Office de la Proprieté Canadian CA 2310942 C 2006/02/07

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 310 942
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(22) Date de dépét/Filing Date: 2000/06/05 (51) CLInt./Int.Cl. GO6F 12/00(2000.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2001/03/29 GO6F 17730(2000.01)
(45) Date de délivrance/lssue Date: 2006/02/07 (72) Inventeur/inventor:

KORI, MITSUNORI, JP

(73) Proprietaire/Owner:
MITSUBISHI DENKI KABUSHIKI KAISHA, JP

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(30) Prionte/Priority: 1999/09/29 (11-2/6022) JP

(54) Titre : APPAREIL ET METHODE DE GESTION DE FICHIERS DE DONNEES TRANSPOSES PAR BLOCS DE
LONGUEUR VARIABLE

(54) Title: VARIABLE-LENGTH BLOCKED TRANSPOSED FILES DATA MANAGEMENT APPARATUS AND METHOD

' I'
. '
R e [P
- :)
- #2 ¢ 72 : 2
i

1
®
=
i
®
[
RIRS
mrlmr
(1]
=

! #3 . ,
: #4 : NAENIE = ,
I |
o DRARLE [82— TRANSPOSING VEAS |
| | POSTCONVERSION | 1! VARMBLELENGTHDATA - 22 __ 21
1y BLOCK ' CONVERS v _{ PRECONVERSIONBLOCK + |S—
1 { [Field? Has Field i
1 | [Feia2 |58
3 — FIRST L1
63" [Foid3 Field2 RECORDS
620{{* -
™ | Fielda e ~~23b
¥ ' [Fieid3 24,
o 1~ 23¢
1 [[Fadt Fieldd i
1 | [Field2 | T T23d
¥ : .
%{ — Field? .
1 | | Flelad [Pz f| NEXTL2
¥ -Ff:(fl)RDS
e e] 2 R 124,
1: INTERNAL FILE = |
2. INTERNAL FIELD |
3: RECORD :
1: LOGICALFLE 7 TITTTT oo .
12: LOGICAL FIELD 71: VARIABLE-LENGTH BLOCKED
13: RECORD TRANSPOSED MANAGEMENT FILE
21: PRE-CONVERSION BLOCKED 72. FILE-BY-FILE ADDITIONAL
TRANSPOSED FILE INFORMATION
22. FIELD 73: GROUP-BY-GROUP ADDITIONAL
23. PRE-CONVERSION BLOCK INFORMATION
24: PRE-CONVERSION GROUP 74: BLOCK-BY-BLOCK ADDITIONAL
51: VARIABLE-LENGTH BLOCKED INFORMATION
TRANSPOSED FILE GROUP 81: INTERNAL FIELD CONVERSICN
61: VARIABLE-LENGTH BLOCKED MEANS
TRANSPOSED DATA FILE 82: TRANSPOSING MEANS
62: POST-CONVERSION BLLOCK 83: VARIABLE-LENGTH DATA
63: POST-CONVERSION GROUP CONVERSION MEANS

(57) Abréegée/Abstract:

Conventionally, the entire file consisting of blocked transposed blocks need to be stored in a storing means as it Is and hence the
storage capacity cannot be reduced. In the Invention, A data conversion method suitable for the properties of each block Is

SNV

i R

SN T 7 7
”

) R

I*I) . Paven, .
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 48 & 2%% ;g

‘ SNNRGERI SRR
OPIC - CIPO 191 *‘

CA 2310942 C 2006/02/07

anen 2 310 942
13) C

(57) Abrege(suite)/Abstract(continued):

selected from among a plurality of data conversion methods stored In advance such as a plurality of compression methods.
Blocked transposed blocks are converted by using the respective data conversion methods thus selected, according to the type of
data In the transposed block and finally, converted variable-length post-conversion blocks are stored.

CA 02310942 2004-04-27

AR LKACL G y DAoL LOSURS

Conventionally, the entire file consisting of blocked
transposed blocks need to bé stored in a storing means as it
is an‘d hénce. the storage c_apacity cannot be reduced. In the
invention, A data conversion method suitable for the prOperties
of each block 1is selected- from among a plurality of data
conversion méthodsstored in'advancg such as a plurality of
compression methods. Blocked transposed blocks. are converted

by using the respective data conversion methods thus selected,

according to the type of data 1n the transposed block and
finally, converted variable—length post-conversion blocks

are stored.

L1
-
N oL

1]

CA 02310942 2004-04-27

VARIABLE-LENGTH BLOCKED TRANSPOSED FILES DATA
MANAGEMENT APPARATUS AND METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present inventio‘n\ relates to a data management
apparatus and method which eriables efficient storage of a large
amount of data as well as éfficient extraction. of necessary data
in an apparatus that storés' a large amount of data, ~pa:r:t:i.cularly
in such an apparatus as a database'servef.

2. Description of theQRélated Art

Among data 'stOrége apparatuses is a data management
apparatus that deals with files (what is called blocked
transposed files) in which fhe file format as viewed from an
application i’s such that fields of the same kind are collected
into a group. ‘

fig. 15 is a conce,-pttial diagi:am showing a data manageméht
cohcep£°of‘é blocked transposed file«in.a conventional data

management aéparatus (Japanese Unexamined Patent Publication
No. Hei. 11-154155). InFig. 15, reference numeral 1000 denotes
an internal file whose format 1is defiﬁed to show a process of
format conversion. The internal file 1000 consists of a
plﬁrality of records 1002 each constituted of a plurality of
(first to Nth) internal fields 1001.'2Réference numeral 1010

denbtes a 1ogica1 file whose format is defined for interface

with an application program. The logical file 1010 consists

CA 02310942 2000-06-05

of a plurality of records 1012 each constituted of a plurality

of (first to Nth) logical fields 1011. Reference numeral 1020
denotes a blocked transposed file in a state that the file has
been subjected to conversion from the internal file format to
the blocked transposed file format and is ready for storage in
a disk or the like. 1In the blocked transposed file 1020, a
plurality of fields 1021 of the same kind constitute a unit

called a block 1022 and a plurality of blocks 1022 constitute

a unit called a group 1023.

Fig. 16 shows conversion from the internal file format to

the blocked transposed file format.

The conversion 1s performed in the following manner.

First, internal fields 1001 of the same kind, for example, first
internal fields 1001, of first to Lth records (one processing

unit) of an internal file 1000 are cut out and stored as a block
1022 that is part of a blocked transposed file 1020. Then,
second internal fields 1001 are cut out and stored as part of
the blocked transposed file 1020 in the same manner. This
operation is repeated until Nth fields of the internal file 1000
are stored. Then, the same operation is performed for (L+1)tf1
to 2Lth records (one processing unit) of the internal file 1000.
The conversion into the blocked transposed file 1020 is
performed by repeating the above operation.

Fig. 17 shows an example corresponding relationship

between a logical record 1012 as a processing unit in an

CA 02310942 2000-06-05

application program and an internal record 1002.
As shown 1inFig. 17, in a record of the internal file format,

the length of fields 1001a-1001f is set at a certain fixed value.

The record of the internal file format is obtained by modifying
logical fields 1011a-1011d of the logical record 1012 so that
they conform to the fixed boundaries.

The logical record 1012 that is handled by an application
or the like is converted into the internal file format. 1In this
conversion, first, the logical field 10l1la is made the internal
field 100la as it is because it has the same length as the
internal field length. However, since the logical field 1011b

1s shorter than the internal field length, it is made the
internal field 1001b through padding such as insertion of null

data. Since the logical field 10l1l1lc is longer than the internal
field length, it is decomposed into a plurality of internal

fields 1001c-~1001e.

In general, the number of logical fields that are actually
needed in an individual process is restricted and in many cases
not all logical fields are needed. After conversion into the
blocked transposed file format, it is sufficient'to read ouﬁ
blocks of related logical fields. The efficiency of processing
can be 1ncreased as a result of reduction in input/output
information amount. For example, assume a employee information
blocked transposed file shown in Fig. 18 in which the first,

second, third, fourth, ..., 99th fields are assigned to the name,

CA 02310942 2000-06-05

section number, section name, employee number, ..., telephone
number, respectively. An employee telephone number list can
be generated by storing only the first, fourth, and 99th blocks
in an input/output buffer and performing proper processing. It
1s not necessary to read out the other fields.

Further, since the blocking is so made that each block up
includes the same number of records, the file reading direction
can be kept the same by performing readout inunits of that number
of records. Where files are stored in a magnetic disk apparatus

or the like, the head movement distance can be minimized and

hence the processing speed can be increased.

Incidentally, in recent years, there have been proposed

a plurality of data conversion processing methods in which in

storing a file in a disk apparatus or the like, with attention

paid to redundancy of data, the file is stored in the disk

apparatus after being subjected to data compression and the
original data is decompressed when necessary. Performing such
data compression provides advantages that the capacity of a
necessary storage device can be reduced and the processing speed
can be i1increased by increasing the efficiency of input/outpu{:
processing on the storage device.

In general, 1n data conversion, the ratio of the post-
conversion data length to pre-conversion data length varies
depending on the properties of the data. However, in the

conventional data management method using blocked transposed

CA 02310942 2000-06-05

files, a file cannot be processed unless the number of records
belonging to the same group of a blocked transposed file is fixed
and the data length is fixed 1in all blocks belohging to the same

group. This causes a problem that such a data management method
is not compatible with both advantages of reduction in storage
capacity and increase in processing speed.

Although it is possible to compress the entire blocked
transposed file, a reading process for a compressed file is
required to be performed after the entire blocked transposed
file 1s decompressed. This results 1n a problem of

deterioration in performance.

Further, in this case, the entire blocked transposed file
should be compressed according to one kind of data conversion
method. There 1is a problem that the conventional data
management method using blocked transposed files cannot provide
operations that are closely adapted to respectivé kinds of data.
SUMMARY OF THE INVENTION

The present invention has been made to solve the above
problems in the art, and an object of the invention is therefore
to make it possible to increase the 1nput/output efficiency and
reduce the storage capacity by storing a blocked and transposed

result after subjecting it to data conversion on a block-

by-block basis.

In accordance with one aspect of present invention, there

is provided a data management apparatus comprising first

CA 02310942 2000-06-05

conversion means for generating a first block by dividing at
least one record consisting of a plurality of fields into the
fields and combining fields of the same kind; and second
conversion means for converting the first block into a second
block by using a data con'version method stored in advanCe, and
for storing the second block 1n a storing means.

In accordance with a another aspect of the present
invention,there is provided a data management method comprising

a virtual conversion step of repeatedly executing a process of

reading at least one record from an input file having records

each consisting of a plurality of fields, adds the at least one
record to the buffer, and converting the record in the buffer

into a post-conversion block on a field-by-field basis until
a data size of the post-conversion blocks of all field kinds
of records 1n the buffer exceeds a predetermined threshold
value; a number-of-records calculation step of storing the
number of records in the buffer at the time of an immediately
preceding process when the data size has exceeded the prescribed
threshold value; and a conversion step of reading out records
of the stored number'from the 1input file, converting.the read-out
records into post-conversion blocks on a field-by-field basis,
and storing the post-conversion blocks 1n a storing means.
In accordance with a further aspect of the present

invention, there is provided another data management method

comprising a first conversion step of generating first blocks

CA 02310942 2000-06-05

by reading out records of a prescribed amount from an input file
~having records each consisting of a plurality of fields,
converting the read-out records into a fixed-length field
format, dividing the converted records into fields, and
combining fields of the same kind; and a second conversion step
of converting the first blocks into second blocks by using a
data conversion method stored 1in advance.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a conceptual diagram of conversion into a
variable-length blocked transposed file in a data management
apparatus according to a first embodiment of the present
invention;

Fig. 2 shows conversion from an internal file format to
a pre-conversion blocked transposed file format;

Fig. 3 shows the configuration of a variable-~length data
conversion means:

Fig. 4 hierarchically shows a relationship among
operations that are performed when the data management
apparatus generates a data file from an input file;

Fig. 5 is a flowchart showling a process of generating a
data file from an input file;

Fig. 6 is a flowchart showing a process of determining the
number of records belonging to each post-conversion group;

Fig. 7 is a flowchart showing a process of generating a

data file;

CA 02310942 2000-06-05

Fig. 8 shows a data readout system in the data management

apparatus;

Fig. 9 shows the configuration of a variable-length data
inverse conversion means;

Fig. 10 hierarchically shows a relationship among
operations that are performed in reading out data from a data
file;

Fig. 11 is a flowchart showing a process that an application

program reads out data from a data file;

Fig. 12 1is a flowchart showing a data file inverse

conversion process;

Fig. 13 shows a data file according to a second embodiment

of the invention;

Fig. 14 is a flowchart showing a variable-length blocked
transposed data file generation process according to a third

embodiment of the invention;

Fig. 15 is a conceptual diagram showing a data management

concept of a blocked transposed file in a conventional data

management apparatus;

Fig. 16 shows conversion from an internal file format to

a blocked transposed file format;

Fig. 17 shows an example corresponding relationship

between a logical record and an internal record; and

Fig. 18 shows readout from a conventional blocked

transposed file.

CA 02310942 2000-06-05

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiment 1

Fig. 1 is a conceptual diagram showing the concept of

conversion into a variable-length blocked transposed file in
a data management apparatus according to a first embodiment of
the present invention.

In Fig. 1, reference numeral 1 denotes an internal file
whose format is defined to show a process of format conversion.
The internal file 1 consists of a plurality of records 3 each

constituted of a plurality of (first to Nth) internal fields
12. Reference numeral 11 denotes a logical file whose format
is defied for interface with an application program. The
logical file 11 consists of a plurality of records 13 each
constituted of a plurality of (first to Nth) logical fields 12.

Reference numeral 21 denotes a file (hereinafter referred to
as “pre-conversion blocked transposed file”) obtained by
subjecting the internal file 1l to blocking transposd operation.
In the pre-conversion blocked transposed file 21, a plurality

of fields 22 of the same kind constitute a unit called a
pre-conversion block 23 and a plurality of pre-conversion
blocks 23 constitute a unit called a pre-~-conversion group 24.
The internal file 1 and the pre-conversion blocked transposed
file 21 are intermediate files that occur during the course of

processing and need not exist as actual files on a disk or the

CA 02310942 2000-06-05

like.

Reference numeral 51 denotes a post-conversion file group
(hereinafter referred to as “variable-length blocked
transposed file group”), which includes a variable-length
blocked transposed data file (hereinafter referred to as “data
file”) 61 and a variable-length blocked transposed management
file (hereinafter referred to as “management file”) 71. The
data file 61, consist of aunit of a plurality of post-conversion
blocks 62 corresponding to pre-conversion blocks 23 of the
pre-—cohversion blocked transposed file 21 and a unit of a
post-conversion group 63 corresponding to a pre-conversion
group 24 of the pre-conversion blocked transposed file 21.

The management file 71 has data of file-by-file additional
information 72 and group-by-group additional information 73.
Each piece of group-by~-group additional information 73 has
pieces of block-by-block additional information 74 that are
pieces of information of the respective post-conversion blocks
62 constituting the corresponding post-conversion block 63.
The file-by-file additional information72 includes a maximum

block size, and the block-by-block additional information74
includes a block offset, a post-conversion block size, and a

conversion means type.

Reference numeral 81 denotes an internal field conversion

means which performs conversion from the logical file 11 to the

internal file 1. Reference numeral 82 denotes a transposing

10

CA 02310942 2000-06-05

means which performs conversion from the internal file 1 to the

pre-conversion blocked transposed file 21. Reference numeral

83 denotes a variable-length data conversion means which
performs conversion from the pre-conversion blocked transposed
file 21 to the data file 61. An example of the varlable-length
data conversion means is such that the post-conversion data
length varies depending on the properties of the data as in the
case of lossless data compression.

In the following description, for the same of simplicity,
it is assumed that each of the pre-conversion blocked transposed

file 21 and the variable-length blocked transposed file group

51 includes four kinds of fields, which are given identifiers

a-d to clarify correspondence.

Fig. 2 shows conversion from the internal file 1 to the

pre-conversion blocked transposed file 21.

In this conversion, at first, first fields 2a belonging

to first to Llth records (one processing unit), respectively,

of the internal file 1 are cut out and made a pre-conversion
block 23a. Similarly, second fields 2b, third fields 2c¢, and

fourth fields 2d are cut out and made pre-convers jon blocks 23b}

23c, and 23d, respectively.

Then, the same operation is performed for (L1+1)th to L2th

records (one processing unit) of the internal file 1. By

repeating this operation, the internal file 1 is converted into

the pre-conversion blocked transposed file 21. The numbers Ll,

11

CA 02310942 2000-06-05

.2, etc. of records belonging to one group may not be fixed for

all groups; they may be different from one group to another.
A means for determining the numbers L1, L2, etc. of records
will be described later.

Fig. 3 shows the configuration of the variable-length data
conversion means 83 which converts a pre-conversion blocked
transposed file 21 to a data file 61. Reference symbols 84a,
84b, and 84c denote three variable-length data conversion
types provided in the variable-length data conversion means 83.
As shown in Fig. 3, the variable-length data conversion means
83 can select from the conversion types 84a-84c in accordance

with the properties of each block.
For example, where data compression 1s used as
variable-~length conversion, the efficiency of utilization of

a storage device can be increased by selecting a data compression

algorithm that provides highest data compression efficiency

based on the properties of each block. Fig. 3 shows that
pre-conversion blocks 23a-23d are converted 1into post-
conversion blocks 62a-62d by the conversion types 84a, 84c, 84a,

84b, respectively.

In converting the pre-conversion blocked transposed file
21 into the data file 61, the variable-length data conversion
means 83 obtains post-conversion sizes of respective blocks.
If it is intended to determine only post-conversion sizes, 1t

is possible not to generate post-conversion blocks actually.

12

CA 02310942 2000-06-05

Fig. 4 hierarchically shows a relationship among
operations that are performed when the data management
apparatus generates a data file 51 from an input file. A
higher-rank program or means activates a lower-rank means. In
Fig. 4, reference numerals 100-102 denote a variable-length
blocked transposed file generation pro'gram, a number-of-
records-in-group determining means, and a variable-length
blocked transposed file generating means, respectively.

Fig. 5 is a flowchart showing a process of generating a

data file 51 from a logical file 11 (hereinafter referred to
as “input file”). Fig. 6 is a flowchart showing a process of
determining the number of records belonging to each post-
conversion group produced by conversion from an input file to
a data file 51. Fig. 7 is a flowchart showing a process of

generating a data file 51 in conversion from an input file to

o~

a data file 51.

A process that is executed from input of a file to its
conversion into a data file will be described with reference
to Figs. 4-7.

First, the process that 1s executed from inp-ut of a file

to generation of a data file will be outlined with reference

to Figs. 4 and 5.
As shown in the flowchart of Fig. 5, at step S1, the
- variable-length blocked transposed file generation program 100

is activated. 1In general, this activation is done in response

13

CA 02310942 2000-06-05

to a user’s request. However, the activation may be done
automatically by specifying time or detecting the end of an
application program.

At step S2, the variable-length blocked transposed file
generation program 100 activates the number-of-records-in-
group determining means 101. At step S3, a number-of-
records-in-group determination process is executed.

At step S4, the variable-length blocked transposed file
generation program 100 activates the variable-length blocked

transposed file generating means 102. At step S5, a data file

is generated.

Next, the details of the number-of-records-in-group

determination process (step S3) will be described with

reference to the flowchart of Fig. 6.

This process is intended to obtain the number of records
belonging to each post-conversion group 63 and the conversion
type from pre-conversion blocks 23 to post-conversion blocks
62 in each post-conversion group 63.

FirSt, at step S101, the group number (GroupNo) 1s
ini.tialized to “1.” At step S102, the number of records in a
group (RecordCount) is initialized to “0.”

At step S103, the read position of the input file 11 1is
set at the head and the post-conversion group size (GroupSize)
is initialized to “0.”

At step S104, it is judged whether all records 1in the file

14

CA 02310942 2000-06-05

have been processed.

If not all records have been processed yet, at step S105
records of a certain number R are read out from the input file
and added to a buffer. The number R of records, which is a
predetermined, arbitrary readout unit, can be set at an
arbitrary number that is one or more. 1In general, whereas the
block size can be adjusted more closely as R decreases, the
processing time may become unduly longif Ris small. Therefore,

R should be set at a proper value for each situation.

At step S106, the head field is made a processing subject
and the block number (BlockNo) and the group size (GroupSize)
are initialized to “0".

Then, steps S107-S109 are executed, whereby the size of
a post-conversion group that 1is obtained when the post-

conversion group is generated from the records currently stored

in the buffer is determined.

Specifically, at step S107, first the 1internal field
conversion means 81 is activated and the records that have been
read into the buffer are thereby converted into the internal
file format. Further, the transposing means 82 is activated
and the records are converted into the pre-conversion blocked
transposed file format.

At step S108, the variable-length data conversion means
83 is activated and the variable-length data conversion process

is executed on each pre-conversion block. A most appropriate

15

CA 02310942 2000-06-05

data conversion type is selected and the group number and the
block number are stored as type information. Further, the size
of a post-conversion block that is produced by the selected data
conversion type is added to the group size. For example, the
method for selecting a most appropriate data conversion type
is such that post-conversion block sizes for all the conversion
types are determined and a type that provides the minimum block
size is selected.

At step S109, it is judged whether all fields stored in
the buffer have been processed. If it is judged that not all
fields have been processed yet, “1” is added to the block number

at step S110 and steps S107-S109 are executed agailin.

If it is judged at step S109 that all fields have already
been processed, it is judged at step Slll whether the stored
group size is larger than a predetermined maximum allowable
group size (MaxGroup). For example, the maximum allowable

group size is set at a buffer size that can be prepared at the

time of readout.

If it is judged at step S111 that the stored group size
is not larger than the maximum allowable group size, R is added

to the number of records in a group at step S112 and then step

S102 and the following steps are executed.

If it is judged at step S111 that the stored group size
is larger than the maximum allowable group size, it means that

the records to the immediately preceding records can be

16

CA 02310942 2000-06-05

accommodated in the current group. Therefore, at step S113,
the number of records 1in a group 1s stored as the number
L (GroupNo) of records corresponding to the current group number

and type information is stored. Further, “1” 1s added to the

group number.
At step S114, the records excluding the last read-out R

records are removed from the buffer. Then, the step S104 and

the following steps are executed again.

If it is judged at step S104 that all data of the input
file have already been processed, the records that finally
remain in the buffer will be converted. Therefore, the number

L(GroupNo) and the conversion type (Type) are stored at step

8115C

When informed of completion of the process by the
number-of-records-in-group determining means 101, the
variable-length blocked transposed file generation program 100
activates the variable-length blocked transposed file
generating means 102 and generates a data file.

Next, the details of thedata file generation process (step
S5) will be described with reference to the flowchart of Fig;
7.

First, at step 201, the block offset (BlockOffset) 1is

initialized to "o and the maximum block sizes

(MaxBlockSize(i)) corresponding to all field i (1 =1, 2, ...,

N) are initialized to “0,” where N is the number of internal

17

CA 02310942 2000-06-05

field.

At step S202, the input file read position is set at the

head.

At step S203, the intragroup block number (BlockNo) is
initialized to “1”.

At step S204, data of the number L(GroupNo) of records that
was determined by the number-of-records-in-group determination
process is read out from the input file.

At step S205, the internal field conversion means 81 is
activated, whereby the read-out records are converted into the
internal file format. Further, the transposing means 82 1is
activated, whereby the records are converted into the pre-

conversion blocked transposed file format.

At step S206, the variable-length data conversion means

83 is activated, whereby a generated pre-conversion block 1s

converted into a post-conversion block by the conversion type
Type(GroupNo, BlockNo) that was determined by the number-

of-records-in-group determination process. The data size of

the resulting post-conversion block is set as the block size
(BlockSize).

At step S207, the post-conversion block 1s added to the
data file of the variable-length blocked transposed file at the
tail. At step S208, it is judged whether the block size
(BlockSize) 1is larger than the maximum block size

(MaxBlockSize(BlockNo)) corresponding to the internal field

18

CA 02310942 2000-06-05

concerned. If it is judged that the block size (BlockSize)

is larger than the maximum block size (MaxBlockSize(BlockNo)),

the former 1s set as the latter at step S209. At step 5210,
the block size (BlockSize) 1s added to the block offset
(BlockOffset). If it i1is judged at step S208 that the block size
(BlockSize) is smaller than or equal to the maximum block size
(MaxBlockSize(BlockNo)) corresponding to the internal field
concerned, step S209 is skipped and step S210 1s executed.

At step S211, block-by-block additional information of the
management file is formed by the block offset (BlockOffset),
the block size (BlockSize), and the conversion type (Type), and

added to the management file.

At step S212, it is judged whether all blocks in the group

have been processed. If not all blocks have been processed yet,

the block number is incremented at step S213 and then step S204

and the following steps are executed. If it i1s judged at step
S212 that all blocks have already been processed, it is judged
at step S214 whether all groups 1n the file have been processed.
If it is judged that not all groups have been processed yet,
the group number is incremented at step S215 and then step S203
and the following steps are executed.
If it is judged at step S214 that all groups have already
been processed, at step S216 the maximum block sizes
(MaxBlockSize(i) (i = 1, 2, ..., N) corresponding to the

respective post-conversion blocks are added to the file-by-

19

CA 02310942 2000-06-05

file information of the management file. Then, the process is

finished.

Next, conversion from a data file to a logical file will
be described. Fig. 8 shows a data readout system in the data
management apparatus according to the first embodiment of the
invention.

In Fig. 8, reference numerals 91-93 denote a variable-
length data inverse conversion means, an input means, and a
database conversion means, respectively. Basically, the
database conversion means 93 performs operations that are
reverse to the operations of the transposing means 82 and the
internal field conversionmeans 81. Conversion of the database
conversion means 93 generates records from fields that are

requested by a database or the like. The input means 92 has

a plurality of input buffers 92a.

Fig. 9 shows the configuration of the variable-length data
inverse conversion means 91 which inversely converts a data file
61 into a pre-conversion blocked transposed file 21. Reference
symbols 93a-93c denote three variable-length data inverse
conversion types that are provided in the variable-length
inverse conversion means 91l. As shown in Fig. 9, the
variable-length data inverse conversion means 91 performs
inverse conversion by determining an inverse conversion type
by referring to a conversion type that is stored as part of the

block-by~block additional information 74 of the management file

20

CA 02310942 2000-06-05

71.

Fig. 9 shows that post-conversion blocks 62a-62d are

converted into pre-conversion blocks 23a-23d by the i1lnverse
conversion means types 93a, 93¢, 93a, and 93b, respectively.

Fig. 10 hierarchically shows a relationship among
operations that are performed when an application reads out data
from a data file in the data management apparatus for managing
variable-length blocked transposed files. A higher-rank
program activates a lower-rank means. In Fig. 10, reference
numerals 110-112 denote an application program, a database
management system, and a variable-length blocked transposed
file inverse conversion program, respectively.

Fig. 11 is a flowchart showing a process that the
application program 110 reads out data from a data file. Fig.
12 is a flowchart showing a data file inverse conversion process.

Next, a process that the application program 110 reads out
data from a variable-length blocked transposed file will be
described with reference to Figs. 10-12.

First, at step S301, the database management system 111
receives a data readout query from the application‘program 110.
This readout query is written in the SQL lahguage or the like.
Upon reception of the query, at step S302 the database
management system 111 analyzes the query and. determines

necessary fields. At stepS303, the database management system

111 activates the variable-length blocked transposed file

21

CA 02310942 2000-06-05

inverse conversion program 112. At step S304, the

variable-length blocked transposed file inverse conversion

program 112 executes a variable-~length blocked transposed file

inverse conversion process.

At step S305, the variable-length blocked transposed file
inverse conversion program 112 sends data produced at step S304
to the database management system 111 and the database
management system 111 processes the data. At step S306, the
processed data is sent to the application program 110.

The details of the process that is executed at step S304

will be described below with reference to the flowchart of Fig.

12.

First, the input means 92 is activated and executes steps
S401-S408. Specifically, at step S401, the 1nput means 92 reads
out, from the file-by-file additional information of the
management file 71, maximum block sizes that correspond to the
internal field group and are necessary for the readout. The

sum of the maximum block sizes is set as a necessary buffer size.

At step S402, the read position of the management file 71 is

set at the head.

At step S403, the block-by-block additional information

74 of the current group is read out from the management file

71, whereby block offsets, block sizes, and conversion types
corresponding to the desired field group are obtained.

At step S404, the first field group of the target internal

22

CA 02310942 2000-06-05

field is set as the internal field to be processed. A post-

conversion block 62 is read out from the data file 61 by using
the block offset and the block size corresponding to the field

thus set.

Since plural kinds of fields can be read out in this state,

at step S405 readout activation is done asynchronously. Atstep

S406, the next field group of the target field is set as the
internal field to be processed.

At step S407, it is judged whether readout activation has
been completed for all target field. If a negative judgment

result is obtained, step S405 and the following steps are

executed.

If it is judged at step S407 that readout activation has
been completed for all target field, completion of all readout

operations is waited for at step S408.

If all readout operations have already been completed, at

step S409 the variable-length data inverse conversion means 91
is activated and inversely converts the read-out post-

conversion blocks 62. At this time, conversion types
corresponding to the respective field that are read out from
the block-by-block additional information 74 of the management
file 71 are used.

At step S410, the database conversionmeans 93 1s activated
and executes a prescribed process on pre-conversion blocks 23

produced by the inverse conversion. This process 1s the same

23

CA 02310942 2000-06-05

as executed on a conventional blocked transposed file.

At step S411, it is judged whether the end of the file has
been subjected to the process. If a negative judgment result
is obtained, the next group is set as the current group at step
S412 and then step S403 and the following steps are executed;

If anaffirmative judgment result is obtained at step S411,

the buffer is freed and the readout process is finished.
The above-~described data management system can perform

data compression on a conventional blocked transposed file and

store a resulting compressed file,-and hence can reduce the

storage capacity and increase the input/output speed.

Having a plurality of data compression means, the data
management apparatus can perform operations that are closely

adapted to the properties of data and hence can increase the

data compression efficiency.

Further, since groups having approximately the same size

are sequentially output to constitute a data file, the storage

efficiency can be increased.

A file according to the above embodiment corresponds to
a logical constituent unit on a storage device and need nof
always conform to the concept of a file that is provided by what
is called a file system. That is, a management file 71 and a
data file 61 may be provided in the same file on a file system.
One management file 71 or one data file 61 may be divided

and provided in a plurality of files on a file system. Further,

24

CA 02310942 2000-06-05

one management file 71 or one data file 61 can be divided and
provided 1n different files on a file system in units of one

or a plurality of blocks or groups. A management file 71 and
a data file 61 may be provided on what is called a raw device
having no intermediate file systen.

Although in the above embodiment the variable-length data
conversion means 83 has a plurality of conversion types,
naturally the conversion type may be fixed to one type. This
dispenses with the conversion type selecting operation and
hence can increase the processing speed.

Although in the above embodiment data file readout is
performed asynchronously, it may be performed synchronously.

This simplify the process.

Although in the above embodiment a buffer is acquired at
the start of data readout and freed at 1ts end, a necessary buffer
may be secured and freed dynamically on a block-by-block basis.
This makes 1t possible to reduce the storage capacity that is
required during execution of an inverse conversion process and
hence can reduce the size of the aéparatus.

The post-conversion data length may be made fnultiples of
an input/output unit by using, for example, a means for padding,
when necessary, post-conversion' blocks that are generated by
the variable-lenéth data conversion means 83. In general, the
input/output efficiency is increased by making the sizes of

post-conversion blocks generated by the variable-length data

25

Rt R T P —

CA 02310942 2000-06-05

conversion means 83 equal to multiples of a physical
input/output unit. Therefore, this measure can increase the
input/output efficiency.

Although in the above embodiment a data file is generated
by actually executing a conversion process after executing a
number-of-records-in-group determination process on the entire
file, naturally a conversion process may be executed every time

the number of records 1in a group'is determined.
Further, although the above embodiment assumes that the

order of internal field is the same as the order of blocks, the

order of blocks may be changed when necessary.

Embodiment 2

Fig. 13 shows a data file in a data management apparatus
according to a second embodiment of the invention. The second
embodiment is different from the first embodiment in. that the
same information as in a management file is also held in a data
file.

In Fig. 13, reference numeral 64 denotes a post-conversion
group of a data file 61. The post-conversion group 64 has a
plurality of post-conversion blocks 65a-65d, ahd the post;-
conversion blocks 65a-65d have copies of pieces of block-
by-block additional information 74a-74d of a management file
71, respectively.

C0pyihg of the pieces of block-by-block additional

information 74a-74d to the data file 61 is done by writing, to

26

CA 02310942 2000-06-05

the data file 61, at the same time, the same data as added to
the management file 71 at step S211 in the flowchart of Fig.

7.
A process of reading out such a data file 1s completely
the same as ﬁhe corresponding process in the first embodiment.
This embodiment provides an advantage that a management
file can be regenerated even 1f the management file 1s lost for
some reasbn or matching between a data file and the management

file is lost; that is, the consistency of the entire file can

be kept reliably.

Embodiment 3

Fig. 14 is a flowchart showing a variable-length blocked
transposed data file generation process according to a third
embodiment of the invention. In the first embodiment, a
variable-length blocked transposed data file is generated by
executing the process of the flowchart of Fig. 7 after the
numbers of records 1in respective groups are determined by
executing the process of the flowchart of Fig. 6. 1In the third
embodiment, the numbet¥ of records in a group is set at a fixed

value in advance and the number-of-records-in-group

determination process is thereby omitted.

Naturally, the third embodiment does not have a

number-of-records-in-group determining means (see Fig. 4) nor

steps S2 and S3 (see Fig. 5).

A data file generation process will be described with

27

CA 02310942 2000-06-05

reference to a flowchart of Fig. 14.

First, at step 501, the block offset (BlockOffset) is
initialized to “or and the maximum block sizes
(MaxBlockSize(1)) corresponding to all field i(i=1, 2, ...,
N) are initialized to “0,” where N is the number of internal

field kinds.

At step S502, the input file read position is set at the
head.

At step S503, the intragroup block number (BlockNo) is
initialized to “1”".

At step S504, data of the number L (fixed in advance) of

records 1s read out.

At step S505, the read-out records are converted into the

internal file format and further into the pre-conversion

blocked transposed file format.

At step S506, a data conversion type most suitable for a
generated pre-conversion block is.selected and set as “Type.”
For example, the selection 1s made by determining post-
conversion block sizes for all conversion types and selecting
a conversion type that provides the minimum bloék size. tmﬁa
post-conversion block data size thus determined is set as
“BlockSize."”

At step S507, the post-conversion block is added to the

data file at the tail. At step S508, it is judged whether the

block size (BlockSize) is larger than the maximum block size

28

CA 02310942 2000-06-05

(MaxBlockSize(BlockNo)) corresponding to the internal field
kind concerned. If it is judged that the block size (BlockSize)
1s larger than the maximum block size (MaxBlockSize(BlockNo)),
the former 1s set as the latter at step S509. At step S510,
the block size (BlockSize) 1is added to the block offset
(BlockOffset). If it is judged at step S508 that the block size
(BlockSize) is smaller than or equal to the maximum block size
(MaxBlockSize(BlockNo)) corresponding to the internal field
concerned, step S509 1s skipped and step S510 is executed.

At step S511, block-by~-block additional information of the
management file is formed by the block offset (BlockOffset),
the block size (BlockSize), the conversion type (Type), and the
number L of records, and added to the management file.

At step S512, it is judged whether all blocks in the group
have been processed. If not all blocks have been processed yet,
the block number is incremented at step S513 and then step S504
and the following steps are executed. If it is judged at step
S512 that all blocks have already been processed, it is judged
at step S514 whether all groups 1in the file have been processed.
If 1t 1s judged that not all groups have been prbcessed yet;
the group number is incremented at step S515 and then step S503
and the following steps are executed.

If 1t i1s judged at step S514 that all groups have already

been processed, at step S516 the maximum block sizes

(MaxBlockSize(i) (i =1, 2, ..., N) corresponding to the

29

CA 02310942 2000-06-05

respective post-conversion'blocks are added to the file-by-
file information of the management file. Then, the process 1s
finished.

The conversion process can be executed at high speed in
the above manner, that 1is, by omitting the number-of-
records-in-group determination process by setting the number
of records i1n a group at a fixed value.

In this embodiment, the variable-length blocked
transposed file readout process can be completely the same as
in the first embodiment.

The many features and advantages of the invention are apparent

from the detailed specification and thus it is intended by the

appended claims to cover all such features and advantages of
the inventionwhich fall within the true spirit and scope thereof.
Futher, since numerous modification and changes will readily
occur to those skilled in the art, it is not desired to limit
the 1invention to the exact construction and operation
illustrated and described, and accordingly, all suitable
modifications and equivalents may be resorted to, falling with

the scope of the invention.

30

CA 02310942 2004-12-20

The embodiments of the invention in which an exclusive
property or privilege is claimed are defined as follows:

1. A data management apparatus comprising:

number of records in group determining means for virtual conversion by
repeatedly reading at least one record from an input file having a plurality of records,
each record including a plurality of fields, adding the at least one record to a butter,
and converting records in the buffer into a post-conversion block on a field-by-tield
basis until data size of post-conversion blocks for each kind of field of the records in
the buffer exceeds a threshold size, wherein the number of records in group
determining means determines the number of records of the post-conversion block by
counting the records in the buffer, during a process immediately preceding a time
when the data size exceeds the threshold size, and stores that number;

first conversion means for generating a first block by dividing at least one
record including a plurality of fields into the fields and combining fields of like kind;
and

second conversion means for converting the first block into a second block
using a stored data conversion method, and for storing the second block, wherein the
second conversion means selects one data compression algorithm that provides
highest compression efficiency from a plurality of stored data compression algorithms
in accordance with properties of the first block, and

converts the first block into the second block using the selected data

compression algorithm.

2. The data management apparatus according to claim 1, wherein the second
conversion means stores type information characterizing the data compression

algorithm that has been used to convert the first block into the second block.

3. The data management apparatus according to claim 2, wherein the second

conversion means stores the type information and the second block in one storing

means.

31

CA 02310942 2004-12-20

4. The data management apparatus according to claim 2, wherein the second

conversion means stores data size of the second block.

5. The data management apparatus according to claim 2, further comprising inverse
conversion means for inversely converting the second block into the first block by

referring to the type information that has been stored.

6. A data management method compﬁsing:

a virtual conversion, repeatedly reading at least one record from an input file
having a plurality of records, each record including a plurality of fields, adding the at
least one record to a buffer, and converting records in the buffer into a post-
conversion block on a field-by-field basis until data size of post-conversion blocks for
each kind of field of the records in the buffer exceeds a threshold size;

determining the number of records of the post-conversion block by counting
the records in the buffer during a process immediately preceding a time when the data
size exceeds the threshold size, and storing that number; and

reading out records of the stored number of records from the input file,
converting the records read out into post-conversion blocks on a field-by-field basis,

and storing the post-conversion blocks.

7. The data management method according to claim 6, wherein the virtual conversion
comprises:
generating a first block by converting a record in the buffer into a converted

record having a fixed-length field format, dividing the converted record into fields,

and combining fields of like kind; and

converting the first block into a second block using a stored data conversion

method.

8. The data management apparatus according to claim 1, wherein the second block

has a variable length.

32

CA.02310942 2004-04-27

1/16

FIG.1

-”---_ﬂ---“_-ﬂﬂ“-ﬂw

I 13 i
| ;f“_—“““__““ag“""“"“‘““‘\l
12 —{Field] | Field2 [-~ [FieldN }
51 11! Field1 | Field2 | - |FieldN | °
S i |[FedT] Feez - {FielaN P
____ MANAGEMENTRLE 81 “
| | FILE-BY-FILE ADDITIONAL INFORMATION | !
::,;’* A S < S
| LBLOCKSIZE | -1#2 . 45 . 2—|Field [Field? | -~ [FieldN]
X #3 T 4. 1| Field? [Field2 |~ FieldN]
Pl —#4 : : __-”'s.:l . ' . ' 1 ,:
! BLOCKBYBLOCKADDITIONAL INFORMATION | B1 o2 1 Ariedl | Peldz | - TFieldN |
' BLOCK OFFSET - 2 DAIAFLE [\ 82 TRANSPOSING MEANS
B o , 1 POST-CONVERSION 1 (t VARIABLELENGTHDATA - 22 __ 21
' lcONVERSION MEANS TYPE| e | VRS 83 O L
 INUMBER OF RECORDS | !] ' !
|\] = I T23a
» 'y | | Field2 I |
X 72 " _/L —— L 1| FIRSTL1
rad 63 Field3 RECORDS
X 74c 9%C<{|[Fam — '
g 62d Ty 230
: 744 E _ |24:
¥ ' : 23c
: E 1 | Fielz —~23d
- 4] [Field3 I
l: : |:| , | :

hﬁ-—-—---ﬂﬂﬂﬁﬂw‘--—-—mﬂ-

‘.ﬂﬂ----*-_--"mﬂﬂ——---—----u-ﬁm“-—

1: INTERNAL FILE

2: INTERNAL FIELD

3: RECORD

11: LOGICAL FILE

12: LOGICAL FIELD

13: RECORD

21: PRE-CONVERSION BLOCKED
TRANSPOSED FILE

22: FIELD

23: PRE-CONVERSION BLOCK

24: PRE-CONVERSION GROUP

51: VARIABLE-LENGTH BLOCKED
TRANSPOSED FILE GROUP

61: VARIABLE-LENGTH BLOCKED
TRANSPOSED DATAFILE

62: POST-CONVERSION BLOCK

63: POST-CONVERSION GROUP

71: VARIABLE-LENGTH BLOCKED
TRANSPOSED MANAGEMENT FILE

72: FILE-BY-FILE ADDITIONAL
INFORMATION

73: GROUP-BY-GROUP ADDITIONAL

INFORMATION
INFORMATION

- 74: BLOCK-BY-BLOCK ADDITIONAL

81: INTERNAL FIELD CONVERSION

MEANS

82: TRANSPOSING MEANS

83: VARIABLE-LENGTH DATA
- CONVERSION MEANS

% 4

S pgErhswe gy B ogy il . -

redine Latlenr Henderson LLE

";f‘ w ?; ?g :3'; -Q’- .‘;;:f }‘S‘ué é ~ " . -sa K
i}ht

CA 02310942 2000-06-05

-_— e wh e cr B e W W Wh W) R MR wie wh W miry Wk s R Ep W e ol e et

2/16
23 2b 3
5.
[FredT}Fieidzf - Fieioa}
|FieldT[Field2] - [Field4 |
FIRST L1 RECORDS :-leld1.-.F|e!d “-Ie|d4 .
[Field [Field2] .- {Field4 |
[Field] Field2} ... |Fielda]
[FieldTiField2} ... |Fieldd |
\ 1
PR] 1
|Field1:Field2] |... iField4|
|FieldT:|Field2] | |Field4
[Field [Field2] |-~ _{Fielda |
B (e N
[Field T Field2] | {Field4
[Field T Field2] |- Field4
[Field1i}Field2] T~ {Field4]
Field1]|Field2] |.--| |Field4
S Field1]| Field2] [---| [Field4.
i :“‘e é
L i |
T Z[|
2P i
; i s e o G e I
5 EEEE | FIRST L1 RECORDS
¥ -~
: ; il
X AR
3 ; :
1 m- SR
B Fleld2 Field2|Field2|Field2|: \ NEXT L2 RECORDS
5 ﬁﬁﬁﬁ A
0 P e e e N
1 [Field4 |Field4|Field4 [Field4 | =77
1 [Field4 [Field4|Field4|Field4|:) .

i
'
i
(
‘
|
¢
i
(
|
t
|
I
i
!
)
i
i
i
i
i
|
|
)
i
‘
|
!
|
i
)
i
L

gw/}hg, .S,fraf‘y & ._jlmw eraorn

02310942 2000-06-05

CA

3/16

t# ddAl SNVIN
NOISH3ANOD VivQ
HLONIT-I18VIHVA

r#A0014 PC9

2EC EH#MO09

qece ZIND019 .
ZINDO18
av8 1ed
1# 3dAL SNVIN L
ece L#MD018 NOISHIANOD VIVQa L#NDO1E Bz9

HLONI T-318VIHVA

£#N00 19 9¢9

¢# dd ALl SNVYIWN
NOISHIANOD V1vQa

HLONI T-319VIYVA

SH00'19 SH0019
NOISH3IANOD-J¥d NOISH3IANOD- 1S0d
£8

SNY3W NOISHIANOD V1VQ HLONIT-I19VI™VA

¢ Ol

g.vw/iu?, .S’bat%y ér Newderson

CA 02310942 2000-06-05

4/16

100 VARIABLE-LENGTH BLOCKED TRANSPOSED
FILE GENERATION PROGRAM 102.
ACTIVATION ACTIVATION 3
VARIABLE-LENGTH BLOCKED
NUMBER-OF-RECORDS-IN-GROUP
NETERMINING MEANS TRANSPOSED FILE GENERATING
MEANS
. ACTIVATION l1 ACTIVATION
101 —
R
INTERNAL FIELD TRANSPOSING VARIABLE-LENGTH
CONVERSION MEANS | | MEANS DATA CONVERSION MEANS
81 82 83

START

ACTIVATE VARIABLE-LENGTH BLOCKED S 1
TRANSPOSED FILE GENERATION PROGRAM.

ACTIVATE NUMBER-OF-RECORDS-IN-GROUP S92
DETERMINING MEANS.

NUMBER -OF-RECORDS-IN-GROUP ' 53
DETERMINATION PROCESS
ACTIVATE VARIABLE-LENGTH BLOCKED 4
TRANSPOSED FILE GENERATING MEANS.
VARIABLE-LENGTH BLOCKED TRANSPOSED ae
FILE GENERATION PROCESS.

END

gmw/ing, SbulAy 8’ ..#m:r erjomn

CA 02310942 2000-06-05

5/16

FIG.6

START
S101 GroupNo+-1 '
5102 RecordCount«0
S103 SET INPUT FILE READ POSITION AT THE HEAD
= END OF FILE? ——
81 04 \NO
S105 READ OUT CERTAIN NUMBER R OF RECORDS
AND ADD THOSE TO BUFFER

S106 |

MAKE HEAD FIELD KIND A PROCESSING SUBJECT
S107 BlockNo—0, GroupSize+—0

CONVERT RECORDS IN BUFFER INTO FIXED-LENGTH FIELD
FORMAT AND FURTHER INTO PRE-CONVERSION BLOCKED
TRANSPOSED FILE FORMAT.

SELECT VARIABLE-LENGTH DATA CONVERSION MEANS TYPE AND

STORE TYPE(GroupNo, BlockNo). DETERMINE POST-CONVERSION
BLOCK SIZE THAT IS OBTAINED WHEN PRE-CONVERSION BLOCK
1S CONVERTED BY SELECTED CONVERSION MEANS TYPE AND

ADD IT TO GroupSize

S109 HAVE ALL N
O
S108 FIELD KINDS BEEN PROCESSED S110
?
' BlockNo — BlockNo+1,
S111 Yes TO NEXT FIELD KIND
roupSize>MaxGroup NO
S113 '

Yes RecordCount—RecprdCount+R I
R
L(GroupNo)—RecordCount. Store L(GroupNo) and 3112

Type(BlockNo, FieldNo). GroupNo+—GroupNo + 1

S114., REMOVE RECORDS EXCLUDING LAST READ-OUT
R RECORDS FROM BUFFER

. L(GroupNo)«—RecodCount. Store L(GroupNo)
S115 AND Type(BlockNo, FieldNo)

gw)rm/&ng, Sﬂiraféy 8' ﬂend‘erdnn

CA 02310942 2000-06-05

6/16

FIG.7

INITIALIZE BlockOffset TO O. INITIALIZE MAXIMUM

BLOCK SIZES MaxBlockSize(i) (i=1,2,..., N) S201
CORRESPONDING TO ALL INTERNAL FIELD KINDS TO 0.

SET INPUT FILE READ POSITION AT THE HEAD. S202
INITIALIZE BLOCK NUMBER BlockNo TO 1 | S203
(HEAD BLOCK IN GROUP).

READ OUT PREDETERMINED NUMBER S204
L(GroupNo) OF RECORDS FROM INPUT FILE.

CONVERT READ-QUT RECORDS INTO FIXED-LENGTH
FIELD FORMAT AND FURTHER INTO PRE-CONVERSION ~ S205

BLOCKED TRANSPOSED FILE FORMAT.

CONVERT PRE-CONVERSION BLOCK INTO POST-
CONVERSION BLOCK BY SELECTED CONVERSION
MEANS TYPE Type(GroupNo, BlockNo). SET SIZE OF
POST-CONVERSION BLOCK AS BlockSize.

ADD POST-CONVERSION BLOCK TO DATAFILE. S207

5208 .
BlockSize > MaxBlockSize(BilockNo) ? -

Yes

SET CURRENT BLOCK SIZE BlockSize AS MAXIMUM
BLOCK SIZE MaxBlockSize(BlockNo) OF FIELD KIND
CONCERNED. S209

BlockOffset — BlockOffset+BlockSize S210

ADD BLOCK OFFSET BlockOffset, BLOCK SIZE BlockSize,
AND CONVERSION MEANS TYPE TO BLOCK-BY-BLOCK S211

S206

ADDITIONAL INFORMATION OF MANAGEMENT FILE.
S212

HAVE ALL BLOCKS IN GROUP No S213
BEEN PROCESSED?

INCREMENT BLOCK NUMBER.
S214 L, THAT IS, BlockNo +«— BlockNo+1.

RAVE ALL GROUPS IN FILE BEEN No

PROCESSED?
v S215 INCREMENT GROUP NUMBER.
ADD MAXIMUM BLOCK SIZES MaxBIckSize(i) CORRESPONDING TO

RESPECTIVE INTERNAL FIELD KINDS (i=1, 2, ... ,N) TO FILE-BY-FILE
ADDITIONAL INFORMATION OF MANAGEMENT FILE.

S216

g:rw&ng, -}raléy ér Morderson

02310942 2000-06-05

CA

7/16

PEC

otc

qec

ege

£6

cPield

cPel

L Pl

SNV
NOISHIANOD
4Svav1ivQ

SNV3IW LNdNI
C6 BZ6

'l""'-"l'llll"ll""""'""l‘ll""-'l‘""lllll"ll""l-""l

lll""""l"-'ll'lll"""""-

vPIel
tPiol

ﬂﬂﬂﬂ“‘-‘--ﬂﬂﬂﬁﬂ‘-----ﬂ—----ﬂﬂ*-ﬂ----------ﬂﬂ-ﬂ--------------ﬂ~1
- M
3+ +H:
-u-—p-o-n-----‘--——-—--—-----------—--‘——n—-—-——--—-----------—-—w----‘

r-‘--ﬁ--*---------*-----‘---------------ﬂ--_—---ﬂ--“

¢/

CN

cPield
LPI9ld

PZO

9¢9
vPIeld

£Pi9l

=
.
)
—

N
II o

A AR D E AR mh G R D AR WD S P SR SR R S WD T G SR S) G T TP R WR W MR R ms iy ol i W G IR AED AED I U VD D NP P sk mhe mW G0d W U Wb TN AED GEN GEN WED WED B W

AY IS

" NOILYWHO4NI TYNOILIGQY |
¥334NG LNdNI[- H¢9 LA7NOISHIANOD-1S0d 1 007184840078
o onvan ez B9 ... 3Wviva J74 INJNIOVNVA
NOISHIANOD 00 O fmmmmmmmrm oo
3SYIANI VIV
HLONIT318VINVA

J

gow/ing, .S)bal /uy & Meadersan

\
F
N

| -
L

02310942 2000-06-05

CA

8/16

e# ddAL SNV3IN
NOISH3IANOD
dSH3IANIVLVA
HL1ONIT-J19VIHVA

PEc P#NO018

OtC CHMNO0TE

¢# 4ddA1l SNVIN
NOISHIANOD
d4SH3ANI VLVA
HLONIT-A19VIAVA

qec ZiHDO1g

qe6

\# ddAL SNVIN
NOISH3IANOD
4SH3ANI ViVQ
HLONIT-318VIdVA

egd LENO0T9

sX10014
NOISHIANOOD-IHd
—~—

16

VH#AO01d PCO
EAN0014 9¢9

#0018 |~ qz9

#0018 |~ egg

SMO0149
NOISH3ANOD -1S0Od

SNVIW NOISHIANOD 3ISHIANI VLVA HLONIT-318VIHVA

6 Ol

g)w&ag, ‘S)bal/ty ér ﬂemlemou

CA 02310942 2000-06-05

9/16

FIG.10

110 APPLICATION PROGRAM
QUERY PROCESSING RESULT

111 DATABASE MANAGEMENT SYSTEM
QUERY PROCESSING RESULT

112 VARIABLE-LENGTH BLOCKED TRANSPOSED
FILE INVERSE CONVERSION PROGRAM

ACTIVATION ACTIVATION
VARIABLE-LENGTH DATA DATABASE CONVERSION
INPUT MEANS | | INVERSE CONVERSION MEANS MEANS
92 01 03

START

RECEIVE INQUIRY FROM APPLICATION SOFTWARE. S301
DETERMINE FIELDS TO BE READ OUT BY DATABASE. S302

ACTIVATE VARIABLE-LENGTH BLOCKED TRANSPOSED 3303
FILE INVERSE CONVERSION PROGRAM. ,

VARIABLE-LENGTH BLOCKED TRANSPOSED FILE 3304
INVERSE CONVERSION PROCESS
CAUSE DATABASE MANAGEMENT SYSTEM TO PROCESS DATA. ~_ S305
SEND DATA TO APPLICATION. S306

END

f;owﬁ'ng, .S}raf/ty & ﬂenrjemaﬂ

CA 02310942 2000-06-05

10/16

FIG.12

READ OUT MAXIMUM BLOCK SIZES CORRESPONDING TO
TARGET INTERNAL FIELD KINDS FROM MANAGEMENT FILE.
SET SUM OF MAXIMUM BLOCK SIZES AS NECESSARY

BUFFER SIZE AND SECURE SUCH A BUFFER.

SET READ POSITION OF MANAGEMENT FILE AT HEAD
GROUP.

READ OUT BLOCK-BY-BLOCK ADDITIONAL INFORMATION OF
CURRENT GROUP, AND OBTAIN BLOCK OFFSETS, BLOCK
SIZES, AND CONVERSION MEANS TYPES OF TARGET

INTERNAL FIELD KINDS.

(INTERNAL FIELD KIND) <« (FIRST FIELD KIND OF
TARGET INTERNAL FIELD KINDS)

PERFORM ASYNCHRONOUS READOUT ACTIVATION ON
PART OF DATA FILE THAT STARTS FROM BLOCK OFFSET OF

INTERNAL FIELD KIND CONCERNED AND EXTENDS OVER
ITS BLOCK SIZE.

(INTERNAL FIELD KIND) «— (NEXT FIELD KIND OF TARGET
INTERNAL FIELD KINDS)

S407

HAS READOUT ACTIVATION
HAS BEEN COMPLETED FOR ALL TARGET
INTERNAL FIELD KINDS?

Yes

WAIT FOR COMPLETION OF ALL ASYNCHRONOUS
READOUT OPERATIONS.

INVERSELY CONVERT BLOCKS THAT HAVE BEEN READ INTO
BUFFER BY CORRESPONDING CONVERSION MEANS TYPES
OF VARIABLE-LENGTH DATA INVERSE CONVERSION MEANS.

PROCESS INVERSELY CONVERTED BLOCKS.
S411

o

S401

S402

S403

S404

S405

S406

No

- S408

S409

S410

S412

Yes SET NEXT GROUP AS CURRENT GROUP

S413
(___END

G}ut& ng,)fra { jly & .jJenJeraon

CA 02310942 2000-06-05

11/16

FIG.13

BLOCK-BY-BLOCK POST- CONVERSION
ADDITIONAL BLOCK
INFORMATION

65b

0 A A
NN e

748 “‘ ‘\:\\ \\\
74b
74c A
744 2 65cC
E -

64

gw&ng, Sba[‘y §r Menderson

CA 02310942 2000-06-05

12/16

FIG.14

INITIALIZE BlockOffset TO 0. INITIALIZE MAXIMUM BLOCK
SIZES MaxBlockSize(i) (i=1, 2, ...,N) CORRESPONDING TO S501
ALL INTERNAL FIELD KINDS TO 0.

SET INPUT FILE READ POSITION AT THE HEAD. S502
INITIALIZE BLOCK NUMBER BlockNo TO 1 S503
(HEAD BLOCK IN GROUP).

READ OUT PREDETERMINED NUMBER L OF RECORDS S504
FROM INPUT FILE.

CONVERT READ-OUT RECORDS INTO FIXED-LENGTH
FIELD FORMAT AND FURTHER INTO PRE-CONVERSION I S505
BLOCKED TRANSPOSED FILE FORMAT

SELECT VARIABLE-LENGTH DATA CONVERSION MEANS TYPE
AND SET IT AS Type. CONVERT PRE-CONVERSION BLOCK INTO
POST-CONVERSION BLOCK BY SELECTED CONVERSION MEANS —S506
TYPE Type. SET SIZE OF POST-CONVERSION BLOCK AS BlockSize.

ADD POST-CONVERSION BLOCK TO DATA FILE. S507

S508 N
~ BlockSize > MaxBlockSize(BlockNo) 2 2
Yes

SET CURRENT BLOCK SIZE BlockSize AS MAXIMUM
BLOCK SIZE MaxBlockSize(BlockNo) OF FIELD KIND S509
CONCERNED.

BlockOffset «— Blockoffset + BlockSize S510

ADD BLOCK OFFSET BlockOffset, BLOCK SIZE BlockSize.

CONVERSION MEANS TYPE Type, AND NUMBER L OF RECORDS S511
TO BLOCK-BY-BLOCK ADDITIONAL INFORMATION OF
MANAGEMENT FILE.
S512
HAVE ALL BLOCKS IN GROUP No S513

BEEN PROCESSED?

INCREMENT BLOCK NUMBER.
S514 Yes THAT IS, BlockNo <« BlockNo + 1.

HAVE ALL GROUPS IN FILE No
BEEN PROCESSED?

S515 INCREMENT GROUP NUMBER.

ADD MAXIMUM BLOCK SIZES MaxBlockSize(i) CORRESPONDING
TO RESPECTIVE INTERNAL FIELD KINDS (i=1, 2,N) TO
FILE-BY-FILE ADDITIONAL INFORMATION OF MANAGEMENT FILE.

es

S516

g’“’f‘.ﬂ?r _S?raflly gf _/Jewa[eréor-

CA 02310942 2004-04-27

13/16

FIG.15

(Prior Art)

el e e s v W e S S EE ar ey W e W ey W e My s - o = o E WO M e R W W A A EE oW e e AR AR e e e

YV WEe O pEy EE O aEe e . .
.

NEXT L2
RECORDS

NVERSION BLOCK

4 A EH A M Wy AER AR A R S O E S A TEE O R S O wsd wii W T EE WY GRR O R WY e

1002

1001

11

FIG.16 (Prior Art)

14/16

CA 02310942 2004-04-27 = -

- .] IIW*I!/

ot Ww Wb Fup wid S aE e Yer = G0 A GED T WS ew ==y e by,

tl’lllllll'l'lllll'

A
ZI1ZI1Z|1ZI1Z2|1Z2|ZI1ZZ|Z|Z|Z2|1Z2|Z2|Z &1L &
TITDIT|TIBIBIBIZTIZIEIBITEIZEREIE
0|00 0|0|0|0|00|C|0]V]| OV VDD O
I I TV | WG | YN [| W () Wy Wy | Ky Ay Uy Uy | Wy Sy T

1 R N Y Y N I I .
N N TN TN [N [N [N TN O [N TN TN [[N O TN TN N | .
1DITIDITDITITITITBIBIBIBIBIZIBIZIEBIZE]] - | |
[C|O(D|O|D|V|Q|DfO|D| D] O|D|D|D|DID| DY} .
g [g g g [g g g) g) [L g L L | T Tl L oy My oy)
ki iy iy g piiy il i) HCE FEE X4 K PR S FEG) =y ey puil S S
,.Mmmmmmmm"_m__mm.o.ddddmm e e N N NN””11:M2 Z | £
it A i s i o e R A T . . selhehgelige VIO O|T Le, TiIT|
— u oyt J uomt (Rinmmus [= e cost J veas j(jloems | syl Jem § W el GE §
IR § I | VI Iy Y Y G O R T | W g Ay g g T T i e i ir i it he | ™ [
|
!

1023
FIRST L RECORDS

NEXT L RECORDS

|IFie

(>

Gug Wy Wer ey WEE Py aas Ey S e e i b A WA TR W S W R Sy aw Wl e QU) W I W YEF S ey e mmh mie S M AEE e -

| s { ILONION T] Q\| Z (2
] o |TlT | 515 |Tlic o 5|5
: T - To|lofolo o R K K KR KT | o
_fl.I. .\I.IIILF|||}\|||\ | T ITH TR FTay L 10y U Vg IV TR I
| B N 1N « | ON
o | ol |T S1EIo oo o =
CRCH el K ololo|olo]o |
LL. _H_H_FF_FF HH
N\ 2 | Z 1 | ! N Z | Z
ool | 5|55 TR D T
0| OO OO0 | OO D D
TR ITH{ T [T8 T LB LTI [T TR T TR [TH
} | (W | R | ! 1

Fie
Field

L o

Fie

eld2
ield

‘-—--*--ﬂ—ﬂﬁ-“---—--ﬂ--.--w#

leld
el

\
- A
Fie

S B Sy oam aE S e

p

e v vt et am P e ey e e P ey e e .-

4‘
lllll y s an o wm o i t‘lll-lv

f
b

[

FIRST L RECORDS
NEXT L RECORDS

11

CA 02310942 2004-04-27

15/16

X-ploid |

) $ 4 A

2L 101

¢lOi

(11y 4014g)

aLLoL eLlol

RSIE

L Tl

- (S3avaNnog aaxid)
JHNLONYLS 1314 TYNH3ILNI

(STIHVANNOE AHVHLISHY)
TUNLONYLS a1314 TVOID0T

i
Bi

¥ gy gﬂ ,
'5""‘“""?33 | %r-

& B
« | ofin

1

CA 02310942 2004-04-27

- 16/16

FIG.18 (Prior Ary

1021 1022
' [Field1 | Field1 | Field1 | Fieldl | |
| Field1 | Field1 | Field1 | Field1 | :

""" Field2 “Field2 |
Field2 Field2
_Field3 | Field3 | Field3 | Field3
. _Field3 Field3
1020 Field4 Field4 | Field4
| Field4 Field4
R
I
Field99
Field99 | Field99 | Field99 | Field99
Field10 Field100
Field10 Field100|

Field99

.~

INPUT/OUTPUT BUFFER

- Field1
Field4

~* Field99

-

.
.
4

DATAFILE

) ~-d--+ 82~ TRANSPOSING MEAN
POST-CONVERSION -vmmmm"—ZT_‘Llw

=5

- O P W v ey gu wie e e T AN S O e WY W e

L-——.———

h-ﬂ-ﬂ———-ﬁ-'———---w-——-----——-.-ua«--n———.

1: INTERNAL FILE

2: INTERNAL FIELD

3: RECORD

11: LOGICAL FILE

12: LOGICAL FIELD

13: RECORD

21: PRE-CONVERSION BLOCKED
TRANSPOSED FILE

22: FIELD

23: PRE-CONVERSION BLOCK

24: PRE-CONVERSION GROUP

51: VARIABLE-LENGTH BLOCKED
TRANSPOSED FILE GROUP

61: VARIABLE-LENGTH BLOCKED
TRANSPOSED DATA FILE

62: POST-CONVERSION BLOCK

63: POST-CONVERSION GROUP

] pricnacac i S

) | FILEBYFILE ADDITIONAL INFORMATION
[, o
i 72

1 : 61

E‘ , ii BLOCK _

1 ; + 1 {[Fieldt
) / : i ! | | Fleld2
1 9" 742 63— | [Fieiga
¥ 62c<1 | [=

i : ;4413 szﬁﬁem
i]

£ 731 M

B O chk ot e v e ey

'\ CONVERSION |/ PRECOWVERSONBIGEK | | 2.1
7)1 ens_83 :.ﬁ;w
7 . L [T 23a
i B FIRST L1
L | Field2 RECORDS
ML ' | Field3 9! 23b
T ; T~23c
X L] Field4 :
:i | TTT~23d
| [Fielat)
¥ ' [Fieliz || NEXT L2
: | RECORDS
i i .-
::::-_' -; L) Field3 }2 4:
_ L | Fielad |

71: VARIABLE-LENGTH BLOCKED
TRANSPOSED MANAGEMENT FILE

72: FILE-BY-FILE ADDITIONAL
INFORMATION

73: GROUP-BY-GROUP ADDITIONAL
INFORMATION

74: BLOCK-BY-BLOCK ADDITIONAL
INFORMATION

81: INTERNAL FIELD CONVERSION
MEANS

82: TRANSPOSING MEANS

83: VARIABLE-LENGTH DATA
CONVERSION MEANS

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - abstract drawing

