发明名称
一种紫外光固化亲水涂料组合物及其制备方法

摘要
本发明涉及一种具有高亲水性的透明紫外光固化涂料组合物及其制备方法。该紫外光固化亲水涂料组合物包括光固化树脂、聚合单体、活性稀释剂、光引发剂、助剂和颜料组成。按配方准确称取光固化树脂倒入调配釜中，再依次加入所述聚合单体、活性稀释剂和助剂，搅拌 20～45 分钟；然后加入光引发剂，混合 15～35 分钟即制得紫外光固化亲水涂料。涂装时，涂料在使用时加入，搅拌均匀即可。本发明提供的紫外光固化亲水涂料组合物可涂覆于塑料、金属、玻璃等基材；紫外光固化后涂层具有优异的亲水性和较好的物理性能；同时涂层有极好的附着力、耐水性能，较好的耐盐雾性和耐碱性。
1. 一种紫外光固化亲水涂料组合物，其特征在于它由光固化树脂、聚合单体、活性稀释剂、光引发剂、助剂、颜料组成，各组份在涂料中的重量百分比为：光固化树脂 25～75%、聚合单体 12～30%、活性稀释剂 15～35%、光引发剂 2～10%、助剂 0.05～8%、颜料 0～2%；所述光固化树脂由水性聚氨酯丙烯酸酯、水性环氧丙烯酸酯、水性聚酯丙烯酸酯中的一种或两种以上的组合物和疏水性不饱和聚酯、疏水性环氧丙烯酸酯、疏水性聚氨酯丙烯酸酯、疏水性聚醚丙烯酸酯、疏水性聚酯丙烯酸酯中的一种或两种以上的组合物组成，其中水性光固化树脂与疏水性光固化树脂的质量比为（1～1.8）：1；所述聚合单体为含双键的羧酸/磺酸（盐）单体、含双键的羟基单体、含双键的醚胺单体中的一种或两种以上的组合物；所述活性稀释剂为单官能、双官能、多官能的（甲基）丙烯酸酯类活性稀释剂中的一种或两种以上的组合物；所述助剂包括改性聚硅氧烷、硅系和钛系偶联剂；

上述各组份用量之和为 100%。

2. 根据权利要求 1 所述的紫外光固化亲水涂料组合物，其特征在于所述的光引发剂为 4-甲基二苯甲酮、2,4,6-三甲基二苯甲酮、四甲基米蚩酮（MK）、四乙基米蚩酮（DEM）, 甲乙基米蚩酮（MEMK）、异丙基硫杂蒽酮（ITX）、2-氯硫杂蒽酮（CTX）、1-氯-4-丙氧基硫杂蒽酮 (CPTX)、2,4-二乙基硫杂蒽酮 (DET) 中的一种或两种以上的组合物。

3. 根据权利要求 1 或 2 中任意一项所述的紫外光固化亲水涂料组合物制备方法，其特征在于操作步骤如下：

按配方准确称取光固化树脂倒入调配釜中，再依次加入所述聚合单体、活性稀释剂和助剂，搅拌 20～45 分钟；然后加入光引发剂，混合 15～35 分钟即制得紫外光固化亲水涂料，避光保存；颜料在使用时加入，搅拌均匀即可。
一种紫外光固化亲水涂料组合物及其制备方法

技术领域
[0001] 本发明属于紫外光固化涂料技术领域，特别涉及一种具有高亲水性的透明紫外光固化涂料组合物及其制备方法。

背景技术
[0002] 随着人们生活水平的不断提高，工业和生活环境对亲水性的要求日益提高，催生了在木器、纸张、塑料、皮革、金属、玻璃、陶瓷、光纤、印刷电路板、电子元器件封装等多种基材的应用。特别是在空调机产品上亲水涂料得到了很好应用，随着国家节能环保和环境保护法的相继出台，空调逐步向小型化、轻量化和高性能化方向发展，对空调用铝翅片的机能达到性能提出了更高的要求；空调热交换器散热片是用 1mm 左右厚的铝箔制成，为了获得良好的性能，通常采用小片距、复杂片形的铝箔冷却片；空调机制冷时，空气中的水蒸气凝结并附着于翅片表面，在翅片间形成“水桥”，造成通风阻力增大，噪声增加，热交换器的工作效率下降，能耗增加；铝箔若直接用于散热器翅片，在冷暖房兼用的空调器，使用中处于干湿交替的环境，形成氧浓度电池，易被腐蚀，生成 $\text{Al}_2\text{O}_3 \cdot 3\text{H}_2\text{O}$ 的白色粉末状物，俗称“白粉”。在潮湿环境下，使换热器内滋生霉菌，随风送入室内而污染环境。为了很好的解决“水桥”、“白粉”等问题，必须对铝箔进行表面涂层处理，使其具有良好的耐腐蚀性和高亲水性能。

[0003] 中国专利 CN101914175A 提供了一种自引发紫外光固化双亲性高分子树脂的制备方法，属于无光引发剂紫外光固化技术。将光敏树脂与双亲性丙烯酸树脂相间分布，赋予传统丙烯酸树脂自引发紫外光固化的能力，得到一种自引发紫外光固化双亲性高分子树脂；这种高分子树脂在使用中无需添加光引发剂，较传统方法更实用。它具有良好的稳定性，低温快速固化能力和环境友好性，适用于功能涂料、光电材料、感光材料、微电子材料、生物材料等。但是此涂料需采取避光保存，容易生成沉淀。

[0004] 中国专利 CN1869139A 提供了一种紫外光固化水性聚氨酯丙烯酸酯涂料树脂及其制备方法，主要用芳香族二异氰酸酯、聚乙二醇、多羟基羧酸、二元醇、甲基丙烯酸乙酯（或甲基丙烯酸羟丙酯）、三乙胺等原料制成，首先将乙二醇滴加到芳香族二异氰酸酯中，反应得到聚氨酯预聚体 I；然后把多羟基羧酸加入到聚氨酯预聚体 I 中，再滴加二元醇，反应得到聚氨酯预聚体 II；再把有阻聚剂的甲基丙烯酸乙酯（或甲基丙烯酸羟丙酯）滴加到聚氨酯预聚体 II 中，反应得到聚氨酯丙烯酸酯聚合物；往聚合物中加三乙胺进行成盐反应，再加入水，搅拌，乳化得到紫外光固化水性聚氨酯丙烯酸酯涂料树脂，这种涂料树脂具有极佳的水溶性、良好的柔韧性、较快的光固化速度，且用水稀释后的乳液稳定性很好，但此涂涂料的流体单体较少，亲水性能得不到持续保障，并且耐碱耐盐雾性能差。

[0005] 中国专利 CN102226049A 提供了一种可打印光敏用紫外光固化防水油墨，本发明涉及一种紫外光固化防水油墨，以所述油墨的总重量为基准，其由如下组分组成：水溶性单体 13%～16%；水溶性树脂 15%～21%；水溶性单体 21%～25%；水溶性树脂 7%～12%；分散剂 1%～3%；光引发剂 5%～10%；添加剂 22%～32%。本发明配方的亲水性
和疏水性达成平衡，其中亲水性单体和亲水性树脂在经过 UV 交联固化后形成可吸收墨水的涂层；而同时疏水性单体和疏水性树脂经固化后形成疏水涂层，从而使得油墨具有防水功能；由于本发明中的添加剂太多，得不到持续稳定的高亲水涂膜。

[0006] 中国专利 CN101974143A 提供了一种有机硅改性环氧丙烯酸酯水分散体及其制备方法，该方法是先用聚醚型环氧稀释剂与环氧树脂进行复配，再和丙烯酸单体反应得到低粘度环氧丙烯酸酯预聚物；然后用顺丁稀二酸酐对其进行接枝改性，在分子链上引入亲水团；最后将小分子氨基硅油和多元醇复配制成中和剂，对体系进行中和，加水稀释分散，调节固含量和粘度，得到可紫外光固化的有机硅改性环氧丙烯酸酯水分散体。该有机硅改性环氧丙烯酸酯水分散体具有 60%以上的高固含量和 1,500 ～ 5,500mPa.s 的低粘度。经紫外光固化后的涂膜具有 4H ～ 6H 的高硬度，良好的柔韧性和优异的耐水性，吸水率低至 5.0%以下，可用于家具、建筑、家用电器、造纸印刷等领域；由于本发明的涂料硬度很高，不能很好的使用于卷材，涂料粘度大不利于施工。

[0007] 中国专利 CN1322037C 提供了一种自清洁塑料制品及其生产方法，首先向塑料基材上 a) 涂覆固化硅氧烷涂层 (a)，b) 将经固化的硅氧烷涂层表面能的极性分量提高到至少为 10mN/m 的数值，并且 c) 涂覆和固化包含光催化活性 TiO2 粒子的涂层 (b)。该专利耐擦划性能、附着优良；且生产工艺相对繁琐，成本高，固化时间长，不节能。

[0008] 中国专利 CN1984972B 提供了一种使用具有自清洁性能的涂料组合物的膜或建筑用外装材及其制备方法，涂料组合物包括：(a) 具有 5 ～ 30nm 平均粒径的含羟基的无机颗粒；(b) 具有 0.2 ～ 5μm 平均粒径的含羟基的无机颗粒；(c) 由化学式 RnSi (OR')4-n (其中，R 为 C1 ～ C8 氢烷基，环氧丙氧烷烃基或异氰酸酯交联剂；且 n 为 0 ～ 3 的整数) 表示的有机硅烷化合物；以及 (d) 溶剂。通过使用上述涂料组合物的膜或建筑用外装材的基材具有亲水性、较好的自清洁性能和耐污染性、延长材料使用寿命，但它由于使用无机颗粒，制备涂料的工期长，能耗高，同时溶剂较多，对环境污染大。

[0009] 德国专利 DE000001928409A 披露了一种由羟烷基丙烯酸或甲基丙烯酸酯聚合物构成的防水涂料。由此形成的亲水层能够吸水，使膜表面形成一层水层从而不影响透明性；但是由于涂层吸水膨胀变软，机械性能下降；涂层交联虽然可以提高机械性能，但是它的防水性能就会下降。

[0011] 为了解决上述问题，迫切需要一种具有持续高亲水性、高防腐蚀性、高耐盐雾性、机械性能优良，且易于在塑料、金属、玻璃等多种基材施工操作的亲水材料。

发明内容

[0012] 本发明所要解决的技术问题是：克服现有亲水涂料的不足，提供一种具有持续高亲水性、高防腐蚀性、高耐盐雾性、机械性能优良，附着力好，成形性、耐热性、抗弯性能优良、环保节能的 UV 光固化亲水涂料组合物及其制备方法。

[0013] 解决其技术问题所采用的技术方案是：
一种紫外光固化亲水涂料组合物，其特征在于它由光固化树脂、聚合单体、活性稀释剂、光引发剂、助剂、颜料等组成，各组份在涂料中的重量百分比为：光固化树脂：25～75%；聚合单体：12～30%；活性稀释剂：15～35%；光引发剂：2～10%；助剂：0.05～8%；颜料：0～2%。

所述光固化树脂由水性聚氨酯丙烯酸酯、水性环氧丙烯酸酯、水性聚酯丙烯酸酯中的一种或两种以上的组合物和疏水性不饱和聚酯、疏水性环氧丙烯酸酯、疏水性聚氨酯丙烯酸酯、疏水性聚酯丙烯酸酯、疏水性聚酯丙烯酸酯中的一种或两种以上的组合物组成，其水性光固化树脂与疏水性光固化树脂的质量比为（1～1.8）：1；所述聚合单体为含双键的羧酸/磺酸（盐）单体、含双键的羟基单体、含双键的酰胺基单体中的一种或两种以上的组合物；所述活性稀释剂为（甲基）丙烯酸酯类活性稀释剂中的一种或两种以上的组合物。

为了更好的实现本发明，

作为优选，所述的涂料组合物在紫外光照射下，固化后的涂层能够形成互穿网络结构。具有优异的亲水性能、水滴在涂层上的接触角小，较好的附着力和硬度等物理性能。

作为优选，所述光固化树脂由水性聚氨酯丙烯酸酯、水性环氧丙烯酸酯、水性聚酯丙烯酸酯中的一种或两种以上的组合物和疏水性不饱和聚酯、疏水性环氧丙烯酸酯、疏水性聚氨酯丙烯酸酯、疏水性聚酯丙烯酸酯中的一种或两种以上的组合物组成，其水性光固化树脂与疏水性光固化树脂的质量比为（1～1.8）：1，其总量在涂料组合物中占25～75%。当水性光固化树脂过低时，组合物的亲水性不够；当水性光固化树脂过高时，组合物过于亲水，紫外光固化后的涂层的机械性能和耐水性较差，所以必须严格控制两者的比例和总量。光固化树脂的含量优选30～65%，其水性光固化树脂与疏水性光固化树脂的质量比优选(1.2～1.5)：1。

作为优选，所述聚合单体为含双键的羧酸/磺酸（盐）单体、含双键的羟基单体、含双键的酰胺基单体中的一种或两种以上的组合物。其中，含双键的羧酸/磺酸（盐）单体可以是（甲基）丙烯酸（钠）、（甲基）丙烯酸锌、甲基丙烯酸磷酸酯、烯丙基磷酸酯、对苯乙烯基磺酸钠、丙烯基丙酸钠、乙烯基磺酸钠、(甲基)丙烯酸磺酸钠、烯丙基丙酸钠、烯丙基磺酸钠和乙烯基磺酸钠，含双键的羟基单体可以是（甲基）丙烯酸羟乙酯、(甲基)丙烯酸羟丙酯、(甲基)丙烯酸羟丁酯、乙烯基羟乙基醚、乙烯基羟丁基醚；含双键的酰胺基单体可以是（甲基）丙烯酰胺、丙烯酰胺、丙烯酸二甲基丙烯酰胺、丙烯酸二乙氧基乙酰胺、乙烯基羟乙基醚、乙烯基羟丁基醚或乙烯基醚鲜胺。聚合单体在涂料组合物中的含量为12～30%，当聚合单体的含量低于12%时，组合物的亲水性差；当聚合单体的含量高于30%时，组合物过于亲水，紫外光固化后的涂层的机械性能和耐水性较差；因而亲水性活性低聚物的含量优选12～30%，较优选15～28%，最优选20～25%。

作为优选，所述活性稀释剂为（甲基）丙烯酸酯类，可以是单官能、双官能和多官能的活性稀释剂。其中，单官能稀释剂可以是（甲基）丙烯酸甲酯、（甲基）丙烯酸乙酯、丙烯酸正丁酯、丙烯酸异辛酯、丙烯酸异癸酯、丙烯酸月桂酯、(甲基)丙烯酸羟乙酯、(甲基)丙烯酸羟丙酯、(甲基)丙烯酸缩水甘油酯、(甲基)丙烯酸酯类活性稀释剂；(甲基)丙烯酸四氢呋喃酯、(甲基)丙烯酸苯氧基乙酯等；双官能稀释剂可以是1,6-己二醇二丙烯酸酯、新戊二醇二丙烯酸酯、二缩丙二醇二丙烯酸酯、三缩丙二醇二丙烯酸酯等；多官能稀释剂可以是三羟甲基丙烷二丙

5
烯酸酯、三羟甲基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、二缩三羟甲基丙烷四丙烯酸酯、二季戊四醇五丙烯酸酯、二季戊四醇六丙烯酸酯、乙氧基化三羟甲基丙烷三丙烯酸酯等；优选为（甲基）丙烯酸羟乙酯、1,6-已二醇二丙烯酸酯、二缩丙二醇二丙烯酸酯、三缩丙二醇二丙烯酸酯或三羟甲基丙烷三丙烯酸酯。活性稀释剂在涂料组合物中的含量为15～35％，活性稀释剂的含量低于15％时，组合物的亲水性、紫外光固化后的涂层的机械性能和耐水性较低；当活性稀释剂的含量高于35％时，组合物的亲水性不够，紫外光固化后的涂层亲水性能较差，因而活性稀释剂的含量优选15～35％，最优选20～30％。

【0021】作为优选，所述光引发剂为4-甲基二苯甲酮、2,4,6-三甲基二苯甲酮、四甲基米蚩酮（9K）、四乙基米蚩酮（DEMK）、甲乙基米蚩酮（MEMK）、异丙基硫杂蒽酮（ITX）、2-氯硫杂蒽酮（CTX）、1-氯-4-丙氧基硫杂蒽酮（CPTX）、2,4-二乙基硫杂蒽酮（DETX）、2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基苯基酮中的一种或两种以上组合物；优选4-甲基二苯甲酮、2,4,6-三甲基二苯甲酮或异丙基硫杂蒽酮（ITX）。在必要情况下，光引发剂体系中可加入助引发剂，助引发剂是分子中至少有一个α-H原子的叔胺类化合物，包括脂肪族类叔胺，例如三乙胺等；乙醇胺类叔胺，例如二乙醇胺、三乙醇胺、N-甲基乙醇胺、N,N-二甲基乙醇胺等；叔胺型甲基酸酯类，例如4-二甲氨基苯甲酸乙酯（EDAB或EPA）、ODAB（或EHA）、QuantacureDMB等；叔胺型丙烯酸酯类活性胺，例如由二乙烯或乙烯等与二官能团丙烯酸酯或多官能团丙烯酸酯经迈克尔加成反应直接制得的化合物；助引发剂可以单独使用或组合使用，该助引发剂可优选为叔胺型苯甲酸酯类或叔胺丙烯酸酯类活性胺，更优选为4-二甲氨基苯甲酸乙酯（EDAB或EPA）。光引发剂在组合物中的含量为2～10％。

【0022】作为优选，所述助剂为消泡剂、流平剂、润湿分散剂、消光剂、阻聚剂中的一种或两种以上的组合物。其中，消泡剂可以是低级醇（如乙醇、正丁醇）、有机改性化合物（如磷酸三丁酯、金属皂）、矿物油、有机聚合物（如聚醚、聚丙烯酸酯）、有机硅树脂（如聚二甲基硅油、改性聚硅氧烷）等；流平剂可以是聚丙烯酸酯、有机硅树脂和氟表面活性剂；润湿分散剂可以是天然高分子类（如卵磷脂）、合成高分子类（如长链聚酯的酸与多氨基醇、多羟基聚酯、硅系和钛系偶联剂等；消光剂可以是金属皂（如硬脂酸铝、锌、钙盐等）、改性油（如油酸）、高分子蜡（如聚乙烯蜡、聚丙烯蜡、聚氧乙烯蜡）、功能性填料（如硅藻土、气相硅酸）等；阻聚剂可以是苯甲酸醇类、2,5-二甲基对苯二酚、羟基苯甲酸苯并二酚、2,6-二叔丁基对苯酚等。助剂在组合物中的含量为0.05～8％。

【0023】作为优选，所述的颜料为白色、黑色或彩色颜料中的一种或两种以上的组合物。其中，白色颜料可以是二氧化钛、氧化锌、锌钡白、铅白等；黑色颜料可以是炭黑、石墨、氧化铁黑、锌钡白等；彩色颜料可以是金光红（PR21）、立索尔大红（PR49）、颜料红G（PR37）、氧化铁红、耐晒黄G（PY1，又称汉沙黄G）、汉沙黄R（PY10）、永固黄GR（PY13）、颜料黄（PY129）、铁黄、酞菁蓝（PB20）、靛蓝（PB60）、射光蓝桃Ag（PB61）、铁蓝、青铬绿、酞菁绿G（PG7）、颜料绿（PG7）、黄光铜钛蓝（PG53）、氧化铬绿、永固橙G（P013）、永固橙HL（P036）、喹吖啶酮紫（PV19）、永固紫RL（PV23）、锰紫（PV16）、永固紫HSR（PB25）、铝红紫（PB26）、氧化铁棕（PBr6）等。颜料在组合物中的含量为0～2％。
配方准确称取光固化树脂倒入调配釜中，再依次加入所述聚合单体、活性稀释剂和助剂，搅拌 20 ～ 45 分钟；然后加入光引发剂，混合 15 ～ 35 分钟即制得紫外光固化亲水涂料，避光保存；颜料在使用时加入，搅拌均匀即可。

【0025】相对现有技术，本发明的有益效果是：

【0026】生产工艺简单，在紫外光照射下可快速固化，生产效率高且能耗低；可适用于各种热敏性的透明基材、金属卷材或玻璃；不含有机溶剂，涂层固化时无溶剂挥发，不会对环境造成污染；组份的亲水性物质含量高，亲水性能优异；涂料组合物在紫外光照射下，固化后的涂层能够形成互穿网络结构，其附着力、硬度、耐磨性、耐水性等机械性能优异；同时防腐蚀性、耐盐雾性、成形性、耐热性、抗弯曲性能较好。

具体实施方式

【0027】根据客户的实际需要，通过调整发明配方，可以获得所需要的产品效果，下面通过具体实施方式对本发明作进一步说明，但并不意味着对本发明保护范围的限定。

【0028】按配方准确称取光固化树脂倒入调配釜中，再依次加入所述聚合单体、活性稀释剂和助剂，搅拌 20 ～ 45 分钟；然后加入光引发剂，混合 15 ～ 35 分钟即制得紫外光固化亲水涂料，避光保存；颜料在使用时加入，搅拌均匀即可。涂料组合物配方如表 1 所示：

【0029】
<table>
<thead>
<tr>
<th>涂料组成部分物质（%）</th>
<th>实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>水性环氧丙烯酸酯树脂</td>
<td>35</td>
</tr>
<tr>
<td>水性聚氨酯丙烯酸酯树脂</td>
<td>40</td>
</tr>
<tr>
<td>丙烯酸与丙烯酸羟烷基酯树脂</td>
<td>40</td>
</tr>
<tr>
<td>硫水性环氧丙烯酸酯</td>
<td>30</td>
</tr>
<tr>
<td>硫水性聚氨酯丙烯酸酯</td>
<td>25</td>
</tr>
<tr>
<td>硫水性聚醚丙烯酸酯</td>
<td></td>
</tr>
<tr>
<td>硫水性聚酯丙烯酸酯</td>
<td></td>
</tr>
<tr>
<td>甲基丙烯酸</td>
<td>15</td>
</tr>
<tr>
<td>甲基丙烯酸酯</td>
<td></td>
</tr>
<tr>
<td>硫丙烯基硅丙基磷酸酯</td>
<td>20</td>
</tr>
<tr>
<td>2-丙烯酰胺基-2-甲基丙烯酸酯</td>
<td>12</td>
</tr>
<tr>
<td>乙烯基吡咯烷酮</td>
<td></td>
</tr>
<tr>
<td>丙烯酰胺</td>
<td></td>
</tr>
<tr>
<td>二羟甲基丙烯三丙烯酸酯</td>
<td>15</td>
</tr>
<tr>
<td>1,6-己二醇二丙烯酸酯</td>
<td></td>
</tr>
<tr>
<td>乙氧基化三羟甲基丙烷三丙烯酸酯</td>
<td></td>
</tr>
<tr>
<td>2,4,6-三甲基苯甲酮</td>
<td>2</td>
</tr>
<tr>
<td>4-甲基-苯甲醇</td>
<td></td>
</tr>
<tr>
<td>2-羟基-2-甲基-1-苯基丙酮</td>
<td>4.5</td>
</tr>
<tr>
<td>BYK333（来自德国卡克公司）</td>
<td>0.5</td>
</tr>
<tr>
<td>改性聚硅氧烷</td>
<td></td>
</tr>
<tr>
<td>2,6-二叔丁基对苯二酚</td>
<td></td>
</tr>
<tr>
<td>颜料（根据实际颜色需要选取不同的品牌种类）</td>
<td>0.5</td>
</tr>
</tbody>
</table>

[0030] 将上述实施例配制的本发明紫外光固化亲水涂料组合物辊涂在铝箔、PC、玻璃板表面，用4KW的紫外灯作辐射源照射5s，固化后对样板进行各项性能测试和评定，实验结果如表2所示：
性能测试方法为：

初期亲水角：在固化好的试样上滴入0.03cc（毫升）的去离子水后，在20-25℃范围内采用接触角测试仪测定水滴与试片的夹角。

干湿循环角：在纯净水中浸泡2分钟，然后提起风干6分钟，即为一个循环，连续300个循环，然后取出测定其亲水角度。

耐水煮性：在100℃沸水中煮30分钟，看涂层是否有溶胀、脱落等现象。

附着力：参照国家标准GB/T 9286《色漆和清漆 涂膜的划格试验》。

铅笔硬度：参照国家标准GB/T6739《漆膜硬度铅笔测定法》。

耐碱性：10%NaOH溶液（20℃）中浸泡5分钟，看涂层是否有发白、气泡和脱落现象。

耐盐雾性：参照国家标准GB/T 1771-2007《色漆和清漆 耐中性盐雾性能的测定》。

涂膜外观：采用肉眼观察。

臭味：依5人的嗅觉测试。

从试验结果的性能对比可以看出，实施例具有优异的综合性能，适应的基材范围广。

上述实施例为本发明较佳的实施方式，但本发明的实施方式并不受上述实施例的限制，其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替换、组合或简化，均应为等效的置换方式，都包含在本发明的保护范围之内。