20107057181 A2 I 00 O A 010 00

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

s . N
(19) World Intellectual Property Organization /g [} 11D 000 1.0 D OO0 0 O
ernational Bureau v“)
(43) International Publication Date \!/ (10) International Publication Number

20 May 2010 (20.05.2010)

WO 2010/057181 A2

(51) International Patent Classification:
GO6F 12/14 (2006.01) GO6F 12/08 (2006.01)
HO4L 9/08 (2006.01)

(21) International Application Number:
PCT/US2009/064786
(22) International Filing Date:
17 November 2009 (17.11.2009)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
12/272,012 17 November 2008 (17.11.2008) US
12/336,562 17 December 2008 (17.12.2008) US
12/336,564 17 December 2008 (17.12.2008) US
12/336,559 17 December 2008 (17.12.2008) US
12/336,568 17 December 2008 (17.12.2008) US
12/336,558 17 December 2008 (17.12.2008) US
12/342,464 23 December 2008 (23.12.2008) US
12/342,500 23 December 2008 (23.12.2008) US
12/342,575 23 December 2008 (23.12.2008) US
12/342,523 23 December 2008 (23.12.2008) US
12/342,414 23 December 2008 (23.12.2008) US
12/342,438 23 December 2008 (23.12.2008) US
12/342,610 23 December 2008 (23.12.2008) US
12/342,636 23 December 2008 (23.12.2008) US
12/342,547 23 December 2008 (23.12.2008) US
12/342,379 23 December 2008 (23.12.2008) US
12/346,561 30 December 2008 (30.12.2008) US
12/346,578 30 December 2008 (30.12.2008) US
(71) Applicant (for all designated States except US): UNISYS

CORPORATION [US/US]; Unisys Way, MS/S1-108,
Blue Bell, PA 19424-0001 (US).

(72) Inventors: SUMMERS, Scott; 14 Sugarpine Lane, Col-
legeville, PA 19426 (US). FRENCH, Albert; 355 Grubb
Road, Schwenksville, PA 19473 (US).

Agent: GREGSON, Richard, J.; Unisys Corporation,
Unisys Way, MS/S1-108, Blue Bell, PA 19424-0001
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

74

62y

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: SIMULTANEOUS STATE-BASED CRYPTOGRAPHIC SPLITTING IN A SECURE STORAGE APPLIANCE

(57) Abstract: Methods and systems for managing data blocks and I/O requests are provided. One method is a method of manag-
ing data blocks in a secure storage appliance. The method includes receiving a block of data associated with a volume, the volume
associated with a plurality of shares stored on a plurality of physical storage devices, and storing the block of data in a buffer. The
method also includes associating the block of data with a state from among a plurality of states, each of the states corresponding to
a status of the block of data. The method further includes processing the block of data by performing at least one cryptographic
operation on the block of data, and upon completion of processing the block of data, updating the state of the block of data.

WO 2010/057181 PCT/US2009/064786

10

15

20

SIMULTANEOUS STATE-BASED CRYPTOGRAPHIC SPLITTING IN A

SECURE STORAGE APPLIANCE

Technical Field

The present disclosure relates to data storage systems, and security
for such systems. In particular, the present disclosure relates to simultancous state-

based cryptographic splitting in a secure storage appliance.

Background

Modern organizations generate and store large quantities of data. In
many instances, organizations store much of their important data at a centralized
data storage system. It is frequently important that such organizations be able to
quickly access the data stored at the data storage system. In addition, it is frequently
important that data stored at the data storage system be recoverable if the data is
written to the data storage system incorrectly or if portions of the data stored at the
repository is corrupted. Furthermore, it is important that data be able to be backed
up to provide security in the event of device failure or other catastrophic event.

The large scale data centers managed by such organizations typically
require mass data storage structures and storage arca networks that are capable of
providing both long-term mass data storage and access capabilities for application
servers using that data. Some data security measures are usually implemented in
such large data storage networks, and are intended to ensure proper data privacy and
prevent data corruption. Typically, data security is accomplished via encryption of

data and/or access control to a network within which the data 1s stored. Data can be

WO 2010/057181 PCT/US2009/064786

10

15

20

25

stored in one or more locations, ¢.g. using a redundant array of inexpensive disks
(RAID) or other techniques.

One example of an existing mass data storage system 10 is illustrated
in Figure 1. As shown, an application server 12 (e.g. a database or file system
provider) connects to a number of storage devices 14;-14y providing mass storage of
data to be maintained accessible to the application server via direct connection 15,
an IP-based network 16, and a Storage Area Network 18. Each of the storage
devices 14 can host disks 20 of various types and configurations useable to store this
data.

The physical disks 20 are made visible/accessible to the application
server 12 by mapping those disks to addressable ports using, for example, logical
unit numbering (LUN), internet SCSI (iSCSI), or common internet file system
(CIFS) connection schemes. In the configuration shown, five disks are made
available to the application server 12, bearing assigned letters I-M. Each of the
assigned drive letters corresponds to a different physical disk 20 (or at least a
different portion of a physical disk) connected to a storage device 14, and has a
dedicated addressable port through which that disk 20 is accessible for storage and
retrieval of data. Therefore, the application server 12 directly addresses data stored
on the physical disks 20.

A second typical data storage arrangement 30 is shown in Figure 2.
The arrangement 30 illustrates a typical data backup configuration useable to tape-
backup files stored in a data network. The network 30 includes an application server
32, which makes a snapshot of data 34 to send to a backup server 36. The backup
server 36 stores the snapshot, and operates a tape management system 38 to record

that snapshot to a magnetic tape 40 or other long-term storage device.
2

WO 2010/057181 PCT/US2009/064786

10

15

20

These data storage arrangements have a number of disadvantages.
For example, in the network 10, a number of data access vulnerabilities exist. An
unauthorized user can steal a physical disk 20, and thereby obtain access to sensitive
files stored on that disk. Or, the unauthorized user can exploit network
vulnerabilities to observe data stored on disks 20 by monitoring the data passing in
any of the networks 15, 16, 18 between an authorized application server 12 or other
authorized user and the physical disk 20. The network 10 also has inherent data loss
risks. In the network 30, physical data storage can be time consuming, and physical
backup tapes can be subject to failure, damage, or theft.

To overcome some of these disadvantages, systems have been
introduced which duplicate and/or separate files and directories for storage across
one or more physical disks. The files and directories are typically stored or backed
up as a monolith, meaning that the files are logically grouped with other like data
before being secured. Although this provides a convenient arrangement for
retrieval, in that a common security construct (e.g. an encryption key or password) is
related to all of the data, it also provides additional risk exposure if the data is
compromised.

For these and other reasons, improvements are desirable.

Summary

In accordance with the following disclosure, the above and other
problems are solved by the following:

In a first aspect, a method of managing data blocks in a secure
storage appliance is disclosed. The method includes receiving a block of data

associated with a volume, the volume associated with a plurality of shares stored on

3

WO 2010/057181 PCT/US2009/064786

10

15

20

a plurality of physical storage devices, and storing the block of data in a buffer. The
method also includes associating the block of data with a state from among a
plurality of states, each of the states corresponding to a status of the block of data.
The method further includes processing the block of data by performing at least one
cryptographic operation on the block of data, and upon completion of processing the
block of data, updating the state of the block of data.

In a second aspect, a method of managing 1/0 requests in a secure
storage appliance is disclosed. The method includes receiving an I/O request at the
secure storage appliance, the I/O request associated with a volume, the volume
associated with a plurality of shares stored on a plurality of physical storage devices.
The method further includes determining whether a block of data referenced by the
I/0 request is present in a buffer. The method also includes transferring the block of
data to a buffer and associating the block of data with a transfer state, determining
whether the block of data in the buffer is updated, and processing the block of data.

In a third aspect, a secure storage appliance is disclosed. The secure
storage appliance includes a plurality of buffers, each buffer capable of holding a
block of data having a state from among a plurality of states. The secure storage
appliance also includes a programmable circuit capable of accessing the plurality of
buffers. The programmable circuit is configured to execute program instructions to
receive an I/0 request, the I/O request associated with a volume, the volume
associated with a plurality of shares stored on a plurality of physical storage devices
communicatively connected to the secure storage appliance. The programmable
circuit is further configured to execute program instructions to determine whether a

block of data referenced by the 1/0 request is present in a buffer, transfer the block

WO 2010/057181 PCT/US2009/064786

10

15

20

of data to a buffer among the plurality of buffers, determine whether the block of
data in the buffer is updated, and process the block of data.

In a fourth aspect, a secure storage appliance is disclosed. The secure
storage appliance includes a plurality of buffers, each buffer capable of holding a
block of data having a state selected from among a plurality of states. The secure
storage appliance further includes a programmable circuit capable of accessing the
plurality of buffers. The programmable circuit is configured to execute program
instructions to receive a block of data associated with a volume, the volume
associated with a plurality of shares stored on a plurality of physical storage devices.
The programmable circuit is also configured to execute program instructions to store
the block of data in a buffer from among the plurality of buffers and associate the
buffer with a state corresponding to a status of the block of data. The programmable
circuit is further configured to execute program instructions to process the block of
data by performing at least one cryptographic operation on the block of data and

update the state of the buffer upon completion of processing the block of data.

Brief Description of the Drawings

Figure 1 illustrates an example prior art network providing data
storage;

Figure 2 illustrates an example prior art network providing data
backup capabilities;

Figure 3 illustrates a data storage system according to a possible
embodiment of the present disclosure;

Figure 4 illustrates a data storage system according to a further

possible embodiment of the present disclosure;

5

WO 2010/057181 PCT/US2009/064786

10

15

20

25

Figure 5 illustrates a portion of a data storage system including a
secure storage appliance, according to a possible embodiment of the present
disclosure;

Figure 6 illustrates a block diagram of logical components of a secure
storage appliance, according to a possible embodiment of the present disclosure.

Figure 7 illustrates a portion of a data storage system including a
secure storage appliance, according to a further possible embodiment of the present
disclosure;

Figure 8 illustrates dataflow of a write operation according to a
possible embodiment of the present disclosure;

Figure 9 illustrates dataflow of a read operation according to a
possible embodiment of the present disclosure;

Figure 10 illustrates a further possible embodiment of a data storage
network including redundant secure storage appliances, according to a possible
embodiment of the present disclosure;

Figure 11 illustrates incorporation of secure storage appliances in a
portion of a data storage network, according to a possible embodiment of the present
disclosure;

Figure 12 illustrates an arrangement of a data storage network
according to a possible embodiment of the present disclosure;

Figure 13 illustrates a physical block structure of data to be written
onto a physical storage device, according to aspects of the present disclosure;

Figure 14 shows a flowchart of systems and methods for providing
access to secure storage in a storage area network according to a possible

embodiment of the present disclosure;

WO 2010/057181 PCT/US2009/064786

10

15

20

Figure 15 shows a flowchart of systems and methods for reading
block-level secured data according to a possible embodiment of the present
disclosure;

Figure 16 shows a flowchart of systems and methods for writing
block-level secured data according to a possible embodiment of the present
disclosure;

Figure 17 shows a possible arrangement for providing secure storage
data backup, according to a possible embodiment of the present disclosure;

Figure 18 shows a possible arrangement for providing secure storage
for a thin client computing network, according to a possible embodiment of the
present disclosure;

Figure 19 shows a state diagram for simultaneous state-based
cryptographic splitting in a secure storage appliance, according to aspects of the
present disclosure;

Figure 20 shows a flowchart of methods and systems for
simultaneous state-based cryptographic splitting in a secure storage appliance,
according to aspects of the present disclosure;

Figure 21 shows a flowchart of methods and systems for
reconstituting data in a secure storage appliance, according to a possible aspect of
the present disclosure;

Figure 22 shows a flowchart of methods and systems for
cryptographically splitting data in a secure storage appliance, according to a possible

aspect of the present disclosure;

WO 2010/057181 PCT/US2009/064786

10

15

20

Figure 23 shows a flowchart of methods and systems for managing
data blocks in a secure storage appliance, according to a possible embodiment of the
present disclosure; and

Figure 24 shows a flowchart of methods and systems for managing
I/0 requests in a secure storage appliance, according to a possible embodiment of

the present disclosure.

Detailed Description

Various embodiments of the present invention will be described in
detail with reference to the drawings, wherein like reference numerals represent like
parts and assemblies throughout the several views. Reference to various
embodiments does not limit the scope of the invention, which is limited only by the
scope of the claims attached hereto. Additionally, any examples set forth in this
specification are not intended to be limiting and merely set forth some of the many
possible embodiments for the claimed invention.

The logical operations of the various embodiments of the disclosure
described herein are implemented as: (1) a sequence of computer implemented steps,
operations, or procedures running on a programmable circuit within a computer,
and/or (2) a sequence of computer implemented steps, operations, or procedures
running on a programmable circuit within a directory system, database, or compiler.

In general the present disclosure relates to a block-level data storage
security system. By block-level, it is intended that the data storage and security
performed according to the present disclosure is not performed based on the size or
arrangement of logical files (e.g. on a per-file or per-directory level), but rather that

the data security is based on individual read and write operations related to physical

8

WO 2010/057181 PCT/US2009/064786

10

15

20

25

blocks of data. In various embodiments of the present disclosure, the data managed
by the read and write operations are split or grouped on a bitwise or other physical
storage level. These physical storage portions of files can be stored in a number of
separated components and encrypted. The split, encrypted data improves data
security for the data “at rest” on the physical disks, regardless of the access
vulnerabilities of physical disks storing the data. This is at least in part because the
data cannot be recognizably reconstituted without having appropriate access and
decryption rights to multiple, distributed disks. The access rights limitations
provided by such a system also makes deletion of data simple, in that deletion of
access rights (e.g. encryption keys) provides for effective deletion of all data related
to those rights.

The various embodiments of the present disclosure are applicable
across a number of possible networks and network configurations; in certain
embodiments, the block-level data storage security system can be implemented
within a storage area network (SAN) or Network-Attached Storage (NAS) system.
Other possible networks in which such systems can be implemented exist as well.

In certain aspects of the present disclosure, simultancous state-based
processing of cryptographic splitting and reconstituting operations are provided in a
secure storage appliance. This state-based, pipelined processing allows the secure
storage appliance to perform sub-tasks as resources of the secure storage appliance
become available for use. The secure storage appliance can therefore improve
throughput of processed data and I/O requests related to that data, based on these
operations.

Referring now to Figure 3, a block diagram illustrating an example

data storage system 100 is shown, according to the principles of the present
9

WO 2010/057181 PCT/US2009/064786

10

15

20

disclosure. In the example of Figure 3, system 100 includes a set of client devices
105A through 105N (collectively, “client devices 105”). Client devices 105 can be a
wide variety of different types of devices. For example, client devices 105 can be
personal computers, laptop computers, network telephones, mobile telephones,
television set top boxes, network televisions, video gaming consoles, web kiosks,
devices integrated into vehicles, mainframe computers, personal media players,
intermediate network devices, network appliances, and other types of computing
devices. Client devices 105 may or may not be used directly by human users.

Client devices 105 are connected to a network 110. Network 110
facilitates communication among electronic devices connected to network 110.
Network 110 can be a wide variety of electronic communication networks. For
example, network 110 can be a local-area network, a wide-area network (e.g., the
Internet), an extranet, or another type of communication network. Network 110 can
include a variety of connections, including wired and wireless connections. A
variety of communications protocols can be used on network 110 including
Ethernet, WiFi, WiMax, Transfer Control Protocol, and many other communications
protocols.

In addition, system 100 includes an application server 115.
Application server 115 is connected to the network 110, which is able to facilitate
communication between the client devices 105 and the application server 115. The
application server 115 provides a service to the client devices 105 via network 110.
For example, the application server 115 can provide a web application to the client
devices 105. In another example, the application server 115 can provide a network-

attached storage server to the client devices 105. In another example, the application

10

WO 2010/057181 PCT/US2009/064786

10

15

20

25

server 115 can provide a database access service to the client devices 105. Other
possibilities exist as well.

The application server 115 can be implemented in several ways. For
example, the application server 115 can be implemented as a standalone server
device, as a server blade, as an intermediate network device, as a mainframe
computing device, as a network appliance, or as another type of computing device.
Furthermore, it should be appreciated that the application server 115 can include a
plurality of separate computing devices that operate like one computing device. For
instance, the application server 115 can include an array of server blades, a network
data center, or another set of separate computing devices that operate as if one
computing device. In certain instances, the application server can be a virtualized
application server associated with a particular group of users, as described in greater
detail below in Figure 18.

The application server 115 is communicatively connected to a secure
storage appliance 120 that is integrated in a storage area network (SAN) 125.
Further, the secure storage appliance 120 is communicatively connected to a
plurality of storage devices 130A through 130N (collectively, “storage devices
130”). Similar to the secure storage appliance 120, the storage devices 130 can be
integrated with the SAN 125.

The secure storage appliance 120 can be implemented in several
ways. For example, the secure storage appliance 120 can be implemented as a
standalone server device, as a server blade, as an intermediate network device, as a
mainframe computing device, as a network appliance, or as another type of
computing device. Furthermore, it should be appreciated that, like the application

server 115, the secure storage appliance 120 can include a plurality of separate
11

WO 2010/057181 PCT/US2009/064786

10

15

20

25

computing devices that operate like one computing device. In certain embodiments,
SAN 125 may include a plurality of secure storage appliances. Each of secure
storage appliances 214 is communicatively connected to a plurality of the storage
devices 130. In addition, it should be appreciated that the secure storage appliance
120 can be implemented on the same physical computing device as the application
server 115.

The application server 115 can be communicatively connected to the
secure storage appliance 120 in a variety of ways. For example, the application
server 115 can be communicatively connected to the secure storage appliance 120
such that the application server 115 explicitly sends I/O commands to secure storage
appliance 120. In another example, the application server 115 can be
communicatively connected to secure storage appliance 120 such that the secure
storage appliance 120 transparently intercepts I/O commands sent by the application
server 115. On a physical level, the application server 115 and the secure storage
appliance 120 can be connected via most physical interfaces that support a SCSI
command set. Examples of such interfaces include Fibre Channel and iSCSI
interfaces.

The storage devices 130 can be implemented in a variety of different
ways as well. For example, one or more of the storage devices 130 can be
implemented as disk arrays, tape drives, JBODs (“just a bunch of disks”), or other
types of electronic data storage devices.

In various embodiments, the SAN 125 is implemented in a variety of
ways. For example, the SAN 125 can be a local-area network, a wide-area network
(e.g., the Internet), an extranet, or another type of electronic communication

network. The SAN 125 can include a variety of connections, including wired and
12

WO 2010/057181 PCT/US2009/064786

10

15

20

wireless connections. A variety of communications protocols can be used on the
SAN 125 including Ethernet, WiFi, WiMax, Transfer Control Protocol, and many
other communications protocols. In certain embodiments, the SAN 125 is a high-
bandwidth data network provided using, at least in part, an optical communication
network employing Fibre Channel connections and Fibre Channel Protocol (FCP)
data communications protocol between ports of data storage computing systems.

The SAN 125 additionally includes an administrator device 135. The
administrator device 135 is communicatively connected to the secure storage
appliance 120 and optionally to the storage devices 130. The administrator device
135 facilitates administrative management of the secure storage appliance 120 and to
storage devices. For example, the administrator device 135 can provide an
application that can transfer configuration information to the secure storage
appliance 120 and the storage devices 130. In another example, the administrator
device 135 can provide a directory service used to store information about the SAN
125 resources and also centralize the SAN 125.

In various embodiments, the administrator device 135 can be
implemented in several ways. For example, the administrator device 135 can be
implemented as a standalone computing device such as a PC or a laptop, or as
another type of computing device. Furthermore, it should be appreciated that, like
the secure storage appliance 120, the administrator device 135 can include a
plurality of separate computing devices that operate as one computing device.

Now referring to Figure 4, a data storage system 200 is shown
according to a possible embodiment of the present disclosure. The data storage

system 200 provides additional security by way of introduction of a secure storage

13

WO 2010/057181 PCT/US2009/064786

10

15

20

25

appliance and related infrastructure/functionality into the data storage system 200, as
described in the generalized example of Figure 3.

In the embodiment shown, the data storage system 200 includes an
application server 202, upon which a number of files and databases are stored. The
application server 202 is generally one or more computing devices capable of
connecting to a communication network and providing data and/or application
services to one or more users (e.g. in a client-server, thin client, or local account
model). The application server 202 is connected to a plurality of storage systems
204. In the embodiment shown, storage systems 204, s are shown, and are
illustrated as a variety of types of systems including direct local storage, as well as
hosted remote storage. Each of storage systems 204 manages storage on one or
more physical storage devices 206. The physical storage devices 206 generally
correspond to hard disks or other long-term data storage devices. In the specific
embodiment shown, the JBOD storage system 204, connects to physical storage
devices 206;, the NAS storage system 204, connects to physical storage device 206,,
the JBOD storage system 204; connects to physical storage devices 20657, the
storage system 204, connects to physical storage devices 206g 15, and the JBOD
storage system 2045 connects to physical storage device 206,;. Other arrangements
are possible as well, and are in general a matter of design choice.

In the embodiment shown, a plurality of different networks and
communicative connections reside between the application server 202 and the
storage systems 204. For example, the application server 202 is directly connected
to JBOD storage system 204, via a plurality of physical storage devices 208 (JBOD
connection), e.g. for local storage. The application server 202 is also

communicatively connected to storage systems 204, ; via network 210, which uses
14

WO 2010/057181 PCT/US2009/064786

10

15

20

any of a number of IP-based protocols such as Ethernet, WiFi, WiMax, Transfer
Control Protocol, or any other of a number of communications protocols. The
application server 202 also connects to storage systems 20445 via a storage arca
network (SAN) 212, which can be any of a number of types of SAN networks
described in conjunction with SAN 125, above.

A secure storage appliance 120 is connected between the application
server 202 and a plurality of the storage systems 204. The secure storage appliance
120 can connect to dedicated storage systems (e.g. the JBOD storage system 2045 in
Figure 4), or to storage systems connected both directly through the SAN 212, and
via the secure storage appliance 120 (e.g. the JBOD storage system 2045 and storage
system 2044). Additionally, the secure storage appliance 120 can connect to systems
connected via the network 210 (e.g. the JBOD storage system 2043). Other
arrangements are possible as well. In instances where the secure storage appliance
120 is connected to one of storage systems 204, one or more of the physical storage
devices 206 managed by the corresponding system is secured by way of data
processing by the secure storage appliance. In the embodiment shown, the physical
storage devices 20637, 206,13 are secured physical storage devices, meaning that
these devices contain data managed by the secure storage appliance 120, as
explained in further detail below.

Generally, inclusion of the secure storage appliance 120 within the
data storage system 200 may provide improved data security for data stored on the
physical storage devices. As is explained below, this can be accomplished, for
example, by cryptographically splitting the data to be stored on the physical devices,

such that generally each device contains only a portion of the data required to

15

WO 2010/057181 PCT/US2009/064786

10

15

20

25

reconstruct the originally stored data, and that portion of the data is a block-level
portion of the data encrypted to prevent reconstitution by unauthorized users.

Through use of the secure storage appliance 120 within the data
storage system 200, a plurality of physical storage devices 208 can be mapped to a
single volume, and that volume can be presented as a virtual disk for use by one or
more groups of users. In comparing the example data storage system 200 to the
prior art system shown in Figure 1, it can be seen that the secure storage appliance
120 allows a user to have an arrangement other than one-to-one correspondence
between drive volume letters (in Figure 1, drive letters I-M) and physical storage
devices. In the embodiment shown, two additional volumes are exposed to the
application server 202, virtual disk drives T and U, in which secure copies of data
can be stored. Virtual disk having volume label T is illustrated as containing
secured volumes F3 and F7 (i.e. the drives mapped to the iISCSI2 port of the
application server 202, as well as a new drive), thereby providing a secured copy of
information on either of those drives for access by a group of users. Virtual disk
having volume label U provides a secured copy of the data held in DB1 (i.e. the
drive mapped to LUNO3). By distributing volumes across multiple disks, security is
enhanced because copying or stealing data from a single physical disk will generally
be insufficient to access that data (i.c. multiple disks of data, as well as separately-
held encryption keys, must be acquired)

Referring now to Figure 5, a portion of the data storage system 200 is
shown, including details of the secure storage appliance 120. In the embodiment
shown, the secure storage appliance 120 includes a number of functional modules
that generally allow the secure storage appliance to map a number of physical disks

to one or more separate, accessible volumes that can be made available to a client,
16

WO 2010/057181 PCT/US2009/064786

10

15

20

25

and presenting a virtual disk to clients based on those defined volumes.
Transparently to the user, the secure storage appliance applies a number of
techniques to stored and retrieved data to provide data security.

In the embodiment shown, the secure storage appliance 120 includes
a core functional unit 216, a LUN mapping unit 218, and a storage subsystem
interface 220. The core functional unit 216 includes a data conversion module 222
that operates on data written to physical storage devices 206 and retrieved from the
physical storage devices 206. In general, when the data conversion module 222
receives a logical unit of data (e.g. a file or directory) to be written to physical
storage devices 206, it splits that primary data block at a physical level (i.e. a “block
level”) and encrypts the secondary data blocks using a number of encryption keys.

The manner of splitting the primary data block, and the number of
physical blocks produced, is dictated by additional control logic within the core
functional unit 216. As described in further detail below, during a write operation
that writes a primary data block to physical storage (e.g. from an application server
202), the core functional unit 216 directs the data conversion module 222 to split the
primary data block received from the application server 202 into N separate
secondary data blocks. Each of the N secondary data blocks is intended to be
written to a different one of physical storage devices 206 within the data storage
system 200. The core functional unit 216 also dictates to the data conversion
module 222 the number of shares (for example, denoted as M of the N total shares)
that are required to reconstitute the primary data block when requested by the
application server 202.

The secure storage appliance 120 connects to a metadata store 224,

which is configured to hold metadata information about the locations, redundancy,
17

WO 2010/057181 PCT/US2009/064786

10

15

20

25

and encryption of the data stored on the physical storage devices 206. The metadata
store 224 is generally held locally or in proximity to the secure storage appliance
120, to ensure fast access of metadata regarding the shares. The metadata store 224
can be, in various embodiments, a database or file system storage of data describing
the data connections, locations, and shares used by the secure storage appliance.
Additional details regarding the specific metadata stored in the metadata store 224
are described below.

The LUN mapping unit 218 generally provides a mapping of one or
more physical storage devices 206 to a volume. Each volume corresponds to a
specific collection of physical storage devices 206 upon which the data received
from client devices is stored. In contrast, typical prior art systems assign a LUN
(logical unit number) or other identifier to each physical storage device or
connection port to such a device, such that data read operations and data write
operations directed to one of storage systems 204 can be performed specific to a
device associated with the system. In the embodiment shown, the LUNs correspond
to target addressable locations on the secure storage appliance 120, of which one or
more is exposed to a client device, such as an application server 202. Based on the
mapping of LUNs to a volume, the virtual disk related to that volume appears as a
directly-addressable component of the data storage system 200, having its own
LUN. From the perspective of the application server 202, this obscures the fact that
primary data blocks written to a volume can in fact be split, encrypted, and written
to a plurality of physical storage devices across one or more storage systems 204.

The storage subsystem interface 220 routes data from the core
functional unit 216 to the storage systems 204 communicatively connected to the

secure storage appliance 120. The storage subsystem interface 220 allows
18

WO 2010/057181 PCT/US2009/064786

10

15

20

25

addressing various types of storage systems 204. Other functionality can be
included as well.

In the embodiment shown, a plurality of LUNs are made available by
the LUN mapping unit 218, for addressing by client devices. As shown by way of
example, LUNs LUNO4-LUNnn are illustrated as being addressable by client
devices. Within the core functional unit 216, the data conversion module 222
associates data written to each LUN with a share of that data, split into N shares and
encrypted. In the embodiment shown in the example of Fig. 5, a block read
operation or block write operation to LUNO04 is illustrated as being associated with a
four-way write, in which secondary data blocks L04.a through L04.d are created,
and mapped to various devices connected to output ports, shown in Figure 5 as
network interface cards (NICs), a Fibre Channel interface, and a serial ATA
interface. An analogous operation is also shown with respect to LUNOS, but written
to a different combination of shares and corresponding physical disks.

The core functional unit 216, LUN mapping unit 218, and storage
subsystem interface 220 can include additional functionality as well, for managing
timing and efficiency of data read and write operations. Additional details regarding
this functionality are described in another embodiment, detailed below in
conjunction with the secure storage appliance functionality described in Figure 6.

The secure storage appliance 120 includes an administration interface
226 that allows an administrator to set up components of the secure storage
appliance 120 and to otherwise manage data encryption, splitting, and redundancy.
The administration interface 226 handles initialization and discovery on the secure
storage appliance, as well as creation, modifying, and deletion of individual volumes

and virtual disks; event handling; data base administration; and other system
19

WO 2010/057181 PCT/US2009/064786

10

15

20

25

services (such as logging). Additional details regarding usage of the administration
interface 226 are described below in conjunction with Figure 14.

In the embodiment shown of the secure storage appliance 120, the
secure storage appliance 120 connects to an optional enterprise directory 228 and a
key manager 230 via the administration interface 226. The enterprise directory 228
is generally a central repository for information about the state of the secure storage
appliance 120, and can be used to help coordinate use of multiple secure storage
appliances in a network, as illustrated in the configuration shown in Figure 10,
below. The enterprise directory 228 can store, in various embodiments, information
including a remote user table, a virtual disk table, a metadata table, a device table,
log and audit files, administrator accounts, and other secure storage appliance status
information.

In embodiments lacking the enterprise directory 228, redundant
secure storage appliances 214 can manage and prevent failures by storing status
information of other secure storage appliances, to ensure that each appliance is
aware of the current state of the other appliances.

The key manager 230 stores and manages certain keys used by the
data storage system 200 for encrypting data specific to various physical storage
locations and various individuals and groups accessing those devices. In certain
embodiments, the key manager 230 stores workgroup keys. Each workgroup key
relates to a specific community of individuals (i.e. a “community of interest”) and a
specific volume, thereby defining a virtual disk for that community. The key
manager 230 can also store local copies of session keys for access by the secure
storage appliance 120. Secure storage appliance 120 uses each of the session keys to

locally encrypt data on different ones of physical storage devices 206. Passwords
20

WO 2010/057181 PCT/US2009/064786

can be stored at the key manager 230 as well. In certain embodiments, the key

manager 230 is operable on a computing system configured to execute any of a

number of key management software packages, such as the Key Management

Service provided for a Windows Server environment, manufactured by Microsoft
5 Corp. of Redmond, Washington.

Although the present disclosure provides for encryption keys
including session keys and workgroup keys, additional keys may be used as well,
such as a disk signature key, security group key, client key, or other types of keys.
Each of these keys can be stored on one or more of physical storage devices 206, at

10 the secure storage appliance 120, or in the key manager 230.

Although Figures 4-5 illustrate a particular arrangement of a data
storage system 200 for secure storage of data, additional arrangements are possible
as well that can operate consistently with the concepts of the present disclosure. For
example, in certain embodiments, the system can include a different number or type

15 of storage systems or physical storage devices, and can include one or more different
types of client systems in place of or in addition to the application server 202.
Furthermore, the secure storage appliance 120 can be placed in any of a number of
different types of networks, but does not require the presence of multiple types of
networks as illustrated in the example of Figure 4.

20 Figure 6 is a block diagram that illustrates example logical
components of the secure storage appliance 120. Figure 6 represents only one
example of the logical components of the secure storage appliance 120, for
performing the operations described herein. The operations of the secure storage

appliance 120 can be conceptualized and implemented in many different ways.

21

WO 2010/057181 PCT/US2009/064786

10

15

20

25

As illustrated in the example of Figure 6, the secure storage appliance
120 comprises a primary interface 300 and a secondary interface 302. The primary
interface 300 enables secure storage appliance 120 to receive primary 1/0 requests
and to send primary 1/O responses. For instance, the primary interface 300 can
enable secure storage appliance 120 to receive primary I/O requests (e.g. read and
write requests) from the application server device 202 and to send primary 1/0
responses to the application server 202. Secondary interface enables the secure
storage appliance 120 to send secondary I/O requests to the storage systems 204, and
to receive secondary I/O responses from those storage systems 204.

In addition, the secure storage appliance 120 comprises a parser
driver 304. The parser driver 304 generally corresponds to the data conversion
module 222 of Figure 5, in that it processes primary 1/O requests to generate
secondary I/O requests and processes secondary 1/0 responses to generate primary
I/0 responses. To accomplish this, the parser driver 304 comprises a read module
305 that processes primary read requests to generate secondary read requests and
processes secondary read responses to generate primary read responses. In addition,
the parser driver 304 comprises a decryption module 308 that enables the read
module 305 to reconstruct a primary data block using secondary blocks contained in
secondary read responses. Example operations performed by the read module 305
are described below with reference to Figs. 15, 22, and 24. Furthermore, the parser
driver 304 comprises a write module 306 that processes primary write requests to
generate secondary write requests and processes secondary write responses to
generate primary write responses. The parser driver 304 also comprises an
encryption module 310 that enables the write module 306 to cryptographically split

primary data blocks in primary write requests into secondary data blocks to put in
22

WO 2010/057181 PCT/US2009/064786

10

15

20

secondary write requests. An example operation performed by the write module 306
is described below as well with reference to Figs. 16, 23, and 25.

In the example of Figure 6, the secure storage appliance 120 also
comprises a cache driver 315. When enabled, the cache driver 315 receives primary
I/0 requests received by the primary interface 300 before the primary I/0O requests
are received by parser driver 304. When the cache driver 315 receives a primary
read request to read data at a primary storage location of a virtual disk, the cache
driver 315 determines whether a write-through cache 316 at the secure storage
appliance 120 contains a primary write request to write a primary data block to the
primary storage location of the virtual disk. If the cache driver 315 determines that
the write-through cache 316 contains a primary write request to write a primary data
block to the primary storage location of the virtual disk, the cache driver 315 outputs
a primary read response that contains the primary data block. When the parser
driver 304 receives a primary write request to write a primary data block to a
primary storage location of a virtual disk, the cache driver 315 caches the primary
write request in the write-through cache 316. A write-through module 318 performs
write operations to memory from the write-through cache 316.

The secure storage appliance 120 also includes an outstanding write
list (OWL) module 326. When enabled, the OWL module 326 receives primary I/O
requests from the primary interface 300 before the primary I/O requests are received
by the parser driver 304. The OWL module 326 uses an outstanding write list 320
to process the primary 1/O requests.

In addition, the secure storage appliance 120 comprises a backup

module 324. The backup module 324 performs an operation that backs up data at

23

WO 2010/057181 PCT/US2009/064786

10

15

20

the storage systems 204 to backup devices, as described below in conjunction with
Figures 17-18.

The secure storage appliance 120 also comprises a configuration
change module 312. The configuration change module 312 performs an operation
that creates or destroys a volume, and sets its redundancy configuration. Example
redundancy configurations (i.c. “M of N” configurations) are described throughout
the present disclosure, and refer to the number of shares formed from a block of
data, and the number of those shares required to reconstitute the block of data.
Further discussion is provided with respect to possible redundancy configurations
below, in conjunction with Figures 8-9.

It should be appreciated that many alternate implementations of the
secure storage appliance 120 are possible. For example, a first alternate
implementation of the secure storage appliance 120 can include the OWL module
326, but not the cache driver 315, or vice versa. In other examples, the secure
storage appliance 120 might not include the backup module 324 or the configuration
change module 312. Furthermore, there can be many alternate operations performed
by the various modules of the secure storage appliance 120.

Figure 7 illustrates further details regarding connections to and
operational hardware and software included in secure storage appliance 120,
according to a possible embodiment of the present disclosure. The secure storage
appliance 120 illustrates the various operational hardware modules available in the
secure storage appliance to accomplish the data flow and software module
operations described in Figures 4-6, above. In the embodiment shown, the secure

storage appliance 120 is communicatively connected to a client device 402, an

24

WO 2010/057181 PCT/US2009/064786

10

15

20

25

administrative console 404, a key management server 406, a plurality of storage
devices 408, and an additional secure storage appliance 120°.

In the embodiment shown, the secure storage appliance 120 connects
to the client device 402 via both an IP network connection 401 and a SAN network
connection 403. The secure storage appliance 120 connects to the administrative
console 404 by one or more IP connections 405 as well. The key management
server 406 is also connected to the secure storage appliance 120 by an IP network
connection 407. The storage devices 408 are connected to the secure storage
appliance 120 by the SAN network connection 403, such as a Fibre Channel or other
high-bandwidth data connection. Finally, in the embodiment shown, secure storage
appliances 120 and 120’ are connected via any of a number of types of
communicative connections 411, such as an IP or other connection, for
communicating heartbeat messages and status information for coordinating actions
of the secure storage appliance 120 and the secure storage appliance 120°.
Although in the embodiment shown, these specific connections and systems are
included, the arrangement of devices connected to the secure storage appliance 120,
as well as the types and numbers of devices connected to the appliance may be
different in other embodiments.

The secure storage appliance 120 includes a number of software-
based components, including a management service 410 and a system management
module 412. The management service 410 and the system management module 412
cach connect to the administrative console 404 or otherwise provide system
management functionality for the secure storage appliance 120. The management
service 410 and system management module 412 are generally used to set various

settings in the secure storage appliance 120, view logs 414 stored on the appliance,
25

WO 2010/057181 PCT/US2009/064786

10

15

20

25

and configure other aspects of a network including the secure storage appliance 120.
Additionally, the management service 410 connects to the key management server
406, and can request and receive keys from the key management server 406 as
needed.

A cluster service 416 provides synchronization of state information
between the secure storage appliance 120 and secure storage appliance 120°. In
certain embodiments, the cluster service 416 manages a heartbeat message and
status information exchanged between the secure storage appliance 120 and the
secure storage appliance 120°. Secure storage appliance 120 and secure storage
appliance 120’ periodically exchange heartbeat messages to ensure that secure
storage appliance 120 and secure storage appliance 120’ maintain contact. Secure
storage appliance 120 and secure storage appliance 120’ maintain contact to ensure
that the state information received by each secure storage appliance indicating the
state of the other secure storage appliance is up to date. An active directory services
418 stores the status information, and provides status information periodically to
other secure storage appliances via the communicative connections 411.

Additional hardware and/or software components provide datapath
functionality to the secure storage appliance 120 to allow receipt of data and storage
of data at the storage devices 408. In the embodiment shown, the secure storage
appliance 120 includes a SNMP connection module 420 that enables secure storage
appliance 120 to communicate with client devices via the IP network connection
401, as well as one or more high-bandwidth data connection modules, such as a
Fibre Channel input module 422 or SCSI input module 424 for receiving data from
the client device 402 or storage devices 408. Analogous data output modules

including a Fibre Channel connection module 421 or SCSI connection module 423
26

WO 2010/057181 PCT/US2009/064786

can connect to the storage devices 408 or client device 402 via the SAN network
connection 403 for output of data.

Additional functional systems within the secure storage appliance
120 assist in datapath operations. A SCSI command module 425 parses and forms

5 commands to be sent out or received from the client device 402 and storage devices

408. A multipath communications module 426 provides a generalized
communications interface for the secure storage appliance 120, and a disk volume
428, disk 429, and cache 316 provide local data storage for the secure storage
appliance 120.

10 Additional functional components can be included in the secure
storage appliance 120 as well. In the embodiment shown, a parser driver 304
provides data splitting and encryption capabilities for the secure storage appliance
120, as previously explained. A provider 434 includes volume management
information, for creation and destruction of volumes. An events module 436

15 generates and handles events based on observed occurrences at the secure storage
appliance (e.g. data errors or communications errors with other systems).

Figures 8-9 provide a top level sense of a dataflow occurring during
write and read operations, respectively, passing through a secure storage appliance,
such as the secure storage appliance described above in conjunction with Figures 3-

20 7. Figure 8 illustrates a dataflow of a write operation according to a possible
embodiment of the present disclosure, while Figure 9 illustrates dataflow of a read
operation. In the write operation of Figure 8, a primary data block 450 is transmitted
to a secure storage appliance (e.g. from a client device such as an application
server). The secure storage appliance can include a functional block 460 to separate

25 the primary data block into N secondary data blocks 470, shown as S-1 through S-N.
27

WO 2010/057181 PCT/US2009/064786

10

15

20

In certain embodiments, the functional block 460 is included in a parser driver, such
as parser driver 304, above. The specific number of secondary data blocks can vary
in different networks, and can be defined by an administrative user having access to
control settings relevant to the secure storage appliance. Each of the secondary data
blocks 470 can be written to separate physical storage devices. In the read operation
of Figure 9, M secondary data blocks are accessed from physical storage devices,
and provided to the functional block 460 (e.g. parser driver 304). The functional
block 460 then performs an operation inverse to that illustrated in Figure 8, thereby
reconstituting the primary data block 450. The primary data block can then be
provided to the requesting device (e.g. a client device).

In each of Figures 8-9, the N secondary data blocks 470 each
represent a cryptographically split portion of the primary data block 450, such that
the functional block 460 requires only M of the N secondary data blocks (where M
<= N) to reconstitute the primary data block 450. The cryptographic splitting and
data reconstitution of Figures 8-9 can be performed according to any of a number of
techniques. In one embodiment, the parser driver 304 executes SecureParser
software provided by Security First Corporation of Rancho Santa Margarita,
California.

Although, in the embodiment shown in Figure 9, the parser driver
304 uses the N secondary data blocks 470 to reconstitute the primary data block 450,
it is understood that in certain applications, fewer than all of the N secondary data
blocks 470 are required. For example, when the parser driver 304 generates N
secondary data blocks during a write operation such that only M secondary data

blocks are required to reconstitute the primary data block (where M < N), then data

28

WO 2010/057181 PCT/US2009/064786

10

15

20

25

conversion module 60 only needs to read that subset of secondary data block from
physical storage devices to reconstitute the primary data block 450.

For example, during operation of the parser driver 304 a data
conversion routine may generate four secondary data blocks 470, of which two are
needed to reconstitute a primary data block (i.e. M =2, N =4). In such an instance,
two of the secondary data blocks 470 may be stored locally, and two of the
secondary data blocks 470 may be stored remotely to ensure that, upon failure of a
device or catastrophic event at one location, the primary data block 450 can be
recovered by accessing one or both of the secondary data blocks 470 stored
remotely. Other arrangements are possible as well, such as one in which four
secondary data blocks 470 are stored locally and all are required to reconstitute the
primary data block 450 (i.e. M =4, N =4). At its simplest, a single share could be
created M =N=1).

Figure 10 illustrates a further possible embodiment of a data storage
system 250, according to a possible embodiment of the present disclosure. The data
storage system 250 generally corresponds to the data storage system 200 of Figure 4,
above, but further includes redundant secure storage appliances 214. Each of secure
storage appliances 214 may be an instance of secure storage appliance 120.
Inclusion of redundant secure storage appliances 214 allows for load balancing of
read and write requests in the data storage system 250, such that a single secure
storage appliance is not required to process every secure primary read command or
primary write command passed from the application server 202 to one of the secure
storage appliances 214. Use of redundant secure storage appliances also allows for
failsafe operation of the data storage system 250, by ensuring that requests made of a

failed secure storage appliance are rerouted to alternative secure storage appliances.
29

WO 2010/057181 PCT/US2009/064786

10

15

20

25

In the embodiment of the data storage system 250 shown, two secure
storage appliances 214 are shown. Each of the secure storage appliances 214 can be
connected to any of a number of clients (e.g. the application server 202), as well as
secured storage systems 204, the metadata store 224, and a remote server 252. In
various embodiments, the remote server 252 could be, for example, an enterprise
directory 228 and/or a key manager 230.

The secure storage appliances 214 are also typically connected to
cach other via a network connection. In the embodiment shown in the example of
Fig. 10, the secure storage appliances 214 reside within a network 254. In various
embodiments, network 254 can be, for example, an IP-based network, SAN as
previously described in conjunction with Figures 4-5, or another type of network. In
certain embodiments, the network 254 can include aspects of one or both types of
networks. An example of a particular configuration of such a network is described
below in conjunction with Figures 11-12.

The secure storage appliances 214 in the data storage system 250 are
connected to each other across a TCP/IP portion of the network 254. This allows for
the sharing of configuration data, and the monitoring of state, between the secure
storage appliances 214. In certain embodiments there can be two IP-based
networks, one for sharing of heartbeat information for resiliency, and a second for
configuration and administrative use. The secure storage appliance 120 can also
potentially be able to access the storage systems 204, including remote storage
systems, across an IP network using a data interface.

In operation, sharing of configuration data, state data, and heartbeat
information between the secure storage appliances 214 allows the secure storage

appliances 214 to monitor and determine whether other secure storage appliances are
30

WO 2010/057181 PCT/US2009/064786

10

15

20

25

present within the data storage system 250. Each of the secure storage appliances
214 can be assigned specific addresses of read operations and write operations to
process. Secure storage appliances 214 can reroute received I/O commands to the
appropriate one of the secure storage appliances 214 assigned that operation based
upon the availability of that secure storage appliance and the resources available to
the appliance. Furthermore, the secure storage appliances 214 can avoid addressing
a common storage device 204 or application server 202 port at the same time,
thereby avoiding conflicts. The secure storage appliances 214 also avoid reading
from and writing to the same share concurrently to prevent the possibility of reading
stale data.

When one of the secure storage appliances 214 fails, a second secure
storage appliance can determine the state of the failed secure storage appliance
based upon tracked configuration data (e.g. data tracked locally or stored at the
remote server 252). The remaining operational one of the secure storage appliances
214 can also access information in the metadata store 224, including share and key
information defining volumes, virtual disks and client access rights, to either process
or reroute requests assigned to the failed device.

As previously described, the data storage system 250 is intended to
be exemplary of a possible network in which aspects of the present disclosure can be
implemented; other arrangements are possible as well, using different types of
networks, systems, storage devices, and other components.

Referring now to Figure 11, one possibility of a methodology of
incorporating secure storage appliances into a data storage network, such as a SAN,
is shown according to a possible embodiment of the present disclosure. In the

embodiment shown, a secure storage network 500 provides for fully redundant
31

WO 2010/057181 PCT/US2009/064786

10

15

20

storage, in that each of the storage systems connected at a client side of the network
is replicated in mass storage, and each component of the network (switches, secure
storage appliances) is located in a redundant array of systems, thereby providing a
failsafe in case of component failure. In alternative embodiments, the secure storage
network 500 can be simplified by including only a single switch and/or single secure
storage appliance, thereby reducing the cost and complexity of the network (while
coincidentally reducing the protection from component failure).

In the embodiment shown, an overall secure storage network 500
includes a plurality of data lines 502a-d interconnected by switches 504a-b. Data
lines 502a-b connect to storage systems 506a-c, which connect to physical storage
disks 508a-f. The storage systems 506a-c correspond generally to smaller-scale
storage servers, such as an application server, client device, or other system as
previously described. In the embodiment shown in the example of Fig. 11, storage
system 506a connects to physical storage disks 508a-b, storage system 506b
connects to physical storage disks 508c-d, and storage system 506¢ connects to
physical storage disks 508e-f. The secure storage network 500 can be implemented
in a number of different ways, such as through use of Fibre Channel or iSCSI
communications as the data lines 502a-d, ports, and other data communications
channels. Other high bandwidth communicative connections can be used as well.

The switches 504a-b connect to a large-scale storage system, such as
the mass storage 510 via the data lines 502¢-d. The mass storage 510 includes, in
the embodiment shown, two data directors 512a-b, which respectively direct data
storage and requests for data to one or more of the back end physical storage devices

514a-d. In the embodiment shown, the physical storage devices 514a-c are

32

WO 2010/057181 PCT/US2009/064786

10

15

20

25

unsecured (i.e. not cryptographically split and encrypted), while the physical storage
device 514d stores secure data (i.e. password secured or other arrangement).

The secure storage appliances 516a-b also connect to the data lines
502a-d, and each connect to the secure physical storage devices 518a-¢.
Additionally, the secure storage appliances 516a-b connect to the physical storage
devices 520a-c, which can reside at a remote storage location (e.g. the location of the
large-scale storage system mass storage 510).

In certain embodiments providing redundant storage locations, the
secure storage network 500 allows a user to configure the secure storage appliances
516a-b such that, using the M of N cryptographic splitting enabled in each of the
secure storage appliances 516a-b, M shares of data can be stored on physical storage
devices at a local location to provide fast retrieval of data, while another M shares of
data can be stored on remote physical storage devices at a remote location.
Therefore, failure of one or more physical disks or secure storage appliances does
not render data unrecoverable, because a sufficient number of shares of data remain
accessible to at least one secure storage appliance capable of reconstituting
requested data.

Figure 12 illustrates a particular cluster-based arrangement of a data
storage network 600 according to a possible embodiment of the present disclosure.
The data storage network 600 is generally arranged such that clustered secure
storage appliances access and store shares on clustered physical storage devices,
thereby ensuring fast local storage and access to the cryptographically split data.
The data storage network 600 is therefore a particular arrangement of the networks
and systems described above in Figures 1-11, in that it represents an arrangement in

which physical proximity of devices is accounted for.
33

WO 2010/057181 PCT/US2009/064786

10

15

20

25

In the embodiment shown, the data storage network 600 includes two
clusters, 602a-b. Each of the clusters 602a-b includes a pair of secure storage
appliances 604a-b, respectively. In the embodiment shown, the clusters 602a-b are
labeled as clusters A and B, respectively, with each cluster including two secure
storage appliances 604a-b (shown as appliances A1 and A2 in cluster 602a, and
appliances B1 and B2 in cluster 602b, respectively). The secure storage appliances
604a-b within each of the clusters 602a-b are connected via a data network 605 (e.g.
via switches or other data connections in an iSCSI, Fibre Channel, or other data
network, as described above and indicated via the nodes and connecting lines shown
within the data network 605) to a plurality of physical storage devices 610.
Additionally, the secure storage appliances 604a-b are connected to client devices
612, shown as client devices C1-C3, via the data network 605. The client devices
612 can be any of a number of types of devices, such as application servers, database
servers, or other types of data-storing and managing client devices.

In the embodiment shown, the client devices 612 are connected to the
secure storage appliances 604a-b such that each of client devices 612 can send 1/0
operations (e.g. a read request or a write request) to two or more of the secure
storage appliances 604a-b, to ensure a backup datapath in case of a connection
failure to one of secure storage appliances 604a-b. Likewise, the secure storage
appliances 604a-b of each of clusters 602a-b are both connected to a common set of
physical storage devices 610. Although not shown in the example of Fig. 12, the
physical storage devices 610 can be, in certain embodiments, managed by separate
storage systems, as described above. Such storage systems are removed from the
illustration of the data storage network 600 for simplicity, but can be present in

practice.
34

WO 2010/057181 PCT/US2009/064786

10

15

20

25

An administrative system 614 connects to a maintenance console 616
via a local area network 618. Maintenance console 616 has access to a secured
domain 620 of an IP-based network 622. The maintenance console 616 uses the
secured domain 620 to access and configure the secure storage appliances 604a-b.
One method of configuring the secure storage appliances is described below in
conjunction with Figure 14.

The maintenance console 616 is also connected to both the client
devices 612 and the physical storage devices 610 via the IP-based network 622. The
maintenance console 616 can determine the status of each of these devices to
determine whether connectivity issues exist, or whether the device itself has become
non-responsive.

Referring now to Figure 13, an example physical block structure of
data written onto one or more physical storage devices is shown, according to
aspects of the present disclosure. The example of Fig. 13 illustrates three strips
700A, 700B, and 700C (collectively, “shares”). Each of strips 700 is a share of a
physical storage device devoted to storing data associated with a common volume.
For example, in a system in which a write operation splits a primary data block into
three secondary data blocks (i.e. N = 3), the strips 700 (shares) would be
appropriately used to store each of the secondary data blocks. As used in this
disclosure, a volume is grouped storage that is presented by a secure storage
appliance to clients of secure storage appliance (e.g. secure storage appliance 120 or
one of secure storage appliances 214 as previously described), such that the storage
appears as a contiguous, unitary storage location. Secondary data blocks of a
volume are distributed among strips 700. In systems implementing a different

number of shares (e.g. N =2, 4, 6, etc.), a different, corresponding number of shares
35

WO 2010/057181 PCT/US2009/064786

10

15

20

would be used. As basic as a 1 of 1 configuration (M = 1, N = 1) configuration
could be used.

Each of the strips 700 corresponds to a reserved portion of memory
of a different one of physical storage devices (e.g. physical storage devices 206
previously described), and relates to a particular I/O operation from storage or
reading of data to/from the physical storage device. Typically, each of the strips 700
resides on a different one of physical storage devices. Furthermore, although three
different strips are shown in the illustrative embodiment shown, more or fewer strips
can be used as well. In certain embodiments, each of the strips 700 begins on a
sector boundary. In other arrangements, the each of the strips 700 can begin at any
other memory location convenient for management within the share.

Each of strips 700 includes a share label 704, a signature 706, header
information 708, virtual disk information 710, and data blocks 712. The share label
704 is written on each of strips 700 in plain text, and identifies the volume and
individual share. The share label 704 can also, in certain embodiments, contain
information describing other header information for the strips 700, as well as the
origin of the data written to the strip (e.g. the originating cluster).

The signature 706 contain information required to construct the
volume, and is encrypted by a workgroup key. The signatures 706 contain
information that can be used to identify the physical device upon which data (i.e. the
share) is stored. The workgroup key corresponds to a key associated with a group of
one or more users having a common set of usage rights with respect to data (i.c. all
users within the group can have access to common data.) In various embodiments,

the workgroup key can be assigned to a corporate department using common data, a

36

WO 2010/057181 PCT/US2009/064786

10

15

20

25

common group of one or more users, or some other community of interest for whom
common access rights are desired.

The header information 708 contains session keys used to encrypt
and decrypt the volume information included in the virtual disk information 710,
described below. The header information 708 is also encrypted by the workgroup
key. In certain embodiments, the header information 708 includes headers per
section of data. For example, the header information 708 may include one header
for each 64 GB of data. In such embodiments, it may be advantageous to include at
least one empty header location to allow re-keying of the data encrypted with a
preexisting session key, using a new session key.

The virtual disk information 710 includes metadata that describes a
virtual disk, as it is presented by a secure storage appliance. The virtual disk
information 710, in certain embodiments, includes names to present the virtual disk,
a volume security descriptor, and security group information. The virtual disk
information 710 can be, in certain embodiments, encrypted by a session key
associated with the physical storage device upon which the strips 700 are stored,
respectively.

The secondary data blocks 712 correspond to a series of memory
locations used to contain the cryptographically split and encrypted data. Each of the
secondary data blocks 712 contains data created at a secure storage appliance,
followed by metadata created by the secure storage appliance as well. The N
secondary data blocks created from a primary data block are combined to form a
stripe 714 of data. The metadata stored alongside each of the secondary data blocks
712 contains an indicator of the header used for encrypting the data. In one example

implementation, each of the secondary data blocks 712 includes metadata that
37

WO 2010/057181 PCT/US2009/064786

10

15

20

25

specifies a number of times that the secondary data block has been written. A
volume identifier and stripe location of an primary data block an be stored as well.

It is noted that, although a session key is associated with a volume,
multiple session keys can be used per volume. For example, a volume may include
one session key per 64 GB block of data. In this example, each 64 GB block of data
contains an identifier of the session key to use in decrypting that 64 GB block of
data. The session keys used to encrypt data in each of strips 700 can be of any of a
number of forms. In certain embodiments, the session keys use an AES-256
Counter with Bit Splitting. In other embodiments, it may be possible to perform bit
splitting without encryption. Therefore, alongside each secondary data block 712,
an indicator of the session key used to encrypt the data block may be provided.

A variety of access request prioritization algorithms can be included
for use with the volume, to allow access of only quickest-responding physical
storage devices associated with the volume. Status information can be stored in
association with a volume and/or share as well, with changes in status logged based
on detection of event occurrences. The status log can be located in a reserved,
dedication portion of memory of a volume. Other arrangements are possible as well.

It is noted that, based on the encryption of session keys with
workgroup keys and the encryption of the secondary data blocks 712 in each of
strips 700 with session keys, it is possible to effectively delete all of the data on a
disk or volume (i.e. render the data useless) by deleting all workgroup keys that
could decrypt a session key for that disk or volume.

Referring now to Figures 14-16, basic example flowcharts of setup
and use of the networks and systems disclosed herein are described. Although these

flowcharts are intended as example methods for administrative and 1/O operations,
38

WO 2010/057181 PCT/US2009/064786

10

15

20

such operations can include additional steps/modules, can be performed in a
different order, and can be associated with different number and operation of
modules. In certain embodiments, the various modules can be executed
concurrently.

Figure 14 shows a flowchart of systems and methods 800 for
providing access to secure storage in a storage area network according to a possible
embodiment of the present disclosure. The systems and methods 800 correspond to
a setup arrangement for a network including a secure data storage system such as
those described herein, including one or more secure storage appliances. The
embodiments of the systems and methods described herein can be performed by an
administrative user or administrative software associated with a secure storage
appliance, as described herein.

Operational flow is instantiated at a start operation 802, which
corresponds to initial introduction of a secure storage appliance into a network by an
administrator or other individuals of such a network in a SAN, NAS, or other type of
networked data storage environment. Operational flow proceeds to a client
definition module 804 that defines connections to client devices (i.e. application
servers or other front-end servers, clients, or other devices) from the secure storage
appliance. For example, the client definition module 804 can correspond to
mapping connections in a SAN or other network between a client such as application
server 202 and a secure storage appliance 120 of Figure 4.

Operational flow proceeds to a storage definition module 806. The
storage definition module 806 allows an administrator to define connections to

storage systems and related physical storage devices. For example, the storage

39

WO 2010/057181 PCT/US2009/064786

10

15

20

25

definition module 806 can correspond to discovering ports and routes to storage
systems 204 within the system 200 of Figure 4, above.

Operational flow proceeds to a volume definition module 808. The
volume definition module 808 defines available volumes by grouping physical
storage into logical arrangements for storage of shares of data. For example, an
administrator can create a volume, and assign a number of attributes to that volume.
A storage volume consists of multiple shares or segments of storage from the same
or different locations. The administrator can determine a number of shares into
which data is cryptographically split, and the number of shares required to
reconstitute that data. The administrator can then assign specific physical storage
devices to the volume, such that each of the N shares is stored on particular devices.
The volume definition module 808 can generate session keys for storing data on
cach of the physical storage devices, and store that information in a key server
and/or on the physical storage devices. In certain embodiments, the session keys
generated in the volume definition module 808 are stored both on a key server
connected to the secure storage appliance and on the associated physical storage
device (e.g. after being encrypted with an appropriate workgroup key generated by
the communities of interest module 810, below). Optionally, the volume definition
module 808 includes a capability of configuring preferences for which shares are
first accessed upon receipt of a request to read data from those shares.

Operational flow proceeds to a communities of interest module 810.
The communities of interest module 810 corresponds to creation of one or more
groups of individuals having interest in data to be stored on a particular volume.
The communities of interest module 810 module further corresponds to assigning of

access rights and visibility to volumes to one or more of those groups.
40

WO 2010/057181 PCT/US2009/064786

10

15

20

25

In creating the groups via the communities of interest module 8§10,
one or more workgroup keys may be created, with each community of interest being
associated with one or more workgroup keys. The workgroup keys are used to
encrypt access information (e.g. the session keys stored on volumes created during
operation of the volume definition module 808) related to shares, to ensure that only
individuals and devices from within the community of interest can view and access
data associated with that group. Once the community of interest is created and
associated with a volume, client devices identified as part of the community of
interest can be provided with a virtual disk, which is presented to the client device as
if it is a single, unitary volume upon which files can be stored.

In use, the virtual disks appear as physical disks to the client and
support SCSI or other data storage commands. Each virtual disk is associated on a
many-to-one basis with a volume, thereby allowing multiple communities of interest
to view common data on a volume (e.g. by replicating the relevant session keys and
encrypting those keys with relevant workgroup keys of the various communities of
interest). A write command will cause the data to be encrypted and split among
multiple shares of the volume before writing, while a read command will cause the
data to be retrieved from the shares, combined, and decrypted.

Operational flow terminates at end operation 812, which corresponds
to completion of the basic required setup tasks to allow usage of a secure data
storage system.

Figure 15 shows a flowchart of systems and methods 820 for reading
block-level secured data according to a possible embodiment of the present
disclosure. The systems and methods 820 correspond to a read or input command

related to data stored via a secure storage appliance, such as those described herein.
41

WO 2010/057181 PCT/US2009/064786

10

15

20

25

Operational flow in the system and methods 820 begins at a start operation 822.
Operational flow proceeds to a receive read request module 824, which corresponds
to receipt of a primary read request at a secure storage appliance from a client device
(e.g. an application server or other client device, as illustrated in Figures 3-4). The
read request generally includes an identifier of a virtual disk from which data is to be
read, as well as an identifier of the requested data.

Operational flow proceeds to an identity determination module 826,
which corresponds to a determination of the identity of the client from which the
read request is received. The client’s identity generally corresponds with a specific
community of interest. This assumes that the client’s identity for which the secure
storage appliance will access a workgroup key associated with the virtual disk that is
associated with the client.

Operational flow proceeds to a share determination module 828. The
share determination module 828 determines which shares correspond with a volume
that is accessed by way of the virtual disk presented to the user and with which the
read request is associated. The shares correspond to at least a minimum number of
shares needed to reconstitute the primary data block (i.c. at least M of the N shares).
In operation, a read module 830 issues secondary read requests to the M shares, and
receives in return the secondary data blocks stored on the associated physical storage
devices.

A success operation 832 determines whether the read module 830
successfully read the secondary data blocks. The success operation may detect for
example, that data has been corrupted, or that a physical storage device holding one
of the M requested shares has failed, or other errors. If the read is successful,

operational flow branches “yes” to a reconstitute data module 834. The reconstitute
42

WO 2010/057181 PCT/US2009/064786

10

15

20

25

data module 834 decrypts a session key associated with each share with the
workgroup key accessed by the identity determination module 826. The reconstitute
data module 834 provides the session key and the encrypted and cryptographically
split data to a data processing system within the secure storage appliance, which
reconstitutes the requested data in the form of an unencrypted block of data physical
disk locations in accordance with the principles described above in Figures 8-9 and
13. A provide data module 836 sends the reconstituted block of data to the
requesting client device. A metadata update module 838 updates metadata
associated with the shares, including, for example, access information related to the
shares. From the metadata update module 838, operational flow proceeds to an end
operation 840, signifying completion of the read request.

If the success operation 832 determines that not all of the M shares
are successfully read, operational flow proceeds to a supplemental read operation
842, which determines whether an additional share exists from which to read data.
If such a share exists (e.g. M < N), then the supplemental read operation reads that
data, and operational flow returns to the success operation 832 to determine whether
the system has now successfully read at least M shares and can reconstitute the
primary data block as requested. If the supplemental read operation 842 determines
that no further blocks of data are available to be read (e.g. M = N or M + failed reads
> N), operational flow proceeds to a fail module 844, which returns a failed read
response to the requesting client device. Operational flow proceeds to the metadata
update module 838 and end operation 840, respectively, signifying completion of the
read request.

Optionally, the fail module 844 can correspond to a failover event in

which a backup copy of the data (e.g. a second N shares of data stored remotely
43

WO 2010/057181 PCT/US2009/064786

10

15

20

from the first N shares) are accessed. In such an instance, once those shares are
tested and failed, a fail message is sent to a client device.

In certain embodiments, commands and data blocks transmitted to the
client device can be protected or encrypted, such as by using a public/private key or
symmetric key encryption techniques, or by isolating the data channel between the
secure storage appliance and client. Other possibilities exist for protecting data
passing between the client and secure storage appliance as well.

Furthermore, although the system and methods 820 of Figure 15
illustrates a basic read operation, it is understood that certain additional cases related
to read errors, communications errors, or other anomalies may occur which can alter
the flow of processing a read operation. For example, additional considerations may
apply regarding which M of the N shares to read from upon initially accessing
physical storage devices 206. Similar considerations apply with respect to
subsequent secondary read requests to the physical storage devices in case those
read requests fail as well.

Figure 16 shows a flowchart of systems and methods 850 for writing
block-level secured data according to a possible embodiment of the present
disclosure. The systems and methods 850 as disclosed provide a basic example of a
write operation, and similarly to the read operation of Figure 15 additional cases and
different operational flow may be used.

In the example systems and methods 850 disclosed, operational flow
is instantiated at a start operation 852. Operational flow proceeds to a write request
receipt module 854, which corresponds to receiving a primary write request from a

client device (e.g. an application server as shown in Figures 3-4) at a secure storage

44

WO 2010/057181 PCT/US2009/064786

10

15

20

25

appliance. The primary write request generally addresses a virtual disk, and
includes a block of data to be written to the virtual disk.

Operational flow proceeds to an identity determination module 856,
which determines the identity of the client device from which the primary write
request is received. After determining the identity of the client device, the identity
determination module 856 accesses a workgroup key based upon the identity of the
client device and accesses the virtual disk at which the primary write request is
targeted. Operational flow proceeds to a share determination module 858, which
determines the number of secondary data blocks that will be created, and the specific
physical disks on which those shares will be stored. The share determination
module 858 obtains the session keys for each of the shares that are encrypted with
the workgroup key obtained in the identity determination module 856 (e.g. locally,
from a key manager, or from the physical disks themselves). These session keys for
cach share are decrypted using the workgroup key.

Operational flow proceeds to a data processing module 860, which
provides to the parser driver 304 the share information, session keys, and the
primary data block. The parser driver 304 operates to cryptographically split and
encrypt the primary data block, thereby generating N secondary data blocks to be
written to N shares in accordance with the principles described above in the
examples of Figures 8-9 and 13. Operational flow proceeds to a secondary write
module 862 which transmits the share information to the physical storage devices
for storage.

Operational flow proceeds to a metadata storage module 864, which
updates a metadata repository by logging the data written, allowing the secure

storage appliance to track the physical disks upon which data has been written, and
45

WO 2010/057181 PCT/US2009/064786

10

15

20

25

with what session and workgroup keys the data can be accessed. Operational flow
terminates at an end operation 866, which signifies completion of the write request.

As previously mentioned, in certain instances additional operations
can be included in the system and methods 850 for writing data using the secure
storage appliance. For example, confirmation messages can be returned to the
secure storage appliance confirming successful storage of data on the physical disks.
Other operations are possible as well.

Now referring to Figures 17-18 of the present disclosure, certain
applications of the present disclosure are discussed in the context of (1) data backup
systems and (2) secure network thin client network topology used in the business
setting. Figure 17 shows an example system 900 for providing secure storage data
backup, according to a possible embodiment of the present disclosure. In the system
900 shown, a virtual tape server 902 is connected to a secure storage appliance 904
via a data path 906, such as a SAN network using Fibre Channel or iSCSI
communications. The virtual tape server 902 includes a management system 908, a
backup subsystem interface 910, and a physical tape interface 912. The
management system 908 provides an administrative interface for performing backup
operations. The backup subsystem interface 910 receives data to be backed up onto
tape, and logs backup operations. A physical tape interface 912 queues and
coordinates transmission of data to be backed up to the secure storage appliance 904
via the network. The virtual tape server 902 is also connected to a virtual tape
management database 914 that stores data regarding historical tape backup
operations performed using the system 900.

The secure storage appliance 904 provides a virtual tape head

assembly 916 which is analogous to a virtual disk but appears to the virtual tape
46

WO 2010/057181 PCT/US2009/064786

10

15

20

25

server 902 to be a tape head assembly to be addressed and written to. The secure
storage appliance 904 connects to a plurality of tape head devices 918 capable of
writing to magnetic tape, such as that typically used for data backup. The secure
storage appliance 904 is configured as described above. The virtual tape head
assembly 916 provides an interface to address data to be backed up, which is then
cryptographically split and encrypted by the secure storage appliance and stored
onto a plurality of distributed magnetic tapes using the tape head devices 918 (as
opposed to a generalized physical storage device, such as the storage devices of
Figures 3-4).

In use, a network administrator could allocate virtual disks that would
be presented to the virtual tape head assembly 916. The virtual tape administrator
would allocate these disks for storage of data received from the client through the
virtual tape server 902. As data is written to the disks, it would be cryptographically
split and encrypted via the secure storage appliance 904.

The virtual tape administrator would present virtual tapes to a
network (e.g. an IP or data network) from the virtual tape server 902. The data in
storage on the tape head devices 918 is saved by the backup functions provided by
the secure storage appliance 904. These tapes are mapped to the virtual tapes
presented by the virtual tape head assembly 916. Information is saved on tapes as a
collection of shares, as previously described.

An example of a tape backup configuration illustrates certain
advantages of a virtual tape server over the standard tape backup system as
described above in conjunction with Figure 2. In one example of a tape backup
configuration, share 1 of virtual disk A, share 1 of virtual disk B, and other share 1°s

can be saved to a tape using the tape head devices 918. Second shares of each of
47

WO 2010/057181 PCT/US2009/064786

10

15

20

these virtual disks could be stored to a different tape. Keeping the shares of a virtual
tape separate preserves the security of the information, by distributing that
information across multiple tapes. This is because more than one tape is required to
reconstitute data in the case of a data restoration. Data for a volume is restored by
restoring the appropriate shares from the respective tapes. In certain embodiments
an interface that can automatically restore the shares for a volume can be provided
for the virtual tape assembly. Other advantages exist as well.

Now referring to Figure 18, one possible arrangement of a thin client
network topology is shown in which secure storage is provided. In the network 950
illustrated, a plurality of thin client devices 952 are connected to a consolidated
application server 954 via a secured network connection 956.

The consolidated application server 954 provides application and data
hosting capabilities for the thin client devices 952. In addition, the consolidated
application server 954 can, as in the example embodiment shown, provide specific
subsets of data, functionality, and connectivity for different groups of individuals
within an organization. In the example embodiment shown, the consolidated
application server 954 can connect to separate networks and can include separate,
dedicated network connections for payroll, human resources, and finance
departments. Other departments could have separate dedicated communication
resources, data, and applications as well. The consolidated application server 954
also includes virtualization technology 958, which is configured to assist in
managing separation of the various departments’ data and application accessibility.

The secured network connection 956 is shown as a secure Ethernet

connection using network interface cards 957 to provide network connectivity at the

48

WO 2010/057181 PCT/US2009/064786

10

15

20

server 954. However, any of a number of secure data networks could be
implemented as well.

The consolidated application server 954 is connected to a secure
storage appliance 960 via a plurality of host bus adapter connections 961. The
secure storage appliance 960 is generally arranged as previously described in
Figures 3-16. The host bus adapter connections 961 allow connection via a SAN or
other data network, such that each of the dedicated groups on the consolidated
application server 954 has a dedicated data connection to the secure storage
appliance 960, and separately maps to different port logical unit numbers (LUNSs).
The secure storage appliance 960 then maps to a plurality of physical storage
devices 962 that are either directly connected to the secure storage appliance 960 or
connected to the secure storage appliance 960 via a SAN 964 or other data network.

In the embodiment shown, the consolidated application server 954
hosts a plurality of guest operating systems 955, shown as guest operating systems
955a-c. The guest operating systems 955 host user-group-specific applications and
data for each of the groups of individuals accessing the consolidated application
server. Each of the guest operating systems 955a-c have virtual LUNs and virtual
NIC addresses mapped to the LUNs and NIC addresses within the server 954, while
virtualization technology 958 provides a register of the mappings of LUNS and NIC
addresses of the server 954 to the virtual LUNs and virtual NIC addresses of the
guest operating systems 955a-c. Through this arrangement, dedicated guest
operating systems 955 can be mapped to dedicated LUN and NIC addresses, while
having data that is isolated from that of other groups, but shared across common

physical storage devices 962.

49

WO 2010/057181 PCT/US2009/064786

10

15

20

25

As illustrated in the example of Figure 18, the physical storage
devices 962 provide a typical logistical arrangement of storage, in which a few
storage devices are local to the secure storage appliance, while a few of the other
storage devices are remote from the secure storage appliance 960. Through use of
(1) virtual disks that are presented to the various departments accessing the
consolidated application server 954 and (2) shares of virtual disks assigned to local
and remote storage, each department can have its own data securely stored across a
plurality of locations with minimal hardware redundancy and improved security.

Although Figures 17-18 present a few options for applications of the
secure storage appliance and secure network storage of data as described in the
present disclosure, it is understood that further applications are possible as well.
Furthermore, although each of these applications is described in conjunction with a
particular network topology, it is understood that a variety of network topologies
could be implemented to provide similar functionality, in a manner consistent with
the principles described herein.

Now referring to Figures 19-24, various additional details are
provided relating to internal details of handling I/O requests (e.g. read and write
operation requests) in a secure storage appliance. In the various methods and
systems disclosed in the below-described figures, state-based processing of data
blocks is performed, allowing the secure storage appliance to perform sub-tasks as
resources of the secure storage appliance become available for use. In such a
manner, the secure storage appliance can improve throughput of processed data and
I/O requests related to that data, based on these “pipelined” operations.

Referring now to Figure 19, a state diagram 1000 for simultancous

state-based cryptographic splitting in a secure storage appliance is shown, according
50

WO 2010/057181 PCT/US2009/064786

10

15

20

25

to aspects of the present disclosure. The state diagram represents states assignable
to various stripes of data, represented as blocks of data written to or received from
storage devices and managed in memory of a secure storage appliance. By
assigning various states to the buffers and blocks of data stored in those buffers, a
secure storage appliance using such states can employ thread-level parallelism to
process multiple blocks of data (i.c. stripes).

In the embodiment shown, the state diagram 1000 includes an idle
state 1002, a read state 1004, a decode state 1006, a transfer state 1008, an encode
state 1010, and a write state 1012. The idle state 1002 represents a state in which a
stripe (i.e. a block of data able to be stored in a buffer) is currently not in use. The
buffer can include, for example, a direct buffer or a data buffer intended to hold a
block of data (i.c. a stripe of data). So long as the state diagram remains in the idle
state 1002 for that buffer, the buffer is available for reuse, signifying that no data is
being tracked in that buffer. The idle state 1002 can be entered from any of the
other states, upon failure of an operation, or upon completion of an I/O request.

The read state 1004 signifies that data is being read from a plurality
of shares and is destined for storage in a buffer on the secure storage appliance. The
read state 1004 can be entered from the idle state any time the data being accessed is
not present in memory, or upon retrying a previously unsuccessful read or decode
operation.

The decode state 1006 signifies that data read (e.g. while the buffer is
associated with the read state 1004) has occurred, and that currently the plurality of
secondary data blocks are being decoded to form the block of data stored in the
stripe. The decode state 1006 generally signifies that the data is being operated on

by a cryptographic decoding operation, such as through use of a parser driver as
51

WO 2010/057181 PCT/US2009/064786

10

15

20

previously described. The decode state 1006 can be entered, for example, from the
read state 1004 upon determination of a successful read and available parser module,
or upon retrying a previously failed decode operation.

The transfer state 1008 indicates that the I/O request received at the
secure storage appliance is being transferred into or out from the block of data held
in the buffer. In the case of a write I/O request, the transfer state 1008 corresponds
to writing data into the block of data, and marking the block of data as dirty (i.e. the
data stored on physical storage devices is not up to date). In the case of a read 1/O
request, the transfer state 1008 corresponds to return of some or all of the block of
data to a client device from the buffer. The transfer state 1008 can be entered, for
example, from the decode states 1006 upon determining that a stripe is present (i.e.
that the block of data making up the stripe is present in a buffer).

The transfer state 1008 can also be entered from the idle state 1002 in
case either the stripe is already present (e.g. based on action in response to a
different I/O request) or in the case that a full block write is taking place (in which
case a read of that block is unnecessary, as the entire block will be overwritten).

The encode state 1010 signifies that the transfer state 1008 has
completed, such that the data in the buffer is the most up-to-date data related to that
block. The encode state 1010 corresponds to operation of the parser module of a
secure storage appliance to cryptographically split and encrypt the data in the block
of data. The encode state 1010 can be entered from the transfer state 1008 upon
determination that the transfer state has completed and that the parser module is
available. The encode state 1010 can also be entered from itself, such as upon retry

of a failed encode operation.

52

WO 2010/057181 PCT/US2009/064786

10

15

20

25

The write state 1012 signifies completion of the encode state 1010,
and schedules writing of the encoded data to a plurality of shares associated with the
volume and strip to which the data is stored. The write state 1012 can track the
existence of the buffer in an outstanding write list (¢.g. as described above in
conjunction with Figure 6) or other write operation. The write state 1012 can be
entered from the encode state 1010 or upon reentry from itself, in the case of a failed
write.

Additional states can be included as well, depending upon whether
any additional processing actions are required which may use a resource of the
secure storage appliance which may require scheduling and coordination of use.

The state diagram 1000 of Figure 19 can be implemented in software
of the secure storage appliance to track the state of a number of data buffers that
may be present in the secure storage appliance. In certain embodiments, the data
buffers can be held in cache or RAM memory of any of the embodiments of the
secure storage appliance previously described.

Figure 20 shows a flowchart of methods and systems 1100 for
simultaneous state-based cryptographic splitting in a secure storage appliance,
according to aspects of the present disclosure. The flowchart tracks processing of a
single buffer and related block of data in the secure storage appliance. As
illustrated, the methods and systems 1100 split each I/O request into a plurality of
tasks, thereby allowing each 1/0 request to be managed in parallel and executed as
resources in the secure storage appliance (read and write data lines, buffers, parser
driver, etc) become available.

The system 1100 is instantiated at a start operation 1102, which

corresponds to initial operation of a secure storage appliance or connection of the
53

WO 2010/057181 PCT/US2009/064786

10

15

20

25

secure storage appliance to a client device such that the secure storage appliance can
begin receiving 1/0 requests. Operational flow proceeds to a request receipt module
1104 which receives an I/0 request (e.g. a read or write request) associated with a
particular block of data on a volume. The block of data, as referred to herein,
corresponds to a block of data as expected to be received by the client device, rather
than the cryptographically split secondary data blocks stored on the shares of the
physical storage device.

Operational flow proceeds to a stripe presence determination
operation 1106. The stripe presence determination operation 1106 determines
whether the stripe related to the received I/0 request is present in the secure storage
appliance. This may be the case, for example, if the stripe (i.e. the block of data) has
previously been requested by a different I/O operation and is present in a buffer of
the secure storage appliance. The stripe presence determination operation 1106 also
determines whether the 1/O request is a full block write (and therefore there is no
need to acquire the data block prior to performing a read or write).

If the stripe is not present in the secure storage appliance (and the I/O
request is not a full block write), operational flow branches “no” from the stripe
presence determination operation 1106 to a read module 1108. The read module
1108 initiates a read process to obtain a block of data from a volume by accessing
cryptographically split secondary data blocks on a plurality of shares on a plurality
of storage devices. During execution of the read module 1108, a buffer can also be
reserved for the read block of data, and the buffer state can be set to a read state, as
described in Figure 19, above.

A read assessment operation 1110 determines whether the read

module executed successfully. If the read assessment operation 1110 determines
54

WO 2010/057181 PCT/US2009/064786

10

15

20

that the read module 1108 did not execute successfully, operational flow branches
“no” and returns to the read module to retry the read operation. In certain
embodiments, after a number of failed read assessment operations, operational flow
fails, and the entire system 1100 is restarted.

If the read assessment operation 1110 determines that the read
module 1108 executed successfully, operational flow branches “yes” to a decode
module 1112. The decode module 1112 receives the cryptographically split
secondary data blocks, and reconstitutes the block of data from those secondary data
blocks. In certain embodiments, this can be accomplished by using a parser driver,
as previously explained in conjunction with Figure 6. During operation of the
decode module, the state of the buffer reserved for use in conjunction with the block
of data can be set to a decode state, as described above in Figure 19.

A decode assessment operation 1114 determines whether the decode
module 1112 executed successfully, by checking the correctness of the block of data
output to a buffer from the parser driver or other software/hardware used to
reconstitute the block of data. If the decode assessment operation 1114 determines
that the decode module 1112 executed successfully, operational flow branches “yes”
to a transfer module 1116. If the decode assessment operation 1114 determines that
the decode module 1112 failed, operational flow branches “no” and returns to the
read module 1108 to retry the reading and decoding process. In such an instance,
the state of the buffer is changed from the decode state to the read state, and the read
operation is reattempted.

In an alternative embodiment, if the decode assessment operation

1114 determines that the decode module 1112 failed, operational flow can branch

55

WO 2010/057181 PCT/US2009/064786

10

15

20

25

“no” and return to the decode module 1112 to retry the decoding process only (e.g.
as shown in Figure 19).

After successful decoding of a block of data identified in the overall
system 1100, a desired block of data is residing in a buffer on the secure storage
appliance, or a full block write is to be performed. Operational flow proceeds to a
transfer operation 1116 either (1) from the decode assessment operation 1114, as
described above, or, (2) if a stripe was previously present in the secure storage
appliance and detected by the stripe presence determination operation 1106 or was a
full block write. The transfer module associates the I/0 request with the block of
data (now in unencrypted, whole, clear text form) stored in a system buffer, and I/O
requests related to that buffer are processed (e.g. in FIFO order). The transfer
module 1116 either transfers in data relating to a write request addressing a data
location within the block of data, or copies out data from the buffer related to a read
request addressing a location within the block of data. If a write request is executed,
then the data block will be marked as “dirty” using a flag or other means to indicate
that it contains changed data. During operation of the transfer module 1116, the
state of the buffer reserved for use in conjunction with the block of data can be set to
a transfer state, as described above in Figure 19.

Related to that selected 1/0 request for processing, operational flow
proceeds to an update determination operation 1118. The update determination
operation determines whether data in a stripe has been updated (e.g. by a write of a
full or partial data block to the buffer). If the stripe has updated data, operational
flow branches “yes” to an encode module 1120. The encode module 1120 applies
cryptographic splitting to the now-updated data held in a buffer on the secure storage

appliance, to generate a plurality of secondary data blocks in accordance with the
56

WO 2010/057181 PCT/US2009/064786

10

15

20

techniques described above. The encode module 1120 can do so by, for example,
passing the data block that is the subject of the 1/O request to a parser driver in the
secure storage appliance. During operation of the encode module, the state of the
buffer reserved for use in conjunction with the block of data can be set to an encode
state, as described above in Figure 19.

Operational flow proceeds to an encode assessment operation 1122,
which determines whether the encoding of data was successful. If the encode was
successful, operational flow branches “yes” and proceeds from the encode
assessment operation 1122 to a write module 1124. If the encode was not
successful, operational flow branches “no” and returns to the encode module 1120 to
retry the encoding operation.

The write module 1124 schedules a write operation of the secondary
data blocks to the plurality of shares on the physical storage devices that are
associated with the volume to which the I/O is addressed and where the block of
data resides. The write module 1124 in certain embodiments, does so by adding the
secondary data blocks to an outstanding write list, which schedules a write operation
upon the availability of a network connection (e.g. a SAN network connection such
as a Fibre Channel or iSCSI) to a physical storage device. During operation of the
write module, the state of the buffer reserved for use in conjunction with the block
of data can be set to a write state, as described above in Figure 19.

Operational flow proceeds to a write assessment operation 1126,
which determines whether the write operation completed successfully. If the write
does complete successfully, operational flow branches “yes” and proceeds to a

subsequent 1/0 determination operation 1128. If the write does not complete

57

WO 2010/057181 PCT/US2009/064786

10

15

20

25

successfully, operational flow branches “no” and returns to the write module 1124 to
retry the write operation.

The subsequent I/0 determination operation 1128 assesses whether
an additional I/0 request is present and which relates to the block of data. If an
additional I/O request is present and awaiting execution, operational flow branches
“yes” and returns to the transfer module 1116, to process that subsequent /O
request. If no additional 1/O request is present, operational flow branches “no” to an
end operation 1130.

Referring back to the update determination operation 1118, if the
stripe has not been updated, no write operation back to a physical storage device is
necessary. Therefore, operational flow branches “no” from the update determination
operation and completes, terminating at end operation 1130. Additionally, and as
previously described, if the I/O tracking operation determines that no additional I/O
requests exist with respect to that block of data, operational flow branches “no” to
the end operation 1130. Upon reaching the end operation 1130, the state can be set
to an idle state, and the buffer can be made available other use, as described above in
Figure 19.

Although in the system 1100 a specific set of functional modules is
presented, no particular ordering of modules is required or implied. Additional
states and modules can be included in the system 1100 as well, depending upon the
determination of the data block status or the type of I/O request made.

Now referring to Figures 21-22, additional details regarding encoding
and decoding a block of data in a secure storage device are provided in further
detail. Figure 21 shows a flowchart of methods and systems for reconstituting data

in a secure storage appliance, according to a possible aspect of the present
58

WO 2010/057181 PCT/US2009/064786

10

15

20

25

disclosure. The methods and systems 1200 described herein can correspond, in
various aspects, to particular steps performed in a decode operation in association
with a read or write I/O request.

The system 1200 is instantiated at a start operation 1202, which
corresponds to initial scheduling of a decode operation using a parser driver of a
secure storage appliance, such as any of the secure storage appliances described
above. Operational flow proceeds to an obtain data module 1204, which obtains
encoded data from an encoded data buffer pool and assigns a free buffer or direct
buffer for storage of decoded data. The encoded data, in various embodiments,
corresponds to a number of secondary data blocks that represent a cryptographically
split block of data.

Operational flow proceeds to a reconstitution module 1206, which
reconstitutes a block of data from the secondary data blocks. The reconstitution
module 1206 generally corresponds to the decode module of Figure 20, and can, in
certain embodiments, operate using a parser driver as described above in Figure 6.

Operational flow proceeds to a success determination operation 1208,
which determines whether the operation performed by the decode module 1206 was
successful. If the success determination operation 1208 determines that the
reconstitution module 1206 has reconstituted the block of data successfully,
operational flow branches “yes” to a transfer scheduling module 1210. The transfer
scheduling module 1210 schedules a transfer to occur in accordance with the 1/0
request received by the secure storage appliance. If the I/0 request is a write
request, the transfer scheduling module 1210 schedules a write of received data to
update the data that has been decoded. If the I/O request is a read request, the

transfer scheduling module 1210 schedules a return of requested data to be sent to
59

WO 2010/057181 PCT/US2009/064786

10

15

20

25

the client device sending the read request, the timing of which occurs based on the
availability of the connection to the client device. From the transfer scheduling
module 1210, operational flow proceeds to an end operation 1212, signifying
completion of the decode flow.

If the success determination operation 1208 determines that the
reconstitution module 1206 has not reconstituted the block of data, operational flow
branches “no” to a read scheduling module 1214, which schedules a read operation
to occur, thereby retrying the request of the secondary data blocks of data from
which the block of data (i.e. stripe) is reconstituted. From the read scheduling
module 1214, operational flow proceeds to the end operation 1212, which represents
completion of the current read and decode operation and thereby allowing the
system to restart, e.g. retrying to read the block or failing and freeing the parser
driver to act on another set of secondary data blocks.

Figure 22 shows a flowchart of methods and systems for
cryptographically splitting data in a secure storage appliance, according to a possible
aspect of the present disclosure. The methods and systems 1300 of the present
disclosure generally correspond to processing of an encoding and writing portion of
an I/O request, providing additional detail regarding certain portions of the overall
data flow of Figure 20, above. The system 1300 is instantiated at a start operation
1302, which corresponds to initial scheduling of an encode operation using a parser
driver of a secure storage appliance, such as any of the secure storage appliances
described above. Operational flow proceeds to an obtain buffer module 1304, which
obtains buffers for use in encoding data. The data block represents a clear text, set
size data block that can be encoded into a number of secondary data blocks that

represent the cryptographically split block of data.
60

WO 2010/057181 PCT/US2009/064786

10

15

20

25

Operational flow proceeds to an encode module 1306, which
reconstitutes a block of data from the secondary data blocks. The encode module
1306 generally corresponds to the encode module of Figure 19, and can, in certain
embodiments, operate using a parser driver as described above in Figure 6.

Operational flow proceeds to a success determination operation 1308,
which determines whether the operation performed by the encode module 1306 was
successful. If the success determination operation 1308 determines that the encode
module 1306 has cryptographically split the block of data successfully, operational
flow branches “yes” to a write scheduling module 1310. The write scheduling
module 1310 schedules a write of the secondary data blocks to corresponding shares
stored on physical storage devices connected to the secure storage appliance. From
the write scheduling module 1310, operational flow proceeds to an end operation
1312, signifying completion of the encode flow.

If the success determination operation 1308 determines that the
encode module 1306 has not encoded the block of data successfully, operational
flow branches “no” to a transfer function module 1314, which reschedules a transfer
function so that the I/O request can be reprocessed. From the transfer function
module 1314, operational flow proceeds to the end operation 1312, which represents
completion of the current operation and thereby allowing the system to restart, e.g.
retrying to encode and write the block or failing and freeing the parser driver to act
on another set of secondary data blocks.

Referring to Figures 21-22 generally, in various embodiments, each
of the systems 1200, 1300 corresponds to an overall process which is tracked as a
resource. In such embodiments, separate blocks of data may be operated on

concurrently, and the state of each block can be tracked using states and other status
61

WO 2010/057181 PCT/US2009/064786

10

15

20

25

information, such as the states described in Figure 19 above. Figures 23-24 illustrate
possible generalized applications of use of the state-enabled parallelism provided by
the systems and methods of Figures 19-22, above.

Figure 23 shows a flowchart of methods and systems 1400 for
managing data blocks in a secure storage appliance, according to a possible
embodiment of the present disclosure. The systems 1400 disclosed operate within a
secure storage appliance, and provide state-based management of blocks of data to
provide the possibility of pipelined operation of the secure storage appliance to
improve throughput and I/O request handling.

The system 1400 as shown is instantiated at a start operation 1402,
which corresponds to initial operation of a secure storage appliance in conjunction
with a client device and a plurality of physical storage devices. From the start
operation 1402, operational flow proceeds to a data receipt module 1404. The data
receipt module 1404 receives a block of data associated with a volume. The block
of data is associated with an I/O request, such as a read or write request, and can be
received either from a client device (e.g. in the case of a write request) or from a
physical storage device (e.g. in the case of a read request). In the case the block of
data is received from a physical storage request, the block of data may be a block
referred to herein as a secondary data block, such that the secondary block of data
represents a cryptographically split portion of a block of data as it would be viewed
or presented to a client device. In further embodiments, additional blocks of data
can be received as well.

Operational flow proceeds to a data storage module 1406. The data
storage module 1406 stores the block of data received by the data receipt module

1404 and stores that data in a buffer. The buffer can be any of a number of buffers
62

WO 2010/057181 PCT/US2009/064786

10

15

20

available within a secure storage appliance, such as a direct buffer, any of a number
of work buffers, a number of secondary buffers used to hold secondary data blocks
(e.g. in the case of a read request), or other types or sizes of buffers.

Operational flow proceeds to a state association module 1408. The
state association module 1408 associates the stripe with a state from among a
plurality of states assignable to stipes in the system. Any of a number of states may
be assigned to the stripe, depending upon the currently-pending action to be taken on
data stored in the buffer (or signifying the lack of meaningful data in the buffer if the
buffer has been released due to a completed I/O request). Example states are
illustrated in Figure 19, above; however, other states may be possible as well.

Operational flow proceeds to a data processing module 1410. The
data processing module 1410 processes the block of data by performing a
cryptographic operation on it. In the case of a write operation in which a block of
data is to be written to a physical storage device from a work buffer, the data
processing module corresponds to cryptographic splitting of the block of data into a
plurality of secondary blocks of data for storage. In the case of a read operation or a
partial write operation (less than an entire block being modified), data from a
physical storage device must be retrieved and reconstituted from secondary blocks
of data, so an inverse function is performed. Examples of these operations are
illustrated in the flowcharts of Figures 21-22, above.

While the data processing module 1410 remains in operation, the
overall system preferably maintains the state of the stripe so that the secure storage
appliance can track resource usage based on states of stipes. Other resource tracking

arrangements are possible as well.

63

WO 2010/057181 PCT/US2009/064786

10

15

20

Operational flow proceeds to a state update module 1412. The state
update module changes the state of the stripe maintaining the block of data after the
data processing module 1410 completes operation, for example, once a write
operation or read operation completes. In various embodiments, the state update
module 1412 can change states according to the state transitions illustrated in Figure
19, above.

Operational flow within the system proceeds to an end operation
1414, which ends the process of managing the data block within the designated state.

Although Figure 23 is illustrated as including specific functionality
occurring in a specified order, it is understood that the module ordering is not
required, other than as necessary to maintain different states for a stripe at different
stages of I/O request execution.

Figure 24 shows a flowchart of methods and systems 1500 for
managing I/O requests in a secure storage appliance, according to a possible
embodiment of the present disclosure. The methods and systems as described herein
represent an arrangement in which multiple I/O requests can be handled in parallel,
such as by tracking the state of each stripe being acted upon by /O requests and
allowing processing of an I/O request as a resource. In the context of the systems
and methods described herein, these resources can include: the parser driver
software and/or encryption/decryption hardware used in cryptographic splitting and
reconstituting data; a data line or network connection (e.g. host bus adapter port)
available between the secure storage appliance and one or more of the physical
storage devices; a data connection between the secure storage appliance and a client

device; a buffer, such as a work buffer, and encrypted secondary buffer, or a direct

64

WO 2010/057181 PCT/US2009/064786

10

15

20

25

buffer; or tracking resources available within the appliance. Other resources can be
included as well.

Operational flow is instantiated at a start operation 1502, which
corresponds to initial setup to allow a secure storage appliance to communicate with
a client device and a plurality of physical storage devices in a network such as those
described herein. Operational flow proceeds to a request receipt module 1504,
which receives a plurality of I/O requests at the secure storage appliance. Each of
the I/O requests received by the request receipt module 1504 corresponds to a
volume and a block of data on that volume, where the volume is associated with a
plurality of shares on physical storage devices. Example I/O requests will generally
include the type of request (e.g. a read or write request), a location related to the
request (i.e. the address of a portion of a block of data or a block of data related to
the request), and, if a write operation, data to be written to the location. Other data
can be transmitted as well.

Operational flow proceeds to a storage module 1506. The storage
module stores blocks of data in buffers of the secure storage device. Each of the
blocks of data are associated with one or more of the plurality of 1/O requests. For
example, the blocks of data can be reconstituted blocks of data stored in work
buffers in response to read /O requests or write I/O requests addressing only a
partial block. Or, the blocks of data can include a block of data to be written to a
device storage location.

Operational flow proceeds to a state association module 1508, which
associates a state with each of the stripes in the secure storage appliance. The state
association module 1508 can associate any of a number of states with a stripe,

generally indicating the current processing state of the stripe. For example the state
65

WO 2010/057181 PCT/US2009/064786

10

15

20

25

assigned to the stripe can indicate how far the data associated with the stripe is
processed by a currently-active 1I/0 request. Example states are illustrated in Figure
19, above, but other states may be available as well.

Operational flow proceeds to a resource availability determination
operation 1510. The resource availability determination operation 1510 determines
which resource is necessary to be used next sequentially by the data in each of the
buffers, and determines whether that resource is currently available. If the resource
availability determination operation 1510 determines that a requested resource is
available, operational flow branches “yes” and proceeds to a resource application
module 1512. The resource application module 1512 applies the resource to the data
in the buffer, thereby performing a required operation to process the 1/0 request,
such as reading data, decoding data, transferring 1/O requests, encoding data, writing
data, or idling. Operational flow proceeds to an end operation 1514 upon
completion of the resource application module 1512.

If the resource availability determination operation 1510 determines
that the requested resource is not available, operational flow branches “no”, issues
the appropriate I/O request, and waits for the appropriate system event or events to
signify that the resource to become available. Once the resource becomes available,
operational flow can proceed to the resource application module 1512, above.

Optionally, the resource availability determination operation 1510
includes a time-out feature in which an operation is deemed to have failed if a
resource does not become available to it within a set period of time. In other
embodiments, the resource availability determination operation 1510 requires that
the current I/O request and buffer must wait to complete its next operational step.

However, other buffers associated with other I/O requests can be processed, so long
66

WO 2010/057181 PCT/US2009/064786

10

15

20

25

as the same resource is not required or used. In still further embodiments, the
system uses an interrupt-based scheme to trigger use of a resource by the data in the
buffer, in which a thread is notified when a resource can be allocated for its use.

Through use of the systems and methods herein, it is understood that
each 1/0 request is split into a number of tasks, which can be pipelined to improve
efficiency through the secure storage appliance.

It is recognized that the above networks, systems, and methods
operate using computer hardware and software in any of a variety of configurations.
Such configurations can include computing devices, which generally include a
processing device, one or more computer readable media, and a communication
device. Other embodiments of a computing device are possible as well. For
example, a computing device can include a user interface, an operating system, and
one or more software applications. Several example computing devices include a
personal computer (PC), a laptop computer, or a personal digital assistant (PDA). A
computing device can also include one or more servers, one or more mass storage
databases, and/or other resources.

A processing device is a device that processes a set of instructions.
Several examples of a processing device include a microprocessor, a central
processing unit, a microcontroller, a field programmable gate array, and others.
Further, processing devices may be of any general variety such as reduced
instruction set computing devices, complex instruction set computing devices, or
specially designed processing devices such as an application-specific integrated
circuit device.

Computer readable media includes volatile memory and non-volatile

memory and can be implemented in any method or technology for the storage of
67

WO 2010/057181 PCT/US2009/064786

10

15

20

25

information such as computer readable instructions, data structures, program
modules, or other data. In certain embodiments, computer readable media is
integrated as part of the processing device. In other embodiments, computer
readable media is separate from or in addition to that of the processing device.
Further, in general, computer readable media can be removable or non-removable.
Several examples of computer readable media include, RAM, ROM, EEPROM and
other flash memory technologies, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium that can be used to store desired
information and that can be accessed by a computing device. In other embodiments,
computer readable media can be configured as a mass storage database that can be
used to store a structured collection of data accessible by a computing device.

A communications device establishes a data connection that allows a
computing device to communicate with one or more other computing devices via
any number of standard or specialized communication interfaces such as, for
example, a universal serial bus (USB), 802.11 a/b/g network, radio frequency,
infrared, serial, or any other data connection. In general, the communication
between one or more computing devices configured with one or more
communication devices is accomplished via a network such as any of a number of
wireless or hardwired WAN, LAN, SAN, Internet, or other packet-based or port-
based communication networks.

The above specification, examples and data provide a complete
description of the manufacture and use of the composition of the invention. Since
many embodiments of the invention can be made without departing from the spirit

and scope of the invention, the invention resides in the claims hereinafter appended.
68

10

15

20

25

30

WO 2010/057181 PCT/US2009/064786

Claims:

1. A method of managing data blocks in a secure storage appliance, the method
comprising:
receiving a block of data associated with a volume, the volume associated with a
plurality of shares stored on a plurality of physical storage devices;
storing the block of data in a buffer;
associating the block of data with a state from among a plurality of states, each of
the states corresponding to a status of the block of data;
processing the block of data by performing at least one cryptographic operation
on the block of data; and
upon completion of processing the block of data, updating the state of the block of
data.

2. The method of claim 1, wherein processing the block of data includes

cryptographically splitting the block of data into a plurality of secondary data blocks.

3. The method of claim 1, wherein processing the block of data includes
reconstituting a primary block of data from a plurality of secondary blocks of data, the
plurality of secondary blocks of data including the block of data.

4. The method of claim 1, wherein the plurality of states includes at least one of a

read state, a decode state, an idle state, a transfer state, an encode state, or a write state.

5. The method of claim 1, further comprising, while processing the block of data,
assigning a state to the block of data indicating that the block of data is being processed.

6. The method of claim 1, wherein receiving the block of data includes receiving the

block of data from a client device.

7. The method of claim 5, wherein the buffer is a work buffer.
69

10

15

20

25

WO 2010/057181 PCT/US2009/064786

8. The method of claim 1, wherein processing the block of data includes
reconstituting the block of data from a plurality of secondary data blocks stored in the
plurality of shares.

9. A method of managing 1/0O requests in a secure storage appliance, the method
including:
receiving an 1/0 request at the secure storage appliance, the I/0 request associated
with a volume, the volume associated with a plurality of shares stored on a
plurality of physical storage devices;
determining whether a block of data referenced by the 1/0O request is present in a
buffer;
transferring the block of data to a buffer and associating the block of data with a
transfer state;
determining whether the block of data in the buffer is updated; and
processing the block of data.

10. The method of claim 9, wherein processing the block of data includes determining

whether the data block has been updated.

11. The method of claim 10, further comprising, upon determining that the data block
has been updated, cryptographically splitting the block of data into a plurality of
secondary data blocks and storing the plurality of secondary data blocks on the plurality

of physical storage devices.

12. The method of claim 11, further comprising, while cryptographically splitting the

block of data, associating the block of data with an encode state.

70

10

15

20

25

30

WO 2010/057181 PCT/US2009/064786

13. The method of claim 11, further comprising, while storing the plurality of
secondary data blocks on the plurality of physical storage devices, associating the block

of data with a write state.

14. The method of claim 9, wherein transferring the block of data to a buffer includes

receiving the data block from a client device.

15. The method of claim 9, further comprising, prior to transferring the block of data
to a buffer:
reading a plurality of secondary data blocks stored in the plurality of shares; and
reconstituting the block of data from the plurality of secondary data blocks.

16. The method of claim 15, further comprising, while reconstituting the block of

data, associating the block of data with a decode state.

17. A seccure storage appliance comprising;
a plurality of buffers, cach buffer capable of holding a block of data having a state
selected from among a plurality of states;
a programmable circuit capable of accessing the plurality of buffers, the
programmable circuit configured to execute program instructions to:
receive an I/0 request, the 1/0 request associated with a volume, the
volume associated with a plurality of shares stored on a plurality of
physical storage devices communicatively connected to the secure
storage appliance;

determine whether a block of data referenced by the I/O request is present
in a buffer;

transfer the block of data to a buffer among the plurality of buffers;

determine whether the block of data in the buffer is updated; and

process the block of data.

71

10

15

20

25

WO 2010/057181 PCT/US2009/064786

18. The secure storage appliance of claim 17, wherein the plurality of states includes
at least one of a read state, a decode state, an idle state, a transfer state, an encode state, or

a write state.

19. The secure storage appliance of claim 17, wherein the programmable circuit is
further programmed to, while transferring the block of data to a buffer, associating the

block of data with a transfer state.

20. The secure storage appliance of claim 17, wherein the plurality of shares store

cryptographically split data stored to the volume.

21. A secure storage appliance comprising:
a plurality of buffers, cach buffer capable of holding a block of data having a state
selected from among a plurality of states;
a programmable circuit capable of accessing the plurality of buffers, the
programmable circuit configured to execute program instructions to:
receive a block of data associated with a volume, the volume associated
with a plurality of shares stored on a plurality of physical storage
devices;

store the block of data in a buffer from among the plurality of buffers;

associate the buffer with a state corresponding to a status of the block of
data;

process the block of data by performing at least one cryptographic
operation on the block of data; and

update the state of the buffer upon completion of processing the block of
data.

72

WO 2010/057181 PCT/US2009/064786

22. The secure storage appliance of claim 21, wherein the programmable circuit is
configured to execute program instructions to cryptographically split the block of data

into a plurality of secondary data blocks.

23. The secure storage appliance of claim 21, wherein the programmable circuit is
configured to execute program instructions to reconstitute a primary block of data from a
plurality of secondary blocks of data, the plurality of secondary blocks of data including
the block of data.

73

WO 2010/057181 1123

PCT/US2009/064786
Application Server
~
12 I: F1
Files DB’s J: F2
. K: F3
| File System | < L: F4
(1) () (K) (L) (M) M DB1
LUNO CIFS01 iSCSI2 || LUNO2 | LUNOB| \ """

LUNO1I CIFSO01 iSCSI02]||... LUNO2 | LUNO3 |.

=
—

9 s

20 20

FIG 1
(Prior Art)

10

PCT/US2009/064786

WO 2010/057181

Yjed ejeq

(Wy Joud)
AL E

:mo ”
jwbp ede]

(reuondQ) sanoqoy pueg -jo4nQ

4

I

wayshg 9l

Vi

Adoo

Bojeyen

Y

os ade] o3 g Adon o
0s adej junop o
g aJojsay/dnyoeg -
AO|HI0M

A

BT woysAg Jwbpy ade |

sAg juswdojenag -
sddy poid Aqpuels -

:m ”»
18)X 31

X

_/AsRIeS garanyoeg
9¢

€cre

A

0¢

did -

e
(aq) >%oo joysdeug -

Juall) ,dnmyjoeg

A

BJep pue
sddy uononpoud

\ JAguonesljddy

ce

uoljonpoad

WO 2010/057181

Admin
Device

135

100

3/23

STORAGE DEVICE
130A

PCT/US2009/064786

STORAGE DEVICE
130N

SAN
125

SECURE STORAGE
APPLIANCE
120

APPLICATION
SERVER DEVICE

115

CLIENT DEVICE
105A

CLIENT DevVICE

105N

FIG. 3

WO 2010/057181 4123

PCT/US2009/064786
202 [1: F1
Application Server / J: F2
K: F3
Files DB's Files DBs L: F4
| File System | < .II_,ISI:I):%1
() (9) (K) () M (M () Tj F7
[Luno) [ciFsot | | iscsiz || Lunop | Lunob| Lunoh [Lundb - S
\. U: sDB1
120
SAN
208 | 2
S [212
|/
v
03 |[04]| ([ozl wro]
7y

T
wod

Secure copy of F3 | . ,-"50@s ﬁ ﬁ 2067 2068

and new secure F7)

e I — Y -
Secure copy of DB1 m w m W Py

2061 206+ 20643

/ FIG. 4

200

WO 2010/057181

5/23

PCT/US2009/064786

,,"E nterprise \\\
;. Directory \
(opt)

\

2281

Secure Parser
Meta Data

. 120
Secure Storage Appliance
FC FC FC
Target Target coo Target 296
LUNO K >
LUNO -1
3
LUN Mapping Unit 21 =
O
o
21 =
—_— =—h
Data Conversion Module — LI
o,
=
222 ‘g
Lo4.a || Lodb | | Lod.c Lo4.d o
=
L05.a || LO5.b | | LO5.c || LO5.d
Storage Subsystem Interface 22
li03 | [ioa]| [rso] [L81] [Luned
000
[ne | [ie] FC SATA
Initiator SAS

FIG. 5

(mappings)

224

6/23

WO 2010/057181 PCT/US2009/064786
SECURE STORAGE APPLIANCE
120
BACKUP MODULE PRIMARY INTERFACE OWL MODULE
324 300 326
CONFIGURATION
CHANGE MODULE
312
WRITE-THROUGH WRITE-THROUGH
CACHE DRIVER
315 CACHE <> MODULE
o 316 318

PARSER DRIVER
304
DECRYPTION ENCRYPTION
MODULE MODULE
308 310
READ MODULE WRITE MODULE
305 306
OUTSTANDING SECONDARY
WRITE LIST INTERFACE
320 302

FIG. 6

WO 2010/057181

7/23

PCT/US2009/064786

404 KEY
ADMIN. MANAGEMENT
CONSOLE SERVER
406
1 |
. . /120 .
405 !SI\/III s Appsliigtion !\407
Y !
: :_» 41 Management <«
: - Service
I 416
: Svsterm Backup Cluster _}~
Loomof y Module Service [|¢heartbeaty 120’
L Management
] 324 SSA
412 Active
Logs Directory |config. data
414 418 |
----- — SNMP Provider Events \
| 420 434 436 4
i Kernel
i SCS| erttce:-Through Volume428
| ™MD ache
| 425 316 426 MPIO
401 | FC | iscsl | Parser Driver Disk 429
TMD | TMD 304
S = FC | iSCSI
: 422 | 424 / \
| 1 // \423
: <7 421
v 403
MPIO
CLIENT OWL
400 Q 320 Share| |Share| |Share

FIG. 7

408

PCT/US2009/064786

WO 2010/057181

0Sv

6 Old

\l Original Data |

speay
ejeq

(eyep jeuibuo
9)n}Ijsuoaal o} pasinbal
sateys | AluQ)

saleys
NJjo N sidlioag
pue s9jn}IIsuU0IaYy

|

FIEE)-

09y

0Ly

€¢/8

8 Old

(sjowaa 10
|e20] aq ued saieys)

saleys N 40 I ojul
sydfi1oug pue spaiys

/

Sa)lIM
ejeq

0Ly

09y

«—]

ﬂ ejeq [euibuo |

0Sv

9/23

WO 2010/057181 PCT/US2009/064786
202 252 224
7
Files DB’'s Files DBs E’ Secure
Parser
| File System | Meta Dafiz

U] () (K) (L) M @ (V)
| Lunoj |_ciFso1 | | cirsom|| Luno? [Lunop| Lunol [Lunop
\ X

FIG. 10

WO 2010/057181 10723 PCT/US2009/064786

Storage Network

5 502d
C
508a 502a\, ,502b N Mass Storage 514a
_clear D] > (—_Clear__J
m - T1 —
LU O @ = O HO1.LUNs
508b |« 2 u D
> T2
Cseoure ® "3Y 504 - i
<> 506a g 2 212a ==
HO1.LUNs —_— 2 [
_HotLuns = N HO1.LUNs
a 1 —20-39
e
C_Clear) s @ @ 2
Hoztuns | @ e
~—20-39 [HO1.LUN
T2 LUNS
508d | @ N—40-49
T 3)4d
~——25-34 | AO01&AD2
508e LUNs
>N
HO3.LUNs i
4049
508f [*™ 2
a2 | ©
<> 506¢c
HO3.LUNs —
“—35-54
18a
~ 518b
«r> (At Mass \
AO1 & AO2 Storage) 5o0c |
HO1.LUNs LUNs !
e 50-79 |
_—O18c
C_Secure_) A Mass SSAT /
05 LUNe orage) Metadata /
_ < /
~—35-54 (AtMass
\ ~ Storage)
~ - -

/ FIG. 11

500

PCT/US2009/064786

WO 2010/057181

Z19
€0

juslo

219

009

0L9

av09
¢d

VSS

Q209

ec09

ev09
RS
VSS

¢O

juslo

Z19
1O

juslo

av09
A

VSS

ev09
A
VSS

€arhl

urewoq
2Inoag

0¢

¢c9
I
I
9|0sSu0D
919
|
9 /
_ 819
I
¥19
woIsAg
‘ulwpy

12123

WO 2010/057181 PCT/US2009/064786
. Share Share Share
Plain Text Label Label Label
704 704 704
Signature Signature Signature
706 706 706
Workgroup
Kew pF————- F=-——==- F=-===-
ey Header Header Header
Information Information Information
708 708 708
Virtual Virtual Virtual
Disk Disk Disk
Information Information Information
710 710 710
Session
Key L | L____1 L__-___
Secondary Secondary Secondary
Data Data Data
Blocks Blocks Blocks
712 712 712
714
700a 700b 700c

FIG. 13

13/23

WO 2010/057181 PCT/US2009/064786

802
804
Define
\ Connections To
Clients
806 I
\ Define

Connections to
Storage Shares

808 I

\ Define Volumes

!

810
.| DefineCOI/
Virtual Disks

812

/ End

800
FIG. 14

14/23

WO 2010/057181
822
824
\ Receive Read
Request
826 I
R Determine
Identity
828
\ Determine Shares
830
‘. |Read from M of N
Shares
832

Successful Read?

ead Additiona

Share?

834
Reconstitute Data
836 _
Provide Data to
Client
838\
Update Metadata

820 840
End

PCT/US2009/064786

842

844
Failed Read /
FIG. 15

WO 2010/057181 15723 PCT/US2009/064786

852
854
\ Receive Write
Request
856 I
\ Determine
Identity
858
Determine Shares
860
‘| Encrypt/Split into
N Shares
862
Write to N Shares
864
Store Metadata
/ 866
850 End

FIG. 16

PCT/US2009/064786

Ll "Old

" pPZNNT
PIINNT

e .O.NZ:I_
e iy INN

T aENNT
“aLNNT

NN

NN

006

TN

AK ade] uo ILA'ELL <-
L xx ade] uo [LA'0S <-

abewn ysip 1A £/ adej<-
abew ys1p 1A 05 ode] <-

CPIRN

«8Q, JWB ade] 1A

716

_ Nz:.__ _Fz:.___,_:.__

INO Jwbp/Byuod/uiupy

WO 2010/057181

souelddy ainoeg N\ 706

) sAg Jjwbpy ode] [enjip

c| |E|l 906 !
z| |5 \. 4Wedeeq = eSIL
v = | o | _...m.u i whrsks anhy =
O | R A edGe) " | .
NIow | 2 | = 91300y
c S pueg-jo-inQ soe8U| soBpBIU|
2. | N | ade] |eoisAud wayshsgng dnxoeg
(/ 216 ?deLiedisfud ing dn-vg @_\m
wo.li4jo] woli4/ol
916
806 N

€2/91

/

¢06

J9A19g ade] |enjIp

PCT/US2009/064786

WO 2010/057181

¢96

066

8L Old

u (5s9008 3SB} J0) [EDOT)

V1VS/SVS

u ($s9008 jsB} 404 [EDOT)

V1VS/SVS

(e
¢

(sso20e JS€} 10} [ED0T)
V1VS/SVS

J0GG6
196 856 ABojouyos) 1G6
/ uonezIeNMIA \
-1 NA1 L
vioz 4
. W ‘Na=dom — |O—f <mM> (eoueuly) mo__w> OlL_o ¢ 3 \
. ‘Nd=102 : son = i
~ NN | o— W $vann SO 1seny SoINA [o L ,,”
S) o 956
= S0 [Nmq o o
— UH=MOM o
C P “NH= ; 9 o
M dH=102 NAT ° <m_m> AN_IV mo__m> . ,
™ | ° soiseng °
— m — vVaH SOINA
= | vioz o— y
Md=dom ;| ;| S| dvayn somp \ [20
~ “4d=100 [NAT|O—1 D S (lloaked) 2 Z| %
(= ° goseng ° —0
y \\..<m__._> SOINA
/ 9dUEIddy vSS
BGG6 —~ (030 ‘auoud di “WAN)
096 \Ewa pajepijosuo) SuoND UL
¥G6
qec6

€a/L)

18/23

WO 2010/057181 PCT/US2009/064786

Stripe is re-assigned
to a different section of data
Stripe set to ABSENT

Write Successful or
Write Retry Fails
State remains Present

Stripe is ABSENT
Read Req. or Partial Write Req.

All transfers complete and

Read Ret|
e8¢ ety data was not updated

Fails Stripe is PRESENT

Or
Stripe is ABSENT and Full Write Req.

1012
1004

Decode Retry Write Unsuccessful

Fails

Reading Xferring

Encode Retry
Fails

Stri t to PRESENT
ripe setto All transfers complete and

data is dirty (written to)

1010

Encryption Successful

Successful 1 006

Read

Decoding Fails

Encoding

Encoding Fails

FIG. 19

1000

19/23

WO 2010/057181 PCT/US2009/064786
1102
1104
User IO Request
\\\ /1108
1106 Stripe
Present/Full >NO-= Read Ny
Write Process f
S No
1110
Read 3
uccessf
Yes Yes No
N
11& Decode
Data
1116
AN
JXfer User IO]
| request(s)
Encode “
Data |}
Yes

1130 A S
No “— Write Data |y

No
1128 1126

1100 FIG. 20

WO 2010/057181 20723 PCT/US2009/064786

1202
\-C Start)

1204¥ Obtain Encoded Data

from Encoded Buffer and
Allocate Buffer

1206 ¢

& Perform Reconstitution

r1214

1208
NO Schedule Read Function

YES

1210
Schedule Transfer Data

Function

1212 ¢<
e

/

1200

FIG. 21

WO 2010/057181 21723 PCT/US2009/064786

1302

Start)
1304 ¢

\w| Acquire N Encoded
Buffers and Assign Buffer

1306 ¢

\ Perform Encode

/-1314

1308 NO Schedule Transfer
Function

YES

1310
Schedule Write Function

1312 ¢<
e

/

1300

FIG. 22

WO 2010/057181 22123 PCT/US2009/064786

1402

Start)
1404 ¢

Receive Data

1406 ¢

& Store Data in Buffer

1408 ¢

\—_| Associate Stripe With
State

!

Processing Data in Buffer

l

Update State

1414 ¢
e

.

1410

1412

1400

FIG. 23

WO 2010/057181 23123 PCT/US2009/064786

1502

\—C Start)
1504 ¢

\ Receive /0O Request(s)

1506 ¢

k Store Data in Buffer

1508 ¢

\—_| Associate Stripes With
States

1510
Resource Available”
‘YES

Apply Resource to Data

Other Resources/
Buffers?

1512

1515 y

e

1500

FIG. 24

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings

