid value, whether the argument represents a
set of objects (collection), default value, alias and remarks.
Additionally, for each argument user-interface patterns
related to arguments are: introduction pattern, population
selection pattern, defined selection pattern and dependency
pattern. The class can also store a list of derivations, and
constraints. Each derivation specifies a list of pairs condi-
tion-formula, specifying which formula will be applied
under every condition. Each constraint is a well formed
formula plus the error message that will be displayed when
the constraint was violated. For the dynamic constraints, the
formula will be internally translated into a graph which
constitutes the guide for its evaluation.

[0094] A class can also store triggers. Each trigger may be
composed of trigger target specified in terms of self, class or

Sep. 4, 2003

object, trigger condition, triggered action (service plus a list
of possible agents) to be activated and a list of default values
associated with the arguments of the related service. A class
can also have display sets, filters and population selection
patterns as user-interface patterns of the presentation model
affecting the class. Each display set can store elements of
visualization (attributes to be displayed to the user). Each
filter is composed of a well formed formula and a list of
auxiliary variables that are useful to define the formula. The
population selection pattern is related to a display set and a
filter. Classes also have a State Transition Diagram which is
a set of states and transitions between them. Each state
transition is related to an action (service plus list of possible
agents) that can change the state of the object. Actions may
have preconditions and the corresponding error message (to
be displayed if the precondition does not hold). Precondi-
tions are formulas that need to be satisfied in order to
execute the corresponding action. In case of non-determin-
istic transitions, determinism is achieved by means of label-
ling each transition with a control condition. A control
condition is a formula that specifies which state transition
will take effect.Finally, a class can store a list of interfaces.
Each interface stores the list of services that an actor can
execute (agents) and the list of attributes that can be
observed.

[0095] The model also maintains information on relation-
ships between classes, which can be of two types: aggrega-
tion and inheritance. Each aggregation relationship captures
the information about cardinalities, whether the aggregation
is static or dynamic, whether the aggregation is inclusive or
referential, whether the aggregation has an identification
dependence, and a grouping clause when the aggregation is
multi-valued. Each inheritance relationship stores the name
of the parent class, the name of the child class and whether
the specialization is temporary or permanent. Finally, if the
specialization is permanent it stores a well formed formula
on constant attributes as specialization condition. If the
specialization is temporary it stores either condition or the
list of events that activate/deactivate the child role.

[0096] Finally, the project can also capture a list of global
transactions in which the relevant characteristics to be stored
include the name of the global interaction, the formula, and
the list of arguments. A list of global functions can also be
captured, in which each function stores a name, a data type
of the returned value, a set of arguments (similar to ser-
vices), and comments about the function.

[0097] A project may have a set of views, that constitute
the particular vision that a set of selected agent classes has
of the system. That is, the set of formal interfaces (attributes
and services) allowed per agent class. Each agent class has
a list of interfaces.

[0098] Object Model

[0099] The object model is a graphical model that allows
the system designer to specify the entities employed in the
application in an object-oriented manner, in particular, by
defining classes for the entities. Thus, the class definitions
include, for example, attributes, services and class relation-
ships (aggregation and inheritance). Additionally, agent rela-
tionships are specified to state which services that objects of
a class are allowed to activate.

[0100] FIG. 3 illustrates an example of an object model
diagram 300 for the library system example with readers,

US 2003/0167455 Al

books, and loans which shows the agent relationships
between classes. An agent relationship between classes
means one class can invoke the services of another class.
FIG. 3 is included here to show that classes have attributes
and services and they have relationships to other classes.
Classes, in the object model 300, are represented as rect-
angles with three areas: the class name, the attributes and the
services. In the example, the object model 300 includes a
loan class 310 with attributes to indicate a loan code 312 and
a loan date 314 for when the loan was made. The loan class
310 also includes two services (methods) including one for
loaning a book 316 and another for returning the book 318.

[0101] The object model 300 also includes a book class
320 having attributes that specify the author 322 of the book,
a book code 324, and a state 326 (e.g. reserved, in circula-
tion, checked out, etc.) and services such as new_book 328
for creating a new book. Another class is a librarian class
330, whose name 332 is specified by an attribute and whose
creation is done by a new_librarian service 334.

[0102] Each reader belonging to the library is described
with the reader class 340, whose attributes include the age
342, the number of books 344 checked out by the reader, and
the name 346 of the reader. Readers may be created with a
new_reader service 348. An unreliable reader class 350 is
also part of the object model to indicate for those readers 340
who cannot be trusted (e.g. due to unpaid fees for overdue
books). An unreliable reader 350 may be forgiven 352 by a
librarian 330.

[0103] In an object model 300, inheritance relationships
are represented by using arrows to link classes. For example,
the unreliable reader class 350 is connected to the reader
class 340 with an arrow; thus, the unreliable reader class 350
is specified to inherit from, or in other terms is a subclass of,
the reader class 340. The arrow linking the subclass and the
base class can be leveled with a specialization condition or
an event that activates or cancels the child role. In the
exemplary object model 300, the arrow between the unre-
liable reader class 350 and the reader class 340 is labeled
with a “reader.punish/forgive” service. Thus, if a reader 340
is punished, that person becomes an unreliable reader 350.
Conversely, if an unreliable reader 350 is forgiven 352, that
person becomes a normal reader 340.

[0104] Aggregation relationships are represented in the
object model 300 by using a line with a diamond.

[0105] The class which has a diamond closest to it is called
the composite class and the other class is the component
class. The aggregation determines how many components
can be attached to a given composite and vice versa (car-
dinality is the minimum and maximum numbers of compo-
nents and composites that can participate in the relation-
ship). In the example, a book 320 and a reader 340 are
aggregated in a loan 310, because a loan 310 involves
lending a book 320 to a reader 340 of the library. “The
representation of aggregation also includes its cardinalities
in both directions (i.e. minimum and maximum numbers),
role names, and relationship name. In the example, the
cardinality of the loan:book relationship from loan to book
is 1:1 because exactly one book is the subject of a loan in this
Conceptual Model, and from book to loan is 0:1 because a
book can be lent or not in a certain moment.”

[0106] “Furthermore, agent relationships are represented
by using dotted lines that connect the associated client class
and services of the server class.”

Sep. 4, 2003

[0107] In the example, a librarian 330 is an agent of a
forgive service 352 of the unreliable reader class 350; thus,
there is a dotted line between the forgive service 352 and the
librarian class 330. As another example, readers 340 are
agents of the loan book 316 and return book 318 services.

[0108] “Finally, shared events are represented by using
solid lines that connect the associated events between two
classes. In the example, the loan_book event is a shared
event due to the solid line connecting said events in the book
class 320 and the reader class 340.”

[0109] Additional information in the object model is
specified to complete the formal description of the class.
Specifically, for every class in the object model, the follow-
ing information is captured as shown in TABLE 1.

TABLE 1

ITEM DESCRIPTION
Attributes All the aforementioned properties and/or characteristics
Services All the aforementioned properties and/or characteristics
Derivations derivation expressions for the derived attributes

(those whose value is dependent on other attributes)
Constraints well-formed formulas stating conditions

that objects of a class must satisfy
Complex specific information associated to aggregation and
Relationships inheritance hierarchies
Agents services that can be activated by this class

[0110] Additional information associated with aggrega-
tion and inheritance is also collected. For aggregated classes,
the additional information can specify if the aggregation is
an association or a composition in accordance with the UML
characterization, or if the aggregation is static or dynamic.
For inheritance hierarchies, the additional information can
specify if a specialization produced by the inheritance is
permanent or temporal. If the specialization is permanent,
then the corresponding conditions on the constant attributes
must characterize the specialization relationship. On the
other hand, it the specialization is temporary, then the
condition based on variable attributes or the events that
activate/deactivate the child role must be specified.

[0111] Some applications may require a large number of
classes to fully specity. In this case, classes may be gathered
into clusters. Clusters make it easier for the designer or
system analyst to understand the application, one cluster at
a time. Thus, clusters help reduce the complexity of the view
of the object model.

[0112] Dynamic Model

[0113] The system class architecture is specified with the
object model. Additional features, however, such as which
object life cycles can be considered valid, and which inter-
object communication can be established, also have to be
input in the system specification. For this purpose, a
dynamic model is provided.

[0114] The dynamic model specifies the behavior of an
object in response to services, triggers and global transac-
tions. In one embodiment, the dynamic model is represented
by two diagrams, a state transition diagram and an object
interaction diagram.

[0115] The state transition diagram (STD) is used to
describe correct behavior by establishing valid object life

US 2003/0167455 Al

cycles for every class. A valid life refers to an appropriate
sequence of states that characterizes the correct behavior of
the objects that belong to a specific class. Transitions rep-
resent valid changes of state. A transition has an action and,
optionally, a control condition or guard. An action is com-
posed of a service plus a subset of its valid agents defined in
the Object Model. If all of them are marked, the transition
is labeled with an asterisk (*). Control conditions are well
formed formulas defined on object attributes and/or service
arguments to avoid the possible non-determinism for a given
action. Actions might have one precondition that must be
satisfied in order to accept its execution. A blank circle
represents the state previous to existence of the object.
Transitions that have this state as source must be composed
of creation actions. Similarly, a bull’s eye represent the state
after destruction of the object. Transitions having this state
as destination must be composed of destruction actions.
Intermediate states are represented by circles labeled with an
state name.

[0116] Accordingly, the state transition diagram shows a
graphical representation of the various states of an object
and transitions between the states. FIG. 4A illustrates an
exemplary state transition diagram 400 in accordance with
one embodiment of the present invention. States are
depicted in the exemplary state transition diagram 400 by
means of a circle labeled with the state name. Referring to
FIG. 4A, the “book0” state 404 is indicated by a circle with
the name “book0.” Before an object comes into exXistence, a
blank circle 402 is used to represent this “state” of nonex-
istence, “which is the source of the initial transition 410
labeled by a corresponding creation action. Abull’s eye 406
is used to represent the state after which an object has been
destroyed, as by a transition 416 occasioned by the [*]:
destroy_book action.”

[0117] Transitions are represented by solid arrows from a
source state to a destination state.

[0118] The middle of the transition arrow is labeled with
a text displaying the action, precondition and guards (if
proceeds). In the example, transition 412 is labeled with a
loan_book action associated with the transition 412 and a
precondition ‘if state=“available”. Thus, the system will
only accept the execution of the action if the state attribute
of the book is “available.” In other words, the Conceptual
Model requires that a book can only be loaned if the book
is available. “As another example, transition 414 is labeled
with a return_book action associated with the transition 414”
and a precondition ‘if state=“lent”. In other words, the
Conceptual Model requires that a book can only be returned
if the book has been lent.

[0119] The object interaction diagram specifies interobject
communication. Two basic interactions are defined: triggers,
which are object services that are automatically activated
when a pre-specified condition is satisfied, and global trans-
actions, which are themselves services involving services of
different objects and or other global transactions. There is
one state transition diagram for every class, but only one
object interaction diagram for the whole Conceptual Model,
where the previous interactions will be graphically specified.

[0120] In one embodiment, boxes labeled with an under-
lined name represent class objects.Trigger specifications
follow this syntax:destination::action if trigger-condition.
The first component of the trigger is the destination, i.e., the

Sep. 4, 2003

object(s) to which the triggered service is addressed. The
trigger destination can be the same object where the condi-
tion is satisfied (i.e. self), a specific object, or an entire class
population if broadcasting the service. Finally, the triggered
service and its corresponding triggering relationship are
declared. Global Transactions are graphically specified by
connecting the actions involved in the declared interaction.
These actions are represented as solid lines linking the
objects (boxes) that provide them.

[0121] Accordingly, communication between objects and
activity rules are described in the object interaction diagram,
which presents graphical boxes, graphical triggers, and
graphical interactions. FIG. 4B illustrates an exemplary
object interaction diagram 420 in accordance with one
embodiment of the present invention.

[0122] Inthe object interaction diagram 420, the graphical
interactions is represented by lines for the components of a
graphical interaction. Graphical boxes, such as reader box
422, are declared, in this case, as special boxes that can
reference objects (particular or generic) such as a reader.
Graphical triggers are depicted using solid lines that have a
text displaying the service to execute and the triggering
condition. Components of graphical interactions also use
solid lines. Each one has a text displaying a number of the
interaction, and the action that will be executed. In the
example, trigger 424 indicates that the reader punish action
is to be invoke invoked when the number of books that a
reader is currently borrowing reaches 10.

[0123] Functional Model

[0124] Many conventional systems take a shortcut when
providing a functional model, which limits the correctness
of a functional specification. Sometimes, the model used
breaks the homogeneity of the object-oriented models, as
happened with the initial versions of OMT, which proposed
using the structured DFDs as a functional model. The use of
DFD techniques in an object modeling context has been
criticized for being imprecise, mainly because it offers a
perspective of the system (the functional perspective), which
differs from the other models (the object perspective). Other
methods leave the free-specification of the system opera-
tions in the hands of the designer, which leads to inconsis-
tencies.

[0125] One embodiment of the present invention, how-
ever, employs a functional model that is quite different with
respect to these conventional approaches. In this functional
model, the semantics associated with any change of an
object state is captured as a consequence of an event
occurrence. Basically, the functional model allows a SOSY
modeler to specify a class, an attribute of that class and an
event of that class and then define a mathematical or logical
formula that defines how the attribute’s value will be
changed when this event happens. An “event” as used in the
claims means a single service and not a transaction which is
defined as a composed or complex service (which means
more than one service executes). In the preferred embodi-
ment, condition-action pair is specified for each valuation.
The condition is a single math or logic formula is specified
which specifies a condition which results in a value or
logical value which can be mapped to only one of two
possible values: true or false. The action is a single math or
logical formula which specifies how the value of the
attribute is changed if the service is executed and the

US 2003/0167455 Al

condition is true. In other embodiments, only a single
formula that specifies the change to the attribute if the
service is executed is required.

[0126] The functional model is built in the preferred
embodiment by presenting a dialog box that allows the user
to choose a class, an attribute of that class and a service of
that class and then fill in one or more formula or logical
expressions (condition-action or only action) which controls
how the value of that attribute will be changed when the
service is executed. The important thing about this is that the
user be allowed to specify the mathematical or logical
operation which will be performed to change the value of the
attribute when the service is executed, and it is not critical
how the user interface is implemented. Any means to allow
a user to specify the class, the attribute of that class and the
service of that class and then fill in a mathematical or logical
expression which controls what happens to the specified
attribute when the service is executed will suffice to practice
the invention. Every one of these mathematical expressions
is referred to as a valuation. Every valuation has to have a
condition and action pair in the preferred embodiment, but
in other species, only an action need be specified. The
condition can be any well formed formula resulting in a
Boolean value which can be mapped to only one of two
possible conditions: true or false. The action specified in the
pair is any other well-formed mathematical and/or logical
formula resulting in a new value for the variable attribute,
said new value being of the attribute’s same data type (type
of data of action must be compatible with the type of data of
the attribute). This valuation formula can be only math-
ematical or only a Boolean logical expression or a combi-
nation of both mathematical operators and Boolean logical
expressions.

[0127] Regardless of the user interface used to gather data
from the user to define the valuations in the functional
model, all species within the genus of the invention of
generating functional models will generate a data structure
having the following content: data defining the valuation
formula which affects the value of each variable attribute
(the data that defines the valuation formula identifies the
service and the attribute affected and the mathematical
and/or logical operations to be performed and any operands
needed). This data structure can be any format, but it must
contain at least the above identified content.

[0128] To define the functional model, the following infor-
mation is declaratively specified by the SOSY modeler: how
every event changes the object state depending on the
arguments of the involved event, and the object’s current
state. This is called “valuation”.

[0129] In particular, the functional model employs the
concept of the categorization of valuations. Three types of
valuations are defined.:push-pop, state-independent and dis-
crete-domain based. Each type fixes the pattern of informa-
tion required to define its functionality.

[0130] Push-pop valuations are those whose relevant
events increase or decrease the value of the attribute by a
given quantity, or reset the attribute to a certain value.

[0131] State-independent valuations give a new value to
the attribute involved independently of the previous
attribute’s value.

[0132] Discrete-domain valuations give a value to the
attributes from a limited domain based on the attribute’s

Sep. 4, 2003

previous value. The different values of this domain model
the valid situations that are possible for the attribute.

[0133] To illustrate these features, TABLE 2 shows a
functional model for a “book number” attribute 344 of the
reader class 340, in a Conceptual Model representing a
typical library.

TABLE 2

CLASS: Reader ATTRIBUTE: book number CATEGORY: push-pop

Event Quantity Effect
loan() 1 Increase
Return() 1 Decrease

[0134] These valuations are categorized as a push-pop
because their relevant events increase or decrease the value
of the book_number attribute 344 by a given quantity (1). In
the example, its related event loan() has the increasing effect
and returns has the decreasing effect.

[0135] This categorization of the valuations is a contribu-
tion of one aspect of the present invention that allows a
complete formal specification to be generated in an auto-
mated way, completely capturing a event’s functionality

[0136] Accordingly, the functional model is responsible
for capturing the semantics of every change of state for the
attributes of a class. It has no graphical diagram. Textual
information is collected through an interactive dialog that
fills the corresponding part of the Information Structures
explained before. FIG. 5 illustrates an exemplary dialog for
receiving input for the functional model.

[0137] Presention Model

[0138] The presentation model is a set of pre-defined
concepts that can be used to describe user interface requi-
sites. These concepts arise from distilling and abstracting
repetitive scenarios in developing the user interfaces. These
abstractions of the repetitive scenarios are called patterns. A
set of patterns is called a pattern language.

[0139] In this sense, the presentation model is a collection
of patterns designed to reflect user interfaces requirements.
A pattern is a clear description of a recurrent problem with
a recurrent solution in a given restricted domain and giving
an initial context. The documented patterns abstract the
essence of the problem and the essence of the solution and
therefore can be applied several times to resolve problems
that match with the initial context and domain.The pattern
language is composed of a plurality of patterns. The present
invention is not limited to any particular list of patterns, but
the following is a brief description of some user interface
patterns that have been found to be useful: Service presen-
tation pattern, Instance presentation pattern, class population
presentation pattern, master-detail presentation pattern and
action Selection presentation pattern.

[0140] A service presentation pattern captures how a ser-
vice will enquire data to the final user. This patterns controls
the filling out of service arguments and contains actions to
launch the service or to exit performing no action. It is based
on other lower level patterns that refer to more specific
interface tasks like:

US 2003/0167455 Al

[0141] An introduction pattern that handles with restric-
tions to input data that must be provided to the system by the
final user (i.e., the user who employs the final application).
In particular, edit-masks and range-values are introduced,
constraining the values that can validly be input in the
interface. In this manner, the user-entry errors are reduced.
This pattern can be applied to arguments in services or to
attributes in classes to improve data input process through
validating input arguments.

[0142] A defined selection pattern that specifies a set of
valid values for an argument. When the input data items are
static, are a few, and are well known, the designer can
declare by enumeration a set containing such valid values.
This pattern is similar to those that define an enumerated
type and an optional default value. Accordingly, the final
user can only select an entry from the pre-specified set,
thereby reducing error prone input. For example, one rep-
resentation of this pattern could be a Combo-Box. This
pattern can be applied to arguments in services or to
attributes in classes to improve data input process.

[0143] A population selection pattern that handles the
situation of observing and selecting objects in a multiple
objects society. Specifically, this pattern contains a filter, a
display set, and an order criterion, which respectively deter-
mine how objects are filtered (Filter Expression), what data
is displayed (Display Set), and how objects are ordered
(Order Criteria). This pattern may be thought of as a SQL
Select statement with columns, where and order by clauses,
and can be applied to object-valuated arguments in services
whenever it is possible to select an object from a given
population of living objects.

[0144] A dependency pattern, that is a set of Event-
Condition-Action (ECA) rules allowing the specification of
dependency rules between arguments in services. When
arguments are dependent on others, these constraints use this
kind of rules.

[0145] A status recovery pattern, that is an implicit pattern
that recovers data from object attributes to initialize service
arguments. This can be modeled as an implicit set of
dependency patterns. For example, to change the data asso-
ciated of a Customer object, a form to launch the change
service appears. If the user provides the Customer OID
(Object Identifier), the interfaces can use this OID to search
the object and recover the data associated to the Customer,
such as name, telephone, address, etc.

[0146] A supplementary information pattern, that handles
with feedback data that must be provided to final users in
order to assure they choose or input the correct OID (object
identified) for an existent object. For example, to select a
Customer, an OID must be provided. If the name of the
Customer is automatically displayed as answer to an OID
input, the user receives a valuable feedback data that assures
him in selection or corrects the input data. The supplemen-
tary information pattern is applicable to object-valuated
arguments.

[0147] An argument grouping presentation pattern, that
captures how to group the requested service arguments
according to the user wishes.

[0148] An instance presentation pattern captures how the
properties of an object will be presented to the final user. In
this context, the user will be able to launch services or to

Sep. 4, 2003

navigate to other related objects. The instance presentation
pattern is a detailed view of an instance.

[0149] A class population presentation pattern captures
how the properties of multiple objects of one class will be
presented to the final user. In this context, once an object is
selected, the final user will be able to launch a service or to
navigate to other related objects. The objects can also be
filtered.

[0150] A master-detail presentation pattern captures how
to present a certain object of a class including other related
objects that may complete the full detail of the object. To
build this pattern the following patterns are used: instance
presentation, class population presentation and, recursively,
master-detail presentation. In this manner, multi-detail (mul-
tiples details) and multi-level master-detail (multiples levels
recursively) can be modeled. For example, one scenario
involves an invoice header followed by a set of invoice lines
related to the invoice.

[0151] An action selection pattern captures how the ser-
vices are going to be offered to final users following the
principle of gradual approach. This pattern allows, for
example, generating menus of application using a tree
structure. The final tree structure will be obtained from the
set of services specified in the classes of the Conceptual
Model. The user could launch services or queries (observa-
tions) defined in the Conceptual Model.

[0152] A Filter Expression is a well-formed formula that
evaluates to a Boolean type. This formula is interpreted as
follows: the objects that satisfy the formula pass the filter;
the ones that do not fulfill the condition do not pass the filter.
Consequently, the filter acts like a sift that only allows
objects that fulfill the formula to pass. These formulas can
contain parameters that are resolved at execution time,
providing values for the variables or asking them directly to
the final user. A filter pattern may be thought of as an
abstraction of a SQL where clause, and is applied in a
population selection pattern.

[0153] A Display Set is an ordered set of attributes that is
shown to reflect the status of an object. A Display Set may
be thought of as an abstraction of the columns in a SQL
clause, and is applied in a population selection pattern.

[0154] The Order Criterion is an ordered set of tuples that
contain: an attribute and an order (ascending/descending).
This set of tuples fixes an order criterion over the filtered
objects. An order criterion pattern may be thought of as an
abstraction of an order by SQL clause, and is applied in a
population selection pattern.

[0155] Formal Specification

[0156] The CASE tool 210, after presenting a user inter-
face for capturing system requirements 200, converts the
system requirements into a formal specification 215 in a
formal language having a syntax and semantics that are
known to the validator 220. Although the formal specifica-
tion 215 must be in a formal language, it need not be in a
known formal language, and any formal language including
newly invented formal languages will suffice. The only thing
that is necessary to practice the invention is that the syntax
and semantics of whatever formal language in which formal
specification 215 is written, the validator 220 must know
that syntax and semantics so that it may validate the formal

US 2003/0167455 Al

specification for completeness, mathematical and semantic
and syntactical correctness and lack of ambiguity. In par-
ticular the CASE tool 210 builds upon the previously
described models as a starting point and automatically
generates a corresponding formal and object-oriented speci-
fication 215, which acts as a high-level system repository. In
a preferred embodiment, the formal language being
employed is OASIS, in its version 2.2, published in October
1995 by the “Servicio de Publicaciones de la Universidad
Politecnica de Valencia” (legal deposit number: V-1285-
1995).

[0157] Conversion of captured system requirements 200
into a formal language specification 215 is a main feature of
one aspect of the invention: each piece of information
introduced in the conceptual modeling step has a corre-
sponding formal language counterpart, which is represented
as formal language statements having syntax and semantics
known to the validator. The graphical modeling environment
associated with one embodiment of the invention may be
thus viewed as an advanced graphical editor and composi-
tion tool to allow a SOSY modeler to graphically generate
images and data structures through a graphical user interface
which are then converted (on a real time basis) into a formal
language specification which may be validated.

[0158] As an example of syntax and semantics of formal
languages and how the validator 220 can validate such a
formal language specification, consider Table 3 below. Table
3 is a formal specification in the OASIS formal language of
the reader class of the hypothetical library management
application detailed above. TABLE 3 shows a formal speci-
fication 215 for the reader class that was automatically
obtained from the Conceptual Model:

TABLE 3

CONCEPTUAL SCHEMA library
domains nat,bool,int,date,string

class reader

identification

by__reader__code: (reader__code);
constant__attributes

age : String ;

reader__code : String

name : String ;

variable__attributes

book__count : Int

private__events

new__reader() new;

destroy__reader() destroy;

punish();

shared__events

loan() with book;

return() with book;

constraints

static book__count < 10;

valuation

[loan()] book__count= book_count + 1;
[return()] book count= book__count — 1;
preconditions

librarian:destroy__reader () if
book__number = 0 ;

triggers

Self :: punish() if book_count = 10;
process

reader = librarianmew__reader() reader0;
readerQ= librarian:destroy_ reader() +
loan () readerl;

readerl= if book__count=1 return() readerQ
+ (if book__count > 1 return()

Sep. 4, 2003

TABLE 3-continued

+ if book__count < 10 loan()) readerl;
end_ class

[0159] End Conceptual Schema

[0160] Consider the following statement from the high
level repository formal specification of Table 3:

[0161] [loan()] book count=book_count+1;

[0162] The semantics of this formal language statement
indicate by the () that loan is a service which performs the
mathematical computation represented by the equation out-
side the square brackets. This mathematical formula means
that the value of the attribute book_count will be incre-
mented by 1 when this service is executed. The formula
could be any other formula where one attribute is set equal
to the value of another attribute plus the value of some other
attribute or user input value. However, to be semantically
correct, an integer or floating point number cannot be added
to an alphanumeric string or any other type of attribute
which has no meaning when attempting to add it to an
integer or floating point number.

[0163] As another example of validation of the semantics
of the formal language specification, when an integer is
added to a floating point number, the result must be a
floating point number and not an integer.

[0164] Another example of validation of the semantics
involves verifying that for every attribute that has been
defined as a variable, there is a service which changes the
value of that attribute. Another example of semantic vali-
dation is verifying that for every constant attribute, there is
no service which attempts to change its value. Another
example of semantic validation is if a service “destroy”
erases or eliminates an attribute, it makes no sense to modify
the attribute after it no longer exists. The validator would
flag as an error any formal specification statement which
attempted to do so.

[0165] One of the functions of the validator is to check the
semantics of every statement to make sure that no math-
ematical formulas attempt to combine entities that are not
mathematically combinable, that combining different types
of numbers results in the correct type of output number, that
nothing gets divided by zero, and that other operations that
are mathematically undefined are not required by the formal
specification. Stated another way, one function of the vali-
dator is to make sure that every formula is well formed,
complete and consistent.

[0166] The validator has a number of rules stored in it that
are dependent upon the semantics and syntax of the formal
language in use. These rules are used to accomplish the
purpose of the validator 220. That purpose is to semantically
and syntactically validate every statement of every class
definition in the formal specification as well as verifying that
the interclass actions between any of the classes are seman-
tically meaningful and syntactically correct. Any process
which checks all the formal language statements in the
formal specification against at least the pertinent rules to
accomplish the above stated purpose will suffice. This can be
accomplished after iterative passes or all on one pass. As

US 2003/0167455 Al

long as this purpose is accomplished, the details of how it is
accomplished are not critical.

[0167] The meaning of the different sections that integrate
the formal description of the exemplary reader class speci-
fication is as follows. A class in OASIS is made up of a class
name “reader”, an identification function for instances
(objects) of the class, and a type or template that all the
instances share.

[0168] The identification function by_reader_code, char-
acterizes the naming mechanism used by objects and yields
a set of surrogates belonging to a predefined sort or to a sort
defined by the user (the so-called domains in OASIS). These
domains are imported in the class definition. The most usual
are predefined as int, nat, real, bool, char, string and date.
They represent numbers, boolean values, characters, strings
and dates in a particular format. New domains can be
introduced in a specification by defining the corresponding
abstract data type.

[0169] Atype is the template that collects all the properties
(structure and behavior) which are shared by all the potential
objects of the class being considered. Syntactically, the type
can be formalized as a signature, which contains sorts,
functions, attributes and events to be used, a set of axioms,
which are formulas in a dynamic logic, a process query as
a set of equations with variables of a sort process that are
solved in a given process algebra. When these variables are
instantiated, we have the ground terms that represent pos-
sible lives of instances (objects).

[0170] A class signature contains a set of sorts with a
partial order relation. Among this set of sorts is the sort of
interest (the class name) associated with the class being
defined. A class signature also contains a set of functions
including those functions included in the definition of the
(predefined) sorts and the identification function whose sort
is the ADT (Abstract Data Type) for identities implicitly
provided with a class specification. The identification func-
tion provides values of a given sort to identify objects in
order to assure that any object of a given class has a unique
identity. For specification purposes, an identification is intro-
duced mechanism comprising a declaration of one or more
key maps used as aliases for identifying objects. The key
maps are similar to the candidate key notion of the relational
model. From a given key value, these maps return an
associated object identity. Key maps will be declared as
(tuples of) constant attributes.

[0171] A class signature also contains a set of (constant,
variable, and derived) attributes, see constant_attributes and
variable_attributes sections in TABLE 3. These attributes all
have the sort of the class as domain, and the given sort
associated to the attribute being considered as codomain.

[0172] A set of events is also contained in the class
signature (see private events and shared events in TABLE 3),
with the sort of the class as the domain, plus any additional
sort representing event information, and with the sort of the
class (sort of interest) as the codomain. This so-called sort of
interest can be seen as a subsort of a general sort process
when objects are viewed as processes.

[0173] Each event occurrence is labeled by the agent that
is allowed to activate it. When dealing with this actor notion,
if the agent x initiates event a is written x:a and called an
action; x could be the environment or any object of a system

Sep. 4, 2003

class. In one embodiment, an event always is associated with
an agent. When defining an event, the designer is therefore
forced to state which agent will be able to activate it.
Consequently, a set A of actions may be defined and
obtained from and attached to the initial set of events.

[0174] In this way, the notion of the set of object services
can be represented as an interface that allows other objects
to access the state. The object services can be events (server
view) or actions (client view) depending on whether these
services are offered or requested. Actions become services
requested by an object, by which the object can consult or
modify states of other objects (or its own state).

[0175] In OASIS, there are the following kinds of
dynamic formulas (set of class axioms):start here

[0176] Evaluations are formulas of the form _[a] 'whose
semantics is given by defining a_function that, from a
ground action a returns a function between possible worlds.
In other words, being a possible world for an object any
valid state, the function determines which transitions
between object states are valid after the execution of an
action a. In the example,there are the following evaluations:

[0177] [loan()] book_count=book_count+1;
[0178] [returns()] book_count=book_count-1;

[0179] Within this dynamic logic environment, the formu-
la_isevaluated in s_W, and_'is evaluated in_(a), with_(a)
being the world represented by the object state after the
execution in s of the action considered.

[0180] Derivations are formulas of the type_— 'They
define derived attributes_'in terms of the given derivation
condition (stated in_).Derivations basically differ from the
evaluation formulas in that this derived evaluation is done in
a unique state.

[0181] Integrity constraints are formulas that must be
satisfied in every world. Static and dynamic integrity con-
straints may be distinguished. Static integrity constraints are
those defined for every possible world. They must always
hold. On the other hand, dynamic integrity constraints are
those that relate different worlds. They require the use of a
temporal logic, with the corresponding temporal logic
operators.

[0182] Preconditions are formulas with the template_[a]
false, where_is a formula that must hold in the world
previous to the execution of action a. Only in the worlds
where_holds,is a allowed to occur. If_holds, the occurrence
of a gives no state as successor. We have the following
precondition in the reader specification:

[0183] book number=0 [librarian:destroy_reader()]
false;

[0184] or, in a more convenient way for specification
purposes, we can write librarian:destroy_reader() if
book_number=0

[0185] Triggers are formulas of the form _[a]false,
where_a is the action negation. This formula means that a
does not occur, and what does occur is not specified.
If_holds and an action other than a occurs, then there is no
successor state. This forces a to occur or the system remains
in a blocked state. For instance, using the appropriate
dynamic formula where we include in the triggered service

US 2003/0167455 Al

information about the destination (according to the trigger
expressiveness presented when the object interaction dia-
gram 420 was introduced), we will declare:

[0186] book_count=10 [Self::punish()] false

[0187] This trigger may be written in an equivalent but
more conventional way for specification purposes as:

[0188] Self::punish() if book_count=10;

[0189] Thus, triggers are actions activated when the con-
dition stated in_holds.The main difference between precon-
ditions and triggers comes from the fact that in triggers there
is an obligation to activate an action as soon as the given
condition is satisfied. In this way triggers allow us to
introduce internal activity in the Object Society that is being
modeled.

[0190] In any of these dynamic formulas, _, ' are well-
formed formulas in a first order logic that usually refer to a
given system state characterized by the set of values
attached to attributes of objects in the state or world con-
sidered.

[0191] In OASIS, an object is defined as an observable
process. The process specification in a class allows us to
specify object dynamics and determines the access relation-
ship between the states of instances. Processes are con-
structed by using events as atomic actions. However, the
designer also has the choice of grouping events in execution
units, which are called transactions.

'

[0192] The molecular units that are the transactions have
two main properties. First, they follow an all-or-nothing
policy with respect to the execution of the involved events:
when a failure happens during a transaction execution, the
resultant state will be the initial one. Second, they exhibit the
non-observability of intermediate states.

[0193] We will finish this section introducing the process
specification of the reader class in TABLE 4:

TABLE 4

reader = librarian:new_ reader() -__reader_0;
reader_0 = librarian:destroy_reader() + loan()
-_reader__1;
reader__1 = if book_ count=1 return() - reader_0
+ (if book__count > 1 return()
+ if book__count < 10 loan()) -_reader_1;

[0194] The execution of processes are represented by
terms in a well-defined algebra of processes. Thus, possible
object lives can be declared as terms whose elements are
transactions and events. Every process can be rewritten to a
term in a basic process algebra BPA_, with the @ (sequence)
and+(alternative) process operations. This provides an
implementation of concurrence based on arbitrary interleav-
ing.

[0195] After having presented Conceptual Model and the
OASIS formal concepts associated with them in accordance
with one embodiment of the present invention, the mappings
will now be discussed that generate a textual system repre-
sentation 215 (that is a specification in OASIS) taking as
input the graphical information introduced in the Conceptual
Model. This formal specification 215 has in fact been
obtained using CASE tool 210, and constitutes a solid

Sep. 4, 2003

system documentation to obtain a final software product
which is compliant with the initial requirements, as repre-
sented in the source Conceptual Model.

[0196] According to the class template introduced in the
previous section, the set of conceptual patterns and their
corresponding OASIS representation.

[0197] The system classes are obtained from the object
model. For each class, there are a set of constant, variable or
derived attributes: a set of services, including private and
shared events and local transactions: integrity constraints
specified for the class: and derivation expressions corre-
sponding to the derived attributes. For a complex class
(those defined by using the provided aggregation and inher-
itance class operators), the object model also provides the
particular characteristics specified for the corresponding
complex aggregated or specialized class.

[0198] The information given by the object model basi-
cally specifies the system class framework, where the class
signature is precisely declared. The dynamic model uses two
kind of diagrams, the state transition diagram and the object
interaction diagram. From the state transition diagram, the
following are obtained: event preconditions, which are those
formulas labeling the event transitions: the process defini-
tion of a class, where the template for valid object lives is
fixed. From the object interaction diagram, two other fea-
tures of an OASIS class specification are completed: trigger
relationships and global transactions, which are those
involving different objects.

[0199] Finally, the functional model yields the dynamic
formulas related to evaluations, where the effect of events on
attributes is specified.

[0200] Having thus clearly defined the set of relevant
information that can be introduced in a Conceptual Model in
accordance with an embodiment of the present invention,
the formal specification 215 corresponding to the require-
ments 200 provides a precise system repository where the
system description is completely captured, according to the
OASIS object-oriented model. This enables the implemen-
tation process (execution model) to be undertaken from a
well-defined starting point, where the pieces of information
involved are meaningful because they come from a finite
catalogue of conceptual modeling patterns, which, further-
more, have a formal counterpart in OASIS.

[0201] Model Validation

[0202] Automatic software production of a complete,
robust application from a Conceptual Model to an imple-
mentation language (such as a third generation languages
like C, C++, or Java) requires the Conceptual Model to be
both correct and complete. In this section, the terms “cor-
rect” and “complete” have the following meanings depen-
dent on the specific needs for the automated software
production process system as:

[0203] A Conceptual Model is “complete” when there is
no missing information in the requirements specification. In
other words, all the required properties of the Conceptual
Model are defined and have a value. This means that every
concept introduced during the modeling process will be fully
specified in all its properties or the validator will reject it.

[0204] A Conceptual Model is “correct” when the infor-
mation introduced in the Conceptual Model is syntactically

US 2003/0167455 Al

and semantically consistent and not ambiguous. In other
words, all the properties defined in the Conceptual Model
have a value and that value is valid.

[0205] There is a partial validation process each time an
element is added, modified or deleted to the Conceptual
Model and is converted to a portion of the formal specifi-
cation. During the partial validations that occur as elements
are added, modified and deleted, no error messages are
generated (because that would driver the modeler crazy), but
portions of the Formal Specification are marked as rendered
invalid by changes that have been made. When the Concep-
tual Model is completed, the SOSY modeler requests full
validation. At this point, every statement and formula in the
Formal Specification is revalidated, and error messages and
warnings are generated for any element which is syntacti-
cally or semantically incomplete or incorrect or ambiguous.

[0206] Referring back to FIG. 2, the wvalidator 220
receives as input the formal specification 215 of the Con-
ceptual Model using an Object-Oriented Formal Specifica-
tion Language (such as OASIS) as high level data repository.
From a formal point of view, a validated OASIS specifica-
tion 215 is correct and complete because the specification
215 is formally equivalent to a dynamic logic theory, using
a well-defined declarative and operational semantics.

[0207] Formal specification languages benefit from the
ability of formal environments to ensure that formal speci-
fications 215 are valid or can be checked to be valid. Formal
languages define a grammar that rules language expressive-
ness.

[0208] Two procedures are used for Conceptual Model
validation. For completeness, validation rules are imple-
mented by directly checking the gathered data for the
Conceptual Model, e.g., a class must have name, one
attribute being its identifier and one service. Completeness
of the formal language specification of the Conceptual
model, as checked by the validation process. means that: 1)
there is no missing information in the formal specification
detailing the requirements the code must meet: 2) stated in
another way, all the required properties of the Conceptual
Model encoded in the formal language specification are
defined and they have a value. Correctness of the formal
language specification of the Conceptual model, as checked
by the validation process, means that: 1) when the state-
ments in the formal language specification of the Conceptual
model are both syntactically and semantically consistent and
not ambiguous: 2) stated in another way, all the properties
introduced in the conceptual model have a valid value. For
correctness, an extended formal specification language
grammar (syntax plus semantics) is implemented in order to
validate the syntax and meaning of all the formulas in the
Conceptual Model.

[0209] Correctness

[0210] More specifically, for completeness, the validtor
functions to ensure that all the elements in a formal speci-
fication language have a set of properties that both exist and
have a valid value. Most of the properties are strictly
implemented to have a full definition and valid values.
However, the CASE tool 210 allows, for easy of use during
a model inputting, to leave some properties incomplete or
with invalid values. These properties will be checked by the
validator 220 to be complete (and correct) prior to any
automatic software production process.

Sep. 4, 2003

[0211] The elements which are used to validate a Concep-
tual Model are described next. For each element it is stated
if validation will be strict (e.g. when all his properties have
to exist and must have a valid value at creation time) or
flexible (e.g. validation will be accomplished at a later time).
Some properties are optional, (e.g. that may not exist) but if
they are iffy defined, they must be validated. These elements
are given in TABLE 5:

TABLE 5
Class
Name. Strict
ID function Flexible
Attributes (at least one) Flexible
Services (at least Create service). Flexible
Static and Dynamic Integrity Constraints (optional)
Their formula Strict
Attribute
Name. Strict
Type (Constant, Variable, Derived). Strict
Data-type (Real, integer, etc). Strict
Default Value. Strict
Size (if proceeds) Strict
Request in Creation service. Strict
Null value allowed. Strict
Evaluations (variable attributes). Flexible
Derivation formula (derived attributes). Flexible
Evaluation
One variable attribute of a class Strict
One service of the same class Strict
Condition (optional). Strict
Formula of evaluation. Strict
Derivation
Formula. Strict
Condition (optional). Strict
Service
Name. Strict
Arguments.
argument’s name Strict
data-type Strict
default value (optional) Strict
null value Strict
size (if proceeds) Strict
For a transaction, its formula. Flexible
Preconditions of an action
Formula. Strict
Agents affected by condition Strict
Relationship: Aggregation
Related classes (component & composite) Strict
Relationship name. Strict
Both directions Role names. Strict
Cardinality. Strict
Inclusive or referential. Strict
Dynamic. Strict
Clause “Group By” (Optional). Strict
Insertion and deletion events (if proceed) Strict
Relationship: Inheritance
Related classes (parent & child) Strict
Temporal (versus permanent) Strict
Specialization condition or events Strict
Relationship: Agent
Agent class and service allowed to activate. Strict
State Transition Diagram (STD)
All states of class (3 at least). Flexible
State in STD
Name. Strict
Transition in STD
Estate of origin. Strict
Estate of destination. Strict
Service of class. Strict
Control condition (optional). Strict
Trigger
Condition. Strict
Class or instance of destination. Strict
Target (self, object, class) Strict
Activated service. Strict

US 2003/0167455 Al

TABLE 5-continued

Service arguments’ initialization (Optional)
Arguments’ values
Global Interactions
Name.
Formula.
User exit functions
Name.

Return data-type
Arguments, (Optional)
Argument’s name

Argument’s data-type

Strict

Strict
Strict

Strict
Strict

Strict
Strict

[0212] Some properties of components in formal specifi-
cation languages are “well formed formulas™ that follow a
well defined syntax. It is therefore, a requirement to ensure
that all introduced formulas in the Conceptual Model were
both syntactical and semantically correct.

[0213] Not all formulas used in the Conceptual Model
have the same purpose. Therefore, there will be several types
of formulas. Depending of formula’s type, the use of certain
operators and terms (operands, like: constants, class
attributes, user-functions, etc.) are allowed. A process and a
set of rules in grammar to validate every type of formula in
the Conceptual Model also exists.

[0214] More specifically, the Conceptual Model includes
formulas of the following types as shown in TABLE 6:

TABLE 6

Default Value Calculation of
Class Attributes (Constant and Variable)
Service and Transaction Arguments
Inheritance: Specialization condition
Static and Dynamic Integrity Constraints
Derivations and Valuations:
Calculation formula
(Derived or Variable attributes respectively)
Conditions (optional)
Preconditions for actions (Services or Transactions)
Control Conditions for transitions in State Transitions Diagram
Triggering conditions
Local and Global Transactions formulas

[0215] These formulas are validated at the time they are
introduced, by preventing the designer from leaving an
interactive textual dialog if formula is not syntactically and
semantically correct.

[0216] In general, every formula must be syntactically
correct; every class must have an identification function;
every class must have a creation event; every triggering
formula must be semantically correct (e.g. self triggers to an
unrelated class are forbidden); and every name of an aggre-
gation must be unique in the conceptual schema. If these
conditions are not satisfied, then an error is raised.

[0217] A warning may be raised, on the other hand, if any
of the following do not hold: every class should have a
destroy event; every derived attribute should have at least a
derivation formula; every service should have an agent
declared to execute it; and every argument declared in a
service should be used.

[0218] WValidation process will also be invoked every time
the designer performs a change into the model that may

17

Sep. 4, 2003

invalidate one or more formulas. As mentioned earlier, for
ease of use, certain type of formulas are allowed to be
incorrect, which the designer will have to review at a later
time. The automatic software production process in accor-
dance with one embodiment of the present invention, how-
ever, will not continue to code generation, if not all the
formulas are correct. Each time the designer introduces a
modification in the Conceptual Model specification, all
affected formulas will be checked. As a result, the following
cases may happen:

[0219] 1. If any of the affected formulas makes
reference to a “Strict” property, the change will be
rejected. An error will be raised to inform the
designer.

[0220] 2. If none of the affected formulas references
a “Strict” property, modification to Conceptual
Model will be accepted. An action-confirmation dia-
log is showed before any action is taken.

[0221] 3.If there is no affected formula, modification
is performed straightaway. In order to validate the
user interface information, the validator 220 checks
the following for errors: the patterns defined must be
well constructed with no essential information lack-
ing; the attributes used in filters must be visible from
the definition class; the attributes used in order
criteria must be visible from the definition class; the
formula in a filter must be a well-formed formula
using the terms defined in the model; the action
selection pattern must use as final actions objects
defined in the Conceptual Model; and the set of
dependency patterns must be terminal and have
confluence. Warnings may be generated under the
following conditions: if a pattern is defined but not
used (applied), if an instance pattern is duplicated.

[0222] Automatic software production from Conceptual
Models requires these Conceptual Models to be correct and
complete. Applying the characteristics and properties of
formal specification languages makes it possible to effec-
tively validate a Conceptual Model. The validation process
is based on the grammar defined by the formal specification
language, and partial validation is to be invoked any time the
designer introduces modifications to the Conceptual Model
specification. Prior to any automatic software production
process, Conceptual Model will be validated in a full vali-
dation as a pre-requisite.

[0223] Working Example of How to Use the Invention to
Create a Conceptual Model for a Software Program to
Manage Expense Reporting by Employees, Expense Report
Approvals and Payments

[0224] Requirements: The Problem to be Managed by the
Computer Program to be Automatically Generated

[0225] The system will manage the expense reporting of
employees, expense approvals and payments.

[0226] Expenses will reflect both: pattern currency and its
equivalent to other currency. Expense line for user input of
an expense will only allow input in the pattern currency.

[0227] Employees may present an expense report when
they have supported expenses on behalf of the company.
Typically, the expenses are associated to a certain project or
specific task.

US 2003/0167455 Al

[0228] At presenting the expense report, supporting tickets
and receipts will be attached and prior expense advances
will be reflected. Advances must be discounted out from the
expense report balance.

[0229] The expense report, once presented, must be autho-
rized by a manager responsible for payment of expenses.
The authorization process will allow rejection of the
expenses if there is the appearance of impropriety.

[0230] Once authorized, the expense report will be
approved for payment by a person in accounting responsible
for writing checks. Once paid, it will be marked as so.

[0231] The Procedure will be as follows:

[0232] Prior to any expense, the employee may
request money in advance. This will not be reflected
in the Expenses Management System program to be
written.

[0233] The employee will provide receipts for all
expenses and advances to the system operator (may
be himself). It will include explanations for expenses
when required.

[0234] Once all the expenses are entered, the
employee will issue the expense report thereby clos-
ing the expenses report. Then the expense report will
be in a status of pending approval.

[0235] A person responsible for expenses will autho-
rise the expense report if the expenses appear legiti-
mate, and the expense report will transition to a state
pending payment. If the report is not approved, it
will be rejected with a comment indicating why it
has been rejected. The expenses report will be then
put back in an open status to be modified.

[0236] Accounts payable will approve the payment.
Once approved, the expense report will be marked as
paid and locked. Only accounts payable will be able
to unlock the expense reports in case of error.

[0237] Once the payment has been done, the
Expenses Report is marked as paid indicating date
and payment media. If balance was debit, i.e.,
advances were bigger that expenses, a warning mes-
sage will require confirmation of payment.

[0238] Detailed Information to be Captured
[0239] Expense:

[0240] Header and footer: General information of the
Expense.

[0241] Employee: Code and Name.

[0242] Trip cause, visit to or general expense cause.
[0243] Project to charge expenses to.

[0244] Total advanced amount. Both currencies
[0245] Total expenses. Both currencies

[0246] Balance. Both currencies

[0247]
[0248]
[0249]

Date of Expenses Report issuing.
Expenses approval date.

Payment date and media.

Sep. 4, 2003

[0250] Payment comments, if paid.
[0251] Rejection cause, if rejected.
[0252] Expense Line:
[0253] Each line details a certain expense.
[0254]
[0255] Expense date.

Including:

[0256] Expense Type: (Car usage in Km, allowance,
etc.) Some expense types will have a fixed price,
some will perform a calculation, other will let opera-
tor to include the amount from figures on ticket or
receipt.

[0257] Units. The meaning will depend on expense
type. Some types will not allow operator to use this.

[0258] Prize to apply. Prize per unit in pattern cur-
rency. Depends on expense type.

[0259] Expense description.
[0260] Expense Line total. Both currencies

[0261] Employee:

[0262] Employee code. This must be unique in the system.
[0263] Name and First name

[0264] Site, phone numbers, email.

[0265]

[0266] The results of any search in the application may be
considered as a report so it must be possible to be printed as
well as exported to Office tools like Word, Excel. It would
be desirable to be ordered by any column while it is in the
screen and exported or printed in that order.

Querying and Reporting Facilities:

[0267] The Expense Reports will be selected under any of
the following criteria or a combination of them: by project,
employee, issuing date, authorization date and payment
date. Dates searching facilities will be better introduced as
a period.

[0268] The Expense Report will show the following infor-
mation:

[0269] Project

[0270] Employee name
[0271] Status

[0272] Approval Date
[0273] Paid

[0274] Payment Date
[0275] Total expenses
[0276] Balance

[0277] The Expense Report will be printed under specific
format including the Expense lines.

[0278] Employees will allow to be searched by a combi-
nation of any data contained in Employee definition.

[0279] Modelling with SOSY Modeller

[0280] Phase 1: Classes identification. The process of
class identification is a process of finding relevant entities

US 2003/0167455 Al

that will hold the System information. These will be
obtained from Requirements definition above defining what
the program to be written must be able to do. The following
chart has class identifications underscored:

[0281] The system will manage the expense reporting
of employees, expense approvals and payments.

[0282] Expenses will reflect both: pattern currency
and its equivalent to other currency. Expense line
will only allow input in pattern currency.

[0283] Employees may present an expense report
when they have supported expenses on behalf of the
company. Typically, the expenses are associated to a
certain project or specific task.

[0284] At presenting the expense report, associated
tickets or receipts will be attached and advances will
be reflected. Advances must be discounted out from
the expense report balance.

[0285] The expense report, once presented, must be
authorized by a person responsible for the expenses.
The authorization process will allow rejection of the
expenses if necessary.

[0286] Once authorized, the expense report will be
approved for payment by a person responsible for
accounting, Once paid, it will be marked as paid.

[0287] The Procedure will be as follows:

[0288] Prior to any expense, the employee may request
money in advance. This will not be reflected in the Expenses
Management System program.

[0289] The employee will provide all expenses and
advances tickets to the system operator (may be
himself). It will include explanations for expenses
when required.

[0290] After entering expenses in the system, the
employee will issue the expense report closing the
expenses report. Then it will be pending approval
status.

[0291] A responsible of expenses (employee’s man-
ager) will authorise the expense report if the
expenses appear legitimate, and it will thereafter be
in a pending payment status. If no approval is
granted, the expense report will be rejected with a
comment indicating why it has been rejected. The
expenses report will then be set back to an open
status to be modified.

[0292] Payments responsible (an accounts payable
person) will approve the payment. Once approved,
the expense report will be marked as paid and
locked. Only payments responsible will be able to
unlock the expenses reports in case of error.

[0293] Once the payment has been done, the
Expenses Report is marked as paid indicating date
and payment media. If balance was debit, advances
were bigger that expenses, a warning message will
require confirmation of payment.

Sep. 4, 2003

[0294] Detailed Information to be Captured
[0295] Expense:

[0296] Header and footer: General information of the
Expense.

[0297]
[0298]
[0299]
[0300]
[0301]
[0302]
[0303]
[0304]
[0305]
[0306]
[0307]

[0308] Expense Line:

[0309] Each line details a certain expense.

[0310]
[0311] Expense date.

[0312] Expense Type: (Car usage in Km, allowance,
etc.) Some expense types will have a fixed price,
some will perform a calculation, other will let opera-
tor to include the amount as figures in ticket.

Employee: Code and Name.

Trip cause, visit to or general expense cause.
Project to charge expenses to.

Total advanced amount. Both currencies
Total expenses. Both currencies

Balance. Both currencies

Date of Expenses Report issuing.

Expenses approval date.

Payment date and media.

Payment comments, if proceeds.

Rejection cause, if proceeds.

Including:

[0313] Units. The meaning will depend on expense
type. Some types will not allow operator to use this.

[0314] Prize to apply. Prize per unit in pattern cur-
rency. Depends on expense type.

[0315] Expense description.

[0316] Expense Line total. Both currencies
[0317]
[0318]
[0319]
[0320]
[0321]

[0322] The results of any search in the application may be
considered as a report so it must be possible to be printed as
well as exported to Office tools like Word, Excel. It would
be desirable to be ordered by any column while it is in the
screen and exported or printed in that order.

[0323] The Expense Reports will be selected under the
following criteria or a combination of them: by project,
employee, issuing date, authorization date and payment
date. Dates searching facilities will be better introduced as
a period.

Employee:

Employee code. This must be unique in the system.
Name and First name

Site, phone numbers, email.

Querying and Reporting facilities:

[0324] The Expense Report will show the following infor-
mation:

[0325] Project
[0326] Employee name

US 2003/0167455 Al

[0327] Status

[0328] Approval Date
[0329] Paid

[0330] Payment Date
[0331] Total expenses
[0332] Balance

[0333] The Expense Report will be printed under specific
format including the Expense lines.

[0334] Employees will allow to be searched by a combi-
nation of any data contained in Employee definition.

[0335] FIG. 9A is a screenshot of the dialog box to create
the class which simply involves giving it a name.

[0336] FIG. 9B is screenshot of a graphic interface box
showing the classes that have been defined to store the
pertinent information and provide the pertinent services to
implement a computer program that meets the above defined
requirements. Defining these classes starts the process of
building the Formal Specification in the high level reposi-
tory.

[0337] FIG. 9C is a screenshot of the dialog box to modify
the properties of an aggregation relationship between any
two classes specified in the dialog box. Both inheritance and
aggregation relationships have to have been previously
created using a dialog box similar to FIG. 9A.

[0338] Phase 2: Relationships between classes. This pro-
cess involves finding Aggregations and Inheritances includ-
ing their properties.

[0339] The following chart will underscore these relation-
ships:

[0340] The system will manage the expense reporting
of employees, expense approvals and payments.

[0341] Expenses will reflect both: pattern currency
and its equivalent to other currency, Expense line
will only allow input in pattern currency.

[0342] Employees may present an expense report
when they have supported expenses on behalf of the
company. Typically, the expenses are associated to a
certain project or specific task.

[0343] At presenting the expense report, associated
tickets or receipts will be attached and advances will
be reflected. Advances must be discounted out from
the expense report balance.

[0344] The expense report, once presented, must be
authorized by a responsible of the expenses (employ-
ees manager typically). The authorization process
will allow rejection of the expenses if necessary.

[0345] Once authorized, the expense report will be
approved for payment by a responsible of accounting, Once
paid, it will be marked as so.

[0346] The Procedure will be as follows:

[0347] Prior to any expense, the employee may
request money in advance. This will not be reflected
in the Expenses Management System.

20

Sep. 4, 2003

[0348] The employee will provide all expenses and
advances tickets to the system operator (may be
himself). It will include explanations for expenses
when required.

[0349] Once introduced the information in the sys-
tem, the employee will issue it closing the expenses
report. Then it will be pending to be approved.

[0350] A responsible of expenses will authorise the
expenses if proceeds and it will be pending to be
payment approved. If not, it will be rejected with a
comment indicating why it has been rejected. The
expenses report will be then back open to be modi-
fied.

[0351] Payments responsible will approve the pay-
ment. Once approved, it will lock to be marked as
paid. Only payments responsible will be able to
unlock the expenses reports back in case of error.

[0352] Once the payment has been done, the
Expenses Report is marked as paid indicating date
and payment media. If balance was debit, advances
were bigger that expenses, a warning message will
require confirmation of payment.

[0353] Detailed Information to be captured
[0354] Expense:

[0355] Header and footer: General information of the
Expense.

[0356]
[0357]
[0358]
[0359]
[0360]
[0361]
[0362]
[0363]
[0364]
[0365]
[0366]
[0367] Expense Line:

Employee: Code and Name.

Trip cause, visit to or general expense cause.
Project to charge expenses to.

Total advanced amount. Both currencies
Total expenses. Both currencies

Balance. Both currencies

Date of Expenses Report issuing.

Expenses approval date.

Payment date and media.

Payment comments, if proceeds.

Rejection cause, if proceeds.

[0368] Each line details a certain expense.
[0369]
[0370] Expense date.

[0371] Expense Type: (Car usage in Km, allowance,
etc.) Some expense types will have a fixed price,
some will perform a calculation, other will let opera-
tor to include the amount as figures in ticket.

Including:

[0372] Units. The meaning will depend on expense
type. Some types will not allow operator to use this.

[0373] Prize to apply. Prize per unit in pattern cur-
rency. Depends on expense type.

[0374] Expense description.
[0375] Expense Line total. Both currencies

US 2003/0167455 Al

[0376] Employee:

[0377] Employee code. This must be unique in the system.
[0378] Name and First name

[0379] Site, phone numbers, email.

[0380] Querying and Reporting Facilities:

[0381] The results of any search in the application may be

considered as a report so it must be possible to be printed as
well as exported to Office tools like Word, Excel. It would
be desirable to be ordered by any column while it is in the
screen and exported or printed in that order.

[0382] The Expense Reports will be selected under the
following criteria or a combination of them: by project,
employee, issuing date, authorization date and payment
date. Dates searching facilities will be better introduced as
a period.

[0383] The Expense Report will show the following infor-
mation:

[0384] Project

[0385] Employee name
[0386] Status

[0387] Approval Date
[0388] Paid

[0389] Payment Date

[0390]
[0391]

Total expenses
Balance

[0392] The Expense Report will be printed under specific
format including the Expense lines.

[0393] Employees will allow to be searched by a combi-
nation of any data contained in Employee definition.

[0394] No inheritance relationship used in this model.

[0395] FIG. 10 is a dialog box to create the relationships
between specified classes and which graphically shows the
relationships so created and all the properties of those
relationships.

[0396] Phase 3: Filling in all classes’ details. This process
involves dentifying attributes, services and integrity con-
straints for each class. We will focus in Expense class, mark
attributes by underscore and mark services in italics.

[0397] The system will manage the expense reporting of
employees, expense approvals and payments.

[0398] Expenses will reflect both: pattern currency and its
equivalent to other currency. Expense line will only allow
input in pattern currency.

[0399] Employees may present an expense report when
they have supported expenses on behalf of the company.
Typically, the expenses are associated to a certain project or
specific task.

[0400] At presenting the expense report, associated tickets
will be attached and advances will be reflected. Advances
must be discounted out from the expense report balance.

21

Sep. 4, 2003

[0401] The expense report, once presented, must be autho-
rized by a responsible of the expenses. The authorization
process will allow reject the expenses if necessary.

[0402] Once authorized, the expense report will be
approved for payment by a responsible of accounting, Once
paid, it will be marked as so.

[0403] The Procedure will be as follows:

[0404] Prior to any expense, the employee may
request money in advance. This will not be reflected
in the Expenses Management System.

[0405] The employee will provide all expenses and
advances tickets to the system operator (may be
himself). It will include explanations for expenses
when required.

[0406] Once introduced the information in the sys-
tem, the employee will issue it closing the expenses
report. Then it will be pending to be approved.

[0407] A responsible of expenses will authorise the
expenses if proceeds and it will be pending to be
payment approved. If not, it will be rejected with a
comment indicating why it has been rejected. The
expenses report will be then back open to be modi-
fied.

[0408] Payments responsible will approve the payment.
Once approved, it will lock to be marked as paid. Only
payments responsible manager will be able to unlock the
expenses reports in case of error.

[0409] Once the payment has been done, the Expenses
Report is marked as paid indicating date and payment media.
If balance was debit, advances were bigger that expenses, a
warning message will require confirmation of payment.

[0410] Detailed Information to be Captured
[0411] Expense:

[0412] Header and footer: General information of the
Expense.

[0413] Employee: Code and Name.

[0414] Trip cause, visit to or general expense cause.
[0415] Project to charge expenses to.

[0416] Total advanced amount. Both currencies
[0417] Total expenses. Both currencies

[0418] Balence. Both currencies

[0419] Date of Expenses Report issuing.

[0420] Payment date and media.

[0421] Payment comments, if proceeds.

[0422] Rejection cause, if proceeds.

[0423] Expense Line:

[0424] Each line details a certain expense.

[0425]
[0426] Expense date.

Including:

[0427] Expense Type: (Car usage in Km, allowance,
etc.) Some expense types will have a fixed price,

US 2003/0167455 Al

some will perform a calculation, other will let opera-
tor to include the amount as figures in ticket.

[0428] Units. The meaning will depend on expense
type. Some types will not allow operator to use this.
Prize to apply. Prize per unit in pattern currency.
Depends on expense type.

[0429] Expense description.
[0430] Expense Line total. Both currencies
[0431] Employee:

[0432] Employee code. This must be unique in the
system.

[0433] Name and First name
[0434] Site, phone numbers, email.
[0435] Querying and Reporting facilities:

[0436] The results of any search in the application may be
considered as a report so it must be possible to be printed as
well as exported to Office tools like Word, Excel. It would
be desirable to be ordered by any column while it is in the
screen and exported or printed in that order.

[0437] The Expense Reports will be selected under the
following criteria or a combination of them: by project,
employee, issuing date, authorization date and payment
date. Dates searching facilities will be better introduced as
a period.

[0438] The Expense Report will show the following infor-
mation:

[0439] Project

[0440] Employee name
[0441] Status

[0442] Approval Date
[0443] Paid

[0444] Payment Date
[0445] Total expenses
[0446] Balance

[0447] The Expense Report will be printed under specific
format including the Expense lines.

[0448] Employees will allow to be searched by a combi-
nation of any data contained in Employee definition.

[0449] FIG. 11 is comprised of FIG. 11(A) and FIG. 11B.
FIG. 11(A) shows the dialog box used to define the
attributes for the Expense class with their properties. This
dialog box is used to define whether each attribute is
constant, variable or derived, the type of data it contains and
other things. FIG. 11B is the dialog box used to fill in the
formulas used for derivation of the values of attributes of
classes from the values of other attributes. The difference
between the derivation formulas and the formulas defined in
the functional model dialog box is that the formulas defined
using the functional model dialog box change the values of
attributes when services are performed while derivation
formulas change the value of attributes only when the values
of the other attributes used in the derivation formula change.
That is, the formulas defined using the functional model

Sep. 4, 2003

relate services to the values of attributes they operate upon.
Formulas defined by the derivation dialog box relate the
value of one or more attributes to the values of other
attributes.

[0450] Note that some services force the existence of an
attribute. Note also that items above that seem to the reader
to be attributes probably are attributes but not for the
expense class and therefore were not marked.

[0451] The value of some attributes depends on the value
of other attributes of the class Expense. These attributes are
called Derived. For example the attribute Balance is derived
from the attributes Total Expenses and Total Advances and
has the formula: Balance=Total expenses—Total Advances,
as illustratrated in FIG. 11(B) which is a dialog box in which
the formula to derive this attribute is defined by the mod-
eller.

[0452] We will model the status of a expense report
according to the marked situations with one attribute called
“Status” which has arbitrarily decided possible values of:
0=Open (modifying the expense report), 1=Closed (pending
to be authorized), 2=Authorized (pending to be approved),
3=Rejected (not authorized), 4=Payment pending (payment
approved but not paid), 5=Payment Rejected (not allowed to
be paid) and 6=Paid (the expense has been paid)

[0453] FIG. 1 shows a dialog box which a SOSY modeler
uses to define the services of the Expense class with their
arguments.

[0454] Single services detected, known as events:

[0455] newexpense: Allows to create a new Expense
Report. It’s a special service marked as “New” event.

[0456] delexpense: Allows to delete an existing
Expense Report. It’s a special service marked as
“Destroy” event.

[0457] modify: Allows to change some data of an
existing Expense Report. It will change the value of
the attributes Cause, Advances and Exchange.

[0458] eclose: Mark an existing Expense Report as
ready to authorize.

[0459] authorize: Mark an existing Expense Report
as authorized and ready to be approved.

[0460] approve: Mark an existing Expense Report as
approved for payment.

[0461] pay: Mark an existing Expense Report as paid
indicating the date and optional comments.

[0462] rejectautho: Reject the authorization for an
existing Expense Report marking it as “Rejected”
with optional comments.

[0463] rejectpayment. Reject the payment for an
existing Expense Report with optional comments

[0464]

[0465] Complex services detected, marked as local trans-
actions:

[0466] TNEW: Create an new Expense Report. It will
use the “newexpense” event, that will be marked as
internal (the interface will not offer the service
marked as “internal”). This service has not be

cancelapprove: Unlocks the expenses report

US 2003/0167455 Al

expressed in Requirements but it’s necessary accord-
ing to the aggregation relationship with the “Pay-
mentType” class. The properties of this relationship
allows to “New” event to set the relationship with
“PaymentType”, it has no sense until it has been
paid. Encapsulating the “New” event we can set the
value of this relatioship to Null.

[0467] DELETEALL: Delete an existing Expense
Report and all its lines. It will use the “deleteex-
pense” event, that will be marked as internal (the
interface will not offer the service marked as “inter-
nal”). This service has not be expressed in Require-
ments but it’s necessary according to the aggregation
relationship with the “Expenseline” class. The prop-
erties of this relationship express that an existing
Expense Report can not be delete while having lines.

[0468] TPAY: According to the requirement “Once
the payment has been done, the Expenses Report is
marked as paid indicating date and payment media”
we need to encapsulated several services.

[0469] FIG. 13 is a screenshot of the dialog box used to
create one formula in a local transaction carried out by a
composed service (single services are called events, and
composed services are called local transactions).

[0470] FIG. 14 a dialog box used by the modeler to enter
the integrity constraint formula and error message text of
“Expense” class.

[0471] 1t’s obvious, the value of the attribute “Exchange”
always must be greater than zero. FIG. 14 is a screenshot of
the dialog box the SOSY modeler uses to define the formula
that encodes the integrity constraint and the corresponding
eITor message.

[0472] Phase 4: Express evaluations. During this phase,
one or more dialog boxes are presented to the SOSY
modeler wherein he or she expresses evaluations of what
will be the effect of all event for each variable attributes of
each class.

[0473] This is the process of building the functional model
portion of the Conceptual Model. The value change of an
attribute when an event happens is known as “evaluation”.

[0474] FIG. 15 is a dialog box to enter the functional
model formulas that define evaluation of the attribute
“cause” with the “modify” event (an event is a single
service). The functional model relates services mathemati-
cally through well-formed formulas to the values of
attributes these services act upon. Note that at box 724, the
SOSY modeler has not filled in an evaluation formula that
could be encoded in the final code to do a calculation to
change the value of “cause” when the modify event occurs.
Instead, as seen from box 726, the value of “cause” will be
changed to whatever the value of the argument “p_cause” of
the event “modify” when “modify” is executed.

[0475] Phase 5: Agent relationships. A big benefit of our
Modeler is that the users of the system are part of it. Users
are active objects (request services of other classes) and the
different “profiles”, i.e., users, are represented as agent
classes. We must express which services of any class can be
executed by every “profile”. Also, we must express the
visibility of class attributes for every “profile” so that the

23

Sep. 4, 2003

object system view can be presented properly by the user
interface when the user logs in

[0476] FIG. 16 is a dialog box which can be used by the
SOSY modeller to establish the services the user “accoun-
tuser” can access and the visibility of class attributes for this
user on the user interface.

[0477] Phase 6: State transition diagram. It’s required for
proper construction of the Conceptual Model to express the
correct life cycle for every class of the model, indicating the
correct order of execution for all the class services. Also, we
can express conditions that must be satisfied in order to
allow the execution of a service, which are called “precon-
ditions”.

[0478] FIG. 17 is one of the two graphical user interface
diagrams of the dynamic model on which the SOSY modeler
has drawn a graphic illustrating the state transitions for the
“expense” class. Each state in the state transition diagram
represents a valid state for the object and represents one of
the “valid lives” and really is one of the unseen attributes of
the expense class. An object can only enter one of the
displayed states if the corresponding service has been
thrown to transition to it from a previous state.

[0479] According to last paragraph of the Procedure in the
requirements, if the Advances are greater 25 than total
expenses, the system must force the confirmation of the
account user. It is expressed as a precondition in the “TPAY”
transaction. FIG. 18 is a dialog box used by the SOSY
modeler to establish this precondition.

[0480] Phase 7: Presentation Model. Finally, we can com-
plete the Conceptual Model with the user interface require-
ments. We focus on Expense class. The following chart will
mark by underscore the set of attributes to be displayed and
will mark the searching criteria by setting them off in italics

[0481] The system will manage the expense reporting of
employees, expense approvals and payments.

[0482] Expenses will reflect both: pattern currency and its
equivalent to other currency. Expense line will only allow
input in pattern currency.

[0483] Employees may present a expense report when
they have supported expenses on behalf of the company.
Typically, the expenses are associated to a certain project or
specific task.

[0484] At presenting the expense report, associated tickets
will be attached and advances will be reflected. Advances
must be discounted out from the expense report balance.

[0485] The expense report, once presented, must be autho-
rized by a responsible of the expenses. The authorization
process will allow reject the expenses if proceed.

[0486] Once authorized, the expense report will be
approved for payment by a responsible of accounting, Once
paid, it will be marked as so.

[0487] The Procedure will be as follows:

[0488] Prior to any expense, the employee may
request money in advance. This will not be reflected
in the Expenses Management System.

[0489] The employee will provide all expenses and
advances tickets to the system operator (may be
himself). It will include explanations for expenses
when required.

US 2003/0167455 Al

[0490] Once introduced the information in the sys-
tem, the employee will issue it closing the expenses
report. Then it will be pending to be approved.

[0491] A responsible of expenses will authorise the
expenses if proceeds and it will be pending to be
payment approved. If not, it will be rejected with a
comment indicating why it has been rejected. The
expenses report will be then back open to be modi-
fied.

[0492] A payments responsible will approve the pay-
ment. Once approved, it will locked to be marked as
paid. Only a payments responsible will be able to
unlock the expenses reports back in case of error.

[0493] Once the payment has been done, the
Expenses Report is marked as paid indicating date
and payment media. If balance was debit, advances
were bigger that expenses, a warning message will
require confirmation of payment.

[0494] Detailed Information to be captured
[0495] Expense:

[0496] Header and footer: General information of the
Expense.

[0497]
[0498]
[0499]
[0500]
[0501]
[0502]
[0503]
[0504]
[0505]
[0506]
[0507]
[0508] Expense Line:

Employee: Code and Name.

Trip cause, visit to or general expense cause.
Project to charge expenses to.

Total advanced amount. Both currencies
Total expenses. Both currencies

Balance. Both currencies

Date of Expenses Report issuing.

Expenses approval date.

Payment date and media.

Payment comments, if proceeds.

Rejection cause, if proceeds.

[0509] Each line details a certain expense.
[0510]
[0511] Expense date.

Including:

[0512] Expense Type: (Car usage in Km, allowance,
etc.) Some expense types will have a fixed price,
some will perform a calculation, other will let opera-
tor to include the amount as figures in ticket.

[0513] Units. The meaning will depend on expense
type. Some types will not allow operator to use this.

[0514] Prize to apply. Prize per unit in pattern cur-
rency. Depends on expense type.

[0515] Expense description.

[0516] Expense Line total. Both currencies
[0517] Employee:
[0518] Employee code. This must be unique in the system.
[0519] Name and First name

24

Sep. 4, 2003

[0520] Site, phone numbers, email.
[0521] Querying and Reporting Facilities:

[0522] The results of any search in the application may be
considered as a report so it must be possible to be printed as
well as exported to Office tools like Word, Excel. It would
be desirable to be ordered by any column while it is in the
screen and exported or printed in that order.

[0523] The Expense Reports will be selected under the
following criteria or a combination of them: by project
employee issuing date authorization date and payment date.
Dates searching facilities will by better introduced as a
period

[0524] The Expense Report will show the following infor-
mation:

[0525] Project

[0526] Employee name
[0527] Status

[0528] Approval Date
[0529] Paid

[0530] Payment Date
[0531] Total expenses
[0532] Balance

[0533] The Expense Report will be printed under specific
format including the Expense lines.

[0534] Employees will allow to be searched by a combi-
nation of any data contained in Employee definition.

[0535] FIG. 19 is a dialog box used by the SOSY modeler
to establish the set of attributes which will be displayed for
the “expense” class.

[0536] FIG. 20 shows the dialog box used by the SOSY
modeler to establish the searching criteria for the expense
class, and indicate the filter formula to use and which
variables to request from the user.

[0537] Translation Overview

[0538] The validated formal specification 215 is the source
for an execution model that handles the implementation-
dependent features associated with a particular machine
representation. To implement the specified system, the way
in which users interact with]35v system objects is pre-
defined. FIG. 6 is a flow diagram illustrating the high level
view of the operation of translating a formal specification
into working system logic computer code to what it is
referred to as “execution model” by the system logic trans-
lator 232 in FIG. 2. FIG. 6 does not set out the details of any
specific translator to translate the high level repository for
any specific formal specification into any specific target
language working computer. Instead, FIG. 6 defines the
steps or functions that all species in the subgenus of system
logic translators would carry out in one way or another,
maybe not in the same exact sequence. But at least these
functions must be performed. The applicants believe that the
translators alone may be novel in generating error-free
output files from a validated formal language specification.
The invention of this system logic translator subgenus is this
collection of functions working together to create a working

US 2003/0167455 Al

computer program and not the details of how the functions
are actually performed for a particular source formal lan-
guage and a particular target language source code output,
although such details are believed to be separately patent-
able for every formal language and target source code
combination.

[0539] System Logic Translator Genus Defined

[0540] The process starts by logging the user into the
system and identifying the user (step 600). Although this
step might be optional in some embodiments, and thus
should not be considered a defining characteristic of the
subgenus, most applications require the user to be identified
and authenticated so that privilege or access privileges can
be implemented to code the system logic to block unautho-
rized users from performing certain functions.

[0541] An object system view is provided (step 602),
determined by the set of object attributes and services that
the user can see or activate. In other words, step 602
represents the process of writing code that will query the
high level repository formal specification and determine all
the objects and attributes thereof this user has privileges to
see and all the services of those objects this user has
privileges to invoke.

[0542] After the user is connected and has a clear object
system view, he can then activate any available service in the
user’s worldview. Among these services, there will be
observations (object queries), local services, or transactions
served by other objects.

[0543] Any service activation requires two steps: build the
message to send to the object server including the values for
the arguments needed by the service, and then send the
message to the appropriate object server. The object server
is a piece of computer code that actually controls the
computer to perform the service. In order to build the
message, code must be written to identify the object server
for every service any authorized user may wish to invoke
(step 604). Steps 608 through 618 actually write the code of
the object servers that will execute each available service.
The existence of the object server is an implicit condition for
executing any service, except for the service new.

[0544] Services need arguments to execute. These argu-
ments may come from the data structure stored attribute
values. Also, the user may need to introduces service argu-
ments for the service being activated. In the library loan
example, the service loan needs the arguments as to the
identity of the borrower, the title of the book loaned, and the
date of the loan. So to build the service activation message,
step 606 writes code to retrieve the appropriate service
arguments from the requester (which may be the user or
another service) for each service. Thus, the arguments will
be supplied from another object server, another program or
will be from the user, typically via a interprocess data
transfer path from the user interface code written by the user
interface translator. Note, in some embodiments, the system
logic translator might be combined with the user interface
translator, so step 606 represents the process of writing code
to gather the arguments from the user directly or from
another process. Step 606 also writes code to write the
service invocation messages that are directed to the proper
object server and which contain the proper arguments such
that each service may be properly invoked when a request to
do so is received.

Sep. 4, 2003

[0545] Step 608 represents the process of writing code that
allows a user or another process to invoke a service, and
when the service is invoked, writes a message with the
proper arguments needed by the service and sends it to the
object server that carries out the service. Once the message
is sent, the service execution is characterized by the occur-
rence of the following sequence of actions in the server
object which are the actions that the code written by steps
610 through 618 must control the computer to perform in
implementing the object server. In other words, steps 610
through 618 write object servers that have the following
behaviors. First, the state transitions of every object which
the object server can alter are checked so as to verify that a
valid transition exists for the current object state in the
formal specification for the selected. In other words, step
610 represents the step of writing object server code for
every service which verifies state transitions can be validly
made (make sense) for the current state of every object the
object server is altering the state of before actually altering
the state of the object.

[0546] Second, step 612 writes code for every object
server which checks preconditions to ensure their satisfac-
tion before acting upon an object to making a state transition
thereof. In other words, the code written by step 612 makes
sure the precondition associated with each service are sat-
isfied before the service can be invoked. If either of these
events is true (a state transition does not make sense, or a
precondition has not been satisfied), the code written by
steps 610 and 612 ignores the service invocation message,
and the service will not be executed.

[0547] Next, step 614 writes codes that computes all the
valuation calculations required of each object server. To
ensure that the service execution leads the object to a valid
state, the integrity constraints (step 616) are verified in the
final state. In other words, step 616 writes code for every
object server which verifies that any integrity constraints on
results are satisfied, and takes some appropriate action if
they are not such as flagging an error, etc. If the constraint
does not hold, an exception will arise in the code written,
and the code written will control the computer such that the
previous change of state is ignored.

[0548] Step 618 writes code for each object server that
will test for the occurrence of trigger events after an object’s
state has been changed and take appropriate action if a
trigger event has occurred. In other words, the code written
by step 618 will have the following behavior. After a valid
change of state occurs, the set of condition-action rules
(triggers) that represents the internal system activity are
verified. If any of them hold (a trigger event is satisfied), the
specified service in the condition-action rules will be trig-
gered.

[0549] Accordingly, the steps illustrated in FIG. 6 guide
the implementation of any program to assure the functional
equivalence between the object system specification col-
lected in the Conceptual Model and its implementation in an
actual programming environment.

[0550] In one embodiment of the present invention, sev-
eral translators may be used to complement the CASE tool
210 to constitute an automatic software production system.
In one implementation, for example, the translators produce
an application in accordance with a three-tiered architecture.
Particularly, three different translators arise, corresponding

US 2003/0167455 Al

to each tier: a system logic translator 232, a user-interface
translator 234, and a database generator 236. In addition, a
fourth translator is used, documentation generator 238.
These different translators are characterized by the output
produced and, though potentially having the same input,
each translator focuses on a particular subset of information
in the above mentioned high level repository 215.

[0551] System Logic Translation: the Details

[0552] The system logic translator 232 automatically gen-
erates code for a third generation programming language
from information in the high level repository. The output of
the system logic translator 232 corresponds with the middle-
tier in a three-tiered architecture.

[0553] Inone embodiment, the system logic translator 232
produces source code that covers the following: (1) com-
munications subsystem, (2) access to and communication
with the persistence layer (the database or other file structure
in which the values of all attributes of all objects are stored),
(3) standard query services for reading the persistence layer
contents, and (4) error handling produced by the persistence
layer and client communications.

[0554] The communications subsystem is configured for
receiving requests from a client, invoking internal methods,
and returning replies to requestors, that verify the request-
or’s existence and authorization to perform the requested
service; verify the existence and validity of the requested
server instance; create a copy of the requested server
instance in memory accessing the persistence layer for
persistent attributes or calculating the value of derived ones;
validate state transition for the requested service as specified
in the state transition diagram 400 in the Conceptual Model;
verify that the requested service’s preconditions hold; per-
form all valuations related to the requested service as
specified in the functional model; verify constraints for the
new state achieved by the requested server instance; check
trigger conditions to execute the corresponding actions; and
make changes in the requested server instance persistent.

[0555] In addition, code is generated for access to and
communication with the persistence layer, service standard
queries to read persistence layer contents, and handle errors
produced by the persistence layer and communications with
client.

[0556] In one embodiment, the first phase of code gen-
eration is the retrieval of information from the Conceptual
Model 215 and storage of this information in code genera-
tion structures in memory. Three kinds of elements guide the
retrieval of information: classes, global transactions, and
global functions. Relevant information to be obtained from
classes in the Conceptual Model include: name, constant
attributes (name, type, requested upon creation, and initial-
ization value formula), variable attributes (name, type,
requested upon creation, initialization value formula, and
null values admittance), derived attributes (name, type, and
derivation formula), identification function, events (name,
arguments: name and type, and precondition formula), trans-
actions (name, type, arguments: name and type, precondi-
tion formula, and transaction formula), valuation formulae,
state transitions (initial state, final state, service name, valid
agents, and transition condition formula), static constraints
formulae, dynamic constraints formulae, trigger conditions
formulae, ancestor class (name), specialized classes (name,

Sep. 4, 2003

specialization condition formula, precondition redefinitions,
and valuation redefinitions), aggregation relationships
(related class, cardinalities, static or dynamic, and role
names), and population selection patterns (filter: name and
filter variables, order criteria).

[0557] Relevant information to be obtained from global
interactions in the Conceptual Model include: name, argu-
ments (name and type), and global interaction formula.
Relevant information to be obtained from global functions in
the Conceptual Model: include: name, return type, and
arguments (name and type).

[0558] Generated code follows a component-based struc-
ture, based on the main unit of information that is found in
the Conceptual Model, that is: the class. Each class in the
Conceptual Model yields, in a first approach, several of
software components. For example, one component,
referred to as a “server component” has an interface com-
prising a method for each service present in the signature of
the corresponding class. Another component, whose inter-
face comprises the methods necessary to query the popula-
tion of the corresponding class, is called a “query compo-
nent.” A particular kind of executive component is the
component relating to global interactions defined in the
Conceptual Model, whose interface consists of a method per
global interaction.

[0559] These components constitute the two access points
the second or middle tier offered to the first or presentation
tier. Server components receive requests from the presenta-
tion tier that relate to the execution of services, and query
components receive requests from the presentation tier that
relate with querying the persistence tier. Nevertheless these
are not the only components generated.

[0560] Another generated component directly related to a
class of the Conceptual Model is the one called “Executive
Component” and is responsible for resolving or executing
each of the services in the signature of the corresponding
class. This component receives request from its correspond-
ing server component or from other executive components.

[0561] Since a main purpose of the executive component
is to resolve the services offered in the class signature, the
interface presented by the executive component to the other
components comprises of a method per service. Each of
these methods is structured according to the execution
model in accordance with an embodiment of the invention.

[0562] In other words, the executive component is respon-
sible for the following operations: verify the existence and
validity for the requested server instance; create a copy of
the requested server instance in memory accessing the
persistence layer (by means of the above mentioned corre-
sponding query component) to retrieve the values of con-
stant and variable attributes; validate state transition for the
requested service and the present state of the requested
server instance as specified in the corresponding state tran-
sition diagram in the Conceptual Model; verify the satisfac-
tion of the requested service preconditions; modify the value
of the instance variable attributes by performing all valua-
tions affected by the service as specified in the functional
model of the Conceptual Model, thus changing the state of
the requested server instance; validate the new state
achieved by the requested server instance by verifying its
static and dynamic restrictions; check trigger conditions to

US 2003/0167455 Al

determine which actions should be triggered if needed;
communicate with the persistence layer for all persistent
attributes of the requested server instance. Additionally, if
the class is an agent of any service, another method is added
to the interface whose purpose is that of validating the
requestor’s existence.

[0563] Another kind of executive component is a compo-
nent related to global interactions defined in the Conceptual
Model, whose interface consists of a method per global
interaction.

[0564] If the class belongs to an inheritance hierarchy, all
executive components of the same hierarchy are grouped
into a single, special executive component. Nevertheless
there would still be one server component per class in the
hierarchy.

[0565] Another component to which a class in the Con-
ceptual Model gives rise is a component called the “T
component”. This component is used to store a copy of the
constant and variable attributes of an instance of the corre-
sponding class, as well as the methods to calculate the value
of its derived attributes. The corresponding query compo-
nent implements a collection whose items are T components.

[0566] Another component to which a class in the Con-
ceptual Model may give rise is a component called “P
component”. This component is used to store in memory the
values needed to initialize the constant and variable
attributes of the corresponding class when creating an
instance of it, or just the values of the attributes that
constitute the class identification mechanism. Such a com-
ponent appears whenever the corresponding class is a multi-
valued component of an aggregation relationship.

[0567] Another component to which a class in the Con-
ceptual Model may give rise is a component called “PL
component”3. This component implements a collection
whose items are P components, as well as the methods
needed to add and get items from the collection, and get the
number of items in the collection. Such a component appears
whenever the corresponding class is a multi-valued compo-
nent of an aggregation relationship.

[0568] Another component to which a class in the Con-
ceptual Model may give rise is a component called “C
Components”. This component is used to store in memory
the values needed to initialize the constant and variable
attributes of the corresponding class when creating an
instance of it. Such a component appears whenever the
corresponding class is a temporal or permanent, condition-
based, specialization.

[0569] Additional components includes a CC component,
an error component, a trigger component, a trigger list
component, an instance list component, and condition, dis-
junction, and conjunction components.

[0570] The CC component appears whenever there is, at
least one temporal or permanent, condition-based, special-
ization in the Conceptual Model. The CC component imple-
ments a collection whose items are C components, a pair of
methods to add and get items to the collection (one pair per
C component generated), and a method to get the number of
items in the collection.

[0571] The error component always appears and is used to
store information about the success or failure of a service

Sep. 4, 2003

execution. The trigger component stores information about
a satisfied trigger condition so that the corresponding action
can be later executed. The trigger list component imple-
ments a collection whose items are trigger components, as
well as the methods to add an item to the collection, get any
item from the collection, get the first item and get the
number of items in the collection.

[0572] The instance list component implements a collec-
tion whose items are executive components playing in the
execution of a given service. In addition to methods used to
add an item to the collection, get an item, and get the number
of items in the collection, this component implements a
method to empty the collection and another one to look for
an instance by its identification function.

[0573] The condition, disjunction and conjunction Com-
ponents are always generated and support the construction
of complex boolean expressions, used to query the persis-
tence layer, structured as a conjunction of disjunctions. The
condition component stores information about a simple
boolean condition, that is: two operands and an operator (+,
- *, [, =, <> <, <=, >=,>...). The disjunction component
implements a collection whose items are condition compo-
nents (that is, a disjunction of conditions), as well as
methods to add and get a condition from the collection and
a method to get the number of conditions in the collection.
The conjunction component implements a collection whose
items are disjunction components (that is, a conjunction of
disjunctions), as well as methods to add and get a disjunction
from the collection and a method to get the number of
disjunctions in the collection.

[0574] In addition, two modules are also generated: a
global module for grouping attributes and methods shared
through the generated code, and a global functions module
that groups the code of all global functions defined in the
Conceptual Model.

[0575] Translation Strategy and Architecture

[0576] In accordance with one embodiment, code genera-
tion is driven by the information retrieved from the high
level repository 215. The translation process can be divided
into four phases: validation of the Conceptual Model (per-
formed by validator 220), translation of the corresponding
data model into a relational database management system
(performed by database generator 236), retrieval of infor-
mation from the Conceptual Model and storage of this
information in memory structures and finally, generation of
files from the information stored in memory (e.g. reading the
information in memory structures to generate code in the
target programming language).

[0577] Validation of the Conceptual Model is mandatory,
while data model translation is optional, but both can be
considered as prerequisites to the other two phases which are
the ones strictly related to code generation. Translation
structures are designed to store input information from the
Conceptual Model and all have a method that uses this
information to generate source code in the target program-
ming language.

[0578] These translation structures include: a class to store
information needed to generate server components (server
class), a class to store information needed to generate server
components for global interactions (global interactions
server class), a class to store information needed to generate

US 2003/0167455 Al

executive components (analysis class), a class to store
information needed to generate executive components for
global interactions (global interactions analysis class), a
class to store information needed to generate executive
components for inheritance hierarchies (inheritance hierar-
chy analysis class), a class to store information needed to
generate query components (query class), a class to store
information needed to generate T components (T class), a
class to store information needed to generate C components
(C class), a class to store information needed to generate CC
component (CC class), a class to store information needed to
generate P components (P class), a class to store information
needed to generate PL components (PL class), a class to
store information on the arguments for every service of
every class in the Conceptual Model (arguments list class),
a class to store information on the identification function of
every class in the Conceptual Model (analysis class list
class), classes to generate the methods needed to resolve a
service in executive components (event class, shared event
class, transaction class, interaction class), classes to generate
the auxiliary methods needed to resolve a service in both
executive components and executive components for inher-
itance hierarchies (precondition class, static constraints
class, dynamic constraints class, . . . etc.). classes to generate
methods needed in query and T components (T & Q method
classes), a class to generate inheritance-specific methods
(inheritance method class), and a class to monitor the
generation process (code generation class).

[0579] The code generation class is responsible for retriev-
ing all the information needed to generate code and for doing
so in the appropriate order, for writing to files the generated
code and organizing it into files properly according to the
component-based structure. The code generation class main-
tains lists of the above mentioned generation structures in
memory in which information retrieved from the Conceptual
Model is to be stored and it later loops through these lists to
write the appropriate files.

[0580] The information retrieval process basically com-
prises a series of loops through the classes in the Conceptual
Model to gather all information needed, a loop trough global
interactions and a loop through global functions in the
Conceptual Model.

[0581] The last phase in the code generation process
covers writing to files according to the component-based
structure presented herein. This process comprises: looping
through the lists of instances above described that maintain
the information needed to generate components and their
attributes and methods, and call each element’s code gen-
eration method; generating global interactions executive
component; generating global interactions server compo-
nent; generating global functions module; and generating
standard components.

[0582] For each global function in the Conceptual Model,
a method is generated in this module that: has a global
function name, has an argument. For each argument in that
global function with the same name and whose type is
translated into the corresponding one in the target program-
ming language, and its return type is translated too.

[0583] User-Interface Translation

[0584] The user-interface translator 234 automatically
generates source code for a third generation programming

Sep. 4, 2003

language from information in the high level repository. Its
output corresponds with the presentation tier in a three-
tiered architecture. Thus, the user-interface translator 234
provides as output the source code of a component that
implements the user interface functionality. This component
is automatically generated without human intervention. The
user-interface translator 234 uses as input data a validated
Conceptual Model 215 and offers as output data, source code
in a third generation language that implements an equivalent
functional prototype related to the Conceptual Model the
component is derived from.

[0585] In one embodiment of the present invention, the
user-interface translator 234 produces source code to per-
form the following: a communications subsystem able to
send requests to a business component, and receive replies:
a logon to system for user authentication: and a menu of
available services for specific authenticated user. For each
available service, frame, screen or data collection dialog of
all service arguments, the user-interface translator 234 gen-
erates code that sets initial values for arguments, validates
introduced data (type, range, object existence, etc.), and
calling to server activation. In addition, the user-interface
translator 234 generates code for standard query services
that list all instances status in a class and error handling.

[0586] Additionally, code is generated for a wider and
flexible user-interface operation. In a query service frame,
form or screen, the following functionality will be available
when a certain instance has been selected: navigation
through relationships with related selected object. This navi-
gation is used to browse among related data items following
its related links. Additional functionality includes services
activation for selected object; advanced query services
including; filters (population selection), views (status selec-
tion), and sorting criteria; and context keeping for filling-in
known services arguments. Context keeping is a user-facil-
ity. Context is data associated to the working user environ-
ment. This data is useful to provide default values for service
arguments.

[0587] For its input, the user-interface translator 234 reads
specification 215 of a Conceptual Model and stores this kind
of information in intermediate structures in memory. The
user-interface translator 234 is independent of the input
medium in which the Conceptual Model is provided. In this
way, the intermediate structures can be loaded from different
data sources. The model is iterated in several passes to
extract the relevant information in each phase of the trans-
lation process from the formal specification, including infor-
mation about classes, aggregation relationships, inheritance
relationships, agent relationships, global interactions, user
defined functions, and interface patterns.

[0588] Translated applications are composed by forms that
contain the user-interface offered to final user. A form, in
abstract sense, is the interaction unit with the final user.
Forms are translated depending on capabilities of the target
environment to match the requirements: e¢.g. windows dia-
logues for Windows environments, HTML pages in Web
platforms, applets in Java, etc.

[0589] FIG.7 is a flow diagram representing the sequence
of functions that all translators in the subgenus of user
interface translators will perform. The details of how each
function is performed will vary from one target source code

US 2003/0167455 Al

type to the next, but all species will share the characteristics
of performing the functions of FIG. 7, possibly not in the
same order.

[0590] Translated applications supply the user connection
to the system. The user connection is resolved using an
access form to identify and authenticate the user, block 700.
In addition, the translated application provides a system user
view, block 702. A user must be able to access services the
user can launch, but should be presented with a system view
that is appropriate to the user’s privilege level. Block 702
represents the process of looking up the user’s privilege
level and determining which objects the user can have
access and presenting a system view to the user which only
allows the user to invoke functions that are appropriate to the
user’s privilege level. The main form is designed to accom-
plish this task.

[0591] For each service that can be executed by a user, the
translated application locates the appropriate object server
code in the system logic code previously generated, and
generates an activation service form which points to the
appropriate object server for each service the user can
invoke, block 704.

[0592] For each class, the translated application generates
a query/selection form. This form allows users to query data
instances, search instances that fulfill a given condition,
observe related instances and know which services can be
launched for a given object in its current state, block 706.
For each service, the translated application furnishes initial-
ization values for object-valued arguments. Initial data is
provided too by managing information obtained from the
browse made by the user, and any user input arguments for
services are checked to make sure they are valid data types
for the arguments the data is intended to supply, and within
valid ranges for the arguments the user input data is intended
to fill. Blocks 708 and 710. The process represented by block
710 also represents the process of writing code to check for
dependencies between arguments. If this code finds that a
dependency exists, and a user input triggers a dependency,
it displays an appropriate form requesting the user to input
data to satisy the dependency and check that data for valid
data type and within an acceptable range.

[0593] Block 712 represents the process of writing code to
invoke the appropriate object server code when a user makes
and input indicating a desire to invoke any service that the
user is authorized to invoke, and to pass to that object server
the appropriate arguments. Block 714 represents the process
of writing code to wait for results and display an error
message if an error occurred. If no error occurred, the code
waits for further user input.

[0594] The user encounters different scenarios interacting
with the application. These scenarios lead to defining dif-
ferent types of forms. In the next section, each kind of form
will be described.

[0595] In the Conceptual Model 215, some classes are
defined as agents of services classes (called agent classes).
That is, if an object is a service agent it is allowed to request
the service. Each agent object must be validated, i.e., authen-
ticated before trying to request services. The Access Form
requests an agent class (selected from a list of valid agents
classes), an object identifier and a password. The data
collected is used to verify if there exists a valid agent object
that is allowed to access the system.

Sep. 4, 2003

[0596] The Application Main Form contains a menu,
where user can view the services he is allowed to execute.
The source code required to implement each action
requested by user is automatically generated.

[0597] For each accessible service for at least one agent,
a Service Form is generated. These forms have an introduc-
tion field for each argument the user must provide. This
argument’s fields have attached code to validate data-types,
sizes, value-ranges, nulls, etc. (block 710 process). Object-
valued fields provide facilities to search the object browsing
information and filter it. Code is generated to accomplish
this task.

[0598] Each service argument can take its initial value in
three different ways:

[0599] 1. By Initial values. In the Conceptual Model,
the designer can provide default values for attributes
and arguments. If such value exists, code must be
generated to supply the value (block 708).

[0600] 2. By Context. Context information (for
example, a list of recently observed objects) is useful
to suggest values to object-valued arguments that
have the same type as collected ones. A function is
generated to search appropriate values in the recently
visited objects list.

[0601] 3. By Dependency Pattern. In the Conceptual
Model, the system designer can define Dependency
Patterns. The Status Recovery pattern is an implicit
set of dependency patterns too. In both cases, the
change on an argument, can affect values in other
arguments. So, the processing of block 710 is per-
formed.

[0602] Data Validation (block 710) can occur just after
data input, interactively warning the user and just before
sending data to system-logic. Object-valued arguments vali-
dation requires checking object existence. To support vali-
dation, a function is generated for each service argument.
The function is invoked before sending a request to system-
logic.

[0603] The code written by one species of the user inter-
face translator works in the following way. When the user
requests service execution, the service arguments are vali-
dated by the code written by block 710. It the service
arguments are valid, system logic is invoked to accomplish
the service by code written by the process of block 712. The
message built to invoke the system-logic uses the formal
order to sort the arguments.

[0604] After executing the service, the user is informed
whether the service succeeded or not (block 714). Accord-
ingly, code to validate arguments and Code to invoke the
system-logic with necessary arguments in the formal order
are generated. Furthermore, possible errors are returned to
inform the user.

[0605] The Query/Selection Form permits the querying of
objects (that can be restrained by filters) and the selection of
an object. When an object is selected, the user can browse
to other data items related to the object. In the same way, the
user can launch a service of the selected object.

[0606] These query/selection forms include graphic items
representing filters. A visual component is used to filter the

US 2003/0167455 Al

population of a class. Filters may contain variables. In such
cases, fields for the variables are requested to users in order
to form the condition of the filter. For example: Find cars by
color, by type and model.

[0607] These query/selection forms also include a visual
component to show objects. Inside this component objects
that fulfill the filter condition (or every class population if
filters are not defined) appear. The attributes displayed in the
component are fixed by a Display Set.

[0608] These query/selection forms also include a visual
component to launch services. For example: given a car, the
user can launch services in order to rent the car, return, or
sell it. This task is achieved by a function that determines
which service to launch of what object. The corresponding
Service Form is invoked for each exposed service. These
query/selection forms also include a component to initiate
browsing. For example: given a car, the user can view the
driver, the driver’s sons, etc. When the user navigates
(follows a link from an object) a new query/selection form
is displayed. In the same way that the previous component,
there exists code to invoke the next form to display when
user browses objects. When a query/selection form is
reached by navigation, the form receives information about
the previous object in order to display only the data related
to that initial object.

[0609] In the applications, visited objects and navigation
paths followed by users are stored in some embodiments.
This information is named Context Information. When the
user browses data between query/selection forms, the path
followed is stored. Finally, when the user tries to invoke a
service and a service form is needed, the application can
provide, as an extra input to the service form, this contextual
information. Then, the Service Form uses this data to
provide initial values for object-valuated arguments.

[0610] User-Interface Translation Architecture

[0611] Using the Conceptual Model 215 used as input, the
user-interface translator 234 can retrieve information from
memory structures, a relational database, using a query API
or any other input source. An intermediate structure in
memory is filled with the Conceptual Model data relevant
for translating the user-interface component. Intermediate
structure follows an architecture to the one defined in the
Conceptual Model schema in which can be queried for
classes, services, and attributes for a specific Conceptual
Model.

[0612] When data is loaded in the intermediate structure,
the real translation phase begins. Inside the source code files
of the generated application, two types of files can be
distinguished. One type of file is a set of files having fixed
contents. These files correspond to structures or auxiliary
functions widely used that are always produced in the same
way. These files are generated by dumping byte streams
directly from the translator to final files in order to create
them. Other files strongly depend from the Conceptual
Model that is being processed. Therefore, although these
files have a well-defined structure (detailed in the previous
section), they have variable parts depending on the pro-
cessed model. The user-interface translator 234 iterates the
Conceptual Model to extract the relevant data to generate
these variable parts.

Sep. 4, 2003

[0613] The translation process for the user-interface trans-
lator 234 has the following tasks for the preferred species as
part of the genus processing symbolized by FIG. 7:

[0614] 1. Generate the fixed files, e.g. headers, defi-
nitions, constants, and auxiliary functions to its
respective files.

[0615] 2. Generate auxiliary widgets (controls or
Java Beans) depending on the application

[0616] 3. For each class, generate a query/selection
form, an instance selection component, a specializa-
tion component (if class is specialized from other
class and requires extra initialization). For each
service class, also generate a service form.

[0617] 4. Generate an access form (identification).

[0618] 5. Generate a main form containing the menu
application (block 702).

[0619] 6. Generate communication functions to reach
system-logic server (block 704). These functions
encapsulate the invocation of services available in
the prototypes.

[0620] The Access Form generated as by the code written
by block 700 is a little dialog box containing: a list of agent
classes (from this list, the user chooses one), a field where
the user provides OID for a valid object instance belonging
to the previously selected class and a field for password. This
form is mostly generated in a fixed way. The only varying
section for each model is the mentioned agent classes list.
By iterating over the model classes list and by checking
which classes are agents such agent classes list can be
obtained.

[0621] In order to provide access to the application’s
functionality (block 704), the services are arranged in an
access-hierarchy to be converted to menu bars (Visual Basic
client), HTTP pages (Web client) or any other structure that
allows browsing. By default, the hierarchy is built by
iterating the classes and services in the Conceptual Model.
The hierarchy can be seen as an access tree to the applica-
tion. For each class, a tree item is built labeled with class
alias. For each built-in item, this mode has the following
items as descendents: an item labeled as ‘Query’ to access a
query form; an item for each service defined in the current
class labeled with the service alias; and, in the case of
inheritance relationship with other classes, an item is built
for each direct subclass labeled with subclass alias. Recur-
sively, the same algorithm is applied until the inheritance
tree is fully explored.

[0622] A Service Form requires the following input data
extracted from the Conceptual Model: Service to generate,
service class, arguments list, interface patterns linked to
arguments. For each service, a form is generated that con-
tains a graphic part and a functional part. The graphic part
includes a widget attached to each argument that needs input
from the user and a pair of widgets to accept or cancel the
service launch. The functional part includes code to imple-
ment the event-drivers for the previous widgets, to initialize
the properties of these widgets with default values, to
validate introduced values, and to invoke the service in the
system-logic component.

[0623] A detailed explanation of how to generate a Service
Form follows. First, two argument lists are obtained. The

US 2003/0167455 Al

first one corresponds to the arguments defined in the service
declaration (FL, Formal List). In this list, the arguments are
sorted by its formal declaration order. The second one
contains the same arguments sorted by the presentation
order (PL, Presentation List). Both orders are specified in the
Conceptual Model.

[0624] Tterating through the formal List and for each
argument: create a widget for each argument that has to be
obtained from the user (block 708) and set relevant proper-
ties to arguments like: type, size, can be null, Introduction
Pattern, Defined Selection Pattern or Population Selection
Pattern Widgets are added for OK and Cancel commands,
and graphic positions of widgets are arranged so they do not
overlap. In one implementation, the form is divided in a
logical grid of n columns by n rows and assign positions
from left to right and from top to bottom to conveniently
arrange the widgets. The logical positions are translated to
physical position in the target language and rearrange action
commands in the bottom-right corner of the form. Finally,
the form is resized to adjust the size of data contained
therein.

[0625] For output, the standard header of a form is
dumped to a file. This step is dependent of the target
language selected. Then, the graphic part of form is dumped
to the file, including the definition of basic form properties,
the definition of each widget., and the widgets’ actions.

[0626] Finally, the source code attached to this form is
translated and dumped. This process includes translating
generic functions to manage events in the form, such as open
and close events and produce code to assign and free
resources. Also, functions to handle the Status Recovery
Pattern and dependencies between widgets are translated.
Depending on the Status Recovery Pattern attached to the
service, and possible Dependency Patterns defined in the
service, code for changing argument values must be gener-
ated and the code that triggers such dependencies. The
validation code is translated too. There are validation meth-
ods to check the values gathered in the widgets are right.
Finally, a function to invoke the appropriate object server of
the system-logic services is generated. The function built
contains: a reference to system-logic object where the ser-
vice is going to be executed; the invocation to a method that
implements the service in the system-logic; and the argu-
ments necessary to such function, constructed from values
supplied from the user through widgets (block 712).

[0627] In order to generate a query/selection form, the
following Conceptual Model information is required: a class
and its properties (alias), and the list of the Population
Selection interface patterns defined for the class. Each
pattern contains: a display set, a filter, and a sort criterion. In
case there is no visualization set defined, the list of attributes
belonging to the class is assumed. If a class lacks a popu-
lation selection pattern, the following default values will be
assumed: every attribute defined in the class is considered as
part of the display set, and neither a filter (in this case the
whole population of the class is returned) nor a sort criteria
are attached.

[0628] Generating a query/selection form also requires
information about the relationships of the class. For every
class, a form is generated based on this information and
contains a tabular representation of the display sets of the
class, a set of grouped filters that allow to restrict search

Sep. 4, 2003

through the population, and a pop-up menu including navi-
gability links to the classes related to the first one and
available services to be launched over instances of the class.

[0629] The generated software component, which has
been described before, provides the user-interface client
functionality that includes all the required functionality for
both validating and executing a prototype compliant to the
Conceptual Model it has been derived from. The applica-
tions of the component are: prototyping, to validate the
Conceptual Model before the user for capturing new require-
ments; testing to validate the Conceptual Model by the
analysts to verify that the model faithfully reflects the
requirements; and ultimate application production, once the
process of requirements capture is completed, the generated
component can be considered as a final version implement-
ing a functionally complete and ergonomic user interface.
The component can be edited to customize the application to
users desires with very little effort.

[0630] Data Model Translation

[0631] Inthe preferred species, the database generator 236
automatically defines a data model in a Relational Database
Management System (RDBMS) according to the validated
specification in the high level repository 215. In other
species, any data structure that at least stored the values of
all object attributes in a manner that allows at least the
system logic code and, preferably, the user interface code to
retrieve them at will may be coded. The output of the
database generator 236 corresponds with the persistence tier
(database or shared data structure) in a multi-tiered archi-
tecture. In one embodiment this may be true, but it is not
mandatory that the persistence tier in a multi-tiered archi-
tecture corresponds with a Relational Database Management
System.

[0632] Referring to FIG. 8, there is shown a flowchart of
the functions that all species of the subgenus database
translator 236 must perform. The details regarding how each
function is performed will depend upon the formal language
of the high level repository, the source code type of the
system logic, the operating system in use and the data
structure being created, but all species will perform the two
basic functions of FIG. 8. Block 720 represents the process
of getting the values of all the attributes of all the classes at
the initial time. Block 722 represents storing the values of
the attributes so obtained in any data structure format, which
could include a relational database. The only thing that is
important is that a data structure be created that stores the
entire initial state of all attributes in a structure which can be
used by the system logic to subsequently read and write the
values of these attributes.

[0633] From the information in the high level repository
about a given Conceptual Model, scripts are generated in
order to create and delete tables, constraints (primary and
foreign keys) and indexes. Scripts can optionally be
executed in a Relational Database Management System to
effectively create said data model.

[0634] From the point of view of relational databases, data
is stored in tables with relationships between them. How-
ever, from the object oriented programming point of view,
data is stored in object hierarchies.

[0635] Although the automatic software production sys-
tem in accordance with one embodiment of the present

US 2003/0167455 Al

invention is based on an object oriented methodology, it is
necessary to find a physical data storage system to perma-
nently store data managed by generated applications. Rela-
tional databases are preferred, because they are the industry-
standard way to store data and, consequently, use of tables
instead of objects would be desirable. Nevertheless, many
object-oriented applications, like those produced in accor-
dance with an embodiment of the present invention, can be
compatible with the Relational Model, since the static
aspects of objects can be stored in tables following a
translation process.

[0636] The generated data model comprises a set of tables
and the corresponding relationships, as well as constraints
on primary and foreign keys and indexes. The generated data
model reflects system data with the attributes defined in the
classes specification and other class instances properties like
their state, role if they are agents.

[0637] Information, gathered from the high level reposi-
tory 215 and needed to produce the corresponding data
model, focuses on classes and include the name, constant
attributes (either emergent or inherited); variable Attributes
(either emergent or inherited); identification function; inher-
ited identification function; aggregation relationships (either
emergent or inherited); and agent information.

[0638] Preferably, the generated scripts follow a standard:
ANSI SQL 92. This fact means that the generated data
model can fit any database management system based on
ANSI SQL 92, particularly most well known relational
database management systems.

[0639] The process to obtain the data model follows these
steps: For each elemental class of the Conceptual Model, a
table in the selected relational database is created. For each
constant or variable attribute in the class specification, a field
in the table corresponding to the class is created. The field
data type depends on Conceptual Model attribute data type
translated into the target relational database. Derived
attributes are not stored in the database since their value will
be calculated upon request by special methods in the server
code generated.

[0640] Primary keys are determined by attributes marked
in the Conceptual Model as being identification attributes.
Thus table fields corresponding to this attributes will con-
stitute the primary key of the table. As a particular case,
tables corresponding to specialized classes, in addition to
fields representing emergent attributes, have fields that cor-
respond to attributes that constitute the primary key of the
table representing their ancestor class. If a specialized class
does not have an identification function of its own, these
fields, copied from the ancestor class, constitute the special-
ized table primary key. At the same time, they constitute the
foreign key to the parent class table. On the other hand, if a
specialized class has its own identification function, these
fields only constitute a foreign key to the parent class table.

[0641] Aggregation case is more complicated, because
aggregation has more dimensions. The aggregation relation-
ship dimensions determine its cardinalities which in turn
determine representation in the database: If the relationship
is multivalued (maximum cardinality set to M) in both
senses a new table is added in order to represent this
aggregation relationship. This table has a field for each one
that constitutes the primary key of related tables. The set of

Sep. 4, 2003

all these fields constitutes the primary key and, individually,
fields coming from each related table’s primary key, con-
stitute foreign keys to each related table.

[0642] If the relationship is univalued (maximum cardi-
nality set to 1) in one sense, the class related with only one
instance of the other one copies the fields of the primary of
the other one. These fields constitute a foreign key to the
related class table.

[0643] If the relationship is univalued in both senses, any
of the tables could have the foreign key to the other. The
adopted option in this case is that the aggregate class has the
reference to the component class. With respect to minimum
cardinalities, if minimum cardinality is O then the corre-
sponding field will take null values. Otherwise it will not. If
identification dependence exists between two classes then
fields of the primary key of the non-dependent class are
copied to the table corresponding to the dependent class.
They will be part of its primary key, and be a foreign key to
the table of the non-depending class.

[0644] Indexes may be generated to optimize searches and
reduce response time. For each foreign key, an index will be
generated so foreign keys will also be search indexes.

[0645] So far the static aspects of an object have been
covered, but some dynamic aspects need also be discussed.
The occurrence of services characterize the evolution in an
object’s life for an object’s state changes whenever a service
happens since the value of its attributes characterize its state.
The state transition diagram determines valid lives for an
object. In order to monitor state transition, a new field will
be added to each table corresponding to a class, to store the
name of the state in the state transition diagram in which an
object is at a given instant.

[0646] Generated applications must perform user authen-
tication by requesting identification and password to agents
logging on to the system. A new field will be added to tables
corresponding to classes that are agents of any service in the
system, to store the password of said agent.

[0647] Documentation Translation

[0648] The CASE tool 210 allows for additional informa-
tion to be introduced at analysis time, which can be used to
generate system’s documentation. Accordingly, the docu-
mentation generator 238 automatically produces a set of
documents including the formal specification, full Concep-
tual Model details documentation, user’s help, and others,
from information in the high level repository 2185.

[0649] FIG. 21 is a flowchart of the processing steps that
every species in the subgenus documentation translators will
have to perform. Step 800 represents the process of deter-
mining from configuration data or other user input which
types of support documents are going to be generated. Step
802 represents the process of getting from the Formal
Specification all the appropriate information needed for the
requested documents. Typically the information gathered is
classes, attributes, relationships, services, arguments, etc.
Step 804 represents the process of writing the support
documentation in files of the appropriate format.

[0650] Due to their different nature, there is a specific
generation process for the formal system specification. The
rest of produced documents are based in a generic data

US 2003/0167455 Al

process. This process allows to obtain the same documents
in different formats and define any new type of document.

[0651] CASE tools must provide multiple documents that
can be automatically generated from Conceptual Models
previously gathered. The documentation generator 238
answers the need for information requests and queries
performed on a Conceptual Model. The documentation
generator 238 allows generation of queries, specific manu-
scripts or well-formed documents in order to document
properly a project.

[0652] In a preferred embodiment, complete generation of
Conceptual Model is generated in an ASCII format with
OASIS syntax. OASIS is a formal specification in an object-
oriented language. The OASIS specification comprises the
part of the Conceptual Model related to analysis of the
problem. Other parts, like interface patterns, are not included
in the OASIS specifications.

[0653] Document generator provides, by default, general
documents, services documents, and help documents. The
general documents include a natural language specification
description. The services documents include a detailed
description of classes and services. The help documents
contain an on-line help for generated prototypes.

[0654] The Documentation Generator uses as target lan-
guages some recognized standard formats for documenta-
tion: ASCII, plain text, navigational HTML with multiple
documents, navigational HTML with one document, LaTeX,
and Rich Text Format (RTF).

[0655] This Documentation System is scalable and can be
extended to add a new kind of document or target language.
Adding a new target language allows all defined documents
to be generated with this new language. In the same way,
adding a new document type will be generated to any
supported target language.

[0656] In order to produce an OASIS specification, a
process iterates over the information structures and writes to
a file the corresponding text strings in the OASIS language.
In the inner process, the iteration over the structures can be
detailed as: (1) write specification headers; (2) For all class
selected to be described: write its OASIS template
(attributes, events, derivations, restrictions, preconditions,
triggers and process); (3) for all global transaction, write its
declaration and OASIS definition; and (4) write the end
spec.

[0657] A document is generated in an intermediate block
language (IBL). In such language the document is a block of
document type and contains n child blocks. Recursively, by
continence relation and having fixed a block taxonomy,
documents can be defined based on block’s structures. A
block is a structure that contains the following properties:
name, category, block type, block text, and list of contained
blocks.

[0658] The generation is supported by an algorithm that
implements loops iterating over the Conceptual Model fol-
lowing the order fixed by the document. In these iterations,
the document is built creating and linking the blocks that
constitute the document.

[0659] When the block structure is built, the resultant
structure, a tree of blocks, is processed by a translator to
convert it to a document in the selected target language. This

Sep. 4, 2003

algorithm using recursive descent analysis is capable to
convert the blocks to tags in the target language depending
on the information stored in the block and contained blocks.

[0660] As example, a block of type MM_SECCIONT1 and
containing the text “Title” will be translated to the next
string HTML equivalent: <H1>Title</H1>

[0661] Generating Full Applications

[0662] Accordingly, an automatic software production
tool is described that captures information requirements,
also referred to as “business processes™ from a triple per-
spective: static, dynamic and functional. This allows system
designers and analysts to fully capture every aspect of the
reality they model.

[0663] System Logic Translator is then responsible for
gathering all this information, which would have been
previously validated to assure correctness and completeness,
and automatically produce code that implements every
aspect of the modeled reality. This system logic code has the
following features:

[0664] The system logic code is complete and correct.
Since information gathered by the System Logic Translator
has been previously validated, produced code can be assured
to be both complete and correct thanks to the set of trans-
lation recipes provided. The set of translation recipes cover
every aspect that can be modeled by an analyst, so every-
thing that can be expressed and captured in a Conceptual
Model can be translated into source code. Every translation
recipe assures for correct translation thus resulting in error-
free source code.

[0665] The system logic code is for a full application, not
just a prototype. Generated code can be compiled (with the
appropriate compiler depending on the target programming
language) and executed “as-is” because it is fully translated
from the Conceptual Model information input. Generated
code is not a mere collection of method skeletons but
complete methods. Furthermore, no useless code is pro-
duced and no line of code is generated more than once. In
addition to this, even being the generated code well struc-
tured and readable, comments can be automatically gener-
ated as a means of internal code documentation thus improv-
ing readability.

[0666] The system logic code is robust and includes error
checking and handling. Correctness and completeness allow
for the production of robust code. According to the infor-
mation in the Conceptual Model, errors fall into two cat-
egories: model or internal errors and external errors. Internal
errors correspond to properties that must hold at a given
instant according to the Conceptual Model (e.g.: a precon-
dition that does not hold, an integrity constraint, violation of
a maximum cardinality of an aggregation relationship, etc.)
External errors correspond to causes alien to the Conceptual
Model (e.g.: a system failure, a database failure, . . . etc.).

[0667] The generated code handles errors according to this
classification as follows: For internal errors, the system logic
translator identifies every point where an internal error
might occur then produces error checking and handling code
to notify the client about such an error’s occurrence. Again,
internal errors can be categorized and given a specifically
defined treatment, such as customizable error messages and
error codes. For external errors, the system logic translator

US 2003/0167455 Al

identifies every point where an external error might occur
then produces error checking and handling code to notify the
client about such an error’s occurrence. Since external errors
cannot be categorized, they are treated in the same standard
way.

[0668] Therefore, the automatic production of error check-
ing and handling code for every possible situation can assure
any translation of a Conceptual Model to be robust.

[0669] The system logic code handles transactional behav-
ior. The generated code presents transactional behavior in
the sense that the code provides clients a well-defined
interface, which allows them to request services from the
system. Those services are executed in a transactional way:
every input argument of the service must be provided by the
client, then system logic performs the corresponding opera-
tions and replies to the client. Services in a Conceptual
Model can be in turn decomposed into actions. The gener-
ated code assures for all actions composing a service be
successfully accomplished or none of them. In addition,
changes to objects affected by the actions a service is divided
into do not effectively take place until all these actions have
successfully terminated. Transactional behavior also
enhances integration with legacy systems.

[0670] The system logic code is independent from the user
interface. The generated code provides a well-defined inter-
face allowing for clients to request services. But this inter-
face does not depend on the clients interacting with it. This
allows for a heterogeneous set of clients interacting with the
same system logic. Thus, clients for a specific system logic
need only know the interface it will present to them. This
feature also enhances integration with legacy systems and
decomposition of huge information systems or Conceptual
Models into smaller ones, which, thanks to their well-
defined interfaces, can interact with each other.

[0671] The system logic code is independent from the
persistence layer. The generated code is responsible for
interacting with the persistence layer implementing what is
regarded as “persistence services”. These services are
responsible for: adding, retrieving, updating, and deleting
information in the persistence layer. These services are
necessary for the system logic to perform its tasks but, in
addition to this, system logic hides the persistence layer to
clients by providing services to perform queries on the
persistence layer. This implies that clients need not know the
physical location of the persistence layer; need not know the
structure of the persistence layer, because they are provided
with services to perform queries on the persistence layer;
need not be authorized users of the persistence layer because
access to the persistence layer is entirely managed by the
system logic; and need not even know that there is a
persistence layer.

[0672] To sum up, the code automatically produced by the
automatic software production system of one embodiment of
the present invention corresponds to that of a true final
software application, instead of that of just a prototype. To
maintain this distinction, some of the differences between
the generated system logic code from that of a prototype are
explained.

[0673] (1) Completeness: A prototype does not fully cover
functionality of an information system, nor is it intended for
every possible flow of execution, while our automatically

Sep. 4, 2003

generated code, being a final application, totally covers the
functionality captured in the corresponding Conceptual
Model, as well as every possible flow of execution.

[0674] (2) Correctness: A prototype aims to verify user’s
needs and requirements and verify correctness of execution.
The automatically generated code in accordance with an
embodiment of the present invention, on the other hand,
aims to verify user’s needs and requirements, for it is
correctly generated.

[0675] (3) Robustness: A prototype is not robust, because
the prototype is not produced with error checking and
handling code. Rather, this code is not produced, typically
by hand, until the very last step of codification, where user’s
needs and requisites have proven to be satisfied and a final
application can then be produced. A final application, such
is the case of our automatically generated code, must come
with all the code necessary to assure robustness. Since this
is usually codified by hand, programmers often forget to add
such code in many places where needed. This leads to high
costs of maintenance and disrupts the balance between
system logic code and error checking and handling code.
The system logic translators described herein provides all
the necessary (and just than the necessary) code to deal with
error checking and handling.

[0676] (4) Scalability: Prototypes are not scalable because
they tend to be discarded during the process of validating
user’s needs and requisites. Final applications can be
designed to be scalable because they aim to last much longer
than a prototype. Nevertheless scalability implies following
certain guidelines during design phase. With embodiments
of the invention, system analysts need not worry about
scalability because such a task falls under the System Logic
Translator 232 responsibilities. So, analysts focus on analy-
sis matters knowing that the resulting code will be scalable.
Furthermore, different Conceptual Models translated by the
System Logic Translator can interact with each other
through their well-defined interfaces.

[0677] Appendix A attached is a set of power point slides
printed on paper which explain the operation of the system
and give some specific examples of key operations.

[0678] While this invention has been described in connec-
tion with what is presently considered to be the most
practical and preferred embodiment, it is to be understood
that the invention is not limited to the disclosed embodi-
ment, but on the contrary, is intended to cover various
modifications and equivalent arrangements included within
the spirit and scope of the appended claims.

What is claimed is:

1. An apparatus for creating a graphical user interface to
allow user requirements for a computer program to be
written by an automated software production tool to be
entered and converted to a formal language specification,
comprising:

a software-generating computer programmed to:

display a plurality of dialog boxes and/or graphic
screens each of which has boxes which can be filled
in with data or menu selections, tools or icons which
can be invoked to allow a user to enter information
defining classes, attributes, events, relationships
between classes, valuation formulas for events that

US 2003/0167455 Al
35

affect the value of variable attributes and all the other

information needed to define a conceptual model of

the requirements a computer program to be written

by said software generation tool must comply with.

2. A method for using a computer to display a graphical

user interface to allow user requirements for a computer

program to be written by an automated software production
tool to be entered, comprising:

displaying a plurality of dialog boxes and/or graphic
screens each of which has boxes which can be filled in
with data or menu selections, tools or icons which can
be invoked to allow a user to enter information and/or
create graphic objects which define classes, attributes,
events, relationships between classes, valuation formu-
las for events that affect the value of variable attributes
and all the other information needed to define a con-
ceptual model of the requirements a computer program
to be written by said software generation tool must
comply with; and

as a user fills in data or makes selections or creates
graphic objects, displaying the data filled in or selected
and the graphic object created in the location on the
dialog box and/or graphic screen where the data was
filled in or selected or the graphic object was created.
3. The process of claim 2 further comprising the step of
using a computer to automatically translate the data filled in
or selected and/or graphic objects created into a specification
for the computer program to be generated written in a formal
language or other symbology which has predefined rules of
syntax and semantics which can be used to verify that the
specification so written is syntactically and semantically
correct, complete and not ambiguous
4. A computer-readable medium containing instructions
for controlling a computer system to display a graphical user
interface through which a user can enter data to create a
formal language specification defining a computer program,
said specification to be automatically translated by a com-
puter into a computer program that implements the require-
ments of said specification by:

displaying a plurality of dialog boxes and/or graphics
screens and displaying boxes where data can be filled
in, boxes where data can be chosen from a menu of
choices, tools, icons or menu choices or some combi-
nation of the above in connection with display of said
dialog boxes and/or graphics screens which allow a
user to enter and/or select data and/or draw graphic
objects to define classes of objects having attributes of
fixed, variable and other types, and having services,
and define mathematical and/or logical formulas con-
trolling how services affect the values of variable
attributes, and define relationships between classes, and
enter data or draw graphics which represent all con-
cepts necessary to complete a conceptual model of said
computer program to be written.

5. The computer-readable medium of claim 4 further
containing instructions for controlling a computer to auto-
matically translate said specification into working computer
code, by:

controlling said computer to automatically translating
said conceptual model into a specification of said
computer program written in a formal language or
symbology having predefined rules of syntax and
semantics;

Sep. 4, 2003

controlling said computer to use said rules of syntax and
semantics to validate said specification to verify that is
syntactically and semantically complete, correct and
not ambiguous; and

controlling said computer to translate said specification

into working computer code.

6. A process carried out in a computer for translating a
formal language specification stored in said computer’s
memory and defining the requirements for a user interface of
a computer program, into working computer code that can
control a computer to implement said user interface, com-

prising:

write code to display requests for a user name and
password and receive inputs in response thereto and
authenticate the user;

write code to determine the privilege level of a user who
has logged in and determine the classes of objects,
attributes and services this user has privileges to access,
retrieve the appropriate data from said specification and
display the appropriate system view to said user;

write code to link each service of each object to an
appropriate object server program which can control a
computer to carry out said service;

write code to display query/selection search forms to
allow users to enter data to define a search for data
instances that satisfy the search criteria entered by the
user and conduct such a search when requested for all
instances that satisfy the user-specified search criteria;

write code to determine automatically which services of
an object can be invoked given the current state of the
object and only allow those services to be invoked;

write code to furnish initial values for object-valued
arguments of services and receive any user input argu-
ments;

write code to check data type entered by a user for validity
for the argument the data fills and make sure the entered
data is within a valid range for the argument the data is
intended to fill;

write code to check for dependencies between arguments,
and, if a dependency exists, and user input data triggers
the dependency, to enable/disable the dependent argu-
ments or fill in values of the dependent arguments, and
consequently triggering other dependency rules;

write code to invoke the appropriate object server code
linked to a particular service when a user makes an
input indicating a desire to invoke that service and to
pass the object server code the appropriate arguments
for the service;

write code to wait for results of execution of a service, and
to display an error message if an error occurred, but, if
no error occurred, to wait for further user input.

7. An apparatus for translating a formal language speci-
fication stored in said computer’s memory and defining the
requirements for a user interface of a computer program,
into working computer code that can control a computer to
implement said user interface, comprising:

a computer programmed to perform the following func-
tions:

US 2003/0167455 Al

write code to display requests for a user name and
password and receive inputs in response thereto and
authenticate the user; the appropriate data from said
specification and display the appropriate system
view to said user;

write code to link each service of each object to an
appropriate object server program which can control
a computer to carry out said service;

write code to display query/selection search forms to
allow users to enter data to define a search for data
instances that satisfy the search criteria entered by
the user and conduct such a search when requested
for all instances that satisfy the user-specified search
criteria;

write code to determine automatically which services
of an object can be invoked given the current state of
the object and only allow those services to be
invoked;

write code to furnish initial values for object-valued
arguments of services and receive any user input
arguments;

write code to check data type entered by a user for
validity for the argument the data fills and make sure
the entered data is within a valid range for the
argument the data is intended to fill;

write code to check for dependencies between argu-
ments, and, if a dependency exists, and user input
data triggers the dependency, to display an appro-
priate dialog box prompting the user to enter input
data needed to satisfy the dependency;

write code to invoke the appropriate object server code
linked to a particular service when a user makes an
input indicating a desire to invoke that service and to
pass the object server code the appropriate argu-
ments for the service;

write code to wait for results of execution of a service,
and to display an error message if an error occurred,
but, if no error occurred, to wait for further user
input.

8. A computer-readable medium containing instructions to
control a computer to translate a specification for a user
interface for a computer program written in a formal lan-
guage into computer code which can control a computer to
implement the specified interface, by:

36

Sep. 4, 2003

writing code to display requests for a user name and
password and receive inputs in response thereto and
authenticate the user;

writing code to determine the privilege level of a user who
has logged in and determine the classes of objects,
attributes and services this user has privileges to access,
retrieve the appropriate data from said specification and
display the appropriate system view to said user;

writing code to link each service of each object to an
appropriate object server program which can control a
computer to carry out said service;

writing code to display query/selection search forms to
allow users to enter data to define a search for data
instances that satisfy the search criteria entered by the
user and conduct such a search when requested for all
instances that satisfy the user-specified search criteria;

writing code to determine automatically which services of
an object can be invoked given the current state of the
object and only allow those services to be invoked;

writing code to furnish initial values for object-valued
arguments of services and receive any user input argu-
ments;

writing code to check data type entered by a user for
validity for the argument the data fills and make sure
the entered data is within a valid range for the argument
the data is intended to fill;

writing code to check for dependencies between argu-
ments, and, if a dependency exists, and user input data
triggers the dependency, to display an appropriate dia-
log box prompting the user to enter input data needed
to satisty the dependency;

writing code to invoke the appropriate object server code
linked to a particular service when a user makes an
input indicating a desire to invoke that service and to
pass the object server code the appropriate arguments
for the service;

writing code to wait for results of execution of a service,
and to display an error message if an error occurred,
but, if no error occurred, to wait for further user input.

