PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

HO04H 5/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/01953

14 January 1999 (14.01.99)

(21) International Application Number: PCT/US98/13844

(22) International Filing Date: 2 July 1998 (02.07.98)

(30) Priority Data:

08/887,362 2 July 1997 (02.07.97) UsS

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Application
us
Filed on

08/887,362 (CON)
2 July 1997 (02.07.97)

(71) Applicant (for all designated States except US): CREATIVE
TECHNOLOGY, LTD. [SG/SG]; 67 Ayer Rajah Crescent #
103-18, Singapore 139950 (SG).

(72) Inventor; and
(75) Inventor/Applicant (for US only): HOGE, Stephen [US/US];
150 Baldwin Street, Santa Cruz, CA 95060 (US).

(74) Agents: LANG, Dan, H. et al.; Townsend and Townsend
and Crew LLP, 8th floor, Two Embarcadero Center, San
Francisco, CA 94111-3834 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, GW, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR,
K7, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, T, TR, TT, UA, UG, US, UZ, VN, YU, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: AUDIO EFFECTS PROCESSOR HAVING DECOUPLED INSTRUCTION EXECUTION AND AUDIO DATA SEQUENC-

ING
A
TData IAddress JControl IRQ /-50 J—78
K2
PCl/Host Interface E.F::;';;'
To
75+ 1M Samples
[N External
0
8 79} Qj_ M TRAM
instruction Memory 8K Samples|
Memory 8311 Internal
32 Chan Math]Unit TRAM 32 Chan
Audio 70 110 Audio
Inputs 81 Buffer Outputs
 — GPRs <~
71~/ 87

(57) Abstract

A sound effects processor (30) including a first memory (72),

an instruction execution unit (70) and a sound memory engine (74)

integrated onto a single chip. The first memory (72) includes a first address space that is addressable by both the instruction execution unit
(70) and the sound effects engine (50). The instruction execution unit (70) executes sound processing instructions, including instructions
to read from and write to said first address space and the sound memory engine (74) operates independent of the instruction execution unit

(70) to read and write to the first address space and perform address
implement audio delay lines.

arithmetic and memory accesses to a second memory as necessary to

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG

2

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI

SK
SN
Sz
™
TG

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

(9]

10

15

20

25

30

WO 99/01953 PCT/US98/13844

AUDIO EFFECTS PROCESSOR HAVING DECOUPLED
INSTRUCTION EXECUTION AND AUDIO DATA
SEQUENCING

BACKGROUND OF THE INVENTION

The present invention relates to an audio signal processor. More
specifically, the present invention relates to an audio effects processor integrated on
a single chip and including memory and architecture capable of implementing audio
delay lines independent of the operation of an instruction execution unit of the
effects processor.

Sound effects audio signal procéssors (ASPs) are commonly used to
generate sound effects in a multitude of audio components, some examples being
programmable musical instruments, video games, cinema sound systems, virtual
reality systems, and computer audio systems. Such sound effects include, but are
not limited to, reverberation effects, 3-D audio, and distortion effects. ASPs create
sound effects by executing programs containing a series of instructions. Each
instruction directs the ASP to perform a specific logical and/or arithmetic operation
on the received signal, resuiting in the program’s creation of a particular sound
effect.

It is common for ASPs to implement sound effects through the use of
delay lines, which often take the form of a large block of relatively slow "tank"
RAM (TRAM) memory. Some known ASPs perform operations on the TRAM data
through a TRAM engine under the control of an instruction execution unit of the
ASP. That is, when the instruction execution unit wants to operate on the signal
output from a delay line, it schedules a TRAM read operation to begin at a specific
instruction cycle, waits for a specific number of cycles for the read operation to

occur and then performs an operation to retrieve the data.

10

15

20

25

30

WO 99/01953 PCT/US98/13844

2

In processors of this type, the instruction execution unit must be
tightly coupled to the TRAM engine because any mis-synchronization in the
scheduling of operations could result in the loss of the TRAM data. Also, valuable
processor time of the instruction execution unit is used in coordinating and

implementing the sound effects. Accordingly, improvements to the architecture of

such ASPs are desirable.

SUMMARY OF THE INVENTION

The present invention provides an audio effects processor in which
the TRAM engine (hereinafter referred to as the "sound memory engine") is
decoupled from the instruction execution unit of the processor. In the present
invention, the sound memory engine and instruction execution unit operate
independent of each other, passing TRAM data through a shared area of a memory.
The sound memory engine reads and writes TRAM data according to its own
schedule, using the shared memory area as a source for TRAM writes and a
destination for TRAM reads. When the executing program requires TRAM data,
the instruction execution unit reads or writes to these same shared register file
locations.

A sound effects processor according to the present invention includes
a first memory, an instruction execution unit and a sound memory engine integrated
onto a single chip. The first memory includes a first address space that is
addressable by both the instruction execution unit and the sound memory engine.
The instruction execution unit executes sound processing instructions, including
instructions to read from and write to the first address space, and the sound memory
engine operates independent of the program counter (instruction execution rate) of
the instruction execution unit to read from and write to the first address space and
perform address arithmetic and memory accesses to a second memory as necessary
to implement audio data storage (e.g., delay lines whose delay length can be varied
dynamically -- a capability required for many audio effects like chorusing, flanging

and pitch shifting). The second memory can be internal or external to the effects

processor.

10

15

25

30

WO 99/01953 ' PCT/US98/13844

3

For a further description of the nature and advantages of the present
invention, reference should be made to the following description taken in

conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1A depicts a representative muitimedia personal computer system
in which the audio effects processor of the present invention may be employed;
Fig. 1B depicts a simplified representation of the internal architecture
of the multimedia personal computer system depicted in Fig. 1A;
Fig. 2 is a simplified block diagram of muitimedia board 28 shown in
Fig. 1B, a board onto which the audio signal processor of the present invention

could be incorporated;

Fig. 3 is a simplified block diagram of one embodiment of the audio

signal processor shown in Fig. 2;

Fig. 4 is a simplified block diagram of audio effects processor 50 in
accordance with the present invention shown in Fig. 3;

Fig. 5 is a block diagram of one embodiment of sound memory
engine 74 shown in Fig. 4;

Fig. 6 is a block diagram showing the allocation of memory space
within one embodiment of memory 72 shown in Fig. 4;

Figs. 7A-7D are diagrams that illustrate the circular addressing
scheme used for generating delay lines according to the present invention; and

Figs. 8A-8D are figures illustrating how sound memory engine 74
prevents TRAM read and write hazards that would otherwise be possible because

memory 72 is shared with instruction execution unit 70.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is applicable to digital sound generation
systems of all kinds. Advanced audio effects can be provided to video games,
multimedia computer systems, virtual reality environments, cinema sound systems,
home theater, and home digital audio systems, for example. Fig. 1A depicts a

representative multimedia personal computer 10 with a monitor 12 and left and right

10

15

20

25

30

WO 99/01953 PCT/US98/13844

4

speakers 14 and 16, an exemplary system that can be enhanced in accordance with
the invention with sound effects such as three-dimensional audio.

Fig. 1B depicts a greatly simplified representation of the internal
architecture of personal computer 10. Personal computer 10 includes a CPU 18,
memory 20, a floppy drive 22, a CD-ROM drive 24, a hard drive 26, and a
multimedia card 28. Each of the components of computer 10 shown in Fig. 1B
communicate with each other over a bus system 29. Of course, many possible
computer configurations could be used with the invention. In fact, the present
invention is not limited to the context of personal computers and finds application in
video games, cinema sound systems and many other systems.

Fig. 2 illustrates a typical multimedia card 28 on which an integrated
circuit according to the present invention may be mounted. Multimedia card 28
includes a sound processor chip 30 mounted on a circuit board 32. As shown in
Fig. 2, a CDROM connector 34, an AC97 CODEC 36, an optional AC3
decompressor/decoder 38 and a mixer 39 are all connected to sound processor chip
30 through appropriate interfaces.

Also shown in Fig. 2 are various other connections to sound
processor 30, including a joystick connector 42, a phone line connection 44 for a
modem (not shown), a line-in connector 46, a microphone connector 47, and a
speaker output 48. In addition, a connection to a PCI bus 49, which is part of bus
system 29, is shown. Bus 49 connects to the host microprocessor 18 and to main
memory 20.

A simplified block diagram of sound processor 30 is shown in Fig. 3.
Sound pfocessor 30 includes three primary functional units: a sound processing
engine 40, a sound effects engine 50 and a host interface unit 60. Sound processing
engine 40 is a 64-voice wavetable synthesizer that employs an eight-point
interpolation algorithm for professional quality audio playback as described in U.S.
Patent No. 5,342,990 entitled "Digital Sampling Instrument Employing Cache
Memory" and 16 summing effects send buses. Each of the 64 voice channels can
be routed, at its own programmable amplitude, to an arbitrary selection of four of
these buses. Host interface unit 60 interfaces sound processor 30 with host CPU 18

using the PCI protocol. Sound effects engine 50 receives input from sound

10

15

20

25

30

WO 99/01953 PCT/US98/13844

5

processing engine 40 and from additional audio inputs such as CD Audio, ZVideo,
a microphone jack. a stereo input and an auxiliary S/PDIF input among others.
Further details of sound effects engine 50 and host interface unit 60 are described
below with respect to Fig. 4. Other details of host interface unit 60 along with
some details of sound processing engine 40 and other portions of sound processor
30 are set forth in U.S. Serial No. _ / (attorney docket 17002-86)
entitled "AUDIO EFFECTS PROCESSOR WITH MULTIPLE ASYNCHRONOUS
AUDIO STREAMS," having David P. Rossum and Scott Fuller as inventors and
assigned to Creative Technologies, Ltd., the assignee of the present invention. The
5,342,990 patent and the ___/ application (attorney docket 17002-86)

are both hereby incorporated by reference in their entirety.

Audio_Effects Processor 50

According to the present invention, sound effects engine 50 (also
referred to as "effects processor 50") includes separate functional units to 1) execute
audio signal processing instructions and 2) implement audio data storage (e.g.,
audio signal delay lines and table look-ups). These functional units operate
independent of each other and exchange data through a shared memory address
space. One particular implementation of an audio effects processor of the present
invention is illustrated in Fig. 4 and discussed below. In no respect is the present
invention limited to this specific implementation, however. After reading the
following description, a person of ordinary skill in the art will understand that other
implementations of effects processor 50 are possible without departing from the
concept of the present invention.

Fig. 4. is a simplified block diagram of one embodiment of effects
processor 50 shown in Fig. 3 above. The basic architecture of effects processor 50
combines an instruction execution unit 70, a high-speed internal memory 72, and a
sound memory engine 74 (also referred to as "TRAM engine 74"), which interfaces
to internal and external slower-speed, high capacity TRAM memories 76 and 78.
Audio signals are received by effects processor 50 at a processor input 71, where
they are directed to a dual buffered portion 83 of memory 72. In this embodiment,

the audio signals received at input 71 include 16 voices output from sound

10

15

20

25

30

WO 99/01953 PCT/US98/13844

6

processing engine 40, 2 lines for a stereo input. 2 lines for a CD audio input, 2

lines for a zvideo input, a microphone input. 2 lines for an auxiliary S/PDIF input

and a 6-line I°S input.

Instruction Execution Within Effects Processor 50

Instruction execution unit 70 executes instructions stored in an
internal microprogram memory 80, separate from memory 72 to perform particular
operations on one or more of the audio signals stored in memory address space 83.
Each instruction has a 4-bit opcode field, three 10-bit input operand address fields
and a 10-bit output operand address field. The opcode field holds the instruction’s
operation code (opcode) that specifies the instruction’s operation to the processor.
The operand address fields hold addresses to spaces in memory 72. Because the
operands are 10-bits long in this embodiment, the maximum addressable space of
memory 72 available to DSP instructions is 1024 locations. All 1024 locations of
memory 72 are addressable.

Instruction execution unit 70 retrieves data stored in the locations in
memory 72 from the locations specified in the instruction’s three input operands
over input data lines 75, 77 and 79. Instruction execution unit 70 then performs the
requested operation specified by the instruction’s opcode and writes the resultant
data over output data line 81 to the memory address specified in result operand of
the received instruction. The resuitant data may be directed to an audio output port
87 by writing to one of the 32 output buffers in memory space 83, stored in another
portion of memory 72, or reused in subsequent operations by instruction execution
unit 70.

Instruction execution within instruction execution unit 70 is
sample-locked and memory-based, rather than register-based. Sample-locked
execution means that instruction unit 70 executes a single pass through
microprogram memory 80 every sample period. Thus, instruction execution is
inherently tied to the system’s audio sample rate. In this embodiment, the sample
rate is 48 KHz as derived from AC97 Codec 36 shown in Fig. 2. In other

embodiments this sample rate may be a different set frequency or may be a variable

10

15

20

25

30

WO 99/01953 ' PCT/US98/13844

7

frequency. For example, in another embodiment, the sample rate is in the range of
about 40-50 KHz as derived from a system clock on board 32 (not shown).

Memory-based instruction execution means that operands are fetched
directly from memory 72 without the bottleneck of an input register set at the input
to the instruction execution unit. It also means that there are no volatile output
registers that need to be flushed after each instruction in order to save resuits.

Instruction execution unit 70 executes all the instructions in
microprogram memory 80 "in-line" without branches, loops or subroutine calls.
Such in-line execution ensures that all processing within the basic real-time deadline
(one sample period) is achieved by design. It also simplifies the design of the
execution pipeline, since instruction sequencing is compietely deterministic, i.e.,
there are no branches in the flow of control.

Although instruction execution aiways proceeds in-line from the start
of microprogram memory 80 to the end of the memory, there are provisions for the
conditional execution of instructions. Details of such provisional instruction
execution along with specifics of the instruction set executed by instruction

execution unit 70 are set forth in U.S. Serial No. __/ (attorney

docket 17002-84) entitled, "Processor With Instruction Set for Audio Effects,"
having Stephen Hoge as the inventor and assigned to Creative Technologies, LTD.,

the assignee of the present invention. The __ / application (attorney

docket 17002-84) is hereby incorporated by reference for all purposes.

Each instruction executes in a single instruction cycle whose period
is the sample rate divided by the number of instructions in microprogram memory
80. Thus, in an embodiment where microprogram memory 80 is 512 instructions
long and the sample rate is 48 KHz, the instruction cycle is 40.7 nanoseconds long.

The results of each instruction are available for use in the following instruction

cycle.

Host Interface Unit 60

Also shown in Fig. 4 is host interface unit 60, which allows the host
processor (CPU 18) to control the operation of audio effects processor 50. Such

control is achieved by allowing the host to initialize and read and write data and

10

15

20

25

30

WO 99/01953 PCT/US98/13844

8

executable instructions to memory 72 and/or microprogram memory 80. Such
memory read and write operations can be executed transparent to the execution of
digital signal processing (DSP) programs allowing audio effects processor 50 to
support simultaneous startup, execution and shutdown of multiple independent and
separately loaded programs. In this embodiment, communication between the host
processor and audio effects processor 50 through interface unit 60 occurs over a
PCI bus using a PCI protocol, but other protocols can be implemented in other
embodiments. Also in still other embodiments, host interface unit 60 is a direct,

memory-mapped microprocessor interface suitable for use with either big-endian or

little-endian processors.

Sound Memorv Engine 74

Sound memory engine 74 is the interface between memory 72 and the
large capacity TRAM memory used for long-term audio data storage. Fig. 5is a
block diagram of one embodiment of sound memory engine 74 configured to
implement audio data storage in the form of audio delay lines. As shown in Fig. 5,
the primary components of sound memory engine 74 are control bits 83, the TRAM
data and address buffers 84 and 85 (part of memory 72), a delay base address
counter 86, an align control circuit 87, an address generator 88 and a data formatter
90. The address generator is responsible for circular addressing for generating
delay lines. The data formatter is used to compress 32-bit operands in memory 72
into the narrower word widths implemented by the physical TRAM during TRAM
write operations and then to expand them back during read operations.

Sound memory engine 74 has access, shared with the instruction
execution unit and the host interface, to blocks of RAM mapped into the address
space of memory 72 which impiement the TRAM address buffer and TRAM data
buffer. These twin buffer memories (TRAM data buffer 84 and TRAM address
buffer 85) hold data and address pairs which along with control bits 83, including
an align bit 83a and read/write bits 83b, completely specify the activity of the
TRAM engine during a sample period. In the way that microprogram memory 80
holds the program executed by the instruction execution unit every sample period,

these buffers represent the "program" executed by the TRAM engine every sample

10

15

20

25

30

WO 99/01953 PCT/US98/13844

9

period. Whenever a program compiled for sound effects engine 50 reads or writes
to a delay line, it is actually locations in TRAM data buffer 84 that are used as the
operands. Ordinarily, address offsets stored in TRAM address buffer 85 are
constants initialized by the host processor, but any instruction executed by
instruction execution unit 70 can compute a new delay line address by storing its
results in the appropriate TRAM address buffer of memory 72.

During each sample period, the TRAM engine runs sequentially
through each of the buffers’ address/data pairs, so that the buffer contents represent
an ordered list of TRAM accesses throughout the entire sample period. During
every TRAM memory cycle within the sample period, a TRAM address offset is
fetched by the sound memory engine from the TRAM address buffer GPRs, an
absolute TRAM memory address is computed from the offset, and a signal value is
either fetched from or written to the address paired TRAM data buffer location.

The TRAM data buffers are the source and sink for audio data
flowing from TRAM, and each data buffer location is paired one-to-one with an
address buffer location; the address buffer holds the address in the TRAM that
corresponds to the data. Control bits 83 are a separate array (only writable from
the host and not mapped into memory space 72) having a field associated with each
data/address pair. Certain of these control bits (control bits 83b -- a two-bit field in
this embodiment) specify what type of TRAM operation, e.g., read or write, should
take place using the corresponding data and address pair.

By sharing access to the Address and Data buffers with the
instruction execution unit, DSP computations and TRAM accesses are decoupled
from each other in time and in memory 72 address space. In other words, there is
no fixed temporal relationship between when the TRAM engine and instruction
execution unit access memory 72. This decoupling is valuable because of the
inherent difference in operational speed between the fast instruction execution unit
and the relatively slow physical TRAM memory. Decoupling DSP and memory
accesses through the shared buffers allows the instruction execution unit to proceed
at full speed without regard to the access latencies and pipeline consequences that

burden the sound memory engine and its physical memory interface.

10

15

20

25

30

WO 99/01953 PCT/US98/13844

10

Mapping the TRAM buffers into the address space of memory 72
allows the buffer locations to be accessed as operands from instructions for
execution unit 70. In this way, data stored in the TRAM can be funneled through
the TRAM data buffers and used as input or output operands in DSP programs.
This transparent memory-mapping means that no special instructions are required
for TRAM data access and no extra overhead is incurred waiting for siow TRAM

cycles during an access to this data.

Memory 72

In this embodiment, memory 72 is actually made up of four separate
physical memory sections. A more detailed diagram of memory 72 is shown in
Fig. 6. As shown in Fig. 6, memory 72 includes 1024 locations, not all of which
are used. All 1024 locations in memory 72 are addressable by instruction execution
unit 70, however, and thus the entirety of memory 72 can be said to be addressable
by a uniform addressing scheme.

There are four different function areas within memory 72:
input/output space 83 (memory locations 0-40), general purpose memory space 92
(memory locations 100-200), TRAM data and address buffers 84 and 85 (memory
locations 200-280: internal TRAM data; locations 280-2A0: external TRAM data;
locations 300-380: internal TRAM addresses; and 380-3A0: external TRAM
addresses) and hardware registers and constants space 94 (locations 40-60). These
functional units do not necessarily correspond with the four physical memories that
make up memory 72.

General purpose memory space 92 includes 256 locations that are
32-bits wide for storing general purpose operands for DSP programs run by
instruction execution unit 70. This memory space is implemented by a single port
memory that operates at four times the instruction rate thereby allowing each
instruction to access three input operands and one output operand per cycle.
Memory space 94 inciudes hard-wired frequently used constants along with space
for various registers.

As previously stated, TRAM data and address buffers 84 and 85 are

ports to and from internal and external TRAMs 76 and 79. Each data buffer

10

15

20

25

30

WO 99/01953 PCT/US98/13844

11

location is paired with an address buffer location. The data buffer holds the TRAM
data that was read at, or will be written to, the TRAM address contained in the
corresponding address buffer location. Like general purpose memory space 92,
these buffers and implemented by a register file memory and appear in the DSP
program’s operand space. Although they appear in separate parts of memory 72’s
address space, the data and address portions of the TRAM buffers are accessed in
parallel by TRAM engine 74.

In this embodiment, the TRAM buffers are not a full 32-bits wide,
but instead are limited to 20-bits. These 20 bits accommodate both the 20-bit
TRAM addresses and 20-bit decompressed TRAM data in a single, shared internal
RAM. The 20 data bits are left-justified into the most significant position (31) of
the 32-bit data path. The 20 address bits, however, are justified into the next
significant bit (30) of the data path with the MSB read as a 0. This guarantees that

addresses always appear as positive quantities to the instruction execution unit.

Implementation of Delay Lines

Circular addressing refers to the ability to implement delay lines
using memory pointers which recirculate through a region of memory. A delay
line’s read pointer follows its write pointer around the circle and the pointers
advance at the sample rate; the distance in memory between the read and write
pointer is the delay line length. Circular addressing is also known as modulo
addressing since all address calculations are performed modulo the region size,
which is typically a power of two for simplicity of implementation.

Even though the read and write pointers are referred to as addresses,
in effects processor 50 they are not implemented as physical TRAM memory
addresses but as address offsets. The initial value of the offsets can be fixed by an
assembler and associated driver software as would be understood by a person of
ordinary skill in the art. To get the physical memory address for each read and
write operation the offsets are summed with the delay base address counter. This
base address counter decrements at the sample rate; thus the sums of the read and

write offsets and the base address also decrement at the sample rate, and if the write

10

15

20

25

30

WO 99/01953 PCT/US98/13844

12

offset is smaller than the read offset, the delay length will be the difference of the
two as the read pointer chases the write pointer downward through memory.

This is described below and illustrated in Figs. 7A-7C for a four
sample delay line implemented in a hypothetical 32-sample TRAM. The numbers
highlighted in the circular memory show which values in the delay line are currently
"active," waiting to be retrieved. The write offset of the delay line is O, and the
read offset is 4 -- these values remain constant. Initially, the base address (BA) is
at 0 (Fig. 7A), so the physical address of the write operation is also 0, where the
value 7 is written.

After four sample periods, the base address counter BA has
decremented, modulo the TRAM size of 32, from 0 down to 28 (Fig. 7B). This is
where the newest value of -2 will be written to the head of the delay line, where the
base address value of 28 is summed with the write offset of 0. The fixed read
offset of 4 is also added to the base address, modulo 32, to give a physical read
address of O, where it retrieves the value 7 which was written 4 samples previously.

The read pointer leaves values in its wake which are now inactive and
can be discarded. As the base address counter begins to decrement back towards O
it will begin reusing previously written-to memory (Fig. 7C), as the write pointer
overtakes discarded values.

This example of delay line implementation in audio signal processor
10 shows that, unlike many other DSPs, circular delay line addressing is not
performed modulo the size of the delay line, but modulo the size of the physical
address space (which in this miniaturized and simplified example is 32 locations).
This means that multiple delay lines of different lengths can occupy the same
physical address space and still use the same modulo arithmetic. An example of
this is shown in Fig. 7D. In Fig. 7D, the original delay line of Fig. 7A which
writes at offset O and reads at offset 4 is joined by 3 other delay lines with the
following specifications:

© 2: [Write@5, Read@10],
3: [Write@14, Read@15]
4: [Write@16, Read@28]

10

15

20

25

30

WO 99/01953 PCT/US98/13844

13

For the sake of complete generality, the example uses a Delay Base
Address counter value of 2.

As can be seen in Fig. 7D, the four delay lines, each with distinct
read and write offsets relative to the Delay Base Address counter, reside
simultaneously in TRAM and simply chase each other around the modulo circle
formed by the physical address space. Note also that the 4 delay lines do not fill up
all of the available memory space: a memory gap exists unused between the
operation of a Read@10 and a Write@14, and similarly, there is unused memory
past the last Read@28. These areas are available for additional delay lines, or
alternatively, the space leftover can be used to allow the delay lines which Read@10
and Read@28 to have their read pointers modulated, that is, expanded and
contracted dynamically, without interfering with the other delay lines.

Audio effects processor 50 also makes it eésy to modulate delay line
addresses, since addresses are stored in memory 72 in the TRAM address buffer 84
and can be accessed just like any other arithmetic operand. The length of a delay
line is modulated by computing new addresses for the read and/or the write pointer
of the delay line, although it is most typical to change only the read pointer.

The length of a delay line is the distance in samples from the write
address to the read address, so to properly modulate a delay line the new computed
delay length must be summed with the delay line’s write address before storing it in
the TRAM address buffer. Since the write address stored in the buffer is eventually
used again as an offset from the delay base address counter to get the physical
TRAM address, the modulated delay length really represents an additional offset
from an offset from the delay base address counter. Since the delay line’s write
address is already available in the TRAM address buffer, the read offset can be

computed with an instruction of the form:
Read Address = Write Address + (Mod Function x Max Delay Length)

where Max Delay Length is the declared maximum length of the delay line, and the

Mod Function is a control signal that varies from 0 to 1.0.

W

10

15

20

25

30

WO 99/01953 PCT/US98/13844

14

Current VLSI processes (0.35 micron) do not cost-effectively support
the amount of internal memory that is needed to implement the entire delay line
capacity required for some complex sound effect applications like reverb and 3D
audio (from .5Mbit to 2Mbit). On the other hand, prudent use of PCI bus 49 does
not support the bandwidth to external host memory required by some applications
(from 64 to 128 accesses/sample period). Audio effects processor 50 compromises
by offering access to both these types of memory: high-bandwidth access to 8K
samples of internal TRAM 76 (ITRAM) implemented in on-chip, single-port static
memory, and low-bandwidth access to up to 1M or larger samples of external
TRAM 78 (XTRAM) implemented across PCI bus 49 in host DRAM memory.

These two memory spaces, ITRAM and XTRAM are logically and
physically distinct and their address spaces overlap. For example, address 0x0000
in ITRAM is not the same location as address 0x0000 in XTRAM. Thus, delay

lines must be implemented either in one memory space or the other.

Avoidance of Read/Write Hazards

There is no double-buffering of TRAM data buffers 84. Thus,
situations can arise where the microprogram accesses data in the buffers which does
not strictly belong to the current sample period. In the case of read operations, a
microinstruction can read a datum from the buffer that was actually fetched from
TRAM during the previous sample period. In the case of write operations, a
microinstruction may write a datum to the TRAM buffer that will not actually be
flushed out to TRAM until the next sample period.

These situations arise from the fact that sound memory engine 74 is
not tightly coupled to instruction execution unit 70. There is an arbitrary temporal
relationship between the accesses performed by instruction execution unit 70 and
sound memory engine 74 on the same datum in the buffer. The relationship is
established by the relative positioning of the microinstruction word and the TRAM
buffer location and the relative access rates of the execution unit and sound memory
engine. The relationship is determined by a microprogram loader (e.g., software

driver) as would be understood by a person of skill in the art.

10

15

20

25

30

WO 99/01953 ' PCT/US98/13844

15

An example of a recall hazard from a TRAM read operation is shown
in Fig. 8A. Fig. 8A shows two TRAM read operations, one from address offset
100 and the other from offset 110. The Base Address Counter, which decrements
by 1 each sample period, is added to the TRAM offsets stored in the TRAM
address buffer during every access to form a physical TRAM memory address. For
the sake of simplicity, this example assumes that the TRAM and instruction
execution engines are sequencing at the same rate through the buffer and
microprogram memories, respectively.

The fetch operation occurs as the TRAM engine encounters the
TRAM read offset 100. It initiates a memory fetch from physical address 101 and
after a TRAM access delay time the data from 101 appears in the data buffer. It is
subsequently read from the buffer by the execution of a microinstruction. In this
case, the fetch preceded the read, and the microinstruction received its data from
TRAM address 101, offset from the base address of 1 by 100, just as it expected.

Some number of instruction cycles later, a microinstruction seeking
data from offset 110 reads its data from the buffer location nominally filled with
data from 110. In this case, however, the read operation precedes the TRAM fetch,
which won’t occur for another few cycles, since the TRAM offset 110 is stored in
the address buffer a few locations past the microinstruction word. Instead of
receiving data from TRAM address 111 (the offset 110 plus the current Base
Address Count of 1), the microinstruction receives data that was fetched during the
previous sample period. At that time the Base Address Counter was 2, so the
datum in the buffer that is read is actually from TRAM address 112, delayed
exactly one sample period too long.

This off-by-one error occurs whenever microinstruction reads precede
TRAM buffer fetches. A 1-bit address offset (align bit 83a) along with align control
circuit 87 provides a solution to this problem by canceling out the off-by-one error
whenever microinstruction reads precede TRAM engine fetches. Using the same
example as before, this solution is illustrated in Fig. 8B. As shown in Fig. 8B, the
TRAM buffer structure has been augmented to include a field containing address

align bit 83a, which is paired 1-to-1 with the TRAM addresses. Align control

10

15

20

25

30

WO 99/01953 PCT/US98/13844

16

circuit 87 examines align bit 83a and provides an input to address generator 88 that
is used in determining the physical TRAM address.

A problem symmetrical to read hazards can exist for TRAM write
operations. This situation is illustrated in Fig. 8C. When microinstructions write
results to TRAM, the result data is buffered just as for read operations, waiting for
the TRAM engine to flush the result out to memory. There is no problem if
microinstructions that write to the TRAM are executed before the flush operation
takes place. The difficulty arises when the TRAM offset and data are stored in
buffer locations preceding the microinstruction word. In these cases the TRAM
engine is actually flushing data that was written by the microcode during the
previous sample period; the effective result is that the delay line includes one
sample period of delay beyond its nominal length.

To address this issue, sound memory engine 74 ensures that during
the subsequent sample period that the data is flushed out to exactly where it should
have ended up. If the base address is counting down, this means "1" is added to
the offset to compute the physical address to which we should have flushed the data
during the previous sample period. Again, and as shown in Fig. 8D, align bit 83a
can be used by align control circuit 87 to cancel this off-by-one error for write
operations.

The difference in this case is that the align bit signifies a "+1" offset
going into the TRAM address engine instead of the "-1" used for read operations.
This is easily accomplished by taking the read/write bits associated with each
address (not shown) into account.

One. strategy for setting the align bits is to use a microcode loader
(software driver), which keeps track of the location of all offsets in the TRAM
address buffer as well as all instructions which use the TRAM data corresponding to
those offsets. This "loader" may be running either at microcode downioad time or
might really just be a "locator" which only needs to run at microcode build time.
With information and knowledge about the relative execution rate of the microcode
and TRAM engine sequencers, the loader can determine which TRAM data will be
read from the buffer before it is actually fetched from memory or written after it

has been flushed. It will flag such situations by setting the align bit corresponding

10

15

20

25

30

WO 99/01953 PCT/US98/13844

17

to the TRAM offset associated with that data. The align bit is then fed into TRAM
address engine 88 and used as an extra offset of +1 when forming the physical
TRAM address.

Another approach is to use hardware in sound memory engine 74 to
automatically generate the align bit offsets. The microprogram sequencer restarts
on the same cycle during which the TRAM engine sequencer is restarted at the
beginning of the buffer and the base address count is incremented. At this time, the
align bit is cleared for every read offset, and set for every write offset. As the
microcode accesses the TRAM data buffer for read or write operations, the align bit
for the corresponding offset is set for every read offset and cleared for every write
offset. Thus, "misaligned” TRAM fetch or flush operations will automatically have
used the correct sense of the align bit. This approach is less preferred because
other measures must be taken to ensure that it is not possible to slip a
microinstruction access to the TRAM data buffer into the pipeline delay between
address usage and data fetch. Without such assurance, the microinstruction access
may not have the opportunity to update the alignment bit even though it was

accessing last sample period’s buffer data, and the physical address may never be

correct.

Initialization of TRAM Data and Address Buffers 84 and 85

When delay lines are used, TRAM read and write operations start as
soon as power is received by effects processor 50. Write operations do not pose a
problem, but unless TRAMs 76 and 78 are properly initialized, read operations will
initially produce noise. Thus, it is important to initialize the TRAMs. In one
embodiment, these memory spaces are initialized by writing Os to each location
before executing a program in sound processor 50. This can be a time consuming
task, however. Thus, in other preferred embodiments, dedicated hardware circuits
are employed to perform such an initialization routine. As would be understood by

a person of skill in the art, a variety of such circuits can be designed and employed

in the present invention.

10

15

20

25

30

WO 99/01953 PCT/US98/13844

18

Other Embodiments

The above is a full, detailed description of one specific embodiment
of the present invention. It should be understood that many specifics of the
invention described above can be changed without departing from the concept of the
invention. For example, word size, address field length, memory size, number of
control bits 83 used and other implementation-specific items can vary in other
embodiments. Also, while effects processor 50 was described as an audio effects
processor that performs operations on audio signals in a sound processing system, a
person of ordinary skill in the art will realize that effects processor 50 can also
process radar signals. seismic signais or any other time series data in any signal
processing system.

Many other equivalent or alternative methods of implementing audio
effects processor 50 will be apparent to those skilled in the art. For example, it is
possible for sound memory engine 74 to implement table lookup operations using
non-circular indexed addressing in internal and external TRAM memories 76 and
78. Tables of data can be loaded into TRAM by host processor 18 and then
accessed like static arrays whose indices are computed by instruction execution unit
70. The sound memory engine can distinguish delay line accesses from
table-lookup accesses by the setting of additional TRAM control bits associated with
each address. Table-based addressing can be useful for implementing non-linear |
functions, wavetables or excitation functions for synthesis, block-based coefficient
storage, or for many other applications. Note that although "table lookup" implies
a read operation, table-based addressing applies equally to write operations, so it is
possible to have audio effects processor 50 compute table values in real time instead
of performing such calculations with the host.

Table-based addressing is distinguished from delay line addressing by
the use of a static table base address register in place of the constantly decrementing
delay base address counter. In the same way the delay line accesses are always
made with offsets relative to the delay base address counter, table lookups are
always made relative to a table base address register. The table base address

register is initialized by the host and mapped into the address space of memory 72.

10

15

20

25

30

WO 99/01953 ' PCT/US98/13844

19

If necessary, the table base address can be read (but not written) from DSP
programs like any other instruction operand.

Initialization of the table base address register is typically performed
by host 18 at system startup time. The address stored there partitions physical
TRAM into a circular region and a table-lookup region. All delay line addresses
are computed modulo the table base address instead of modulo the physical memory
size, so that delay line operations automatically take place within the memory region
from O-[Table Base]. In this way the table base address register also serves in
effect as a "delay limit" register.

In the same way that circular delay addressing treats the TRAM
address buffer elements as offsets from the delay base address counter, table-based
addressing uses these addresses as offsets relative to the table base address register.
To compute the physical TRAM address, the TRAM address buffer contents are
added to the table base address register. By calculating a table index with the
proper scaling and storing it as an offset in the TRAM address buffer, DSP
programs can perform computed table lookups.

All programs loaded into audio effects processor 50 use the same
table base address register, whose value is typically established by the host at
system initialization time. If more than one program requires table lookup storage,
the individual tables belonging to different programs are partitioned from within the
global table lookup region. DSP programs can declare their own private table offset
registers using ordinary GPRs whose contents represent an offset from the
table-based address register, and whose location and content will be properly
relocated by the program loader. Then these private table offset register GPRs are
summed with the computed table index before performing the table look-up
operation in TRAM memory.

Typically table-lookup offsets will create addresses which are inside
the table lookup region of the TRAM, but since the sound memory engine performs
no address limiting or trapping it is possible for specialized applications to generate
addresses outside this region. As for delay line addressing, the operand data path
alignment of the TRAM address buffer guarantees that all TRAM table offsets are

positive quantities, so to generate addresses below the table lookup region the

10

WO 99/01953 PCT/US98/13844

20

program must ’generate addresses which wrap around the entire TRAM address
space (2% locations in one embodiment) and back into the delay line region.

In addition to implementing table look-up operations, other variations
of the present invention are aiso possible. For example, while sound processing
engine 40, sound processor 50 and interface unit 60 were all described as being part
of a single chip sound processor, the functionality of these elements can be
performed from separate ICs in other embodiments. Similarly, it is possible to
develop an architecture in which instruction execution unit 70 and sound memory
engine 74 are implemented on separate chips. Also, sound processor 30 can be
included directly on a computer motherboard rather than a dedicated muitimedia
card 32, and in another data is not compressed and expanded when it is transferred
between memory 72 and TRAM memories 76 and 78. These equivalents and other

alternatives are intended to be included within the scope of the present invention.

AW N O o0 3 O Bk~ WwWN

AW

WO 99/01953 PCT/US98/13844

WHAT IS CLAIMED IS:

1. A signal processor comprising:

(@) a first memory including a first address space;

(b) an instruction execution unit that processes signal
processing instructions including instructions to read from and write to said first
address space; and

©) a signal memory engine that operates independent of
said instruction execution unit to read from and write to said first address space and
perform address arithmetic and memory accesses to a second memory as necessary

to implement signal data storage.

2. The signal processor of claim 1 wherein said instruction
execution unit executes instructions at a first execution rate and wherein said signal

memory engine executes operations at a second execution rate different than said

first execution rate.

3. The signal processor of claim 1 wherein said first address
space includes a first memory location and wherein said signal memory engine and
instruction execution unit can independently access said first memory location in a

non-fixed temporal relationship.

4. The signal processor of claim 1 wherein said signal memory
engine performs arithmetic and executes memory accesses to said second memory

based on values stored in said first address space.

5. The signal processor of claim 1 wherein said signal data

storage comprises audio data storage.

6. The signal processor of claim 5 further comprising a sound

processing engine that synthesizes sounds.

AW = e S N N VS

SN

f—

WO 99/01953 PCT/US98/13844

22

7. The signal processor of claim 6 wherein output from said
sound processing engine representing synthesized sounds is stored in a second
address space of said first memory and wherein instructions processed by said

instruction execution unit read from and write to said second address space.

8. The sound processor of claim 1 further comprising an
instruction memory coupled to said instruction execution unit, said instruction
memory comprising a microprogram containing a specified set of signal processing

instructions to be executed by said instruction execution unit.

9. The signal processor of claim 8 wherein said instruction
execution unit executes a single pass through its entire microprogram each sample

period in an order in which the instructions appear in said microprogram without

branches, loops or subroutine calls.

10. The signal processor of claim 9 wherein said instruction
execution unit provides for conditional execution of instructions by ignoring

execution results of selected instructions based upon values of a condition code for

said selected instructions.

11. The signal processor of claim 8 wherein said instruction

memory is a different memory than said first memory.

12. The signal process of claim 1 wherein said first memory is a

randomly addressable memory.

13. The signal processor of claim 12 wherein said randomly

addressable memory comprises a plurality of separate, physical RAM memories.

14. The signal processor of claim 12 wherein said first memory

further includes a second address space for storing values representative of sound

input and sound output.

[09]

O 0 N N L AW

[e e
HOW NN o= O

WO 99/01953 PCT/US98/13844

23

15. The signal processor of claim 12 wherein said first memory
further includes a third address space for storing frequently used coefficients,

variables and intermediate values.

16. The signal processor of claim 15 wherein said instruction
execution unit uses a uniform addressing scheme to access said first, second and

third address spaces of said first memory.

17. The signal processor of claim 5 wherein said audio data

storage is accessed using circular addressing to implement audio delay lines.

18. The sound processor of claim 5 wherein said audio data

storage is accessed using table-based addressing.

19. A single chip sound processor comprising:
(a) a first memory including a first address space and a

second address space;

(b) a second memory that stores sound processing
instructions;

©) a sound processing engine that synthesizes sounds and
outputs data representative of said synthesized sounds to said second address space;

(d) an instruction execution unit configured to execute said
sound processing instructions stored in said second memory, including instructions
to reads from and write to said first and second address spaces; and

(e) a sound memory engine that operates independent of
said instruction execution unit to read from and write to said first address space and
perform address arithmetic and memory accesses to a second memory as necessary

to implement audio data storage.

20. The sound processor of claim 19 wherein said instruction

execution unit executes instructions at a first execution rate and wherein said sound

A WY =

- I S TS NI R N N N

I e e e o e
A W A~ WD = O

WO 99/01953 PCT/US98/13844

24

memory engine executes operations at a second execution rate different than said

first execution rate.

21. The sound processor of claim 19 wherein said first address
space includes a first memory location and wherein said sound memory engine and

instruction execution unit independently access said first memory location in a

non-fixed temporal relationship.

22. A computer processing system comprising:

(a) a bus;

(b) a host processor communicatively-coupled to said bus;

©) a second memory; and

(d) a sound processor communicatively-coupled to said
bus, said sound processor comprising:

(i) a first memory including a first address space;

(ii) an instruction execution unit that processes sound
processing instructions including instructions to read from and write to said first
address space; and

(1)) a sound memory engine that operates independent of
said instruction execution unit to read from and write to said first address space and
perform address arithmetic and memory accesses to a second memory as necessary
to implement audio data storage; and

(iv) a host interface unit that interfaces said second

processor to said bus.

23. The computer processing system of claim 22 wherein said host

processor can read from and write to said first address space.

24. The method of implementing an audio delay line in a sound

processor, said method comprising the steps of:

O 00 9 O W B W

10

AW

O 00 3 O W»n A W N

[T e T T
th H W NN = O

WO 99/01953 PCT/US98/13844

25

(a) executing a sound processing instruction in an
instruction execution unit of said sound processor to store data representative of a
sound to be delayed in a first memory;

(b) retrieving, independent of step (a), said data from said
first memory with a sound memory engine of said sound processor and writing said
data to a second memory; and

(©) performing address arithmetic and subsequent memory

accesses to said first and second memories with said sound processor to implement

the audio delay line.

25. The method of claim 24 further comprising the step of
executing an instruction in said sound processor to write data stored in said first
memory by said sound memory engine to a different location in said first memory

for output from said sound processor.

26. A method of operating a computer processor, said method

comprising the steps of:

(a) synthesizing an audio signal with a sound synthesis
engine of said computer processor;

(b) outputting said audio signal to a sound effects engine of
said computer processor;

(©) storing said outputted audio signal in a first location of
said memory coupled to said sound effects engine;

(d) executing a first sound processing instruction in an
instruction execution unit of said sound effects engine to transfer said stored audio
signal to a second location of said memory, said second location being paired with
an address to a location in a sound delay memory; and

(e) performing, independent of step (d), address arithmetic
and memory accesses to said sound delay memory with a sound memory engine

independent of step (d) to impiement an audio data storage.

(8]

BOwW

[, T~ V'S S (O R

WO 99/01953 PCT/US98/13844

26

27. The method of claim 26 wherein step () comprises the step
of, after storing said audio signal in said sound delay memory for at least one
sample period, writing said audio signal to a third memory location of said first

memory.

28. The method of claim 27 further comprising the step of
executing a second sound processing instruction in said instruction execution unit to
write data stored in said third location of said first memory by said sound
processing engine to a fourth location of said first memory for output from said

sound effects engine.

WO 99/01953

177

PCT/US98/13844

14—\

12—\
i -
= ="
Fig. 1A
/10
/—18 /—20 /—22
CPU RAM Floppy

/——29

/——24

CD ROM

/—26

/‘28

Hard Drive

Multimedia Card

“Fig. 1B

SUBSTITUTE SHEET (RULE 26)

WO 99/01953

217

PCT/US98/13844

32
42 44
JOYSTICK PHONE LINE
CONNECTOR| [(MODEM) CONNECT
49 "
4 LINEIN [
18
5 K= 2 47
HOST -
: MIC
PROCESSOR "
2 ¢—— SOUND
20 O PROCESSORK—) SPEAKERS /—48
a o (OUT)
MAIN ¢TL: y
MEMORY =][|§%3T -
/39 /—3éiL 6
VIDEO Ac97 |3
MIXER DECODE CODEC
Fig. 2
30
Sound Processing |/~ 40
Engine
N
A 6
J 1 /—50
15/ N Sound Effects ,
f - Engine 732 >
/
\ N /—60

Host Interface

A\

Fig. 3

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13844

WO 99/01953
3/7
N /
Data Address | Control IRQ /—50 /—78
> >] External
I PCl/Host Interface < TRAM
/—72 To
75— \ /—74 1M Samples
77 J TRAM External
v /80 79\ 85(|84 Engine TRAM
/]
76
. Nz ya
Inl\:tructlon %\/ Memory 8K Samples
emory : /83 Internal
32 Chan Math{Unit TRAM 32 Chan
Audio 70~/ B"f‘f’ Audio
Inputs 81/ GUP;ST Outputs
7
71—/ ¥37
Fig. 4
83 72
[/ /[
85 74
. [/8
@ Address Data
o Buffers Buffers
=
o
O
83b 90
a ya
Data Formater 7(h
83 To
/ a <~ TRAM
Nl Nss Memory
Align Control + >\ J
86
Vs

Base Counter

Fig. 5
SUBSTITUTE SHEET (RULE 26)

WO 99/01953

20

40

60

100

200

280
2A0 £

300 |

380
3A0

400

4/7

/7 7 7

/INPUT/

/7
/OUTP /
Lo s s 2

}83

,,,,,,

/ & HW REGS //

/////

GPRS

%

N

vt
%

//////

XTRAM DATA/

PCT/US98/13844

/—92

> 84

T

TRAM = 7
/ADDRESSES

L L

éXTRAM ADR/

Fig. 6

SUBSTITUTE SHEET (RULE 26)

WO 99/01953 PCT/US98/13844

Fig. 7A

Read@4 : -13
Write@5 : 1

Read@10 : 11

Write@16 : 9

Read@15 : -4
SUBSTITUTE SHEET (RULE 26)

WO 99/01953 PCT/US98/13844

6/7
nCode Operation /_84 /_85 /—86
TRAM TRAM Base Adr
TRAM Data Adr Counter
Access ——’ [100
Delay Fetch D[101] :] L
Delay [100] ->OP Read
EXPECTED: Delay [101]
GOT: Delay [101]
Delay [110] ->OP Read 110
EXPECTED: Delay [111]
GOT: Delay [112]
/‘ Fetch] LP[112] Physical
7 TRAM
Hazard: Read \) Address
datum /\%88 >
delayed
one period . TRAM Data
Fig. 8A
uCode Operation /_84 /_833/_85 /—86
TRAM Align TRAM Base Adr
TRAM - Data Bit Adr Counter
Access 100
Delay L~ Fetch D[101] [9] 1
Delay [100] ->OP Read
EXPECTED: Delay [101]
GOT: Delay [101]
Delay [110] ->OP Read 110
EXPECTED: Delay [111]
GOT: Delay [111] '
Fetch | LPL111 Physical
7 TRAM
\/]\ \R«Address
N
N g7 g ~
. TRAM Data
Fig. 8B

SUBSTITUTE SHEET (RULE 26)

WO 99/01953 PCT/US98/13844

717
uCode Operation /—84 /_85 /—86
TRAM TRAM Base Adr
TRAM . Data Adr Counter
Write
Access Flush 1
Time - D[100]
OP -> Delay [100] Write
EXPECTED: Delay [101]
GOT: Delay [100]
OP -> Delay [110] Write 110
EXPECTED: Delay [111]
GOT: Delay [111]
Elush D[111] Physical
Write datum TRAM
delayed \)‘SAddres\s
one period T_/-88 <
7
. TRAM Write Data
Fig. 8C
nCode Operation /—84 /_833/_85 /—86
TRAM Align TRAM Base Adr
Data Bit Adr Counter
TRAM
Write Flush D[101] 1
Access 100
Time
OP -> Delay [100] Write
EXPECTED: Delay [101]
GOT: Delay [101]
| OP -> Delay [110] Write
EXPECTED: Delay [111] @ 110
GOT: Delay [111] '
Flush D[111] Physical
\A& TRAM
Address
SrLoeress
/\T/xg7 /\'t/&gg -
7
Flg 8D TRAM Write Data

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/13844

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :HO4H 5/00
US CL :364/400.01; 711/105; 84/602, 605

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

u.s. :

364/400.01; 381/01, 17, 18, 63; 84/601, 602, 605; 711/104, 105, 209

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

None.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS.
Search terms: instruction execution, memory, storage, arithmetic and memory access, audio, sound, synthesize,
processor.
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,627,988 A (OLDFIELD) 06 May 1997, see entire| 1, 3-4, 8-13,
-——- document. 15-16
Y
b, 14, 17-18
X, P US 5,678,021 A (PAWATE et al) 14 October 1997, see{ 1, 3-4, 8-13,
---- entire document. 15-16
Yy 1
5,614, 17-18
X, P US 5,659,797 A (ZANDVELD et al) 19 August 1997, see| 1, 3-4, 8-11
entire document.
X, P US 5,668,336 A (MIYANO) 16 September 1997, see entire| 19-28
document. 5,614, 17-18

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered

1o be of particular relevance
“E*
L

carlier document published on or after the international filing date

document which may throw doubts on priority clmm(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"0*° document referring 1o an oral disclosure, use, exhibition or other
means

P document published prior to the international filing date but later than
the priority date claimed

T later d published after the i I filing date or priority
date and not in conflict with the lpphcanon but cited to understand the

principle or theory underlying the invention

X document of particular rel ce; the claimed i ion cannot be
considered novel or cannot be considered to involve an inventive step
whea the document is taken alone

"Y* documcnt of pamcular relevance the claimed invention cannot be

to ive an ve step when the documem is
combmed with one or more other such d such bi
being obvious to a person skilled in the art
& document member of the same patent family

Date of the actual completion of the international search

23 SEPTEMBER 1998

Date of mailing of the international search report

190CT1938

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

XU MEI

Telephone No. (703 308-6610

Form PCT/ISA/210 (second sheet)(July 1992)%

INTERNATIONAL SEARCH REPORT International application No.

PCT/US98/13844

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X,P

US 5,745,743 A (KAKISHITA) 28 April 1998, see entire
document.

US 5,804,750 A (SHIRAKAWA et al) 08 September 1998, see
entire document.

WO 92/15087 A (KEMP et al) 03 September 1992, see entire
document.

US 5,590,301 A (GUENTHNER et al) 31 December 1996, see
entire document.

US 5,640,527 A (PECONE et al) 17 June 1997, see entire
document.

US RE. 30,331 (SORENSEN et al) 08 July 1980, see entire
document.

19-28, 5, 14, 17-
18

19-28, 5, 14, 17-
18 .
1-28
1-28

1-28

1-28

Form PCT/ISA/210 (continuation of second sheet)(July 1992)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

