A selectable volume container for dispensing an article includes a surrounding sidewall with a first end portion and an opposing second end portion with the sidewall having an interior. Further included is an element having an outer periphery, wherein the outer periphery is slidably engaged to the sidewall interior inner surface such that the element dispenses the article form the interior. Also included in the selectable volume container is a planar member that is affixed to the outer periphery on one end and extends outside the interior on the other end. Operationally on the selectable volume container the article is disposed within the interior and in contact with the element, wherein a manual pulling of the planar member results in the element moving with the article being transported from the interior toward an external environment.
Fig. 10
SELECTABLE VOLUME CONTAINER

RELATED PATENT APPLICATIONS

[0001] This application claims the benefit of U.S. provisional patent application Ser. No. 61/892,692 filed on Oct. 18, 2013 by Ronald C. Jimlar of Round Lake Beach, Ill., U.S.

TECHNICAL FIELD

[0002] The present invention relates generally to the storage and dispensing of an article from a container. More particularly, the present invention of the selectable volume container facilitates selectable manual volume reduction of the container interior for easier dispensing of the article from the container.

BACKGROUND OF INVENTION

[0003] The present invention of the selectable volume container addresses a common problem in that once an initial amount of an article is removed from a container, the remaining amount of article becomes more and more difficult to have access to and remove as the article becomes further and further away from a mouth of the container. This is true for articles that are a food product such as sauces, dips, jelly, peanut butter, mayonnaise, and the like, however, industrial articles experience this problem as well, such as caulks, pastes, paints, glues, plaster, and similar articles, and at times these articles can have a high viscosity or thick consistency making the removal of the article at a distance from the container mouth even more difficult. Compounding this problem, as the removal of the article becomes more and more difficult the farther away from the container mouth, results is a higher degree of waste in that the article left at the bottom of the container is not used and therefore becomes trash waste, in addition there can be considerable waste of the article on the inside vertical surface of the container that typically runs perpendicular to the mouth opening, as access can be difficult for article removal on the inside surface also. Of course a user could use a spoon type utensil to have a higher degree of article removal from the container, especially related to the inside vertical surface and inside bottom or base, however, a utensil may not always be available and there is the issue of soiling an added item with the utensil or on a food product article using an individual’s finger to wipe and get at the article that is distant from the container mouth, however, this is undesirable for sanitary reasons and for dirtying one’s finger with the article.

[0004] The container, especially rigid containers, such as glass, plastic, and metal make complete removal of the contained article difficult, one obvious way around this is to use a flexible container, i.e. a toothpaste type container that can extrude the article outside of the container using manual squeezing on the flexible walls of the container, however, a flexible container usually requires some type of additional packaging, i.e. like the toothpaste tube box as flexible containers typically do not pack well to ship and have a higher risk of undesirable rupturing during shipment.

[0005] In looking at the prior art in this area, common prior art would be a typical twist up tube comes to mind, i.e. the lipstick holder, wherein the bottom is rotated and the relatively rigid article is dispensed upward for use, also the process is reversible in that opposite rotation of the bottom results in the article receding downward back in to the container. Or alternatively, another common prior art would be a syringe type container using a piston reciprocating within a cylinder to dispense the article, usually for a controlled volume to be measured and dispensed of the article.

[0006] In U.S. Pat. No. 5,062,551 to Goldstein et al., disclosed is a “postless” pushup container that uses a ratcheting type segmented section to allow a button at the bottom of the container to be pushed for a small distance wherein the segmented section will lock the pusher plate into an axial position. Thus in Goldstein, when the button is pushed again the segmented section ratchets upward to lock the pusher plate in a slightly more elevated position, wherein this process is repeated until the pusher plate is axially extended to the full axial length of the container. In Goldstein, the main advantage is the elimination of an axial screw post that usually extends through the article disposed within the container, however, the segmented section looks to be fairly complicated and expensive to make.

[0007] Continuing in the prior art, in U.S. Pat. No. 5,082,135 to DeCoste disclosed is a container for elevating say for instance pickles in a jar that are in a brine solution, wherein a platform at the bottom of the jar that is attached to a lifting strap that can raise the platform thus elevating the pickles. DeCoste would have limited applications though, especially with sauces, dips, and the like from the lifting strap being in the user’s way and with the platform not holding a particular axial position say with a sauce partially used from the container.

[0008] Next, in the prior art in World Intellectual Property Organization (WIPO) publication number WO2009091362 to Sines disclosed is a helically driven cylinder piston that operates by turning a tube within a tube to advance the piston axially along the tube for dry food stuffs. Sines is a disposable unit and can hold the piston at a fixed axial position, however, being limited to round containers for the helical slot to work correctly.

[0009] What is needed is a selectable volume container for improving the way to elevate the article, being for instance food or non-edibles at the top of a container with the use of tension and displaced energy. This would be to employ a flexible planar member preferably in the form of a pre-cut Mylar pull strip that can be enclosed inside an axially teardrop sleeve, preferably a Ziploc enclosure for retraction and possible reseal to prevent the flexible planar member from contacting the article for cleanliness or sanitary reasons. The selectable volume container would lift the article with the help of an element having an outer periphery preferably as a piston type device that slidably engages the inner sides of the container while elevating the article into an external environment. The selectable volume container would lessen the need for manually removing the article from the inner sides of a conventional container and from the bottom of the conventional container that does not utilize the selectable volume container. The selectable volume container also alleviates the hassle of getting the article on an individual’s hands, arms, and clothes, in addition to parts of tools or utensils that are being utilized for manually scrapping the article from the inner sides of the conventional container and from the bottom of the conventional container that does not utilize the selectable volume container.

[0010] Thus with the selectable volume container, once the article would be reachable with difficulty inside a container, via the selectable volume container and with the use of the flexible planar member to elevate the element that is slidably engaged within the inside of the container would be to dis-
place the article closer to the mouth of the container for ease of access to the article. In the selectable volume container the flexible planar member and an optional axially tearable sleeve are formed into a draw up system or elevator, via affixing the flexible planar member to the element to elevate the element while being linked via the flexible planar member to a band slidably engaged to the outside surface of the of the container wherein the band typically moves axially in a direction opposite to that of the element, i.e. as the band is slid downward the element rises upward to drive the article outside of the container. Thus the band can give an axial indication of the element position (unseen) within the container such that when the band is at or near the bottom of the outside surface of the container the element is at the near upper portion of its travel within the container. In addition, the element and band can hold a particular axial position in the container, i.e. such that the element has elevated the article halfway toward the top of the container and will stay there until the next use of the article in the container.

SUMMARY OF INVENTION

Broadly, the present invention of the selectable volume container includes a surrounding sidewall that is about a longitudinal axis, the surrounding sidewall including a first end portion and an opposing second end portion along the longitudinal axis, the surrounding sidewall having an inner surface and an opposing outer surface, with the first end portion terminating in a first aperture defining a first margin and the second end portion terminating in a second aperture defining a second margin. Also, the surrounding sidewall inner surface, the first aperture, and the second aperture defining a sidewall interior of the surrounding sidewalk, as differentiated from an external environment outside of the sidewalk interior. Further included in the selectable volume container is an element having an outer periphery, wherein the outer periphery is slidably engaged to the surrounding sidewalk inner surface such that the element having movement along the longitudinal axis within the sidewalk interior.

Also included on the selectable volume container is a planar member having a lengthwise axis, the planar member having a primary end portion and an opposing secondary end portion along the lengthwise axis, the planar member primary end portion is affixed to the outer periphery, and the secondary end portion extends toward the second margin. Wherein operationally, on the selectable volume container the article is disposed within the interior and in contact with the element, with the article facing the second margin, wherein a manual pulling of the planar member toward the second margin results in the element moving toward the second margin with the article being transported from the sidewalk interior toward the external environment.

These and other objects of the present invention will become more readily appreciated and understood from a consideration of the following detailed description of the exemplary embodiments of the present invention when taken together with the accompanying drawings, in which;

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a front perspective view of the of the selectable volume container including a surrounding sidewalk, a band, a flexible planar member, an outer surface, an article, and the band being manually moved to expose the article; FIG. 2 shows a front elevation view of the of the selectable volume container including the surrounding sidewall, the band, the flexible planar member, the outer surface, the article, and the band being manually moved to expose the article; FIG. 3 shows a cross sectional view 3-3 from FIGS. 1 and 2, detailing out an element lifting or elevating the article from the sidewalk interior to the external environment using the flexible planar member and the band being manually moved to elevate the article; FIG. 4 shows view 4-4 from FIG. 3, giving an additional angle of perception of in particular the flexible planar member, the element that is elevating the article with an inner surface of the surrounding sidewalk shown, the interior of the sidewalk, plus a first portion of the interior, and a second portion of the interior; FIG. 5 shows cross section 5-5 from FIG. 3, detailing out the positioning of the flexible planar member being affixed to the outer periphery of the element with the article shown and the flexible planar member affixed to the band all in relation to the surrounding sidewalk; FIG. 6 shows cross section 6-6 from FIGS. 1 and 3 that adds the feature of the channel having an interior that the flexible planar member is disposed within, wherein on the element a shoulder protrusion that is impinging upon the channel wall to split a distal end portion of the channel wall to open the channel interior to the first portion of the sidewalk interior, wherein the flexible planar member remains within the channel interior being isolated from a second portion of the sidewalk interior; FIG. 7 shows view 7-7 from FIG. 6 showing the channel with the flexible planar member, the element, article, the first and second portion of the sidewalk interior, a slidable engagement of the outer periphery to the inner surface of the surrounding sidewalk, the shoulder protrusion that is impinging upon the channel wall to split a distal end portion of the channel wall to open the channel interior to the first portion of the sidewalk interior, wherein the flexible planar member remains within the channel interior being isolated from a second portion of the sidewalk interior; FIG. 8 shows cross section 8-8 from FIG. 6 detailing out the positioning of the flexible planar member being affixed to the outer periphery of the element with the article shown and the flexible planar member affixed to the band all in relation to the surrounding sidewalk, plus detail on the channel with the channel interior, the channel proximal end portion, the channel distal end portion, the affixment of the channel proximal end portion to the inner surface of the surrounding sidewalk, and the shoulder protrusion that is impinging upon the channel wall to split a distal end portion of the channel wall to open the channel interior to the first portion of the sidewalk interior, wherein the flexible planar member remains within the channel interior being isolated from a second portion of the sidewalk interior; FIG. 9 shows a cross sectional view of an alternative embodiment of the selectable volume container wherein the flexible member has a dynamic directional change at the edge to allow the flexible planar member to manually pull the flexible member adjacent to the first margin of the surrounding sidewalk in order to elevate the article of the element from the sidewalk interior to the external environment; FIG. 10 shows a front perspective view of the of the selectable volume container in another alternative embodiment including a surrounding sidewalk, the outer surface, the
article, and a beam extension being manually moved to expose the article, further shown is a slot, a resilient planar sheet, with the distal end portion of the beam extension shown;

[0024] FIG. 11 is cross section 11-11 from FIG. 10 that shows especially the surrounding sidewall inner and outer surface with the slot and resilient planar sheet wherein the beam extension distal end portion that is slicing therethrough the resilient planar sheet as the beam extension is moved from the first margin to the second margin while elevating the article on the element to go from the sidewall interior to the external environment, thus the external environment is in communication with the first portion of the sidewall interior, wherein the second portion of the sidewall interior remains isolated from the external environment to retain the article within the sidewall interior;

[0025] FIG. 12 shows view 12-12 from FIG. 11 showing the slot and the resilient planar sheet, the element, article, the first and second portion of the sidewall interior, a slidable engagement of the outer periphery to the inner surface of the surrounding sidewall, the slicing through of the distal portion of the beam extension into the resilient planar sheet as the beam extension is moved from the first margin to the second margin while elevating the article on the element to go from the sidewall interior to the external environment, thus the external environment is in communication with the first portion of the sidewall interior, wherein the second portion of the sidewall interior remains isolated from the external environment to retain the article within the sidewall interior; and

[0026] FIG. 13 shows cross section view 13-13 from FIG. 11 detailing out the positioning of the beam extension with the beam proximal end portion being affixed to the outer periphery of the element with the article shown and the slot with the resilient planar sheet all in relation to the surrounding sidewall and the beam extension distal end portion that is slicing therethrough the resilient planar sheet as the beam extension is moved from the first margin to the second margin while elevating the article on the element to go from the sidewall interior to the external environment.

REFERENCE NUMBERS IN DRAWINGS

[0027] 50 Selectable volume container
[0028] 55 Article
[0029] 60 External environment
[0030] 65 Surrounding sidewall
[0031] 70 Perimeter of the surrounding sidewall 65
[0032] 75 Longitudinal axis of the surrounding sidewall 65
[0033] 80 First end portion of the surrounding sidewall 65
[0034] 85 First aperture of the surrounding sidewall 65
[0035] 90 First margin of the surrounding sidewall 65
[0036] 95 Second end portion of the surrounding sidewall 65
[0037] 100 Second aperture of the surrounding sidewall 65
[0038] 105 Second margin of the surrounding sidewall 65
[0039] 110 Inner surface of the surrounding sidewall 65
[0040] 115 Outer surface of the surrounding sidewall 65
[0041] 120 Sidewall interior of the surrounding sidewall 65
[0042] 125 First portion of the sidewall interior 120 between the element 160 and the first margin 90
[0043] 130 Second portion of the sidewall interior 120 between the element 160 and the second margin 105
[0044] 135 Slot of the surrounding sidewall 65
[0045] 140 Elongated axis of the slot 135
[0046] 145 Slot extending to be adjacent to the first margin 90
[0047] 150 Slot extending to be adjacent to the second margin 105
[0048] 155 Resilient planar sheet
[0049] 160 Element
[0050] 165 Outer periphery of the element 160
[0051] 170 Shoulder protrusion of the outer periphery 165
[0052] 175 Slidable engagement of the outer periphery 165 to the inner surface 110
[0053] 180 Movement of the element 160 along the longitudinal axis 75 within the sidewall interior 120
[0054] 185 Contact of the article 55 to the element 160
[0055] 190 Planar member
[0056] 195 Lengthwise axis of the planar member 190
[0057] 200 Primary end portion of the planar member 190
[0058] 205 Secondary end portion of the planar member 190
[0059] 210 Affixment of the primary end portion 200 to the outer periphery 165
[0060] 215 Affixment of the primary end portion 200 to the outer periphery 165 adjacent to the shoulder protrusion 170
[0061] 220 Manual pulling or movement of the planar member 190 toward the second margin 105
[0062] 225 Element 160 moving toward the second margin 105
[0063] 230 Flexibility of the planar member 190
[0064] 235 Slidable contact of the flexible planar member 190 with the inner surface 110
[0065] 240 Edge
[0066] 245 Affixment of the edge 240 adjacent to the inner surface 110 and second margin 105
[0067] 250 Slidable contact of the secondary end portion 205 with the edge 240
[0068] 255 Manual pulling of the flexible planar member 190 toward the first margin 90
[0069] 260 Slidable contact of the flexible planar member 190 with the first margin 90
[0070] 265 Slidable contact of the flexible planar member 190 with the second margin 105
[0071] 270 Outward position of the flexible planar member 190 from the longitudinal axis 75 in a perpendicular manner
[0072] 275 Band
[0073] 280 Boundary of the band 275
[0074] 285 Slidable engagement of the band 275 to the outer surface 115
[0075] 290 Slidable contact of the flexible planar member 190 with the outer surface 115
[0076] 295 Affixment of the secondary end portion 205 to the band 275
[0077] 300 Manually sliding the band 275 along the longitudinal axis 75 away from the second margin 105
[0078] 305 Movement or transporting of the article 55 by the element 160 from the sidewall interior 120 or the second portion 130 of the sidewall interior 120 to the external environment 60
[0079] 310 Equidistant positioning of the flexible planar members 190 and optional channels 315 about the outer periphery 165 and along the boundary 280
[0080] 315 Flexible channel chute
[0081] 320 Long axis of the flexible channel chute 315
[0082] 325 Base end portion of the channel 315
[0083] 330 Opening end portion of the channel 315
Proximal end portion of the channel 315
Distal end portion of the channel 315
Affixment of the proximal end portion 335 to the inner surface 110
Wall of channel 315
Interior of channel 315
Sliding of the planar member 190 within the channel interior 335 with movement 220 along the lengthwise axis 195
Impingement of the shoulder protrusion 170 upon the distal end portion 340 to split through the channel wall 350
Exiting of the flexible planar member 190 from the channel interior 355
Beam extension
Proximal end portion of the beam extension 375
Distal end portion of the beam extension 375
Affixment of the beam extension 375 proximal end portion 380 to the outer periphery 165
Distal end portion 385 of the beam extension 375 extending therethrough the resilient planar sheet 155 and the slot 135 into the external environment 60
Manually moving the beam extension 375 from the first margin 90 to the second margin 105
Slicing through of the distal end portion 385 of the beam extension 375 in the resilient planar sheet 155
Effecting communication as between the external environment 60 to the first portion 125 of the sidewall interior 120
Preventing communication from the external environment 60 to the second portion 130 of the sidewall interior 120
Equidistant positioning of the slots 135 and resilient planar sheets 155 along the perimeter 70
Equidistant positioning of the beam extensions 375 about the outer periphery 165

DETAILED DESCRIPTION

With initial reference to FIG. 1, shown is a front perspective view of the selectable volume container 50 including a surrounding sidewall 65, a band 275, a flexible planar member 190, an outer surface 115, an article 55, and the band 275 being manually moved 300 to expose the article 55 to the external environment 60. Continuing, FIG. 2 shows a front elevation view of the of the selectable volume container 50 including the surrounding sidewall 65, the band 275, the flexible planar member 190, the outer surface 115, the article 55, and the band 275 being manually moved 300 to expose the article 55 to the external environment 60.

Further, FIG. 3 shows a cross sectional view 3-3 from FIGS. 1 and 2, detailing out an element 160 lifting or elevating 305 the article 55 from the sidewall interior 120 to the external environment 60 using the flexible planar member 190 and the band 275 being manually moved 300 to elevate 305 the article 55. Next, FIG. 4 shows view 4-4 from FIG. 3, giving an additional angle of perception of in particular the flexible planar member 190, the element 160 that is elevating 305 the article 55 with an inner surface 110 of the surrounding sidewall 65 shown, the interior 120 of the sidewall 65, plus a first portion 125 of the interior 120, and a second portion 130 of the interior 120.

Continuing, FIG. 5 shows cross section 5-5 from FIG. 3, detailing out the positioning of the flexible planar member 190 being affixed 210 to the outer periphery 165 of the element 160 with the article 55 shown and the flexible planar member 190 affixed 295 to the band 275 all in relation to the surrounding sidewall 65. Further, FIG. 6 shows cross section 6-6 from FIGS. 1 and 3 that adds the feature of the channel 315 having an interior 355 that the flexible planar member 190 is disposed within, wherein on the element 160 a shoulder protrusion 170 that is impinging 365 upon the channel wall 350 to split a distal end portion 340 of the channel wall 350 to open the channel interior 355 the first portion 125 of the sidewall interior 120, whereas the flexible planar member 190 remains within the channel interior 355 being isolated from a second portion 130 of the sidewall interior 120.

Moving ahead, FIG. 7 shows view 7-7 from FIG. 6 showing the channel 315 with the flexible planar member 190, the element 160, article 55, the first 125 and second 130 portions of the sidewall interior 120, a slidable engagement 175 of the outer periphery 165 to the inner surface 110 of the surrounding sidewall 65, the shoulder protrusion 170 that is impinging 365 upon the channel wall 350 to split a distal end portion 340 of the channel wall 350 to open the channel interior 355 to the first portion 125 of the sidewall interior 120, wherein the flexible planar member 190 remains within the channel interior 355 being isolated from the second portion 130 of the sidewall interior 120.

Next, FIG. 8 shows cross section 8-8 from FIG. 6 detailing out the positioning of the flexible planar member 190 being affixed 210 to the outer periphery 165 of the element 160 with the article 55 shown and the flexible planar member 190 affixed 295 to the band 275 all in relation to the surrounding sidewall 65 plus detail on the channel 315 with the channel interior 355, the channel proximal end portion 335, the channel distal end portion 340, the affixment 345 of the channel proximal end portion 335 to the inner surface 110 of the surrounding sidewall 65. Also, FIG. 8 shows the shoulder protrusion 170 that is impinging 365 upon the channel wall 350 to split the distal end portion 340 of the channel wall 350 to open the channel interior 355 to the first portion 125 of the sidewall interior 120, wherein the flexible planar member 190 remains within the channel interior 355 being isolated from the second portion 130 of the sidewall interior 120.

Further, FIG. 9 shows a cross sectional view of an alternative embodiment of the selectable volume container 50 wherein the flexible member 190 has a dynamic directional change 250 at the edge 240 to allow the flexible planar member 190 to be manually pulled 255 with the flexible member 190 adjacent to the first margin 90 of the surrounding sidewall 65 in order to elevate 305 the article 55 on the element 160 from the sidewall interior 120 to the external environment 60. Next, FIG. 10 shows a front perspective view of the of the selectable volume container 50 in another alternative embodiment including a surrounding sidewall 65, the outer surface 115, the article 55, and a beam extension 375 being manually moved 400 to expose the article 55 to the external environment 60, further shown is a slot 135, a resilient planar sheet 155 with the distal end portion 385 of the beam extension 375 shown.

Continuing, FIG. 11 is cross section 11-11 from FIG. 10 that shows especially the surrounding sidewall 65 inner 110 and outer 115 surfaces with the slot 135 and resilient planar sheet 155 wherein the beam extension 375 distal end portion 385 is slicing 405 therethrough the resilient planar sheet 155 as the beam extension 375 is moved 400 from the first margin 90 to the second margin 105 while elevating...
in contact 185 with the element 160, with the article 55 facing the second margin 105, wherein a manual pulling 220 of the planar member 190 toward the second margin 105 results in the element 160 moving 225 toward the second margin 105 with the article 55 being transported 305 from the sidewall interior 120 toward the external environment 60.

[0114] Optionally, looking in particular at FIGS. 1 to 4, on the selectable volume container 50 for dispensing an article 55 the planar member 190 can be flexible 230, wherein the flexible planar member 190 is slidably 235 in contact with the surrounding sidewall 65 inner surface 110. Further the flexible planar member 190 secondary end portion 205 is in slidable contact 250 with an edge 240 that is affixed 245 adjacent to the second margin 105 at the inner surface 110, the edge 240 is to facilitate the manual pulling 255 of the flexible planar member 190 toward the first margin 90 in a direction opposite of the element 160 movement 225 toward the second margin 105 wherein the flexible planar element 190 is slidably 260 in contact with the first margin 90 and the flexible planar element 190 outward 270 from the longitudinal axis 75 in a perpendicular manner, see in particular FIG. 9.

[0115] Also optionally, on the selectable volume container 50 for dispensing the article 55 wherein the planar member 190 is flexible 230, wherein the flexible planar member 190 is slidably 235 in contact with the surrounding sidewall 65 inner surface 110, further the flexible planar member 190 secondary end portion 205 is in slidable 265 contact with second margin 105 to facilitate the manual pulling 255 of the flexible planar member 190 toward the first margin 90 in a direction opposite of the element 160 movement 225 toward the second margin 105, see in particular FIGS. 3 and 4.

[0116] Another alternative for the selectable volume container 50 for dispensing the article 55 can further comprising a band 275 having a boundary 280, the band 275 is slidably engaged 285 to the surrounding sidewall 65 outer surface 115, further the flexible planar member 190 is in slidable contact 290 with the surrounding sidewall 65 outer surface 115 wherein the secondary end portion 205 is affixed 295 to the band 275, see FIGS. 1, 2, 3, and 5. Wherein operationally, the band 275 is manually slid 300 along the longitudinal axis 75 away from the second margin 105 to move 225 the element 160 along the longitudinal axis 75 toward the second margin 105, wherein the element 160 moves 225 the article 55 from the surrounding sidewall interior 120 to the external environment 60.

Further, the element 160 movement 225 is able to hold a position along the longitudinal axis 75 without manual holding of the band 275 while the element 160 is supporting a weight of the article 55 due to a frictional contact of the outer periphery 165 to the inner surface 110, a frictional contact of the flexible planar member 190 to the inner surface 110, the second margin 105, and the outer surface 115, and a frictional contact of the band 275 to the outer surface 115, see FIGS. 1 to 4.

[0117] In addition, the selectable volume container 50 for dispensing the article 55 can further comprising a plurality of the flexible planar members 190 that are positioned equidistant 310 from one another about the outer periphery 165 and are positioned equidistant from one another along the band 275 boundary 280, to operationally help facilitate the element 160 movement 305, see FIG. 1.

[0118] Also, as an option, for the selectable volume container 50 for dispensing the article 55 includes the surrounding sidewall 65 as previously defined and the element 160 as previously defined, however, with the addition of a shoulder...
protrusion 170 on the outer periphery 165, as shown in FIGS. 6, 7, and 8. Also included is the planar member 190 as previously defined. A flexible channel chute 315 can be included that has a long axis 320 wherein the channel chute 315 has a base end portion 325 and an opposing opening end portion 330 along the 320 long axis, the channel chute 315 having a proximal end portion 335 and an opposing distal end portion 340 that are both positioned about the long axis 320. The proximal end portion 335 is affixed 345 to the inner surface 110 such that the long axis 320 and the longitudinal axis 75 are parallel to one another, see FIGS. 6 and 7. The proximal end portion 335 and the distal end portion 340 form a channel wall 350 that is about the long axis 320 wherein the channel wall 350 defines a channel interior 355 with the planar member 190 disposed within the channel interior 355 with the long axis 320 and the lengthwise axis 195 also being positioned parallel to one another, see FIG. 7. Wherein, the planar member 190 slides 360 within the channel interior 355 with movement along the lengthwise axis 195.

[0119] Wherein, operationally when the planar member 190 and the element 160 are moving 305 along the longitudinal axis 75 toward the second margin 105 via a manual pulling 220 of the planar member 190, the shoulder protrusion 170 impinges 365 upon the distal end portion 340 to split through the channel wall 350 to effect communication as between the channel interior 355 and the sidewall interior 120 in a first portion 125 of the sidewall interior 120 that is defined as being between the element 160 and the first margin 90, thereby exposing the planar member 190 to the first portion 125 of the sidewall interior 120. Wherein the planar member 190 is isolated from a second portion 130 of the sidewall interior 120 that is defined as being between the element 160 and the second margin 105 that the article 55 is disposed within, with an operational result being that the article 55 is transported 305 from the sidewall interior 120 toward the external environment 60 with the planar member 190 being isolated from the article 55 such that the planar member 190 stays clean in the external environment 60, i.e. if the article were a wet good such as a sauce, jelly, caulk, adhesive, and the like, see FIGS. 6, 7, and 8.

[0120] The previously described flexible planar member 190 and band 275 can be used in conjunction with the channel 315. Also on the selectable volume container 50 for dispensing the article 55 can further comprise a plurality of the flexible planar members 190 and the corresponding flexible channel chutes 315 that are positioned equidistant 310 from one another about the outer periphery 165 and the flexible planar members 190 are positioned equidistant from one another along the band 275 boundary 280, to operationally help facilitate the element 160 movement 305.

[0121] Looking at FIGS. 10, 11, 12, and 13 for the selectable volume container 50 for dispensing the article 55, includes the surrounding sidewall 65 as previously described with the addition of a perimeter 70 and a slot 135 having an elongated axis 140 that is positioned parallel to the longitudinal axis 75, the slot 135 extending to be adjacent 145 to the first margin 90 and on an opposing end being adjacent 150 to the second margin 105. Further included is a resilient planar sheet 155 that is disposed within the slot 135. The element 160 as previously defined would be used, however, adding a beam extension 375 having a proximal end portion 380 and a distal end portion 385, the beam extension proximal end portion 380 is affixed 390 to the outer periphery 165 and the beam extension distal end portion 385 extends therethrough 395 the resilient planar sheet 155 and the slot 135 into the external environment 60, see FIGS. 10, 11, and 13.

[0122] Wherein operationally, the beam extension 375 is manually moved 400 from the first margin 90 toward the second margin 105 the element 160 moves 305 in conjunction with the beam extension 375 wherein the beam extension 375 distal end portion 385 slices 405 through the resilient planar sheet 155 in being manually moved 400 along the longitudinal axis 75 from the first margin 90 to the second margin 105. With a result that to effect communication 410 as between the external environment 60 and the sidewall interior 120 in the first portion 125 of the sidewall interior 120 that is defined as being between the element 160 and the first margin 90 and to prevent communication 415 from the external environment 60 and a second portion 130 of the sidewall interior 120 that is defined as being between the element 160 and the second margin 105 that the article 55 is disposed within. With an operational result being that the article 55 is transported 305 from the sidewall interior 120 toward the external environment 60 wholly within the second portion 130 of the sidewall interior 120, further the element 160 movement 305 is able to hold a position along the longitudinal axis 75 without manual holding of the beam extension 375 distal end portion 385 while the element 160 is supporting a weight of the article 55 due to a frictional contact of the outer periphery 165 to the inner surface 110.

[0123] Further, as an option on the selectable volume container 50 for dispensing the article 55 the surrounding sidewall 65 can have a plurality of slots 135 that are equidistant 420 from one another along the perimeter 70 and further a matching plurality of resilient planar sheets 155, as shown in FIG. 10. Also, optionally, the selectable volume container 50 can further comprise a plurality of the beam extensions 375 that are positioned equidistant 425 from one another about the outer periphery 165, to operationally help facilitate the element 160 movement 305.

CONCLUSION

[0124] Accordingly, the present invention of the selectable volume container has been described with some degree of particularity directed to the embodiments of the present invention. It should be appreciated, though, that the present invention is defined by the following claim construed in light of the prior art so modifications or changes may be made to the exemplary embodiments of the present invention without departing from the inventive concepts contained therein.

1. A selectable volume container for dispensing an article, comprising:

(a) a surrounding sidewall that is about a longitudinal axis, said surrounding sidewall including a first end portion and an opposing second end portion along said longitudinal axis, said surrounding sidewall having an inner surface and an opposing outer surface, said first end portion terminating in a first aperture defining a first margin and said second end portion terminating in a second aperture defining a second margin, said surrounding sidewall inner surface, said first aperture, and said second aperture defining a sidewall interior of said surrounding sidewall, as differentiated from an external environment outside of said sidewall interior;

(b) an element having an outer periphery, wherein said outer periphery is slidably engaged to said surrounding
sidewall inner surface such that said element having movement along said longitudinal axis within said sidewall interior; and

c) a planar member having a lengthwise axis, said planar member having a primary end portion and an opposing secondary end portion along said lengthwise axis, said planar member primary end portion is affixed to said outer periphery, and said secondary end portion extends toward said second margin, wherein operationally the article is disposed within said sidewall interior and in contact with said element, with the article facing said second margin, a manual pulling of said planar member toward said second margin results in said element moving toward said second margin with the article being transported from said sidewall interior toward the external environment.

2. A selectable volume container for dispensing an article according to claim 1 wherein said planar member is flexible, wherein said flexible planar member is slidable in contact with said surrounding sidewall inner surface, further said flexible planar member secondary end portion is in slidable contact with an edge that is affixed adjacent to said second margin at said inner surface, said edge to facilitate said manual pulling of said flexible planar member toward said first margin in a direction opposite of said element movement toward said second margin wherein said flexible planar member is slidable in contact with said first margin and said flexible planar member outward from said longitudinal axis in a perpendicular manner.

3. A selectable volume container for dispensing an article according to claim 1 wherein said planar member is flexible, wherein said flexible planar member is slidable in contact with said surrounding sidewall inner surface, further said flexible planar member secondary end portion is in slidable contact with said second margin to facilitate said manual pulling of said flexible planar member toward said first margin in a direction opposite of said element movement toward said second margin.

4. A selectable volume container for dispensing an article according to claim 3 further comprising a band having a boundary, said band is slidable engaged to said surrounding sidewall outer surface, further said flexible planar member is in slidable contact with said surrounding sidewall outer surface wherein said secondary end portion is affixed to said band, wherein operationally said band is manually slid along said longitudinal axis away from said second margin to move said element along said longitudinal axis toward said second margin, wherein said element moves the article from said sidewall interior to the external environment, further said element movement is able to hold a position along said longitudinal axis without manual holding of said band while said element is supporting a weight of the article due to a frictional contact of said outer periphery to said inner surface, a frictional contact of said flexible planar member to said inner surface, said second margin, and said outer surface, and a frictional contact of said band to said outer surface.

5. A selectable volume container for dispensing an article according to claim 4 further comprising a plurality of said flexible planar members that are positioned equidistant from one another about said outer periphery and are positioned equidistant from one another along said band boundary, to operationally help facilitate said element movement.

6. A selectable volume container for dispensing an article, comprising:

(a) a surrounding sidewall that is about a longitudinal axis, said surrounding sidewall including a first end portion and an opposing second end portion along said longitudinal axis, said surrounding sidewall having an inner surface and an opposing outer surface, said first end portion terminating in a first aperture defining a first margin and said second end portion terminating in a second aperture defining a second margin, said surrounding sidewall inner surface, said first aperture, and said second aperture defining a sidewall interior of said surrounding sidewall, as differentiated from an external environment outside of said sidewall interior,

(b) an element having an outer periphery, wherein said outer periphery is slidably engaged to said surrounding sidewall inner surface such that said element having movement along said longitudinal axis within said sidewall interior, said outer periphery further comprising a shoulder protrusion;

(c) a planar member having a lengthwise axis, said planar member having a primary end portion and an opposing secondary end portion along said lengthwise axis, said planar member primary end portion is affixed to said outer periphery being adjacent to said shoulder protrusion, and said secondary end portion extends toward said second margin; and

(d) a flexible channel chute having a long axis wherein said channel chute has a base end portion and an opposing opening end portion along said long axis, said channel chute having a proximal end portion and an opposing distal end portion that are both positioned about said long axis, said proximal end portion is affixed to said inner surface such that said long axis and said longitudinal axis are parallel to one another, said proximal end portion and said distal end portion form a channel wall that is about said long axis wherein said channel wall defines a channel interior with said planar member disposed within said channel interior with said long axis and said lengthwise axis being positioned parallel to one another, wherein said planar member slides within said channel interior with movement along said lengthwise axis, wherein operationally when said planar member and said element are moving along said longitudinal axis toward said second margin via a manual pulling of said planar member, said shoulder protrusion impinges upon said distal end portion to split through said channel wall to effect communication as between said channel interior and said sidewall interior in a first portion of said sidewall interior that is defined as being between said element and said first margin thereby exposing said planar member to said first portion of said sidewall interior, wherein said planar member is isolated from a second portion of said sidewall interior that is defined as being between said element and said second margin that the article is disposed within, with an operational result being that the article is transported from said sidewall interior toward the external environment with the planar member being isolated from the article.

7. A selectable volume container for dispensing an article according to claim 6 wherein said planar member is flexible, wherein said flexible planar member exits said channel interior at said opening end portion, further said flexible planar member secondary end portion is in slidable contact with said second margin to facilitate said manual pulling of said flex-
7. A selective volume container for dispensing an article according to claim 6 further comprising a band having a boundary, said band is slidably engaged to said surrounding sidewall outer surface, further said flexible planar member is in slidable contact with said surrounding sidewall outer surface wherein said secondary end portion is affixed to said band, wherein operationally said band is manually slid along said longitudinal axis away from said second margin to move said element along said longitudinal axis toward said second margin, wherein said element moves the article from said sidewall interior to the external environment, further said element movement is able to hold a position along said longitudinal axis without manual holding of said band while said element is supporting a weight of the article due to a frictional contact of said outer periphery to said inner surface, a frictional contact of said flexible planar member to said second margin and said outer surface, and a frictional contact of said band to said outer surface.

8. A selective volume container for dispensing an article according to claim 7 further comprising a band having a boundary, said band is slidably engaged to said surrounding sidewall outer surface, further said flexible planar member is in slidable contact with said surrounding sidewall outer surface wherein said secondary end portion is affixed to said band, wherein operationally said band is manually slid along said longitudinal axis away from said second margin to move said element along said longitudinal axis toward said second margin, wherein said element moves the article from said sidewall interior to the external environment, further said element movement is able to hold a position along said longitudinal axis without manual holding of said band while said element is supporting a weight of the article due to a frictional contact of said outer periphery to said inner surface, a frictional contact of said flexible planar member to said second margin and said outer surface, and a frictional contact of said band to said outer surface.

9. A selective volume container for dispensing an article according to claim 8 further comprising a plurality of said flexible planar members and said flexible channel chutes that are positioned equidistant from one another about said outer periphery and said flexible planar members are positioned equidistant from one another along said band boundary, to operationally help facilitate said element movement.

10. A selective volume container for dispensing an article, comprising:
   (a) a surrounding sidewall having a perimeter that is about a longitudinal axis, said surrounding sidewall including a first end portion and an opposing second end portion along said longitudinal axis, said surrounding sidewall having an inner surface and an opposing outer surface, said first end portion terminating in a first aperture defining a first margin and said second end portion terminating in a second aperture defining a second margin, said surrounding sidewall inner surface, said first aperture, and said second aperture defining a sidewall interior of said surrounding sidewall, as differentiated from an external environment outside of said sidewall interior, said sidewall further comprising a slot having an elongated axis that is positioned parallel to said longitudinal axis, said slot extending to be adjacent to said first margin and on an opposing end to be adjacent to said second margin;
   (b) a resilient planar sheet that is disposed within said slot;
   (c) an element having an outer periphery, wherein said outer periphery is slidably engaged to said surrounding sidewall inner surface such that said element having movement along said longitudinal axis within said sidewall interior; and
   (d) a beam extension having a proximal end portion and a distal end portion, said beam extension proximal end portion is affixed to said outer periphery and said beam extension distal end portion extends therethrough said resilient planar sheet and said slot into the external environment, wherein operationally said beam extension is manually moved from said first margin toward said second margin said element moves in conjunction with said beam extension wherein said beam extension distal end portion slices through said resilient planar sheet in being manually moved along said longitudinal axis from said first margin to said second margin with a result that to effect communication as between the external environment and said sidewall interior in a first portion of said sidewall interior that is defined as being between said element and said first margin and to prevent communication from the external environment and said second portion of said sidewall interior that is defined as being between said element and said second margin that the article is disposed within, with an operational result being that the article is transported from said sidewall interior toward the external environment wholly within said second portion of said sidewall interior, further said element movement is able to hold a position along said longitudinal axis without manual holding of said beam extension distal end portion while said element is supporting a weight of the article due to a frictional contact of said outer periphery to said inner surface.

11. A selective volume container for dispensing an article according to claim 10 wherein said surrounding sidewall has a plurality of said slots that are equidistant from one another along said perimeter and further a plurality of said resilient planar sheets that are equidistant from one another.

12. A selective volume container for dispensing an article according to claim 11 further comprising a plurality of said beam extension that are positioned equidistant from one another about said outer periphery, to operationally help facilitate said element movement.