A temporary root canal sealer composition, comprising based on the total weight of the composition: (a) 0.5 to 40 wt% of a water-soluble polymer having an average molecular weight of from 5000 to 100,000; (b) 20 to 40 wt% of a particulate inorganic radiopaque filler; (c) 0.01 to 5 wt.% of an alkaline resistant particulate filler having an average particle size of from 1 to 100 nm; (d) 5 to 25 wt% of an alkaline earth metal hydroxide and/or alkali metal hydroxide; (e) 15 to 45 wt% of water; and (f) 0 to 25 wt% of a humectant.
Temporary Root Canal Sealer Dispersion

Field of the Invention
The present invention relates to a temporary root canal sealer composition. Moreover, the present invention also relates to a process for the preparation of a temporary root canal sealer composition. A temporary root canal sealer composition according to the present invention has improved storage stability and in-use stability as well as excellent radio opacity.

Background of the Invention
JP-A 33238195 discloses a root canal filling paste containing calcium hydroxide wherein ultrafine particles of an aluminum oxide or titanium oxide are added as a thickener for improving workability. The paste may optionally contain a polyhydric alcohol. According to the examples, propylene glycol or glycerin is used for improving workability of pastes having a water content of at most 10 percent by weight. Given the low solubility of calcium hydroxide in water, the pastes disclosed by JP-A 33238195 contain a low amount of hydroxide ions in solution. An increase of the water content of the pastes of JP-A 33238195 deteriorates the stability of the pastes.

Temporary root canal sealers are known. EP 2229929 discloses a temporary root canal sealer dispersion having a pH of at least 9 comprising (i) an aqueous dispersion medium, comprising an oligomer and/or polymer having Lewis basic groups, and optionally a hydroxide of an alkali metal and/or a hydroxide of an alkaline earth metal, and (ii) a dispersed phase comprising a radio-opaque filler.

EP0464545 discloses a paste composition which comprises an alkaline-earth metal hydroxide, a polyhydric alcohol, an alkali-soluble cellulose derivative, and water.

JP3027309 discloses a root canal filler which comprises (A) a powder agent, comprising calcium phosphate powder consisting of alpha-tricalcium phosphate and of monocalcium phosphate and iodoform powder and (B) a curing solution comprising an aqueous solution of a polyalkylene glycol.

A simple paste obtained by mixing calcium hydroxide with polyethylene glycol 400 is disclosed by Zelante et al. (Revista de Odontologia da UNESP 21, 37-46 (1992)).

Ulyssea et al. (Revista da Faculdade de Odontologia de Pelotas 213, 38-41 (1992)) discloses the use of barium sulphate as the radio opacifier in a 1:4 ratio with the calcium hydroxide powder.
Maeda T. (Journal of the Osaka University Dental Society 5, 57-62, (1960)) discloses a paste containing calcium hydroxide and polyethylene glycol 1500 as a base, and sulphisomidine and eugenol as antibacterial agents.

Leonardo et al. (Revista da Faculdade de Farmacia e Odontologia de Araraquara, 10(suppl. I), 125-35 (1976)) discloses a paste containing calcium hydroxide, polyethyleneglycol 400, barium sulphate for radioopacity and hydrogenised colophony to improve physical properties.

Temporary root canal sealers are used for temporarily obturating a root canal cavity formed upon extraction of dental pulp and/or root canal tissue. The temporary root canal sealer composition solidifies in the root canal usually by drying. Since the solidified temporary root canal sealer composition is eventually removed from the root canal and replaced by a permanent obturation, easy removal of the temporary root canal sealer from the root canal by dissolving the solidified sealer composition is essential. Accordingly, the components of a temporary root canal sealer compositions should not undergo chemical crosslinking reactions.

Conventional temporary root canal sealer compositions comprise a strongly alkaline aqueous slurry of calcium hydroxide and a radio-opaque filler such as barium sulfate. Given that radioopacity depends on the atom number of the elements contained in the filler, desirable improvements regarding radio opaque fillers usually lead to high density materials. As a consequence, sedimentation of the radio opaque filler may occur, which leads to a storage stability problem of the temporary root canal composition.

Moreover, the strongly alkaline medium present in a root canal sealer composition may deteriorate components in the composition due to hydrolysis or condensation reactions as well as other reaction pathways. Accordingly, the storage stability problem is further aggravated due the harsh pH conditions present in a temporary root canal sealer composition.

On the other hand, when a package of the temporary root canal sealer composition is opened, it is desirable that the content of the package remains useful for an extended period of time, preferably throughout the entire workday so that different patients may be treated with a single package. Therefore, in case a temporary root canal sealer composition solidifies too quickly once the package wherein the composition was stored, is opened, an in-use stability problem arises.

Summary of the Invention

It is the problem of the present invention to provide a temporary root canal sealer...
composition which has high radio-opacity, high storage stability and high in-use stability, preferably of at least 6 hours.

It is also a problem of the present invention to provide a process for preparing a temporary root canal sealer composition, which may be used on an industrial scale for providing a temporary root canal sealer composition which has high radio-opacity, high storage stability and high in-use stability, preferably of at least 6 hours.

These problems are solved according to the present invention by temporary root canal sealer composition, comprising based on the total weight of the composition:

(a) 0.5 to 40 wt% of a water-soluble polymer having an average molecular weight of from 5000 to 100,000;
(b) 20 to 40 wt% of a particulate inorganic radio opaque filler;
(c) 0.01 to 5 wt.% of an alkali resistant particulate filler having an average particle size of from 1 to 100 nm;
(d) 5 to 25 wt% of an alkali earth metal hydroxide and/or alkali metal hydroxide;
(e) 15 to 45 wt% of water; and
(f) 0 to 25 wt% of a humectant.

The present invention additionally provides a process for the preparation of a temporary root comprising

(A) a step of mixing:
 (i) 0.5 to 40 wt% of a water-soluble polymer having an average molecular weight of from 5000 to 100,000;
 (ii) 20 to 40 wt% of a particulate inorganic radio opaque filler;
 (iii) 0.01 to 5 wt.% of an alkali resistant particulate filler having an average particle size of from 1 to 100 nm;
 (iv) 5 to 25 wt% of an alkali earth metal hydroxide and/or alkali metal hydroxide;
 (v) 15 to 45 wt% of water; and
 (vi) 0 to 25 wt% of a humectant.

in water, and

(B) a step of dispersing the mixture.

The present invention is based on the recognition that a combination of a water-soluble polymer having an average molecular weight of from 5000 to 100,000, and an alkali resistant particulate filler having an average particle size of from 1 to 100 nm provides a stable aqueous dispersion which efficiently stabilizes a dispersion of a particulate inorganic radio opaque filler over a long period of time even when the density of the filler is high such as in case of the calcium tungstate. Moreover, the combination of a water-soluble polymer having
an average molecular weight of from 5000 to 100,000, and an alkali resistant particulate filler having an average particle size of from 1 to 100 nm provides an aqueous dispersion which has a high in-use stability of up to 6 hours. The storage stability may be further improved by a specific dispersion method.

Detailed Description of the Invention

The present invention relates to a temporary root canal sealer composition. The temporary root canal sealer composition of the invention is in the form of a dispersion. In the dispersion, a dispersing phase and a dispersed phase are present. In general, the particulate inorganic radio opaque filler forms part of the dispersed phase.

The properties of a root canal sealer and, in particular, a temporary root canal sealer dispersion depend on many factors, but general trends can be seen between the composition of the aqueous dispersion medium and the temporary root canal sealer dispersion properties. Since the trends are not necessarily linear and there are many interactions, trends should not be extrapolated too far from known points. A change of most components in an aqueous dispersion medium affects the degree to which the dispersed phase may be incorporated therein and, hence, amongst other properties, affects the radio-opacity, viscosity, homogeneity and consistency of the temporary root canal sealer dispersion in some way. The following trends are observed in analysis of the aqueous dispersion medium and the properties of the resulting temporary root canal sealer dispersions.

The temporary root canal sealer composition comprises, based on the total weight of the composition, 0.5 to 40 wt%, preferably 25 to 35 wt%, of a water-soluble polymer having an average molecular weight of from 5000 to 100,000.

The water-soluble polymer is preferably selected from polyethylene glycol, polyvinyl alcohol, or polyvinyl pyrrolidone. The water-soluble polymer may be used as a mixture of two or more polymers. Preferably, the water-soluble polymer is polyethylene glycol. The use of the watersoluble polymer, in particular polyethylene glycol allows the radio-opaque filler to be dispersed in the composition in considerable amounts without affecting the stability of the temporary root-canal sealer composition such that the radio-opaque filler precipitates therefrom.

If a lower weight percent of water-soluble polymer is employed in the composition, the temporary root canal sealer composition is insufficiently plastic as to be effective for sealing and the sealer separates due to the high density of the radio-opaque filler. Moreover, if a lower weight percent of water-soluble polymer is employed in the composition, the
consistency and homogeneity of the resulting temporary root canal sealer composition is decreased, such that the composition is likewise rendered unsuitable for use as a root canal sealer. The reduced plasticity, consistency and homogeneity also render such composition ineffective as visualizing agents for use in combination with X-ray radiation.

Conversely, if a greater weight percent of the water-soluble polymer is employed in the temporary root canal sealer composition, the remaining components thereof are effectively diluted, such that the radio-opacity of the dispersion is likewise reduced.

The polyethylene glycol of the temporary root canal sealer has an average molecular weight of from 5000 to 100,000. Preferably, the polyethylene glycol has an average molecular weight of from 6000 to 10,000. According to a specific embodiment, the average molecular weight of is greater than 6000.

In the event that the average molecular weight of the water-soluble polymer lies above the maximum value specified, the viscosity of the composition is so high that it not only prevents formation of a consistent temporary root canal sealer composition, but also prevents the radio opaque filler from being incorporated therein. In contrast, if the average molecular weight of the water-soluble polymer lies below the minimum value specified, the viscosity of the temporary root canal sealer composition is so low that the radio opaque filler settles out of the composition, particularly when dense radio opaque fillers are employed in an increased weight percent based on the total amount of the composition. Moreover, if the average molecular weight of the water-soluble polymer lies below the minimum value specified, the viscosity of the temporary root canal sealer composition is so low that it prevents the composition from sealing the root canal effectively and/or for sufficient lengths of time. Under such circumstances, the temporary root canal sealer composition is rendered ineffective as a radio-opaque sealer.

The average molecular weight, M_n, of the water-soluble polymer may be determined by any method for determining the distribution in molecular weight of a macromolecule. Typical methods include size exclusion chromatographic techniques such as gel permeation chromatography or gel filtration chromatography, as well as mass spectrometric techniques such as electrospray mass spectrometry or matrix-assisted laser desorption/ionisation spectroscopy, and/or viscosity measurements. Mass spectrometric techniques such as electrospray mass spectrometry or matrix-assisted laser desorption/ionisation spectroscopy are particularly preferred for the determination of the average molecular weight, M_n, of the water-soluble polymer.

The temporary root canal sealer composition comprises, based on the total weight of the
composition, (b) 20 to 40 wt% of a particulate inorganic radio opaque filler. The radio opaque filler may be a finely divided particulate material which is comprised of crystalline, amorphous or metallic fibers, flakes, powders or colloids. Preferably, the radio opaque filler is a finely divided powder. The particles of radio opaque filler are sufficiently finely divided so as to render the temporary root canal sealer composition radio-opaque to X-rays, relative to another material. The radio opaque filler may be present in the temporary root canal sealer composition in the form of a hydrated or non-hydrated solid. In the event that the radio-opaque filler is even slightly soluble in any of the other components of the temporary root canal sealer composition, the radio-opaque filler may also be present therein in the form of a solution.

Preferably, the particulate inorganic filler may be selected from calcium tungstate, barium tungstate and barium sulfate. Preferably, the temporary root canal sealer comprises 25 to 35 wt% of particulate inorganic radio opaque filler, preferably calcium tungstate.

Preferably, the temporary root canal sealer composition comprises particulate inorganic radio opaque filler having an average particle size of from 0.5 to 100 µm, more preferably from 2 to 30 µm.

The temporary root canal sealer composition comprises, based on the total weight of the composition, (c) 0.01 to 5 wt.%, preferably 0.1 to 4 wt.%, of an alkali resistant particulate filler having an average particle size of from 1 to 100 nm. The alkali resistant particulate filler may be selected from zirconium dioxide and titanium dioxide or mixed oxides of zirconium and titanium. Preferably the temporary root canal sealer composition comprises 0.5 to 2 wt% of zirconium dioxide.

The alkali resistant particulate filler is a non-reactive inorganic filler, which does not crosslink under alkaline conditions, thereby forming a gel. The use of alkali resistant particulate filler allows the radio opaque filler to be dispersed in the temporary root canal sealer composition in considerable amounts without affecting the stability of the temporary root-canal sealer composition.

In general, the alkali resistant particulate filler has an average particle size of from 1 to 100 nm. Preferably the alkali resistant particulate filler has an average particle size of from 5 to 50 nm.

The alkali resistant particulate filler can be obtained by hydrolytic condensation of hydrolyzable precursor compounds of zirconium and/or titanium and optionally further hydrolyzable compounds of other metals which are incorporated into the inorganic network.
during the hydrolysis. Preferred compounds can be represented by the general formula MX_nR^1, wherein M denotes Ti or Zr; X is a hydrolyzable group R^1, denotes independently, an aliphatic, cycloaliphatic, or aromatic radical with 1 to 30 carbon atoms; n represents an integer of 1-4; and t represents an integer of 0-3.

Specific examples of Zr and Ti compounds are TiCl_4, Ti(OC_2H_5)_4, Ti(OCH_3H_7)_4, Zr(OC_4H_9)_4, ZrCl_4, Zr(OC_2H_5)_4, Zr(OC_3H_7)_4, Zr(OC_4H_9)_4, and ZrOCl_2.

Moreover, boron, tin, and barium compounds can also be incorporated into the hydrolyzable precursor compound mixture. Suitable compounds are, for example, BCl_3, B(OCH_3)_3, B(OC_2H_5)_3, SnCl_4, Sn(OCH_3)_4, Ba(OCH_3)_3, Ba(OC_2H_5)_3, and Ba(OCOCH_3)_2.

By incorporating heavy elements, in particular, Zr, Ti, or Ba into the alkali resistant particulate filler, it is possible to increase the X-ray opacity of the temporary root canal filler composition.

Furthermore, the mixtures from which the alkali resistant particulate filler is produced can contain hydrolyzable aluminum compounds. The hydrolyzable aluminum compounds can be represented by the general formula AlR^2_3, wherein the groups R^2 can be the same or different and are halogen atoms, alkox groups, alkoxycarbonyl groups, alkyl groups, aryl groups, and hydroxy groups. Aluminum alkoxides and aluminum halides are preferred aluminum compounds. Specific examples are Al(OCH_3)_3, Al(OC_2H_5)_3, Al(OC_3H_7)_3, Al(OC_4H_9)_3, AlCl_3, and AlCl(OH)_2.

The production of the inorganic networks can take place in the way which is common in the field of poly(hetero)condensation.

The temporary root canal sealer composition comprises, based on the total weight of the composition, (d) 5 to 25 wt% of an alkali earth metal hydroxide and/or alkali metal hydroxide. The alkali earth metal may be selected from calcium, magnesium or barium. The alkali metal may be selected from lithium, sodium and potassium. The temporary root canal sealer composition may comprise a single hydroxide or a mixture of two or more hydroxides of an alkali earth metal or an alkali metal. It is preferred to use hydroxides of a metal having a high atom number. Accordingly, the temporary root canal sealer composition preferably comprises 10 to 20 wt% of calcium hydroxide.

A hydroxide may be added directly to the composition or it may be generated in situ in the aqueous environment from an appropriate precursor. Precursors suitable for the in situ generation of the calcium hydroxide comprise calcium oxides (including the peroxides and superoxides), carbonates and bicarbonates, either singly or in combination.
The alkali earth metal hydroxide and/or alkali metal hydroxide is present in the temporary root canal sealer composition in an amount sufficient to provide an elevated pH in the alkaline range. In a preferred embodiment, the temporary root canal sealer composition has a pH of at least 8, more preferably of at least 10 or even more preferably of at least 12. The use of a pH of at least 8 ensures that greater amounts of dispersed phase may be incorporated into the composition than if the pH of the temporary root canal sealer composition were less than this value. The pH values are measured using standard pH paper such as universal indicator paper.

The temporary root canal sealer composition comprises, based on the total weight of the composition, (e) 15 to 45 wt% of water. Preferably, the temporary root canal sealer composition comprises water in an amount of from 20 to 30 wt%.

If a lower weight percent of water is employed in the temporary root canal sealer composition, the temporary root canal sealer composition has insufficient plasticity so as to be effective at sealing and maintaining the sterility of a given root canal cavity. Moreover, if a lower weight percent of water is employed in the temporary root canal sealer composition, the consistency and homogeneity of the resulting temporary root canal sealer composition is decreased, such that the composition is rendered unsuitable for use as a sealer or sterilant. The reduced plasticity, consistency and homogeneity of such composition also render it unsuitable for use as visualizing agents in combination with X-ray radiation. Conversely, if a greater weight percent of water is employed in the temporary root canal sealer composition, the remaining components thereof are effectively diluted, such that the composition takes on the characteristics of a solution. Consequently, composition comprising a greater weight percent of water is rendered too fluid to act as sealer, let alone prevent radio-opaque fillers from settling out of the composition, particularly when dense radio-opaque fillers are used in increased proportions.

In a preferred embodiment, the temporary root canal sealer composition may comprise (f) 0 to 25 wt% of a humectant. The humectant serves to keep temporary root canal sealer compositions from hardening or crystallizing upon exposure to air. The humectants comprise one or more liquids which along with water and/or other solvents make up the carrier phase in which other ingredients particularly insoluble filler particles are dispersed to provide a stable paste. An important function of humectants is to slow the temporary root canal sealer composition from drying out due to evaporation of water or other volatile materials when the package is left open or during use of product by the practitioner. Suitable humectants include edible polyhydric alcohols such as glycerin, sorbitol, xylitol, propylene glycol, butylene glycol, or liquid polyethylene glycol and liquid polypropylene glycol. Preferably, the humectant is sorbitol. Preferably sorbitol is contained in an amount of from 5 to 15 wt%. Liquid
polyethylene glycol and liquid polypropylene glycol preferably have an average molecular weight of less than 1000.

Provided that the humectant is employed in the above defined general proportions, the moisture inherent to the temporary root canal sealer composition is retained during use of the temporary root canal sealer composition even if the package is left to stand in an open state for more than 6 hours. Accordingly, the temporary root canal sealer composition is effectively prevented from solidifying or becoming so viscous that the plasticity, consistency and homogeneity of the resulting temporary root canal sealer composition is decreased, thereby rendering the temporary root canal sealer composition unsuitable for use as a sealer, sterilant or visualizing material. Moreover, it is not advantageous to employ greater amounts of humectant than specified above, since this lowers the viscosity and, hence, the sealing capabilities of the temporary root canal sealer composition.

In a preferred embodiment, the temporary root canal sealer composition has a dynamic viscosity in the range of from 1 to 200 Pa·s, more preferably 10 to 60 Pa·s (at 25°C).

The dynamic viscosity is a measure of the internal resistance of a fluid to flow. In the SI system the dynamic viscosity is expressed in Pa·s. The dynamic viscosity can be measured with various types of viscometers and rheometers at a temperature of 25 °C.

In a preferred embodiment, the ratio of the total amount of components (a) and (f) to the total amount of components (b) and (c) is ((a)+(f))/((b)+(c))= 1.5 to 0.025.

In the event that the weight ratio of the total amount of components (a) and (f) to the total amount of components (b) and (c) is decreased, the excessive amounts of components (b) and (c) settle out of the temporary root canal sealer composition, thus rendering it unstable. In contrast, if the weight ratio of the total amount of components (a) and (f) to the total amount of components (b) and (c) is increased, the temporary root canal sealer composition is insuficiently radio-opaque as to be effective as a visualizing agent for use in combination with X-ray radiation.

Preferably the temporary root canal sealer composition is a one-component dental composition.

The temporary root canal sealer composition may additionally comprise further components.

The temporary root canal sealer composition may additionally contain an antiseptic. The antiseptic may be selected from antibiotics, bactericide and bacteriostatins. More
specifically, the antiseptic may be selected from aqueous solutions of an alcohol or mixtures of alcohols such as ethanol, propanol and isopropanol as 60 to 90%, 60 to 70% and 70 to 80% by volume aqueous solutions, respectively; quaternary ammonium compounds such as octenidine dihydrochloride, benzalkonium chloride, cetyltrimethylammonium bromide, cetylpyridinium chloride and benzethonium chloride; phenols such as phenol, trichlorophenol, thymol, carvacrol, triclosan and chloroxylenol; iodophors such as aqueous and/or alcoholic solutions of iodine, iodoform and povidone-iodine; aqueous solutions of inorganic compounds such as sodium chloride, sodium hydroxide, sodium bisulfite, sodium hypochlorite, calcium hypochlorite and hydrogen peroxide; and chlorhexidine-based antiseptics such as chlorhexidine, chlorhexidine dihydrochloride, chlorhexidine acetate and chlorhexidine gluconate, either singly or in combination. More preferably, the antiseptic is a chlorhexidine-based antiseptic. In a preferred embodiment, the antiseptic is chlorhexidine.

The antiseptic is incorporated into the temporary root canal sealer composition in order to prevent bacterial infection of the root canal cavity from occurring either during the time that the temporary root canal sealer composition is in place, or at any point subsequent to the filling of the cavity with a permanent sealer, filling or point. In order to circumvent bacterial infection from occurring during the time in which either the temporary root canal sealer composition or a permanent sealer is in place, sufficient amounts of the antiseptic are incorporated into the temporary root canal sealer composition so as to sterilize the root canal and maintain it in this condition for the duration that the root canal is temporarily sealed, even in the event that some of the antiseptic is leached from the sealer by diffusion into the oral environment.

In order to ensure that bacterial infection has not occurred during the time that the temporary root canal sealer composition is in place, an indicator may be incorporated into the temporary root canal sealer composition. In a preferred embodiment, the temporary root canal sealer composition additionally contains a pH-indicator. The pH-indicator measures the effectiveness with which any given root canal cavity is temporarily sealed, based on a decrease in pH associated with bacterial growth in the temporarily sealed root canal cavity. As such, prior to undergoing permanent sealing the sterility of any given root canal cavity may be assessed by removing the temporary root canal sealer composition from said root canal cavity and determining its pH based on the pH-indicator incorporated therein. The pH-indicator may be selected from any of thymol blue, phenolphthalein, thymolphthalein, naphtholphthalein, alizarin yellow R, leucomalachite green and cresol red. In a preferred embodiment, the pH-indicator is thymol blue. The effectiveness with which a temporary root canal sealer composition comprising a pH-indicator has sealed and sterilized any given root canal cavity may be determined by examination of the surfaces of the temporary root canal sealer composition which were in contact with the internal surfaces of the cavity for the
duration of the temporary sealing. In the case of a temporary root canal sealer comprising thymol blue, those surfaces of the dispersion which exhibit bacterial growth will have changed from blue to colorless due to localized decreases in the pH at sites of bacterial growth.

In addition to water, the temporary root canal sealer composition may additionally contain an organic solvent. The organic solvent may be selected from alcohols, esters, ethers and ketones, either singly or in combination. Preferably the solvent is a linear, branched or cyclic alkyl alcohol, or an ether or ester thereof. More preferably, the solvent is selected from methanol, ethanol, propanol, butanol, pentanol, hexanol and, where applicable, the branched or cyclic isomers thereof, and esters and ethers thereof, either singly or in combination.

The temporary root canal sealer composition may additionally comprise a strong organic base or strong organic acid, or a salt thereof for adjusting the pH of the composition. The strong organic base may be an amine base or amidine base such as an amidine resin or an amidine latex.

The temporary root canal sealer composition may additionally comprise a filler other than the radio-opaque filler. The filler may be a finely divided particulate material which is comprised of crystalline, amorphous or metallic fibers, flakes, powders or colloids. Preferably, the filler comprises particles selected from silica gel granules, alumina granules, carbon fibers, and metallic, mineral, latex, resin, nylon, cellulose, polyester, polyolefin, polyacrylic, polyamide, polyalkylene, polyamide and polyacrylamide fibers and/or granules, either singly or in combination, which are dispersed in the aqueous dispersion medium. Preferably the filler comprises particles of silica. The filler may be present in the temporary root canal sealer composition in the form of a hydrated or non-hydrated solid. In the event that the filler is even slightly soluble in any of the other components of the temporary root canal sealer composition, the filler may also be present therein in the form of a solution.

The present invention also relates to a process for the preparation of a temporary root canal sealer comprising

(a) a step of mixing

(i) 0.5 to 40 wt% of a water-soluble polymer having an average molecular weight of from 5000 to 100,000;
(ii) 20 to 40 wt% of a particulate inorganic radioopaque filler;
(iii) 0.01 to 5 wt.% of an alkali resistant particulate filler having an average particle size of from 1 to 100 nm;
(iv) 5 to 25 wt% of an alkali earth metal hydroxide and/or alkali metal hydroxide;
(v) 15 to 45 wt% of water; and
(vi) 0 to 25 wt% of a humectant,
in water for providing a mixture, and
(b) a step of dispersing the mixture.

A temporary root canal sealer is prepared (a) based on a mixture obtained by mixing the components of the composition of the present invention. The components of the temporary root canal sealer composition can be combined in any order by using common mixing and blending devices for forming an intermediate aqueous mixture. The mixing temperature is not particularly limited and usually is adjusted in a range of from 10 to 70 °C. The mixing time is not particularly limited and usually is adjusted in a range of from 3 minutes to 3 hours. The mixing operation may be performed as a batch mixing operation or as a continuous mixing operation.

The intermediate aqueous mixture obtained in step (a) is subsequently dispersed in a dispersing step. A temporary root canal sealer is prepared (b) by dispersing the mixture of the components of the temporary root canal sealer composition. Preferably, the dispersing technique may be selected from media milling, high pressure homogenizing or colloidal cone milling. According to a preferred embodiment, the dispersing technique is annular gap bead milling.

The dispersing step is used to stabilize the intermediate mixture for obtaining a highly stable composition. Solids generally must be comminuted mechanically and suitable machines such as mills are used. The term mill describes machines which perform fine size reduction. The size reduction device may be a stirrer bead mill such as an annular gap bead mill, which comprises of a mill vessel containing a moving grinding medium. By suitable dispersion technique, the solid components are broken down into particles with the required particle properties such as average size and particles size distribution. Specifically, by adjusting variable parameters, for example feeding rate, stirring rate and time, the particles size may be adjusted to that required within a narrow range.

In a preferred embodiment, an annular gap bead milling technique is used. According to the annular gap bead milling technique, the milling zone is created in the gap between a conical working vessel (stator), and a conical rotor. The gap is may be in a range of from 2 to 20 mm, typically in a range of from 5 to 15, or more preferably in a range of from 6.5 to 13 mm. The movement of the rotor creates radial movement of the grinding media. The grinding media is not particularly limited and includes metal, glass or ceramic beads. Momentum amplifies the outward motion, so that the product shear force increases steadily during the milling operation. Milling beads are automatically re-introduced into the product flow as it enters the
milling chamber, so that continuous circulation of the media in the milling chamber is achieved.

According to a preferred embodiment, the geometry of the grinding chamber ensures uniform particle size and distribution. Product may be fed by an external pump at the desired flow rate. Since the peripheral speed of the rotor, the width of the milling gap, the material and diameter of grinding media, media fill volume and flow velocity all affect the milling results, each of these parameters may be adjusted to create the optimum conditions for the preparation of a temporary root canal sealer composition according to the present invention.

The annular gap bead milling apparatus can be operated at a pumping speed of 13 to 31 kg/h. Preferably the gap between the conic working tank and the conic slaving body is 2 to 20 mm, preferably about 6.5 mm. The grinding beads can occupy 25-75 % of the grinding volume. Preferably the grinding beads occupy 55% of the grinding volume.

The present invention will now be described with reference to Examples which are provided by way of reference.

Examples

General procedure

Polyethylene glycol, water, calcium tungstate, calcium hydroxide and zirconium dioxide were weighted in a mixer and stirred until a homogeneous mixture was received. The mixer apparatus is a Linden mixer. Then this mixture was pumped into annular gap bead mill with a speed of 13 - 31 kg/h. The annular gap bead milling apparatus is a Romaco/Fryma Koruma CoBall Mill (FrymaKoruma GmbH, 79395 Neuenburg, Germany). The gap between conical working vessel and the conical rotor was 6.5 mm. The grinding beads (45 - 65 vol-% of the grinding volume) were accelerated by the movement of the conical rotor resulting in a grinding of larger particles and further homogenization of the pastes. After this processing step the paste was separated from the grinding beads by a separation unit at the product discharge unit.

Table 1 Composition and physical properties of pastes

<table>
<thead>
<tr>
<th>Example</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyethylene glycol</td>
<td>%</td>
<td>26.01</td>
<td>26.01</td>
<td>28.05</td>
</tr>
<tr>
<td>Calcium tungstate</td>
<td>%</td>
<td>40.00</td>
<td>32.00</td>
<td>29.00</td>
</tr>
<tr>
<td>Calcium hydroxide</td>
<td>%</td>
<td>8.00</td>
<td>16.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Zirconium dioxide</td>
<td>%</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Table 2 Stability of pastes after mixing and after homogenization

<table>
<thead>
<tr>
<th>Example</th>
<th>Stability1 after mixing (a)</th>
<th>Stability1 after dispersion (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Stability1 after mixing (a)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stability1 after dispersion (b)</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

1) Stability data bases on measurement of extrusion forces of pastes that were stored at 23, 30, 37, 43, 50, 60 and 70 °C in order to investigate the paste homogeneity

Comparative examples

<table>
<thead>
<tr>
<th>Product</th>
<th>Producer</th>
<th>Batch</th>
<th>pH value</th>
<th>Consistency</th>
<th>Radio opacity</th>
<th>In-use stability3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 3</td>
<td>DENTSPLY</td>
<td>1208004166</td>
<td>12.5</td>
<td>18 ± 0</td>
<td>2.9 ± 0.01</td>
<td>6.0</td>
</tr>
<tr>
<td>ApexCal</td>
<td>Ivoclar Vivadent</td>
<td>P80616</td>
<td>12.9</td>
<td>21.3 ± 0.3</td>
<td>4.5</td>
<td>-</td>
</tr>
<tr>
<td>Asphaline</td>
<td>Becht</td>
<td>BO 656091</td>
<td>6.7</td>
<td>23.8 ± 0.6</td>
<td>2.5 ± 0.2</td>
<td>-</td>
</tr>
<tr>
<td>Calasept</td>
<td>Nordiska Dental</td>
<td>3-26, 201 1-04</td>
<td>12.4</td>
<td>12.5 ± 0.0</td>
<td>1.0 ± 0.1</td>
<td>-</td>
</tr>
<tr>
<td>Calcicur</td>
<td>VOCO</td>
<td>1208525</td>
<td>12.5</td>
<td>21.5 ± 0.5</td>
<td>0.9 ± 0.1</td>
<td>-</td>
</tr>
<tr>
<td>Calxyl</td>
<td>OCO-Praparate</td>
<td>120103</td>
<td>12.6</td>
<td>14.0 ± 0.5</td>
<td>1.5 ± 0.1</td>
<td>-</td>
</tr>
<tr>
<td>Hypocal</td>
<td>Merz Dental</td>
<td>668605</td>
<td>12.5</td>
<td>17.2 ± 0.3</td>
<td>1.0 ± 0.1</td>
<td>-</td>
</tr>
<tr>
<td>Ledermix</td>
<td>Riemser</td>
<td>8110991</td>
<td>7.4</td>
<td>23.8 ± 0.6</td>
<td>1.0 ± 0.1</td>
<td>-</td>
</tr>
<tr>
<td>UltraCal XS</td>
<td>Ultradent</td>
<td>B6TFZ</td>
<td>12.6</td>
<td>22.7 ± 0.6</td>
<td>1.3 ± 0.2</td>
<td>0.16</td>
</tr>
</tbody>
</table>
a) Time in which the material is usable after the first application of the non-closed syringes with used application system.
Claims

1. A temporary root canal sealer composition, comprising based on the total weight of the composition:
 (a) 0.5 to 40 wt% of a water-soluble polymer having an average molecular weight of from 5000 to 100,000;
 (b) 20 to 40 wt% of a particulate inorganic radioopaque filler;
 (c) 0.01 to 5 wt.% of an alkali resistant particulate filler having an average particle size of from 1 to 100 nm;
 (d) 5 to 25 wt% of an alkali earth metal hydroxide and/or alkali metal hydroxide;
 (e) 15 to 45 wt% of water; and
 (f) 0 to 25 wt% of a humectant.

2. The temporary root canal sealer according to claim 1, wherein the water-soluble polymer is selected from polyethylene glycol, polyvinyl alcohol, and polyvinylpyrrolidone.

3. The temporary root canal sealer composition according to claim 1 or 2, wherein the water soluble polymer is polyethylene glycol having an average molecular weight of from 6000 to 10,000.

4. The temporary root canal sealer composition according to any one of claims 1 to 3, which comprises 25 to 35 wt% of the water-soluble polymer.

5. The temporary root canal sealer composition according to any one of the preceding claims, wherein the particulate inorganic radioopaque filler is selected from calcium tungstate, barium sulfate, and barium tungstate, which have an average particle size of from 0.5 to 100 μm.

6. The temporary root canal sealer composition according to any one of the preceding claims, which comprises 25 to 35 wt% of calcium tungstate.

7. The temporary root canal sealer composition according to any one of the preceding claims, wherein the alkali resistant particulate filler is selected from zirconium dioxide and titanium dioxide or a mixture thereof, which have an average particle size of from 5 to 50 nm.

8. The temporary root canal sealer composition according to any one of the preceding claims, which comprises 0.5 to 2 wt.% of zirconium dioxide.
9. The temporary root canal sealer composition according to any one of the preceding claims, which comprises 10 to 20 wt.% of an alkali earth metal hydroxide or alkali metal hydroxide.

10. The temporary root canal sealer according to any one of the preceding claims, wherein the alkali earth metal hydroxide is calcium hydroxide.

11. The temporary root canal sealer composition according to any one of the preceding claims, which comprises water in an amount of from 20 to 30 wt.%.

12. The temporary root canal sealer composition according to any one of the preceding claims, wherein the humectant is sorbitol.

13. The temporary root canal sealer composition according to any one of the preceding claims, wherein the humectant is contained in an amount of from 5 to 15 wt%.

14. The temporary root canal sealer composition according to any one of the preceding claims, which has a pH of at least 8.

15. The temporary root canal sealer composition according to any one of the preceding claims, which has a dynamic viscosity in the range of from 1 to 200 Pa·s (25 °C).

16. The temporary root canal sealer composition according to any one of the preceding claims, wherein the ratio of the total amount of components (a) and (f) to the total amount of components (b) and (c) is \(((a)+(f))/((b)+(c)) = 1.5 \text{ to } 0.025\).

17. A process for the preparation of a temporary root canal sealer, comprising

(a) a step of mixing:

(i) 0.5 to 40 wt% of a water-soluble polymer having an average molecular weight of from 5000 to 100,000;
(ii) 20 to 40 wt% of a particulate inorganic radiopaque filler;
(iii) 0.01 to 5 wt.% of an alkali resistant particulate filler having an average particle size of from 1 to 100 nm;
(iv) 5 to 25 wt% of an alkali earth metal hydroxide and/or alkali metal hydroxide;
(v) 15 to 45 wt% of water; and
(vi) 0 to 25 wt% of a humectant.

in water, and
(b) a step of dispersing the mixture.

18. The process according to claim 15, wherein the step of dispersing (b) is medium milling or submicron milling.

19. The process according to claim 15 and 16, wherein in the step of dispersing (b) a annular gap bead mill, a high pressure homogenizer or a colloidal conus mill is used.
A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K6/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. ("X")

See patent family annex. ("X")

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search: 1 April 2014

Date of mailing of the international search report: 11/04/2014

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Pelli Wabiat, B

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2002/198283 AI (IMAI YOHJI [JP] ET AL) 26 December 2002 (2002-12-26) page 1, paragraph 0002 page 1, paragraph 0008 - paragraph 0013 page 2, paragraph 0015 - paragraph 0017; claims; examples</td>
<td>1,2,4,5 , 7,9,10</td>
</tr>
<tr>
<td>Y</td>
<td>EP 2 229 929 AI (DENTSPLY DETREY GMBH [DE]) 22 September 2010 (2010-09-22) cited in the application page 2, paragraph 0008 - paragraph 0011 page 4, paragraph 0025 page 5, paragraph 0030 - paragraph 0034 page 7, paragraph 0045 - paragraph 0048 pages 1,2,7-10</td>
<td>11-14, 17,18</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 979 805 A (ANGELETAKIS CHRISTOS [US]) 9 November 1999 (1999-11-09) column 1, line 62 - column 2, line 28 column 3, line 20 - line 43</td>
<td>17,18</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H09169612 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 20020078253 A</td>
<td>18-10-2002</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2359817 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002198283 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 2229929 A1</td>
<td>22-09-2010</td>
<td>CA 2756382 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2229929 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012520836 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012115982 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010105834 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 5979805 A</td>
<td>09-11-1999</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1634562 A1</td>
<td>15-03-2006</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR 2684873 A1</td>
<td>18-06-1993</td>
<td>NONE</td>
</tr>
</tbody>
</table>