(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2005/024626 A1l

(43) International Publication Date
17 March 2005 (17.03.2005)

(51) International Patent Classification’: GOOF 7/00 WA 98052 (US). HUDIS, Irena [US/US]; c/o Microsoft
Corporation, One Microsoft Way, Redmond, WA 98052
(21) International Application Number: (US). TALIUS, Tomas [LT/US]; c/o Microsoft Corpo-
PCT/US2004/024287 ration, One Microsoft Way, Redmond, WA 98052 (US).
THOMPSON, J., Patrick [GB/US]; c¢/o Microsoft Cor-
(22) International Filing Date: 29 July 2004 (29.07.2004) poration, One Microsoft Way, Redmond, WA 98052 (US).
(25) Filing Language: English (74) Agents: ROCCI, Steven, J. et al.; Woodcock Washburn
LLP, One Liberty Place, 46th Floor, Philadelphia, PA

(26) Publication Language: English 19103 (US).

(81) Designated States (unless otherwise indicated, for every

(30) Priority Data: kind of national protection available): AE, AG, AL, AM,

10/646,632 21 August 2003 (21.08.2003) US AT AU. AZ BA. BB. BG. BR. BW. BY. BZ. CA. CH. CN
PCT/US03/26144 21 August 2003 (21.08.2003) US CO. CR. CU. C7. DE. DK. DM. DZ. EC. EE. EG. ES. FL
10/693,362 24 October 2003 (24.10.2003) US g g v S M

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, WA 98052 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): SHAH, Ashish (84) Designated States (unless otherwise indicated, for every

[IN/US]; c/o Microsoft Corporation, One Microsoft Way,
Redmond, WA 98052 (US). NOVIK, Lev [US/US]; c/o
Microsoft Corporation, One Microsoft Way, Redmond,

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: SYSTEMS FOR THE IMPLEMENTATION OF A SYNCHRONIZATION SCHEMAS

Systemn i (Nop-Winfg) 3606

i
i
i
i
|
|
i

Application using WinFS Sync . — 3666
WinF8 Sync Config/Control - ‘\ - 3664
Sync Adapter 1 l
|
8
2 aes2 3662 | 3644 3652
7 [o
|7 Sync AP! Sync API
4[,77 7 W——
w WinFS w WInFS
3622 R Data Store g Data Store 3632
@ 3812] = 3614

WInFS to WinFS Sync

Core Sync Services
(WInFS to non-WinFS)

770;eisy7nci SgNi;es
(WInFS to non-WinF8)

3624 i 3634

|
|
|
|
|
|
|
\ - -
|
|
|
|
|
|

System | 3604
3602 WinFS System lil (WinFS

(57) Abstract: Several embodiments of the present invention comprise a storage platform that provides a synchronization service
& that (i) allows multiple instances of the storage platform (each with its own data store) to synchronize parts of their content according
& toa flexible set of rules, and (ii) provides an infrastructure for third parties to synchronize the data store of the storage platform of the
present invention with with other data sources that implement proprietary protocols. In various embodiments, storage-platform-to-
storage-platform synchronization occurs among a group of participating "replicas." For example, it may be desirable to provide
synchronization between the data store of the storage platform with another remote data store under the control of another instance
g of the storage platform, perhaps running on a different computer system.

5/024626 A1 | IV Y0 0 0 0 O

WO 2005/024626 A1 II}IH10 Y N0VOH0 AT 0O 00 0O 0D A

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, — before the expiration of the time limit for amending the
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, claims and to be republished in the event of receipt of
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, amendments

GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guid-
Published: ance Notes on Codes and Abbreviations" appearing at the begin-
— with international search report ning of each regular issue of the PCT Gazette.

WO 2005/024626 PCT/US2004/024287

SYSTEMS FOR THE IMPLEMENTATION OF SYNCHRONIZATION SCHEMAS

CROSS-REFERENCE

[0001] This application claims priority to U.S. Application Serial No. 10/693,362 filed
on October 24, 2003 (Atty Dockt No. MSFT-2846); U.S. Patent Application No. 10/646,632
(Atty. Docket No. MSFT-1751), filed on August 21, 2003, entitled “SYSTEMS AND
METHODS FOR THE IMPLEMENTATION OF A CORE SCHEMA FOR PROVIDING A
TOP-LEVEL STRUCTURE FOR ORGANIZING UNITS OF INFORMATION
MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE SYSTEM?”; International
Application No. PCT/US03/26144 filed on August 21, 2003, the disclosures of which are
incorporated herein by reference in their entirety. -

[0002] This application is related by subject matter to the inventions disclosed in the
following commonly assigned applications, the contents of which are hereby incorporated into
this present application in their entirety (and partially summarized herein for convenience): U.S.
Patent Application No. 10/647,058 (Atty. Docket No. MSFT-1748), filed on August 21, 2003,
entitled “SYSTEMS AND METHODS FOR REPRESENTING UNITS OF INFORMATION
MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE SYSTEM BUT
INDEPENDENT OF PHYSICAL REPRESENTATION”; U.S. Patent Application No.
10/646,941 (Atty. Docket No. MSFT-1749), filed on August 21, 2003, entitled “SYSTEMS
AND METHODS FOR SEPARATING UNITS OF INFORMATION MANAGEABLE BY A
HARDWARE/SOFTWARE INTERFACE SYSTEM FROM THEIR PHYSICAL
ORGANIZATION”; U.S. Patent Application No. 10/646,940 (Atty. Docket No. MSFT-1750),
filed on August 21, 2003, entitled “SYSTEMS AND METHODS FOR THE
IMPLEMENTATION OF A BASE SCHEMA FOR ORGANIZING UNITS OF
INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE
SYSTEM?”; U.S. Patent Application No. 10/646,645 (Atty. Docket No. MSFT-1752), filed on
August 21, 2003, entitled “SYSTEMS AND METHOD FOR REPRESENTING

-1-

WO 2005/024626 PCT/US2004/024287

RELATIONSHIPS BETWEEN UNITS OF INFORMATION MANAGEABLE BY A
HARDWARE/SOFTWARE INTERFACE SYSTEM”; U.S. Patent Application No. 10/646,575
(Atty. Docket No. MSFT-2733), filed on August 21, 2003, entitled “SYSTEMS AND
METHODS FOR INTERFACING APPLICATION PROGRAMS WITH AN ITEM-BASED
STORAGE PLATFORM?”; U.S. Patent Application No. 10/646,646 (Atty. Docket No. MSFT-
2734), filed on August 21, 2003, entitled “STORAGE PLATFORM FOR ORGANIZING,
SEARCHING, AND SHARING DATA”; U.S. Patent Application No. 10/646,580 (Atty. Docket
No. MSFT-2735), filed on August 21, 2003, entitled “SYSTEMS AND METHODS FOR DATA
MODELING IN AN ITEM-BASED STORAGE PLATFORM?”; U.S. Patent Application No.
10/692,779 (Atty. Docket No. MSFT-2829), filed on October 24, 2003, entitled “SYSTEMS
AND METHODS FOR THE IMPLEMENTATION OF A DIGITAL IMAGES SCHEMA FOR
ORGANIZING UNITS OF INFORMATION MANAGEABLE BY A
HARDWARE/SOFTWARE INTERFACE SYSTEM”; U.S. Patent Application No. 10/692,515
(Atty. Docket No. MSFT-2844), filed on October 24, 2003, entitled “SYSTEMS AND
METHODS FOR PROVIDING SYNCHRONIZATION SERVICES FOR UNITS OF
INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE
SYSTEM”; U.S. Patent Application No. 10/692,508 (Atty. Docket No. MSFT-2845), filed on
October 24, 2003, entitled “SYSTEMS AND METHODS FOR PROVIDING RELATIONAL
AND HIERARCHICAL SYNCHRONIZATION SERVICES FOR UNITS OF INFORMATION
MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE SYSTEM”; and U.S. Patent
Application No. 10/693,574 (Atty. Docket No. MSFT-2847), filed on October 24, 2003, entitled
“SYSTEMS AND METHODS FOR EXTENSIONS AND INHERITANCE FOR UNITS OF
INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE
SYSTEM”. ‘

FIELD OF THE INVENTION
[0003] The present invention relates generally to the field of information storage and
retrieval, and, more particularly, to an active storage platform for organizing, searching, and
sharing different types of data in a computerized system, as well as to the synchronization of

multiple instances of a data store or a subset thereof,

WO 2005/024626 PCT/US2004/024287

BACKGROUND

[0004] Individual disk capacity has been growing at roughly seventy percent (70%) per
year over the last decade. Moore’s law accurately predicted the tremendous gains in central
processing unit (CPU) power that has occurred over the years. Wired and wireless technologies
have provided tremendous connectivity and bandwidth. Presuming current trends continue,
within several years the average laptop computer will possess roughly one terabyte (TB) of
storage and contain millions of files, and 500 gigabyte (GB) drives will become commonplace.

[0005] Consumers use their computers primarily for communication and organizing
personal information, whether it is traditional personal information manager (PIM) style data or
media such as digital music or photographs. The amount of digital content, and the ability to
store the raw bytes, has increased tremendously; however the methods available to consumers for
organizing and unifying this data has not kept pace. Knowledge workers spend enormous
amounts of time managing and sharing information, and some studies estimate that knowledge
workers spend 15-25% of their time on non-productive information related activities. Other
studies estimate that a typical knowledge worker spends about 2.5 hours per day searching for

information.

[0006] Developers and information technology (IT) departments invest significant
amounts of time and money in building their own data stores for common storage abstractions to
represent such things as people, places, times, and events. Not only does this result in duplicated
work, but it also creates islands of common data with no mechanisms for common searching or
sharing of that déta. Just consider how many address books can exist today on a computer
running the Microsoft Windows operating system. Many applications, such as e-mail clients and
personal finance programs, keep individual address books, and there is little sharing among
applications of the address book data that each such program individually maintains.
Consequently, a finance program (like Microsoft Money) does not share addresses for payees
with the addresses maintained in an email contact folder (like the one in Microsoft Outlook).
Indeed, many users have multiple devices and logically should synchronize their personal data
amongst themselves and across a wide variety of additional sources, including cell phones to
commercial services such as MSN and AOL; nevertheless, collaboration of shared documents is

largely achieved by attaching documents to e-mail messages—that is, manually and inefficiently.

WO 2005/024626 PCT/US2004/024287

[0007] One reason for this lack of collaboration is that traditional approaches to the
organization of information in computer systems have centered on the use of file-folder-and-
directory-based systems (“file systems™) to organize pluralities of files into directory hierarchies
of folders based on an abstraction of the physical organization of the storage medium used to
store the files. The Multics operating system, developed during the 1960s, can be credited with
pioneering the use of the files, folders, and directories to manage storable units of data at the
operating system level. Specifically, Multics used symbolic addresses within a hierarchy of files
(thereby introducing the idea of a file path) where physical addresses of the files were not
transparent to the user (applications and end-users). This file system was entirely unconcerned
with the file format of any individual file, and the relationships amongst and between files was
deemed irrelevant at the operating system level (that is; other than the location of the file within
the hierarchy). Since the advent of Multics, storable data has been organized into files, folders,
and directories at the operating system level. These files generally include the file hierarchy
itself (the “directory”) embodied in a special file maintained by the file system. This directory,
in turn, maintains a list of entries corresponding to all of the other files in the directory and the
nodal location of such files in the hierarchy (herein referred to as the folders). Such has been the
state of the art for approximately forty years.

[0008] However, while providing a reasonable representation of information residing in
the computer’s physical storage system, a file system is nevertheless an abstraction of that
physical storage system, and therefore utilization of the files requires a level of indirection
(interpretation) between what the user manipulates (units having context, features, and
relationships to other units) and what the operating system provides (files, folders, and
directories). Consequently, users (applications and/or end-users) have no choice but to force
units of information into a file system structure even when doing so is inefficient, inconsistent, or
otherwise undesirable. Moreover, existing file systems know little about the structure of data
stored in individual files and, because of this, most of the information remains locked up in files
that may only be accessed (and comprehensible) to the applications that wrote them.
Consequently, this lack of schematic description of information, and mechanisms for managing
information, leads to the creation of silos of data with little data sharing among the individual

silos. For example, many personal computer (PC) users have more than five distinct stores that

WO 2005/024626 PCT/US2004/024287

contain information about the people they interact with on some level—for example, Outlook
Contacts, online account addressees, Windows Address Book, Quicken Payees, and instant
messaging (IM) buddy lists—because organizing files presents a significant challenge to these
PC users. Because most existing file systems utilize a nested folder metaphor for organizing files
and folders, as the number of files increases the effort necessary to maintain an organization
scheme that is flexible and efficient becomes quite daunting. In such situations, it would be very
useful to have multiple classifications of a single file; however, using hard or soft links in
existing file systems is cumbersome and difficult to maintain.

[0009] Several unsuccessful attempts to address the shortcomings of file systems have
been made in the past. Some of these previous attempts have involved the use of content
addressable memory to provide a mechanism whereby data could be accessed by content rather
than by physical address. However, these efforts have proven unsuccessful because, while
content addressable memory has proven useful for small-scale use by devices such as caches and
memory management units, large-scale use for devices such as physical storage media has not
yet been possible for a variety of reasons, and thus such a solution simply does not exist. Other
attempts using object-oriented database (OODB) systems have been made, but these attempts,
while featuring strong database characteristics and good non-file representations, were not
effective in handling file representations and could not replicate the speed, efficiency, and
simplicity of the file and folder based hierarchical structure at the hardware/software interface
system level. Other efforts, such as those that attempted to use SmallTalk (and other
derivatives), proved to be quite effective at handling file and non-file representations but lacked
database features necessary to efficiently organize and utilize the relationships that exist between
the various data files, and thus the overall efficiency of such systems was unacceptable. Yet
other attempts to use BeOS (and other such operating systems research) proved to be inadeduate
at handling non-file representations—the same core shortcoming of traditional file systems—
despite being able to adequately represent files while providing some necessary database
features.

[0010] Database technology is another area of the art in which similar challenges exits.
For example, while the relational database model has been a great commercial success, in truth

independent software vendors (ISV) generally exercise a small portion of the functionality

WO 2005/024626 PCT/US2004/024287

available in relational database software products (such as Microsoft SQL Server). Instead, most
of an application’s interaction with such a product is in the form of simple “gets” and “puts”.
While there are a number of readily apparent reasons for this—such as being platform or
database agnostic—one key reason that often goes unnoticed is that the database does not
necessarily provide the exact abstractions that a major business application vendor really needs.
For example, while the real world has the notion of “items”, such as “customers” or “orders”
(along with an order’s embedded “line items” as items in and of themselves), relational databases
only talk in terms of tables and rows. Consequently, while the application may desire to have
aspects of consistency, locking, security, and/or triggers at the item level (to name a few),
generally databases provide these features only at the table/row level. While this may work fine
if each item gets mapped to a single row in some table in the database, in the case of an order
with multiple line items there may be reasons why an item actually gets mapped to multiple
tables and, when that is the case, the simple relational database system does not quite provide the
right abstractions. Consequently, an application must build logic on top of the database to
provide these basic abstractions. In other words, the basic relational model does not provide a
sufficient platform for storage of data on which higher-level applications can easily be developed
because the basic relational model requires a level of indirection between the application and the
storage system--where the semantic structure of the data might only be visible in the application
in certain instances. While some database vendors are building higher-level functionality into
their products--such as providing object relational capabilities, new organizational models, and
the like--none have yet to provide the kind of comprehensive solution needed, where a truly
comprehensive solution is one which provides both useful data model abstractions (such as
“Items,” “Bxtensions,” “Relationships,” and so on) for useful domain abstractions (such as
“Persons,” “Locations,” “Events,” etc.).

[0011] In view of the foregoing deficiencies in existing data storage and database
technologies, there is a need for a new storage platform that provides an improved ability to
organize, search, and share all types of data in a computer system--a storage platform that
extends and broadens the data platform beyond existing file systems and database systems, and
that is designed to be the store for all types of data. The present invention, together with the

related inventions incorporated by reference earlier herein, satisfies this need.

WO 2005/024626 PCT/US2004/024287

SUMMARY

[0012] The following summary provides an overview of various aspects of the
invention described in the context of the related inventions incorporated-by-reference earlier
herein (the “related inventions™). This summary is not intended to provide an exhaustive
description of all of the important aspects of the invention, nor to define the scope of the
invention. Rather, this summary is intended to serve as an introduction to the detailed
description and figures that follow.

[0013] The present invention, as well as the related inventions, are collectively directed
to a storage platform for organizing, searching, and sharing data. The storage platform of the
present invention extends and broadens the concept of data storage beyond existing file systems
and database systems, and is designed to be the store for all types of data including structured,
non-structured, or semi-structured data.

[0014] The storage platform of the present invention comprises a data store
implemented on a database engine. The database engine comprises a relational database engine
with object relational extensions. The data store implements a data model that supports
organization, searching, sharing, synchronization, and security of data. Specific types of data are
described in schemas, and the platform provides a mechanism to extend the set of schemas to
define new types of data (essentially subtypes of the basic types provides by the schemas). A
synchronization capability facilitates the sharing of data among users or systems. File-system-
like capabilities are provided that allow interoperability of the data store with existing file
systems but without the limitation of such traditional file systems. A change tracking
mechanism provides the ability track changes to the data store. The storage platform further
comprises a set of application program interfaces that enable applications to access all of the
foregoing capabilities of the storage platform and to access the data described in the schemas.

[0015] The data model implemented by the data store defines units of data storage in
terms of items, elements, and relationships. An item is a unit of data storable in a data store and
can comprise one or more elements and relationships. An element is an instance of a type
comprising one or more fields (also referred to herein as a property). A relationship is a link
between two items. (As used herein, these and other specific terms may be capitalized in order

to offset them from other terms used in close proximity; however, there is no intention

WO 2005/024626 PCT/US2004/024287

whatsoever to distinguish between a capitalized term, e.g. “Item”, and the same term when not
capitalized, e.g., “item”, and no such distinction should be presumed or implied.)

[0016] The computer system further comprises a plurality of Items where each Item
constitutes a discrete storable unit of information that can be manipulated by a
hardware/software interface system; a plurality of Item Folders that constitute an organizational
structure for said Items; and a hardware/software interface system for manipulating a plurality of
Items and wherein each Item belongs to at least one Item Folder and may belong to more than
one [tem Folder.

[0017] An Item or some of the Item’s property values may be computed dynamically as
opposed to being derived from a persistent store. In other words, the hardware/software interface
system does not require that the Item be stored, and certain operations are supported such as the
ability to enumerate the current set of Items or the ability to retrieve an Item given its identifier
(which is more fully described in the sections that describe the application programming
interface, or API) of the storage platform -- for example, an Item might be the current location of
a cell phone or the temperature reading on a temperature sensor. The hardware/software
interface system may manipulate a plurality of Items, and may further comprise Items
interconnected by a plurality of Relationships managed by the hardware/software interface
system.

[0018] A hardware/software interface system for the computer system further
comprises a core schema to define a set of core Items which said hardware/software interface
system understands and can directly process in a predetermined and predictable way. To
manipulate a plurality of Items, the computer system interconnects said Items with a plurality of
Relatipnships and manages said Relationships at the hardware/software interface system level.

[0019] The API of the storage platform provides data classes for each item, item
extension, and relationship defined in the set of storage platform schemas. In addition, the
application programming interface provides a set of framework classes that define a common set
of behaviors for the data classes and that, together with the data classes, provide the basic
programming model for the storage platform API. The storage platform API provides a
simplified query model that enables application programmers to form queries based on various

properties of the items in the data store, in a manner that insulates the application programmer

WO 2005/024626 PCT/US2004/024287

from the details of the query language of the underlying database engine. The storage platform
API also collects changes to an item made by an application program and then organizes them
into the correct updates required by the database engine (or any kind of storage engine) on which
the data store is implemented. This enables application programmers to make changes to an item
in memory, while leaving the complexity of data store updates to the APIL.

[0020] Through its common storage foundation and schematized data, the storage
platform of the present invention enables more efficient application development for consumers,
knowledge workers and enterprises. It offers a rich and extensible application programming
interface that not only makes available the capabilities inherent in its data model, but also
embraces and extends existing file system and database access methods.

[0021] ' As part of this overarching structure of interrelated inventions (described in
detail in Section II of the Detailed Description), the present invention is specifically directed to
the a Synchronization Schema (described in detail in Section III of the Detailed Description).
Other features and advantages of the invention may become apparent from the following detailed

description of the invention and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] The foregoing summary, as well as the following detailed description of the
invention, is better understood when read in conjunction with the appended drawings. For the
purpose of illustrating the invention, there is shown in the drawings exemplary embodiments of
various aspects of the invention; however, the invention is not limited to the specific methods
and instrumentalities disclosed. In the drawings:

[0023] Fig. 1 is a block diagram representing a computer system in which aspects of the
present invention may be incorporated,

[0024] Fig. 2 is a block diagram illustrating a computer system divided into three
component groups: the hardware component, the hardware/software interface system component,
and the application programs component;

[0025] Fig. 2A illustrates the traditional tree-based hierarchical structure for files
grouped in folders in a directory in a file-based operating system;

[0026] Fig. 3 is a block diagram illustrating a storage platform;

WO 2005/024626 PCT/US2004/024287

[0027] Fig. 4 illustrates the structural relationship between Items, Item Folders, and
Categories;

[0028] Fig. SA is a block diagram illustrating the structure of an Ttem;

[0029] Fig. 5B is a block diagram illustrating the complex property types of the Item of
Fig. 5A;

[0030] Fig. SCis a block diagram illustrating the “Location” Item wherein its complex
types are further described (explicitly listed);

[0031] Fig. 6A illustrates an Item as a subtype of the Item found in the Base Schema,;

[0032] Fig. 6B is a block diagram illustrating the subtype Item of F ig. 6A wherein its
inherited types are explicitly listed (in addition to its immediate properties);

[0033] Fig. 7 is a block diagram illustrating the Base Schema including its two top-
level class types, Item and PropertyBase, and the additional Base Schema types derived
therefrom;

[0034] Fig. 8A is a block diagram illustrating Items in the Core Schema;

[0035] Fig. 8B is a block diagram illustrating the property types in the Core Schema;

[0036] Fig. 9 is a block diagram illustrating an Item Folder, its member Items, and the
interconnecting Relationships between the Item Folder and its member Items;

[0037] Fig. 10 is a block diagram illustrating a Category (which, again, is an Item
itself), its member Items, and the interconnecting Relationships between the Category and its
member Items;

[0038] Fig. 11 is a diagram illustrating a reference type hierarchy of the data model of
the storage platform;

[0039] Fig. 12 is a diagram illustrating how relationships are classified,;

[0040] Fig. 13 is a diagram illustrating a notification mechanism;

[0041] Fig. 14 is a diagram illustrating an example in which two transactions are both
inserting a new record into the same B-Tree;

[0042] Fig. 15 illustrates a data change detection process;

[0043] Fig. 16 illustrates an exemplary directory tree;

[0044] Fig. 17 shows an example in which an existing folder of a directory-based file

system is moved into the storage platform data store;

-10 -

WO 2005/024626 PCT/US2004/024287

[0045] Fig. 18 illustrates the concept of Containment Folders;

[0046] Fig. 19 illustrates the basic architecture of the storage platform APL;

[0047] Fig. 20 schematically represents the various components of the storage platform
API stack;

[0048] Fig. 21A is a pictorial representation of an exemplary Contacts Item schema,

[0049] Fig. 21B is a pictorial representation of the Elements for the exemplary Contacts
Item schema of Fig. 21A;

[0050] Fig. 22 illustrates the runtime framework of the storage platform API;

[0051] Fig. 23 illustrates the execution of a “FindAll” operation;

[0052] Fig. 24 illustrates the process by which storage platform API classes are
generated from the storage platform Schema;

[0053] Fig. 25 illustrates a schema on which a File API is based;

[0054] Fig. 26 is a diagram illustrating an access mask format used for data security
purposes;

[0055] Fig. 27 (parts a, b, and c) depicts a new identically protected security region
being carved out of an existing security region;

[0056] Fig. 28 is a diagram illustrating the concept of an Item search view;

[0057] Fig. 29 is a diagram illustrating an exemplary Item hierarchy;

[0058] Fig. 30A illustrates an interface Interfacel as a conduit through which first and
second code segments communicate;

[0059] Fig. 30B illustrates an interface as comprising interface objects I1 and 12 which
enable first and second code segments of a system to communicate via medium M;

[0060] Fig. 31A illustrates how the function provided by interface Interfacel may be
subdivided to convert the communications of the interface into multiple interfaces InterfacelA,
Interface 1B, Interface 1C;

[0061] Fig. 31B illustrates how the function provided by interface 11 may be
subdivided into multiple interfaces Ila, I1b, Ilc;

[0062] Fig. 32A illustrates a scenario where a meaningless parameter precision can be

ignored or replaced with an arbitrary parameter;

-11 -

Al

WO 2005/024626 PCT/US2004/024287

[0063] Fig. 32B illustrates a scenario where an interface is replaced by a substitute
interface that is defined to ignore or add parameters to an interface;

[0064] Fig. 33A illustrates a scenario where a 1st and 2nd Code Segments are merged
into a module containing them both;

[0065] Fig. 33B illustrates a scenario where part or all of an interface may be written
inline into another interface to form a merged interface.

[0066] Fig. 34A illustrates how one or more pieces of middleware might convert
communications on the first interface to conform them to one or more different interfaces;

[0067] Fig. 34B illustrates how a code segment can be introduced with an interface to
receive the communications from one interface but transmit the functionality to second and third
interfaces;

[0068] Fig. 35A illustrates how a just-in-time compiler (JIT) might convert
communications from one code segment to another code segment;

[0069] Fig. 35B illustrates a JIT method of dynamically rewriting one or more
interfaces may be applied to dynamically factor or otherwise alter said interface;

[0070] Fig. 36 illustrates a three instances of a common data store and the components
for synchronizing them; and

[0071] Fig. 37 illustrates one embodiment of the present invention that presumes a

simple adapter that is unaware of how state is calculated or its associated metadata is exchanged.

[Remainder of Page Intentionally Left Blank]

-12 -

WO 2005/024626 PCT/US2004/024287

DETAILED DESCRIPTION
TABLE OF CONTENTS
L INTRODUCTION ..ottt sttt eve s esass e sasbe e aenens
A. EXEMPLARY COMPUTING ENVIRONMENTcccvueruremrrererererreerenennnn.
B. TRADITIONAL FILE-BASED STORAGEccccooeieereteeeectereereeeeeeneees
1L WINFS STORAGE PLATFORM FOR ORGANIZING, SEARCHING, AND

SHARING DATA....oiiiiiirinentietrineese ettt ss s s s s se st e e e
A. GLOSSARYccccenen bbb et st b e e e s sttt e b e e ereens
B. STORAGE PLATFORM OVERVIEWcocoiiiiiieierecececeeee e
C THE DATA MODELcooeciviiiininecininreteteresesiesesssesssssisssessesessssesesssessseseenes
1. JEEIMIS ..ottt b s

2. Ttem Identification.........oeeveevrenineniccscresee e

3. Item Folders and Categoriescoevirrericinirinerieeneneneseeere e

4, SCREMASeeriiiiiiiiicie ettt

a) Base SCheMAccvcvireeeiiieiierrcieee et

b) COre SCREMAcveviveireieriireerrte e

5. ReEIAtIONSHIPS.......cuvviircrerciereiie ettt se ettt n e

a) Relationship Declaration...7

b) Holding Relationshipccocevveiereenieienenreieneereeee e

c) Embedding Relationshipscccovevevveeeeieeiecicceccreerr e,

d) Reference Relationships.........ccceueeueeeriereeneseveseeecveeecevcnn

e) Rules and Constraintsc.cceveeeveerereneieneereeeceeesee e,

i) Ordering of Relationshipscoocvvveverireveeennenrireereeeeeseevenen,

6. EXtENSIDIIIEY c..evviiirceetiieeet e rr e

a) TEEIN EXLENSIONS ..uveveverereerertaneereniiteeisessesteeeseeseeessereeseeneeseesennes

WO 2005/024626

PCT/US2004/024287

b) Extending NestedElement typesoveeeeereerssimiiisiesssineinn, -53-
D. DATABASE ENGINEcocoeerieteeresteninirieeeneesessaesseesess st st ssssssssenis -55-
1. Data Store Implementation Using UDTSs........coeveinmninmnniniinsnnnnncnn - 56 -
2. TEE MAPPING ..voveenivcrrmerninrersaersrssre st r s -57-
3. EXtension MapPingocoeueverieomnmiienesinicssirtssssesesieesese st e -58 -
4. Nested Blement Mapping.......cccevvviiieinienimenenencnsiinensisssneeen -58 -
5. OBJECt TACTEILY «.vvvveververinerriisiersere s e -58 -
6. SQL Object NAIMILE «..vovovvrierreeirersaasesessssesisissssissnnsss s -58-
7. COTUMN NAMIIIZ 1.t vevevenverererisiiresiereeieesesene st ettt -59 -
8. SEALCH VIEWS .veeviviereieeesiereeseeeeseestesessessessessensessesssasesseenenssnsssansnassnsennes -60 -
a) | 7374 WU UO U OO OP OO TOP PP PORP ST -61 -
(1) Master Item Search VIEW.....cccoviimimniiiiineiinees -61 -
(2) Typed Item Search VIEWS......cocoiriimiinniiiiinnnienen: -61 -
b) THem EXEENSIONS. c.evvevrererrerereseereereenneresiesnrenessssemssssessesnesnennes -62 -
(1) Master Extension Search VIEWccococonniiiininins -62 -
2) Typed Extension Search VIEWS ... -63 -
c) Nested BIemENtS. ... cereeeererrreesieiireneeinssnesassesnsnsssssssisssnss -63 -
d) ReEIAIONSHIPS .o vevevererieriiisiniirntee st -64 -
(1) Master Relationship Search View........ccooumiiininnnne. - 64 -
(2) Relationship Instance Search Views........cccooueveiiiennes - 64 -

e) -65 -
9. UPAALES vovreeiscicmcrerensaere et -65-
10. Change Tracking & TOmMDBStONEScivuerirsrucrninmininiiisinieiee e - 66 -
a) Change Tracking......coevuriverisiereririnersrssssese s - 66 -

-14 -

1.

WO 2005/024626 PCT/US2004/024287
(1) Change Tracking in “Master” Search Views................ - 66 -
2) Change Tracking in “Typed” Search Views................. - 67 -
b) TOMDSIONES ...ceivviiieietet e - 68 -
(1) Ttem TombSONES......coveviereeeereeeieicneecee e - 68 -
(2) Extension Tombstones.........cccevverrvineivininiicnicniienn. - 69 -
(3) Relationships Tombstone........ccceevvvvrevirvenneeinenecnene - 69 -
(4) Tombstone Cleanupcecevveerreriernirneeneseeesneeeenneenns -70 -
11. Helper APIs and FUnCtionscccoccvveiriniiicricniininsnsiesissenennenes - 70 -
a) Function [System.Storage]. Getltem.ccoeeveviicininiicnieinnns -70 -
b) Function [System.Storage].GetExtension.........cccvvivvriciiiieens -70 -
) Function [System.Storage].GetRelationship........c.cceceeevievennene -71-
12, Metadata.....cccoeriiieiiciciiee s -71 -
a) Schema Metadata......c.cecveccivieieniieeciereeeeee e -71 -
b) Instance Metadataccevereerrerienirieeseeercee e -71 -
E. SECURITY ..ooieisieiieterieietereseetneesesseseesessesesssssssseessenessiesessesessensssssssssnssenaees -71 -
F. NOTIFICATIONS AND CHANGE TRACKING.ccococviiiiiiimnenninnieeneas -72 -
G. TRADITIONAL FILE SYSTEM INTEROPERABILITYccoovinmnicrininnne -73 -
H. STORAGE PLATFORM APoveiiiriinireiiininisisenies e - 74 -
SYNCHRONIZATION APL....c.ooveiirciiriiieeincinseiieei et - 80 -
A. SYNCHRONIZATION OVERVIEWccniiiiiiinenticneceinere s - 81 -
1. Storage-Platform-to-Storage-Platform Synchronization -81-
a) Synchronization (Sync) Controlling Applications.......c..ece..... -82-
b) Schema annotAtIONccveeieerieneireerereresereseeseeeeesre s eseeesraeeeas -83-
c) SyNC ConfigUIationcocveveiererieerienieiircnsnesirsee e -84 -

-15 -

WO 2005/024626 PCT/US2004/024287

(1) Community Folder - Mappings.........ccoerervemeeerennnnnnnn. -85 -
(2) PrOfiles..ccccriiiiieiiiiinieieiiececte et -86 -
(3) Schedulescccoviirireniiieieeee e - 87 -
d) Conflict Handling........ccccovvvevveieinriniinieeeieereeeseeeseeeeee e - 87 -
(1) Conflict Detection.........ccuveveeeeerereieieeeereecreenreereeeeens -87-
(a) Knowledge- Based Conflicts -87 -

(b) Constraint-Based Conflicts - 88 -

2 Conflict ProCESSINGccveievierieieieereeeeeeeeeeee v - 88 -
(a) Automatic Conflict Resolution -89 -

(b) Conflict Logging -89 -

(© Conflict Inspection and Resolution -90 -

(d Convergence of Replicas and Propagation of

Conflict Resolutions -90 -

2. Synchronizing to Non-Storage Platform Data Stores.........cccevevuveennens -91 -

a) SYNC SEIVICES ..evrvereurererrirereieeerentesteeeesteteresessessesaeessessessensan -91 -

(D Change Enumeration.........ccccceeveererrienennenennseeneesiesnnns -91 -

(2) Change Applicationcccceveeveevieneerieneeieeneeceeereeneens -92 -

€)) Conflict ResOIUtioNcovvecvivvercerenieieierieeeeeecsreenens -93-

b) Adapter Implementationc.ccveveeeereeiieeeeneeecce e -93 -

3. SECULILYevereverierenirieieierieeste st et et esessestesas e eseraese st stessesassessessesessans - 94 -

4. Manageabilitycc.cocvvieenerrnirieneeieeeeseeerese e e -94 -

B. SYNCHRONIZATION API OVERVIEW......ccccominrrinerinerienreesieesinenns -95 -
1. General TerminologYceceeveeerereererrenene e ereeresreenees -95-

2. Synchronization API PrincipalS......cccceevvererreriesuiseeiensesesnesseesessessenens -97 -

C. SYNCHRONIZATION API SERVICES........ccccoivmriirrinreireeenennsseresneressenens - 99 -

-16 -

IV.

WO 2005/024626 PCT/US2004/024287
1. Change Enumeration.............c.ocuouieveiereeneneeeeeeeeesseseesseressesessessesesneenns - 99 -
2. Change APPLCAtionccceeeeveeereeeeeicrecreeeee e reeene e eaeas - 100 -
3. SAMPIE COE ...ttt - 100 -
4. Methods of API Synchronization............cceeevevveveeeevereeeeeeeseereeresenss - 104 -
CONCLUSION.....ootiititiietrteneerintireesstesteeste st eaeesesseteeseesessensessassesesseseessessssesesssonosees - 108 -

217 -

WO 2005/024626 PCT/US2004/024287

I INTRODUCTION

[0072] The subject matter of the present invention is described with specificity to meet
statutory requirements. However, the description itself is not intended to limit the scope of this
patent. Rather, the inventors have contemplated that the claimed subject matter might also be
embodied in other ways, to include different steps or combinations of steps similar to the ones
described in this document, in conjunction with other present or future technologies. Moreover,
although the term “step” may be used herein to connote different elements of methods employed,
the term should not be interpreted as implying any particular order among or between various
steps herein disclosed unless and except when the order of individual steps is explicitly

described.

A. EXEMPLARY COMPUTING ENVIRONMENT

[00’;3] Numerous embodiments of the present invention may execute on a computer.
Fig. 1 and the following discussion is intended to provide a brief general description of a suitable
computing environment in which the invention may be implemented. Although not required,
various aspects of the invention may be described in the general context of computer executable
instructions, such as program modules, being executed by a computer, such as a client
workstation or a server. Generally, program modules include routines, programs, objects,
components, data structures and the like that perform particular tasks or implement paﬁicular
abstract data types. Moreover, the invention may be practiced with other computer system
configurations, including hand held devices, multi processor systems, microprocessor based or
programmable consumer electronics, network PCs, minicomputers, mainframe computers and
the like. The invention may also be practiced in distributed computing environments where tasks
are performed by remote processing devices that are linked through a communications network.
In a distributed computing environment, program modules may be located in both local and
remote memory storage devices.

[0074] As shown in Fig. 1, an exemplary general purpose computing system includes a
conventional personal computer 20 or the like, including a processing unit 21, a system memory
22, and a system bus 23 that couples various system components including the system memory

to the processing unit 21. The system bus 23 may be any of several types of bus structures

-18 -

WO 2005/024626 PCT/US2004/024287

including a memory bus or memory controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. The system memory includes read only memory (ROM) 24 and
random access memory (RAM) 25. A basic input/output system 26 (BIOS), containing the basic
routines that help to transfer information between elements within the personal computer 20,
such as during start up, is stored in ROM 24. The personal computer 20 may further include a
hard disk drive 27 for reading from and writing to a hard disk, not shown, a magnetic disk drive
28 for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30 for
reading from or writing to a removable optical disk 31 such as a CD ROM or other optical
media. The hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to
the system bus 23 by a hard disk drive interface 32, a magnetic disk drive interface 33, and an
optical drive interface 34, respectively. The drives and their associated computer readable media
provide non volatile storage of computer readable instructions, data structures, program modules
and other data for the personal computer 20. Although the exemplary environment described
herein employs a hard disk, a removable magnetic disk 29 and a removable optical disk 31, it
should be appreciated by those skilled in the art that other types of computer readable media
which can store data that is accessible by a computer, such as magnetic cassettes, flash memory
cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read only
memories (ROMs) and the like may also be used in the exemplary operating environment.
Likewise, the exemplary environment may also include many types of monitoring devices such
as heat sensors and security or fire alarm systems, and other sources of information.

| [0075] A number of program modules may be stored on the hard disk, magnetic disk
29, optical disk 31, ROM 24 or RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37 and program data 38. A user may enter
commands and information into the personal computer 20 through input devices such as a
keyboard 40 and pointing device 42. Other input devices (not shown) may include a microphone,
joystick, game pad, satellite disk, scanner or the like. These and other input devices are often
connected to the processing unit 21 through a serial port interface 46 that is coupled to the
system bus, but may be connected by other interfaces, such as a parallel port, game port or
universal serial bus (USB). A monitor 47 or other type of display device is also connected to the

system bus 23 via an interface, such as a video adapter 48. In addition to the monitor 47,

-19-

WO 2005/024626 PCT/US2004/024287

personal computers typically include other peripheral output devices (not shown), such as
speakers and ﬁrinters. The exemplary system of Fig. 1 also includes a host adapter 55, Small
Computer System Interface (SCSI) bus 56, and an external storage device 62 connected to the
SCSI bus 56.

[0076] The personal computer 20 may operate in a networked environment using
logical connections to one or more remote computers, such as a remote computer 49. The remote
computer 49 may be another personal computer, a server, a router, a network PC, a peer device
or other common network node, and typically includes many or all of the elements described
above relative to the personal computer 20, although only a memory storage device 50 has been
illustrated in Fig. 1. The logical connections depicted in Fig. 1 include a local area network
(LAN) 51 and a wide area network (WAN) 52. Such networking environments are commonplace
in offices, enterprise wide computer networks, intranets and the Internet.

[0077] When used in a LAN networking environment, the personal computer 20 is
connected to the LAN 51 through a network interface or adapter 53. When used in a WAN
networking environment, the personal computer 20 typically includes a modem 54 or other
means for establishing communications over the wide area network 52, such as the Internet. The
modem 54, which may be internal or external, is connected to the system bus 23 via the serial
port interface 46. In a networked environment, program modules depicted relative to the personal
computer 20, or portions thereof, may be stored in the remote memory storage device. It will be
appreciated that the network connections shown are exemplary and other means of establishing a
communications link between the computers may be used.

[0078] As illustrated in the block diagram of Fig. 2, a computer system 200 can be
roughly divided into three component groups: the hardware component 202, the
hardware/software interface system component 204, and the applications programs component
206 (also referred to as the “user component” or “software component” in certain contexts
herein).

[0079] In various embodiments of a computer system 200, and referring back to Fig. 1,
the hardware component 202 may comprise the central processing unit (CPU) 21, the memory
(both ROM 24 and RAM 25), the basic input/output system (BIOS) 26, and various input/output

(I/0) devices such as a keyboard 40, a mouse 42, a monitor 47, and/or a printer (not shown),

-20 -

WO 2005/024626 PCT/US2004/024287

among other things. The hardware component 202 comprises the basic physical infrastructure
for the computer system 200.

[0080] The applications programs component 206 comprises various software programs
including but not limited to compilers, database systems, word processors, business programs,
videogames, and so forth. Application programs provide the means by which computer
resources are utilized to solve problems, provide solutions, and process data for various users
(machines, other computer systems, and/or end-users).

[0081] The hardware/software interface system component 204 comprises (and, in
some embodiments, may solely consist of) an operating system that itself comprises, in most
cases, a shell and a kernel. An “operating system” (OS) is a special program that acts as an
intermediary between application programs and computer hardware. The hardware/software
interface system component 204 may also comprise a virtual machine manager (VMM), a
Common Language Runtime (CLR) or its functional equivalent, a Java Virtual Machine (VM)
or its functional equivalent, or other such software components in the place of or in addition to
the operating system in a computer system. The purpose of a hardware/software interface
system is to provide an environment in which a user can execute application programs. The goal
of any hardware/software interface system is to make the computer system convenient to use, as
well as utilize the computer hardware in an efficient manner.

[0082] The hardware/software interface system is generally loaded into a computer
system at startup and thereafter manages all of the application programs in the computer system.
The application programs interact with the hardware/software interface system by requesting
services via an application program interface (API). Some application programs enable end-
users to interact with the hardware/software interface system via a user interface such as a
command language or a graphical user interface (GUI).

[0083] A hardware/software interface system traditionally performs a variety of
services for applications. In a multitasking hardware/software interface system where multiple
programs may be running at the same time, the hardware/software interface system determines
which applications should run in what order and how much time should be allowed for each
application before switching to another application for a turn. The hardware/software interface

system also manages the sharing of internal memory among multiple applications, and handles

-21-

WO 2005/024626 PCT/US2004/024287

input and output to and from attached hardware devices such as hard disks, printers, and dial-up
ports. The hardware/software interface system also sends messages to each application (and, in
certain case, to the end-user) regarding the status of operations and any errors that may have
occurred. The hardware/software interface system can also offload the management of batch
jobs (e.g., printing) so that the initiating application is freed from this work and can resume other
processing and/or operations. On computers that can provide parallel processing, a
hardware/software interface system also manages dividing a program so that it runs on more than
one processor at a time.

[0084] A hardware/software interface system shell (simply referred to herein as a
“shell”) is an interactive end-user interface to a hardware/software interface system. (A shell
may also be referred to as a “command interpreter” or, in an operating system, as an “operating
system shell”). A shell is the outer layer of a hardware/software interface system that is directly
accessible by application programs and/or end-users. In contrast to a shell, a kernel is a
hardware/software interface system’s innermost layer that interacts directly with the hardware
components.

[0085] While it is envisioned that numerous embodiments of the present invention are
particularly well-suited for computerized systems, nothing in this document is intended to limit
the invention to such embodiments. On the contrary, as used herein the term “computer system”
is intended to encompass any and all devices capable of storing and processing information
and/or capable of using the stored information to control the behavior or execution of the device

itself, regardless of whether such devices are electronic, mechanical, logical, or virtual in nature.

B. TRADITIONAL FILE-BASED STORAGE

[0086] In mostcomputer systems today, “files” are units of storable information that
may include the hardware/software interface system as well as application programs, data sets,
and so forth. In all modern hardware/software interface systems (Windows, Unix, Linux, Mac
OS, virtual machine systems, and so forth), files are the basic discrete (storable and retrievable)
units of information (e.g., data, programs, and so forth) that can be manipulated by the
hardware/software interface system. Groups of files are generally organized in “folders.” In

Microsoft Windows, the Macintosh OS, and other hardware/software interface systems, a folder

-2

WO 2005/024626 PCT/US2004/024287

is a collection of files that can be retrieved, moved, and otherwise manipulated as single units of
information. These folders, in turn, are organized in a tree-based hierarchical arrangement called
a “directory” (discussed in more detail herein below). In certain other hardware/software
interface systems, such as DOS, z/OS and most Unix-based operating systems, the terms
“directory” and/or “folder” are interchangeable, and early Apple computer systems (e.g., the
Apple Ile) used the term “catalog” instead of directory; however, as used herein, all of these
terms are deemed to be synonymous and interchangeable and are intended to further include all
other equivalent terms for and references to hierarchical information storage structures and their
folder and file components.

[0087] Traditionally, a directory (a.k.a. a directory of folders) is a tree-based
hierarchical structure wherein files are grouped into folders and folder, in turn, are arranged
according to relative nodal locations that comprise the directory tree. For example, as illustrated
in Fig. 2A, a DOS-based file system base folder (or “root directory”) 212 may comprise a
plurality of folders 214, each of which may further comprise additional folders (as “subfolders”
of that particular folder) 216, and each of these may also comprise additional folders 218 ad
infinitum. Each of these folders may have one or more files 220 although, at the
hardware/software interface system level, the individual files in a folder have nothing in common
other than their location in the tree hierarchy. Not surprisingly, this approach of organizing files
into folder hierarchies indirectly reflects the physical organization of typical storage media used
to store these files (e.g., hard disks, floppy disks, CD-ROMs, etc.).

[0088] In addition to the foregoing, each folder is a container for its subfolders and its
files—that is, each folder owns its subfolders and files. For example, when a folder is deleted by
the hardware/software interface system, that folder’s subfolders and files are also deleted (which,
in the case of each subfolder, further includes its own subfolders and files recursively).
Likewise, each file is generally owned by only one folder and, although a file can be copied and
the copy located in a different folder, a copy of a file is itself a distinct and separate unit that has
no direct connection to the original (e.g., changes to the original file are not mirrored in the copy
file at the hardware/software interface system level). In this regard, files and folders are

therefore characteristically “physical” in nature because folders are the treated like physical

-23-

WO 2005/024626 PCT/US2004/024287

containers, and files are treated as discrete and separate physical elements inside these

containers.

II. WINES STORAGE PLATFORM FOR ORGANIZING, SEARCHING, AND
SHARING DATA

[0089] The present invention, in combination with the related inventions incorporated
by reference as discussed earlier herein, is directed to a storage platform for organizing,
searching, and sharing data. The storage platform of the present invention extends and broadens
the data platform beyond the kinds of existing file systems and database systems discussed

above, and is designed to be the store for all types of data, including a new form of data called

Items.

A. GLOSSARY

[0090] As used herein and in the claims, the following terms have the following
meanings:

e An “Item” is an unit of storable information accessible to a hardware/software
interface system that, unlike a simple file, is an object having a basic set of
properties that are commonly supported across all objects exposed to an end-user
by the hardware/software interface system shell. Items also have properties and
relationships that are commonly supported across all Item types including features
that allow new properties and relationships to be introduced (and discussed in
great detail later herein).

* An “operating system” (OS) is a special program that acts as an intermediary
between application programs and computer hardware. An operating system
comprises, in most cases, a shell and a kernel.

e A “hardware/software interface system” is software, or a combination of
hardware and software, that serves as the interface between the underlying
hardware components of a computer system and applications that execute on the
computer system. A hardware/software interface system typically comprises

(and, in some embodiments, may solely consist of) an operating system. A

-24 -

WO 2005/024626 PCT/US2004/024287

hardware/software interface system may also comprise a virtual machine manager
(VMM), a Common Language Runtime (CLR) or its functional equivalent, a Java
Virtual Machine (JVM) or its functional equivalent, or other such software
components in the place of or in addition to the operating system in a computer
system. The purpose of a hardware/software interface system is to provide an
environment in which a user can execute application programs. The goal of any
hardware/software interface system is to make the computer system convenient to

use, as well as utilize the computer hardware in an efficient manner.

B. STORAGE PLATFORM OVERVIEW

[0091] Referring to Fig. 3, a storage platform 300 comprises a data store 302
implemented on a database engine 314. In one embodiment, the database engine comprises a
relational database engine with object relational extensions. In one embodiment, the relational
database engine 314 comprises the Microsoft SQL Server relational database engine. The data
store 302 implements a data model 304 that supports the organization, searching, sharing,
synchronization, and security of data. Specific types of data are described in schemas, such as
schemas 340, and the storage platform 300 provides tools 346 for deploying those schemas as
well as for extending those schemas, as described more fully below.

[0092] A change tracking mechanism 306 implemented within the data store 302
provides the ability track changes to the data store. The data store 302 also provides security
capabilities 308 and a promotion/demotion capability 310, both of which are discussed more
fully below. The data store 302 also provides a set of application programming interfaces 312 to
expose the capabilities of the data store 302 to other storage platform components and
application programs (e.g., application programs 350a, 350D, and 350c) that utilize the storage
platform. The storage platform of the present invention still further comprises an application
programming interfaces (API) 322, which enables application programs, such as application
programs 350a, 350b, and 350c, to access all of the foregoing capabilities of the storage platform
and to access the data described in the schemas. The storage platform API 322 may be used by
application programs in combination with other APIs, such as the OLE DB AP1324 and the
Microsoft Windows Win32 API 326.

-25-

WO 2005/024626 PCT/US2004/024287

[0093] The storage platform 300 of the present invention may provide a variety of
services 328 to application programs, including a synchronization service 330 that facilitates the
sharing of data among users or systems. For example, the synchronization service 330 may
enable interoperability with other data stores 340 having the same format as data store 302, as
well as access to data stores 342 having other formats. The storage platform 300 also provides
file system capabilities that allow interoperability of the data store 302 with existing file systems,
such as the Windows NTFS files system 318. In at least some embodiments, the storage
platform 320 may also provide application programs with additional capabilities for enabling
data to be acted upon and for enabling interaction with other systems. These capabilities may be
embodied in the form of additional services 328, such as an Info Agent service 334 and a
notification service 332, as well as in the form of other utilities 336.

[0094] In at least some embodiments, the storage platform is embodied in, or forms an
integral part of, the hardware/software interface system of a computer system. For example, and
without limitation, the storage platform of the present invention may be embodied in, or form an
integral part of, an operating system, a virtual machine manager (VMM), a Common Language
Runtime (CLR) or its functional equivalent, or a Java Virtual Machine (JVM) or its functional
equivalent. Through its common storage foundation, and schematized data, the storage platform
of the present invention enables more efficient application development for consumers,
knowledge workers and enterprises. It offers a rich and extensible programming surface area
that not only makes available the capabilities inherent in its data model, but also embraces and
extends existing file system and database access methods.

[0095] In the following description, and in various ones of the figures, the storage
platform 300 of the present invention may be referred to as “WinFS.” However, use of this
name to refer to the storage platform is solely for convenience of description and is not intended

to be limiting in any way.

C. THE DATA MODEL

[0096] The data store 302 of the storage platform 300 of the present invention
implements a data model that supports the organization, searching, sharing, synchronization, and

security of data that resides in the store. In the data model of the present invention, an “Item” is

=26 -

WO 2005/024626 PCT/US2004/024287

the fundamental unit of storage information. The data model provides a mechanism for
declaring Items and Ttem extensions and for establishing relationships between Items and for
organizing Items in Item Folders and in Categories, as described more fully below.

[0097] The data model relies on two primitive mechanisms, Types and Relationships.
Types are structures which provide a format which governs the form of an instance of the Type.
The format is expressed as an ordered set of Properties. A Property is'a name for a value or set of
values of a given Type. For example a USPostalAddress type might have the properties Street,
City, Zip, State in which Street, City and State are of type String and Zip is of Type Int32. Street
may be multi-valued (i.e. a set of values) allowing the address to have more than one value for
the Street property. The system defines certain primitive types that can be used in the
construction of other types — these include String, Binary, Boolean, Int16, Ini32, Int64, Single,
Double, Byte, DateTime, Decimal and GUID. The Properties of a Type may be defined using
any of the primitive types or (with some restrictions noted below) any of the constructed types.
For example a Location Type might be defined that had Properties Coordinate and Address
where the Address Property is of Type USPostalAddress as described above. Properties may also
be required or optional.

[0098] Relationships can be declared and represent a mapping between the sets of
instances of two types. For example there may be a Relationship declared between the Person
Type and the Location Type called LivesAt which defines which people live at which locations.
The Relationship has a name, two endpoints, namely a source endpoint and a target endpoint.
Relationships may also have an ordered set of properties. Both the Source and Target endpoints
have a Name and a Type. For example the LivesAt Relationship has a Source called Occupant of
Type Person and a Target called Dwelling of Type Location and in addition has properties
StartDate and EndDate indicating the period of time for which the occupant lived at the dwelling.
Note that a Person may live at multiple dwellings over time and a dwelling may have multiple
occupants so the most likely place to put the StartDate and EndDate information is on the
relationship itself.

[0099] Relationships define a mapping between instances that is constrained by the
types given as the endpoint types. For example the LivesAt relationship cannot be a relationship

in which an Automobile is the Occupant because an Automobile is not a Person.

-27-

WO 2005/024626 PCT/US2004/024287

[0100] The data model does allow the definition of a subtype-supertype relationship
between types. The subtype-supertype relationship also known as the BaseType relationship is
defined in such a way that if Type A is a BaseType for Type B it must be the case that every
instance of B is also an instance of A. Another way of expressing this is that every instance that
conforms to B must also conform to A. If, for example A has a property Name of Type String
while B has a property Age of Type Int16, it follows that any instance of B must have both a
Name and an Age. The type hierarchy may be envisaged as an tree with a single supertype at the
root. The branches from the root provide the first level subtypes, the branches at this level
provide the second level subtypes and so on to the leaf-most subtypes which themselves do not
have any subtypes. The tree is not constrained to be of a uniform depth but cannot contain any
cycles. A given Type may have zero or many subtypes and zero or one super type. A given
instance may conform to at most one type together with that type’s super types. To put it another
way, for a given instance at any level in the tree the instance may conform to at most one subtype
at that level. A type is said to be Abstract if instances of the type must also be an instance of a -

subtype of the type.
1. Items

[0101] An Item is a unit of storable information that, unlike a simple file, is an object
having a basic set of properties that are commonly supported across all objects exposed to an
end-user or application program by the storage platform. Items also have properties and
relationships that are commonly supported across all Item types including features that allow
new properties and relationships to be introduced, as discussed below.

[0102] Items are the objects for common operations such as copy, delete, move, open,
print, backup, restore, replicate, and so forth. Items are the units that can be stored and retrieved,
and all forms of storable information manipulated by the storage platform exist as Items,
properties of Ttems, or Relationships between Items, each of which is discussed in greater detail
herein below.

[0103] Items are intended to represent real-world and readily-understandable units of
data like Contacts, People, Services, Locations, Documents (of all various sorts), and so on. Fig.
5A is a block diagram illustrating the structure of an Item. The unqualified name of the Item is

“Location”. The qualified name of the Item is “Core.Location” which indicates that this Item

-28 -

WO 2005/024626 PCT/US2004/024287

structure is defined as a specific type of Item in the Core Schema. (The Core Schema is
discussed in more detail later herein.)

[0104] The Location Item has a plurality of properties including EAddresses,
MetropolitanRegion, Neighborhood, and PostalAddresses. The specific type of property for each
is indicated immediately following the property name and is separated from the property name
by a colon (). To the right of the type name, the number of values permitted for that property
type is indicated between brackets (“[]”) wherein an asterisk (“*”) to the right of the colon (*:”)
indicates an unspecified and/or unlimited number (“many”). A “1” to the right of the colon
indicates that there can be at most one value. A zero (“0”) to the left of the colon indicates that
the property is optional (there may be no value at all). A “1” to the left of the colon indicates
that there must be at least one value (the property is required). Neighborhood and
MetropolitanRegion are both of type “nvarchar” (or equivalent) which is a predefined data type
or “simple type” (and denoted herein by the lack of capitalization). EAddresses and
PostalAddresses, however, are properties of defined types or “complex types” (as denoted herein
by capitalization) of types EAddress and PostalAddress respectively. A complex type is type
that is derived from one or more simple data types and/or from other complex types. The
complex types for the properties of an Item also constitute “nested elements” since the details of
the complex type are nested into the immediate Item to define its properties, and the information
pertaining to these complex types is maintained with the Item that has these properties (within
the Item’s boundary, as discussed later herein). These concepts of typing are well known and
readily appreciated by those of skill in the art.

[0105] Fig. 5B is a block diagram illustrating the complex property types PostalAddress
and EAddress. The PostalAddress property type defines that an Item of property type
PostalAddress can be expected to have zero or one City values, zero or one CountryCode values,
zero or one MailStop values, and any number (zero to many) of PostalAddressTypes, and so on
and so forth. In this way, the shape of the data for a particular property in an Item is hereby
defined. The EAddress property type is similarly defined as shown. Although optionally used
herein this Application, another way to represent the complex types in the Location Item is to
draw the Item with the individual properties of each complex type listed therein. Fig. 5Cisa

block diagram illustrating the Location Item wherein its complex types are further described.

-29.

WO 2005/024626 PCT/US2004/024287

However, it should be understood that this alternative representation of the Location Ttem in this
Fig. 5C is for the exact same Item illustrated in Fig. 5A. The storage platform of the present
invention also allows subtyping whereby one property type can be a subtype of another (where
the one property type inherits the properties of another, parent property type).

[0106] Similar to but distinct from properties and their property types, Items inherently
represent their own Item Types that can also be the subject of subtyping. In other words, the
storage platform in several embodiments of the present invention allows an Item to be a subtype
of another Item (whereby the one Item inherits the properties of the other, parent Item).
Moreover, for various embodiments of the present invention, every Item is a subtype of the
“Item” Item type which is the first and foundational Ttem type found in the Base Schema. (The
Base Schema will also be discussed in detail later herein.) Fig. 6A illustrates an Item, the
Location Item in this Instance, as being a subtype of the Item Item type found in the Base
Schema. In this drawing, the arrow indicates that the Location Item (like all other Items) is a
subtype of the Item Item type. The Item Item type, as the foundational Ttem from which all other
Items are derived, has a number of important properties such as ItemId and various timestamps,
and thereby defines the standard properties of all Items in an operating system. In the present
figure, these properties of the Item Item type are inherited by Location and thereby become
properties of Location.

[0107] Another way to represent the properties in the Location Item inherited from the
Item Item type is to draw Location with the individual properties of each property type from the
parent Item listed therein. Fig. 6B is a block diagram illustrating the Location Item wherein its
inherited types described in addition to its immediate properties. It should be noted and
understood that this Item is the same Item illustrated in Fig. 5A, although in the present figure
Location is illustrated with all of its properties, both immediate—shown in both this figure and
Fig. 5A—and inherited—shown in this figure but not Fig. 5A (whereas in Fig. 5A these
properties are referenced by showing with an arrow that the Location Item is a subtype of the
Item Item type).

[0108] Items are stand-alone objects; thus, if you delete an Item, all of the Ttems
immediate and inherited properties are also deleted. Similarly, when retrieving an Item, what is

received is the Item and all of its immediate and inherited properties (including the information

-30-

WO 2005/024626 PCT/US2004/024287

pertaining to its complex property types). Certain embodiments of the present invention may
enable one to request a subset of properties when retrieving a specific Item; however, the default
for many such embodiments is to provide the Item with all of its immediate and inherited
properties when retrieved. Moreover, the properties of Items can also be extended by adding
new properties to the existing properties of that Item’s type. These “extensions” are thereafter
bona fide properties of the Item and subtypes of that Item type may automatically include the
extension properties.

[0109] The “boundary” of the Item is represented by its properties (including complex
property types, extensions, and so forth). An Item’s boundary also represents the limit of an
operation performed on an Item such as copy, delete, move, create, and so on. For example, in
several embodiments of the present invention, when an Item is copied, everything within that
Item’s boundary is also copied. For each Item, the boundary encompasses the following:

e The Item Type of the Item and, if the Item is a subtype of another Item (as is

the case in several embodiments of the present invention where all Items are

derived from a single Item and Item Type in the Base Schema), any applicable -

subtype information (that is, information pertaining to the parent Item Type).)If

the original Item being copied is a subtype of another Item, the copy may also be

a subtype of that same Item.

o The Item’s complex-type properties and extensions, if any. If the original

Ttem has properties of complex types (native or extended), the copy may also have

the same complex types.

e The Item’s records on “ownership relationships”, that is, the Item’s own list of

what other Items (the “Target Items”) are owned by the present Item (the

“Owning Item”). This is particularly relevant in regard to Item Folders, discussed

more fully below, and the rule stated below that all Items must belong to at least

one Item Folder. Moreover, in regard to embedded items—discussed more fully

below—an embedded item is considered to be part of the Item in which it is

embedded for operations such as copy, delete, and the like.

-31 -

WO 2005/024626 PCT/US2004/024287

2. Item Identification

[0110] Items are uniquely identified within the global items space with an ItemID. The
Base.Item type defines a field ItemID of type GUID that stores the identity for the Item. An Item
must have exactly one identity in the data store 302.

[0111] An item reference is a data structure that contains information to locate and
identify an Item. In the data model, an abstract type is defined named ItemReference from which
all item reference types derive. The ItemReference type defines a virtual method named Resolve.
The Resolve method resolves the ItemReference and returns an Item. This method is overridden
by the concrete subtypes of ItemReference, which implement a function that retriéves an Item
given a reference. The Resolve method is invoked as part of the storage platform API 322.

[0112] ItemIDReference is a subtype of ItemReference. It defines a Locator and an
ItemID field. The Locator field names (i.e. identifies) an item domain. It is processed by a
locator resolution method that can resolve the value of the Locator to an item domain. The
ItemID field is of type ItemID

[0113] ItemPathReference is a specialization of ItemReference that defines a Locator
and a Path field. The Locator field identifies an item domain. It is processed by a locator
resolution method that can resolve the value of the Locator to an item domain. The Path field
contains a (relative) path in the storage platform namespace rooted at the item domain provided
by the Locator.

[0114] This type of reference cannot be used in a set operation. The reference must
generally be resolved through a path resolution process. The Resolve method of the storage
platform API 322 provides this functionality.

[0115] The reference forms discussed above are represented through the reference type
hierarchy illustrated in Fig. 11. Additional reference types that inherit from these types can be

defined in the schemas. They can be used in a relationship declaration as type of the target field.
3. Item Folders and Categories

[0116] As discussed more fully below, groups of Items can are organized into special
Items called Item Folders (which are not to be confused with file folders). Unlike in most file

systems, however, an Item can belong to more than one Item Folder, such that when an Item is

-32-

WO 2005/024626 PCT/US2004/024287

accessed in one Item Folder and revised, this revised Item can then be accessed directly from
another Item folder. In essence, although access to an Item may occur from different Item
Folders, what is actually being accessed is in fact the very same Item. However, an Item Folder
does not necessarily own all of its member Items, or may simply co-own Items in conjunction
with other folders, such that the deletion of an Item Folder does not necessarily result in the
deletion of the Item. Nevertheless, in several embodiments of the present invention, an Item
must belong to at least one Item Folder so that if the sole Item Folder for a particular Item is
deleted then, for some embodiments, the Item is automatically deleted or, in alternative
embodiments, the Item automatically becomes a member of a default Item Folder (e.g., a “Trash
Can” Item Folder conceptually similar to similarly-named folders used in various file-and-folder-
based systems).

[0117] As also discussed more fully below, Items may also belong to Categories based
on common described characteristic such as (a) an Item Type (or Types), (b) a specific
immediate or inherited property (or properties), or (c) a specific value (or values) corresponding
to an item property. For example, a Item comprising specific properties for personal contact
information might automatically belong to a Contact Category, and any Item having contact
information properties would likewise automatically belong to this Category. Likewise, any
Item having a location property with a value of “New York City” might automatically belong to
a NewYorkCity Category. |

[0118] Categories are conceptually different form Item Folders in that, whereas Item
Folders may comprise Items that are not interrelated (i.e., without a common described
characteristic), each Item in a Category has a common type, property, or value (a
“commonality”) that is described for that Category, and it is this commonality that forms the
basis for its relationship to and among the other Items in the Category. Moreover, whereas an
Item’s membership in a particular Folder is not compulsory based on any particular aspect of that
Item, for certain embodiments all Items having a commonality categorically related to a
Category might automatically become a member of the Category at the hardware/software
interface system level. Conceptually, Categories can also be thought of as virtual Item Folders

whose membership is based on the results of a specific query (such as in the context of a

-33-

WO 2005/024626 PCT/US2004/024287

database), and Items that meet the conditions of tﬁis query (defined by the commonalities of the
Category) would thus comprise the Category’s membership.

[0119] Fig. 4 illustrates the structural relationship between Items, Item Folders, and
Categories. A plurality of Items 402, 404, 406, 408, 410, 412, 414, 416, 418, and 420 are
members of various Item Folders 422, 424, 426, 428, and 430. Some Items may belong to more
than one Item Folder, e.g., Item 402 belong to Item Folders 422 and 424. Some Items, €.g., Item
402, 404, 406, 408, 410, and 412 are also members of one or more Categories 432, 434, and 436,
while other times, e.g., Items 414, 416, 418, and 420, may belong to no Categories (although this
is largely unlikely in certain embodiments where the possession of any property automatically
implies membership in a Category, and thus an Item would have to be completely featureless in
order not to be a member of any category in such an embodiment). In contrast to the hierarchical
structure of folders, both Categories and Item Folders have structures more akin to directed
graphs as shown. In any event, the Items, Item Folders, and Categories are all Items (albeit of
different Item Types).

[0120] In contrast to files, folders, and directories, the Items, Item Folders, and
Categories of the present invention are not characteristically “physical” in nafure because they do
not have conceptual equivalents of physical containers, and therefore Items may exist in more
than one such location. The ability for Items to exist in more than one Item Folder location as
well as being organized into Categories provides an enhanced and enriched degree of data
manipulation and storage structure capabilities at the hardware/software interface level, beyond

that currently available in the art.
4, Schemas
a) Base Schema

[0121] To provide a universal foundation for the creation and use of Items, various
embodiments of the storage platform of the present invention comprise a Base Schema that
establishes a conceptual framework for creating and organizing Items and properties. The Base
Schema defines certain special types of Items and properties, and the features of these special
foundational types from which subtypes can be further derived. The use of this Base Schema

allows a programmer to conceptually distinguish Items (and their respective types) from

-34 -

WO 2005/024626 PCT/US2004/024287

properties (and their respective types). Moreover, the Base Schema sets forth the foundational
set of properties that all Items may possess as all Items (and their corresponding Item Types) are
derived from this foundational Item in the Base Schema (and its corresponding Item Type).

[0122] Asillustrated in Fig. 7, and in regard to several embodiments of the present
invention, the Base Schema defines three top-level types: Item, Extension, and PropertyBase. As
shown, the Item type is defined by the properties of this foundational “Item” Item type. In
contrast, the top level property type “PropertyBase” has no predefined properties and is merely
the anchor from which all other property types are derived and through which all derived
property types are interrelated (being commonly derived from the single property type). The
Extension type properties define which Item the extension extends as well as identification to
distinguish one extension from another as an Item may have multiple extensions.

[0123] ItemFolder is a subtype of the Item Item type that, in addition to the properties
inherited from Item, features a Relationship for establishing links to its members (if any),
whereas both IdentityKey and Property are subtypes of PropertyBase. CategoryRef, in turn, is a
subtype of IdentityKey.

b) Core Schema

[0124] Various embodiments of the storage platform of the present invention further
comprise a Core Schema that provides a conceptual framework for top-level Items type
structures. Fig. 8A is a block diagram illustrating Items in the Core Schema, and Fig. 8B is a
block diagram illustrating the property types in the Core Schema. The distinction made between
files with different extensions (*.com, *.exe, *.bat, *.sys, etc.) and other such criteria in file-and-
folder-based systems is analogous to the function of the Core Schema. In the Item-based
hardware/software interface system, the Core Schema defines a set of core Item types that,
directly (by Item type) or indirectly (by Item subtype), characterize all Items into one or more
Core Schema Item types which the Item-based hardware/software interface system understands
and can directly process in a predetermined and predictable way. The predefined Item types
reflect the most common Items in the Item-based hardware/software interface system and thus a
level of efficiency is gained by the Item-based hardware/software interface system understanding

these predefined Item types that comprise the Core Schema.

-35-

WO 2005/024626 PCT/US2004/024287

[0125] In certain embodiments, the Core Schema is not extendable—that is, no

additional Item types can be subtyped directly from the Item type in the Base Schema except for

the specific predefined derived Item types that are part of the Core Schema. By preventing

extensions to the Core Schema (that is, by preventing the addition of new Items to the Core

Schema), the storage platform mandates the use of the Core Schema Item types since every

subsequent Item type is necessarily a subtype of a Core Schema Item type. This structure

enables a reasonable degree of flexibility in defining additional Item types while also preserving

the benefits of having a predefined set of core Item types.

[0126] For various embodiments of the present invention, and in reference to Fig. 8A,

the specific Item types supported by the Core Schema may include one or more of the following:

Categories: Items of this Item Type (and subtypes derived therefrom) represent
valid Categories in the Item-based hardware/software interface system.
Commodities: Items that are identifiable things of value.

Devices: Items having a logical structure that supports information processing
capabilities.

Documents: Items with content that is not interpreted by the Item-based
hardware/software interface system but is instead interpreted by an application
program corresponding to the document type.

Events: Items that record certain occurrences in the environment.

Locations: Items representing physical locations (e.g., geographical locations).
Messages: Items of communication between two or more principals (defined
below).

Principals: Items having at least one definitively provable identity aside from an
ItemId (e.g., the identification of a person, organization, group, household,
authority, service, etc.).

Statements: Items having special information regarding the environment

including, without limitation, policies, subscriptions, credentials, and so forth.

[0127] Likewise, and in reference to Fig. 8B, the specific property types supported by

the Core Schema may include one or more of the following:

- 36 -

WO 2005/024626 PCT/US2004/024287

e Certificates (derived from the foundational PropertyBase type in the Base
Schema)
e Principal Identity Keys (derived from the IdentityKey type in the Base Schema)
e Postal Address (derived from the Property type in the Base Schema)
¢ Rich Text (derived from the Property type in the Base Schema)
* EAddress (derived from the Property type in the Base Schema)
e IdentitySecurityPackage (derived from the Relationship type in the Base Schema)
¢ RoleOccupancy (derived from the Relationship type in the Base Schema)
* BasicPresence (derived from the Relationship type in the Base Schema)
These Items and Properties are further described by their respective propetties set forth in Fig.
8A and Fig. 8B.

5. Relationships

[0128] Relationships are binary relationships where one Item is designated as source
and the other Item as target. The source Item and the target Item are related by the relationship.
The source Item generally controls the life-time of the relationship. That is, when the source Ttem
is deleted, the relationship between the Items is also deleted.

[0129] Relationships are classified into: Containment and Reference relationships. The
containment relationships control the life-time of the target Items, while the reference
relationships do not provide any life-time management semantics. F ig. 12 illustrates the manner
in which relationships are classified.

[0130] The Containment relationship types are further classified into Holding and
Embedding relationships. When all holding relationships to an Item are removed, the Item is
deleted. A holding relationship controls the life-time of the target through a reference counting
mechanism. The embedding relationships enable modeling of compound Items and can be
thought of as exclusive holding relationships. An Item can be a target of one or more holding
relationships; but an Item can be target of exactly one embedding relationship. An Item that is a
target of an embedding relationship can not be a target of any other holding or embedding

relationships.

-37-

WO 2005/024626 PCT/US2004/024287

[0131] Reference relationships do not control the lifetime of the target Item. They may
be dangling — the target Item may not exist. Reference relationships can be used to model
references to Items anywhere in the global Item name space (i.e. including remote data stores).

[0132] Fetching an Item does not automatically fetch its relationships. Applications
must explicitly request the relationships of an Item. In addition, modifying a relationship does
not modify the source or the target Item; similarly, adding a relationship does not affect the

source/target Item.

a) Relationship Declaration

[0133] The explicit relationship types are defined with the following elements:

e A relationship name is specified in the Name attribute.

* Relationship type, one of the following: Holding, Embedding, Reference. This is
specified in the Type attribute.

¢ Source and target endpoints. Each endpoint specifies 2 name and the type of the
referenced Item.

* The source endpoint field is generally of type ItemID (not declared) and it must
reference an Item in the same data store as the relationship instance.

* For Holding and Embedding relationships, the target endpoint field must be of
type ItemIDReference and it must reference an Item in the same store as the
relationship instance. For Reference relationships the target endpoint can be of
any ItemReference type and can reference Items in other storage platform data
stores.

* Optionally one or more fields of a scalar or PropertyBase type can be declared.
These fields may contain data associated with the relationship.

* Relationship instances are stored in a global relationships table.

e Every relationship instance is uniquely identified by the combination (source
ItemID, relationship ID). The relationship ID is unique within a giveﬂ source
ItemID for all relationships sourced in a given Item regardless of their type.

[0134] The source Item is the owner of the relationship. While an Item designated as

owner controls the life time of the relationship, the relationship itself is separate from the Items it

-38 -

WO 2005/024626 PCT/US2004/024287

relates. The storage platform API 322 provides mechanisms for exposing relationships associated
with an Item.
[0135] Here is an example of a relationship declaration:

<Relationship Name="Employment" BaseType="Reference" >
<Source Name="Employee" ItemType="Contact.Person"/>
<Target Name="Employer" ItemType="Contact.Organization"

ReferenceType="ItemIDReference" />

<Property Name="StartDate" Type="the storage
platformTypes.DateTime" />
<Property Name="EndDate" Type="the storage
platformTypes.DateTime" />
<Property Name="Office" Type="the storage
platformTypes.DateTime" />

</Relationship>

[0136] This is an example of a Reference relationship. The relationship can not be
created if the person Item that is referenced by the source reference does not exist. Also, if the
person Item is deleted, the relationship instances between the person and organization are
deleted. However, if the Organization Item is deleted, the relationship is not deleted and it is

dangling.

b) Holding Relationship

[0137] Holding relationships are used to model reference count based life-time
management of the target Items.

[0138] An Item can be a source endpoint for zero or more relationships to Items. An
Item that is not an embedded Item can be a target of in one or more holding relationships.

[0139] The target endpoint reference type must be ItemIDReference and it must
reference an Item in the same store as the relationship instance.

[0140] Holding relationships enforce lifetime management of the target endpoint. The
creation of a holding relationship instance and the Item that it is targeting is an atomic operation.
Additional holding relationship instances can be created that are targeting the same Item. When
the last holding relationship instance with a given Item as target endpoint is deleted the target

Ttem is also deleted.

-39-

WO 2005/024626 PCT/US2004/024287

[0141] The types of the endpoint Items specified in the relationship declaration will
generally be enforced when an instance of the relationship is created. The types of the endpoint
Items can not be changed after the relationship is established.

[0142] Holding relationships play a key role in forming the Item namespace. They
contain the “Name” property that defines the name of the target Item relative to the source Item.
This relative name is unique for all the holding relationships sourced from a given Item. The
ordered list of this relative names starting from the root Item to a given Item forms the full name
to the Item.

[0143] The holding relationships form a directed acyclic graph (DAG). When a holding
relationship is created the system ensures that a cycle is not created, thus ensuring that the Item
namespace forms a DAG.

[0144] While the holding relationship controls the life time of the target Item, it does
not control the operational consistency of the target endpoint Item. The target Item is
operationally independent from the Item that owns it through a holding relationship. Copy,
Move, Backup and other operations on an Item that is a source of a holding relationship do not
affect the Item that is a target of the same relationship — for example that is, backing up a Folder
Item does not automatically backup all the Items in the folder (targets of the FolderMember
relationship).

[0145] The following is an example of a holding relationship:

<Relationship Name="FolderMembers" BaseType= "Holding” >
<Source Name="Folder" ItemType="Base.Folder"/>
<Target Name="Item" ItemType="Base.Item"
ReferenceType="ItemIDReference" />
</Relationship>

[0146] The FolderMembers relationship enables the concept of a Folder as a generic

collection of Items.

) Embedding Relationships

[0147] Embedding relationships model the concept of exclusive control of the lifetime

of the target Item. They enable the concept of compound Items.

-40 -

WO 2005/024626 PCT/US2004/024287

[0148] The creation of an embedding relationship instance and the Item that it is
targeting is an atomic operation. An Item can be a source of zero or more embedding
relationship. However, an Item can be a target of one and only one embedding relationship. An
Item that is a target of an embedding relationship can not be a target of a holding relationship.

[0149] The target endpoint reference type must be ItemIDReference and it must
reference an Item in the same data store as the relationship instance.

[0150] The types of the endpoint Items specified in the relationship declaration will
generally be enforced when an instance of the relationship is created. The types of the endpoint
Items can not be changed after the relationship is established.

[0151] Embedding relationships control the operational consistency of the target
endpoint. For example the operation of serializing of an Item may include serialization of all the
embedding relationships that source from that Item as well as all of their targets; copying an Item
also copies all its embedded Items.

[0152] The following is an example declaration:

<Relationship Name="ArchiveMembers" BaseType="Embedding” >
<Source Name="Archive" ItemType="Zip.Archive" />
<Target Name="Member" ItemType="Base.Item "

ReferenceType="ItemIDReference" />

<Property Name="ZipSize" Type="the storage
platformTypes.bigint" />
<Property Name="SizeReduction" Type="the storage
platformTypes.float" />

</Relationship>

d) Reference Relationships

[0153] The reference relationship does not control life time of the Item it references.
Even more, the reference relationships do not guarantee the existence of the target, nor do they
guarantee the type of the target as specified in the relationship declaration. This means that the
reference relationships can be dangling. Also, the reference relationship can reference Items in
other data stores. Reference relationships can be thought of as a concept similar to links in web

pages.
[0154] An example of reference relationship declaration is the following:

-41 -

WO 2005/024626 PCT/US2004/024287

<Relationship Name="DocumentAuthor" BaseType="Reference" >
<Sourc ItemType="Document"
ItemType="Base.Document"/>
<Target ItemType="Author" ItemType="Base.Author"

ReferenceType="ItemIDReference" />

<Property Type="Role" Type="Core.CategoryRef" />
<Property Type="DisplayName" Type="the storage
platformTypes.nvarchar(256)" />

</Relationship>

[0155] Any reference type is allowed in the target endpoint. The Items that participate
in a reference relationship can be of any Item type.

[0156] Reference relationships are used to model most non-lifetime management
relationships between Items. Since the existence of the target is not enforced, the reference
relationship is convenient to model loosely-coupled relationships. The reference relationship can

be used to target Items in other data stores including stores on other computers.

e) Rules and Constraints

[0157] The following additional rules and constraints apply for relationships:

* Anltem must be a target of (exactly one embedding relationship) or (one or more
holding relationships). One exception is the root Item. An Item can be a target of
zero or more reference relationships

e Anltem that is a target of embedding relationship can not be source of holding
relationships. It can be a source of reference relationships.

* Anltem can not be a source of holding relationship if it is promoted from file. It
can be a source of embedding relationships and reference relationships.

* Anltem can that is promoted from a file can not be a target of an embedding

relationship.

1) Ordering of Relationships

[0158] In at least one embodiment, the storage platform of the present invention
supports ordering of relationships. The ordering is achieved through a property named “Order” in

the base relationship definition. There is no uniqueness constraint on the Order field. The order

-47 -

WO 2005/024626 PCT/US2004/024287

of the relationships with the same “order” property value is not guaranteed, however it is
guaranteed that they may be ordered after relationships with lower “order” value and before
relationships with higher “order” field value.

[0159] Applications can get the relationships in the default order by ordering on the
combination (SourceltemID, RelationshipID, Order). All relationship instances sourced from a
given Item are ordered as a single collection regardless of the type of the relationships in the
collection. This however guarantees that all relationships of a given type (e.g., FolderMembers)
are an ordered subset of the relationship collection for a given Item.

[0160] The data store API 312 for manipulating relationships implement a set of
operations that support ordering of relationships. The following terms are introduced to help
explain the operations:

o RelFirst is the first relationship in the ordered collection with order value
OrdFirst;

e RelLast is the last relationship in the ordered collection with order value OrdLast,

e RelXis a given relationship in the collection with order value OrdX;

e RelPrev is a closest relationship in the collection to RelX with order value
OrdPrev smaller then OrdX;, and

e RelNext is a closest relationship in the collection to RelX with order value
OrdNext greater then OrdX.

[0161] The operations include but are not limited to:

o InsertBeforeFirst(SourceltemID, Relationship) inserts the relationship as the first
relationship in the collection. The value of the “Order” property of the new
relationship may be smaller then OrdFirst.

o InsertAfterLast(SourceltemID, Relationship) inserts the relationship as the last
relationship in the collection. The value of the “Order” property of the new
relationship may be greater then OrdLast.

o InsertAt(SourceltemID, ord, Relationship) inserts a relationship with the

specified value for the “Order” property.

“43 -

| WO 2005/024626 PCT/US2004/024287

o IusertBefore(SourceltemID, ord, Relationship) inserts the relationship before the
relationship with the given order value. The new relationship may be assigned
“QOrder” value that is between OrdPrev and ord, noninclusive.

o InsertAfter(SourceltemID, ord, Relationship) inserts the relationship after the
relationship with the given order value. The new relationship may be assi gned
“Order” value that is between ord and OrdNext, non-inclusive.

e MoveBefore(SourceltemID, ord, RelationshipID) moves the relationship with
given relationship ID before the relationship with specified “Order” value. The
relationship may be assigned a new “Order” value that is between OrdPrev and
ord, non-inclusive.

o Movedfter(SourceltemID, ord, RelationshipID) moves the relationship with
given relationship ID after the relationship with specified “Order” value. The
relationship may be assigned a new order value that is between ord and OrdNext,
non-inclusive.

[0162] As previously mentioned, every Item must be a member of an Item Folder. In
terms of Relationships, every [tem must have a relationship with an Item Folder. In several
embodiments of the present invention, certain relationships are represented by Relationships
existing between the Items.

[0163] As implemented for various embodiments of the present invention, a
Relationship provides a directed binary relationship that is “extended” by one Item (the source)
to another Item (the target). A Relationship is owned by the source Item (the Item that extended
it), and thus the Relationship is removed if the source is removed (e.g., the Relationship is
deleted when the source Item is deleted). Moreover, in certain instances, a Relationship may
share ownership of (co-own) the target Item, and such ownership might be reflected in the
IsOwned property (or its equivalent) of the Relationship (as shown in Fig. 7 for the Relationship
property type). In these embodiments, creation of a new IsOwned Relationship automatically
increments a reference count on the target Ttem, and deletion of such a Relationship may
decrement the reference count on the target tem. For these specific embodiments, Items
continue to exist if they have a reference count greater than zero, and are automatically deleted 1f

and when the count reaches zero. Again, an Item Folder is an Item that has (or is capable of

~44 -

WO 2005/024626 PCT/US2004/024287

having) a set of Relationships to other Items, these other Items comprising the membership of the
Ttem Folder. Other actual implementations of Relationships are possible and anticipated by the
present invention to achieve the functionality described herein.

[0164] Regardless of actual implementation, a Relationship is a selectable connection
from one object to another. The ability for an Item to belong to more than one Item Foléer, as
well as to one or more Categories, and whether these Items, Folders, and Categories are public or
private, is determined by the meanings given to the existence (or lack thereof) in an Item-based
structure. These logical Relationships are the meanings assigned to a set of Relationships,
regardless of physical implementation, which are specifically employed to achieve the
functionality described herein. Logical Relationships are established between the Item and its
Item Folder(s) or Categories (and vice versa) because, in essence, Item Folders and Categories
are each a special type of Item. Consequently, Item Folders and Categories can be acted upon
the same way as any other Item—copied, added to an email message, embedded in a document,
and so and so forth without limitation—and Item Folders and Categories can be serialized and
de-serialized (imported and exported) using the same mechanisms as for other Items. (For
example, in XML all Items might have a serialization format, and this format applies equally to
Item Folders, Categories, and Items.)

[0165] The aforementioned Relationships, which represent the relationship between an
Item and it Item Folder(s) can logically extend from the Item to the Item Folder, from the Item
Folder to the Item, or both. A Relationship that logically extends from an Item to an Item Folder
denotes that the Item Folder is public to that Item and shares its membership information with
that Item; conversely, the lack of a logical Relationship from an Item to an Item Folder denotes
that the Item Folder is private to that Item and does not share its membership information with
that Item. Similarly, a Relationship that logically extends from an Item Folder fo an Item
denotes that the Item is public and sharable to that Item Folder, whereas the lack of a logical
Relationship from the Item Folder to the Item denotes that the Item is private and non-sharable.
Consequently, when an Item Folder is exported to another system, it is the “public” Items that
are shared in the new context, and when an Item searches its Items Folders for other, sharable
Items, it is the “public” Item Folders that provide the Item with information regarding sharable

Items that belong thereto.

- 45 -

WO 2005/024626 PCT/US2004/024287

[0166] Fig. 9 is a block diagram illustrating an Item Folder (which, again, is an Item
itself), its member Items, and the interconnecting Relationships between the Item Folder and its
member Items. The Item Folder 900 has as members a plurality of Items 902, 904, and 906.
Ttem Folder 900 has a Relationship 912 from itself to Item 902 which denotes that the Item 902
is public and sharable to Item Folder 900, its members 904 and 906, and any other Item Folders,
Categories, or Items (not shown) that might access Item Folder 900. However, there is no
Relationship from Item 902 to the Item Folder 900 which denotes that Item Folder 900 is private
to Ttem 902 and does not share its membership information with Item 902. Item 904, on the
other hand, does have a Relationship 924 from itself to Item Folder 900 which denotes that the
Item Folder 900 is public and shares its membership information with Item 904. However, there
is no Relationship from the Item Folder 900 to Ttem 904 which denotes that Item 904 is private
and not sharable to Item Folder 900, its other members 902 and 906, and any other Item Folders,
Categories, or Items (not shown) that might access Item Folder 900. In contrast with its
Relationships (or lack thereof) to Items 902 and 904, Item Folder 900 has a Relationship 916
from itself to the Ttem 906 and Item 906 has a Relationship 926 back to Item Folder 900, which
together denote that Item 906 is public and sharable to Item Folder 900, its members 902 and
904, and any other Item Folders, Categories, or Items (not shown) that might access Item Folder
900, and that Item Folder 900 is public and shares its membership information with Item 906.

[0167] As previously discussed, the Items in an Item Folder do not need to share a
commonality because Item Folders are not “described.” Categories, on the other hand, are
described by a commonality that is common to all of its member Items. Consequently the
membership of a Category is inherently limited to Items having the described commonality and,
in certain embodiments, all Items meeting the description of a Category are antomatically made
members of the Category. Thus, whereas Item Folders allow trivial type structures to be
represented by their membership, Categories allow membership based on the defined
commonality.

[0168] Of course Category descriptions are logical in nature, and therefore a Category
may be described by any logical representation of types, properties, and/or values. For example,
a logical representation for a Category may be its membership to comprise Items have one of two

properties or both. If these described properties for the Category are “A” and “B”, then the

- 46 -

WO 2005/024626 PCT/US2004/024287

Categories membership may comprise Items having property A but not B, Items having property
B but not A, and Items having both properties A and B. This logical representation of properties
is described by the logical operator “OR” where the set of members described by the Category
are Items having property A OR B. Similar logical operands (including without limitation
“AND”, “XOR?”, and “NOT” alone or in combination) can also be used describe a category as
will be appreciated by those of skill in the art.

[0169] Despite the distinction between Item Folders (not described) and Categories
(described), Categories Relationship to Items and Items Relationship to Categories essentially
the same way as disclosed herein above for Item Folders and Items in many embodiments of the
present invention.

[0170] Fig. 10 is a block diagram illustrating a Category (which, again, is an Item
itself), its member Items, and the interconnecting Relationships between the Category and its
member Items. The Category 1000 has as members a plurality of Items 1002, 1004, and 1006,
all of which share some combination of common properties, values, or types 1008 as described
(commonality description 1008”) by the Category 1000. Category 1000 has a Relationship 1012
from itself to Item 1002 which denotes that the Item 1002 is public and sharable to Category
1000, its members 1004 and 1006, and any other Categories, Item Folders, or Items (not shown)
that might access Category 1000. However, there is no Relationship from the Item 1002 to the
Category 1000 which denotes that Category 1000 is private to Item 1002 and does not share its
membership information with Item 1002. Item 1004, on the other hand, does have a
Relationship 1024 from itself to Category 1000 which denotes that the Category 1000 is public
and shares its membership information with Item 1004. However, there is no Relationship
extended from Category 1000 to the Item 1004 which denotes that Item 1004 is private and not
sharable to Category 1000, its other members 1002 and 1006, and any other Categories, Item
Folders, or Items (not shown) that might access Category 1000. In contrast to its Relationships
(or lack thereof) with Items 1002 and 1004, Category 1000 has a Relationship 1016 from itself to
Item 1006 and Item 1006 has a Relationship 1026 back to Category 1000, which altogether
denotes that Item 1006 is public and sharable to Category 1000, its Item members 1002 and

1004, and any other Categories, Item Folders, or Items (not shown) that might access Category

-47 -

WO 2005/024626 PCT/US2004/024287

1000, and that the Category 1000 is public and shares its membership information with Item
1006.

[0171] Finally, because Categories and Item Folders are themselves Items, and Items
may Relationship to each other, Categories may Relationship to Item Folders and vice versa, and
Categories, Item Folders, and Items can Relationship to other Categories, Item Folders, and Item
respectively in certain alternative embodiments. However, in various embodiments, Item Folder
structures and/or Category structures are prohibited, at the hardware/software interface system
level, from containing cycles. Where Item Folder and Category structures are akin to directed
graphs, the embodiments that prohibit cycles are akin to directed acyclic graphs (DAGs) which,
by mathematical definition in the art of graph theory, are directed graphs wherein no path starts

and ends at the same vertex.
6. Extensibility

[0172] The storage platform is intended to be provided with an initial set of schemas
340, as described above. In addition, however, in at least some embodiments, the storage
platform allows customers, including independent software vendor (ISVs), to create new
schemas 344 (i.e. new Item and Nested Element types). This section addresses the mechanism
for creating such schemas by extending the Item types and Nested Element types (or simply
“Blement” types) defined in the initial set of schemas 340.
[0173] Preferably, extension of the initial set of Item and Nested Element types is
constrained as follows:
e an ISV is allowed to introduce new Item types, i.e. subtype Base.ltem;
e an ISV is allowed to introduce new Nested Element types, i.e. subtype
Base.NestedElement;
e an ISV is allowed to introduce new extensions, i.e. subtype Base.NestedElement;
but,
e an ISV cannot subtype any types (Item, Nested Element, or Extension types)
~ defined by the initial set of storage platform schemas 340.

[0174] Since an Ttem type or Nested Element type defined by the initial set of storage

platform schemas may not exactly match an ISV application’s need, it is necessary to allow ISVs

-48 -

WO 2005/024626 PCT/US2004/024287

to customize the type. This is allowed with the notion of Extensions. Extensions are strongly
typed instances but () they cannot exist independently and (b) they must be attached to an Item
or Nested Element.

[0175] In addition to addressing the need for schema extensibility, Extensions are also
intended to address the “multi-typing” issue. Since, in some embodiments, the storage platform
may not support multiple inheritance or overlapping subtypes, applications dan use Extensions as
a way to model overlapping type instances (e.g. Document is a legal document as well a secure

document).

a) Item extensions

[0176] To provide Item extensibility, the data model further defines an abstract type
named Base.Extension. This is a root type for the hierarchy of extension types. Applications can
subtype Base.Extension to create specific extension types.

[0177] The Base.Extension type is defined in the Base schema as follows:

<Type Name="Base.Extension" IsAbstract="True">
<Propety Name="ItemID"
Type="the storage platformTypes.uniqueidentified”
Nullable="false"
MultiValued="false"/>
<Property Name="ExtensionID"
Type="the storage platformTypes.uniqueidentified"
Nullable="false"
MultiValued="false"/>
</Type>

[0178] The ItemID field contains the ItemID of the item that the extension is associated
with. An Item with this ItemID must exist. The extension can not be created if the item with the
given ItemID does not exist. When the Item is deleted all the extensions with the same ItemID
are deleted. The tuple (ItemID,ExtensionID) uniquely identifies an extension instance.

[0179] The structure of an extension type is similar to that of an item type:

¢ Extension types have fields;
¢ Fields can be of primitive or nested element types; and

e Extension types can be sub-typed.

- 49 -

WO 2005/024626 PCT/US2004/024287

[0180] The following restrictions apply for extension types
e Extensions can not be sources and targets of relationships;
e Extension type instances can not exist independently from an item; and
e Extension types can not be used as field types in the storage platform type

definitions

[0181] There are no constraints on the types of extensions that can be associated with a
given Item type. Any extension type is allowed to extend any item type. When multiple
extension instances are attached to an item, they are independent from each other in both
structure and behavior.

[0182] The extension instances are stored and accessed separately from the item. All
extension type instances are accessible from a global extension view. An efficient query can be
composed that will return all the instances of a given type of extension regardless of what type of
item they are associated with. The storage platform APIs provides a programming model that can
store, retrieve and modify extensions on items.

[0183] The extension types can be type sub-typed using the storage platform single
inheritance model. Deriving from an extension type creates a new extension type. The structure
or the behavior of an extension cannot override or replace the structure or behaviors of the item
type hierarchy. Similar to Item types, Extension type instances can be directly accessed through
the view associated with the extension type. The ItemID of the extension indicates which item
they belong to and can be used to retrieve the corresponding Item object from the global Item
view. The extensions are considered part of the item for the purposes of operational consistency.
The Copy/Move, Backup/Restore and other common operations that the storage platform defines
may operate on the extensions as part of the item.

[0184] Consider the following example. A Contact type is defined in the Windows
Type set.

<Type Name="Contact" BaseType="Base.ltem” >
<Property Name="Name" ’
Type="String"
Nullable="false"
MuitiValued="false"/>
<Property Name="Address"

~50 -

WO 2005/024626 PCT/US2004/024287

Type="Address"
Nullable="true"
MultiValued="false"/>

</Type>

[0185] A CRM application developer would like to attach a CRM application extension
to the contacts stored in the storage platform. The application developer would define a CRM
extension that would contain the additional data structure that the application can manipulate.

<Type Name="CRMExtension" BaseType="Base.Extension" >
<Property Name="CustomerlD"
Type="String"
Nullable="false"
MultiValued="false">

</Type>. i

[0186] An HR application developer may want to also attach additional data with the
Contact. This data is independent from the CRM application data. Again the application

developer can create an extension

<Type Name="HRExtension" EBaseType="Base.Extension" >
<Property Name="Employee|D"
Type="String"
Nullable="false"
MultiValued="false"/>

</Type>' .

[0187] CRMExtension and HRExtension are two independent extensions that can be
attached to Contact items. They are created and accessed independently of each other.

[0188] In the above example, the fields and methods of the CRMExtension type cannot
override fields or methods of the Contact hierarchy. It should be noted that instances of the
CRMExtension type can be attached to Item types other than Contact.

[0189] When the Contact item is retrieved, its item extensions are not automatically
retrieved. Given a Contact item, its related item extensions can be accessed by querying the
global extension view for extensions with the same ItemlId.

[0190] All CRMExtension extensions in the system can be accessed through the
CRMExtension type view, regardless of which item they belong to. All item extension of an item
share the same item id. In the above example, the Contact item instance and the attached

CRMEzxtension and HRExtension instances the same ItemID.

-51 -

WO 2005/024626

PCT/US2004/024287

[0191] The following table summarizes the similarities and differences between Item,

Extension and NestedElement types:

Item vs Item Extension vs NestedElement

Item Item Extension NestedElement
Item ID Hasits ownitemid Shares the item id Does not have its
of the item own item id. Nested
element is part of
the item
Storage Item hierarchy is Item extension Stored with item
stored in its own hierarchy is stored
tables in its own tables
Query/Search Can query item Can query item Can generally be
tables extension tables queried only within
the containing item
! context
Query/Search Can search across Can search across Can generally only
scope all instances of an all instances of an search within nested
item type item extension type element type
instances of a singe
(containing) item
Relationship Can have No Relationships to No Relationships to
semantics Relationships to item extensions nested elements
items
Association to Can be related to Can generally only Related to item via
items other items via be related via fields. Nested
holding, embedded extensions. The elements are part of
and soft extension semantics the item
Relationships is similar to
embedded item

-52 .

WO 2005/024626 PCT/US2004/024287

semantics

b) Extending NestedElement types

[0192] Nested Element types are not extended with the same mechanism as the Item
types. Extensions of nested elements are stored and accessed with the same mechanisms as fields

of nested element types.

[0193] The data model defines a root for nested element types named Element:

<Type Name="Element"
IsAbstract="True">
<Property Name="ElementID"
Type="the storage platformTypes.uniqueidentifier"
Nullable="false"
MultiValued="false"/>
</Type>

[0194] The NestedElement type inherits from this type. The NestedElement element
type additionally defines a field that is a multi-set of Elements.

<Type Name="NestedElement" BaseType="Base.Element"
IsAbstract="True">
<Property Name="Extensions"
Type="Base.Element"
Nullable="false"
MultiValued="true"/>

]

</Type>

[0195] The NestedElement extensions are different from item extensions in the
following ways:

* Nested element extensions are not extension types. They do not belong to the
extension type hierarchy that is rooted in the Base.Extension type.

¢ Nested element extensions are stored along with the other fields of the item and
are not globally accessible — a query can not be composed that retrieves all
instances of a given extension type.

e These extensions are stored the same way as other nested elements (of the item)
are stored. Like other nested sets, the ‘NestedElement extensions are stored in a

UDT. They are accessible through the Extensions field of the nested element type.

-53.

WO 2005/024626

e The collection interfaces used to access multi-valued properties is also used for

PCT/US2004/024287

accessing and iterating over set of type extensions.

[0196] The following table summarizes and compares Item Extensions and

NestedElement extensions.

Item extensions vs NestedElement extensions

Item Extension

NestedElement Extension

Storage

Query/Search

Query/Search

scope

Programmability

Behavior
Relationship
semantics
Item ID

Item extension hierarchy is
stored in its own tables
Can query item extension

tables

Can search across all
instances of an item

extension type

Need special extension
APIs and special querying

on extension tables

Can associate behavior
No Relationships to item
extensions

Shares the item id of the

item

Stored like nested elements

Can generally only be
queried within the
containing item context
Can generally only search
within nested element type
instances of a singe
(containing) item
NestedElement extensions
are like any other multi-
valued field of nested
element; normal nested
element type APIs are used
No behavior permitted (?)
No Relationships to
NestedElement extensions
Does not have its own item
id. NestedElement
extension is part of the

item

-54 -

WO 2005/024626 PCT/US2004/024287

D. DATABASE ENGINE

[0197] As mentioned above, the data store is implemented on a database engine. In the
present embodiment, the database engine comprises a relational database engine that implements
the SQL query language, such as the Microsoft SQL Server engine, with object relational
extensions. This section describes the mapping of the data model that the data store implements
to the relational store and provides information on the logical- API consumed by storage platform
clients, in accordance with the present embodiment. It is understood, however, that a different
mapping may be employed when a different database engine is employed. Indeed, in addition to
implementing the storage platform conceptual data model on a relational database engine, it can
also be implemented on other types of databases, e.g. object-oriented and XML databases.

[0198] An object-oriented (OO) database sygtcm provides persistence and transactions
for programming language objects (e.g. C++, Java). The storage platform notion of an “item”
maps well to an “Object” in object-oriented systems, though embedded collections would have to
be added to Objects. Other storage platform type concepts, like inheritance and nested element
types, also map object-oriented type systems. Object-oriented systems typically already support
object identity; hence, item identity can be mapped to object identity. The item behaviors
(operations) map well to object methods. However, object-oriented systems typically lack
organizational capabilities and are poor in searching. Also, object-oriented systems to do not
provide support for unstructured and semi-structured data. To support the complete storage
platform data model described herein, concepts like relationships, folders, and extensions would
need to be added to the object data model. In addition, mechanisms like promotions,
synchronization, notifications, and security would need to be implemented.

[0199] Similar to object-oriented systems, XML databases, based on XSD (XML
Schema Definition), support a single-inheritance based type system. The item type system of the
present invention could be mapped to the XSD type model. XSDs also do not provide support for
behaviors. The XSDs for items would have to be augmented with item behaviors. XML
databases deal with single XSD documents and lack organization and broad search capabilities.
As with object-oriented databases, to support the data model described herein, other concepts
like relationships, and folders would need to be incorporated into such XML databases; also,

mechanisms like synchronization, notifications and security would need to be implemented.

-55.

WO 2005/024626 PCT/US2004/024287

[0200] Inregard to the following subsections, a few illustrations are provided to
facilitate the general information disclosed: Fig. 13 is a diagram illustrating a notification
mechanism. Fig. 14 is a diagram illustrating an example in which two transactions are both
inserting a new record into the same B-Tree. Fig. 15 illustrates a data change detection process.
Fig. 16 illustrates an exemplary directory tree. Fig. 17 shows an example in which an existing

folder of a directory-based file system is moved into the storage platform data store.
1. Data Store Implementation Using UDT's

[0201] In the present embodiment, the relational database engine 314, which in one
embodiment comprises the Microsoft SQL Server engine, supports built-in scalar types. Built-in
scalar types are “native” and “simple”. They are native in the sense that the user cannot define
their own types and they are simple in that they cannot encapsulate a complex structure. User-
defined types (hereinafter: UDTs) provide a mechanism for type extensibility above and beyond
the native scalar type system by enabling users to extend the type system by defining complex,
structured types. Once defined by a user, a UDT can be used anywhere in the type system that a
built-in scalar type might be used

[0202] In accordance with an aspect of the present invention, the storage platform
schemas are mapped to UDT classes in the database engine store. Data store Items are mapped
to UDT classes deriving from the Base.Item type. Like Items, Extensions are also mapped to
UDT classes and make use of inheritance. The root Extension type is Base.Extension, from
which all Extension types are derived.

[0203] A UDT is a CLR class — it has state (i.e., data fields) and behavior (i.e.,
routines). UDTs are defined using any of the managed languages — C#, VB.NET, etc. UDT
methods and operators can be invoked in T-SQL against an instance of that type. A UDT can be:
the type of a column in a row, the type of a parameter of a routine in T-SQL, or the type of a
variable in T-SQL

[0204] The mapping of storage platform schemas to UDT classes is fairly
straightforward at a high level. Generally, a storage platform Schema is mapped to a CLR
namespace. A storage platform Type is mapped to a CLR class. The CLR class inheritance
mirrors the storage platform Type inheritance, and a storage platform Property is mapped to a

CLR class property.

-56 -

WO 2005/024626 PCT/US2004/024287

2. Item Mapping

[0205] Given the desirability for Items to be globally searchable, and the support in the
relational database of the present embodiment for inheritance and type substitutability, one
possible implementation for Item storage in the database store would be to store all Items in a
single table with a column of type Base.Item. Using type substitutability, Items of all types
could be stored, and searches could be filtered by Item type and sub-type using Yukon’s “is of
(Iype)” operator.

[0206] However, due to concerns about the overhead associated with such an approach,
in the present embodiment, the Items are divided by top-level type, such that Items of each type
“family” are stored in a separate table. Under this partitioning scheme, a table is created for each
Item type inheriting directly from Base.Item. Types inheriting below these are stored in the
appropriate type family table using type substitutability, as described above. Only the first level
of inheritance from Base.Item is treated specially.

[0207] A “shadow” table is used to store copies of globally searchable properties for all
Items. This table may be maintained by the Update() method of the storage platform API,
through which all data changes are made. Unlike the type family tables, this global Item table
contains only the top-level scalar properties of the Item, not the full UDT Item object. The
global Item table allows navigation to the Item object stored in a type family table by exposing
an ItemID and a TypeID. The ItemID will generally uniquely identify the Item within the data
store. The TypelD may be mapped using metadata, which is not described here, to a type name
and the view containing the Item. Since finding an Item by its ItemID may be a common
operation, both in the context of the global Item table and otherwise, a GetItem() function is
provided to retrieve an Item object given an Item’s ItemID.

[0208] For convenient access and to hide implementation details to the extent possible,
all queries of Items might be against views built on the Item tables described above.

Specifically, views may be created for each Item type against the appropriate type family table.
These type views may select all Items of the associated type, including sub-types. For
convenience, in addition to the UDT object, the views may expose columns for all of the top-

level fields of that type, including inherited fields.

-57-

WO 2005/024626 PCT/US2004/024287

3. Extension Mapping

[0209] Extensions are very similar to Items and have some of the same requirements.
As another root type supporting inheritance, Extensions are subject to many of the same
considerations and trade-offs in storage. Because of this, a similar type family mapping is
applied to Extensions, rather than a single table approach. Of course, in other embodiments, a
single table approach could be used. In the present embodiment, an Extension is associated with
exactly one Item by ItemID, and contains an ExtensionID that is unique in the context of the
Item. As with Items, a function might be provided to retrieve an Extension given its identity,
which consists of an ItemID and ExtensionID pair. A View is created for each Extension type,

similar to the Item type views.
4. Nested Element Mapping

[0210] Nested Elements are types that can be embedded in Items, Extensions,
Relationships, or other Nested Elements to form deeply nested structures. Like Items and
Extensions, Nested Elements are implemented as UDT’s, but they are stored within an Items and
Extensions. Therefore, Nested Elements have no storage mapping beyond that of their Item and
Extension containers. In other words, there are no tables in the system which directly store
instances of NestedElement types, and there are no views dedicated specifically to Nested

Elements.
5. Object Identity

[0211] Each entity in the data model, i.e., each Item, Extension and Relationship, has a
unique key value. An Item is uniquely identified by its ItemId. An Extension is uniquely
identified by a composite key of (ItemId, Extensionld). A Relationship is identified by a
composite key (Itemld, RelationshipId). ItemId, Extensionld and Relationshipld are GUID

values.
6. SQL Object Naming

[0212] Al objects created in the data store can be stored in a SQL schema name
derived from the storage platform schema name. For example, the storage platform Base

schema (often called “Base”) may produce types in the “[System.Storage]” SQL schema such as

-58-

WO 2005/024626

PCT/US2004/024287

“[System.Storage].Item”. Generated names are prefixed by a qualifier to eliminate naming

conflicts. Where appropriate, an exclamation character (1) is used as a separator for each logical

part of the name. The table below outlines the naming convention used for objects in the data

store.

Each schema element (Item, Extension, Relationship and View), is listed along with the

decorated naming convention used to access instances in the data store.

Object Name Decoration Description Example

Master Item | Master!Item Provides a [System.Storage].

Search View summary of items | [Master!Item]
in the current
item domain.

Typed Item | ItemType Provides all [AcmeCorp.Doc].

search view property data [OfficeDoc]
from item and any
parent type(s).

Master Master!Extension Provides a [System.Storage].

Extension summary of all [Master!Extension]

Search View extensions in the
current item
domain.

Typed Extension!extensionType | Provides all [AcmeCorp.Doc].

extension property data for | [Extension!StickyNote]

search view extension.

Master Master!Relationship Provides a [System.Storage].

Relationship summary of all [Master!Relationship]

View relationships in
the current item
domain.

Relationship | Relationship!relationship | Provides all data | [AcmeCorp.Doc].

view Name associated with a | [Relationship!AuthorsFrom
given relationship | Document]

View View!viewName Provides the [AcmeCorp.Doc].
columns/types [View!DocumentTitles]
based on the
schema view
definition.

Column Naming
[0213] When mapping any object model into a store, the possibility of naming

collisions occur due to additional information stored along with an application object. In order

-59 -

WO 2005/024626 PCT/US2004/024287

to avoid naming collisions, all non-type specific columns (columns which do not map directly to
anamed Property in a type declaration) is bé prefixed with an underscore (_) character. In the
present embodiment, underscore () characters are disallowed as the beginning character of any
identifier property. Further, in order to unify naming between CLR and the data store, all
properties of a storage platform types or schema element (relationship, etc.) should have a

capitalized first character.
8. Search Views

[0214] Views are provided by the storage platform for searching stored content. A
SQL view is provided for each Item and Extension type. Further, views are provided to support
Relationships and Views (as defined by the Data Model). All SQL views and underlying tables
in the storage platform are read-only. Data may be stored or changed using the Update()
method of the storage platform API, as described more fully below.

[0215] Each view explicitly defined in a storage platform schema (defined by the
schema designer, and not automatically generated by the storage platform) is accessible by the
named SQL view [<schema-name>].[View!<view-name>]. For example, a view named
“BookSales” in the schema “AcmePublisher.Books” would be accessible using the name
“[AcmePublisher.Books].[View!BookSales]”. Since the output format of a view is custom on a
per-view basis (defined by an arbitrary query provided by the party defining the view), the
columns are directly mapped based on the schema view definition.

[0216] All SQL search views in the storage platform data store use the following
ordering convention for columns:

o Logical “key” column (s) of view result such as fltemld, Elementld,
Relationshipld, ...

e Metadata information on type of result such as Typeld.

e Change tracking columns such as CreateVersion, UpdateVersion, ...

o. Type specific column(s) (Properties of the declared type)

e Type specific views (family views) also contain an object column which returns

the object

- 60 -

WO 2005/024626 PCT/US2004/024287

[0217] Members of each type family are searchable using a series of Item views, with
there being one view per Item type in the data store. Fig. 28 is a diagram illustrating the concept

of an Item search view.

a) Item

[0218] Each Item search view contains a row for each instance of an Item of the
specific type or its subtypes. For example, the view for Document could return instances of
Document, LegalDocument and ReviewDocument. Given this example, the Item views can be

o

conceptualized as shown in Fig. 29.
1) Master Item Search View

[0219] Each instance of a storage platform data store defines a special Item view called
the Master Item View. This view provides summary information on each Item in the data store.
The view provides one column per Item type property, a column which described the type of the
Item and several columns which are used to provide change tracking and synchronization
information. The master item view is identified in a data store using the name

“[System.Storage].[Master!Item]”.

Column Type Description
ItemId ItemlId The storage platform identity of the Item
_Typeld Typeld The Typeld of the Item - identifies the exact type of

the Item and can be used to retrieve information on
the type using a Metadata catalog.

_RootItemId | ItemId The Itemld of the first non-embedded ancestor that
controls the lifetime of this item.

<global . Global change tracking information
change

tracking>

<Item props> | n/a One column per Item type property

2) Typed Item Search Views

[0220] Each Item type also has a search view. While similar to the root Item view, this

view also provides access to the Item object via the “_Item” column. Each typed item search

-61 -

WO 2005/024626 PCT/US2004/024287

view is identified in a data store using the name [schemaName).[itemTypeName]. For example

[AcmeCorp.Doc}].[OfficeDoc].

Column Type Description
TtemId Itemld The storage platform identity of the Item
<type change e Type change tracking information
tracking>
<parent props> | <property One column per parent property
specific>
<item props> <property . .
specific> One column per exclusive property of this type
_Ttem CLR type of Item | CLR object — type of declared Item
b) Item Extensions

[0221] All Item Extensions in a WinFS Store are also accessible using search views.
(1) Master Extension Search View

[0222] Each instance of a data store defines a special Extension view called the Master
Extension View. This view provides summary information on each Extension in the data store.
The view has a column per Extension property, a column which describes the type of the
Extension and several columns which are used to provide change tracking and synchronization
information. The master extension view is identified in a data store using the name

“[System.Storage].[Master!Extension]”.

Column Type Description
Itemld ItemId The storage platform identity of the Item with which
this extension is associated
Extensionld Extensionld Id of this extension instance
(GUID)
_Typeld Typeld The Typeld of the Extension - identifies the exact

type of the extension and can be used to retrieve
information on the extension using the Metadata
catalog.

-62 -

WO 2005/024626

i Yirnt

PCT/US2004/024287

<global change Global change tracking information
tracking>
<ext properties> <property .
specific> One column per Extension type property
) Typed Extension Search Views

[0223] Each Extension type also has a search view. While similar to the master

extension view, this view also provides access to the Item object via the _Extension column.

Each typed extension search view is identified in a data store using the name

[schemaName].[Extension!extensionTypeName]. For example

[AcmeCorp.Doc].[Extension! OfficeDocExt].

Column Type Description
TtemlId TtemlId The storage platform identity of the Item with
which this extension is associated
Extensionld Extensionld Id of this extension instance
(GUID)
<type change Type change tracking information
tracking>
<parent <property One column per parent property
props> specific>
<ext props> <property . .
specific> One column per exclusive property of this type
_Extension CLR type of CLR object — type of declared Extension
Extension
nstance

c) Nested Elements

[0224] All nested elements are stored within Items, Extensions or Relationships

instances. As such, they are accessed by querying the appropriate Item, Extension, or

Relationship search view.

-63 -

WO 2005/024626 PCT/US2004/024287

d) Relationships

[0225] As discussed above, Relationships form the fundamental unit of linking between

Ttems in a storage platform data store.
(1) Master Relationship Search View

[0226] Each data store provides a Master Relationship View. This view provides
information on all relationship instances in the data store. The master relationship view is

identified in a data store using the name “[System.Storage].[Master!Relationship]”.

Column Type Description

TtemId Ttemld Tdentity of source endpoint (ItemId)

Relationshipld Relationshipld The id of the relationship instance

(GUID)

_RelTypeld RelationshipTypeld | The RelTypeld of the Relationship - identifies
the type of the relationship instance using the
Metadata catalog.

<global change Global change tracking information.

tracking>

TargetltemReference | ItemReference Identity of target endpoint

_Relationship Relationship Instance of the Relationship object for this
instance

(2) Relationship Instance Search Views

[0227] Bach declared Relationship also has a search view which returns all instances of
the particular relationship. While similar to the master relationship view, this view also
provides named columns for each property of the relationship data. Each relationship instance
search view is identified in a data store using the name
[schemaName].[Relationship!relationshipName]. For example

[AcmeCorp.Doc].[Relationship!Document Author].

Column Type Description

LItemId ItemlId Identify of source endpoint (ItemlId)

- 64 -

WO 2005/024626 PCT/US2004/024287

Relationshipld RelationshipId The id of the relationship instance
(GUID)

<type change .. Type change tracking information

tracking>

TargetltemReference | ItemReference Identity of target endpoint

<source name> Itemld Named property of source endpoint identity
(alias for Itemld)

<target name> ItemReference or | Named property of target endpoint identity
derived class (alias and cast for TargetltemReference)

<rel property> <property One column per property of the relationship
specific> definition

_Relationship CLR type of
Relationship CLR object — type of declare Relationship
instance

e)
9. Updates

[0228] All views in the storage platform data store are read-only. In order to create a
new instance of a data model element (item, extension or relationship), or to update an existing
instance, the ProcessOperation or ProcessUpdategram methods of the storage platform AP must
beused. The ProcessOperation method is a single stored procedure defined by the data store
which consumes an “operation” that details an action to be performed. The ProcessUpdategram
method is a stored procedure which takes an ordered set of operations, known as an
“updategram”, which collectively detail a set of actions to be performed..

[0229] The operation format is extensible and provides various operations over the
schema elements. Some common operations include:

1. Item operations:

a. Createltem (Creates a new item in the context of an embedding or holding
relationship)
b. Updateltem (updates an existing Item)

2. Relationship operations:

a. CreateRelationship (creates an instance of a reference or holding relationship)

b. UpdateRelationship (updates a relationship instance)

- 65 -

WO 2005/024626 PCT/US2004/024287

c. DeleteRelationship (removes a relationship instances)
3. Extension operations:

a. CreateExtension (adds an extension to an existing Item)

b. UpdateExtension (updates an existing extension)

c. DeleteExtension (deletes an extension)
10. Change Tracking & Tombstones

[0230] Change tracking and tombstone services are provided by the data store, as
discussed more fully below. This section provides an outline of the change tracking information

exposed in a data store.

a) Change Tracking

[0231] Each search view provided by the data store contains columns used to provide
change tracking information; the columns are common across all Item, Extension and
Relationship views. Storage platform Schema Views, defined explicitly by schema designers,
do not automatically provide change tracking information — such information is provided
indirectly through the search views on which the view itselfis built.

[0232] For each element in the data store, change tracking information is available from
two places — the “master” element view and the “typed” element view. For example, change
tracking information on the AcmeCorp.Document.Document Item type is available from the
Master Item View “[System.Storage].[Master!Item]” and typed Item search view

[AcmeCorp.Document].[Document].
a1 Change Tracking in “Master” Search Views

[0233] Change tracking information in the master search views provides information on
the creation and update versions of an element, information on which sync partner created the
element, which sync partner last updated the element and the version numbers from each partner
for creation and update. Partners in sync relationships (described below) are identified by
partner key. A single UDT object named _ChangeTrackingInfo of type
[System.Storage.Store].ChangeTrackingInfo contains all this information. The type is defined in

- 66 -

WO 2005/024626 PCT/US2004/024287

the System.Storage schema. _ChangeTrackingInfo is available in all global search views for

Item, Extension and Relationship. The type definition of ChangeTrackingInfo is:

<Type Name="ChangeTrackingInfo” BaseType="Base.NestedElement”>
<FieldProperty Name="CreationLocalTS"” Type="SqlTypes.SqlInt64”
Nullable="False” />
<FieldProperty Name="”CreatingPartnerKey”

Type="SqlTypes.SqlInt32” Nullable="False” />
<FieldProperty Name="CreatingPartnerTS”
Type="SqlTypes.SglInt64” Nullable="False” />
<FieldProperty Name="LastUpdatelocalTS”
Type="SglTypes.SqlInt64” Nullable="False” />
<FieldProperty Name="LastUpdatingPartnerKey”
Type="SgqlTypes.SglInt32” Nullable="False” />

<FieldProperty Name="LastUpdatingPartnerTS” Type="SqglTypes.SqlInt64”
Nullable="False” />
</Type>

These properties contain the following information:

Column Description
_CreationLocal TS Creation time stamp by the local machine
_CreatingPartnerKey PartnerKey of the partner who created this entity.

If the entity was locally created, this is the local
machine’s PartnerKey.

_CreatingPartnerTS Timestamp of the time at which this entity was
created at the partner corresponding to
_CreatingPartnerKey.

_LastUpdateLocalTS Local timestamp corresponding to the update time

at the local machine

_LastUpdatingPartnerKey | PartnerKey of the partner who last updated this
entity. If the last update to the entity was done
locally, this is the local machine’s PartnerKey.

_LastUpdatingPartnerTS | Timestamp of the time at which this entity was
updated at the partner corresponding to
_LastUpdatingPartnerKey.

2) Change Tracking in “Typed” Search Views

[0234] In addition to providing the same information as the global search view, each

typed search view provides additional information recording the sync state of each element in the

sync topology.

-67 -

WO 2005/024626 PCT/US2004/024287

Column Type Description

<global change Information from global change

tracking> tracking

_ChangeUnitVersions | MultiSet<ChangeUnitVersion> | Description of version numbers
of the Change Units within the
particular element

_FlementSyncMetadata | ElementSyncMetadata Additional version-independent
metadata about this item that is
only of interest to the
Synchronization runtime.

_VersionSyncMetadata | VersionSyncMetadata Additional version-specific
metadata about this version that
is only of interest to the
Synchronization runtime

b)

Tombstones

[0235] The data store provides tombstone information for Items, Extensions and

Relationships. The tombstone views provide information about both live and tombstoned entities

(items, extensions and relationships) in one place. The item and extension tombstone views do

not provide access to the corresponding object, while the relationship tombstone view provides

access to the relationship object (the relationship object is NULL in the case of a tombstoned

relationship).

4} Item Tombstones

[0236] Item tombstones are retrieved from the system via the view

[System.Storage].[Tombstone!Item].

Column Type Description

ItemId ItemlId Identity of the Item

_TypelD Typeld Type of the Item

<Item properties> Properties defined for all items

_Rootltemld Itemld Itemld of the first non-embedding item
which contains this item.

_ChangeTrackingInfo | CLR instance of Change tracking information for this item

-68 -

WO 2005/024626 PCT/US2004/024287

type
ChangeTrackingInfo

_IsDeleted BIT This is a flag that is O for live items, and 1
for tombstoned items.

_DeletionWallclock | UTCDATETIME The UTC wall clock date time according to
the partner which deleted the item. It is
NULL if the Item is live.

(2) Extension Tombstones

[0237] Extension tombstones are retrieved from the system using the view
[System.Storage].[Tombstone!Extension]. Extension change tracking information is similar to

that provided for Items with the addition of the ExtensionId property.

Column Type Description
Itemld ItemlId Identity of the Item which owns the
Extension
Extensionld Extensionld Extension Id of the Extension
_TypelD Typeld Type of the extension
_ChangeTrackingInfo | CLR instance of Change tracking information for this
type extension
ChangeTrackingInfo
_IsDeleted BIT This is a flag that is O for live items, and 1
; for tombstoned extensions.
_DeletionWallclock | UTCDATETIME The UTC wall clock date time according to
the partner which deleted the extension. It is
NULL if the extension is live.

3) Relationships Tombstone

[0238] Relationship tombstones are retrieved from the system via the view
[System.Storage].[Tombstone!Relationship]. Relationships tombstone information is similar to
that provided for Extensions. However, additional information is provided on the target ItemRef

of the relationship instance. In addition, the relationship object is also selected.

Column Type Description

- 69 -

WO 2005/024626 PCT/US2004/024287

ItemId Itemld Identity of the Item which owned the
relationship (identity of relationship source
endpoint)

RelationshipId RelationshipId Relationshipld of the relationship

_TypelD Typeld Type of the relationship

_ChangeTrackingInfo | CLR instance of Change tracking information for this

type relationship
ChangeTrackingInfo
_IsDeleted BIT This is a flag that is 0 for live items, and 1

for tombstoned extensions.

_DeletionWallclock | UTCDATETIME The UTC wall clock date time according to
the partner which deleted the relationship. It
is NULL if the relationship is live.

_Relationship CLR instance of a This is the relationship object for live
Relationship relationship. It is NULL for tombstoned
relationships.
TargetltemReference | ItemReference Identity of target endpoint

(4) Tombstone Cleanup

[0239] In order to prevent unbounded growth of tombstone information, the data store
provides a tombstone cleanup task. This task determines when tombstone information may be
discarded. The task computes a bound on the local create / update version and then truncates

the tombstone information by discarding all earlier tombstone versions.
11. Helper APIs and Functions

[0240] The Base mapping also provides a number of helper functions. These functions

are supplied to aid common operations over the data model.

a) Function [System.Storage].GetItem

Returns an Item object given an ltemlId
1
ltem Getltem (ltemld ltemld)

b) Function [System.Storage].GetExtension

/I Returns an extension object given an ltemld and Extensionld

-70 -

WO 2005/024626 PCT/US2004/024287

/i
Extension GetExtension (Itemid ltemld, Extensionld Extensionid)

c) Function [System.Storage].GetRelationship

// Returns an relationship object given an ltemld and Relationshipld
"
Relationship GetRelationship (Itemld Itemld, Relationshipld Relationshipld)

12. Metadata

[0241] There are two types of metadata represented in the Store: instance metadata (the

type of an Item, etc), and type metadata.

a) Schema Metadata

[0242] Schema metadata is stored in the data store as instances of Item types from the

Meta schema.

b) Instance Metadata

[0243] Instance metadata is used by an application to query for the type of an Item and
finds the extensions associated with an Item. Given the ItemId for an Item, an application can
query the global item view to return the type of the Item and use this value to query the

Meta.Type view to return information on the declared type of the Item. For example,

/I Return metadata ltem object for given ltem instance

I

SELECT m._ltem AS metadatainfoObj

FROM [System.Storage].[tem] i INNER JOIN [Meta].[Type] m ON i._Typeld = m.ltemid
WHERE i.ltemld = @ltemld

E. SECURITY

[0244] In general, all securable objects arrange their access rights using the access
mask format shown in the Fig. 26. In this format, the low-order 16 bits are for object-specific
access rights, the next 7 bits are for standard access rights, which apply to most types of objects,

and the 4 high-order bits are used to specify generic access rights that each object type can map

271 -

WO 2005/024626 PCT/US2004/024287

to a set of standard and object-specific rights. The ACCESS _SYSTEM_SECURITY bit
corresponds to the right to access the object’s SACL.

[0245] 1In the access mask structure of Fig. 26, item specific rights are placed in the
Object Specific Rights section (low order 16-bits). Because in the present embodiment, the
storage platform exposes two sets of APIs to administer security — Win32 and the storage
platform AP], the file system object specific rights must be considered in order to motivate the
design of the storage platform object specific rights.

[0246] The security model for the storage platform of the present invention is fully
described in the related applications incorporated by reference earlier herein. In this regard, Fig.
27 (parts a, b, and c¢) depicts a new identically protected security region being carved out of an

existing security region, in accordance with one embodiment of a security model.

F. NOTIFICATIONS AND CHANGE TRACKING

[0247] According to another aspect of the present invention, the storage platform
provides a notifications capability that allows applications to track data changes. This feature is
primarily intended for applications which maintain volatile state or execute business logic on
data change events. Applications register for notifications on items, item extensions and item
relationships. Notifications are delivered asynchronously after data changes have been
committed. Applications may filter notifications by item, extension and relationship type as well
as type of operation.

[0248] According to one embodiment, the storage platform API 322 provides two kinds
of interfaces for notifications. First, applications register for simple data change events triggered
by changes to items, item extensions and item relationships. Second, applications create
“watcher” objects to monitor sets of items, item extensions and relationships between items. The
state of a watcher object can be saved and re-created after a system failure or after a system has
gone off-line for an extended period of time. A single notification may reflect multiple updates.

[0249] Additional details regarding this functionality can be found in the related

applications incorporated by reference earlier herein.

-72 -

WO 2005/024626 PCT/US2004/024287

B onme e

G. TRADITIONAL FILE SYSTEM INTEROPERABILITY

[0250] As mentioned above, the storage platform of the present invention is, in at least
some embodiments, intended to be embodied as an integral part of the hardware/software
interface system of a computer system. For example, the storage platform of the present
invention may be embodied as an integral part of an operating system, such as the Microsoft
Windows family of operating systems. In that capacity, the storage platform API becomes a part
of the operating system APIs through which application programs interact with the operating
system. Thus, the storage platform becomes the means through which application programs
store information on the operating system, and the Item based data model of the storage platform
therefore replaces the traditional files system of such an operating system. For example, as
embodied in the Microsoft Windows family of operating systems, the storage platform might
replace the NTFS file system implemented in that operating system. Presently, application
programs access the services of the NTFS file system through the Win32 APIs exposed by the
Windows family of operating systems.

[0251] Recognizing, however, that completely replacing the NTFS file system with the
storage platform of the present invention would require recoding of existing Win32-based
application programs and that such recoding may be undesirable, it would be beneficial for the
storage platform of the present invention to provide some interoperability with existing file
systems, such as NTFS. In one embodiment of the present invention, therefore, the storage
platform enables application programs which rely on the Win32 programming model to access
the contents of both the data store of the storage platform as well as the traditional NTFS file
system. To this end, the storage platform uses a naming convention that is a superset of the
Win32 naming conventions to facilitate easy interoperability. Further, the storage platform
supports accessing files and directories stored in a storage platform volume through the Win32
APL

[0252] Additional details regarding this functionality can be found in the related

applications incorporated by reference earlier herein.

-73 -

WO 2005/024626 PCT/US2004/024287

H. STORAGE PLATFORM API

[0253] The storage platform comprises an API that enables application programs to
access the features and capabilities of the storage platform discussed above and to access items
stored in the data store. This section describes one embodiment of a storage platform API of the
storage platform of the present invention. Details regarding this functionality can be found in the
related applications incorporated by reference earlier herein, with some of this information
summarized below for convenience.

[0254] Referring to Fig. 18, a Containment Folder is an item which contains holding
Relationships to other Items and is the equivalent of the common concept of a file system folder.
Each Item is “contained” within at least one containment folder.

[0255] Fig. 19 illustrates the basic architecture of the storage platform API, in
accordance with the present embodiment. The storage platform API uses SQLClient 1900 to talk
to the local data store 302 and may also use SQLClient 1900 to talk to remote data stores (e.g.,
data store 340). The local store 302 may also talk to the remote data store 340 using either DQP
(Distributed Query Processor) or through the the storage platform synchronization service
(“Sync”) described below. The storage platform API 322 also acts as the bridge API for data
store notifications, passing application’s subscriptions to the notification engine 332 and routing
notifications to the application (e.g., application 350a, 350b, or 350c), as also described above.

In one embodiment, the storage platform API 322 may also define a limited “provider”
architecture so that it can access data in Microsoft Exchange and AD.

[0256] Fig. 20 schematically represents the various components of the storage platform
API. The storage platform API consists of the following components: (1) data classes 2002, |
which represent the storage platform element and item types, (2) runtime framework 2004,
which manages object persistence and provides support classes 2006; and (3) tools 2008, which
are used to generate CLR classes from the storage platform schemas.

[0257] The hierarchy of classes resulting from a given schema directly reflects the
hierarchy of types in that schema. As an example, consider the Item types defined in the Contacts
schema as shown in Fig. 21 A and Fig. 21B.

[0258] Fig. 22 illustrates the runtime framework in operation. The runtime framework

operates as follows:

-74 -

WO 2005/024626 PCT/US2004/024287

1. An application 350a, 350b, or 350c binds to an item in the storage platform.

2. The framework 2004 creates an ItemContext object 2202 corresponding to the bound

item and returns it to the application.

3. The application submits a Find on this ItemContext to get a collection of Items; the

returned collection is conceptually an object graph 2204 (due to relationships).
4. The application changes, deletes, and inserts data.
5. The application saves the changes by calling the Update() method.

[0259] Fig. 23 illustrates the execution of a “FindAll” operation.

[0260] Fig. 24 illustrates the process by which storage platform API classes are
generated from the storage platform Schema

[0261] Fig. 25 illustrates the schema on which the File API is based. The storage
platform API includes a namespace for dealing with file objects. This namespace is called
System.Storage.Files. The data members of the classes in System.Storage.Files directly reflect
the information stored in the storage platform store; this information is “promoted” from the file
system objects or may be created natively using the Win32 API. The System.Storage.Files
namespace has two classes: Fileltem and Directoryltem. The members of these classes and
methods thereof can be readily divined by looking at the schema diagram in Fig. 25. Fileitem
and Directoryltem are read-only from the storage platform API. In order to modify them, one has
to use the Win32 API or classes in System.IO.

[0262] Inregard to APIs, a programming interface (or more simply, interface) may be
viewed as any mechanism, process, protocol for enabling one or more segment(s) of code to
communicate with or access the functionality provided by one or more other segment(s) of code.
Alternatively, a programming interface may be viewed as one or more mechanism(s), method(s),
function call(s), module(s), object(s), etc. of a component of a system capable of communicative
coupling to one or more mechanism(s), method(s), function call(s), module(s), etc. of other
component(s). The term “segment of code” in the preceding sentence is intended to include one
or more instructions or lines of code, and includes, e.g., code modules, objects, subroutines,
functions, and so on, regardless of the terminology applied or whether the code segments are

separately compiled, or whether the code segments are provided as source, intermediate, or

=75 -

WO 2005/024626 PCT/US2004/024287

object code, whether the code segments are utilized in a runtime system or process, or whether
they are located on the same or different machines or distributed across multiple machines, or
whether the functionality represented by the segments of code are implemented wholly in
software, wholly in hardware, or a combination of hardware and software.

[0263] Notionally, a programming interface may be viewed generically, as shown in
Fig. 30A or Fig. 30B. Fig. 30A illustrates an interface Interfacel as a conduit through which first
and second code segments communicate. Fig. 30B illustrates an interface as comprising interface
objects I1 and I2 (which may or may not be part of the first and second code segments), which
enable first and second code segments of a system to communicate via medium M. In the view of
Fig. 30B, one may consider interface objects I1 and I2 as separate interfaces of the same system
and one may also consider that objects I1 and I2 plus medium M comprise the interface.
Although Figs. 30A and 30B show bi-directional flow and interfaces on each side of the flow,
certain implementations may only have information flow in one direction (or no information
flow as described below) or may only have an interface object on one side. By way of example,
and not limitation, terms such as application programming interface (API), entry point, method,
function, subroutine, remote procedure call, and component object model (COM) interface, are
encompassed within the definition of programming interface.

[0264] Aspects of such a programming interface may include the method whereby the
first code segment transmits information (where “information” is used in its broadest sense and
includes data, commands, requests, etc.) to the second code segment; the method whereby the
second code segment receives the information; and the structure, sequence, syntax, organization,
schema, timing and content of the information. In this regard, the underlying transport medium
itself may be unimportant to the operation of the interface, whether the medium be wired or
wireless, or a combination of both, as long as the information is transported in the manner
defined by the interface. In certain situations, information may not be passed in one or both
directions in the conventional sense, as the information transfer may be either via another
mechanism (e.g. information placed in a buffer, file, etc. separate from information flow between
the code segments) or non-existent, as when one code segment simply accesses functionality
performed by a second code segment. Any or all of these aspects may be important in a given

situation, e.g., depending on whether the code segments are part of a system in a loosely coupled

-76 -

WO 2005/024626 PCT/US2004/024287

or tightly coupled configuration, and so this list should be considered illustrative and non-
limiting.

[0265] This notion of a programming interface is known to those skilled in the art and
is clear from the foregoing detailed description of the invention. There are, however, other ways
to implement a programming interface, and, unless expressly excluded, these too are intended to
be encompassed by the claims set forth at the end of this specification. Such other ways may
appear to be more sophisticated or complex than the simplistic view of Figs. 30A and 30B, but
they nonetheless perform a similar function to accomplish the same overall result. We will now
briefly describe some illustrative alternative implementations of a programming interface.

[0266] Factoring: A communication from one code segment to another may be
accomplished indirectly by breaking the communication into multiple discrete communications.
This is depicted schematically in Figs. 31A and 31B. As shown, some interfaces can be
described in terms of divisible sets of functionality. Thus, the interface functionality of Figs.
30A and 30B may be factored to achieve the same result, just as one may mathematically
provide 24, or 2 times 2 time 3 times 2. Accordingly, as illustrated in Fig. 31A, the function
provided by interface Interfacel may be subdivided to convert the communications of the
interface into multiple interfaces InterfacelA, Interface 1B, Interface 1C, etc. while achieving the
same result. As illustrated in Fig. 31B, the function provided by interface I1 may be subdivided
into multiple interfaces Ila, I1b, Ilc, etc. while achieving the same result. Similarly, interface I2
of the second code segment which receives information from the first code segment may be
factored into multiple interfaces 12a, I2b, 12¢, etc. When factoring, the number of interfaces
included with the 1st code segment need not match the number of interfaces included with the
2nd code segment. In either of the cases of Figs. 31A and 31B, the functional spirit of interfaces
Interfacel and I1 remain the same as with Figs. 30A and 30B, respectively. The factoring of
interfaces may also follow associative, commutative, and other mathematical properties such that
the factoring may be difficult to recognize. For instance, ordering of operations may be
unimportant, and consequently, a function carried out by an interface may be carried out well in
advance of reaching the interface, by another piece of code or interface, or performed by a

separate component of the system. Moreover, one of ordinary skill in the programming arts can

-77 -

WO 2005/024626 PCT/US2004/024287

appreciate that there are a variety of ways of making different function calls that achieve the
same result.

[0267] Redefinition: In some cases, it may be possible to ignore, add or redefine
certain aspects (e.g., parameters) of a programming interface while still accomplishing the
intended result. This is illustrated in Figs. 32A and 32B. For example, assume interface
Interfacel of Fig. 30A includes a function call Square(input, precision, output), a call that
includes three parameters, input, precision and output, and which is issued from the 1st Code
Segment to the 2nd Code Segment. If the middle parameter precision is of no concern in a given
scenario, as shown in Fig. 324, it could just as well be ignored or even replaced with a
meaningless (in this situation) parameter. One may also add an additional parameter of no
concern. In either event, the functionality of square can be achieved, so long as output is returned
after input is squared by the second code segment. Precision may very well be a meaningful
parameter to some downstream or other portion of the computing system; however, once it is
recognized that precision is not necessary for the narrow purpose of calculating the square, it
may be replaced or ignored. For example, instead of passing a valid precision value, a
meaningless value such as a birth date could be passed without adversely affecting the result.
Similarly, as shown in Fig. 32B, interface I1 is replaced by interface I1°, redefined to ignore or
add parameters to the interface. Interface I2 may similarly be redefined as interface 12°, redefined
to ignore unnecessary parameters, or parameters that may be processed elsewhere. The point
here is that in some cases a programming interface may include aspects, such as parameters, that
are not needed for some purpose, and so they may be ignored or redefined, or processed
elsewhere for other purposes.

[0268] Inline Coding: It may also be feasible to merge some or all of the functionality
of two separate code modules such that the “interface” between them changes form. For
example, the functionality of Figs. 30A and 30B may be converted to the functionality of Figs.
33A and 33B, respectively. In Fig. 33A, the previous 1st and 2nd Code Segments of Fig. 30A are
merged into a module containing both of them. In this case, the code segments may still be
communicating with each other but the interface may be adapted to a form which is more
suitable to the single module. Thus, for example, formal Call and Return statements may no

longer be necessary, but similar processing or response(s) pursuant to interface Interfacel may

=78 -

WO 2005/024626 PCT/US2004/024287

still be in effect. Similarly, shown in Fig. 33B, part (or all) of interface I2 from Fig. 30B may be
written inline into interface I1 to form interface I1”. As illustrated, interface I2 is divided into I2a
and 12b, and interface portion I2a has been coded in-line with interface I1 to form interface I1”.
For a concrete example, consider that the interface I1 from Fig. 30B performs a function call
square (input, output), which is received by interface 12, which after processing the value passed
with input (to square it) by the second code segment, passes back the squared result with output.
In such a case, the processing performed by the second code segment (squaring input) can be
performed by the first code segment without a call to the interface.

[0269] Divorce: A communication from one code segment to another may be |
accomplished indirectly by breaking the communication into multiple discrete communications.
This is depicted schematically in Figs. 34A and 34B. As shown in Fig. 34A, one or more piece(s)
of middleware (Divorce Interface(s), since they divorce functionality and / or interface functions
from the original interface) are provided to convert the communications on the first interface,
Interfacel, to conform them to a different interface, in this case interfaces Interface2A,
Interface2B and Interface2C. This might be done, e.g., where there is an installed base of
applications designed to communicate with, say, an operating system in accordance with an
Interfacel protocol, but then the operating system is changed to use a different interface, in this
case interfaces Interface2 A, Interface2B and Interface2C. The point is that the original interface
 used by the 2nd Code Segment is changed such that it is no longer compatible with the interface
used by the 1st Code Segment, and so an intermediary is used to make the old and new interfaces
compatible. Similarly, as shown in Fig. 34B, a third code segment can be introduced with
divorce interface DI1 to receive the communications from interface I1 and with divorce interface
DI2 to transmit the interface functionality to, for example, interfaces I2a and I2b, redesigned to
work with DI2, but to provide the same functional result. Similarly, DI1 and DI2 may work
together to translate the functionality of interfaces I1 and I2 of Fig. 30B to a new operating
system, while providing the same or similar functional result.

[0270] Rewriting: Yet another possible variant is to dynamically rewrite the code to
replace the interface functionality with something else but which achieves the same overall
result. For example, there may be a system in which a code segment presented in an intermediate

language (e.g. Microsoft IL, Java ByteCode, etc.) is provided to a Just-in-Time (JIT) compiler or

-79 .

WO 2005/024626 PCT/US2004/024287

interpreter in an execution environment (such as that provided by the .Net framework, the Java
runtime environment, or other similar runtime type environments). The JIT compiler may be
written so as to dynamically convert the communications from the 1st Code Segment to the 2nd
Code Segment, i.¢., to conform them to a different interface as may be required by the 2nd Code
Segment (either the original or a different 2nd Code Segment). This is depicted in Figs. 35A and
35B. As can be seen in Fig. 35A, this approach is similar to the Divorce scenario described
above. It might be done, e.g., where an installed base of applications are designed to
communicate with an operating system in accordance with an Interface 1 protocol, but then the
operating system is changed to use a different interface. The JIT Compiler could be used to
conform the communications on the fly from the installed-base applications to the new interface
of the operating system. As depicted in Fig. 35B, this approach of dynamically rewriting the
interface(s) may be applied to dynamically factor, or otherwise alter the interface(s) as well.
[0271] It should also be noted that the above-described scenarios for achieving the
same or similar result as an interface via alternative embodiments may also be combined in
various ways, serially and/or in parallel, or with other intervening code. Thus, the alternative
embodiments presented above are not mutually exclusive and may be mixed, matched and
combined to produce the same or equivalent scenarios to the generic scenarios presented in Figs.
30A and 30B. It is also noted that, as with most programming constructs, there are other similar
ways of achieving the same or similar functionality of an interface which may not be described
herein, but nonetheless are represented by the spirit and scope of the invention, i.e., it is noted
that it is at least partly the functionality represented by, and the advantageous results enabled by,

an interface that underlie the value of an interface.

II. SYNCHRONIZATION API

[0272] Several approaches to synchronization are possible in an Item-based
hardware/software interface system. Section A discloses several embodiments of the present

invention, while Section B focuses on various embodiments of an API for synchronization.

-80 -

WO 2005/024626 PCT/US2004/024287

A. SYNCHRONIZATION OVERVIEW

[0273] For several embodiments of the present invention, and in regard to Fig. 3, the
storage platform provides a synchronization service 330 that (i) allows multiple instances of the
storage platform (each with its own data store 302) to synchronize parts of their content
according to a flexible set of rules, and (ii) provides an infrastructure for third parties to
synchronize the data store of the storage platform of the present invention with with other data
sources that implement proprietary protocols.

[0274] Storage-platform-to-storage-platform synchronization occurs among a group of
participating “replicas.” For example, with reference to Fig. 3, it may be desirable to provide
synchronization between the data store 302 of the storage platform 300 with another remote data
store 338 under the control of another instance of the storage platform, perhaps running on a
different computer system. The total membership of this group is not necessarily known to any
given replica at any given time.

[0275] Different replicas can make the changes independently (i.e., concurrently). The
process of synchronization is defined as making every replica aware of the changes made by
other replicas. This synchronization capability is inherently multi-master.

[0276] The synchronization capability of the present invention allows replicas to:

+ determine which changes another replica is aware of;

 request information about changes that this replica is not aware of;

« convey information about changes that the other replica is not aware of;

« determine when two changes are in conflict with each other;

» apply changes locally;

« convey conflict resolutions to other replicas to ensure convergence; and

+ resolve the conflicts based on specified policies for conflict resolutions.
1. Storage-Platform-to-Storage-Platform Synchronization

[0277] The primary application of the synchronization service 330 of the storage
platform of the present invention is to synchronize multiple instances of the storage platform

(each with its own data store). The synchronization service operates at the level of the storage

-81-

WO 2005/024626 PCT/US2004/024287

B Uea® MW

platform schemas (rather than the underlying tables of the database engine 3 14). Thus, for
example, “Scopes” are used to define synchronization sets as discussed below.

[0278] The synchronization service operates on the principle of “net changes”. Rather
than recording and sending individual operations (such as with transactional replication), the
synchronization service sends the end-result of those operations, thus often consolidating the
results of multiple operations into a single resulting change.

[0279] The synchronization service does not in general respect transaction boundaries.
In other words, if two changes are made to a storage platform data store in a single transaction,
there is no guarantee that these changes are applied at all other replicas atomically—one may
show up without the other. The exception to this principle is that if two changes are made to the
same Item in the same transaction, then these changes are guaranteed to be sent and applied to

other replicas atomically. Thus, Items are the consistency units of the synchronization service.

a) Synchronization (Sync) Controlling Applications

[0280] Any application can connect to the synchronization service and initiate a sync
operation. Such an application provides all of the parameters needed to perform synchronization
(see sync profile below). Such applications are referred to herein as Sync Controlling
Applications (SCAs).

[0281] When synchronizing two storage platform instances, sync is initiated on one
side by an SCA. That SCA informs the local synchronization service to synchronize with the
remote partner. On the other side, the synchronization service is awoken by the messages sent
by the synchronization service from the originating machine. It responds based on the persistent
configuration information (see mappings below) present on the destination machine. The
synchronization service can be run on schedule or in response to events. In these cases, the
synchronization service implementing the schedule becomes the SCA.

[0282] To enable synchronization, two steps need to be taken. First, the schema
designer must annotate the storage platform schema with appropriate sync semantics
(designating Change Units as described below). Second, synchronization must be properly
configured on all of the machines having an instance of the storage platform that is to participate

in the synchronization (as described below).

-8 -

WO 2005/024626 PCT/US2004/024287

b) Schema annotation

[0283] A fundamental concept of the synchronization service is that of a Change Unit.
A Change Unit is a smallest piece of schema that is individually tracked by the storage platform.
For every Change Unit, the synchronization service may be able to determine whether it changed
or did not change since the last sync. ‘

[0284] Designating Change Units in the schema serves several purposes. First, it
determines how chatty the synchronization service is on the wire. When a change is made inside
a Change Unit, the entire Change Unit is sent to the other replicas, since the synchronization
service does not know which part of the Change Unit was changed. Second, it determines the
granularity of conflict detection. When two concurrent changes (these terms are defined in detail
in subsequent sections) are made to the same Change Unit, the synchronization service raises a
conflict; on the other hand, if concurrent changes are made to different Change Units, then no
conflict is raised and the changes are automaticélly merged. Third, it strongly affects the amount
of metadata kept by the system. Much of the synchronization service metadata is kept per-
Change Unit; thus, making Change Units smaller increases the overhead of sync.

[0285] Defining Change Units requires finding the right trade-offs. For that reason, the
synchronization service allows schema designers to participate in the process.

[0286] In one embodiment, the synchronization service does not support Change Units
that are larger than an element. However, it does support the ability for schema designers to
specify smaller Change Units than an element --- namely, grouping multiple attributes of an
element into a separate Change Unit. In that embodiment, this is accomplished using the
following syntax:

<Type Name="Appointment" MajorVersion="1" MinorVersion="0"
ExtendsType="Base.ltem" ExtendsVersion="1">

<Field Name="MeetingStatus" Type="the storage platformTypes.uniqueidentifier
Nullable="False"/>

<Field Name="OrganizerName" Type="the storage platformTypes.nvarchar(512)"
Nullable="False"/>

<Field Name="OrganizerEmail* Type="the storage platformTypes.nvarchar(512)"
TypeMajorVersion="1" MultiValued="True"/>

-83-

WO 2005/024626 PCT/US2004/024287

¥ Mt

<ChangeUnit Name="CU_Status™>
<Field Name="MeetingStatus™/>
</ChangeUnit>

<ChangeUnit Name="CU_Organizer’/>
<Field Name="OrganizerName” />

<Field Name="OrganizerEmail” />

</ChangeUnit>
<[Type>
c) Sync Configuration

[0287] A group of storage platform partners that wish to keep certain parts of their data
in sync are referred to as a sync community. While the members of the community want to stay
in syne, they do not necessarily represent the data in exactly the same way; in other words, sync
partners may transform the data they are synchronizing.

[0288] In a peer-to-peer scenario, it is impractical for peers to maintain transformation
mappings for all of their partners. Instead, the synchronization service takes the approach of
defining “Community Folders”. A community folder is an abstraction that represents a
hypothetical “shared folder” that all community members are synchronizing with.

[0289] This notion is best illustrated by an example. If Joe wants to keep My
Documents folders of his several computers in sync, Joe defines a community folder called, say,
JoesDocuments. Then, on every computer, Joe configures a mapping between the hypothetical
JoesDocuments folder and the local My Documents folder. From this point on, when Joe’s
computers synchronize with each other, they talk in terms of documents in JoesDocuments,
rather than their local items. This way, all Joe’s computers understand each other without having
to know who the others are — the Community Folder becomes the lingua franca of the sync
community.

[0290] Configuring the synchronization service consists of three steps: (1) defining

mappings between local folders and community folders; (2) defining sync profiles that determine

-84 -

WO 2005/024626 PCT/US2004/024287

what gets synchronized (e.g. whom to sync with and which subsets should be sent and which
received); and (3) defining the schedules on which different sync profiles should run, or running

them manually.
1) Community Folder - Mappings

[0291] Community Folder mappings are stored as XML configuration files on
individual machines. Each mapping has the following schema:
/mappings/communityFolder
This element names the community folder that this mapping is for. The name follows the
syntax rules of Folders.
/mappings/localFolder
This element names the local folder that the mapping transforms into. The name follows
the syntax rules of Folders. The folder must already exist for the mapping to be valid.
The items within this folder are considered for synchronization per this mapping.
/mappings/transformations
This element defines how to transform items from the community folder to the local
folder and back. If absent or empty, no transformations are performed. In particular, this
means that no IDs are mapped. This configuration is primarily useful for creating a cache
of a Folder.
/mappings/transformations/mapIDs
This element requests that newly generated local IDs be assigned to all of the items
mapped from the community folder, rather than reusing community IDs. The Sync
Runtime will maintain ID mappings to convert items back and forth.
/mappings/transformations/localRoot
This element requests that all root items in the community folder be made children of the
specified root.
/mappings/runAs
This element controls under whose authority requests against this mapping are processed.
If absent, sender is assumed.

/mappings/runAs/sender

-85 -

WO 2005/024626 PCT/US2004/024287

[0292]

The presence of this element indicates that the sender of messages to this

mapping must be impersonated, and requests processed under his credentials.

[0293]

2) Profiles

A Sync Profile is a total set of parameters needed to kick off synchronization. It

is supplied by an SCA to the Sync Runtime to initiate sync. Sync profiles for storage platform-

to-storage platform synchronization contain the following information:

[0294]

Local Folder, to serve as the source and destination for changes;

Remote Folder name to synchronize with - this Folder must be published from the
remote partner by way of a mapping as defined above;

Direction - the synchronization service supports send-only, receive-only, and
send-receive sync;

Local Filter -- selects what local information to send to the remote partner.
Expressed as a the storage platform query over the local folder;

Remote Filter — selects what remote information to retrieve from the remote
partner - expressed as a storage platform query over the community folder;
Transformations --- defines how to transform items to and from the local format;
Local security --- specifies whether the changes retrieved from the remote
endpoint are to be applied under the permissions of the remote endpoint
(impersonated) or the user initiating the sync locally; and

Conflict resolution policy --- specifies whether conflicts should be rejected,
logged, or automatically resolved - in the latter case, it specifies which conflict
resolver to use, as well as the configuration parameters for it.

The synchronization service provides a runtime CLR class that allows simple

building of Sync Profiles. Profiles can also be serialized to and from XML files for easy storage

(often alongside schedules). However, there is no standard place in the storage platform where

all the profiles are stored; SCAs are welcome to construct a profile on the spot without ever

persisting it. Note that there is no need to have a local mapping to initiate sync. All sync

information can be specified in the profile. The mapping is, however, required in order to

respond to sync requests initiated by the remote side.

- 86 -

WO 2005/024626 PCT/US2004/024287

(3) Schedules

[0295] In one embodiment, the synchronization service does not provide its own
scheduling infrastructure. Instead, it relies on another component to peform this task - the
Windows Scheduler available with the Microsoft Windows operating system. The
synchronization service includes a command-line utility tﬁat acts as an SCA and triggers
synchronization based on a sync profile saved in an XML file. This utility makes it very easy to
configure the Windows Scheduler to run synchronization either on schedule, or in response to

events such as user logon or logoff.

d) Conflict Handling

[0296] Conflict handling in the synchronization service is divided into three stages: (1)
conflict detection, which occurs at change application time - this step determines if a change can
be safely applied; (2) automatic conflict resolution and logging - during this step (that takes place
immediately after the conflict is detected) automatic conflict resolvers are consulted to see if the
conflict can be resolved - if not, the conflict can be optionally logged; and (3) conflict inspection
and resolution - this step takes place if some conflicts have been logged, and occurs outside of
the context of the sync session - at this time, logged conflicts can be resolved and removed from

the log.
1) Conflict Detection

[0297] In the present embodiment, the synchronization service detects two types of

conflicts: knowledge-based and constraint-based.
(a) Knowledge- Based Conflicts

[0298] A knowledge-based conflict occurs when two replicas make independent
changes to the same Change Unit. Two changes are called independent if they are made without
knowledge of each other --- in other words, the version of the first is not covered by the
knowledge of the second and vice versa. The synchronization service automatically detects all
such conflicts based on the replicas’ knowledge as described above.

[0299] It isy sometimes helpful to think of conflicts as forks in the version history of a

Change Unit. If no conflicts occur in the life of a Change Unit, its version history is a simple

-87 -

WO 2005/024626 PCT/US2004/024287

chain --- each change occurring after the previous one. In the case of a knowledge-based

conflict, two changes occur in parallel, causing the chain to split and become a version tree.
(b) Constraint-Based Conflicts

[0300] There are cases where independent changes violate an Integrity constraint when
applied together. For instance, two replicas creating a file with the same name in the same
directory could cause such a conflict to occur.

[0301] A constraint-based conflict involves two independent changes (just like a
knowledge-based one), but they do not affect the same Change Unit. Rather, they affect
different Change Units but with a constraint existing between them.

[0302] The synchronization service detects constraint violations at change application
time and raises constraint-based conflicts automatically. Resolving constraint-based conflicts
usually requires custom code that modifies the changes in such as way as to not violate the
constraint; The synchronization service does not provide a general-purpose mechanism for doing

SO.
2) Conflict Processing

[0303] When a conflict is detected, the synchronization service can take one of three
actions (selected by the sync initiator in the Sync Profile): (1) reject the change, returning it back
to sender; (2) log a conflict into a conflict log; or (3) resolve the conflict automatically.

[0304] Ifthe change is rejected, the synchronization service acts as if the change did
not arrive at the replica. A negative acknowledgement is sent back to the originator. This
resolution policy is primarily useful on head-less replicas (such as file servers) where logging
conflicts is not feasible. Instead, such replicas force the others to deal with the conflicts by
rejecting them.

[0305] Sync initiators configure conflict resolution in their Sync Profiles. The
synchronization service supports combining multiple conflict resolvers in a single profile in the
following ways — first, by specifying a list of conflict resolvers to be tried one after another, until
one of them succeeds; and second, by associating conflict resolvers with conflict types, e.g.
directing update-update knowledge-based conflicts to one resolver, but all the other conflicts to

the log.

-88-

WO 2005/024626 PCT/US2004/024287

(a) Automatic Conflict Resolution

[0306] The synchronization service provides a number of default conflict resolvers.
This list includes:

e local-wins: disregard incoming changes if in conflict with locally stored data;

* remote-wins: disregard local data if in conflict with incoming changes;

e last-writer-wins: pick either local-wins or remote-wins per Change Unit based on
the timestamp of the chapge (note that the synchronization service in general does
not rely on clock values; this conflict resolver is the sole exception to that rule);

¢ Deterministic: pick a winner in a manner that is guaranteed to be the same on all
replicas, but not otherwise meaningful — one embodiment of the synchronization
services uses lexicographic comparisons of partner IDs to implement this feature.

[0307] In addition, ISVs can implement and install their own conflict resolvers.
Custom conflict resolvers may accept configuration parameters; such parameters must be
specified by the SCA in the Conflict Resolution section of the Sync Profile.

[0308] When a conflict resolver handles a conflict, it returns the list of operations that
need to be performed (in lieu of the conflicting change) back to the runtime. The
synchronization service then applies these operations, having properly adjusted remote
knowledge to include what the conflict handler has considered.

[0309] It is possible that another conflict is detected while applying the resolution. In
such a case, the new conflict must be resolved before the original processing resumes.

[0310] When thinking of conflicts as branches in the version history of an item, conflict
resolutions can be viewed as joins --- combining two branches to form a single point. Thus,

conflict resolutions turn version histories into DAGs.
(b) Conflict Logging

[0311] A very particular kind of a conflict resolver is the Conflict Logger. The
synchronization service logs conflicts as Items of type ConflictRecord. These records are related
back to the items that are in conflict (unless the items themselves have been deleted). Each
conflict record contains: the incoming change that caused the conflict; the type of the conflict:

update-update, update-delete, delete-update, insert-insert, or constraint; and the version of the

-89 -

WO 2005/024626 PCT/US2004/024287

incoming change and the knowledge of the replica sending it. Logged conflicts are available for

inspection and resolution as described below.
(c) Conflict Inspection and Resolution

[0312] The synchronization service provides an API for applications to examine the
conflict log and to suggest resolutions of the conflicts in it. The API allows application to
enumerate all conflicts, or conflicts related to a given Item. It also allows such applications to
resolve logged conflicts in one of three ways: (1) remote wins --- accepting the logged change
and overwriting the conflicting local change; (2) local wins --- ignoring conflicting parts of the
logged change; and (3) suggest new change --- where the application proposes a merge that, in
its opinion, resolves the conflict. Once conflicts are resolved by an application, the

synchronization service removes them from the log.

(d) Convergence of Replicas and Propagation
of Conflict Resolutions

[0313] In complex synchronization scenarios, the same conflict can be detected at
multiple replicas. If this occurs, several things can happen: (1) the conflict can be resolved on
one replica, and the resolution be sent to the other; (2) the conflict is resolved on both replicas
automatically; or (3) the conflict is resolved on both replicas manually (through the conflict
inspection API).

[0314] To ensure convergence, the synchronization service forwards conflict
resolutions to other replicas. When a change that resolves a conflict arrives at a replica, the
synchronization service automatically finds any conflict records in the log that are resolved by
this update and eliminates them. In this sense, a conflict resolution at one replica is binding on
all the other replicas.

[0315] If different winners are chosen by different replicas for the same conflict, the
synchronization service applies the principle of binding conflict resolution and picks one of the
two resolutions to win over the other automatically. The winner is picked in a deterministic
fashion that is guaranteed to produce the same results at all times (one embodiment uses replica

ID lexicographic comparisons).

- 90 -

WO 2005/024626 PCT/US2004/024287

[0316] If different “new changes” are suggested by different replicas for the same
conflict, the synchronization service treats this new conflict as a special conflict and uses the
Conflict Logger to prevent it from propagating to other replicas. Such situation commonly arises

with manual conflict resolution.
2. Synchronizing to Non-Storage Platform Data Stores

[0317] According to another aspect of the storage platform of the present invention, the
storage platform provides an architecture for ISVs to implement Sync Adapters that allow the
storage platform to synchronize to legacy systems such as Microsoft Exchange, AD, Hotmail,
etc. Sync Adapters benefit from the many Sync Service provided by the synchronization service,
as described below.

[0318] Despite the name, Sync Adapters do not need to be implemented as plug-ins into
some storage platform architecture. If desired, a “sync adapter” can simply be any application
that utilizes the synchronization service runtime interfaces to obtain services such as change
enumeration and application.

[0319] In order to make it simpler for others to configure and run synchronization to a
given backend, Sync Adapter writers are encouraged to expose the standard Sync Adapter
interface, which runs sync given the Sync Profile as described above. The profile provides
configuration information to the adapter, some of which adapters pass to the Sync Runtime to

control runtime services (e.g. the Folder to synchronize).

a) Sync Services

[0320] The synchronization service provides a number of sync services to adapter
writers. For the rest of this section, it is convenient to refer to the machine on which the storage
platform is doing synchronization as the “client” and the non-storage platform backend that the

adapter is talking to as the “server”.
(0)) Change Enumeration

[0321) Based on the change-tracking data maintained by the synchronization service,
Change Enumeration allows sync adapters to easily enumerate the changes that have occurred to

a data store Folder since the last time synchronization with this partner was attempted.

-91 -

WO 2005/024626 PCT/US2004/024287

[0322] Changes are enumerated based on the concept of an “anchor” --- an opaque
structure that represents information about the last synchronization. The anchor takes the form
of the storage platform Knowledge, as described in the proceeding sections. Sync adapters
utilizing change enumeration services fall into two broad categories: those using “stored
anchors” vs. those using “supplied anchors”.

[0323] The distinction is based on where the information about the last sync is stored --
- on the client, or on the server. It is often easier for adapters to store this information on the
client --- the backend is often not capable of conveniently storing this information. On the other
hand, if multiple clients synchronize to the same backend, storing this information on the client
is inefficient and in some cases incorrect --- it makes one client unaware of the changes that the
other client has already pushed up to the server. If an adapter wants to use a server-stored
anchor, the adapter needs to supply it back to the storage platform at the time of change
enumeration.

[0324] In order for the storage platform to maintain the anchor (either for local or
remote storage), the storage platform needs to be made aware of the changes that were
successfully applied at the server. These and only these changes can be included in the anchor.
During change enumeration, Sync Adapters use an Acknowledgement interface to report which
changes were successfully applied. At the end of synchronization, adapters using supplied
anchors must read the new anchor (which incorporates all of the successfully-applied changes)
and send it to their backend.

[0325] Often, Adapters need to store adapter-specific data along with the items they
insert into the storage platform data store. Common examples of such data are remote IDs and
remote versions (timestamps). The synchronization service provides a mechanism for storing
this data, and Change Enumeration provides a mechanism to receive this extra data along with
the changes being returned. This eliminates the need for adapters to re-query the database in

most cases.
(2) Change Application

[0326] Change Application allows Sync Adapters to apply changes received from their

backend to the local storage platform. Adapters are expected to transform the changes to the

9.

WO 2005/024626 PCT/US2004/024287

storage platform schema. Fig. 24 illustrates the process by which storage platform API classes
are generated from the storage platform Schema.

The primary function of change application is to automatically detect conflicts. As in the
case of Storage Platform-to-Storage Platform sync, a conflict is defined as two overlapping
changes being made without knowledge of each other. When adapters use Change Application,
they must specify the anchor with respect to which conflict detection is performed. Change
Application raises a conﬂilct if an overlapping local change that is not covered by the adapter’s
knowledge is detected. Similar to Change Enumeration, adapters may use either stored or
supplied anchors. Change Application supports efficient storage of adapter-specific metadata.
Such data may be attached by the adapter to the changes being applied, and might be stored by

the synchronization service. The data might be returned on next change enumeration.
(3) Conflict Resolution

[0327] The Conflict Resolution mechanisms described above (logging and automatic
resolution options) are available to sync adapters as well. Sync adapters may specify the policy
for conflict resolution when applying changes. If specified, conflicts may be passed on to the
specified conflict handler and resolved (if possible). Conflicts can also be logged. It is possible
that the adapter may detect a conflict when attempting to apply a local change to the backend. In
such a case, the adapter may still pass the conflict on to the Sync Runtime to be resolved
according to policy. In addition, Sync Adapteré may request that any conflicts detected by the
synchronization service be sent back to them for processing. This is particularly convenient in

the case where the backend is capable of storing or resolving conflicts.

b) Adapter Implementation

[0328] While some “adapters” are simply applications utilizing runtime interfaces,
adapters are encouraged to implement the standard adapter interfaces. These interfaces allow
Sync Controlling Applications to: request that the adapter perform synchronization according to
a given Sync Profile; cancel on-going synchronization; and receive progress reporting

(percentage complete) on an ongoing sync.

-93-

| WO 2005/024626 PCT/US2004/024287

3. Security

[0329] The synchronization service strives to introduce as little as possible into the
security model implemented by the storage platform. Rather than defining new rights for

synchronization, existing rights are used. Specifically,

. anyone who can read a data store Item can enumerate changes to that item,;
. anyone who can write to a data store Item can apply changes to that item; and
. anyone who can extend a data store Item can associate sync metadata with that

item.

[0330] The synchronization service does not maintain secure authorship information.
When a change is made at replica A by user U and forwarded to replica B, the fact that the
change was originally made at A (or by U) is lost. If B forwards this change to replica C, this is
done under B’s authority, not that of A. This leads to the following limitation: if a replica is not
trusted to make its own changes to an item, it cannot forward changes made by others.

[0331] When the synchronization service is initiated, it is done by a Sync Controlling
Application. The synchronization service impersonates the identity of the SCA and performs all
operations (both locally and remotely) under that identity. To illustrate, observe that user U
cannot cause the local synchronization service to retrieve changes from a remote storage

platform for items that user U does not have read access.
4. Manageability

[0332] Monitoring a distributed community of replicas is a complex problem. The
synchronization service may use a “sweep” algorithm to collect and distribute information about
the status of the replicas. The properties of the sweep algorithm ensure that information about all
configured replicas is eventually collected and that failing (non-responsive) replicas are detected.

[0333] This community-wide monitoring information is made available at every
replica. Monitoring tools can be run at an arbitrarily-chosen replica to examine this monitoring
information and make administrative decisions. Any configuration changes must be made

directly at the affected replicas.

- 94 -

WO 2005/024626 PCT/US2004/024287

B. SYNCHRONIZATION API OVERVIEW

[0334] In an increasingly distributed, digital world, individuals and workgroups often
store information and data in a variety of different devices and locations. This has fueled the
development of data synchronization services that can keep the information in these separate,
often disparate, data stores synchronized at all times, with minimal user intervention.

[0335] The synchronization platform of the present invention, which is part of the rich
storage platform described in Section IT herein (a.k.a., “WinFS”), addresses three main
objectives:

e Allow applications and services to efficiently synchronize data between different
“WinFS” stores.

e Enable developers to build rich solutions for synchronizing data between
"WinFS" and non-"WinFS" stores.

e Provide developers with appropriate interfaces to customize the synchronization

user experience.
1. General Terminology

[0336] Herein below are some further refined definitions and key concepts relevant to
later discussions herein this Section III.B:

[0337] Sync Replica: Most applications are only interested in tracking, enumerating and
synchronizing changes for a given subset of items within the WinFS store. The set of items that
take part in a synchronization operation is termed as a Synchronization Replica. A Replica is
defined in terms of items contained within a given WinFS containment hierarchy (usually rooted
at a Folder item). All synchronization services are carried out within the context of a given
replica. WinF'S Sync provides a mechanism to define, manage and cleanup replicas. Every
replica has a GUID identifier that uniquely identifies it within a given WinFS store.

[0338] Sync Partner: A sync partner is defined as an entity capable of affecting changes
on WinFS items, extensions and relationships. Thus, every WinFS store can be termed as a sync
partner. When synchronizing with a non-WinFS store, the external data source (EDS) is also
termed as a sync partner. Every partner has a GUID identifier that uniquely identifies it.

-95._

WO 2005/024626 PCT/US2004/024287

[0339] Sync Community: A synchronization community is defined as a collection of
replicas that are kept in sync by means of peer-to-peer synchronization operations. These replicas
may all be in the same WinFS store, different WinFS stores, or even manifest themselves as
virtual replicas on non-WinFS stores. WinF$ sync does not prescribe or mandate any specific
topology for the community, especially if the only sync operations in the community are through
the WinF$S Sync service (WinFS adapter). Synchronization adapters (defined below) may
introduce their own topology restrictions.

[0340] Change Tracking, Change Units and Versions: Every WinFS store tracks
changes to all local WinFS Items, Extensions and Relationships. Changes are tracked at the level
of change unit granularity defined in the schema. The top-level fields of any Item, Extension and
Relationship type can be sub-divided by the schema designer into change units, with the smallest
granularity being one top-level field. For change tracking purposes, every change unit is assigned
a Version, where a version is a pair of sync partner id and a version number (the version number
is a partner-specific monotonically increasing number). Versions are updated as changes happen
in the store locally or as they are obtained from other replicas.

[0341] Sync Knowledge: Knowledge represents the state of a given sync replica at any
time, i.e. it encapsulates meta-data about all the changes a given replica is aware of, either local
or from other replicas. WinFS sync maintains and updates knowledge for sync replicas across
sync operations. Important thing to note is that the Knowledge representation allows it to be
interpreted with respect to the entire community and not just relative to the particular replica
where the Knowledge is stored.

[0342] Sync Adapters: A synchronization adapter is a managed code application that
accesses WinF'S Sync services through the Sync Runtime API and enables synchronization of
WinFS data to a non-WinFS data store. Depending on the requirements of the scenario, it’s upto
the adapter developer as to which subset of WinFS data and what WinF$S data types to
synchronize. The adapter is responsible for communication with the EDS, transforming WinFS
schemas to and from EDS supported schemas and defining and managing its own configuration
and metadata. Adapters are strongly encouraged to implement the WinFS Sync Adapter API to

take advantage of the common configuration and control infrastructure for adapters provided by

-96 -

WO 2005/024626 PCT/US2004/024287

the WinFS Sync team. For more details, please refer to the WinFS Sync Adapter API spec
[SADP] and the WinFS Sync Controller API [SCTRL] spec.

[0343] For adapters that synchronize WinFS data to external non-WinFS§ stores and
cannot produce or maintain knowledge in WinFS format, WinFS Sync provides services to
obtain remote knowledge that can be used for subsequent change enumeration or application
operations. Depending on the capabilities of the backend store, the adapter may wish to store this
remote knowledge on the backend or on the local WinFS store.

[0344] For simplicity, a synchronization “replica” is a structure that represents a set of
data in a "WinFS" store that exists in a single logical location, whereas data on a non-"WinFS"
store is called a “data source” and generally requires the use of a adapter.

[0345] Remote Knowledge: When a given sync replica wishes to obtain changes from
another replica it provides it’s own knowledge as a baseline against which the other replica
enumerates changes. Similarly, when a given replica wishes to send changes to another replica, it
provides it’s own knowledge as a baseline which can be used by the remote replica for detecting
conflicts. This knowledge about the other replica that’s provided during sync change

enumeration and application is termed a Remote Knowledge.
2. Synchronization API Principals

[0346] For certain embodiments, the synchronization API separates into two parts: the
synchronization configuration API and the synchronization controller API. The synchronization
Configuration API enables applications to configure synchronization and to specify parameters
for a particular synchronization session between two replicas. For a given synchronization
session, configuration parameters include the set of Items to be synchronized, the type of
synchronization (one-way or two-way), information about the remote data source, and the
conflict resolution policy. The synchronization controller API initiates a synchronization
session, cancels synchronization, and receives progress and error information about the on-going
synchronization. Moreover, for specific embodiments where synchronization needs to be
performed on a pre-determined schedule, such systems may include scheduling mechanism to
customize scheduling.

[0347] Several embodiments of the present invention employ synchronization adapters

for synchronizing information between "WinFS" and non-"WinFS" data sources. Examples of

-97 -

WO 2005/024626 PCT/US2004/024287

adapters include an adapter that synchronizes address book information between a "WinFS"
contacts folder and a non-WinFS mailbox. In these instances, adapter develiopers might use the
"WinFS" synchronization core services API described herein for accessing services provided by
the "WinFS" synchronization platform in order to develop schema transformation code between
the "WinFS" schema and the non-"WinFS" data source schema. Additionally, the adapter
developer provides protocol support for communicating changes with the non-"WinFS" data
source. A synchronization adapter is invoked and controlled by using the synchronization
controller API and reports progress and errors using this API.

[0348] However, for certain embodiments of the present invention, when synchronizing
"WinFS" data store with another "WinFS" data store, a synchronization adapter may be
unnecessary if "WinFS" to "WinFS" synchronization services are integrated within the
hardware/software interface system. In any event, several such embodiments provides a set of
synchronization services for both "WinFS" to "WinFS" and synchronization adapter solutions

that include:

. Tracking of changes to "WinFS" items, extensions and relationships.

. Support for efficient incremental change enumeration since a given past state.
. Application of external changes to "WinFS".

. Conflict handling during change application.

[0349] Referring to Fig. 36, which illustrates a three instances of a common data store
and the components for synchronizing them. A first system 3602 has a WinF§ data store 3612
comprising a WinFS-to-WinFS Sync services 3622 and Core Sync Services 3624, for WinFS-to-
nonWinFS synchronization, which exposes 3646 a Sync API 3652 for utilization. Similar to the
first system 3602, a second system 3604 has a WinFS data store 3614 comprising a WinFS-to-
WinFS Sync services 3632 and Core Sync Services 3634, for WinFS-to-non WinFS
synchronization, which exposes 3646 a Sync API 3652 for utilization. The first system 3602 and
the second system 3604 synchronize 3642 via their respective WinFS-to-WinFS Sync services
3622 and 3632. A third system 3606, which is not a WinFS system, has an application for using
WinFS Sync 3666 to maintain a data source in a sync community with WinF'S replicas. This
application can utilize either a WinFS Sync Config/Control service 3664 to directly interface
3644with the WinFS data store 3612 via the WinFS to WinFS synch services 3622 (if it is so

-98-

WO 2005/024626 PCT/US2004/024287

capable of virtualizing itself as a WinFS data store) or via a Sync Adapter 3662 that interfaces
3648 with the Sync API 3652.

[0350] As illustrated in this figure, the first system 3602 is aware of and directly
synchronizes with both the second system 3604 and third system 3606. However, neither the
second system 3604 nor the third system 3606 are aware of each other and, thus, do not
synchronize their changes directly with each other but, instead, changes that occur on one system

must propogate through the first system 3602.

C. SYNCHRONIZATION API SERVICES

[0351] Several embodiments of the present invention are directed to synchronization

services comprising two foundational services: change enumeration and change application.
1. Change Enumeration

[0352] As previously discussed earlier herein, Change Enumeration allows sync
adapters to easily enumerate the changes that have occurred to a data store Folder since the last
time synchronization with this partner was attempted based on the change-tracking data
maintained by the synchronization service. In regard to change enumeration, several
embodiments of the present invention are directed to:

¢ the efficient enumeration of changes to Items, Extensions and Relationships in a
given replica, relative to a specified Knowledge instance.

* the enumeration of changes at the level of change unit granularity specified in the
WinFS schemas.

* the grouping of enumerated changes in terms of compound items. A compound
item consists of an item, all its extensions, all holding relationships to the item
and all the compound items corresponding to its embedded items. Changes to
reference relationships between items are enumearted separately.

¢ the batching on change enumeration. The granularity of the batch is compound
item or a relationship change (for reference relationships).

* the specification of filters over items in the replica during change enumeration,

e.g, the replica consists of all items in a given folder, but for this particular change

-99.

WO 2005/024626 PCT/US2004/024287

[0353]

enumeration the application would like to only enumerate changes to all Contact
items where first name begins with an ‘A’ (this support will be added post B-
milestone).

the use of remote knowledge for enumerated changes, with the ability to record
individual change units (or entire items, extensions, or relationships) as failed-to-
sync in the knowledge, so as to have them re-enumerated the next time around.
the use of advanced adapters that may be capable of understanding WinF'S Sync

metadata by returning metadata along with changes during change enumeration.
2. Change Application

As discussed earlier herein, change application allows Sync Adapters to apply

changes received from their backend to the local storage platform since the adapters are expected

to transform the changes to the storage platform schema. In regard to change application, several

embodiments of the present invention are directed to:

the application of incremental changes from other replicas (or non-WinFES stores)
with corresponding updates to WinFS change metadata.

the detection of conflicts on change application at change unit granularity.

the reporting of success, failure and conflicts at individual change unit level on
change application, so that applications (including adapters and sync controlling
apps) can use that information for progress, error and status reporting and for
updating their backend state, if any.

the updating of remote knowledge during change application so as to prevent
“reflection” of application supplied changes during the next change enumeration
operation.

the use of advanced adapters that are capable of understanding and providing

WinFS Sync metadata along with changes.

3. Sample Code

[0354] The following is a code sample for how a FOO Sync adapter might interact with

Sync Runtime (where all adapter specific functions are prefixed with FOO):

-100 -

WO 2005/024626 PCT/US2004/024287

v Mt B o0 Chal Gt e 8% Hean R Hawe et IV
b Yredt o

TtemContext ctx = new ItemContext (“\.\System\UserData\dshah\My Contacts”,
true);

// Get the replica item id and remote partner id from the profile.
// Most adapters would get this information from the sync profile

Guid replicaltemId = FOO_GetReplicald();
Guid remotePartnerld = FOO_Get_RemotePartnerId();

//

// Lookup stored knowledge in the store using storedKnowledgeld like above.
//

ReplicaKnowledge remoteKnowledge = ...;

1

// Initialize ReplicaSynchronizer

I

ctx.ReplicaSynchronizer = new ReplicaSynchronizer(replicaltemld,
remotePartnerld);

ctx.ReplicaSynchronizer. RemoteKnowledge = remoteKnowledge;
ChangeReader reader = ctx.ReplicaSynchronizer.GetChangeReader();

1
// Enumerate changes and process them
1
bool bChangesToRead = true;
while (bChangesToRead)
{
ChangeCollection<object> changes = null;

bChangesToRead = reader.ReadChanges(10, out changes);

- 101 -

WO 2005/024626 PCT/US2004/024287

B e

foreach (object change in changes)
{
// Process enumerated object, adapter does it’s own schema transform
// and ID mapping. It may even retrieve additional objects from the
// Ctx for this purpose and modify adapter metadata after change
// has been applied to remote store

ChangeStatus status = F OOProcessAndApplyToRemoteStore(change);

// Update learned knowledge with status
reader. AcknowledgeChange (changeStatus);

remoteKnowledge = ctX.ReplicaSynchronizer.GetUpdatedRemoteKnowledge();

reader.Close();

//

// Save updated knowledge and adapter metadata, if any
//

ctx.Update();

/

// Sample for change application, first initialize remote knowledge using
// storedKnowledgeld as before.

/]

remoteKnowledge = ...;

ctx ReplicaSynchronizer.ConflictPolicy = conflictPolicy;
ctx.ReplicaSynchronizer.RemotePartnerld = remotePartnerld;

-102 -

WO 2005/024626 PCT/US2004/024287

ctx.ReplicaSynchronizer.RemoteKnowledge = remoteKnowledge;
ctx.ReplicaSynchronizer.ChangeStatusEvent += FOO_OnChangeStatusEvent;

/
// Obtain changes from remote store. Adapter is responsible for retrieving
/1 it’s backend specific metadata from the store. This can be an extension

// on the replica.

1l

object remoteAnchor = FOO_GetRemoteAnchorFromStore();
FOO_RemoteChangeCollection remoteChanges = F 00_GetRemoteChanges(

remoteAnchor);

//
// Fill in the change collection
/1
foreach(FOO_RemoteChange change in remoteChanges)
{
// Adapter responsible for doing ID mapping
Guid localld = FOO_MapRemoteld (change);

// Let’s say we’re syncing Person objects
ItemSearcher searcher = Person.GetSearcher(ctx);
searcher Filters.Add(“Personld=@]localld”);
searcher.Parameters[“Personld”’] = localld;

Person person = searcher. FindOne();

/!
// Adapter transforms remote changes to modifications on Person object

// As part of this adapter may even make changes to item-level backend-

- 103 -

WO 2005/024626 PCT/US2004/024287

/1 specific metadata for the remote object.
//
FOO_TransformRemoteToLocal (remoteChange, person);

}

ctx.Update();

/

// Save the new remote anchor (this can be an extension on the replica)
/

FOO_SaveRemoteAnchor();

I

// This is a regular WinFS API save since remote knowledge is not synced.

/

remoteKnowledge = ctx.ReplicaSynchronizer.GetUpdatedRemoteKnowledge();
ctx.Update();

ctx.Close();

/!

/I Adapter callback for processing application status callbacks

/1

void FOO_OnEntitySaved(object sender, ChangeStatusEventArgs args)

{
remoteAnchor.AcceptChange(args.ChangeStatus);

}
4, Methods of API Synchronization

[0355] In one embodiment of the present invention, synchronization between a WinFS
store and a non-WinF'S store is accomplished is possible via the Synchronization APIs exposed

by the WinFS-based hardware/software interface system.

-104 -

WO 2005/024626 PCT/US2004/024287

[0356] In one embodiment, all synchronization adapters are required to implement the
synchronization adapter API, a common language runtime (CLR) managed API, so that they can
be consistently deployed, initialized, and controlled. The adapter API provides:

* A standard mechanism to register adapters with the hardware/software interface
system synchronization framework.

* A standard mechanism for adapters to declare their capabilities and the type of
configuration information needed to initialize the adapter.

* A standard mechanism for passing initialization information to the adapter.

* A mechanism for adapters to report progress status back to the applications invoking
synchronization.

* A mechanism to report any errors that occur during synchronization.

* A mechanism to request cancellation of an ongoing synchronization operation.

[0357] There are two potential process models for adapters, depending on the
requirements of the scenario. The adapter can execute in the same process space as the
application invoking it or in a separate process all by itself. To execute in its own separate
process, the adapter defines its own factory class, which is used to instantiate the adapter. The
factory can return an instance of the adapter in the same process as the invoking application, or
return a remote instance of the adapter in a different Microsoft common language runtime
application domain or process. A default factory implementation is provided which instantiates
the adapter in the same process. In practice, many adapters will run in the same process as the
invoking application. The out of process model is usually required for one or both of the
following reasons:

* Security purposes. The adapter must run in the process space of a certain process or
service.

* The adapter has to process requests from other sources — for example, incoming
network requests — in addition to processing requests from invoking applications.

[0358] Referring to Fig. 37, one embodiment of the present invention presumes a
simple adapter that is unaware of how state is calculated or it associated metadata is exchanged.
In this embodiment, synchronization is achieved by the replica, in regard to the data source with

which it wants to synchronize, by first, at step 3702, determining which changes have occurred

- 105 -

WO 2005/024626 PCT/US2004/024287

since it last synchronized with said data source, and the replica then transmits the incremental
changes that have occurred since this last synchronization based on its present state information,
and this present state information and incremental changes are to the data source via the adapter.
At step 3704, the adapter, upon receiving the change data from the replica in the previous step,
implements as many changes to the data source as possible, tracks which changes are successful
and which fail, and transmits the success-and-failure info back to WinFS (of the replica). The
hardware/software interface system of the replica (WinFS), at step 3706, upon receiving the
success-and-failure info from the replica, then calculates the new state information for the data
source, stores this information for future use by its replica, and transmits this new state info back

to the data source, that is, to the adapter for storage and subsequent use by the adapter.

D. ADDITIONAL ASPECTS OF THE SYNC SCHEMA

[0359] The following are additional (or more specific) aspects of the synchronization
schema for various embodiments of the present invention.

e FEach replica is a defined synchronization subset of data from the entirety of a data
store—a slice of data having multiple instances.

e Conflict resolution policies are handled by each replica (and adaptor/data source
combination) individually—that is, each replica is able to resolve conflicts based
on its own criteria and conflict resolution schema. Moreove, while differences in
each instance of the data store may result and lead to additional future conflicts,
the incremental and sequential enumeration of conflicts as reflected in updated
state information is invisible to other replicas that receive that updated state
information.

e At the root of the sync schema is the replica which has a base type to define a root
folder (in fact, a root Item) that has a unique ID, an ID for the sync community in
which it is a member, and whatever filters and other elements are necessary or
desireable for the specific replica.

e Eachreplica’s “mapping” is maintained within the replica and, as such, the
mapping for any particular replica is limited to the other replicas such replica

knows about. While this mapping may only comprise a subset of the entire sync

- 106 -

WO 2005/024626 PCT/US2004/024287

community, changes to said replica will still propogate to the entire sync
community via commonly shared replicas (although any particular replica is
unaware of which other replicas it is commonly sharing with an unknown
replica). Moreover, each replica may have multiple mappings in order to allow
different synchronization behavior with different sync partners in the same sync
community.

» Areplica’s mapping need only contain the community identification and the
mapping identification of a sync partner; in this way, the replica is able to
synchronize with a partner without necessarily knowing the physical location of
the sync partner replica (thus enhancing security for the sync partner replica).

e The sync schema includes both a plurality of predefined conflict handlers
available to all replicas, as well as the ability for user/developer defined custom
conflict handlers. The schema also may also include three special “conflict
resolvers™: (a) a conflict “filter” which resolves different conflicts in different
ways based, e.g., (i) how to handle when same change unit changed in two places,
(i1) how to handle when a change unit is changed in one place but deleted in
another; and (iii) how to handle when two different change units have the same /
name in two different locations; (b) conflict “handler list” where each element of
the list specifies a series of actions to attempt in order until the conflict is
successfully resolved; and (c) a “do-nothing” log that tracks the conflict but takes
no further action without user intervention.

¢ The sync schema and use of replicas enables a true distributed peer-to-peer mutli-
master synchronization community. Moreover, there is no sync community type,
but the sync community exists simply as a value in the community field of the
replicas themselves.

* Every replica has its own metadata for tracking incremental changé enumeration
and storing state information for the other replicas that are known in the sync
community.

* Change units have their own metadata comprising: a version comprising a partner

key plus a partner change number; an Item/Extension/Relationship versioning for

- 107 -

WO 2005/024626 PCT/US2004/024287

each change unit; Knowledge regarding the changes a replica has seen/received
from the sync community; a GUID and Local ID configuration; and a GUID

stored on a reference relationship for cleanup.

IV. CONCLUSION

[0360] As the foregoing illustrates, the present invention is directed to a storage
platform for organizing, searching, and sharing data. The storage platform of the present
invention extends and broadens the concept of data storage beyond existing file systems and
database systems, and is designed to be the store for all types of data, including structured, non-
structured, or semi-structured data, such as relational (tabular) data, XML, and a new form of
data called Items. Through its common storage foundation and schematized data, the storage
platform of the present invention enables more efficient application development for consumers,
knowledge workers and enterprises. It offers a rich and extensible application programming
interface that not only makes available the capabilities inherent in its data model, but also
embraces and extends existing file system and database access methods. It is understood that
changes may be made to the embodiments described above without departing from the broad
inventive concepts thereof. Accordingly, the present invention is not limited to the particular
embodiments disclosed, but is intended to cover all modifications that are within the spirit and
scope of the invention as defined by the appended claims.

[0361] As is apparent from the above, all or portions of the various systems, methods,
and aspects of the present invention may be embodied in the form of program code (i.e.,
instructions). This program code may be stored on a computer-readable medium, such as a
magnetic, electrical, or optical storage medium, including without limitation a floppy diskette,
CD-ROM, CD-RW, DVD-ROM, DVD-RAM, magnetic tape, flash memory, hard disk drive, or
any other machine-readable storage medium, wherein, when the program code is loaded into and
executed by a machine, such as a computer or server, the machine becomes an apparatus for
practicing the invention. The present invention may also be embodied in the form of program
code that is transmitted over some transmission medium, such as over electrical wiring or
cabling, through fiber optics, over a network, including the Internet or an intranet, or via any

other form of transmission, wherein, when the program code is received and loaded into and

- 108 -

WO 2005/024626 PCT/US2004/024287

executed by a machine, such as a computer, the machine becomes an apparatus for practicing the
invention. When implemented on a general-purpose processor, the program code combines with

the processor to provide a unique apparatus that operates analogously to specific logic circuits.

- 109 -

WO 2005/024626 PCT/US2004/024287

What is Claimed:

{

i

1. A method for synchronizing multiple instances of a storage platform for a
hardware/software interface systems (e.g., WinFS), said method comprising:
dividing said storage platform into basic units of granularity (e.g., change units);
sequentially enumerating changes and tracking said changes on a per change unit basis;
for each instance, tracking the state of changes for that instances, as well as the state of
changes for a plurality of other known instances in the sync community (sync partners); and
for synchronization, identifying new changes by comparing the enumerated changes for a

particular instance with the state of changes for that instance.

2. The method of claim 1 wherein said change unit is an Item.
3. The method of claim 1 wherein a change unit is a Property.
4. The method of claim 1 wherein a change unit is an individual Property of an Item,

Extension, or Relationship (but not a Property of a Nested Element in said Item, Extension, or

Relationship).

5. The method of claim 1 wherein said multiple instances of said storage platform comprise

a multi-master sync community.
6. The method of claim 1 wherein changes to a replica are uniquely enumerated based on a
unique replica identification, and wherein said changes are sequentially enumerated for said

replica.

7. The method of claim 1 wherein the changes are enumerated at a change unit level.

- 110 -

WO 2005/024626 PCT/US2004/024287

8. The method of claim 1 wherein conflicts are detected and resolved at a change unit level.

9. The method of claim 1 wherein said instances maintain a synchronization mapping of

their known sync partners with which to synchronize in a sync community.

10. The method of claim 9 wherein an instance may have multiple mappings in order to
enable different synchronization behaviors with different sync partners in the same sync

community.

11. The method of claim 9 wherein said mapping comprises, for at least one sync partner, a
community identification and a mapping identification for said sync partner, in order to
synchronize with said sync partner without information pertaining to a location for said sync

‘partner.

12. A system for synchronizing multiple instances of a storage platform for a
hardware/software interface systems (e.g., WinFS), said system comprising:

a subsystem for dividing said storage platform into basic units of granularity (e.g., change
units);

a subsystem for sequentially enumerating changes and tracking said changes on a per
change unit basis;

a subsystem for tracking, for each instance, the state of changes for that instances, as well
as the state of changes for a plurality of other known instances in the sync community (sync
partners); and

a subsystem for synchronization, identifying new changes by comparing the enumerated

changes for a particular instance with the state of changes for that instance.
13. The system of claim 12 wherein said change unit is an Item.

14. The system of claim 12 wherein a change unit is a Property.

- 111 -

WO 2005/024626 PCT/US2004/024287

15. The system of claim 12 wherein a change unit is an individual Property of an Item,
Extension, or Relationship (but not a Property of a Nested Element in said Item, Extension, or

Relationship).

16. The system of claim 12 wherein said multiple instances of said storage platform comprise

a multi-master sync community.

17. The system of claim 12 wherein changes to a replica are uniquely enumerated based on a
unique replica identification, and wherein said changes are sequentially enumerated for said

replica.
18. The system of claim 12 wherein the changes are enumerated at a change unit level.
19. The system of claim 12 wherein conflicts are detected and resolved at a change unit level.

20. A computer-readable medium comprising computer readable instructions for
synchronizing multiple instances of a storage platform for a hardware/software interface systems
(e.g., WinFS), said computer-readable instructions comprising instructions for:
dividing said storage platform into basic units of granularity (e.g., change units);
sequentially enumerating changes and tracking said changes on a per change unit basis;
for each instance, tracking the state of changes for that instances, as well as the state of
changes for a plurality of other known instances in the sync community (sync partners); and
for synchronization, identifying new changes by comparing the enumerated changes for a

particular instance with the state of changes for that instance.

21. The computer-readable instructions of claim 20 further comprising instruction wherein

said change unit is an Item.

22. The computer-readable instructions of claim 20 further comprising instruction wherein a

change unit is a Property.

- 112 -

WO 2005/024626 PCT/US2004/024287

23. The computer-readable instructions of claim 20 further comprising instruction wherein a
change unit is an individual Property of an Item, Extension, or Relationship (but not a Property

of a Nested Element in said Item, Extension, or Relationship).

24. The computer-readable instructions of claim 20 further comprising instruction wherein

said multiple instances of said storage platform comprise a multi-master sync community.
25. The computer-readable instructions of claim 20 further comprising instruction wherein
changes to a replica are uniquely enumerated based on a unique replica identification, and

wherein said changes are sequentially enumerated for said replica.

26. The computer-readable instructions of claim 20 further comprising instruction wherein

the changes are enumerated at a change unit level.

27. The computer-readable instructions of claim 20 further comprising instruction wherein

conflicts are detected and resolved at a change unit level.

-113 -

PCT/US2004/024287

WO 2005/024626

9€
0S 2A1Q Addoj4 suoieolddy
11111 } e
|
62 obelo)g ajgerowsy
O p1eogAa)) Cv OSNON :
(s)1eIndwion sjowey LE 8eBIed | /g SBold [o0 .cqqy Ge SO
NN M __ _weiboid | 1ouio
N \w _ ﬂ.uﬂﬂﬂ_ﬂ B “ 0€ aAuQq [eando 8z oauQg Addojy S e
= < 25 NVM I = _%ﬂ /Z @AuQg pley)
, PRARN L = 7y
] woepopy € | A
A T _] —d_i
i A 4 \ 4
ﬂ) | A4 y
LNV _ N 14 €€ d/18nIg ce Al
> €G /I YIoMiaN 4/ Hod |elleg ’
T anuQ |eond S| 6 8e viva
“ . /1 ®Au(Q [edhdQ 3sIg on_ubey BAL(Q X8I pieH WYN90Nd
- 1 A A A L€ SNVHO0Ud
d “ ¥IHLO
- »
L = €2 sNg WalsAg g 9€ SWVHOO0Ud
! 5 ’ v NOILYOIddY
<9 ! 5SS 8 1z e S0
99IAa(q abeuog X ! 95 snd 1S0S g
: ! Jeydepy json Jajdepy oapIp hun Buisseooud (g2 nwvy)
I
. | 9¢ sold
L 1opuopy “ (vz WOY)
 —— I 55
— T 1 | e
“ AIOWSN WaISAS
]
i
|
I
_
“ 0Z 1/omndwon
!
L

PCT/US2004/024287

WO 2005/024626

2/34

¢ Old

jusuodwion aiempieH

¢0¢

N

/

juauodwos wa)sAg aoeuaju} aremyog/aiempiey

0c¢

J ‘

jusuodwon sweibouyg suonesijddy

0¢

002

WO 2005/024626 PCT/US2004/024287
3/34

PCT/US2004/024287

WO 2005/024626

4/34

1253
seuwsyog

ASI MON

¥4
sewsyog

wiofe|d papuaxy

§273 ¥4 7 4%
aoedssuieN 2101S eleQ al01g Bleq |-
ZEUIM JBULIOS JBYI0 BI04 UOLIWOD
4 8€E STHOLS V.LvA ALONIY
C D m; or
V1€ INIONT
)
S4d1IN 101S 1OS 35vaviva
0l€ — 90¢ — N
uonowaq b_w%%m Buppoes o ovow o < 9pt
juonowold : S abueyn PO Ejed SjooL
wawAoldeg
BUWBYDS
20€ 3Y4O1Ss viva
- cee 0eE
cle 9ge SUOREIUION uogeziuoiyoukg [
810 —
IdY 81015 sannn vec
ab —
1y o Z€ SADINYTS
00¢
gce §743 22E Idv
IdV 2€ NIM aa 310 wuofie|d4 abeio)g
0Z€ SIOVIHILNI ONINNVEOOHd NOILYDITddY
00G¢g q0s¢g B0GE

weiboid uopeoiddy

welboid uoneolddy

weibold uoneoiddy

ove
SBWAYDS Wione|d

WO 2005/024626

PCT/US2004/024287

5/34

434
a
btegories

- = |

< < <
e8] o
N ™
< <

ol
N
q

[tem
Folders

[tems

)

PCT/US2004/024287

WO 2005/024626

6/34

[1L:0l1eyoseau:ioang
[1:0l1eyoIBAU:BOUIAOI4IOSIRIS
[1:0lteyoreau:aponie}sod
[.:0liodAI0balen:adA | ssalppyieisod
[1:0leyoseau:doigiein
[1:0l1ByDIBRAUIBPODARUNOD
[1:0leyoseau: Ao
[.:0]lssalppyiBIS0d:Sossalppy|e1sod
[1:0lreysseau:pooysoqybiaN
[1:0)eyoseAu:uOiBayuR)jodonBN
[..0liodA10b810:]I9poABOjoUYDS |
[1:0lowneiep:sjequels
[.:0lloxfi0Be)en:adh | @ainteg
[1:0lewnelep:eregpuy
[1:0lieynyuapianbiun:eoirlegssalppyg
[1:0lreyoseau:uopdinsagssalppyg
[1:0lteyoreAu:juIogsSe00Y
[.:0lssalppeg:sessasppe]

Y

JG Ol

J
uolB0T 8100 v

[L:0lewnelep:ajequels
[.:0lioyA10b8120):0dA | 80INIBS
[1:0lewneiep:ejegpuy
[1:0leuUapIenbiun:aoinlegsSSalpPPYS
[L:0lreyoseau:uonduosassalppyg
[1L:0lteyoieAuUIOgSSE00Y

[.:0lieyAiobees:jepopiAbojouyos | |

ssaippy3galo)d

[1:0lteyotenu)eBng
[1:0lueysteAu:aouInOIdIOBIBIS
[L:0l1eyoseAU:BPOD)RISOd
[.:0lsoyAi0Bajen:adA | ssalppyeisod
[L:0}reyoseau:doigiien
[1:0lreyoreau:apoyAnunos
[1L:0lreyD1BAL: AN

SSaIppYy|e}sod ai0)

[.:0]ssa1ppyieIsOd:sassalppy|eisod
[L:0leysseau:pooyloqybiaN
[1:0Meyateau:uoibayueyjodonapy
[.:0lsseippe3:sessaippes

uoled0T 810D v

VS "Old

PCT/US2004/024287

WO 2005/024626

7/34

g9 'Old

—

r”o?mm%vﬁﬂw&“mmwwwﬁnim“wo%

[1:0l1eyaseau:pooytoqublisN
[1:0l4eyoieau:uciBayueljodosjoiy
[.:0lssaippe:sessaippes
[1:0leyoBAUIUOISIBA
[L:1Jewnaiep:payipop
[1:1hublg:Aeywsy
[1:11AenAipuapl:giwel
[1:1]ewnsyep:pajesi)

[, olileyArobee]:sel0bele)

[L:L]Areuiqienpy
/

\
o

UoI}E00T:810D b

[.:0]sseippy|eIsod:sessalppye}sod
[1:0lreysieau:pooutoqybieN
[1:0lreyoseau:ucibayueyijodosa
[.:0lsseippe:sassalppe]

7N

UoI}B007:9109) b

(A
[1:0l1eyDIBAU UOISIBA
[1:1]ewnsiep:payipo
[1:1huibig:Aeyway
[1:11Aenhuspl:glwey
[1:Llewneiep:pajeal)
[, olioyhiobeje:seuobajed
[L:1]Areuigren: oy

p),

m way'eseg b

V9 'Old

PCT/US2004/024287

WO 2005/024626

8/34

JoyAliobeje aseq

[.:0lleyA1060)89):881106B)RY

[1L:1]1ounuspianbiun:adA
[L:1]AreUIGIEA: A0
[L:0lseynusprenbiun:Aoyiny

Apadoid esezg

AayAuspyaseg

[1:11Bums:qiwey
[1:1]6ums:qluolsus)x3

asegAuedolq eseg uoisusix3-asey
soaniadoud suoIsualxX3y
ewayos ewayos
aseqg aseq

-/

[:xc:“emnsm_\u

m Jopjojwsyj aseq

:“o_gmco._ménco_m_m\d
[1:1]ewnerep:payipony
[L:Lhubig:Aeyjway

[1:L1AeyAmusp):glway
[1L:1]ewneiep:pajeal)
[« olieyAiobe)jen:serobaie)

[L: :Emc_ghm?_o,q\

N
m we)|eseq v

Swia}|
ewayos
aseg

PCT/US2004/024287

WO 2005/024626

9/34

ﬂ

[1:0lowneiep:owl jjogpEgISET

~
[1:0lewnelep:sjequels
{1:0bjury:renuapaigsnoinald

[1:LhurunoDlespegqise
[1:0lowneiep:ajegpul
[1:1]1Aeuiqien:Apog

/

C

|enuspeal)’810D) v

abexoedAnoag

"9100)

S~
Suorm:o‘_gc“m:_.rj

[1:0hureAej1N0eg
[1:0leiuspianbiun:Aoljoquonusiay
[1:0lteynuspienbiun:iaysiignd
[.:olioyAlo0bBeen:uonosioid
[1:0Mur:meineid
[.-oDjur-eoussaid
[.:0lioyA10601e0:068N6UE]
[1:0Pur:end
[1:0]reyoseau:buneyuajuod
[L:0lreyoseau:sBuneylownsuo)
[oMun:syusuodwo)
[L:0lteunuspionbiun:ioyiny

_”*“O”_wwm._UUd«_NumOn_“mmwwmk_vgi fejysod

[1:0lreyoreau:pooyloqubioN

[1:0l1eyosenu:uoiBayue)jodonepy

[.:0lsseippy3:sessalppy3

uoes0T'8lon U

[1:0bjui:uonesyddy
\ /

q juswnaog-al10) u

uswale)s

‘210D

[L:0lteyotenu:iege

[:0lkeyfusp|:siaynusp]
[1:0lleyoreau:uonduoseq

m Aobeien-alon

u "800

SWoY
ewayos
2109

obessay

*910D)

:“ofmco_méuco_whw\d
[1:1]ewnerep:paypoy
[1: 1 huibBig:Aeywiey
[L:1]AeMApuapr:qiws)|
[1:1Jowneyep:pareard
[.:0lleyAiobaren:seuobaie)
[1: :Emc_nhma_o,q\

wsl'aseyg v

Y

Apowwod

- A
[L:0lteyoreau:s)L

[-0Djury:suopduosang
[1:0]Aouednoa(80y :s8j0Yy
[1:0btur:taysiiand
[.:0]eoussaidoiseq:saoussald
[un:Aupaisineyego L AexAyusp)
[.:0lAedAmuapijedioutid:siaynuap)
[L:0l1eyorenu:sweNAR|dsIq

S

jedoulid 810D v

Y

Jusad 'alo)d

801A8(g 810D

PCT/US2004/024287

WO 2005/024626

10/34

[1:0l4eynuaplenbiun:xsjuonssussald
[L:0lteynuapienbiun:aujuQ
[1:0lewneiep:awi | ayepdniseT]
[1:0lteyoseAUIUORdIIDSBQ

[1L:0lewnsiep:aieguels
[1:0]lssaippya:sossalppygssioy
[1:0lteunuspienbiun:abie | sejouednaoe|oy
[1:0lewneiep:ajegpul

aoUesaI4oIseg 810D

AouednooQaloyalon

L bursienuepein

abeyoedAlunoag
Ayuep|ai0)

[..0lloyfiobajen:[epopABojouyos |
[1:0lewnelep:eleguels
[.:olyoyAtobeien:adA] aointes
[1L:0lewnerep:ayeqpuy
[1:0lieynuapienbiun:asialesssalppy
[1:0l1eyoteAu:uondiosagssalppya
[1:0}1eUDIBAUIUIOHSSOI0Y

[1:0lteyoseauioans
[1:0lieyoreau:eoUIAOLI4IOB)R)IS
[1L:0lHeysieAU:@pODBISOd

[1:11kexhinusp)ebie).
[L:0]zeUDIBAU OWEN
[1:0mq:paumQsij

[1:0lAreuIqIEA:yOY
[1:0lteYyotBAU LRI
[L:0Pun:sjuswyoeny

[.-olioxAioBaien:adA | ssalppyielsod
[1:0lteyoseau:doigie
[1:0lteyosAU:BpODALIUNOY
[L:0leyoieAU:AND

Sselppyg e10)

ejeqdiysuonejey-aseq

1X8 LYo1y 8100

SSO.IpPY|RISOd 81070

[.: 1 leBexyordAnnoagAiusepi:sabexyoedAiiinosg
[1:0lewneiep:sjeqhidx
[L:0le1eoUiIRD @)ROYIOD

Aoy Amuepiedioulid 810D

[1:0lAseuiqiea:Apog
[L:oPturt:Auouiny

[.:0lileyAioBaien:saobaye)

[1:1 eunuaplenbiun :adA
[1:1]Aeuigren:fay]
[1:0leynuspienbiun:Ajuoyiny

AeyAmuep|'aseq

sjeolIen 810D

Auedoiq-eseg

asegAnedoid oseg

soaljadold
21T T BT
2109

g8 "Old

PCT/US2004/024287

WO 2005/024626

11/34

% sdiysuonejay

0l "Old

8001

6 'Old

706 > 005
2§ p

| ~—clG
Iqm ma_cwco:m_mm wel

PCT/US2004/024287

WO 2005/024626

12/34

¢l "Old

Suippaqury 3uipjo

\

NURIRJIY

UMW UIEIU0))

o~

digsuopepPy

L1 "OId

()aA0soy wdf
ed Sulng
10780077 SuIng

U P JUN T

()aAjosay Wy
A= AINALL

1078007 SuLng
UAIPIY WA

()2A710S9Y W) [eNMIA 10BNSQY
CAIERE]) (LIENY |

PCT/US2004/024287

WO 2005/024626

13/34

(Shesur (0T ot (01)owrp108 (g)owury1e8

owry <

el

71 OId o

20€ TI0LS VIVA

IN3IWALVLS .1O3713S,
¥ ONILLNDO3X3
A9 d3I4ILON 139

Wyd931vadn
NV ONILNO3X3
Ag HSINand

(Y¥3g140s849ns)
AIN3IO

(43HsIand)
ANZIIO

PCT/US2004/024287

WO 2005/024626

14/34

210]G ejeq

A

, ™
W e)ed 10D

([swonjreqoi3] woxy y

wm] se (IBAIIB A MOTIR8 ©, 1090)I0JIIeM
|/
synsax

>~ weaRD

[swonjreqor3] wog \

wMm[se (IeAI0IB A\ MOTIRS “4 109708
Jaguosqnsg

PCT/US2004/024287

WO 2005/024626

15/34

Ll "Old

SKjeox3 fe A zane
P0PRIOM P 1amne =
sjuawnoojAN - _
SNVIH1S3TNd
SHUIM

SJuUIMm

\OUOSUIMBUIYOBWDLIOH],

9l "Old

S|X°j20x3 -

00D PIOAA —

0

soedsawepN
210 BlEQ

sulyoeNaWOH\\

sjuawnooq AN

ZEWS)SAS\SMOPUIN, 1
\:0
soedsawepN
sulyoedWOoH\\ 207

PCT/US2004/024287

WO 2005/024626

16/34

18pjo4 uswuiejuo)

Japjo4 juawurejuon

18pjo4 JUBwuBluO)

1apjo4 uswueIuoy

lep|o4 jusliuieuo)

awinjoA

18pjo4 WaWuBuG)

awinjop

90INBS SHUIM

PCT/US2004/024287

WO 2005/024626

17/34

ove
SVWW3HOS 91035 ejeQ sjoway av
=
3
@
-]
02
o
ONAS
TEE , e
e SYIN3IHOS 210}g BlRQ
uonesynoN
— # _Z
Jepinoid, JopInoid,
0061 UBDTOS g av obuByOXg

1L

1] 1T

2C€ IdV wioie|d abeio)g

1C

(o05¢ 40 ‘qos¢e ‘e0SE "6°9) NOILYIITddY

AdVANNO9 INIHOVIN

PCT/US2004/024287

WO 2005/024626

18/34

\ woje|d /

4 obeio)g <
91L0¢
suopluye(Q mhwmmm
sse|D 1dn

dINIL NOIS3d
cloc
Spoyisiy
p— O_h_O@Qm
ulewoq
8002 . Joj /poH
Sjoo] T
awy] ubisaqg 0102
TINX Ul
— uonydiiosaqg
BWIdY2S
c¢00¢
SOSSE|) | ——
ejeq
(o05¢ 40
= ‘q0SE ‘B0SE “B0)
uonesyddy
900¢
mwmmm_o I
lomawiel 4 —
1 awuny ¥00¢
MHOMINVHA
JNILL NNY

PCT/US2004/024287

WO 2005/024626

19/34

Vi¢ "Old

20IAIBSaY 188
F A
lapjoJeleq 19p[o lapjo4 20 S0l 90IAISS 90IAlRg
sulyoeeo0] | | Byegiesn | | umousiiem 10B)U0D uossag dnoig @ouasald uosied
: X] L) X
19p|o4 pioHesnoH uoneziuebip ERITNETS dnoig ledioung
I) ;) I)

walf

PCT/US2004/024287

WO 2005/024626

20/34

ejegpiuo ejegasnodg
A A
_
elegAjiwe] |-
ejegloquisiy |
ploHesnoH |
diysuonejeyuoneso | Ssalppy
m _\N o w_ .u_ uonezjuebio Buibessajuelsu)
QEMMMEE\,_ -t SSaIppy
2 IeWw3d NS
eleq . aoussald |
asfoldwg | SMOpUIp, | JaquinN
auoydsia | nll
diysuonejay diysuonerey
uolesoT uonesao diysuonejey Aouednoo L] diysuonejay eoussald ssalppy3
pjoHasnoH JuUBAgAjwe uonEeso a|0y sjeldwa | oiseg B0y
A A J A A A
aiAnoes Juan3Ajiwe sweNjind diysuone|oy ajyold ayeidwa] ssaIppy3
\ A A A A A A
Juswalg
Kaxihpuap) poISON
A A

asegiuawa|g]
Po)seN

PCT/US2004/024287

WO 2005/024626

21/34

N

woield
abelolg

e
.

——— ~

ydeub yoelqo
Jua1[2 O} Swayl
alojs so|dnod

ABuong x4 .-

-

P

——

108[q0
MWl
sajeaI) X

/
—_——

N

AN
— ome o o - —— —

=

a1led
/m_>_m._._ 40 HdVHD .romﬂmO\
L V/l\vONN

¢0cce

QOHL3W aNid _

X8jU0H WY

W31l NV OL aNig |

¥00¢

(o05¢ 10 ‘qoge ‘eose “B'8) NOILYOIlddY

e v —— - —— - ————— — — —— i~ — — — ——— o]

PCT/US2004/024287

WO 2005/024626

22/34

€¢ 9OIld

S .
woje}d abelolg
sjoafgo 1 an sy
deim 1BU) S}198[q0 UosIad Sig 10N uosied ¥

SJOrIsUo |dv 8yl s [swgranuosig || ¢

|dY 8ul 0} wayj suinjal

pue sjoalqo Y0 oul s tanvosed || 5 |
SHQ 8y} swin}j1aN"Oay ¥
s)iq jo BuLys e se SHg 1an uosiad)
s1@an uosiad Buiyojew e =
©U SUmS! wiolieid RIS ¢ 9|qe] uosied

—_ @@=

Asanb TOS e sjwgns
pue S}onJsuod [dy T

Idv

IVpuid sjjeo uogeoyddy 1

V.. m_m 10an uosiad

sp3[go 1.an uosied

®©

JSN‘Oav

199{q0 1an uosiad

6661/LE/Z1, < SepuHIg wa)| IYIHM :owumn_ WOYH wey 10313S
(..6661/LE/CL, < BIBPYMIE, XIONVPUIL UOSIBd = S)insal :zwmm_u:_n&
sjo9iqQ uosiad

PCT/US2004/024287

WO 2005/024626

23/34

210)8

lojeiauan)

Alquassy J\

»:| puewwon
aaa

vl

L
al0)s a3y wsiqa
142 JoAB] MO] BU} U0 SPOYIBW BI00a] asaL |
“JBAIS B} UO UNJ Jey) SIoIneyaq

ujBwWop Joj sesse|d jeiled suguoy
apig 210}1S ‘slolAByDg Uleto

1an senses ._om\l

jou ale spoyjau puld ay |

‘el
* /GU 31|50 pue 210} m
Aiqussse sanias ayy Jo ped yiog uo muo:me 10} sassE| felUEd

sosse|d |IdVY

uriojjejd abeiolg

-

S
sS1 (N 210)s aJe asayL
Jaun wayos ayy Ul sadA} 1o} sasseo |elued
pandwon : 8pOD 810} UOCWIWOD

: 210}S pue jual|D

o3
saxapu] JOS
SJUIBJISUOY) JO UONEDHadS e
ewsyos ay} ul sadA) -
:ButuiBuoD JusWINoop WX UY

18|14 PWAYOS

(axa'sozs)x)
J0jeliauan)

‘si0lABlag utewoq

-

BWOYDS
3Hur ay) uy sadAy 1oy sessej |ziled
Hedwon : 8p0Y JUBHDH UCWIWOD
) :

L N
2
\@\0\07
fe@»o@/
dajunr
Mapdwon ppe-anjeA

Anuzejeq) jo uopejuswa|dul
‘aldwexa 1o4 ‘AJuo Jusio
3y} uo unJ JeY) SiolABYyaq ujlewop
1o} sasse)o |elued sulgjuc)
AluQ apisjualo
‘slolAeyag utewod
9

sse|

&

pajesauab
-oiny

PCT/US2004/024287

WO 2005/024626

24/34

Gg¢ Old

BWAYDS S3|14 2} Ul paula(q sway|

*ssauayaldwon jo ayes
8y} 10} aJay umoys ale Inqg ‘ewayos aseg
ay} ul pauyap sadA} ale saxoq Aalg) 910N

(uiBig NSN ‘19 snjejguoRoLIoId
‘Ig waisAgs] ‘1q julodesiedays] ‘g AlUOPESYS| ‘U] [BWIONS]
“}q uappiHst ‘iq peidAnugs| ‘iq Aoaiigst g passaldwiods| ‘Ug
BAIYDIYS) ‘Bwnelep pessaooy ‘agnuaptenbiun gposlqo ‘wibiq qield)

AioysanqQ

(uiBig NSN ‘1q smejsuonowold ‘Iq
Aelodwa] s| ‘}1q waysAgs| ‘Ng astedgsy ‘g Juiodasiedays) ‘ig AluOpeays]
‘Nq [BWIONS] ‘Hq UBPPIHS| ‘Nq pajdAiougs|)g paxapupusiueds| uq
passardwos| ‘}q sulyOLINGUIYS| ‘UG SAIYDIYS] ‘analep passeody uibiq
azisweans (ySZ)IBYSIBAL UOISUSIXT ‘Jayguapienbiun gnosiqo quibig qlend) Qv_:jroﬁmw m._mnEws_v

94

+

PCT/US2004/024287

WO 2005/024626

25/34

TOVS 883308 0} WBIY <~ S
Ty ousUaD <~ WO
2NJaXg OUBUsY =-- JO
AN TMBUBE) <~ AAD
pBay olBUsH = MO
MBI
sSAIY 58300 O10ads-109l SS333Y > RaAIBSSY alal¥ls
PR ¥ OBI8dS-139ld0 PIEPUBIS v 0191919
D_ Lm PlS| S| 4|8]6|0LILCLEL VLS 21 8L 61| 02] 12| 22| £2| v2| ST| 92| 22| 82| 62| OE| 1S

WO 2005/024626 PCT/US2004/024287
26/34

(b)

Y

1

L~
o
N
N
y— ;(\] ;,_ g L]
o
£ LL
\ /V‘-
— ‘—"E]
L
—
—
_—~
Y— p » — ©
N
/V_

PCT/US2004/024287

WO 2005/024626

27/34

6¢ ©Old
JUBWIND0(PIOA 20 eafojdwgorIUu0)
1uBWN20(]"00Q u0S.Iad 19.Iu0D
walj'eseqg

8¢ Ol

JuWNOO(J[B3aT

JoeIuO)

JUSWINOO(MITAY

-
o
-

JUSWINOO(]

woyy

PCT/US2004/024287

WO 2005/024626

28/34

ai€ "Old

ININO3S
30092 aNe

Vi€ "Old

o2l | q¢l | eci

INIWO3IS
3009 dNe

a0¢€ 'Old

ININO3S
3d0J dNe

Vo0¢ ©Old

o qLl el

4

¢l 9deLIvlu]

“d3IN
130V
-y31N

LNINO3S
3402 1Si

INJNO3S
3409 1si

ANINO3IS
3d0D aNe

AELLITLHT

130v4d
~d3.LNI

ININOIS
3409 1Ssi

LININOIS
30090 1si

PCT/US2004/024287

WO 2005/024626

29/34

a¢ee olid

IN3INO3IS
30093 aNe

gzl eoepayu| |

'

i
L

=

\

ull 93BL3U|

V¢l 9dejiau)

AEETITET

IN3INO3S
34092 1si

vee 'Old

ININO3S
3d09D aNe

LNINO3S
34092 1Si

AININO3S
3009 aNe

.l 90eLdjU|

ac¢ce "old

L1 99EH9)U|

INIWO3S
3402 1St

ININO3S
3d02 aNne

vee old

(--- ‘ndino
== indul)asenbg

v

30v4
-Y3LNI

}

(reuonippe ‘yndjno
‘ssa|Bulueaw
‘indui)esenbg

INIJWO3S
30092 1Ssi

PCT/US2004/024287

WO 2005/024626

30/34

ave old

ININO3S
30090 dNe

q¢i | ezl

N

aia

LINIJNO3S
34092 agye

Ha

LN

AOVAUILINI
FOUOAIQ

H

LNINO3S
3409 1S}

130vd
“H3.LNI

ININO3S
3402 1si

PCT/US2004/024287

WO 2005/024626

31/34

A0VAAIALNI
JO™O0AIA

I 30Vd
~d3.LNI

VGe "Old

INIWO3IS
340092 1Sl

A LIAJHILNI
[43TIdINOD LIr

ININO3S
34090 aNe

30v4d
p= N

IN3INO3S
3d02 1si

PCT/US2004/024287

WO 2005/024626

32/34

jusuodwod ANz

¢l 1 g2l | el

g6¢ 'Old

Suijdaiifetl

1ININOdOD 1S}

d371IdINOD LIr

LNINOdINOD aNe

¢l @deuaju|

L1 @deusju]

LN3INOdWOD 1SiI

PCT/US2004/024287

WO 2005/024626

33/34

yeoe

[AX2]

\ A OUAS SHUIM O} SHUIM [y

(SUIM) 11 WSISAS
y09¢€

RN

X

(S4uIp-uou 0} SJUIM)
$80IAJ8S JUAS 9100 wil

(SJUM) C09¢
TWosAS

Y

(S4uim-uou 0) SJUIM)
S9OIAI8G JUAS 810D

¥19¢

©
2.0]S eleQ o
SHUIM “
|dV JUAS
z69¢
9¢ Old

OUAS SUIM O} SJUIA (4|

¥29¢€

A4

croc
A clog ©
21018 BleQg W
S4UIp
|dV ouAs
) A
ypoe| €99€ 2s9e 3
\ o
f Joydepy ouA
4 Jaepy S
99 ™ [04ju0D/Byu0D dUAS SHUIMN
999¢ | ™ oUAg S4uIpp Buisn uoneoyddy

909¢

(S4UIM-UON) | WSISAS

PCT/US2004/024287

WO 2005/024626

34/34

L€ "Old

‘19ydepe oy} Aq esn juenbasqns pue abel0)s oy
JIajdepe sy} 0} PE2INOS BIEp BU) SO} OJUI B}B)S MBU SIY] S)LUSUEl)
pue ‘(eoydal ay} 1o} ojul 8}e}S Siy) sejepdn ‘ef) swes salo)s
‘92in0s ejep 8y} 10} UoNeWLIOJUI 8)elS MaU By} sejenojes ‘esjjdal
8y} WoJj ojul ainjiej-pue-sse0ons ay) Buiaieoal uodn ‘S{uipp
90.¢

s

(eoljdai 8y} JO) SHUIAA O} oeq Ojul BINjIB}-PUB-SS8INS BY)
SHwsuel) pue ‘jie} ydiym pue |njssaoons ale sebueys yoiym syoels
‘a|qIssod se 90.1nos ejep ay} 0} sebueyd Auew se sjusws|du
‘eoljdas sy} woy ejep ebueyo sy Buiaeoss uodn “sidepe ay |
v0.€

Sl

“1eydepe 8y} BIA 821N0S B}ep 8y} O} UOJBWIOU 8)e)s
Juesald s}l pue ssbueys [ejuswaloul 9S8y} SHIWSURI) PUB 821N0S
EJep pies Yjim paziuoiyouAs Jse|)i 8ouls palinooso sAey sebueyo

yolym ssujwuelep eojjdal ayj ‘@oinos ejep sy o) psebai uj
¢0.E

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US04/24287

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7 GOGF 7/00
US CL 707/103R

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 707/103R

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A US 5,893,106 (BROBST et al) 6 April 1999 (06.04.1999), column 3 to column 15.

1-11

D Further documents are listed in the continuation of Box C.

]

See patent family annex.

* Special categories of cited documents:

“A" document defining the general state of the art which is not considered to be
of particular relevance

“E” earlier application or patent published on or afier the international fiting date

“L" document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“0” document referring to an oral disclosure, use, exhibition or other means

“P" document published prior to the international filing date but later than the
priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“Xr document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“yn document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

20 December 2004 (20.12.2004)

Date of mailing of the international search.renart ~

04 JAN 2005

Name and mailing address of the ISA/US
Mail Stop PCT, Attn; ISA/US
Commissioner for Patents

P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703) 305-3230

Authorized offi
John Breefie

Telephon 7 (7! =3900

Form PCT/ISA/210 (second sheet) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

