

UK Patent Application

(19) GB (11) 2 227 664 (13) A

(43) Date of A publication 08.08.1990

(21) Application No 9002194.0

(22) Date of filing 31.01.1990

(30) Priority data

(31) 306734

(32) 06.02.1989

(33) US

(71) Applicant

E.R. Squibb & Sons Inc

(Incorporated in the USA - Delaware)

Lawrenceville-Princeton Road, Princeton,
New Jersey 08543-4000, United States of America

(72) Inventors

A.A. Gunnar Aberg
Lawrence Friedhoff

(74) Agent and/or Address for Service

D Young & Co
10 Staple Inn, London, WC1V 7RD, United Kingdom

(51) INT CL⁵
A61K 31/557

(52) UK CL (Edition K)

A5B BKD B42Y B421 B422 B426 B43Y B430 B431
B432 B433 B44Y B441 B442 B446 B45Y B450 B451
B452 B453 B55Y B550 B57Y B575 B58Y B586 B59Y
B596 B62Y B626 B64Y B644 B646 B65Y B654
B656 B823 B828 B829
U1S S2415

(56) Documents cited

US 4663336 A US 4537981 A US 4416896 A
WPI abstract no. 90-001980/01
WPI abstract no. 89-123816/17
WPI abstract no. 86-191168/30
WPI abstract no. 86-176217/27
WPI abstract no. 86-068959/10
Chem. Abs. vol. 109 (9) abstract no. 67628y (1988)

(58) Field of search

UK CL (Edition J) A5B BHA BJA BKD
INT CL⁴ A61K
Online databases: WPI, CHABS

(54) Treating hypertension using a thromboxane A₂ receptor antagonist

(57) A method is provided for treating hypertension by administering a thromboxane A₂ receptor antagonist which preferably is a 7-oxabicycloheptane prostaglandin analog. In addition, new combinations are provided containing a thromboxane A₂ receptor antagonist and a beta blocker, an angiotensin converting enzyme inhibitor, a diuretic, an endopeptidase inhibitor or human ANF 99-126.

The antagonist may be administered in single or divided doses of from 0.5 to 2500 mg/one to four times daily.

GB 2 227 664 A

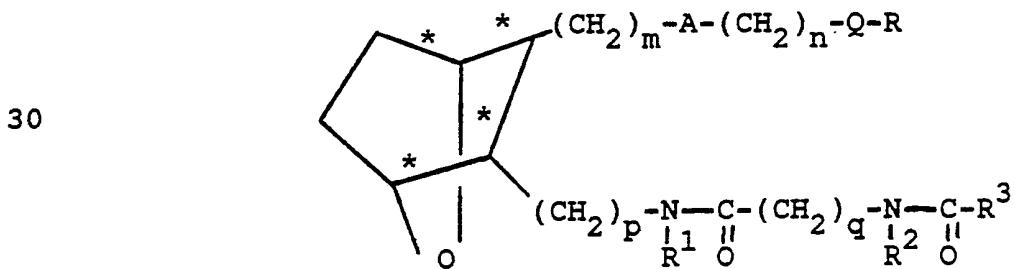
METHOD OF TREATING HYPERTENSION

5

The present invention relates to a method for treating hypertension by administering a thromboxane A₂ receptor antagonist, which preferably is a 7-oxabicycloheptane prostaglandin 10 analog, and to new combinations containing a thromboxane A₂ receptor antagonist.

In accordance with the present invention, a 15 method is provided for treating hypertension wherein a therapeutically effective amount of a thromboxane A₂ receptor antagonist is systemically administered, such as orally or parenterally, to reduce blood pressure in mammals, including humans, 20 during the period of treatment.

In addition, in accordance with the present invention, new combinations are provided, for treating hypertension, containing a thromboxane A₂ receptor antagonist and an angiotensin converting 25 enzyme inhibitor, a beta blocker, a diuretic, an endopeptidase inhibitor and/or human ANF 99-126.

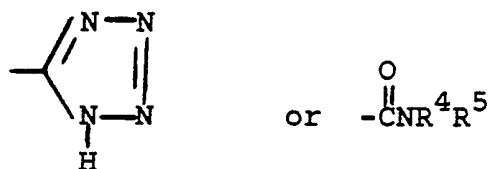

The term "thromboxane A₂ receptor antagonist" as employed herein includes compounds which are so-called thromboxane A₂ receptor 30 antagonists, thromboxane A₂ antagonists,

thromboxane A₂/prostaglandin endoperoxide antagonists, TP-receptor antagonists, or thromboxane antagonists except insofar as the compound is solely an inhibitor of thromboxane synthesis.

Thromboxane A₂ antagonists which may be employed herein are specific inhibitors of the actions of thromboxane A₂ and therefore produce the desired effect of thromboxane A₂ inhibition without causing other non-specific effects that may be undesirable.

The thromboxane A₂ receptor antagonist employed herein will preferably be a 7-oxabicycloheptane prostaglandin analog and will include 7-oxabicycloheptane substituted diamide prostaglandin analogs as disclosed in U.S. Patent No. 4,663,336, 7-oxabicycloheptane substituted amino prostaglandin analogs as disclosed in U.S. Patent No. 4,416,896 and 7-oxabicycloheptane prostaglandin analogs as disclosed in U.S. Patent No. 4,537,981. Other 7-oxabicycloheptane prostaglandin analogs may be included as will be apparent to one skilled in the art.

The 7-oxabicycloheptane substituted diamide prostaglandin analogs suitable for use herein, as disclosed in U.S. Patent No. 4,663,336, have the formula


including all stereoisomers thereof, wherein m is 0 to 4; A is $-\text{CH}=\text{CH}-$ or $-\text{CH}_2-\text{CH}_2-$; n is 1 to 5; Q is $-\text{CH}=\text{CH}-$, $-\text{CH}_2-$,

5 OH Halo Halo Halo

$$-\text{CH}-, -\text{CH}-, -\text{C}-$$

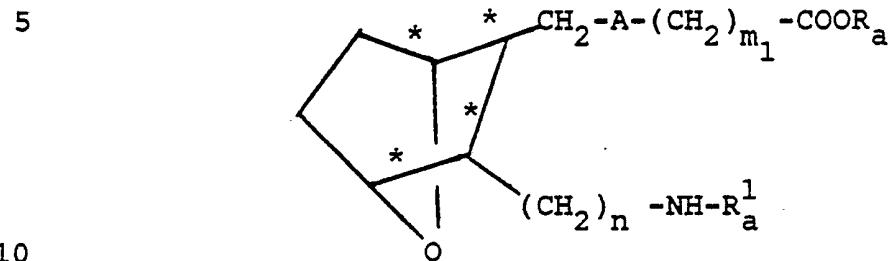
or a single bond; R is CO_2H , CO_2alkyl , CO_2 alkali metal, CO_2 polyhydroxyamine salt, $-\text{CH}_2\text{OH}$,

10

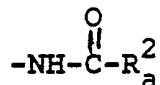
15

wherein R⁴ and R⁵ are the same or different and are H, lower alkyl, hydroxy, lower alkoxy or aryl at least one of R⁴ and R⁵ being other than hydroxy and lower alkoxy; p is 1 to 4; R¹ is H or lower alkyl; q is 1 to 12; R² is H or lower alkyl; and R³ is H, lower alkyl, lower alkenyl, lower alkynyl, aryl, arylalkyl, lower alkoxy, arylalkyloxy, aryloxy, amino, alkylamino, arylalkylamino, arylamino,

25

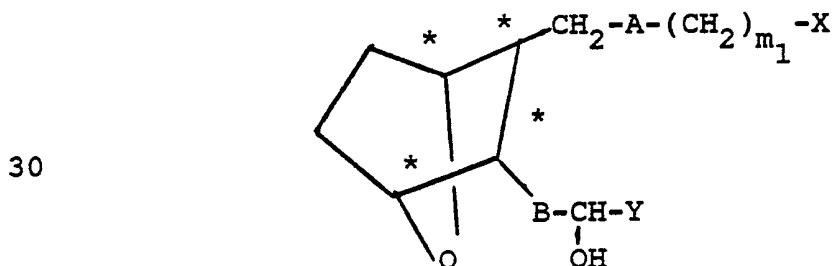

(O)_n' (O)_n' (O)_n'
 lower alkyl-S-, aryl-S-, arylalkyl-S-.

aryl-S-alkyl-, alkyl-S-alkyl-, arylalkyl-S-alkyl


30

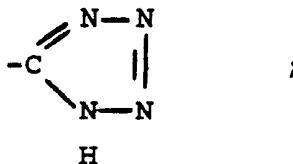
(wherein n' is 0, 1 or 2), alkylaminoalkyl, arylaminoalkyl, arylalkylaminoalkyl, alkoxyalkyl, aryloxyalkyl or arylalkoxyalkyl.

The 7-oxabicycloheptane substituted amino prostaglandin analogs suitable for use herein, as disclosed in U.S. Patent No. 4,416,896, have the formula



and including all stereoisomers thereof, wherein
A is $\text{CH}=\text{CH}$ or $(\text{CH}_2)_2$; m_1 is 1 to 8; n_1 is 0
to 5, R_a is H or lower alkyl; and R_a^1 is lower
15 alkyl, aryl, aralkyl, lower alkoxy, aralkoxy or

20 wherein R_a^2 is lower alkyl, aryl, aralkyl, alkoxy,
aryloxy, aralkoxy, alkylamino, arylamino or
aralkylamino.


The 7-oxabicycloheptane prostaglandin
analog suitable for use herein, as disclosed in
25 U.S. Patent No. 4,537,981, have the formula

and including all stereoisomers thereof, wherein A and B may be the same or different and A is

$\text{CH}=\text{CH}$ or $(\text{CH}_2)_2$; B is $\text{CH}=\text{CH}$, $\text{C}\equiv\text{C}$ or $(\text{CH}_2)_2$; m_1 is 1 to 8;

5 X is OH;

10 CO_2R_a wherein R_a is H or lower alkyl; or

wherein Z is H, lower alkyl, aryl, SO_2Q_1 (with Q_1 being lower alkyl or aryl),

15

or OR_b^2 wherein R_b^2 is H, and Y is alkyl,

substituted alkyl; aryl-lower alkyl; alkenyl; alkynyl, aryl; pyridyl; substituted pyridyl;

20

pyridyl-lower alkyl; thienyl, substituted thienyl; thienyl-lower alkyl; cycloalkyl; cycloalkylalkyl; substituted cycloalkylalkyl; or phenoxyethyl.

25

Preferred examples of thromboxane A_2 receptor antagonists which may be employed herein include the 7-oxabicycloheptane compounds disclosed in U.S. Patent No. 4,537,981, especially, [1S-[1 α ,2 α (5Z),3 α (1E,3R,4S),4 α]]-7-[3-(3-hydroxy-4-phenyl-1-pentenyl)-7-oxabicyclo-[2.2.1]hept-2-yl]-5-heptenoic acid; the 7-oxabicycloheptane

30

substituted amino-prostaglandin analogs disclosed in U.S. Patent No. 4,416,896, especially, [1S-[1 α ,2 α ,(5Z),3 α ,4 α]]-7-[3-[[2-(phenylamino)carbonyl]hydrazino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-

heptenoic acid; the 7-oxabicycloheptane substituted diamide prostaglandin analogs disclosed in U.S. Patent No. 4,663,336, especially, [1S-[1 α ,2 α (5Z),3 α ,4 α]]-7-[3-[[[[1-oxoheptyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid and the corresponding tetrazole, and [1S-[1 α ,2 α (Z),3 α ,4 α]]-7-[3-[[[[4-cyclohexyl-1-oxobutyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid.

10 Examples of other such thromboxane A₂ antagonists suitable for use herein include but are not limited to the phenoxyalkyl carboxylic acids disclosed in U. S. Patent No. 4,258,058 to Witte et al, especially 4-[2-(benzenesulfamido)ethyl]phenoxyacetic acid, (BM 13,177 - Boehringer Mannheim), the sulphonamidophenyl carboxylic acids disclosed in U. S. Patent No. 4,443,477 to Witte et al, especially 4-[2-(4-chlorobenzenesulfonamido)-ethyl]phenylacetic acid, (BM 13,505, Boehringer Mannheim) the arylthioalkylphenyl carboxylic acids disclosed in U. S. Patent No. 4,752,676 especially 4-(3-((4-chlorophenyl)sulfonyl)propyl)benzeneacetic acid, (E)-5-[[[(pyridinyl)[3-(trifluoromethyl)phenyl]methylene]amino]oxy]pentanoic acid

15 also referred to as R68,070 - Janssen Research Laboratories, 3-[1-(4-chlorophenylmethyl)-5-fluoro-3-methylindol-2-yl]-2,2-dimethylpropanoic acid [(L-655240 Merck-Frosst) Eur. J. Pharmacol. 135(2):193, 17 Mar. 87], 5(Z)-7-([2,4,5-cis]-4-

20 (2-hydroxyphenyl)-2-trifluoromethyl-1,3-dioxan-5-yl)heptenoic acid (ICI 185282, Brit. J. Pharmacol 90 (Proc. Suppl):228 P-Abs., Mar. 87), 5(Z)-7-[2,2-dimethyl-4-phenyl-1,3-dioxan-cis-5-yl]-

25

30

heptenoic acid (ICI 159995, Brit. J. Pharmacol. 86 (Proc. Suppl):808 P-Abs., Dec. 85),
N,N'-bis[7-(3-chlorobenzeneaminosulfonyl)-1,2,3,4-tetrahydro-isoquinolyl]disulfonylimide (SKF 88046,
5 Pharmacologist 25(3):116 Abs, 117 Abs, Aug. 83),
[1 α (Z)-2 β ,5 α]-(+)-7-[5-[(1,1'-biphenyl)-4-yl]-methoxy]-2-(4-morpholinyl)-3-oxocyclopentyl]-4-heptenoic acid (AH 23848 - Glaxo, Circulation 72(6):1208, Dec. 85, levallorphan allyl bromide
10 (CM 32,191, Sanofi, Life Sci. 31 (20-21):2261, 15 Nov. 82), (Z,2-endo-3-oxo)-7-(3-acetyl-2-bicyclo-[2.2.1]heptyl-5-hepta-3Z-enoic acid, 4-phenylthiosemicarbazone (EP092 - Univ. Edinburgh, Brit. J. Pharmacol. 84(3):595, Mar. 85).

15 The disclosures of the above-mentioned patents are incorporated herein by reference.

20 In carrying out the method of the present invention, the thromboxane A₂ receptor antagonist may be administered systemically, such as orally or parenterally, to mammalian species, such as monkeys, dogs, cats, rats, humans, etc.

25 The thromboxane A₂ receptor antagonist may be incorporated in a conventional dosage form, such as a tablet, capsule, elixir or injectable. The above dosage forms will also include the necessary carrier material, excipient, lubricant, buffer, antibacterial, bulking agent (such as mannitol), anti-oxidants (ascorbic acid or sodium bisulfite) or the like. Oral dosage forms are 30 preferred, although parenteral forms are quite satisfactory as well.

With regard to such systemic formulations, single or divided doses of from about 0.5 to about

2500 mg, preferably from about 5 to 500 mg one to six times daily, may be administered in systemic dosage forms as described above for a prolonged period, that is, for as long as hypertension 5 continues. Sustained release forms of such formulations which may provide such amounts biweekly, weekly, monthly and the like may also be employed.

The thromboxane antagonist can also be 10 formulated with a diuretic for the treatment of hypertension. A combination product comprising thromboxane antagonist and a diuretic can be administered in an effective amount which comprises a totally daily dosage of about 30 to 15 600 mg, preferably about 30 to 330 mg of thromboxane antagonist, and about 15 to 300 mg preferably about 15 to 200 of the diuretic, to a mammalian species in need thereof. Exemplary of the diuretics contemplated for use in combination 20 with a compound of this invention are the thiazide diuretics, e.g., chlorothiazide, hydrochlorothiazide, flumethiazide, hydroflumethiazide, bendroflumethiazide, methylclothiazide, trichloromethiazide, 25 polythiazide or benzthiazide as well as ethacrynic acid, tricrynahen, chlorothalidone, furosamide, musolimine, bumetanide, triamterene, amiloride and spironolactone and salts of such compounds.

In treating hypertension, the thromboxane 30 receptor antagonists may be administered in combination with an angiotensin-converting enzyme (ACE) inhibitor such as captopril, zofenopril, fosinopril, enalapril, lisinopril, (S)-1-[6-amino-

2-[[hydroxy(4-phenylbutyl)phosphinyl]oxy]-1-oxohexyl]-L-proline (SQ 29,852) etc. employing the ACE inhibitor in an amount as indicated in the Physicians Desk Reference (PDR), for example,

5 from about 5 to about 350 mg per day. Such combination would be at a weight ratio of thromboxane antagonist to ACE inhibitor of from about 1:10 to about 10:1.

The thromboxane receptor antagonists can 10 also be administered in combination with a neutral endopeptidase inhibitor or with human ANF 99 - 126 in treating hypertension. Such combination would contain the thromboxane antagonist at from about 1 to about 500 mg per day and an endopeptidase inhibitor of from about 1 to about 100 mg per 15 kg of body weight or the human ANF 99 - 126 at from about 0.001 to about 0.1 mg per kg of body weight.

In addition, in treating hypertension, the thromboxane receptor antagonists may be employed 20 in combination with a beta blocker such as propranolol, nadolol, timolol maleate, metoprolol tartrate, labetalol hydrochloride and the like employing the beta blocker in amounts as indicated in the PDR such as in an amount of from about 5 to 25 about 350 mg per day. Such a combination would be at a weight ratio of thromboxane antagonist to beta blocker of from about 1:10 to about 10:1.

The thromboxane receptor antagonist, in treating hypertension, may also be used in 30 combination with a calcium channel blocker such as dihydropyridines such as nifedipine, nitrendipine, nimodipine, phenylalkylamines such as verapamil, benzothiazepines such as diltiazem and

benzazepines and the like employing the calcium channel blocker in amounts as indicated in the PDR such as in an amount of from about 1 to about 1000 mg per day. Such a combination would be at a 5 weight ratio of thromboxane antagonist to calcium channel blocker of from about 1:10 to about 10:1.

The thromboxane receptor antagonist may also be employed in combination with direct vasodilators such as hydralazine or minoxidil.

The following Examples represent preferred embodiments of the present invention.

Example 1

5 An injectable solution of thromboxane A₂ receptor antagonist for intravenous use in treating hypertension is produced as follows:

10	[1S-[1 α ,2 α (5Z),3 α ,4 α]]-7-[3-[[2-(phenylamino)carbonyl]hydrazino]-methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (SQ 29,548)	2500 mg
	Methyl paraben	5 mg
	Propyl paraben	1 mg
15	Sodium chloride	25 g
	Water for injection qs.	5 l.

20 The thromboxane A₂ receptor antagonist, preservatives and sodium chloride are dissolved in 3 liters of water for injection and then the volume is brought up to 5 liters. The solution is filtered through a sterile filter and aseptically filled into presterilized vials which are then closed with presterilized rubber closures. Each 25 vial contains a concentration of 75 mg of active ingredient per 150 ml of solution.

Example 2

30 An injectable for use in treating hypertension is prepared as described in Example 1 except that the thromboxane A₂ receptor antagonist employed is [1S-[1 α ,2 α (5Z),3 α (1E,3R,4S),4 α]]-7-[3-

(3-hydroxy-4-phenyl-1-pentenyl)-7-oxabicyclo-[2.2.1]hept-2-yl]-5-heptenoic acid (SQ 28,668).

Example 3

5 An injectable solution of thromboxane A₂ receptor antagonist for use in treating hypertension containing [1S-[1 α ,2 α (5Z),3 α ,4 α]]-7-[3-[[[[1-oxoheptyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]-hept-2-yl]-5-heptenoic acid (SQ 10 30,741) as the thromboxane A₂ receptor antagonist is prepared as described in Example 1.

Example 4

An injectable for use in treating 15 hypertension is prepared as described in Example 1 except that the thromboxane A₂ receptor antagonist employed is [1S-[1 α ,2 α (Z),3 α ,4 α]]-7-[3-[[[(4-cyclohexyl-1-oxobutyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid.

20

Example 5

A thromboxane A₂ antagonist formulation suitable for oral administration for use in treating hypertension is set out below.

25 1000 tablets each containing 400 mg of thromboxane A₂ receptor antagonist are produced from the following ingredients.

30	[1S-[1 α ,2 α (5Z),3 α ,4 α]]-7-[3-[[[(1-Oxoheptyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (SQ 30,741)	400 g
	Corn Starch	50 g
	Gelatin	7.5 g

Avicel (microcrystalline cellulose)	25 g
Magnesium stearate	2.5 g

5 The thromboxane A₂ receptor antagonist and
corn starch are admixed with an aqueous solution of
the gelatin. The mixture is dried and ground to a
fine powder. The Avicel and then the magnesium
stearate are admixed with the granulation. This
is then compressed in a tablet to form 1000 tablets
10 each containing 400 mg of active ingredient.

Example 6

15 A thromboxane A₂ antagonist tablet
formulation for use in treating hypertension is
prepared as described in Example 5 except that SQ
29,548 is employed as the thromboxane A₂ receptor
antagonist in place of SQ 30,741.

Example 7

20 A thromboxane A₂ antagonist tablet
formulation for use in treating hypertension is
prepared as described in Example 5 except that SQ
28,668 is employed in place of SQ 30,741.

25 It will also be appreciated that the above
thromboxane A₂ antagonist formulations may also
include a beta blocker such as propranolol or
atenolol, an ACE inhibitor such as enalapril,
lisinopril, zofenopril, fosinopril or SQ 29,852,
an endopeptidase inhibitor or human ANF 99-126,
30 a diuretic or a vasodilator.

Example 8

A thromboxane receptor A₂ antagonist-calcium channel blocker formulation suitable for oral administration for treating hypertension is 5 set out below.

1000 tablets each containing 400 mg of thromboxane A₂ antagonist and 100 mg diltiazem are produced from the following ingredients.

10	[1S-[1 α ,2 α (5Z),3 α ,4 α]]-7-[3-[[[[[(1-Oxoheptyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1] hept-2-yl]-5-heptenoic acid (SQ 30,741)	400 g
	Diltiazem	100 g
15	Corn starch	50 g
	Gelatin	7.5 g
	Avicel (microcrystalline cellulose)	25 g
	Magnesium stearate	2.5 g

20 The thromboxane antagonist, diltiazem and corn starch are admixed with an aqueous solution of the gelatin. The mixture is dried and ground to a fine powder. The Avicel and then the magnesium stearate are admixed with the granulation. This is 25 then compressed in a tablet to form 1000 tablets each containing 500 mg of active ingredients.

Example 9

An injectable solution for use in 30 administering calcium channel blocker and thromboxane A₂ receptor antagonist is produced as follows:

[1S-[1 α ,2 α (5Z),3 α ,4 α]]-7-[3-[[2-
(phenylamino)carbonyl]hydrazino]-
methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-
5-heptenoic acid (SQ 29,548)

5	or SQ30,741	2500 mg
	Nifedipine or diltiazem	2500 mg
	Methyl paraben	5 mg
	Propyl paraben	1 mg
	Sodium chloride	25 g
10	Water for injection qs.	5 l.

The calcium channel blocker, thromboxane A₂ antagonist, preservatives and sodium chloride are dissolved in 3 liters of water for injection and
15 then the volume is brought up to 5 liters. The solution is filtered through a sterile filter and aseptically filled into presterilized vials which are then closed with presterilized rubber closures. Each vial contains a concentration of 75 mg of
20 active ingredient per 150 ml of solution.

Example 10

An injectable for use in treating hypertension is prepared as described in Example 9
25 except that the thromboxane A₂ antagonist employed is the phenoxyalkyl carboxylic acid 4-[2-(benzenesulfamido)ethyl]phenoxyacetic acid, disclosed in U. S. Patent No. 4,258,058.

30

Example 11

An injectable for use in treating hypertension is prepared as described in Example 9

except that the thromboxane A₂ antagonist employed is [1S-[1 α ,2 β (Z),3 β ,4 α]]-7-[3-[[[(4-cyclohexyl-1-oxobutyl)amino]acetyl]amino]methyl]-7-oxabicyclo-[2.2.1]hept-2-yl]-5-heptenoic acid.

5

Example 11

1000 tablets each containing 200 mg of SQ 32,324 and 400 mg SQ 30,741 are produced from the following ingredients:

10

	(d- <u>cis</u>)-3-(acetyloxy)-1,3,4,5-	
	tetrahydro-4-(4-methoxyphenyl)-1-	
	[2-(methylamino)ethyl]-6-(trifluoro-	
	methyl)-2H-1-benzazepin-2-one,	
15	monohydrochloride salt (SQ 32,324)	200g
	SQ 30,741	400g
	Lactose	100g
	Avicel	150g
	Corn starch	50g
20	Magnesium stearate	5g

20 SQ 32,324, SQ 30,741, lactose and Avicel are admixed, then blended with the corn starch.

25 Magnesium stearate is added. The dry mixture is compressed in a tablet press to form 1000 505 mg tablets each containing 200 mg of active ingredient. The tablets are coated with a solution of Methocel E 15 (methyl cellulose) including as a color a lake containing yellow #6. The resulting tablets are 30 useful in treating hypertension.

Example 12

Two piece #1 gelatin capsules each containing 50 mg of captopril and 250 mg of SQ 30,741 are filled with a mixture of the following ingredients:

	SQ 30,741	250 mg
	Captopril	50 mg
	Magnesium stearate	7 mg
10	USP lactose	193 mg.

The resulting capsules are useful in treating hypertension.

15 Example 13

An injectable solution for use in treating hypertension is produced as follows:

	(d-cis)-3-(acetoxy)-1-[2-dimethyl-	
20	amino)ethyl]-1,3,4,5-tetrahydro-4-	
	(4-methoxyphenyl)-6-(trifluoromethyl)-	
	2H-1-benzazepin-2-one, monohydro-	
	chloride (SQ 31,765)	500 mg
	SQ 30,741	250 mg
25	Methyl paraben	5 mg
	Propyl paraben	1 mg.
	Sodium chloride	25 g
	Water for injection qs.	5 l.
30	SQ 31,765, SQ 30,741, preservatives and sodium chloride are dissolved in 3 liters of water	

for injection and then the volume is brought up to 5 liters. The solution is filtered through a sterile filter and aseptically filled into presterilized vials which are then closed with 5 presterilized rubber closures. Each vial contains 5 ml of solution in a concentration of 100 mg of active ingredient per ml of solution for injection.

Example 14

10 A thromboxane antagonist-beta blocker formulation suitable for oral administration for treating hypertension prepared as described in Example 1, is set out below.

15 1000 tablets each containing 400 mg of thromboxane antagonist and 40 mg nadolol are produced from the following ingredients.

	SQ 30,741	400 g
	Nadolol	40 g
20	Corn starch	50 g
	Gelatin	7.5g
	Avicel (microcrystalline cellulose)	25 g
	Magnesium stearate	2.5 g

25 Example 15

The following experiment demonstrates that a thromboxane receptor antagonist decreases blood pressure.

30 A thromboxane receptor antagonist [1S-[1 α ,2 α (5Z),3 α ,4 α]]-7-[3-[[[[[(1-oxoheptyl)-amino]acetyl]amino]methyl]-7-oxabicyclo-

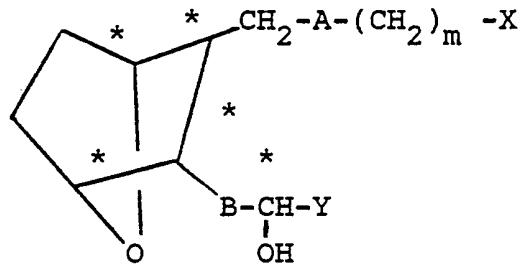
[2.2.1]hept-2-yl]-5-heptenoic acid (SQ), or placebo (PLA) was given to 3 groups of 12 healthy human subjects (8 per group received SQ and 4 PLA). SQ was given as a single 50 mg IV bolus 5 followed by an infusion of 3, 6 or 12 mg/hr for 48 hours. Mean pharmacodynamic (PD) parameters at 48 hours were:

10	Max. % Δ	% Increase Bleeding	% Decrease		
			Platelet Aggregation		
			Time	low	high
	PLA	-14 \pm 3	22 \pm 15	-9 \pm 11	-7 \pm 6
	3	-20 \pm 3	156 \pm 55*	98 \pm 4*	89 \pm 17*
15	6	-18 \pm 3	111 \pm 19*	100 \pm 0*	76 \pm 7*
	12	-28 \pm 8*	122 \pm 34*	100 \pm 0*	88 \pm 16*

(*p<0.05 vs. PLA)

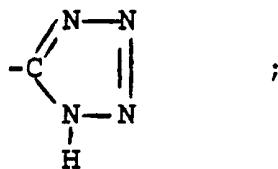
SQ specifically inhibited TXA₂-mediated 20 platelet aggregation ex vivo at low and high agonist (U46619) concentrations. Mean platelet TXA₂ receptor (R) affinity and density measured ex vivo were not changed. SQ increased template bleeding time when R occupancy was $\geq 99\%$ but not 25 when R occupancy was $\leq 70\%$.

From the above, it is seen that the thromboxane receptor antagonist reduced diastolic blood pressure.


CLAIMS

1. Use of a thromboxane A₂ receptor antagonist for the manufacture of a medicament for treatment of hypertension in a mammalian species by administration of a blood pressure lowering amount of the medicament.

2. The method as defined in Claim 1 wherein the thromboxane A₂ receptor antagonist is a 7-oxabicycloheptane prostaglandin analog.

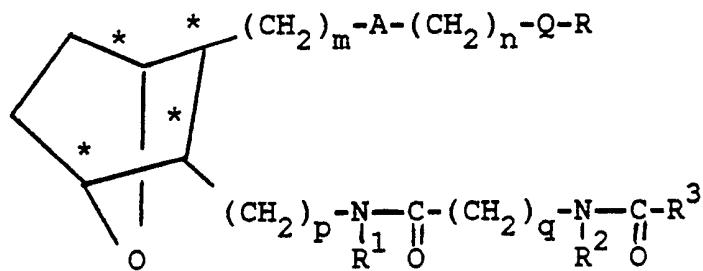

3. The method as defined in Claim 2 wherein the 7-oxabicycloheptane prostaglandin analog is a 7-oxabicycloheptane substituted diamide prostaglandin analog or a 7-oxabicycloheptane substituted amino prostaglandin analog.

4. The method as defined in Claim 2 wherein the 7-oxabicycloheptane prostaglandin analog has the formula

and including all stereoisomers thereof, wherein
A and B may be the same or different and A
is

CH=CH or $(CH_2)_2$; B is CH=CH, C≡C or $(CH_2)_2$; m_1 is 1 to 8; X is OH;

CO_2R_a wherein R_a is H or lower alkyl; or



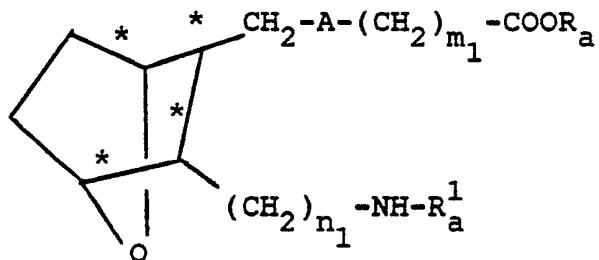
wherein Z is H, lower alkyl, aryl, $\text{SO}_2\text{-Q}_1$ (with Q_1 being lower alkyl or aryl),

or OR_b^2 wherein R_b^2 is H, and Y is alkyl; substituted alkyl; aryl-lower alkyl; alkenyl; alkynyl, aryl; pyridyl; substituted pyridyl; pyridyl-lower alkyl; thienyl, substituted thienyl; thienyl-lower alkyl; cycloalkyl; cycloalkylalkyl; substituted cycloalkylalkyl; or phenoxyethyl.

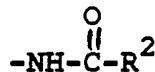
5. The method as defined in Claim 3 wherein the 7-oxabicycloheptane substituted diamide prostaqlandin analog has the formula

including all stereoisomers thereof, wherein m is 0 to 4; A is $-\text{CH}=\text{CH}-$ or $-\text{CH}_2-\text{CH}_2-$; n is 1 to 5; Q is $-\text{CH}=\text{CH}-$, $-\text{CH}_2$,

or a single bond; R is CO_2H , CO_2alkyl , CO_2 alkali metal, CO_2 polyhydroxyamine salt, $-\text{CH}_2\text{OH}$,


wherein R⁴ and R⁵ are the same or different and are H, lower alkyl, hydroxy, lower alkoxy or aryl at least one of R⁴ and R⁵ being other than hydroxy and lower alkoxy; p is 1 to 4; R¹ is H or lower alkyl; q is 1 to 12; R² is H or lower alkyl; and R³ is H, lower alkyl, lower alkenyl, lower alkynyl, aryl, arylalkyl, lower alkoxy, arylalkyloxy, aryloxy, amino, alkylamino, arylalkylamino, arylamino,

$(O)_{n'}$, $(O)_{n'}$, $(O)_{n'}$,
lower alkyl-S-, aryl-S-, arylalkyl-S-,


$\text{S}(\text{O})_{n'}\text{S}-$ alkyl-, $\text{S}(\text{O})_{n'}\text{S}-$ alkyl-, $\text{S}(\text{O})_{n'}\text{S}-$ alkyl-
(wherein n' is 0, 1 or 2), alkylaminoalkyl,

arylaminoalkyl, arylalkylaminoalkyl, alkoxyalkyl, aryloxyalkyl or arylalkoxyalkyl.

6. The method as defined in Claim 3 wherein the 7-oxabicycloheptane substituted amino prostaglandin analog has the formula

and including all stereoisomers thereof, wherein A is $\text{CH}=\text{CH}$ or $(\text{CH}_2)_2$; m_1 is 1 to 8; n_1 is 0 to 5, R_a is H or lower alkyl; and R_a^1 is lower alkyl, aryl, aralkyl, lower alkoxy, aralkoxy or

wherein R_a^2 is lower alkyl, aryl, aralkyl, alkoxy, aryloxy, aralkoxy, alkylamino, arylamino or aralkylamino.

7. The method as defined in Claim 1 wherein the thromboxane A_2 receptor antagonist is [1S-[1 α ,2 α (5Z),3 α (1E,3R,4S),4 α]]-7-[3-(3-hydroxy-4-phenyl-1-pentenyl)-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid.

8. The method as defined in Claim 1 wherein the thromboxane A_2 receptor antagonist has the name [1S-[1 α ,2 α (5Z),3 α ,4 α]]-7-[3-[[[[[(1-oxoheptyl) amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]

hept-2-yl]-5-heptenoic acid or the corresponding tetrazole.

9. The method as defined in Claim 1 wherein the thromboxane A₂ receptor antagonist has the name [1S-[1 α ,2 α (Z),3 α ,4 α]]-7-[3-[[[[4-cyclohexyl-1-oxobutyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid.

10. The method as defined in Claim 1 wherein the thromboxane A₂ receptor antagonist has the name [1S-[1 α ,2 α (5Z),3 α ,4 α]]-7-[3-[[2-(phenylamino)carbonyl]hydrazino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid.

11. The method as defined in Claim 1 wherein the thromboxane A₂ receptor antagonist is administered orally or parenterally.

12. The method as defined in Claim 1 wherein the thromboxane receptor antagonist is administered in single or divided doses of from about 0.5 to about 2500 mg/one to four times daily.

13. The method as defined in Claim 1 wherein the thromboxane receptor antagonist is employed in combination with a diuretic.

14. The method as defined in Claim 1 wherein the thromboxane receptor antagonist is employed in combination with an angiotensin-converting enzyme inhibitor.

15. The method as defined in Claim 1 wherein the thromboxane receptor antagonist is employed in combination with a beta-blocker.

16. The method as defined in Claim 1 wherein the thromboxane receptor antagonist is employed in combination with a calcium channel blocker.

17. The method as defined in Claim 1 wherein the thromboxane receptor antagonist is employed in combination with a vasodilator.

18. A new pharmaceutical combination comprising a thromboxane receptor antagonist and a beta blocker.

19. The combination as defined in Claim 18 wherein the beta blocker is nadolol, propranolol, atenolol, timolol, metaproterenol, acebutolol or labetalol.

20. A new pharmaceutical combination comprising a thromboxane A₂ receptor antagonist and an angiotensin converting enzyme inhibitor.

21. The combination as defined in Claim 20 wherein the angiotensin converting enzyme inhibitor is captopril, enalapril, lisinopril, fosinopril, SQ 29,852 or zofenopril.

22. A new pharmaceutical combination comprising a thromboxane A₂ receptor antagonist and an endopeptidase inhibitor or human ANF 99-126.

23. A new pharmaceutical combination comprising a thromboxane A₂ receptor antagonist and a diuretic or an endopeptidase inhibitor.