20117146645 A1 | [N 00000 U010 OO

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2011/1466435 Al

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 November 2011 (24.11.2011)

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 11/14 (2006.01) GO6F 11/20 (2006.01) kind of national protection available): AE, AG, AL, AM,

. L AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

(21) International Application Number: ‘ CA. CH. CL. CN. CO, CR. CU. CZ. DE. DK, DM, DO.
PCT/US2011/037032 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
18 May 2011 (18.05.2011) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL

(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 3G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:

12/781.875 18 May 2010 (18.05.2010) us (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
VMWARE, INC. [US/US]; 3401 Hillview Avenue, Palo ZM, ZW), Furasian (AM, AZ, BY, KG, KZ, MD, RU, T1,
Alto, CA 94304 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

(72) Inventors; and LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK,

. e . /
75) Invgntors/Appllpagts (for US only): AGESEN, Ole [DK/ SM. TR). OAPI (BE, BJ, CF, CG, CL, CM, GA. GN. GO,
US]; 3401 Hillview Avenue, Palo Alto, CA 94304 (US). GW. ML MR. NF. SN. TD. TG
MUMMIDI, Raviprasad [IN/US]; 3401 Hillview Av- ’ ? ’ T - TG).
enue, Palo Alto, CA 94304 (US). SUBRAHMANYAM, Published:

Pratap [US/US]; 3401 Hillview Avenue, Palo Alto, CA with international search report (4rt. 21(3))

94304 (US).
— before the expiration of the time limit for amending the
a9 Agc“,tSZ SMITH, Darryl, A. et al; Vmware, Inc., 3401 claims and to be republished in the event of receipt of
Hillview Avenue, Palo Alto, CA 94304 (US). amendments (Rule 48.2(h))

(54) Title: METHOD AND SYSTEM FOR ACHIEVING FAULT TOLERANT CHECKIP'OINTING ACROSS REMOTE VIR-
TUAL MACHINES

I
]
i
Primary ' Lower bandwidth Backup
M E : fwnneclionm VM
100 Intermediary | 130
115 -

Backup
Server

connection 120 135

Primary
Server
105

High bandwidth

Fault Domain Fault Domain

FIGURE 1A

(57) Abstract: A checkpointing fault tolerance network architecture enables a backup computer system to be remotely located
from a primary computcr systcm. An intcrmcdiary computer system is situated between the primary computer system and the
backup computer system to manage the transmission of checkpoint information to the backup VM in an efficient manner. The in-
termediary computer system is networked to the primary VM through a high bandwidth connection but is networked to the backup
VM through a lower bandwidth conncction. The intermediary computer system identifics updated data corrcsponding to memory
pages that have been least recently modified by the primary VM and transmits such updated data to the backup VM through the
low bandwidth connection. In such manner, the intermediary computer system economizes the bandwidth capacity ot the low
bandwidth connection, holding back updated data corresponding to more recently modified memory pages, since such memory
pages may be more likely to be updated again in the future.

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

METHOD AND SYSTEM FOR ACHIEVING FAULT TOLERANT CHECKPOINTING ACROSS REMOTE
VIRTUAL MACHINES

Background

[0001] As large-scale enterprises continue to adopt virtualization platforms as the
foundation of their data centers, virtual machine (VM) fault tolerance has become an
increasingly important feature to be provided by virtualization platform providers. Because a
single host server in a virtualized data center can support multiple VMs, failure of that host
server can bring down a multitude of services that were provided by the different VMs
running on the failed host server. As such, virtualization platforms need to provide a
mechanism to quickly resurrect a failed VM on a different host server so that the enterprise
can maintain the quality of its service.

[0002] Currently, providing fault tolerance for a primary VM is typically achieved by
providing a backup VM that runs on a server residing in a different “fault domain™ from the
server of the primary virtual machine. A fault domain can generally be described as a set of
host servers in a data center (or data centers) that share a number of specified attributes
and/or characteristics that results in a higher probability of failure of host servers in the fault
domain upon a failure of one of the host servers in the fault domain. The attributes and/or
characteristics utilized by an enterprise to define its data center fault domains depend upon
the type of disasters and the level of recovery that the enterprises desire to achieve. For
example, an enterprise may choose to define its fault domains based upon the physical
proximity of host servers (storage rack location, geographic locations, etc.), the dependency
of such servers on shared hardware (networked storage, power sources, physical connections,
etc.) or software technologies (shared file systems, etc.), and the like. A well-constructed
fault domain minimizes the correlation of a failure of a VM in one fault domain with the
failure of another VM in a different fault domain.

[0003] VM fault tolerance may be provided using deterministic replay,
checkpointing, or a hybrid of the two, which is disclosed in U.S. Patent Application Serial
No. 12/259,762, filed on August 28, 2008, the entire contents of which are incorporated by
reference herein. With replay techniques, essential portions of a primary VM’s instruction

stream (e.g., non-deterministic events within the primary VM’s instruction stream) are

-1-

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

captured in real-time (e.g., by a hypervisor layer or virtual machine monitor component of the
primary VM) and transmitted to a backup VM (e.g., presumably located in a different fault
domain) to “replay” the primary VM’s execution in a synchronized fashion. If the primary
VM fails, the backup VM can then take over without discernable loss of time. While replay
techniques provide a robust fault tolerance solution with fast recovery times, they are less
viable, for example, when non-deterministic events become more frequent or more difficult
to identify within instruction streams, as is the case with virtual machines that support SMP
(symmetric multiprocessing) architectures with multiple virtual CPUs.

[0004] In contrast to replay techniques, checkpointing based fault tolerance
techniques are more flexible in their capabilities to support a variety of virtual architectures,
including SMP-based virtual machines. Techniques for generating and using checkpoints in
a virtual computer system are disclosed in U.S. Patent No. 7,529,897, the entire contents of
which are incorporated by reference herein. With checkpointing, the primary VM is
periodically stunned (i.e., execution is temporarily halted) during the course of execution
(each such stun period referred to as a “checkpoint”) to determine any modifications made to
the state of the primary VM since a prior checkpoint. Once such modifications are
determined, they are transmitted to the backup VM which is then able to merge the
modifications into its current state, thereby reflecting an accurate state of the primary VM at
the time of the checkpoint. Only upon notification of a failure of the primary VM does the
backup VM begin running, by loading the stored state of the primary VM into its own
execution state. However, due to the potentially large size of checkpoint information (e.g.,
multiple gigabytes) in a transmitted state and the need to stun the primary VM at periodic
checkpoints to transmit such state to the backup VM, the backup VM must be networked to
the primary VM with sufficiently high bandwidth such that the stun period is not prolonged
by network bandwidth limitations. This constraint currently restricts the ability to locate
backup VMs in locations that are geographically distant from the primary VM or otherwise in
a manner in which backup VMs are connected to primary VMs using network connections
having insufficient bandwidth capacity to effectively transmit checkpoint information.
Summary

[0005] One or more embodiments of the present invention enable a backup VM that
receives checkpointing information to be remotely located from a primary VM. Such

embodiments situate an intermediary computer system between the primary VM and the

.

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

backup VM to manage the transmission of checkpoint information to the backup VM in an
efficient manner. The intermediary computer system is networked to the primary VM
through a high bandwidth connection but is networked to the backup VM through a lower
bandwidth connection. During each checkpoint, the intermediary computer system receives
and stores updated data from the primary VM that corresponds to memory pages in the state
of the primary VM that have been modified since a previous checkpoint. The intermediary
computer system continuously identifies updated data corresponding to memory pages that
have been least recently modified by the primary VM and transmits such updated data to the
backup VM through the low bandwidth connection. In such manner, the intermediary
computer system economizes the bandwidth capacity of the low bandwidth connection,
holding back updated data corresponding to more recently modified memory pages, since
such memory pages are more likely to be updated again in the future. In one embodiment,
the intermediary computer system resides in a fault domain distinct from the fault domain of
the primary VM such that failure of the intermediary computer system is not correlated with
failure of the primary VM.

[0006] An embodiment of the present invention provides a method for transmitting an
updated state of a primary computer system to a backup computer system through an
intermediary computer system, wherein the backup computer system is networked to the
intermediary computer system through a low bandwidth connection that does not support
timely transmission of modified states of the primary computer system received by the
intermediary computer system at checkpoints. The method comprises the step of periodically
receiving, at the intermediary computer system, checkpoint information packets from the
primary computer system through a high bandwidth connection, continuously determining
whether each copy of memory pages of the primary computer system stored at the
intermediary computer system is a copy of a memory page that has been least recently
updated by the primary computer system and has not been transmitted to the backup
computer system, and transmitting updated data in each copy of each memory page
determined to be a least recently updated memory page to the backup computer system
through the low bandwidth connection. In this method, each checkpoint information packet
received at the intermediary computer system comprises updated data corresponding to
memory pages of the primary computer system that have been modified since a previously

received checkpoint information packet.

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

Brief Description of the Drawings

[0007] Figure 1A depicts a block diagram of an embodiment of a network
architecture for a primary and backup virtual machine using an intermediary computer
system.

[0008] Figure 1B depicts a block diagram of a second embodiment of a network
architecture for a primary and backup virtual machine using an intermediary computer
system.

[0009] Figure 2 depicts a flow diagram for transmitting an updated state of a primary
virtual machine to a backup virtual machine using an intermediary computer system.

[0010] Figure 3 depicts a data structure for transmitting cold memory pages at an
intermediary computer system.

Detailed Description

[0011] Figure 1A depicts a block diagram of an embodiment of a network
architecture for a primary and backup virtual machine using an intermediary computer
system. A primary VM 100 resides on a primary server 105 in a fault domain 110 of a data
center. One example of a primary server 105 that supports virtual machines is a server that
runs VMware's ESX™ hypervisor product, which is commercially available from VMware,
Inc. of Palo Alto, California (although it should be recognized that any virtualization
technologies may be used consistent with the teachings herein, including Xen®, Microsoft
Hyper-V and the like). An intermediary computer system 115 (hereinafter, “intermediary”™) is
situated in close enough proximity to server 105 such that a high bandwidth connection 120
can be placed between server 105 and intermediary 115. High bandwidth connection 120, as
described further below, provides sufficient bandwidth capacity to support the transmission
of checkpoint information between primary VM 100 and intermediary 115 during primary
VM’s 100 execution. For example, in one embodiment, high bandwidth connection 120
provides sufficient bandwidth capacity for intermediary 115 to efficiently receive checkpoint
information from the primary VM 100 at a rate of 50 to 100 times per second. with each set
of checkpoint information potentially comprising multiple gigabytes of data. Although
intermediary 115 is located at a sufficient physical proximity to primary VM 100 to enable
high bandwidth connection 120, intermediary 115 is also located in a different fault domain
125 than fault domain 110 of primary VM 100, such that a failure of primary VM 100 (or

server 105) is not correlated to (or otherwise does not have a significant correlation to) a

-4 -

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

failure of intermediary 115. As further depicted in Figure 1A, a backup VM 130 resides on a
backup server 135 that shares fault domain 125 with intermediary 115. A lower bandwidth
connection 140 between intermediary 115 and backup VM 130 provides flexibility to situate
backup VM 130 in a location geographically remote from intermediary 115 and/or primary
VM 100.

[0012] Figure 1B depicts a block diagram of a second embodiment of a network
architecture for a primary and backup virtual machine using a intermediary computer system.
As depicted in Figure 1B, intermediary 115 and backup VM 130 on backup server 135 reside
in different fault domains 125 and 145, respectively. For example, in one embodiment,
primary VM 100 resides on blade primary server 105 which also comprises fault domain 110.
Intermediary 115 is a second blade server utilizing the same chassis as blade primary server
105 but comprises a different fault domain 125. Intermediary 115 may be placed on top of
the chassis, for example, to protect against flood damage that may atfect blade primary server
105 which is placed on the bottom of the chassis (e.g., such that blade primary server 105 and
the intermediary 115 exhibit different failure characteristics resulting in different fault
domains 110 and 125, respectively). High bandwidth connection 120, in such an
embodiment, may be facilitated by the PCI-e backplane of the chassis. Backup VM 130 on
backup server 135 may be located in geographically remote location in this embodiment. For
example, if primary VM 100 and intermediary 115 are located in a data center in Palo Alto,
California, backup VM 130 may be located in a different data center in Boston,
Massachusetts. In another embodiment, intermediary 115 may be located at the edge of a
subnet, for example, as a modified NIC or a router or other edge device, for consolidation in
management. Alternatively, the functionality of intermediary 115 may be implemented
within primary server 105 itself, for example, set in a relatively more reliable part of the
processor or motherboard of primary server 105.

[0013] Figure 2 depicts a flow diagram for transmitting an updated state of a primary
virtual machine to a backup virtual machine using an intermediary computer system. In one
embodiment, primary server 105, which hosts primary VM 100, includes a checkpointing
module (or other checkpointing functionality) in its hypervisor. As further detailed below,
such a checkpointing module transmits checkpoint information packets over high bandwidth
connection 120 to intermediary 115 at each checkpoint. Each checkpoint information packet

includes information reflecting changes in the state of primary VM's 100 memory (and

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

emulated devices, in certain embodiments) from the previously transmitted checkpoint
information packet. In one embodiment, transmission of checkpoint information packets by
the hypervisor of primary server 105 occurs, for example, approximately at a rate of 50 to
100 times per second.

[0014] In step 200, the hypervisor of primary server 105 instantiates primary VM
100. In step 202, the hypervisor of primary server 105 takes an initial snapshot of the state of
primary VM 100 and transmits the snapshot to intermediary 115. The initial snapshot
comprises a plurality of memory pages that make up the state of memory (and, in certain
embodiments, the state of emulated devices) of primary VM 100. For example, in one
embodiment, each memory page has a size of 4KB such that a primary VM 100 configured
with a virtual RAM of 4GB would have an initial snapshot size of approximately 1 million
memory pages. In an embodiment utilizing VMware's ESX™ virtualization platform,
VMware's VMotion technology can be used to create and transmit such an initial snapshot.
In step 204, intermediary 115 receives and stores the initial snapshot. In step 206, the
hypervisor of primary VM 100 initiates a timer to periodically trigger the initiation of
checkpoints to generate checkpoint information packets (e.g., 50 to 100 times a second, etc.).
Prior to the expiration of the timer, in step 208, the hypervisor delays and queues any and all
outbound network packets generated by primary VM 100.

[0015] Once the timer expires in step 210, the hypervisor initiates a checkpoint by
stunning primary VM 100 (i.e., freezes its execution state) in step 212 and generates a
checkpoint information packet reflecting the current state of stunned primary VM 100 and
transmits the checkpoint information packet to intermediary 115 in step 214. In one
embodiment, the checkpoint information packet comprises a subset of the memory pages (or
portions thereof) of the initial snapshot that have been updated during execution of primary
VM 100 since a previously transmitted checkpoint information packet (or since the initial
snapshot for a first checkpoint information packet). It should be recognized that a variety of
techniques may be utilized to identify updated memory pages in primary VM 100 including,
for example, leveraging hardware that may be available on primary server 105 for detecting
such modified pages through hardware controlled dirty bits of page tables and page
directories used for memory virtualization. In step 216, intermediary 115 successfully
receives the transmitted checkpoint information packet and in step 218 transmits an

acknowledgement of successful receipt back to primary server 105. Once the hypervisor of

-6 -

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

primary server 105 receives the transmitted acknowledgement in step 220, the hypervisor
resumes execution of primary VM 100 in step 222 and releases all the queued up network
packets (from step 208) in step 224 before returning back to step 208. Delaying and queuing
the outbound network packets in step 208 and releasing them only after receiving
acknowledgement from intermediary 115 of receipt of a checkpoint information packet in
step 220 ensures that restoration of primary VM 100 by backup server 135 upon a failure of
primary VM 100 is based on a state of primary VM 100 that can properly resume network
communications with external entities (i.e., re-transmit outbound network packets since the
recovered state without confusing recipients, re-receive inbound network packets that it is
expecting, etc.).

[0016] Meanwhile, in step 226, intermediary 115 updates its stored snapshot of the
state of primary VM 100 with the updated memory pages (or portions thereof) in the
checkpoint information packet received in step 216. Simultaneously with its continuous
receipt of checkpoint information packets and updates to its stored snapshot of the state of
primary VM 100 in steps 216 and 226, intermediary 115 also continuously (e.g., via a
separate running process or thread, etc.) determines and transmits those received memory
pages that have been modified less or least recently by primary VM 100 to backup server 135
in step 228 (such less or least recently modified memory pages referred to herein as *“‘cold”
memory pages). In step 230, the hypervisor of backup server 135 receives these cold
memory pages and, in step 232, incorporates the cold memory pages into its reconstructed
state of primary VM 100 for backup VM 130. [t should be recognized that the reconstructed
state of primary VM 100 maintained by backup VM 130 may not necessarily reflect a
completed state of any particular past “checkpointed” state of primary VM 100 since
intermediary 115, in step 228, only transmits “cold” memory pages to backup server 135.
That is, memory pages that are considered “hotter” by intermediary 115 (i.e., modified more
recently), even if needed to provide backup server 135 a complete set of memory pages
reflecting the state of primary VM 100 at a particular checkpoint, are held back and not
transmitted to backup server 135. Holding back such hotter memory pages conserves the
limited bandwidth capacity of lower bandwidth connection 140 between intermediary 115
and backup server 135, based upon a presumption that the hotter memory pages will be again
modified before backup VM 130 needs to take any action due to a failure of primary VM
100.

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

[0017] If, in step 234, intermediary 115 detects a failure of primary VM 100 (or is
otherwise notified thereof), then in step 236, intermediary 115 notifies backup server 135 of
the failure of primary VM 100 and transmits any unsent memory pages of its stored snapshot
of primary VM 100 to backup server 135. In step 238, backup server 135 receives
notification of the failure of primary VM 100 and the memory pages and, in step 240,
incorporates the received memory pages into its reconstructed state for primary VM 100 and
resumes execution of primary VM 100 as backup VM 130.

[0018] Figure 3 depicts a data structure for transmitting cold memory pages at an
intermediary computer system. In one embodiment, intermediary 115, in contrast to primary
server 105 and backup server 135 which run virtualization platforms, is a non-virtualized
computer system running one or more processes (e.g., or threads, etc.) that receives
checkpoint information packets from primary server 105 and transmits memory pages to
backup server 135 as based upon information maintained in a data structure 300 (although it
should be recognized that intermediary 115 may also be implemented in a virtual machine in
alternative embodiments). As depicted in Figure 3, data structure 300 is an array of entries
that each correspond to one of memory pages O to N-1 that comprise the initial snapshot of
primary VM 100 (see, e.g., step 202 of Figure 2). Each such entry comprises a reference
field 302 (e.g., address pointer) to a location in intermediary’s 115 memory that stores a copy
of the memory page received from primary server 105 and a checkpoint number field 304
indicating the checkpoint (represented as an epoch or chronological number) in which
intermediary 115 received its current copy of the memory page.

[0019] A thread, referred to as receive thread 306, manages the receipt of memory
pages of primary VM 100 from primary server 105 (e.g., from the initial snapshot in step 202
as well as from each subsequent checkpoint information packet in step 214). In step 308, for
each memory page received from primary server 105 via high bandwidth connection 120,
receive thread 306 stores the memory page in the memory of intermediary 115. In step 310,
receive thread 306 inserts the storage address of the stored memory page into the reference
field 302 of the entry in data structure 300 corresponding to the received memory page. In
step 312, receive thread 306 updates the checkpoint number field 304 of the entry with the
current checkpoint number.

[0020] A simultaneously running thread, referred to as transmit thread 314, manages

the transmission of “cold” memory pages (e.g., least recently modified) to backup server 135

-8-

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

as described in step 228 of Figure 2 (via low bandwidth connection 140). Transmit thread
314 maintains a checkpoint variable 316 indicating a checkpoint number that transmit thread
314 is currently operating upon as well as a current array index 318 that indicates the current
entry in data structure 300 upon which transmission thread 314 is operating during its
execution. Checkpoint variable 316 is initialized to zero (e.g., the value of checkpoint
number field 304 in each entry of data structure 300 when such entry corresponds to the
memory page received from the initial snapshot received in step 204 of Figure 2) and current
array index 318 is initialized to the index of the first entry of data structure 300 (e.g., index of
zero). Transmit thread 314 begins with the first entry of data structure 300 (e.g., entry for
memory page 0) and if such entry’s checkpoint number field 304 matches checkpoint
variable 316 in step 320, then in step 322, transmit thread 314 begins transmitting the
memory page (i.e., such memory page being a “cold” memory page) referenced in the entry’s
reference field 302 to backup server 135 through lower bandwidth connection 140. In step
324, upon receiving an acknowledgment from backup server 135 of successful receipt of the
memory page, transmit thread 314 determines whether current array index 318 represents the
index of the last entry of data structure 300. If transmit thread 314 determines that current
array index 318 represents the index of the last entry in data structure 300, then in step 326,
transmit thread 314 increments checkpoint variable 316, resets current array index 318 to the
index of the first entry of data structure 300 (e.g., index of zero), and returns to the beginning
of data structure 300. Otherwise, transmit thread 314 increments current array index 318 and
moves to the next entry in data structure 300 in step 328.

[0021] If, in step 330, transmit thread 314 receives notification of a failure of primary
VM 100, then in step 332, transmit thread 314 traverses through data structure 300,
transmitting memory pages referenced in each entry (a) whose checkpoint number 304 is
greater than checkpoint variable 316, or (b) whose checkpoint number 304 equals checkpoint
variable 316 and whose index is greater than or equal to current array index 318 (i.e.,
indicating that the memory page has not yet been transmitted to backup server 135). In one
embodiment, upon receiving notification of a failure of primary VM 100 in step 330, transmit
thread 314 begins to transmit the “hotter’” memory pages first, by transmitting those memory
pages having the highest values in their checkpoint number fields 304, in an effort to enable

backup VM 130 to start execution prior to receiving all unsent memory pages in the snapshot,

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

under a presumption, for example, that the hotter memory pages are more likely to be
accessed during subsequent execution of backup VM 130 than colder memory pages.

[0022] It should be recognized that transmit thread 314 may traverse data structure
300 and transmit cold memory pages to backup server 135 at a significantly slower rate due
to lower bandwidth connection 140 than the rate that receive thread 308 receives and updates
memory pages at each checkpoint through high bandwidth connection 120. As such, the
value of checkpoint variable 316 remains lower than the actual current checkpoint number of
checkpoint information packets received by receive thread 306. By holding back hotter
memory pages and transmitting cold memory pages, intermediary 115 thus reduces the
possibility that the bandwidth capacity of lower bandwidth connection 140 will be wasted on
transmission of memory pages that would likely be overwritten with updated data in the near
future (i.e., fewer memory pages are transmitted by intermediary 115 than are received).
[0023] It should be recognized that data structure 300 and techniques described in
Figure 3 are merely exemplary and that a variety of alternative data structures and techniques
that may be utilized to determine whether memory pages are “cold” (i.e., with a different
conception of how “cold” may be defined or assessed). For example, in an alternative
embodiment of Figure 3 may include a transmission bit in each entry of data structure 300
which would indicate whether the memory page corresponding to the entry has already been
transmitted to backup VM 130. Another alternative embodiment utilizes an array of entries
indexed by memory pages of the primary VM’s snapshot (similar to data structure 300),
where each entry in the array comprises a reference to the stored memory page (similar to
reference field 302) and a counter value. In such an embodiment, a receive thread increments
the counter value for an entry each time a received checkpoint information packet includes a
corresponding updated memory page. Simultaneously, a transmit thread continually cycles
through the array and transmits memory pages corresponding to entries that have a pre-
specified low counter value. Such an embodiment utilizes the concept of least frequently
modified memory pages to define “cold” rather than least recently modified. Yet another
alternative embodiment utilizes a data structure that maintains a list of checkpoint numbers
for each memory page corresponding to the checkpoints in which such memory page was
updated. Such a data structure provides flexibility to specify or define “cold” memory pages

in a variety of ways, such as, for example, memory pages with the smallest list of checkpoint

-10 -

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

numbers or memory pages that have remained unchanged for a consecutive number of
checkpoints (e.g., least frequently modified or least recently modified, etc.).

[0024] It should be recognized that various modifications and changes may be made
to the specific embodiments described herein without departing from the broader spirit and
scope of the invention as set forth in the appended claims. For example, while the foregoing
discussions have focused on embodiments in which primary server 105 and intermediary 115
transmitting complete memory pages (if such memory page has been modified), it should be
recognized that alternative embodiments may apply difference techniques or other
compression techniques on memory pages at either or both of primary server 105 and
intermediary 115 prior to their transmission. Such alternative embodiments may thus
transmit only updated data corresponding to the memory pages rather than the complete
memory pages themselves. Similarly, it should be recognized that although the foregoing
embodiments have discussed a single intermediary 115, embodiments may incorporate
multiple intermediaries, possible in different fault domains, such that probability of failure of
all intermediaries is negligible. Additionally, while the foregoing embodiments have been
generally described using primary and backup VMs, other primary and backup computer
systems, including non-virtualized systems, may be used consistent with the teachings herein.
[0025] The various embodiments described herein may employ various computer-
implemented operations involving data stored in computer systems. For example, these
operations may require physical manipulation of physical quantities usually, though not
necessarily, these quantities may take the form of electrical or magnetic signals where they,
or representations of them, are capable of being stored, transferred, combined, compared, or
otherwise manipulated. Further, such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any operations described herein that
form part of one or more embodiments of the invention may be useful machine operations.
In addition, one or more embodiments of the invention also relate to a device or an apparatus
for performing these operations. The apparatus may be specially constructed for specific
required purposes, or it may be a general purpose computer selectively activated or
configured by a computer program stored in the computer. In particular, various general
purpose machines may be used with computer programs written in accordance with the
teachings herein, or it may be more convenient to construct a more specialized apparatus to

perform the required operations.

-11 -

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

[0026] The various embodiments described herein may be practiced with other
computer system configurations including hand-held devices, microprocessor systems,
microprocessor-based or programmable consumer electronics, minicomputers, mainframe
computers, and the like.

[0027] One or more embodiments of the present invention may be implemented as
one or more computer programs or as one or more computer program modules embodied in
one or more computer readable media. The term computer readable medium refers to any
data storage device that can store data which can thereafter be input to a computer system
computer readable media may be based on any existing or subsequently developed
technology for embodying computer programs in a manner that enables them to be read by a
computer. Examples of a computer readable medium include a hard drive, network attached
storage (NAS), read-only memory, random-access memory (e.g., a flash memory device), a
CD (Compact Discs) CD-ROM, a CD-R, or a CD-RW, a DVD (Digital Versatile Disc), a
magnetic tape, and other optical and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled computer system so that the computer
readable code is stored and executed in a distributed fashion.

[0028] Although one or more embodiments of the present invention have been
described in some detail for clarity of understanding, it will be apparent that certain changes
and modifications may be made within the scope of the claims. Accordingly, the described
embodiments are to be considered as illustrative and not restrictive, and the scope of the
claims is not to be limited to details given herein, but may be modified within the scope and
equivalents of the claims. In the claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.

[0029] Plural instances may be provided for components, operations or structures
described herein as a single instance. Finally, boundaries between various components,
operations and data stores are somewhat arbitrary, and particular operations are illustrated in
the context of specific illustrative configurations. Other allocations of functionality are
envisioned and may fall within the scope of the invention(s). In general, structures and
functionality presented as separate components in exemplary configurations may be
implemented as a combined structure or component. Similarly, structures and functionality

presented as a single component may be implemented as separate components. These and

-12 -

WO 2011/146645 PCT/US2011/037032

other variations, modifications, additions, and improvements may fall within the scope of the

appended claims(s).

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

We claim:

1. A method for transmitting an updated state of a primary computer
system to a backup computer system through an intermediary computer system, wherein the
backup computer system is networked to the intermediary computer system through a low
bandwidth connection that does not support timely transmission of modified states of the
primary computer system received by the intermediary computer system at checkpoints, the
method comprising:

periodically receiving, at the intermediary computer system, checkpoint
information packets from the primary computer system through a high bandwidth connection,
wherein each checkpoint information packet comprises updated data corresponding to
memory pages of the primary computer system that have been modified since a previously
received checkpoint information packet;

continuously determining whether each copy of memory pages of the primary
computer system stored at the intermediary computer system is a copy of a memory page that
has been least recently updated by the primary computer system and has not been transmitted
to the backup computer system; and

transmitting updated data in each copy of each memory page determined to be
a least recently updated memory page to the backup computer system through the low
bandwidth connection.

2. The method of claim 1, further comprising the steps of:

receiving notification of a failure of the primary computer system; and

transmitting to the backup computer system through the low bandwidth
connection updated data corresponding to each unsent memory page stored at the
intermediary computer system.

3. The method of claim 2, wherein updated data corresponding to unsent
memory pages that have been most recently modified by the primary computer system are
transmitted first.

4. The method of claim 1, wherein the primary computer system resides
in a first fault domain and the intermediary computer system resides in a second fault domain.

5. The method of claim 1, wherein the periodically receiving step is

performed by a first thread running in the intermediary computer system and the continuously

-14-

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

determining and transmitting steps are performed by a second thread running in the
intermediary computer system.

6. The method of claim 1, wherein the primary computer system is a
server hosting a primary virtual machine and the backup computer system is a second server
hosting a backup virtual machine.

1. The method of claim 1, wherein the intermediary computer system
maintains an array of entries corresponding to each memory page of the primary computer
system, wherein each entry of the array comprises a reference to a copy of the corresponding
memory page stored in the intermediary computer system and a checkpoint number
identifying a checkpoint at which the copy was received by the intermediary computer
system.

8. The method of claim 7, wherein the continuously determining step
further comprises the steps of:

traversing the entries in the array to compare a current checkpoint variable
with the checkpoint number of each entry of the array;

transmitting updated data in the copy of the corresponding memory page
stored in the intermediary computer system of an entry if the checkpoint number of the entry
equals the current checkpoint variable;

incrementing the current checkpoint variable after analyzing a last entry in the
array; and

returning to the beginning of the array;

9. A computer-readable storage medium including instructions that, when
executed by a processor of an intermediary computer system transmits an updated state of a
primary computer system to a backup computer system, wherein the backup computer system
is networked to the intermediary computer system through a low bandwidth connection that
does not support timely transmission of modified states of the primary computer system
received by the intermediary computer system at checkpoints, by performing the steps of:

periodically receiving, at the intermediary computer system, checkpoint
information packets from the primary computer system through a high bandwidth connection,
wherein each checkpoint information packet comprises updated data corresponding to
memory pages of the primary computer system that have been modified since a previously

received checkpoint information packet;

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

continuously determining whether each copy of memory pages of the primary
computer system stored at the intermediary computer system is a copy of a memory page that
has been least recently updated by the primary computer system and has not been transmitted
to the backup computer system; and

transmitting updated data in each copy of each memory page determined to be
a least recently updated memory page to the backup computer system through the low
bandwidth connection.

10. The computer-readable storage medium of claim 9, wherein the
processor of an intermediary computer system further performs the steps of:

receiving notification of a failure of the primary computer system; and

transmitting to the backup computer system through the low bandwidth
connection updated data corresponding to ecach unsent memory page stored at the
intermediary computer system.

11. The computer-readable storage medium of claim 10, wherein updated
data corresponding to unsent memory pages that have been most recently modified by the
primary computer system are transmitted first.

12. The computer-readable storage medium of claim 9, wherein the
primary computer system resides in a first fault domain and the intermediary computer
system resides in a second fault domain.

13. The computer-readable storage medium of claim 9, wherein the
periodically receiving step is performed by a first thread running in the intermediary
computer system and the continuously determining and transmitting steps are performed by a
second thread running in the intermediary computer system.

14. The computer-readable storage medium of claim 9, wherein the
primary computer system is a server hosting a primary virtual machine and the backup
computer system is a second server hosting a backup virtual machine.

15. The computer-readable storage medium of claim 9, wherein the
intermediary computer system maintains an array of entries corresponding to each memory
page of the primary computer system, wherein each entry of the array comprises a reference
to a copy of the corresponding memory page stored in the intermediary computer system and
a checkpoint number identifying a checkpoint at which the copy was received by the

intermediary computer system.

- 16 -

10

15

20

25

30

WO 2011/146645 PCT/US2011/037032

16. The computer-readable storage medium of claim 15, wherein the
continuously determining step further comprises the steps of:

traversing the entries in the array to compare a current checkpoint variable
with the checkpoint number of each entry of the array;

transmitting updated data in the copy of the corresponding memory page
stored in the intermediary computer system of an entry if the checkpoint number of the entry
equals the current checkpoint variable;

incrementing the current checkpoint variable after analyzing a last entry in the
array; and

returning to the beginning of the array;

17. A computer system configured to transmit an updated state of a
primary computer system to a backup computer system, the computer system comprising:

a primary computer system residing in a first fault domain and configured to
transmit checkpoint information packets comprising updated data corresponding to memory
pages of the primary computer system modified since a previously transmitted checkpoint
information packet; and

an intermediary computer system residing in a second fault domain and
connected to the primary computer system through a high bandwidth connection, wherein the
intermediary computer system is configured to receive the transmitted checkpoint
information packets and transmit updated data corresponding to least recently modified
memory pages stored at the intermediary computer system to a backup computer system
through a lower bandwidth connection.

18. The computer system of claim 17, wherein the intermediary computer
system is further configured to receive notification of a failure of the primary computer
system and transmit to the backup computer system through the low bandwidth connection
updated data corresponding to each unsent memory page stored at the intermediary computer

system.
19. The computer system of claim 18, wherein the primary computer

system is a server hosting a primary virtual machine and the backup computer system is a

second server hosting a backup virtual machine..

-17 -

WO 2011/146645 PCT/US2011/037032

20. The computer system of claim 17, wherein the intermediary computer
system maintains an array of entries corresponding to each memory page of the primary
computer system, wherein each entry of the array comprises a reference to a copy of the
corresponding memory page stored in the intermediary computer system and a checkpoint

number identifying a checkpoint at which the copy was received by the intermediary

computer system.

- 18 -

WO 2011/146645 PCT/US2011/037032

P i P R R I i R R

I’ \\ I” \\\
! | \
N s SR ¥ —
: Primary L Lower bandwidth Backup .
! o ion 140 |
! VM ! : Intermediar / onnecton 12 vu |
[}
! 100 : e Y lg »| | 130 |
1 - 1 119 !
! Primary ! Backup :
! Server ' _High bandwidth Server \
! 105 vt tion 120 135 :
! \ jave} J ! ! connection 120 \ y, |
[} [|
' Fault Domain ' Fault Domain ,
FIGURE 1A
H \ / Lower bandwidth Y / \
' ' ‘ ' ' connection 140 ' ! ‘ |
' Primary ' ' | ! Backup :
| VM | | . I | VM |
! 100]] Intermediary | I 130 !
1 _ 1 1 ﬁ I 1 1
! Primary ! ! ! ! Backup !
! Server ! ! : ! Server !
1 105 1 1 High bandwidth I 1 135 |
' ~— ' ' connection 120 | ! ~— |
] [}] | | [}
| L} | | | |
' Fault Domain K \ Fault Domain , \ Fault Domain !
\\\ m ’/I \\\ @ //, \\\ 145 //l

e e e - e e e e e -

FIGURE 1B

PCT/US2011/037032

WO 2011/146645

2/3

]

1

|

Oo¥c AIA |
dnyoeq ul \NA Alewud jo '
UONINoaXa BWNsal pue slels]
pajoniisuodsal ojul sabed '
Aowsw juasun aelodiodu| '
|

L}

L}

]

L}

]

[}

A

8¢e sobed
Aowaw juasun Bulurews.
pue WA Aewiud jo aun|iey
1O UOIBOIIOU BAIS08Y

WA dnsjoeq
Jo) INA Aewnd Jo sa1els

cee
pajonJisuooal ojul sebed w
flowsw p|o9o a1elodioou|
A —
(0]5%4
sobed -/
Al [ESp—

KlowaW pjoo aAleoay

(_ves)

(10s1n10dAYH) 0gL 19M19g dnyjoeg

¢ 3dNoid

744
- sjoyoed ylomiau penanb ssesjay
sabed fiowsawl Juasun Buluiewsa.
Jwsue pue A Aewud 55 4
paiie} jo sanies dnxoeq AHION | A Aewud (unjs-un) swnsey
9¢gC [
) 0ce Keipsuwusiul
SNIA m Lol JusLsbBpamoudde SAIS08Y
Aewnd Jjo ainjie} — v
Yos1e] %A _
0 | Aelpswisiul o} JWsues) pue j9xoed
ve “ “ uoleWIojUl JUIodyoay0 sjelaus)
.)
Jansas dmyoeq “ “ FA%4 WA Aewnud unig
01 sebed Auowsw _p|o9, liwsuen Vo
pue auiwIs}ap A|IShonuiuo) N ' |
4 gcc ! | s paJdidxa
uonewJoul yox2ed juiodyosyo ' “ Jswil|
paAleoal Wwoyj joysdeus paiols Jo | g7z “ " %4
sabed Alowsw payipow aepdn) m
' | 802 WA Aewnd jo siexoed ejep
+ o Ylomyau BuioBino |je snanb pue AgjsQq
welweabpamouyoe Nwsuel] [---=' | ry
P [}
A -8l . 902 sswn Bunuiodyoeyo sjenu|
ole 19v0ed A.::L“ _ A
uoljeLIojul Julodsoslo anleoey __|20C Aseipswisiul o} yiusues
' _ pue joysdeus WA Alewud aye |
v0oC WA Aewnd A.-u:.m — 4
JO Joysdeus a8l101s pue sAlgday 00¢ INA Alewiud sienuelsu|

Gl Areipawiajuj

((vms)

(10s1a19dAH) GO | JoAI0S

€ 3dNold
A

PCT/US2011/037032

WO 2011/146645

3/3

81¢ X9opul Aelie JUaLIND Z Xapul 00¢ 21Monag ejeq
9S0UMm pue gL¢ s|gemeA uiodyoayo
= Jaquinu juiod)2ayo asoym JequInN L-N ebed Alowsiy
(in) 1o “gl¢ s|qeueA JUl0dyO8YD wiodxosy) | pelois 0} eousialey
< #0¢€ Jaquinu juiodyoayo asoym (1)
:sobed Alowaw ||e BuiIWSUES} UelS JoquinN Z-N ebed Aowsy | .
wiodyosy) | pelois 0]l souseley _
JequinN ©-N abed Alowa|p m
wiodxyosy) | palois 0} eduslsley !
JaquinN p-N ebed Alowsiy |, _
wiodyosy) | peloig 0l sousisley "
|
> 2Jnonays elep ul Aue xau o} ob [
1 KeJIE X9pUI JUSLIND JUSLIAIOU| "
||||||| 1
o _
2InjonJis Blep Jo Ue)S 0} |
uinjal % ainjonJ}s BIEp Jo Aljus o (=l¢ Jaqunu
1411 0} AeLIe Xapul Jua.INg 19sal ® e | JUl0ch oo 1USIND
‘a1gBLBA JUI0TYD8YD JUBWAIOU| — Lt AU 40 JBquunU
p— _ !
SOA f@Nw _ 1uodyoayo aepdn
Ve JaquinN ¢ obed Alowap _ a
¢hiue ise lodyoay) | paloig 0} eouslsiey _ ore
el [e | S
- iodyoay) | peloig o) eousejey . mmm o_ﬁao”cw h_ cmwem
Jus Ul peoudla}al [
obed Alowaw ywsued | JequunnN | bed Alowspy |~ " 0} 9duaJajal Lasu|
— iodyoays | paloig 0} eouslisioy 3
[44
JaquinN 0 ©bed Alowayp 308
” 0Z¢ Julodxosyg p8J0]S 0] adualejay G| Aeipawuojul
g ¢OIqBLIEA P B j0 Alowaw
Juioayoay = Joquinu R [
oot 70E 208 1 86ed Alowaw 2101
8l¢ 9l¢ —
FIE peaJyl Hwsuel] xepu| Aely Jusing a|qeleA JuIodyosy) 90¢

peaiyl aAIo29Yy

	DESCRIPTION
	CLAIMS
	DRAWINGS

