PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(71) Applicant: CURAGEN CORPORATION [US/US]; 322 East
Main Street, Branford, CT 06405 (US).

(72) Inventors: SIMPSON, John, W.; 53 Brushy Plain Road #3B,
Branford, CT 06405 (US). ROTHBERG, Jonathan, M.; 45
B Cocheco Avenue, Branford, CT 06405 (US). WENT,
Gregory, T.; 34 Scotland Avenue, Madison, CT 06443 (US).

(51) International Patent Classification © : (11) International Publication Number: WO 96/35810
C12Q 1/68, 1/70, C12P 19/34, CO7H Al , .

21/02, 21]04’ C25B 1/00, 7/00, BO1D (43) International Publication Date: 14 November 1996 (14.11.96)

61/42, 61/44, C25D 13/00, GOIN 27/26

(21) International Application Number: PCT/US96/06579 | (81) Designated States: AL, AM, AU, AZ, BB, BG, BR, BY, CA,

CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR,

(22) International Filing Date: 9 May 1996 (09.05.96) LS, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO,

RU, SG, SI, SK, TJ, T™M, TR, TT, UA, UZ, VN, ARIPO

patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM,

(30) Priority Data: AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,

438,231 -9 May 1995 (09.05.95) UsS BE, CH, DE, ES, FI, FR, GB, GR, IE, IT, LU, MC,

DK) ’ td £l ’ t4 ’ ’ £
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, ML, MR, NE

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(74) Agents: MORRIS, Francis, E. et al.; Pennie & Edmonds, 1155
Avenue of the Americas, New York, NY 10036 (US).

APPARATUS AND METHOD FOR THE GENERATION, SEPARATION, DETECTION, AND RECOGNITION OF
BIOPOLYMER FRAGMENTS

(54) Title:

d/w
|

{ {
Z—

]
a5/ L4

/.
w5 151/ 1087 446/ 457 444

(57) Abstract

This invention is an integrated instrument for the high capacity electrophoretic analysis of biopolymer samples. It comprises a
specialized high-voltage, electrophoretic module in which migration lanes are formed between a bottom plate (446) and a plurality of etched
grooves in a top plate (438), the module permitting concurrent separation of 80 or more separate samples. In thermal contact with the bottom
plate (446) is a thermal control module incorporating a plurality of Peltier heat transfer devices for the control of temperature and gradients
in the electrophoretic medium. Fragments are detected by a transmission imaging spectrograph which simultaneously spatially focuses and
spectrally resolves the detection region of all the migration lanes. The spectrograph comprises a transmission dispersion element and a CCD
array to detect signals. Signal analysis comprises the steps of noise filtering, comparison in a configuration space with signal prototypes,
and selection of the best prototype. Optionally post-processing is done by a Monte-Carlo simulated annealing algorithm to improve results.
Optionally, an array of micro-reactors can be integrated into the instrument for the generation of sequencing reaction fragments directly
from crude DNA samples.

applications under the PCT.
AM Armenia

AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

CI C&te d'Ivoire
cM Cameroon

CN China

Cs Czechoslovakia
cz Czech Republic
DE Germany

DK Denmark

EE Estonia

ES Spain

F1 Finland

FR France

GA Gabon

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

5

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

APPARATUS AND METHOD FOR THE GENERATION, SEPARATION,
DETECTION, AND RECOGNITION OF BIOPOLYMER FRAGMENTS

This specification includes an appendix containing a
listing of the computer programs of this invention.

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document of the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

This invention was made with government support under
grant numbers 1R43HG00960-01, 1R43HG01013-01A1, and
1R43CA65184-01 awarded by the National Institutes of Health.
The government has certain rights in the invention.

FIELD OF THE INVENTION
This invention relates to a method and apparatus for
analysis of biopolymers by the electrophoretic separation of
biopolymer fragments. More particularly, it relates to a
method and apparatus for automated, high-capacity, concurrent
analysis of multiple DNA samples.

BACKGROUND OF THE INVENTION

Molecular biology research depends on biopolymer
analysis. Conventionally, for this analysis, a biopolymer
sample is first fragmented into shorter length biopolymer
fragments by enzymatic or chemical means. The fragments are
distinctively labeled with detection labels and then
separated, often electrophoretically. The fragment pattern
is then detected to obtain information about the structure
and nature of the original biopolymer sample. These steps
are typically performed separately with human intervention
required to transfer the sample from one step to another.

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

A well known example of biopolymer analysis is DNA
sequencing. See F. Sanger, et. al., DNA Sequencing with
Chain Terminating Inhibitors, 74 Proc. Nat. Acad. Sci. UsA
5463 (1977); Lloyd M. Smith, et. al., Fluorescence detection
in automated DNA sequence analysis, 321 Nature 674 (1986) ;
Lloyd M. Smith, The Future of DNA Sequencing, 262 Science 530
(1993), which are incorporated herein by reference. a
prevalent sequencing method comprises the following steps. A
DNA sample is first amplified, that is the DNA chains are
made to identically replicate, usually by the polymerase
chain reaction (PCR). From the amplified sample, nested sets
of DNA fragments are produced by chain terminating polymerase
reactions (Sanger reactions). Each chain fragment is labeled
with one of four fluorescent dyes according to the chain
terminating base (either ddATP, ddCTP, ddGTP, or ddTTP) .
These fragments are then Separated according to their
molecular size by polyacrylamide gel electrophoresis and the
unique dyes detected by their fluorescence. The DNA base
Sequence can be simply reconstructed from the detected
pattern of chain fragments.

Electrophoresis is the separation of molecules by
differential molecular migration in an electric field. For
biopolymers, this is ordinarily performed in a polymeric gel,
such as agarose or polyacrylamide, whereby separation of
biopolymers with similar electric charge densities, such as
DNA and RNA, ultimately is a function of molecular weight.
The prevalent configuration is to have the gel disposed as a
sheet between two flat, parallel, rectangular glass plates.
An electric field is established along the long axis of the
rectangular configuration, and molecular migration is
arranged to occur simultaneously on several paths, or lanes,
parallel to the electric field.

DNA sequence information is key to much modern genetics
research. The Human Genome Project seeks to sequence the
entire human genome of roughly three billion bases by 2006.
This sequencing goal is roughly two orders of magnitude
(factor of 100) beyond the total, current yearly worldwide

-2 -

10

5

20

25

30

35

WO 96/35810 PCT/US96/06579

DNA sequencing capacity. Sequencing of other biopolymers,
for example RNA or proteins, is also crucial in other fields
of biology. Other DNA fragment analysis techniques, such as
PCR based diagnostics, genotyping (Ziegle, J. S. et al.,
Application of Automated DNA Sizing Technology for
Genotypeing Microsatellite Loci. Genomics, 14, 1026-1031
(1992)) and expression analysis are increasing in use and
importance.

The need for methods to identify genes which are
differentially expressed in specific diseases such as cancer
is of paramount importance, for both the diagnosis of the
disease and for therapeutic intervention. Identification of
genes specifically expressed in different diseases will lead
to better classification of these diseases with regard to
their biological behavior. A molecular understanding of
disease progression is fundamental to an understanding of a
specific disease. The identification of molecular
diagnostics that correlate with variations in disease state,
growth potential, malignant transformation and prognosis will
have tremendous implication in clinical practice, including
the diagnosis and treatment of the disease.

No current method adequately or efficiently addresses
the need to identify, isolate, and clone disease-specific
genes. A new biopolymer fragment analysis method has been
developed based on the use of arbitrarily primed PCR
(Williams, J. G., Kubelik, A.R., Livak, K. J., Rafalski,
J.A., and Tingey, S.V., DNA polymorphisms amplified by
arbitrary primers are useful as genetic markers. Nucleic
Acids Res. 18, 6531-6535 (1990); Welsh, J. and McClelland
M., Genomic fingerprinting using arbitrarily primed PCR and a
matrix of pairwise combinations of primers. Nucleic Acids
Res., 19, 5275-9 (1991)). When applied to mRNA, samples are
first reverse transcribed into cDNA and then amplified with a
combination of arbitrary and specific labelled primers
(Froussard, P., A random-PCR method (rPCR) to construct whole
cDNA library from low amounts of RNA. Nucleic Acids Res. 20,
2900 (1992); Welsh, J. et al., Arbitrarily primed PCR

-3 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

fingerprinting of RNA. Nucleic Acids Res., 20, 4965-70
(1992)). The resulting labeled DNA fragments are then
electrophoresed through a gel producing a "banding pattern"
or "fingerprint" of the mRNA source and run in separate gel
lanes (Liang, P. and Pardee, A. B., Differential Display of
Eukaryotic Messenger RNA by Means of the Polymerase Chain
Reaction. Science, 257, 967-971 (1992)). Differences in
gene expression are then found by manually comparing the
flngerprlnts obtained from two mRNA sources. Following this,
fragments of interest are extracted from the gel. This
method is severely limited by its reliance on
autoradiographic methods to allow for the isolation of the
genes of interest. Refinements of PCR based techniques
have, however, led to the ability to produce more
reproducible banding patterns, and to the use of an automated
DNA sequencing machine to record the banding patterns
produced with fluorescently labeled primers (Liang, P.,
Averboukh, L. and Pardee A. B., Distribution and cloning of
eukaryotic mRNAs by means of differential display:
refinements and optimization. Nucleic Acids Res. 21, 3269-
3275 (1993)). However, commercial automatic sequencing
instruments (Applied Biosystems Inc., Foster City, ca, DNa
sequencer) do not allow for the resolution of many dye labels
or allow for the isolation of the fluorescently labeled
samples after they are run. 1In an automated machine the
sample is simply lost. Arbitrary primed PCR methods would be
much more attractive if their limitations could be addressed.
To address these limitations, our invention allows these
gene fragments to be detected fluorescently and to be
directly isolated, without human intervention, as they are
identified. This is accomplished by electrophoretically
separating the individual bands, and hence the differentially
expressed genes, from the rest of the sample as it is
running. This approach incorporates the advantages of the
PCR based methods to differential screening, while raising
the level of speed, sensitivity and resolution well beyond
that achievable with radiographic techniques. To insure high

-4 -

10

15

20

25

30

35

WO 96/35810 "~ PCT/US96/06579

Once fragment events are discriminated, the entire data
for a run must be assembled to determine the nature of the
original biopolymer sample. For DNA sequencing, this is
conventional: the bases and their order in the DNA sample are
the terminating bases of the fragments in the order of
increasing molecular weight. When sequencing on a genomic
scale, the bases and their order must be assembled into an
ordered listing of the bases of the genome of the organism
being studied.

All the foregoing technical requirements have prevented
creation of an integrated machine for rapid, concurrent
generation and analysis of large number of biopolymer
fragment samples. The need for such a machine is widely felt
in such areas as biological research, for example the Human

Genome Project, the biotechnology industry and clinical
diagnosis.

SUMMARY OF THE INVENTION

The apparatus and method of this invention have for
their object the solution of these problems in
electrophoretic biopolymer fragment analysis, and in
particular, in DNA sequencing. 1In one aspect, the invention
is an integrated, high capacity, low-cost machine for the
automatic, concurrent analysis of numerous biopolymer
fragment samples. Among its objects are the provision of:
easily loaded, simultaneously observable, electrophoretic
geometries comprising multiple migration lanes each of the
order of 100 um and down to 25 um or smaller; a spectral
detection system which is capable of sensitive, simultaneous
response to signals emitted by all the migration lanes and
which is dynamically adaptable, without physical
intervention, to different dyes, different numbers of dyes,
and different coding of fragments with dyes; automatic
generation of multiple biopolymer fragments directly on the
analysis machine from crudely purified biopolymer samples and
bulk reagents (for DNA, sequencing reactions would be
automatically carried out); and an automatic data analysis

-7 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

method for transforming time-series of spectral signal to
biopolymer sequences and which is adapted to the unique
problems of discriminating overlapping and weak fragment
recognition events while‘achieving 99% or greater recognition
accuracies.

A high capacity analysis machine according to this
invention includes elements for concurrent loading of
multiple samples for analysis onto the machine, an
electrophoretic module for actually performing the sample
separation, a spectrometer capable of simultaneous spatial
and spectral resolution and detection of light signals
representative of sample fragments as they are separated by
the electrophoretic module, and elements for converting the
detected signals into the sequence and character of the
biopolymer samples analyzed.

Different sample loading techniques are used by
different versions of this invention. One technique consists
of simply loading small liquid volumes containing fragment
samples -manually or automatically - into wells in the
electrophoretic medium. More preferable is solid phase
loading. Here a comb-like device has teeth which are sized
and spaced to fit concurrently into all the sample wells in
the electrophoretic medium. Each tooth carries a fragment
sample attached by various denatureable binding methods. All
the samples are released concurrently when the teeth are
dipped into the sample wells. Advantageously, combs may have
50 to 100 teeth for concurrent loading of that number of
samples. Notches machined in the comb insertion region can
aid the sample loading by aligning the comb with the sample
wells. Regardless of how the samples are loaded, the DNA
fragments can be collected at a low voltage focusing
electrode prior to the electrophoretic separation, thereby
increasing the intensity and resolution of the analysis
signals detected.

Most preferable, especially for DNA sequencing, is a
reactor array to generate fragment samples from crude DNA and
to inject them onto the electrophoretic module. The reactor

- 8 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

separation resolution, it is advantageous for the gel
throughout a migration lane to be kept as uniform as possible
and for the lanes to be sufficiently separated to be clearly
distinguishable.

To achieve these required improvements in the analysis
capacity for DNA and for other biopolymers, machines are
needed for the rapid, concurrent analysis of large numbers of
minute biopolymer samples. Further, the analysis must be
done with minimal human intervention and at low cost. Since
electrophoresis will remain the dominant biological
separation technology for the foreseeable near future, the
technical demands of more rapid electrophoresis will shape
the design of such machines.

More rapid electrophoresis requires, primarily, higher
voltages and stronger electric fields to exert greater forces
on migrating molecules and move them at greater velocities.
However, higher fields and velocities lead to increased
resistive heating and consequent thermal gradients in the
gel. Gel non-uniformities result, impairing separation

resolution. To preserve resolution, ever smaller gel

geometries must be used so that this damaging heat may be
more readily conducted away. Moreover, parallel, narrow
migration lanes are advantageous to increase the number of
samples analyzed simultaneously. While electrophoresis has
been described in geometries where the parallel glass plates
are spaced from 25 to 150 um apart, instead of the usual 400
pm, it is not possible to insure long, parallel, narrow, and
closely spaced migration lanes in such a thin sheet.
Alternatively, electrophoresis has been described in arrays
of capillary tubes down to 25 um in diameter which completely
define migration lanes. However, although the conventional
plate arrangement is relatively easy to load with gel and
samples, arrays of capillary tubes are much more difficult to
load. Easy loading is advantageous to minimize analysis
setup time and human intervention.

The small geometries required by high resolution, high
voltage electrophoretic analysis create additional technical

-5 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

demands. Where fluorescent dye fragment labeling is used,
sensitive spectral detection devices are needed. These »
detection devices must respond quickly, since rapid migration
presents fragment samples for detection with only slight time s
separation. Most significantly, rapid parallel analysis of
many biopolymer samples requires the detection device to
simultaneously detect fragments migrating in separate lanes.
Conventional detectors cannot meet these demands. One design
uses rotatable filters to select spectral ranges to present
to a single active detector element, this assembly being
scanned mechanically across all the migration lanes.

However, such mechanical single detector assemblies waste
most of the available fluorescence energy from the fragment
samples, limit detection speed, prohibit simultaneous
detection, and slow sample analysis. Use of spectrally fixed
filters also limits dynamic adaptation to different detection
labels.

While a spatially compact disposition of the migration
lanes might permit simultaneous observation, sample loading
into the migration lanes prior to an analysis run requires
physical access to the migration lanes. Access is easier and
more rapid for widely spaced lanes. Conventional, flat-plate
techniques have only straight, parallel lanes and cannot
accommodate these divergent requirements. v

A high throughput analysis machine would generate
voluminous detection data representing the rapidly migrating
biopolymer fragment samples. Manual analysis of such data is
not feasible. To minimize human post analysis checking,
‘these methods should achieve accuracies of 99% or greater.
Further, the data would contain fragment detection events
closely spaced, even overlapping, in time. Moreover, small
electrophoretic geometries and small fragment sizes would
generate only weak signals with increased noise. Prior .
electrophoretic devices, on the other hand, generated only
clearly separated detection events with good signal
intensities.

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

array comprises an array of micro-reactor chambers each with
a minute inlet port and capillary inlet and outlet passages.
The capillary passages are controlled by micro-machined
valves. 1In one example a bubble, created by heating the
capillary fluid, is used to control fluid flow through a
capillary tube. The heating is by a resistive micro heating
element formed by depositing a resistive thin film in the
wall of the capillary. Leads are deposited to conduct current
from an external controller to the heating element. To use
this array, samples are introduced through the inlet ports;
reagents are successively introduced through the capillary
inlets; and fragment samples are ejected through the
capillary outlets when reactions are complete. Reactions are
facilitated by thermal control and heating elements located
within each reactor. ‘

Enabling the use of such a micro-reactor array for DNA
sequencing is the use of AUTP rich PCR primers, a method of
this invention. PCR amplification and Sanger sequencing can
proceed sequentially without interference in one reactor by
using the enzyme Uracil DNA Glycosylase (UDG). UDG digests
dUTP rich PCR sequencing primers into fragments ineffective
for initiating chain elongation in the subsequent Sanger
sequencing reactions.

Also enabling the use of the microreactor array for DNA
sequencing is the use of the enzymatic pretreatment of PCR
products using a combination of Exonuclease I and shrimp
alkaline phosphatase (United States Biochemicals, Cleveland,
Ohio). The activity of both of these enzymes in PCR buffer
eliminates the need for buffer exchanges. The Exonuclease I
enzyme removes the residual PCR primers, while the shrimp
alkaline phosphatase de-phosphorylates the ANTP’s
inactivating them. The removal of both the primers and
excess ANTP’s prevents them from interfering in the
subsequent Sanger sequencing reactions.

Enabling the use of the microreactor array for other DNA
fragment analysis methdds including expression analysis,
genotyping, forensics, and positional cloning is the direct

- 9 =

1o

15

20

25

30

35

WO 96/35810 PCT/US96/06579

incorporation of fluorescent labels onto the 5’ end of the
original PCR primers. These primers can be either specific
for known sequences, as in the case of genotyping or

arbitrary as in the case of expression analysis. A series of

-different dyes can be used to allow the PCR amplification

step to take place in a multiplex fashion within a single
reactor.

Once the samples are loaded, separation occurs in the
electrophoretic module. The invention is adaptable to use
different such modules. One such module comprises
rectangular plates spaced slightly apart to define a
rectangular sheet of electrophoretic medium. Migration
occurs in straight, parallel lanes through this medium.
Another version uses ultra-thin plate spacing, down to 25 um,
and high electrophoresis voltages, thereby achieving rapid
fragment separation.

The preferred electrophoretic module is constructed
using two plates with a photolithographically generated
formation of grooves bounded by the plates. Numerous non-
intersecting grooves etched or otherwise formed on the top
plate, together with the bottom plate, define the migration
lanes. The lanes are therefore separate non-communicating
channels for holding separation medium. Different groove and
migration lane geometries are possible. One geometry is
straight, parallel lanes. The preferred geometry spaces
lanes widely at the loading end of the module, to ease the
physical aspects of loading, but converges the lanes closely
at the detection end, to permit simultaneous detection of
separated fragments in all lanes. Groove size may be down to
25 pum to allow high voltage rapid electrophoresis. The
grooves are preferably fabricated with standard photo-
lithography techniques and, if necessary, subsequent etching
and coating. Various combinations of substrates and
processes are available including patterning insulators on
conductive surfaces, patterning polymers on
insulating/conductive surfaces, or patterning conductors and
coating with insulators. Alternatively, a master mold can be

- 10 -

.

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

formed photolithographically, followed by duplication of the
grooves in disposable substrates via casting.

In all versions the highest allowable electrophoretic
voltages are used, where the maximum voltage is determined as
that at which the mobility of biopolymer fragments is no
longer sufficiently length dependent. Thermal control is

achieved with a thermal control module in good thermal

~contact with the bottom plate. The preferred electrophoresis

module provides especially good thermal control, since the
small separation medium channels are in close contact on all
sides with top and bottom plates. The thermal control module
has a heat sink adapted to heat exchange with an air or water
exchange fluid. Between the heat sink and the bottom plate
of the electrophoretic module are bi-directional heat
transfer devices. Preferably these are Peltier thermo-
electric modules disposed for pumping heat in both
directions. Thereby, the bottom plate can be heated and
cooled as needed and thermal gradients eliminated.

In one versibn, a transmission imaging spectrograph is
used to detect separated fragments. The invention is
particularly adapted to DNA sequence or other DNA analysis
methods, in which each of the different fragment types is
labelled with a different spectrally distinctive fluorescent
dye. One or more lasers at the separation end of the
electrophoresis module excites the dyes to emit light.
Emitted light from samples in the migration lanes is incident
on a collection lens. The light then passes first through a
laser light filter, then through a transmission dispersion
element, which spectrally separates the light, and finally
through a focusing lens. The focused light is incident on a
charge coupled device (CCD) array which detects the
simultaneously spatially focused and spectrally diverged
light from the detection regions of all the migration
channels. Electronic signals from the CCD array provide
information about the character or sequence of the DNA
sample.

- 11 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

In the preferred version, a microfabricated set of
components replaces the large scale imaging spectrograph.
Here the function of the two camera lenses and diffraction
grating is integrated within a single binary optic

-diffractive element. The diffractive element can be

fabricated either on a glass surface, or on a separate
material to be inserted between glass pieces.

The analysis system converts the electronic signals into
biopolymer information which in one example is DNA base
sequence. It comprises a standard programmable computer with
short and long term memory and loaded with analysis programs
particularly adapted to the preferred version of this
invention. Interface devices place the electronic CCD output
signals in the computer memory as binary signals. These
signals are grouped both into spatial groups, one group for
each migration lane, and into spectral groups, one group for
each spectrally distinctive dye label. The grouped signals
are filtered to minimize noise: high-pass filtering removes
baseline low frequency noise, and low-pass filtering removes
high-frequency single spike noise. If multiple samples are
contained within a single migration lane, as enabled by the
spectral multiplexing, the signals associated with each of
the samples can be distinguished and grouped together using
knowledge of the dyes associated with each of the samples.

The filtered signals are then compared to ffagment
recognition prototypes and the best prototype is chosen for
each segment of filtered signals. The best prototype is that
prototype whose averaged signal behavior for nearby times is
closest to the observed signal behavior for the same nearby
times. Closeness is simply measured by the ordinary distance
between the observed signals and the prototypes. The base
generating the input signals is identified as the base
associated with the closest prototype. The sequence of
closest prototypes thereby determines the DNA sequence and
this sequence is output from the analysis system. In one

embodiment, distances to each of the prototypes, or

-12 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

averages of the distances to the prototypes associated to the
four possible bases, are also output. These values can be
used to judge the confidence which one should assign to the
DNA sequence, and in particular can be used to aid the

‘comparison and assembly of multiple instances of the sequence

of a given segment of DNA.

The prototypes are the averages of filtered signals
generated in the apparatus of this invention from the
analysis of known DNA. They are carefully chosen to be
adapted to the characteristics of this invention.
Preferably, they are chosen to include the signals generated
by two sequential DNA fragments.

Further analysis is done in one embodiment of the
invention. Any DNA sequences which are known (vector DNA)
are trimmed out of the observed sequence. The remaining
sequence is proofread by Monte Carlo simulated annealing. At
random observation times a random alteration to the
determined base sequence is made. The closeness between the
entire resulting sequence and the entire filtered observed
signal is evaluated. If a probabilistic test based on this
closeness is met, the sequence alteration is retained;
otherwise it is discarded. Alter and test activity is
repeated until no further significant improvements occur.
This step permits global improvements to be made in the
overall sequence determined.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the
present invention will become better understood by reference
to the accompanying drawings, following description, and
appended claims, where:

Fig. 1 shows an overall view of a preferred embodiment
of the invention;

Fig. 2A shows details of the transmission imaging
spectrograph that méy be used in the device of Fig. 1;

Fig. 2B shows details of an alternative transmission
imaging spectrograph of the device of Fig. 1;

- 13 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

Fig. 3 shows a ray trace of the transmission imaging
spectrograph of Fig. 2;
Fig. 4 shows details of an alternative electrophoresis

module for use in the device of Fig. 1;

Figs. 5A-5E show details of the process for making the
electrophoresis module of Fig. 4;

Fig. 6 shows details of the module of Fig. 4;

Fig. 7 shows the operation of the module of Fig. 4;

Fig. 8 shows details of an array of two micro-fabricated
reactors of the device of Fig. 1;

Figs. 9A-9B show a valve design for the reactors of Fig.
8;

Figs. 10A-10D show the generation of solid phase
fragments in the device of Fig. 1;

Fig. 11 shows the steps of a AUTP digestion process;

Fig. 12 shows an overall flow chart of the analysis
steps used in practicing the invention;

Fig. 13 shows the flow chart for the analysis
preprocessor step of Fig. 12;

Fig. 14 shows the general operation of the basecalling
step of Fig. 12;

Fig. 15 shows the flow chart for the analysis
basecalling step of Fig. 12;

Fig. 16 shows the flow chart for the analysis
proofreading step of Fig. 12;

Fig. 17 shows a recording of an illustrative output of
the invention;

Figs. 18A, 18B and 18C show recordings of illustrative
output of the invention from three separation runs; and

Fig 19A and 19B show recordings of the output of the
spectrograph of Fig. 2A.

DETAILED DESCRIPTION
Instrument Overview
Fig. 1 illustrates a preferred embodiment of the
integrated biopolymer analysis instrument of the invention.
Only essential components are depicted; non-essential

- 14 -

10

15

WO 96/35810 PCT/US96/06579

mechanical components conventional in instrument design are
not depicted. The following is a general description of the
instrument and its use. Detailed descriptions of the
construction and use of components follow.

Element 104 is an electrophoresis module. As
illustrated, it comprises a micro-fabricated gel
electrophoresis plate (microFGE) 106, a micro-fabricated
reactor array (michFRA) 110, and a temperature control
subunit 108. MicroFGE 106 comprises converging
electrophoresis migration lanes 107 formed as grooves in a
glass or plastic plate and containing separation medium.
Biopolymer fragments differentially migrate in these lanes
from left to right under the influence of an electric field
supplied by driving electrodes (not shown) at opposite ends
of the electrophoresis module. In other versions, the
microFGE could have lanes of other geometries, for example,
parallel lanes. It could also be replaced with a

' conventional non-grooved glass plate. MicroFRA 110 is the

20

25

30

35

source of samples of biopolymer fragments for analysis. The
samples are generated from raw biopolymer samples in the
micro-reactors of the array and loaded directly into the
electrophoresis plate typically with a different sample in
each migration lane, or with multiple samples contained in a
given migration lane. Illustratively, the fragments are
labelled with one of four fluorescent dyes according to the
chain terminating base (either ddATP, d4CTP, ddGTP or ddTTP)
as is known in the art. In other versions, the microFRA could
be replaced with a solid or liquid phase loading apparatus.
At the right are one or more lasers 102 that generate a
collimated beam 113 that is directed to pass transversely
through the microFGE in an unobstructed laser channel 115.
The terminal ends of the migration lanes 107 intersect this
channel. The beam thereby simultaneou:ly illuminates the
separated biopolymer fragments in the different migration
lanes and excites their labels to fluoresce. A transmission
imaging spectrograph 100 is disposed above the beam. The
spectrograph has within its field of view all the converged

- 15 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

migration lanes in microFGE 106 and is equipped to make
simultaneous spectral observations of fluorescence in all of
the migration lanes. .Light resolved by the spectrograph is
converted into electronic signals representative of the
different fluorescent labels that are excited. As a result,
the separated biopolymer fragments are detected.

Electronic signals representing these observations are
read into a controller/power supply 114 for on-line or off-
line processing by a computer 112. The computer performs an
analysis adapted to the characteristics of an individual
biopolymer analysis instrument and its particular running
conditions. The analysis method generates information
characterizing the original biopolymer samples, for example
DNA base sequences or genotypical character.

Optionally, the computer can also control an analysis
run by commanding the controller/power supply to generate
necessary voltage outputs. For example, controller/power
supply 114 generates the high voltages applied through leads
116 to the driving electrodes to drive molecular migration in
the electrophoresis module. If the microFGE has the optional
capability to shunt fragment samples between migration lanes
as described below in conjunction with Fig. 7, the
controller/power supply also generates necessary shunting
voltages which are applied to shunting electrodes 118 in the
microFGE module. Other voltages which are supplied by the
controller/power supply 114 include those which cause the
loaded DNA fragments to concentrate at a focusing electrode
prior to the initiation of electrophoresis.

Transmission Imaging Spectrograph

The transmission imaging spectrograph 100 is designed to
resolve spectra within the range of common dye labels used in
biopolymer analysis (approximately 500 nm to 700 nm), to have
high light gathering ability, and to have a wide field of
view with little light loss for peripheral images. These
features permit the simultaneous viewing of many migration ‘
lanes. Advantageously, spectrograph 100 may have a spectral

- 16 -

10

i5

20

25

30

35

WO 96/35810 PCT/US96/06579

range on the order of 400 nm to 800 nm. Fig. 2A illustrates
one version of this component. Non-essential mechanical
components conventional in instrument design are not
depicted.

As indicated previously, laser 102 generates laser beam
113 which is directed through laser channel 115 so as to
intersect electrophoresis migration lanes 107. Light is
scattered from this beam primarily by two mechanisms. First,
there is some scattering at the laser wavelength by the
separation medium and other matter traversed by the beam.
Second) when a labeled fragment passes through the beam, it
is excited and fluorescence at characteristic wavelength(s)
is emitted in all directions.

A portion 240 of this scattered light is incident on
spectrograph 100. Spectrograph 100 comprises a collection
lens 222, a laser rejection filter 236, a transmission
dispersion element 224, a focusing lens 226 and a charge
coupled device (CCD) array detector 228. The CCD array
comprises a two-dimensional array of CCD detector elements
oriented with its short axis along spectral divergence axis
244 and its long axis along spatial focusing axis 245. This
orientation gives adequate spectral range and maximal spatial
range. Electronic data output from the CCD is transferred to
the controller/power supply. '

Collection lens 222 collimates the scattered light into
parallel rays. Collimated light then passes through laser
rejection filter 236, which absorbs light at the laser
wavelength. The remaining filtered light, which consists
essentially of fluorescence from the fragments, then passes
through transmission dispersion element 224, which can be
either a grating prism (known as a grism), as illustrated, or
alternatively a transmission diffraction grating. This
element separates the light into rays of differing
wavelength, which diverge along the direction of spectral
axis 244. Focusing lens 226 then focuses the light on CCD
array detector 228.

- 17 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

Images of the fluorescing fragments in the different
lanes 107 are formed along spatial axis 245 and
simultaneously separated by wavelength along spectral axis
244. 1In this manner, different dye labels in different
migration lanes produce different patterns along the spectral
and spatial axes and can be simultaneously discriminated.

Fig. 3 illustrates the optics of spectrograph 100,
spectral dispersion being out of the plane of the diagram. .
To maximize the field of view focused on the detector and to
minimize loss of light at the edges of the field of view,
distance 330, between the collection lens 222 and the
focusing lens 226, should be as short as possible. 2s a
result, only extreme off-axis rays such as ray 334 will
completely miss detector 228 and the optical parameters of
the spectrograph can be selected so that sufficient
fluorescence from each of the migration lanes is incident on
detector 228 to permit identification of the labelled bases.
To achieve minimum distance 330, the wavelength dispersive
element is preferably a transmission dispersion element,
either a transmission grating or a grism.

The following components are exemplary for one version
of the transmission imaging spectrograph. For collection
lens 222, a Pentax 165 mm f2.8 lens or a 250 mm £5.6 Sonnar
medium format camera lens from Carl Zeiss is used. These
lenses are commercial camera lenses for use with medium
format photography chosen both for their large numerical
aperture and wide field of coverage and to match the
demagnification required by the other components in the
system. Preferably, the lens is a 400 mm £8 Osaka large
format lens, or other large format long focal length lens
which enables simultaneous imaging of a wide cross-section of
electrophoresis module 104. Laser rejection filter 236 is a
Raman Edge Filter REF521 from Omega Optical Inc.
(Brattleboro, VT). It has an optical density of 3 to 4 at
515 nm, a transmission greater then 80% over most of the
design spectral range, high absorption near the laser
wavelength, and behaves well for light incidence off the

- 18 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

optical axis. Preferably, laser rejection filter 236 is one
or several holographic notch rejection filters from Kaiser
Optical Systems (Ann Arbor, MI) which enable the use of
multiple laser excitation sources by transmitting light of
both lower and higher energy than that of the rejected laser
light. Transmission dispersion element 224 is a Diffraction
Products (Woodstock, IL), 3090-84ST transmission grating
with: 600 grooves/mm, a large clear aperture of 84 mm x 84
mm, a back face single layer MgF, anti-reflection coating, and
best efficiency at 500 nm with a first order grating
efficiency of approximately 50%. Focusing lens 226 is a
Canon 85 mm f1.2 lens. This is a commercially available 35
mm format camera lens with aspherical elements and special
low dispersion glass, allowing the design to be optimized for
a very large numerical aperture. The CCD array detector 228
is a Princeton Instruments Inc. (Trenton, NJ) TE/CCD 1024E
Detector with a ST 130 DMA Controller. This array detector
is 1024 x 256 pixels with pixel size 27 x 27 um and operated
in multi-pinned phase mode with fast readout along the long
axis. This Grade 1 CCD has a large physical dimension along
the long axis which provides the spectrograph with a wide
field of spatial coverage (the entire width of the gel) while
limiting the demagnification required by the lenses selected.
Alternatively, a frame transfer CCD can be used that allows
for transfer of an image rapidly to a masked portion of the
array for subsequent readout, providing a very rapid rate of
sequential image acquisition. Lasers 102 can be, for
example, Argon ion or solid state or HeNe, with exemplary
single laser wavelengths being 514.5 nm or 488 nm (Argon ion)
or 532 nm (NAYAG solid state) or 523 nm (NAYLF solid state)
or 633 nm (HeNe), and exemplary pairs of laser wavelengths
being 514.5 and 633 nm, or 532 and 633 nm. A direct doubled
solid state diode laser (Coherent Inc., Santa Clara, CaA) at
430 nm can be used in a triple laser excitation instrument
together with 532 nm and 633nm lasers and appropriate
holographic notch rejection filters to achieve the ability to
simultaneously excite and detect all dyes in the wavelength

- 19 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

range 440 to 700 nm. Illustratively, in the case of two
laser wavelengths at 514.5 nm and 633 nm, and five dyes, the
green laser is used to excite the FAM, JOE, TAMRA, and ROX
dyes (Applied Biosystems/Perkin Elmer, Foster City, CA) and

-the red laser is used to simultaneously excite the Cy5 dye

(Biological Detection Systems, Pittsburgh, PA). By way of
further example, the FAM, JOE, TAMRA, and ROX dyes are used
to label the d4CTP, ddATP, ddGTP, and 4dTTP reactions from
the forward primer, and the Cy5 dye is used to label one
reaction, say ddTTP, from the reverse primer. All five dyes
are recognized while being run simultaneously in a single
migration lane.

One version of the imaging spectrograph was designed for
a spectral range of .approximately 510 nm to 640 nm, which
spans the fluorescence wavelengths of many dye labels. The
one-dimensional grating equation is:

nsin(e)-sin(p) = mTA (1)

where m is the order number, A is the wavelength (in nm), o
is the groove spacing, n is the index of refraction of the
grating material, and a and S are the angles of incidence and
diffraction, respectively. For first order (m = -1), 600
groove/mm grating, and 0° incidence angle:

sin(f) = —— (2)

Thus 510 nm light diffracts at an angle 17.8°; 575 nm light
at 20.2°; and 640 nm light diffracts at 22.6°. With an 85 mm
focal length second lens focused at infinity, and 575 nm
light directed to the center of the short axis of the CCD
camera, then either 510 nm or 640 nm light (diffracted by 2.4
degrees less or more than 575 nm light, respectively) will
strike the CCD array at a distance y in mm where

- 20 -~

10

15

20

25

30

35

WO 96/35810 v PCT/US96/06579

tan(2.4) = —Y (3)

Computing, y = 3.56 mm. This corresponds to 132 pixels in

the CCD camera with 27 um per pixel, just slightly more than
the 128 pixels available from center to edge of the short
axis.

Thus these components provide a version of the
spectrograph with adequate spectral resolution over the
spectral design range. If desired, CCD array 228 can be
rotated by 90° enabling observation of fluorescence over an
extended spectral range from 500 nm to near infrared, but
over a reduced spatial range. Optionally, a grating with
lower groove density (300 grooves/mm) can be used to increase
the spectral range observed while maintaining spatial
coverage.

Alternatively, the above components can be reduced in
size and integrated into a microfabricated imaging
spectrograph positioned in contact with a CCD array. A
cross-section through one of the many channels of a binary-
optic spectrograph array is shown in Fig. 2B. Here the two
camera lenses and diffraction grating of Fig. 2A are replaced
by a single binary diffractive element 237 located between
supporting glass elements 238, 239. This diffractive element
can be fabricated on a glass surface as shown or separately
on a material to be inserted between glass pieces by
conventional photo-lithograph techniques. The fabrication of
similar microlenses is known in the art. See, for example,
W.B. Veldkamp-et al., "Binary Optics," Scientific American,
266:5, pp. 92-97 (1992) which is incorporated herein by
reference. To fcorm the binary diffractive element, SiO2 is
typically deposited onto a glass surface and is then
patterned using standard e-beam techniques.

Electrophoresis Module

-21 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

The electrophoresis module is designed to provide a
maximum number of small, closely spaced migration lanes, to
allow use of high voltages, to dissipate resistive heat, to
maintain high resolution, and to be adaptable to alternative
sample loading means. Together with the transmission imaging
spectrograph, these features promote rapid, concurrent
analysis of many biopolymer samples. Fig. 4 illustrates the
electrophoresis module. In this figure microFRA 110 has been
replaced by a solid phase loading means. Alternatively, a
conventional liquid phase loading means may be used. Only
essential elements are depicted. Elements conventional in
instrument design are omitted. See, for example, US Patent
5,228,971, Brumley et. al., Horizontal Gel Electrophoresis
Apparatus (Jul. 20, 1993); US Patent 5,137,613, Brumléy et.
al., Horizontal Gel Electrophoresis Apparatus (Aug. 11,
1992); and US Patent 5,171,534, Smith et. al., Automated DNA
Sequencing Technique (Dec. 15, 1992) which are incorporated
herein by reference.

The electrophoresis module comprises a top plate 438, a
bottom plate 446, end pieces 458 and 459 and a comb pressure
piece 456. Bottom plate 446 provides support and attachment
for other module components and serves as the bottom of the
migration lanes and buffer wells. Component attachment can
be with conventional thumbscrew clamps or other standard
mechanical devices. Positioned and attached at the left and
right ends of the bottom plate are two end pieces 458 and
459. The end pieces include electrodes for applying high
voltage across the migration lanes. The end pieces have a
substantially "U" shape, defining buffer wells 442 within the
arms of the "U". Buffer solution in these wells is in contact
with the separation medium in the migration lanes. The end
pieces are sealed to adjacent elements by elastomer seals
454. Left end piece 458 is sealed to comb pressure piece
456, and right end piece 459 is sealed to the right end of
top plate 438.

Positioned, attached, and sealed adjacent to the left 7
end piece is comb pressure piece 456. The pressure piece

- 22 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

permits liquid communication between the left buffer well and
the separation medium. Between the pressure piece and top
plate 438 is gap 463 which guides the insertion of a well-
forming comb and, optionally, a solid phase loading comb.
One such comb is shown in Fig. 4 having a base 460 and
numerous teeth 462. The other comb is similar except as
noted below. The weli~forming comb is used in a conventional
manner to form sample loading wells in the separation medium
in gap 463. Prior to polymerization of the separation medium,
this comb is inserted in gap 463 and fixed in position by a
horizontally applied force between the comb pressure piece
and top plate 438. This force is conventionally generated by
adjustable attachments bearing horizontally against the left
end piece 458 so as to bias the pressure piece against the
comb. Once the separation medium has polymerized, the well-
forming comb is removed leaving sample loading wells at the
position of the teeth. 1In a preferred embodiment, comb
pressure piece has machined notches 461 that match the comb
teeth 462 to provide rigid formation of wells and aid sample
loading. 1In another embodiment, a "shark’s tooth" comb is
used instead of the well forming comb. As is known in the
art, the shark’s tooth comb has one substantially flat edge
containing small protrusions, and an opposite edge containinq
multiple teeth. The comb is first inserted into gap 463 with
the substantially flat edge oriented toward the bottom plate,
in order to form a thin layer of separation medium along the
bottom of the gap. The separation medium is then polymerized
and the comb is withdrawn. The comb is then inverted and
reinserted into gap 463 so that the teeth impinge upon the
thin layer of separation medium. Wells are formed in the
spaces between the teeth when the teeth are compressed
between the top plate 438 and comb pressure piece 456.
Samples are then loaded into the wells formed between the
teeth of the comb.

A solid phase loading comb may also be guided into gap
463 to load biopolymer fragment samples prior to analysis.
The teeth of the loading comb are spaced and sized to fit in

- 23 -

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

the sample wells formed by the well-forming comb and, in the
case of the preferred embodiment, in the notches machined in
comb pressure piece. The teeth have the same center-to-
center spacing as those of the well-forming comb but are
smaller in size. Fragment samples are bonded to the teeth of
the loading comb, the comb is guided by notches 461 into gap
463 so that the teeth enter the sample wells, and the
fragment samples are released into the wells. The technique
achieves rapid, error free, parallel loading of all the
samples for analysis. For further details concerning
parallel sample loading, see A. Lagerkvist et al., "Manifold
Sequencing: Efficient Processing of Large Sets of Sequencing
Reactions," 91 Proc. Nat. Acad. Sci. USA, 2245 (1994) which
is incorporated herein by reference.

Alternatively, conventional liquid phase loading may be
used. In such case, small liquid volumes containing the
fragment samples are directly placed into the sample wells.
Various conventional mechanical devices may be employed to
speed up and reduce errors in this manual process.

After injection of samples into the loading wells, but
prior to electrophoretic separation, the DNA samples can be
concentrated using a focusing electrode. Low voltage applied
to the focusing electrode, located within the migration path
near the load well, causes the DNA samples to migrate and
gather at the electrode. Immediately following such
focusing, electrophoretic separation is initiated. This
avoids any broadening associated with diffuse entry of
samples into the separation medium. As a result, the
detection of signal temporal resolution is maximized.
Furthermore, since the samples are concentrated into small
regions of the migration lane and since substantially all the
DNA fragments loaded enter into the separation medium, signal
intensity is maximized.

The focusing electrode is required to adhere well to the top
blate 438 or bottom plate 446, and should limit the
electrolytic generation of gas bubbles during the collection

24

WO 96/35810 , PCT/US96/06579

10

15

20

25

30

35

of the loaded DNA fragments. It can be fabricated onto a
typical substrate using the following process,
known in the art.

The process begins with depositing a thin (~100
Angstrom) adhesion layer of titanium metal onto the
substrate, and then depositing a layer of platinum around
1000 Angstrom thick on top of this adhesion layer. These
depositions can be done by thermal evaporation, electron beam
evaporation, sputtering or any other technique that yields a
clean, uniform layer. Next, photoresist is spin coated on
top of the metal and patterned using standard
photolithographic processing. The pattern produced in the
photoresist is transferred to the underlying metals by
etching. This can be accomplished by a liquid chemical etch,
by a dry plasma etch, by a photoresist lift-off procedure or
by any other method which accurately reproduces the pattern
of the photoresist. oOnce this etching is completed, the
photoresist is removed and the substrate cleaned to leave the
final electrode pattern.

The microFGE top plate, illustrated in Fig. 4, includes
numerous similar etched migration lane grooves 107 of roughly
semi-circular cross section and of diameter between 10 and
several 100 um. The microFGE is positioned and .attached in
close contact with the bottom plate so that the etched
grooves form individual, isolated migration lanes. The lanes
are bounded on the bottom by the bottom plate and on the top
and sides by semi-circular microFGE grooves. 1In Figs. 1 and
4 the etched grooves are illustrated as straight and
converging at the laser illumination and detection region.
Alternative lane geometries are possible. A preferred
geometry includes grooves with first, straight sections that
are widely spaced communicating with second sections that
converge to a narrow spacing.

Instead of being etched with grooves, top plate 438 may
be a conventional glass plate such as a sheet of optical
quality glass, such as BK-7, polished to within 1 um

- 25 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

flatness. Such a sheet would be separated 25 to 150 um from
bottom plate 446 by polyester spacer gaskets.

Laser channel 115 is formed from an etched laser groove
457 extending across the plate with a depth not less than

“that of each of the migration lane grooves. Laser windows
444 cover the ends of the laser groove.

As shown in Fig. 4, a laser beanm 113 from laser 102 is
directed through channel 115 and illuminates fragments
migrating down all the lanes. Alternatively, the laser can
be brought into the lane first by directing it through the
top or bottom plate and then by causing it to reflect from a
suitably positioned mirror mounted within channel 115 so that
it propagates through the laser channel. As still another
alternative, individual laser sources can be fabricated into
each lane by means of known photolithographic processes. In
another mode of the invention, the laser can be caused to
fan-out into a narrow sheet using line-generating optics
which are known in the art. The sheet of laser light is
directed to pass through the upper or lower glass plate, into
and across the laser channel, where it can be focused to a
line, thereby illuminating the fragments migrating down all
the lanes.

Prior to an analysis run, a separation medium 451 is
placed in all migration lane grooves 107 and laser groove 457
to resolve the fragment patterns. Separation medium 451
within the grooves is in contact with liquid buffer in buffer
end wells 442. Most separation involves the use of polymer
sieving media, either cross-1linked gels or linear liquids.
Most are based upon polyacrylimide. For example, when
unpolymerized polyacrylimide is introduced into the lanes as
a liquid, it pélymerizes over a few minutes. Rarely is the
media reusable and the careful cleaning required is labor
intensive.

Alternative separation media are possible with these
systems. Recent work has shown that 0.5 micron posts of Sio2
can retard the mobility of like sized DNA fragments (10
kilobases) to enable size sieving. W.D. Volkmuth et ai. "DNA

- 26 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

Electrophoresis in Microlithographic Arrays," Nature, 358,
600 (1992). Reducing the dimension of these posts to the 50
nm size will increase the resolution to nearly base-pair.
Another alternative may be offered simply by employing solid
polystyrene spheres of an appropriate size. Huber et. al,
"High-resolution Liquid Chromatography of DNA Fragments on
Non-porous Poly(Styrene-Divinylbenzene) Particles," Nucleic
Acids Res., 21, 1061-1066 (1993).

Fig. 6 illustrates temperature control subunit 108 and
bottom plate 446. Bottom plate 446 may be made from a single
material, such as glass or sapphire. Preferably it comprises
a top plate or coating 676 of a chemically and electrically
resistant material, such as a glass, silica, or diamond-like-
carbon in substantial contact with a bottom plate 648 made of
a highly heat conducting material, such as copper or
aluminum. The heat conducting bottom plate may contain
conventional water channels or air fins for efficient heat
transfer with circulating water or air.

Preferably, the bottom plate is in contact with
temperature control subunit 108. This subunit enables
precise control of the separation medium temperature and
ensures its uniformity. The elimination of injurious
separation medium temperature gradients is vital to good
electrophoretic resolution. The subunit comprises a_ heat
sink 652 for transferring heat. The heat sink may contain
water channels or cooling fins for efficient heat transfer
with circulating air or water. A number of Peltier-effect
thermoelectric heat pump assemblies 650 are mounted in good
thermal contact between heat sink 652 and bottom plate 44e6.
These heat pumps are mounted for rapid bi-directional heat
transfer between the bottom plate, and thereby the separation
medium, and the heat sink. They are powered by
controller/power supply 114 in response to temperature input
from thermocouple(s) 678 in contact with the bottom plate.

As a result, bottom plate 446 is maintained at a desired,
uniform, operating temperature, which may range from ambient

- 27 -

wo 96/358 10 | PCT/US96/06579

10

15

20

25

30

35

to 90" C. The top plate can also be controlled in a similar
manner.

Electrophoresis Module: MicroFGE

An industry standard, photolithographic fabrication
process is used to fabricate the migration lane grooves and
laser groove in the microFGE. & photolithographic mask with
an etching pattern is constructed in a standard manner. Two
patterns have been used. One has 80 straight, parallel, 11
cm long, 300 um wide grooves spaced on 1.125 mm centers. The
other has, at the left, 80 straight, parallel, 2 cm long, 50
pm-wide grooves spaced on 1.125 mm centers, in the middle an
angular bend, and at the right, straight, approximately 4 cm
long, 50 um wide grooves converging to 300 um>spacing. At
the extreme right of both geometries is a 5 mm wide groove
across the plate for the laser channel. Because the etch
solution undercuts the etch mask during etching, the actual
photolithographic groove width is less than the desired
microFGE groove width.

The photolithographic mask is used in a conventional
etching process comprising the steps illustrated in Figs. 5aA-
5E. The substrate is a 12.7 cm x 12.7 cnm glass plate 166
polished to less than 1 um flatness on both sides. Both plate
surfaces are first prepared with a standard ammonia/hydrogen
peroxide RCA clean. As shown in Fig. 5B, a silicon carbide
(SiC) etch mask 168 is deposited using Plasma-Enhanced
Chemical Vapor Deposition (PECVD). The reactants are CH, and
SiH, with flow rates of 65 and 12 sccm, respectively; the
power is 50 mW/cm?; and the substrate temperature is 250°cC.
A five minute deposition on both sides of the glass plate
leaves a thin SiC layer. This is followed by a dehydration
bake for good photoresist mask adhesion.

Photoresist is then spin-coated on the front and a
similar protective material is applied to the back of the
glass plate. Illustratively, the spin-coating apparatus is a
Shipley 1813 operating at 4000 RPM. Next, the photoresist is
exposed through the photolithographic mask to a total

- 28 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

exposure of 200 mJ/cm® at 405 nm and then developed. As
shown in Fig. 5C, the photoresist pattern is transferred to
the SiC etch mask using CF, reactive ion etching (RIE) at 40
mT and 300 mW/cm* for 7 min. to form a patterned etch mask
~170. Over etching insures that no residual Sic remains in
the exposed areas. Remaining photoresist is not stripped, as
it serves to pPlug holes and defects in the SiC etch mask. As
shown in Fig. 5D, the plate is then etched by immersion in a
buffered HF (6:1) etch solution. The solution is stirred.
The average etch rate is approximately 0.55 um/min. A total
etch time of 150 minutes yields 75-85 gm grooves. After
etching, the plates are rinsed in a second bath of HF, then
in H,0. The remaining resist and back-side protective
material are stripped (Shipley 1165) and the SiC is removed
by RIE in a similar process to that used in defining the
patterned SiC etch mask 110. As a result, this process
transfers the pattern in the photolithographic mask to a
pattern of approximately semi-circular grooves 174 on
substrate plate 1%6.

In a preferred mode of the invention, Borofloat glass
(Schott Corporation, New York) 1is used as the substrate, and
the following masking and etching protocol is employed to
generate grooves with smooth etch interfaces. The substrate
is first cleaned using a standard RCA or piranha method known
in the art. A thin layer (~100 Angstrom) of chromium is
deposited on the substrate using high temperature
evaporation. This chromium acts as an adhesion layer for a
gold layer which is deposited on top. The gold layer is also
formed by using high temperature evaporation, and has a
thickness of around 1000 Angstrom. Next, photoresist is spun
coated on the substrate and patterned with a series of lanes
from a photomask using standard lithography methods. The
pattern in the photoresist is then transferred into the gold
and chromium layers using wet etching. Now, the etching of
the lane pattern into the glass substrate begins. The
etching is done using a solution of hydrofluoric acid (HF) in
water. Typically, 49 wt% HF is used in order to minimize the

- 29 -~

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

etch times for deep channels. The glass etch rate with 49
wt% HF is around 7 micron/min for channels up to 100 micron
deep. The advantage of the Borofloat is the absence of
insoluble reaction products formed during etching which lead
' to rough etching of the side walls and bottom of the
channels. No insoluble etch products are formed, and very
quick etching and extremely smooth channel side walls and
bottoms are formed.. This smoothness is essential for the
separation of biopolymer fragments because surface roughness
can lead to abnormal mobility of DNA fragments during
electrophoresis due to interactions of the fragments with the
walls.

In another version of the invention, it is desired to
achieve etched migration lanes in long channels (> 12
inches).. In this case, the typical lithographic tools for
microelectronics fabrication cannot ‘be used because they are
limited to circular geometries up to around 12 inches. 1In
order to process these larger substrates, different tools
must be employed to deposit and pattern the photoresist for
lane formation. For the photoresist deposition, three
primary methods exist: dip coating, spray coating and spin
coating. 1In dip coating, the large substrate is dipped into
a photoresist solution and slowly withdrawn to leave a
uniform layer of photoresist coating the surface. 1In spray
coating, photoresist diluted in solvent is air sprayed onto
the substrate to coat the surface. To do spin coating, one
employs a machine capable of processing very large substrates
such as those used to fabricate large flat panel displays.
Exposing the lane pattern onto the photoresist can be done in
two ways - with a very large photomask or with controlled
exposure such as through a laser writing system or a
controllable aperture on a light source. Once the
photoresist has been exposed, all the process steps detailed
above can be carried out to form lanes in the glass
substrate.

There are a number of variations on the above method,
including both substrate and processing. If an insulating

- 30 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

layer on a metal platform is sufficiently thick, then the
microFGE pattern may be etched directly into this layer with
RIE, and the metal will remain flat (unpatterned). A number
of thin insulators can be used. A glass or quartz wafer can
be bonded or epoxied to the substrate. Alternatively, a
number of standard polymers used in the microfabrication
industry include polymethylmethacrylate (PMMA) and polyimide
(PI). These can be spin-coated onto flat, rigid heat-
conducting substrates such as silicon, copper or aluminum.
RIE patterning of polymers is typically done with a very
simple chemistry such as O,, and etch rates can be very high.
The etched polymer microFGE is coated with PECVD Si or 5i0, to
facilitate polymerization of the separation medium.
Optionally, a conducting substrate can be patterned directly
followed by coating with a thin insulating layer. One can
prepare standard microFGE plates etched in silicon similar to
existing examples in glass, and coat them both with PECVD
§i0,, and PECVD diamond-like-carbon (Diamonex, Inc.,
Pennsylvania). The coatings will be in the range of 5-20
microns thick.

In an alternative embodiment of the invention, the
photolithographic process can be used to generate a mold,
against which multiple microFGE plates can be cast. The
associated reduction in processing cost enables the microFGE
plates to be disposable, easing the cleaning burden and cost
associated with the DNA analysis process.

In more detail, any of the following protocols can be
used for generating a pattern of lanes in a polymeric
substrate.

(1) Direct patterning: The first method is direct
patterning of lanes in a photopatternable polymer layer, with
a specific example being a photopatternable polyimide, 0OGC
Probimide 7020 (OCG Microelectronics, New Jersey). The
precursor polymer can be applied from solution using standard
spin coating techniques and directly exposed with UV light
using standard photolithographic tools and a lane geometry
photomask. The exposed areas of the polyimide are partially

- 31 -

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

cured by the UV light, and the remaining.areas can be
selectively removed with a suitable solvent. Finally, the
polyimide is fully cured with heat to obtain a solid polymer
The top plate formed by the above (or another) approach must
be bonded to a bottom plate to enclose and seal the channels.
A thin polymer layer is spin coated on a glass bottom plate,
and cured after contacting the top substrate. 1In this
manner, the polymer film becomes an adhesive fusing the top
and bottom. Alternatively, a bottom plate with a thin
elastomeric layer can be reversibly sealed to the top plate
with pressure.

(2) In-Situ pattern formation: The second protocol is
in-situ curing of channels in a polymer layer between two
glass plates This begins with a mixture of reactive monomers
and oligomers in the liquid state (e.g. methyl methacrylate
monomer and oligomer). This mixture is introduced between
two glass plates spaced by the desired channel height. A
photomask is then used to expose selected areas of the liquid
to UV light to define the lanes. The areas exposed to the UV
light react to form solid polymer walls defining the lanes.
The unreacted liquid in the channels can then be pumped out
to leave the final lane geometry. In this method, both the
top and bottom glass surfaces can be coated with the polymer
prior to channel formation to provide a uniform channel
surface.

(3) Replication: The third protocol involves replication of
the surface features of a microfabricated master in plastic
using molding or casting techniques. Silicon, silica, metal
or polymeric masters are fabricated with a negative of the
desired pattern. A polymer substrate is solidified while in
contact with this master to form the channels. Both molding
(solidification due to cooling) and casting (solidification
due to polymerization and crosslinking) can be used. Casting
can be done at room temperature and pressure and is gentler
on the master than molding. After forming the top plate, the
bottom plate is bonded by the same technique described above.
The mastering concept of the replication protocol can be used

- 32 -

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

to dramatically reduce the cost of microfabricated lane
substrates when compared to etching the lanes in a glass
substrate, enabling the use of disposable microFGE plates.

Electrophoresis Module: microFGE Shunting Capability

Micro-fabrication techniques permit the microFGE to be
optionally configured with the capabilit& to automatically
collect selected biopolymer fragment samples. Samples
traveling down a sample migration lane are detected in the
laser illumination and detection region and analyzed by the
computer implemented analysis method. 1If a particular sample
is of interest, the computer can command that it be shunted
into an adjacent, empty collection lane. After the analysis
run is complete, the shunted sample can be further analyzed
in or eluted from the collection lane.

Fig. 7 illustrates two adjacent lanes in the microFGE
configured for this biopolymer fragment shunting capability.
Adjacent migration lanes 762 and 764 are bounded at one end
by end piece 458 and at the other end by driving electrodes
117. Downstream of the laser illumination region is a
shunting cross-lane connector 784 with shunting electrodes
118 placed in the walls of the adjacent lanes. The shunting
electrodes are connected to and controlled by
controller/power supply 114. The cross-lane connector is
fabricated by altering the photolithography mask to define
the additional etching of the connector. During an analysis
run, it contains separation medium. The shunting electrodes
are placed by a conventional metallic deposition process.

During an analysis run, biopolymer fragments 780 migrate
down the sample lane 764. The fluorescent emission of each
fragment is detected as it crosses laser beam 113 and is
analyzed by the analysis system. If a biopolymer fragment
782 is determined to be of interest, it is shunted from its
sample lane to adjacent collection lane 762 by applying a
voltage across shunting electrodes 118 when the sample is
adjacent to the cross-lane connector. Sufficient voltage is
applied for a sufficient duration to cause migration into the
collection lane. The computer commands the controller/power

- 33 -

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

supply to apply voltage at the correct time for the correct
duration.

Fragment Generation and Loading:
Liquid and Solid Phase Methods

The instrument of this invention is adaptable to a
number of generation and loading methods for the biopolymer
fragment samples. Liquid phase loading is conventional.
This merely requires transferring liquid samples containing
biopolymer fragments to sample wells. This is usually a
sequential, slow, error prone manual step. Various
mechanical and fluid devices may improve speed and error
rate. However, it would be advantageous to load multiple
samples in one operation in parallel. Even more advantageous
would be the capability to generate fragment samples from raw
biopolymers and to load them in parallel for analysis.

Parallel DNA fragment sample loading can be accomplished
by solid phase loading, which.is also conventional, although
recent, technology. It is illustrated in Figs. 10A -10D.

See Lagerkvist, et. al. (1994). As shown in Figs. 10A and
10B, a solid-phase loading comb 1006 has 48 or more teeth
1007, advantageously at least 96 teeth. The tips of the
teeth are coated with streptavidin. The comb and teeth are
designed so that the center-to-center tooth spacing matches
the center-to-center spacing of the loading well of‘the
microFGE and all the loading comb teeth can all be inserted
into all the loading wells simultaneously. 1In a preferred
method shown in Fig. 4, the teeth of the comb match the
spacing of notches 461 machined in comb pressure piece 456
and form robust, mechanically strong, sample wells.

The comb is loaded with biotinylated PCR product samples
generated from biotinylated PCR primers. The biotinylated
samples are bound to streptavidin coated teeth 1007 by the
strong streptavidin/biotin attraction. For example, up to
100,000 copies of a single DNA sample bind to each tooth.
Standard Sanger sequencing reactions are then performed on
the samples attached to each tooth of the comb to generate

- 34 -

5

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

DNA fragments 1010 shown in Fig. 10C. The geometry of the
PCR and Sanger reactors is advantageously adapted to the comb
spacing, so that the comb may be successively dipped in
reactors with the appropriate reagents for performing these
reactions on all the samples in parallel. The loaded comb
with attached fragments 1010 is then dipped in the loading
wells and as shown in Fig. 10D the fragments are released

from the original sample templates by denaturation, using for
example heat and formamide.

Fragment Generation and Loading: MicrofFRa

Both the concurrent generation and loading problems are
solved by the microFRA 110. The microFRA is an array of
chemical micro-reactors for concurrent generation of
biopolymer fragment samples for analysis. It is particularly
adapted to DNA sequencing. Using any number of single tube
(i.e., no separation required) DNA analysis methods, a
microFRA can process DNA for analysis directly from minute,
unpurified samples. This capability eliminates many manual
steps, improving analysis speed and reducing errors.
Integrated with the microFGE, a single instrument can perform
high-capacity DNA analysis directly from raw DNA samples.

The microFRA comprises micro-reactors and capillary
passages with micro-valves, which control liquid flaw in the
capillary passages. The construction and use of these
elements is illustrated in Figs. 8 and 9 for the case of a
capillary evaporative bubble valve. Fig. 8 illustrates a
section of two reactors for one version of the microFRA.
Typically, there would be as many reactors as sample
migration lanes in the electrophoresis module. MicroFRA
structural components include four silicon wafers 886a-d
approximately 0.25 mm thick, reactor housing plate 888,
preferably constructed from glass and approximately 3 mm
thick. Reaction chambers 898 are defined in the structure
along with inlet and outlet capillary passages 885, 884.
Heating elements and thermocouples, not illustrated, can be

incorporated in the walls of reaction chambers 898 for

- 35 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

controlling reaction temperatures. Initial biopolymer
samples and reagents are introduced into the reaction
chambers through minute sample inlets 802. Additional
reagents needed during fragment generation are introduced
through reagent inlets 800 and capillary inlet passages 885.
Biopolymer fragment samples are ejected into the
electrophoresis module through outlet capillary passages 884
and fragment outlets 890.

Capillary flow in passages 884, 885 is controlled by
several micro-bubble valves 894, which comprise evaporative
heating elements 892 and associated electrical leads 896.
Fig. 8 shows one valved inlet path and one valved outlet path
connected to each reactor. Other versions can be constructed
with multiple inlets and outlets to each reactor (such as may
be necessary for ethanol precipitation and washing to remove
salts, followed by formamide resuspension).

Each reaction chamber 898 is a truncated, conical shaped
hole in the reactor housing plate 888 of depth approximately
3 mm, width approximately 1 mm, and volume approximately 1-5
pkl. Construction of the microFRA involves etching in top
silicon wafer 886a one semicircular capillary inlet passage
885 per reactor with diameter from 5 - 100 um, preferably
approximately 10 um. A circular hole, with diameter
approximately 1 mm, is formed in alignment with each reaction
Cchamber. The capillary inlet passages terminate in the sides
of these holes. 2

In second silicon wafer 886b, standard deposition
techniques are used to deposit micro-heating elements 892,
electrical leads 896 to the heating elements, and an
electrically inSulating layer protecting these components.
Each capillary inlet passage is contacted by one micro-
heating element. The electrical leads are brought to the
edges of the wafer for making contact with external leads
from the controller/power supply. The second wafer also has
1 mm holes aligned with those of first wafer and the reaction
chambers. The two holes define minute sample inlet 802 into

- 36 -

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

each reactor. The two wafers are bonded together and to
reactor housing plate 888 as shown.

The reactor housing plate is bonded to third silicon
wafer 886c, which is etched with outlet capillary passages
similar to the inlet capillary passages in wafer 886a. Each
outlet capillafy passage terminates in vertical passage 899
which communicates with the truncated base of one reactor.
Fourth wafer 8864, on which are deposited micro heating
elements, associated electrical leads, and an insulating
layer, similar to those of wafer 886b, is bonded to wafer
886c. Each capillary outlet passage is contacted by one
micro-heating element. When the microFRA is positioned,
attached, and sealed at the left of the electrophoresis
module, as in Fig. 1, the outlet passages communicate with
the separation medium at the heads of migration lanes. 1If a
microFGE is used, the capillary outlet passages in wafer 886c
could converge so that outlet ports 890 would match microFGE
lanes 107.

Preferably, a pressure supply (not shown) is connected
to reagent inlet 800 to pressure the capillary inlet passages
for introducing reagents during a reaction sequence.
Likewise minute sample inlet 802 into the reaction chambers
can be connected to a pressure supply for forcing reaction
products through the capillary outlet passages to the
biopolymer fragment outlets 890. ’

Fragment Generation and Loading: microFRA Bubble Valve

The evaporative bubble micro-valves 894 are important to
the functioning of this version of the microFRA. They
provide on/off control of fluid flow in the capillary
passages. Alternative micro-actuators of similar function,
remote control, and ease of fabrication could be used. [See
Lin et, al. Microbubble Powered Actuator, Transducers 1041
(1991).] _

Figs. 9A and 9B illustrate the construction and
operation of an illustrative bubble micro-valve 894. The

valve comprises two wafers 985, 986 which are joined together

- 37 -

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

after processing to form the structure shown in Figs. 92 and
9B. A semicircular capillary passage 988 is etched in wafer ’
985. A resistive heating element 992 is deposited on wafer

986, and a protective layer 993 is deposited over the heating

~element to prevent chemical or electrical contact with fluiq

)

in the capillary. Electrical leads, not shown, are deposited
to provide for external contact. Current to the heating
element is supplied.through the external contacts and
deposited leads from the controller/power supply. Resistive
heating element 992, the electrical leads and protective
layer 993 correspond to micro-heating elements 892,
electrical leads 896 and the electrically insulting layer of
Fig. 8 and the accompanying description.

Micro-bubble 987 obstructs the flow of fluid in this
passage. It is generated by evaporating fluid in the passage
with heat from resistive heating element. Cessation of the
heating allows the vapor to cool and condense, collapsing the
bubble, and removing the obstruction to fluid flow. Thereby
an off/on valve is created and controlled by current in the
evaporative heating element. _

Surface tensions at the fluid/gas interfaces allow the
bubble to be maintained in position despite a pressure
difference across the bubble. The allowable pressure
difference is determined by Laplace’s equation

_ 20
Pfluid_Pvapor-"? (4)

where P;,;; is the pressure difference in the fluid in the
capillary, P, is the saturation pressure, s is surface
tension, and R is the radius of the capillary passage. For a
pressure difference between 1.5 and 1.0 atmospheres across
the bubble, the capillary diameter must be less than
approximately 10 um.

- 38 -

10

15

20

25

30

35

WO 96/35810 v PCT/U896/06579

Fragment Generation and Loading: DNA sequencing
using microFRA and dUTP digestion

By using QUTP rich PCR primers, the microFRA can
completely and automatically process DNA samples from crude
-DNA to labeled DNA fragments ready for separation,‘and
eventually finished DNA sequence. Using such primers, DNA
sequencing fragments can be generated simply by the
sequential addition of reagents. An intermediate separation
step, not easily possible in a microFRA, to remove unreacted
PCR primers is not needed. The microFRA in combination with
this technique eliminates all manual DNA sequencing steps.
Although adapted for a microFRA, this method of making DNA
sequencing fragments can be carried out in other reaction
configurations.

The QUTP rich outer amplification primers are designed
to prime to known vector sequences, are preferably 17-24
nucleotides long, and are synthesized with QUTP in place of
dTTP. Preferably, the dUTPs are no more than 6 base pairs
apart, with 4-10 QUTPs per primer molecule. The melting
temperature of these primers is preferably between 54°C and
72°C.

The steps of using these primers are illustrated in Fig. .
11. First, at step 1101 10,000 to 100,000 molecules of crude
unpurified DNA are loaded into the microFRA reactlon chambers
through the minute sample inlets. Subsequent reagents can be
added either through these inlets or the capillary inlet
passages as convenient. No prior DNA preparation is needed.
Advantageously, a sterile tip can be used to transfer
colonies or other DNA sources containing single or doubly
stranded DNA vector with a clonal insert directly into the
reaction vessel. Second, at step 1102 amplification reagents
are loaded in the reaction chambers. Amplification reagents
include: 50-100 picomoles/100 gl of QUTP containing primer;
75-100 umolar each AATP, ACTP, dGTP and dTTP; and other

conventional reagents such as DNA polymerase, BSA, Ficol, and
dye.

- 39 -

10

15

20

25

30

35

WO 96/35810 " PCT/US96/06579

At step 1114, twenty to forty amplification cycles are
performed. Each cycle comprises the steps of bringing the
reaction mixture to 94°C for 5-15 secs., then to 52°C for 5
to 15 secs., and then to 72°C for 15-30 secs.

At step 1116 the dAUTP rich amplification primers are
removed with UDG, uracil DNA glycosylase, from the
Escherichia coli ung gene. UDG removes uracil residues from
both single and double stranded DNA present in the reaction
mixture. Loss of the uracil residue prevents DNA base
pairing and exposes the DNA sugar-phosphodiester backbone to
hydrolysis into fragments containing 5/ and 3 phosphate
termini. The resulting short fragments are no longer able to
hybridize to DNA and cannot form a primer for further chain
elongation in the following sequencing reactions step.

Next, the reaction mixture is prepared for the
sequencing reactions. The mixture is diluted 1 to 10 and a
single sequencing primer, buffer and fluorescent dye labeled
ddNTPs (step 1100) are added in a conventional manner.
Fifteen to thirty sequencing cycles are then performed, each
cycle comprising the sequential temperature steps 96°C for 5-
15 secs., 50-60°C for 1 second, and extension at 60°C for 4
min. (step 1118). The DNA fragments are next ejected through
the capillary outlet passages into the electrophoretic
separation subsystem (step 1120). Electrophoretic separation
of the DNA fragments then occurs (step 1122).

Fragment Generation and Loading: Expression Analysis

While our system has been designed to be flexible
regarding biochemical design, we describe a single exemplary
protocol. Recent refinements in molecular biology methods to
characterize differences in gene expression makes this
possible (Liang et al., 1991). The steps are as follows: (1)
mRNA preparation from sample of interest; (ii) first strand
cDNA synthesis; (iii) "fingerprinting" by arbitrary PCR of
individual samples; and (iv) electrophoresis and fluorescent
identification of differences in a single lane.

- 40 -

10

15

20

25

30

35

WO 96/35810 ' PCT/US96/06579

The high quality of the mRNA is assured by immediate
extraction of the mRNA from fresh tissue. The mRNA is
extracted from the tissue following a protocol based on the
FastTrack mRNA isolation kit (Invitrogen Corp., San Diego,

CA), which allows transition to purified PolyA mRNA in under

2 hours.

Complementary cDNAs are constructed by using four
specific polyT primers; a(T),,VA, d4(T),vc, d(T),VG, da(T),,vT
(V= A,C or G) to prime PolyA mRNA in four separate reverse
transcriptase reactions (l0ng/each). This insures that the
initial PolyA mRNA pool is broken into four roughly equal
portions. By constructing primers with two specific bases at
the 3’ end the pool could be further divided. These methods
utilize extremely small quantities of mRNA (10 ng per
reaction). Reaction conditions are designed to minimize any
Sequence specific bias and to enhance the representation of
individual species.

After sample preparation (mRNA isolation and first
strand cDNA synthesis), DNA fingerprinting of the individual
samples (arbitrarily primed amplification) is conducted using
a cycle method based on the use of a thermostable polymerase
(PCR). A series of reaction premixes, each containing a
specific labeled oligonucleotide primer (one of the four
polyT primers with a specific dye attached), a single
arbitrary primer, nucleoside triphosphates, and Taq
polymerase are added to the first strand CcDNA template in an
appropriate buffer. Thermal cycling follows, which generates
the labeled double stranded family of products (the actual
"fingerprint" consisting of 500 to 1000 fragments up to 2kb
in length per reaction).

Primers are designed subject to two major constraints.
The first is to insure an even distribution of priming at a
specific frequency (determining the number of bands). The
second is to insure specificity of the arbitrary primer
(insuring reproducibility). 1In addition, primers are
designed by searching against a human sequence database to
insure that they prime at an appropriate frequency (one which

- 41 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

will allow for the generation of the most detailed
fingerprint that can be characterized within the limitations .
of our instrument). Arbitrary primers can be designed using
mixed bases (A, T, C or G) at the 5’ end to allow larger .
primers to be made, while controlling both melting
temperature (ali combinations have same melting temperature) -
and specificity, and with a fixed 3’ end (conveniently having
a restriction enzyme site to speed up later cloning).

To facilitate the direct identification of the nature of
the coding region of the differentially expressed genes, an
arbitrary primer strategy which does not utilize the common
3’ PolyT primer is used. 1In this case two arbitrary primers

(one of which is labeled) are used for the amplification
step.

Analysis Computer and Signal Analysis

Analysis computer 112 is a conventional computer
including a programmable processor and both short and long
term memory. For example, an Intel 80486 or higher
DOS/Windows compatible computer is adequate. An Intel 80486
33 mHz with 16 MB of RAM and 500 MB hard drive is exemplary
for both control and analysis. Its control functions
required during an analysis run have been previously
described. Additionally, it performs the signal analysis
which determines biopolymer sample characteristics from a
record of the separated fragment samples. The analysis
method and apparatus comprises several steps sequentially
executed by the processor, each step using input stored in
memory and producing output also stored in memory. The data
storage memory can utilize either magnetic or electronic
memory as appropriate for storing intermediate results
between steps. If the microFGE’s sample shunting capability
is used, data analysis must be done during an analysis run to
identify particular samples of interest to shunt. Otherwise,
analysis can be done at any time. -

The version of the analysis method described and
illustrated is directed to determining a DNA base sequence

- 42 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

from electrophoretic separation of Sanger sequencing reaction
fragments. 1In this application, four fluorescent dye labels
chosen to have distinguishable emission peaks must be
recognized. However, the techniques can be applied to
énalyses of other types of biopolymers. In particular,
fragments from more than one sequencing reaction can be
loaded into a single migration lane, and distinguished
through the use of more than four fluorescent dye labels,
such as five or eight or more. The signals associated with
each of the reactions can be distinguished and processed
independently whereby, for example, a single migration lane
can be made to serve the function of two.

The analysis method must be adapted to the microFGE
electrophoretic module and its running conditions. Because

small migration lanes carry small fragment samples, the

'microFGE generates lower intensity signals with a lower

signal to noise ratio than conventional electrophoretic
modules. Also, the microFGE’s short lanes and high voltages
result in more rapid presentation of fragment samples and
less clearly defined fluorescence peaks. Further, detailed
variations in running conditions due to gel characteristics,
voltage used, sample analyzed, and so forth, require that the
method be trainable to these variations. These and other
characteristics of the microFGE require the uniquely adapted
analysis described below in order to achieve better than 99%
recognition accuracy.

Fig. 12 is a high level flow chart of the analysis. Raw
signals from each detector element at each observation time
are gathered by transmission imaging spectrograph 100 (Fig.
1) and stored in memory at step 1229. The signal intensity
from adjacent detector elements of CCD array 228 may be
grouped or summed, called "binning", into sets, called
"bins", and the cumulated value of the set reported. Binning
done on the CCD array is controlled by software supplied with
this component and is dynamically adjustable. Further
binning is done by preprocess step 1230. Preferably, 256
spatial bins each spanning four detector elements are defined

- 43 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

(the detector having 1024 total elements along the spatial
axis) Each migration lane is assigned to one spatial bin at
each observation time, the spatial bin associated to each
migration lane being substantially the same for all
observation times throughout a run, the spectrograph thus
allowing simultaneous detection of up to 256 lanes. In the
preferred embodiment of the invention, each spatial bin is
subdivided into four spectral intensity bins, each spanning
40 detector elements (the detector having 256 total elements
along the spectral axis) centered on the emission maximum of
the four dyes used to label the four ddNTP bases. Obviously,
additional spectral bins can be accommodated by the 256 CCD
elements along the spectral axis; and by reducing the number
of elements per spectral bin and/or using larger arrays to
increase the total number of elements along the spectral
axis, the number of spectral bins can readily be increased to
about 16 or so, permitting the simultaneous detection of as
many different fluorescence signals from different dye
labels. The binnéd signals are further preprocessed at step
1230 by removing recognizable noise and outputting separately
into memory the spectral intensity data for each migration
lane for each observation time.

Basecalling step 1232 compares the spectral intensity
data for each migration lane for each observation time
against an event prototype file.

Event prototype file is generated by training processing
at step 1234. For example, a DNA sample whose sequence is
known with very high confidence is analyzed in the
electrophoretic module by collecting the fluorescence from
each of the four fragment labels and generating spectral
intensity data that is stored in memory. In particular, the
preprocessed spectral intensity sequences from the migration
lane with the known sample are tagged at step 1235 with the
known base events - A, C, T, G, or the null event X - at the
observation times at which the known bases generate signals.
This may be done manually or automatically. Then, for all
events of each of the different base types, the local time

- 44 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

behavior of the signal is averaged, or clustered at step 1236
to generate a prototype intensity signal trace for each
event. The prototypes are stored in memory at step 1237 as
the event prototype file.

' In the preferred embodiment of the invention, event
prototypes are determined for pairs of recognition events.
Since there are four base events and the null event, there
are 16 (=4x4) different pairs of non-null events and
therefore 16 different prototype intensity signal traces.
Other choices of events are possible with this method.

The basecalling step compares the time series of the
preprocessed signals from the spectral intensity bins in a
spatial lane 107 with prototype intensity series. If the
observed series is judged by some measure to be close to a
prototype series, the basecalling step recognizes the base
known to be associated with that prototype series. The
recognized base identities are output to memory at step 1242
as the nucleotide sequence for that lane 107. This sequence
can be finally output at step 1243 or further postprocessed
at step 1244. 1In addition, the measure by which the observed
series is judged to be close to the prototype series serves
as an indication of the confidence which should be assigned
to the accuracy of the basecall. This can be output for
every base, along with the base sequence, and can fyrther be
output for every possible prototype at every basecall. 1In
the case that multiple samples are analyzed using a single
migration lane, it is likely that the samples will be
related, for example, the forward and reverse sequences of a
2kb clone can be analyzed simultaneously. In this case,
information linking the two samples (in the example: the fact
that they are at the extremes of a 2kb clone) is also output.

In postprocessing, if partial sequence information for
the DNA sample is known a priori, for example sequences of
vector DNA, step 1238 recognizes and trims them from the
output sequence. Subsequently a Monte Carlo proofreading
step 1240 is executed. Proofreading involves checking the
global consistency between the basecalling output' and the

- 45 =

10

- 15

20

25

30

35

WO 96/35810 PCT/US96/06579

original unprocessed data. Special knowledge about the DNA
being analyzed, for example that the DNA codes for a protein, :
can also be supplied as at step 1241.

In genomic scale sequencing, it is desired to assemble
and align the base sequence of many fragments into the base
sequence of an entire genome. The closeness to prototypes -
output at step 1243 can be used in dynamic programming
(minimum edit distance) alignment programs which are known in
the art, in order to increase the accuracy of the alignment.
Bonfield, J.K., et al., "The Application of Numerical
Estimates of Base Calling Accuracy to DNA Sequencing
Projects, Nucleic Acids Res., 23, 2406-1410 (1995), which is
incorporated herein by reference. Additionally, information
relating multiple samples analyzed in a single migration lane
can also be used to enhance the assembly of large contigs of
known sequence, by providing links (in the example above--
forward and reverse strands separated by 2 kb) which can be
used to join isolated contigs. Even if the analysis of the
second sample is not complete (for example only a single base
termination reaction is carried out in the reverse direction,
and only a fifth fluorescent dye is used), the information
output at step 1243 can still be used to advantage in
large-scale contig assembly.

Data Analysis Method: Preprocessing Step _

Fig. 13 is a detailed flow chart of preprocessing step
1230. The input from transmission imaging spectrograph 100
is a concatenation of signals from consecutive exposures of
the CCD camera. Each exposure produces binary data
representing charge intensities at individual pixels (and
accumulated intensities in on-chip defined bins). The pixels
are grouped into spatial and spectral bins as previously
described, each spatial bin having four associated spectral
bins. All further processing is done on these binned
signals. First the spatial bin assigned to each migration
lane is identified (step 1440) and a file is created in N
memory for each lane (step 1442). For each migration lane,
the operator chooses one of the 256 spatial bins to best

- 46 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

represent the fluorescence emitted by samples in that lane.
All remaining processing then continues independently for
each lane.

Next, for each lane, recognizable noise is removed by
high and low pass filtering. Spikes, which are one.
observation time anomalies, are removed (step 1444) by
replacing a signal value in any spectral bin at any
observation time with an average of the signal values in the
same spectral bin at the preceding and succeeding observation
times if the value differs drastically from that average.
Next, the background signal is identified and subtracted
(step 1446). For each observation time and spectral bin, a
background value is computed and subtracted. The background
is the best linear fit to the absolute signal minima taken
from four windows near the observation time in that spectral
bin. The first window contains enough future time points to
include preferably about 10 base recognition events (or
peaks); the second window enough for 20 future events; the
other windows include 10 and 20 past events. The filtered
signals are stored in memory at step 1447.

Next, for each observation time, a linear conversion is
made from fluorescence intensity signals to signals
representative of dye concentration (step 1450). This is
done by multiplying the 4 spectral bin values in the data
stored at step 1447 by a 4X4 conversion matrix to obtain 4
new values representative of the four dye concentrations.
This matrix is determined at step 1448 prior to the
conversion in the following adaptive manner. The signals
stored at step 1447 are scanned. For a range of observation
times from the middle of the analysis run, preferably the
middle 1/2, during which range each signal peak is influenced
by a single base event, the three highest peak values are
found in each spectral bin. This is done by finding a first
maximum, excluding a window around that maximum, then
similarly finding a second and third maximum. These peaks
are taken to correspond to existence of a single dye in the
detection region. (Validity of the assumption is tested by

- 47 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

comparing the shapes of the dye emission curves with the
ratios of signal intensities in the spectral bins.) For each
of the three highest peaks of each of the four dyes, the
values in the four spectral bins are obtained. For each bin
and each dye the three values are averaged to obtain a set of
four numbers that represents the ideal fluorescence signature
of that dye. The four signatures are assembled as the rows

of a 4X4 matrix. For example, an illustrative signature
matrix might be:

measured average fluorescence intensity
level in bins associated with:
Nucleotide A T G c
A 800 100 50 100
T 300 700 100 50
G 100 200 900 200
c 50 50 300 800

The inverse of this matrix is the desired linear conversion
factor input to step 1450.

Alternatively, a matrix can be recalled from memory
which has already been generated.on the basis of knowledge of
the emission spectra of the fluorescent dyes. Instrument
spectral alignment variability can be accomodated by choosing
the best of a collection of several such matrices stored in
memory. The choice of the best matrix is made by testing the
extent to which negative values are generated as the output
dye intensities, with the optimum matrix having the minimum
accumulation of negative dye intensities.

Alternatively, more than four dyes can be employed and a
corresponding number of binning regions can be used to
accumulate the fluorescence signals from such dyes. 1In the
case that the number of binning regions exceeds the number of
dyes, a best-fit linear conversion or pseudo-inverse can be
found to determine the dye concentrations.

- 48 -

WO 96/35810 ' PCT/US96/06579

In the case of multiple samples, such as the forward and
reverse reactions, being analyzed in a single migration lane,
an analogous 8x8 matrix analysis replaces the 4x4 analysis

.described above.

5

An illustrative signature matrix in this case might be:

Nucleotide cC1l (A1l G 1 T 1 c 2 A2 G 2 T 2

C samplel 930 430 0 0 0 0 0 0
10

A samplel 790 1080 | 90 0 0 0 0

G samplel 500 680 1090 | 380 0 0 0 0

T samplel 320 420 760 1090 | 380 0 0 0
15 C sample2 230 260 530 810 950 70 0 0

A sample?2 0 0 260 470 740 1070 | 420 0

G sample2 0 0 140 270 500 780 1090 | 330

T sample2 0 0 70 130 230 430 690 1060
20

Finally at step 1452, the signal values at consecutive
observation times are added into one new observation and
output to memory. Consecutive observations, or larger
adjacent groups of observations, are additively combined so

25 that approximately five resultant observation times occur
between consecutive base recognition events.

Alternatively, this renormalization of the time sampling
interval can include interpolation, and can be carried out
independently for each of the different fluorescent dyes in

30 order to accomodate the different influence that the dyes
themselves have on the mobility of the DNA fragments.
Data Analysis Method: Basecalling Step

Basecalling (step 1232) recognizes the event of a

labeled fragment in a migration lane passing through the
35

laser beam 113 and discriminates the event into one of a set
of classes according to the dye label carried by the

49

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

fragment. Four initial choices must be made: a configuration

space to represent recognition events; a mapping of signal g
traces into paths in this configuration space; the location

of events in the configuration space; and a criterion for -
determining when the configuration space path represents an

event. First, this method is schematically illustrated for a -
simple case, then the preferred version is described.

Figs. 14A and 14B schematically illustrate a simple,
exemplary case. In Fig. 14A are two signal traces: one 1328
having a single, tall peak 1326; and a second 1332 having a
single, broad, low peak 1330. Trace 1328 represents an
event; the trace 1332 represents only noise.

Fig. 14B illustrates the mapping of the signal values at
the preceding time point, t-1, at the current time point, t,
and at the succeeding time point, t+1, into single 3-
dimensional points (t-1, t, t+l) in a 3-dimensional
configuration with these three values for coordinates. Thus
each point in configuration space represents a triplet of
three consecutive signal intensities. Next, based on
knowledge of prior event characteristics, an event prototype
characteristic of detection of passage of a particular dye
label fragment through the laser beam is assumed to be
located at 1322. For event recognition, the configuration
space path must pass within sphere 1340 about the event
prototype.

Signal trace 1328 maps to loop 1324 in configuration
space, beginning and ending at the origin and passing, in the
example shown, within the recognition sphere. It therefore
represents an event. Signal trace 1332 illustratively maps
to loop 1342 in configuration space, which does not pass
within the sphere. It is therefore not recognized as an
event. In this manner, events are recognized and
discriminated.

- 50 -

10

15

20

25

30

35

WO 96/35
810 PCT/US96/06579

Basecalling Step: Embodiment

As indicated in the discussion of Fig. 12, event
prototypes are determined for pairs of recognition events,
there being sixteen such pairs corresponding to the sixteen
doublets of DNA bases -- CA, CC, CG, ¢T . . . TA, TC, TT, TG.

The event recognition criterion is that a local minimum
occurs in the distance between the signal trace as mapped
into configuration space and one prototype event. Starting
from the previous base recognition event, and stepping
forward observation by observation, the configuration space
distance to each of the 16 prototype events is computed at
eaéh observation time. The event identity with the smallest
distance and that distance value are saved. If the closest
prototypes at the current and adjacent observations are the
same, and if the current distance to that closest prototype
is less than the distances at adjacent observations, then '
that prototype is recognized. As indicated above, there are
approximately five observation times between successive base
recognition events. Any time a prototype is recongnized, the
distance to each of the 16 prototype events can be stored for
future analysis or output.

In essence the basecalling step measures at a series of
observation times following a base recognition event the
correlation between the dye concentration values dg;ived from
four signals received at the four spectral bins and the
corresponding dye concentration values associated with the
sixteen doublets of DNA bases that have previously been
stored in the prototype file. Beginning with the first
observation time following a base recognition event, the
measurement is made by calculating a weighted sum of the
squares of the differences between five successive time
samples of the dye concentration values derived from the four
received signals and five successive time samples of the
corresponding signals of each of the sixteen doublets,
repeating the calculation for the next set of five successive
time samples of dye concentration values displaced by one

observation time from the previous calculation and the same

- 51 -

PCT/US96/06579

WO 96/35810

10

15

20

25

30

35

Set of five samples of each of the sixteen doublets, and so
on. The distance at the central sample point is weighted
highest (2.0); the distances at the previous and succeeding
points are weighted intermediately (1.5)} and the remaining
distances are not weighted (1.0).
The general form of the equation for the weighted sum of
the squares is
(TD_, - TP_,)?
+2- (TD, - TP,)?

+ 1.5-(TD,, - TP_,)?
+ 1.5-(TD, - TP_)?
+(TD,, - TP,)? + (AD_, - AP_,)?2
1.5-(AD, - AP_,)2 + 2-(AD, - ApP,)?2
1.5-(ap,, - AP,)? + (AD,, - AP,;)?
(6D, - GP_,)2 + -5-(GD, - Gp_,)?2
2-(GD, - GP,)?2 + 1.5-(GD,, - Gp,,)?2

(GD,, - GP,,)? + (CD., - cP_,)?

1.5-(CD, - cP,)? + 2-(CD, - CP,)?

1.5-(cD,, - CP,;)? + (¢D,, - CP,;)? (5)
where the first term in each squared expression is the sample
of the received signal and the second term is the sample of
the stored prototype signal, the letters T, A, G, C identify
the relevant dye concentration and the sﬁbscript indicates
the sample number and its order in time.

The value of the above equation is calculated for each
of the sixteen doublets for each of the observation times
until a closest prototype is located. Alternatively,
however, it is not necessary to make the calculation for
twelve of the sixteen doublets because the identity of the
first nucleotide in the doublet is already known from the
immediately previous basecalling step.

In addition} each calculated value of the sum of the
Squares is weighted by a factor that increases with the time
between the -actual observation time and the expected time of
the next base recognition event. A match is identified at
the observation time where the weighted sum of squares is
determined to be lowest.

Further details of the base calling step are as follows:

- 52 -

WO 96/35810 PCT/U896/06579

10

15

20

25

30

35

The configuration space is a composite of a 20-dimensional
signal-intensity subspace and a l-dimensional time-from-
event-recognition subspace. Signal traces map into the
signal-intensity subspace by assigning for the 20
coordinates, sequentially, the four spectral bin values at
each of the five observation times - the twice previous time,
t~2, the previous time, t-1, the current time, t, the
succeeding time, t+1, and the twice succeeding time, t+2.
This maps adjacent portions of the signal trace to a 20~
dimensional vector in this subspace at the observation time,
t. In the 1-dimensional time—from-event—recognition
subspace, the coordinate is assigned to the time difference
between the current time and the time at the last recognition
event.

The distance in the configuration space is the product
of distances computed separately in the two subspaces. 1In
the 20-dimensional signal—intensity subspace, the distance is
a weighted sum of the Squares of the distances (sum of
Squares of signal coordinate differences) between the signal
and a prototype point at the five time points. The distance
in the 1-dimensional time—from-event-recognition subspace is
the sum of 1.0 and the weighted (0.3) square of the
difference between the coordinate value in that subspace and
the average time between basecalls. | -

This precise calculation is illustrated by the following
C++ code:

class datapoint {
double c, t, a, g; /* normalized fluorescence values */

int tag; ‘ /* call for this data point */
}i

class vector {

datapoint twoprev; /* data point at current time - 2 */
datapoint prev; /* data point at previous time */
datapoint curr; /* data point at current time */
datapoint next; /* data point at next time */
datapoint twonext; /* data point at current time + 2 * /

- 53 -~

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

int lastcall; /* base last called */
double timetocall; /* time since last base call */
int tag; /* call for this vector */

}i

dist = (

(

pow ((vec->twoprev.c - average.twoprev.c), 2) +
pow ((vec->twoprev.a - average.twoprev.a), 2) +
pow ((vec->twoprev.g - average.twoprev.qg), 2) +
pow ((vec->twoprev.t - average.twoprev.t), 2) +

pow ((vec->prev.c - average.prev.c)*1.5, 2) +
pow((vec->prev.a - average.prev.a)*1.5, 2) +
pow ((vec->prev.q - average.prev.g)*1.5, 2) +
pow ((vec->prev.t - average.prev.t)*1.5, 2) +
pow ((vec->curr.c - average.curr.c)*2.0, 2) +
pow((vec->curr.a - average.curr.a)*2.0, 2) +
pow((ve¢->curr.g - average.curr.g)*2.0, 2) +
pow ((vec->curr.t - average.curr.t)*2.0, 2) +
pow ((vec->next.c - average.next.c)*1.5, 2) +
pow((vec->next.a - average.next.a)#*1.5, 2) +
pow ((vec->next.g - average.next.qg)*1.5, 2) +
pow((vec->next.t - average.next.t)*1.5, 2) +

pow ((vec->twonext.c average.twonext.c), 2)'+:

pow ((vec->twonext.a average.twonext.a), 2) +

pow ((vec->twonext.qg average.twonext.qg), 2) +

pow ((vec->twonext.t average.twonext.t), 2)) *
(pow(0.3*(yec—>timetocall - average.timetocall), 2) + 1)

)i

Prototype events for each of the sixteen doublets of DNA
bases -- Ca,cc,cG,CT,...,TA,TC,TT, TG are stored in the
prototype file at step 1237. This file is mapped into the
20-dimensional signal-intensity subspace and 1-dimensional
time-from-event-recognition subspace. Then all (20+1)-
dimensional vectors at which a base is recognized are
assembled according to which doublet is formed by the current

54

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

and previous basecall. Vectors for each doublet are averaged
arithmetically to form a prototype. The vector averages are
output to memory.

A flow chart for the basecalling step is shown in Fig.
15. The basic processing loop is entered at step 1556; the
next observation is input from memory; and a new vector is
mapped in configuration space. Variables are initialized at
step 1576, by looking forward a sufficient number of
observations into the input data. Distances in the 20-
dimensional signal—intensity subspace to all prototype events
are computed at step 1558. The distance in the 1-dimensional
time-from-event-recognition subspace is computed at step
1560. The two distances are multiplied at step 1562 to give
the configuration space distance. The local distance minimum
event recognition criterion is evaluated at step 1566.
Illustratively, a local minimum is recognized when the path
in configuration space has been nearest to a single prototype
for at least three time points and the distance to that
prototype at one time point is less than the distances at
adjacent time points. If no event is recognized, the method
returns to step 1556. If the criterion is met, that doublet
event is recognized and saved at step 1570. Since the prior
base recognized has been saved at step 1570, it and the
currently recognized doublet are used to determine the
current base at step 1572. This base and its recognition
time is output at step 1242. Next (optionally), the average
time between recognition events is updated by computing a
moving average of the time between events. Adjustments from
this average are made for known differences in
electrophoretic mobility dependent on DNA sequence. Since
the average time between basecalls depends on the nature of
the separation gels, the voltage used, and other running
conditions, it can be expected to vary from run to run. The
average time between basecalls can also vary within a given
run from start to finish.

- 55 -

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

Monte Carlo Proofreading Step

The optional postprocessing consists of trimming known
sequences at step 1238 then Monte Carlo proofreading at step
1240. Trimming known Sequences includes removing known sub-
Sequences, usually vector DNA, from the processed data input
from 1242.

Proofreading seeks to improve the overall match between
the signal intensities and the recognized base events. The
basecalling step looks locally at groups of observations
representing two base recognition events seeking local
minima. Proofreading tests the recognition globally by
maklng proposed alterations (moves) and testing whether
recognition accuracy is ultimately improved by the
alterations. 1In this process, known restrictions on the DNA,
such as it being a protein code, can be utilized. This is an
important step for improving recognition accuracy. However,
since it requires data from an entire analysis run, it cannot
by used for sample selection and shunting.

Fig. 16 provides flow charts of the Monte Carlo
proofreading step. For conventional Monte Carlo techniques,
refer to Press, et al., Numerical Recipes in C (1988), which
is herein incorporated by reference. Monte Carlo
proofreading requires three initial choices: a set of
Sequence alterations to try, an energy function to évaluate
success of the alterations, and an annealing schedule to
exercise overall control on the proofreading. The following
are preferred choices. Choose for the set of alterations at
an observation time: insert a new base recognition, delete a
base recognltlon, move the nearest base recognition forward
one observation time, or move the nearest base recognition
backward one observation time. Other sets of alterations may
incorporate specific knowledge about the DNA sample. For
example, alterations should be limited to valid protein
codons if the DNA is known to code for a protein. Choose for
the energy function the sum over all base recognition events
of the square of the distance in configuration space between
the prototypes of the recognized base sequence and

...56_

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

corresponding observation vectors. For the annealing
schedule, choose a simulated temperature decay exponentlal in
the number of epochs of the proofreading method, an epoch
belng a certain number of iterations of the alter-and-test
loop. The simulated temperature probabilistically controls
acceptance.

Proofreading begins at step 1610 with the choice of a
temperature comparable to the value of the initial energy
function. (Units are chosen so that the Boltzman constant is
1.0.) Next an epoch of proofreading is run at step 1612.

The temperature is exponentially decremented at step 1614, by
multiplication with a decay constant less than 1.0, and
compared to a minimum. The decay constant determines the
number of proofreading epochs to execute. If the temperature
exceeds the minimum as tested at step 1616, the method loops
back to step 1612. If not, the method ends at step 1616 and
the base sequence with all permanently incorporated
alterations is output to memory; The analysis method is
complete.

The procedural steps in execution of one epoch of
proofreading follow. The input data in memory is the base
sequence output from the basecalling step 1242, as trimmed at
step 1238, and the preprocessed signal traces 1228. The
alter-and-test loop begins with selection of a rahddm
observation time from the sequencing run at step 1686 and a
random sequence alteration from the chosen set of alterations
at step 1688. A new energy is computed at step 1690 from the
base sequence using the temporarily incorporated alteration
and the input pfeprocessed signal traces. The new energy is
tested at step 1692. If the new energy is lower than the
previous energy, the alteration is permanently incorporated
in the base sequence at step 1600. A convergence stop
condition is tested at Step 1602, which is preferably a
certain number of alter-and-test iterations. Other stop
conditions are possible, such as a certain energy decrement
during the epoch. If the new energy is not lower, the move
is allowed or disallowed probabilistically according to the

- 57 -~

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

Boltzmann criterion. A random number is generated at step
1694 to test the Boltzman probability of this move at step
1696. The Boltzman probability is determined by:

Acceptance Probability = exp (- energy'cha;ge of’move) (6)

where T is the current temperature of the epoch set at step
1614. If the move is allowed as tested at step 1698, it is
permanently incorporated in the base Sequence by step 1600.
In either case the stop condition is again tested. If the
stop condition is met, the epoch ends and overall stop
condition at step 1616 is tested.

The following examples are illustrative of the
application of the present invention.

Example 1 - Imaging Spectrograph and Analysis Method
A segment of double stranded DNA supplied as control
with reagents from Applied Biosystems Inc. (Foster City, ca)
(PGEM -3Zf (+) from the -21M13 forward primer) was analyzed.
Ultrafloat glass (with a green tinge) was used as the
bottom plate. BK7 glass was used as the top plate. A 100
micron polyester Spacer gasket separated the two pieces of
glass. Bind silane, consisting of 1 milliliter of ethanol
(J.T. Baker; Phillipsburg, NJ), 5 microliters of gaﬁha-
methacryloxypropyltrimethoxysilane (Sigma Chemical Company;
St. Louis, MO), and 50 microliters of 10 percent acetic acid
(EM Science; Gibbstown, NJ), was applied sparingly to each
edge of glass which contacted the comb. The polycarbonate
comb used had physical dimensions of 0.75 millimeter
thickness, and teeth making wells in the gel spaced on 2.25
millimeter centers. Gel was 5 percent monomer 19:1
acrylamide:bisacrylamide Sequagel (National Diagnostics; !
Atlanta, GA) with 8.3M urea. The running buffer was 1x Tris-
Borate-EDTA. The gel was allowed to polymerize for 3.5 ' .
hours, and was prerun for 0.5 hour. The sample was
resuspended in 3-6 microliters of formamide/EDTA load -

.-58_

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

solution. 0.5 microliters of sample were loaded into the
gel.

The collection lens was a 250 mm £5.6 Zeiss medium
format telephoto lens. Further description of the
spectrograph is provided in the detailed description of the
invention. Laser power of 82 milliWatts from an LS1000 argon
ion iaser (American Laser Corporation; Salt Lake City, UT)
was filtered to select the 515 nanometer wavelength using a
laser line filter, resulting in about 35 milliWatts focused
through the side of the gel. The electrophoresis path from
the loading region to the detection region had a length of 23
or 24 centimeters. Exposure times were 2 seconds per frame.
Detector read time was roughly 0.1 seconds. 4000 total frames
were collected. Electrophoresis was conducted at 2500 Volts
constant voltage applied across 28.5 centimeters using an EC
650 (E-C Apparatus Corporation; St. Petersburg, FL) power
supply. This resulted in dissipation of 12.3 Watts in the
gel. The circulated water was kept at 40 C. Samples were
injected for 15-30 seconds.

The transmission imaging spectrograph recorded the
fluorescence emitted by the labeled fragments. The seven
lines of Fig. 17 show the trace of the preprocessed
fluorescence intensities of the four dye labels as a function
of time for one migration lane as output from the -
preprocessor. The letters underneath the time axis are the
determined basecalls. Comparing to published data, from the
center of the first line on there was perfect agreement, with
the exception in the last line of one missing T and G (from a
GGGG sequence). Correct functioning of the spectrograph and
the analysis methods was demonstrated.

Example 2 - MicroFGE
Analyses were run with two conventional glass plate
modules and the microFGE. The first conventional module has
ultra-thin gel, with a 80 um plate separation and a 23 cm
migration path; the second is ultra-thin with a 80 um
separation and a 10 cm migration path. Both have 32 loading

59

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

lanes formed with 2.25 mm center spacing. The microFGE has
80 channels, 80 micron deep on 1.125 mm center spacing and a
10 cm path.

The electrophoresis modules were loaded with 5% or 6%
(19:1) polyacrylamide gels with 8.3 M urea. Well-forming
combs formed the loading wells in the loading region 463.
Bind silane (as above) assisted adhesion of gel to glass in
the loading region.' The gel was allowed to polymerize for 3
hoﬁrs, at which point the well comb was removed leaving
loading wells placed at the head of each migration lane. The
running buffer was 1 X TBE. The gel was then heated to a
heat exchange temperature of 40° C.

Biopolymer fragment samples of a segment of M13 DNA were
prepared, separated from the sequencing reaction medium, and
resuspended in 3 pl of loading solution. For the microFGE
50-100 nl of the loading solution and for a conventional
glass plate 400-500 nl were loaded into the loading wells.
With a conventional glass plate, the 23 cm path from the
loading region to the detection region resulted in separation
of about 400 DNA bases in 2.5 hours with 2500 volts applied
over 28.5 cn.

Figs. 18A, 18B and 18C show the fluorescence traces from
the transmission imaging spectrograph. In Fig. 18A the trace
is from the glass plate module with ultra-thin platé spacing
(90V/cm) and 23 cm path length. In Fig. 18B the trace is from
the glass plate module with ultra-thin spacing at a 10cm path
length (100 V/cm). 1In Fig. 18C the trace shows results
obtained with the 10 cm path of the microFGE (100V/cm) .

Figs. 19A and 19B illustrate the output of the CCD
array. They demonstrate the ability of the array to
discriminate the signals from the different migration lanes
and from different dyes. -

Integrated functioning of the microFGE with the
spectrograph were demonstrated. Further, the traces of Figs.
18A, 18B, 18C, 19A and 19B provide evidence that: 1) a single
well at the head of a microFGE lane can be loadgd with a DNA
fragment sample; 2) the DNA fragments are separated

- 60 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

electrophoretically as they travel down a single lane in the
microFGE; 3) the fragments exit the lane and move into the
laser channel where they can be excited to fluorescence and
imaged by the transmission imaging spectrograph; 4) the
spatial broadening associated with exit from the lane is less
than the spacing between the microFGE lanes; and 5) the dyes
associated with the different nucleotides can be
distinguished in time sufficient for base resolution.

As will be apparent to those skilled in the art,
numerous variations may be made in the practice of our
invention.

This invention is not limited to the use of any single
sequencing chemistry; both chemical and enzymatic methods are
enabled. By way of example, enzymatic methods can be used
that do not rely on the use of chain terminator chemistry. -
Sequencing in an integrated device may be enabled by sequence
ladder generation techniques other than Sanger methods. A
coupled procedure can be used that will rely on the
generation of PCR-amplified products and subsequent direct
generation of ladders by exonuclease digestion. This is made
possible by the incorporation of blocking base analogs for A,
C, G, and T that allow for the PCR extension to proceed to
completion in each cycle, but that cause 5’ to 3’ activity of
single strand exonucleases (e.g. Exo I; New England.Biolabs;
Beverly, MA) to be blocked. After four separate PCR
reactions, each with a single modified blocking base, the
products can be digested with an exonuclease, thereby
producing a set of nested fragments terminating at each point
of incorporation of the blocking base analog. Suitable use
of dye labeled primers allows for the identification of the
blocking base which terminates the fragment. These blocking
bases are made by incorporatiﬁg substitutions into the
chemical structure of the DNA bases which allow the base to
be incorporated by enzymatic action in a growing DNA strand,
and also allow such strand to be a template for growth of a
complementary strand (DOE Human Genome Project Report, Spring
1995). Use of non-chain-terminating fluorescent labels

- 61 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

attached to the blocking base analogs would enable reactions
performed in a single vessel. Biotin immobilization can be
used on one primer to allow strand separation and separate

-analysis of the fragment ladders generated from each

complementary strand.

Chemistry techniques producing sequence fragments from
both complementary strands of DNA also are enabled by our
invention. Chemistry techniques for generating ladders of
sequence fragments have previously been used to generate
fragments from,and therefore information about a single
strand at a time. With the full spectral capability of the
instrument, and with the analysis capability of the software
it is possible to resolve sequence information directly
generated from both strands simultaneously, thereby
increasing the accuracy, robustness and reliability of
analysis of a biopolymer sample. In one example, two
different primers are used for the two ends of the two
strands of DNA. Standard Sanger fragment ladders are
generated corresponding to both strands along the DNA in a
single reaction, with opposite directions (strands) having
unique dye labeled primers. The dyes are chosen to be

4

spectrally resolvable. A strategy incorporating four dyes
readily allows both strands of a fragment to be sequenced in
two lanes, each lane corresponding to sequence information on
two bases (e.g. C and T) for each of the two strands.
Advantageously, a strategy incorporating eight spectrally
resolvable dyes allows simultaneous independent analysis of
both sequencing ladders in a single lane. Binary coding
strategy can be used to decrease the number of dyes required
to perform the same simultaneous independent analysis of a
biopolymer fragment.

Even if the analysis of the second sample is not
complete (for example only a single base termination reaction
is carried out in the reverse direction, and only a fifth
fluorescent dye is used), the information can still be used
to advantage in large-scale contig assembly. '

- 62 -

10

15

20

25

30

35

WO 96/35810 ' PCT/US96/06579

A variety of solid-phase supports can be used to bring
either reactants, template or product into or out of the
sample loading wells or microfabricated reaction vessels.
Products and templates can be coupled to the support either
covalently or non-covalently. Examples of non-covalent
attachment are (streptavidin—biptin), and (antibody-small
epitope). Hybridization between complementary strands of DNA
is an alternative non-covalent attachment means. Covalent
attachments made via disulfide bonds are also useful; release
of the attached species is accomplished by a change in
reduction potential resulting in the break of the disulfide
bond. Techniques eliminating the need for chemical
separation steps in the reaction process are ideally matched
to the invention, and are enabled, for example, by
solid-phase magnetic separations. Specifically, minute
magnetic beads (Dynal Corporation) are used in standard
biochemical protocols for material transport, and are a
suitable substitute for the fixed teeth of a comb used for
solid-phase loading. Streptavidin coated magnetic beads can
be processed in the same manner as the combs. Minute
magnetic bead allow for quantitation of sample transport and
are suitable for loading means based on mechanisms for moving
magnetic particles (C.H. Ahn and M.G. Allen, "A Fully
Integrated Micromachined Magnetic Particle Manipulatpr and
Separator", J. of Micromechanical Systems, 2, 15-22 (1993)).
The transport of reaction products on magnetic beads also
allows for the concurrent separation of reaction products and
unreacted reagent mixtures.

Numerous variations may also be practiced in the
signal processing used to identify the nucleotides and the
same techniques may be used in other signal matching
applications. For example, the comparisons may be made using
data representative of triples of nucleotides instead of

pairs of nucleotides; and other matching strategies may be
used. '

- 63 -

10

15

20

25

30

35

WO 96/35810

APPENDIX

PCT/US96/06579

The following computer program listings are copyright

1995 CuraGen,

Inc.

© 1995 curaGen, Inc.

_64.—

WO 96/35810 PCT/US96/06579

/* Vector and cluster classes */
/* In numeric tags, 0=C, 1=3a, 2=G, 3=T, -1=X */

extern "C" {
#include <stdio.h>
#include <stdlib.h>

#include <math.h>

}
#define NUMCLUSTS 16

double currmin;
int currcluster;

class cluster;

class datapoint {

public:
double ¢, t, a, g; /* fluorescence values */
int tag; /* call for this data point */

void print(FILE* = stdout, int = 0);
int input(FILE* = stdin, int = 0);
void init (double, double, double, double, int = -1);

double fluorescence(int); /* returns value of argument channel */
Y

class vector {

public:
datapoint threeprev; /* data point at current time - 3 */
datapoint twoprev; /* data point at current time - 2 */

datapoint prev; /* data point at previous time */
datapoint curr; /* data point at current time */
datapoint next; /* data point at next time */

datapoint twonext; /* data point at current time + 2 */
datapoint threenext; /* data point at current time + 3 */

int lastcall; /* base last called */

double timetocall; /* time since last base call (double for averaging) */
double lastcallval; /* value of base channel at previous call */

double max; /* max fluorescence value */

double twoprevmax; /* max for twoprev */

double twonextmax; /* max for twonext */

int tag; /* call for this vector.*/

void normalize(); /* normalizes fluorescence values */

int findclust(); /* calculates index of cluster for clustering */

int call(cluster **); /* determines call of closest cluster */
void print (FILE* = stdout);

WO 96/35810

PCT/US96/06579
void input (FILE* = stdin);
}:
class cluster {
public:
vector data([64]; /* vectors in cluster -- should be dynamic */
int size; /* number of vectors in cluster */
vector average; /* average for cluster */

void addvec(vector *); /* add vector to cluster */
double distance(vector *); /*-determine distance from vector to average */
void create_average(); /* create average from data */

int iscall(int);

-int calltoint(char);

char inttocall (int);

double avedist{int,int, cluster **);

int clusterprevtag(int);

int clustercurrtag(int);

void averagetwovecs(vector *, vector*, vector *);

void averagetwodps (datapoint *, datapoint *, datapoint *);

WO 96/35810 PCT/US96/06579

extern "C" {
#include <math.h>

void invert (double **, double **, int);

WO 96/35810 PCT/US96/06579

#include "cluster.h"

#define TAGGEDFILE 1
/* if 1, expects input file to be tagged with character tags */

/* Call data by closest cluster. */

extern double .currmin;
extern int currcluster;

int main(int argc, char *argv[]) {(

int time=0; /* current time */

int basenum=0; /* number of bases called */
int timeofcall; /* time of last base call */
int lastcall:; /* last base call */

double lastcallval; /* value of call channel at last call */
int i;

int callmistakes = 0;
FILE *datafile;

if (arge < 2) {
fprintf (stderr, "Usage: %s <data file>\n", argv(0]);
exit(1l);

if (!(datafile = fopen(argv({l], "r"))) {
fprintf(stderr, "Can not open data file %s.\n*", argv[l]);
exit (1) ;

cluster *clust[NUMCLUSTS]; /* clusters */
cluster *rv;

/* read through file*/
for (i = 0; i < NUMCLUSTS; i++) { /* initialize */

if ((rv = (cluster *) malloc(sizeof(cluster))) != NULL) {
clust{i] = rv;

}

else {

fprintf (stderxr, "\nNot enough memory - Cluster %d\n", 1i);
exit(1l);

datapoint threeprev, twoprev, twonext, threenext:;

- 68 -

WO 96/35810 PCT/US96/06579

datapoint prev, curr, next; /* previous, current, and next data points */
vector vec; /* current vector */

char call;

int numclusts = 0, xclusts = 0, cclusts = 0, tclusts = 0, aclusts = 0;
int gclusts = 0;

int shiftflag = 0;

/* initialize threeprev through twonext to first six time points */
threeprev.input(datafile, TAGGEDFILE);
twoprev.input (datafile, TAGGEDFILE);
prev.input (datafile, TAGGEDFILE);
curr.input(datafile, TAGGEDFILE);
next.input (datafile, TAGGEDFILE);
twonext.input (datafile, TAGGEDFILE);
time = 2;

lastcall = 0;

lastcallval = 1;

timeofcall = 0;

/* read through */
fprintf (stderr, "Calling data.\n\n");

while ((threenext.input(datafile, TAGGEDFILE) != EOF) &&
(numclusts < NUMCLUSTS)) {
/* determine closest cluster */
vec.threeprev = threeprev;
vec.prev = prev;

vec.curr = curr;
vec.tag = curr.tag;
vec.next = next;
vec.threenext = threenext;
vec.lastcall = lastcall;
vec.timetocall = time - timeofcall;
vec.lastcallval = lastcallval;
vec.normalize();
if (time == 2) {
for (i = 0; i < NUMCLUSTS; i++) ({
/* this is a bit of a kludge - set all clusters same so
that can use existing cluster functions */
clust([i]->average = vec;
}
numclusts++;
fprintf (stderr, "Time %4d, adding prototype for %c
time, inttocall(vec.tag));

- 69 -

WO 96/35810 PCT/US96/06579

switch (vec.tag) {
case -1:
xclusts++;

. break;

case 0:
cclusts++;
break;

- case 1:
aclusts++;
break;

case 2:
gclusts++;
break;

case 3:
tclusts++;
break:

}
else {
call = vec.call(clust);
if (call != vec.tag) {
/* don’t add as prototype if one point short of call that was made */
if ((!(iscall(vec.tég))) && (call == next.tag)) {
fprintf(stderr, "$c!", inttocall(vec.tag)):
shiftflag = 1;
}
else {
clust [numclusts++]->average = vec;
fprintf(stderr, "\nTime %4d, adding prototype for %c [%g] : .
time, inttocall{(vec.tag), inttocall(call)):
switch (vec.tag) {
case -1:
xclusts++;
break:;
case 0:
cclusts++; -
break;
case 1:
aclusts++;
break;
case 2:
gclusts++;
break;
case 3:
tclusts++;
break;

WO 96/35810 PCT/US96/06579

}

if (iscall(call) && iscall(vec.tag)) callmistakes++;

}

else fprintf(stderr, "%$c", inttocall(vec.tag));:

/* move to next time */

if (iscall(vec.tag)) {
lastcall = vec.tag;
lastcallval = curr.fluorescence(call);
timeofcall = time;

}

time++;

threeprev = twoprev;

twoprev = prev;

prev = curr;

curr = next;

next

twonext;
twonext = threenext;

fprintf (stderxr, "\n");
if (numclusts < NUMCLUSTS)
fprintf (stderr, "Finished %d time units with %d prototypes\n",
time, numclusts);
else
fprintf (stderr, *"Ran over %4 prototype limit at $d time units\n®,
numclusts, time);
fprintf (stderr,
"Prototypes:\n C: %6d\n T: %6d\n A: $6d\n G: %6d\n X: %6d\n",
cclusts, tclusts, aclusts, gclusts, xclusts);
fprintf (stderr, "%d calls incorrectly called as other calls\n",
callmistakes);
fclose(datafile);

/* reopen to beginning */
datafile = fopen(argv{l], "xr");

/* initialize threeprev through twonext to first six time points */
threeprev. input (datafile, TAGGEDFILE);

twoprev.input (datafile, TAGGEDFILE);

prev.input (datafile, TAGGEDFILE);

curr.input(datafile, TAGGEDFILE);

next.input(datafile, TAGGEDFILE);

twonext.input (datafile, TAGGEDFILE);

WO 96/35810

time = 2;
lastcall = 0;
lastcallval = 1;
timeofcall = 0;

/* read through */

fprintf (stderr, "\nCalling data.\n\n");

int prevtag = -1;

while ((threenext.input(datafile, TAGGEDFILE) != EOF)) (

/* determine closest cluster */

vec. threeprev =
vec.prev = prev;
vec.curr = curr;
vec.tag = curr.t
vec.next = next;
vec.threenext =
vec.lastcall = 1

vec.timetocall = time - timeofcall;

vec.lastcallval
vec.normalize();

threeprev;

ag;

threenext;
astcall;

= lastcallval;

call = vec.call(clust);

if (iscall(call) && (call != prevtag)) {

printf(*%c", inttocall(call));

basenum++;

if (!(basenum$10)) printf(" ");

if (! (basenum%50)) printf(“"\n");

prevtag = call

}

'

else prevtag = -1;

/* move to next

time */

if (iscall(vec.tag)) {

lastcall = vec

lastcallval = curr.fluorescence(call);

,tag;

timeofcall = time;

}

time++;

threeprev = twoprev;

twoprev = prev;
prev
curr

curr;

next;
next = twonext;
twonext = threen

ext;

72

PCT/US96/06579

-

WO 96/35810 PCT/US96/06579

fclose(datafile) ;
printf("\n");
exit(0);

- 73 -

#include *"prototype.h"

WO 96/35810 PCT/US96/06579

#define CALLS_ONLY 0 .

extern double currmin;

int main(int argc, char *argv([]) {
// malloc_debug(8);

int time; /* current time */

int right=0, wrong=0;

int basenum=0;

int timeofcall; /* time of last base call */
int lastcall; /* last base call */

int i;

int call;

int protnum;

char ctag(2]: /* tag character */

if (argec < 3) {
fprintf (stderr, "Usage: %s <data file> <prototype file>\n", argv(0]l);
exit(1);

FILE *datafile, *protfile;

if (!(protfile = fopen(argv{2], "r"))) {

fprintf (stderr, “%s: Can not open file %s.\n*, argv[0], argv(2]);
exit(1l);

datapoint prev, curr, next; /* previous, current, and next data points */

vector vec; - /* current vector */
vector prot {NUMPROT]; /* prototypes */
double movefactor; /* factor for prototype movement */

/* initialize prototypes */
for (1 = 0; i < NUMPROT; i++) {
fscanf (protfile, "$1f%1£%1£%1f%1s", &prot[i].prev.c, &protl[i].prev.t,
&prot([i].prev.a, &protli].prev.g, ctag);
prot[i] .prev.tag = calltoint(ctag(0]):;
fscanf (protfile, *%1f%$1£f%$1£%1£f%1s", &prot{i]).curr.c, &protlil.curr.t,
&prot[i] .curr.a, &prot[i].curr.g, ctag); e
prot([i] .curr.tag = calltoint(ctag(0]);
fscanf (protfile, "$1£%1£f%1£f%1£f%1s", &prot(i].next.c, &prot{i].next.t, -
&prot{i] .next.a, &prot{i].next.g, ctag):

- 74 -

WO 96/35810 PCT/US96/06579

prot[i] .next.tag = calltoint(ctag[0]);
prot{i]}.normalize();
prot[i].tag = prot[i].curf.tag;
// prot[i].print();
}

/* read through data file, using calls to update prototypes */

for (movefactor = 0.2; movefactor >= 0.01; movefactor /= 2.0) {
fprintf (stderr, “Move factor-= %$.4f\n" .movefactor) ;

if (!(datafile = fopen(argv(l], *zr"))) {

fprintf(stderr, "$%s: Can not (re)open file $s.\n", argv([0], argv[l]);
exit(1);

/* initialize prev and curr to first two time points */
fscanf (datafile, "$1f%1f%1£f%1f%1is",

&prev.c, &prev.t, &prev.a, &prév.g, ctag);
prev.tag = calltoint(ctag[0]);
fscanf (datafile, "$1f%1f%1f%1f%1s",

&curr.c, &curr.t, &curr.a, &curr.qg, ctag);
curr.tag = calltoint(ctag[0]);
time = 2;
lastcall = 3;
timeofcall = 0;

// fprintf(stderr, "Reading file.\n Scanning'line ");
while (fscanf (datafile, "$1f%1f%1f%1f%ls", '
&next.c, &next.t, &next.a, &next.g, ctag) != EOF) (
next.tag = calltoint(ctag[0]});
if ((time%500) == 0) {
// fprintf (stderr, "%d...", time);

if (iscall(curr.tag)) {

/* if call, create and normalize vector, find and update closest
prototype */ -

vec.prev = prev;
vec.curr = curr;
vec.next = next;
vec.lastcall = lastcall;
vec.timetocall = time - timeofcall;
vec.normalize() ;
protnum = vec.call (prot);
call = prot([protnum].tag;

WO 96/35810 PCT/US96/06579

/* determine if correct and move prototype accordingly */
if (call == curr.tag) {
/* fprintf(stderr, "Moving prototype %d\n", protnum);
prot[protnum)] .print () ;
fprintf(stderr, "towards. (%.2f)\n", movefactor);
vec.print(); */ '
prot [protnum] .movetowards (&vec, movefactor);

/* fprintf(s;derr, "Result is\n");
prot [protnum] .print () ;
*/
}
else {

fprintf(stderr, " Moving prototype %d\n", protnum);

/* prot [protnum] .print () ;
fprintf(stderr, "away from (%.2f)\n", movefactor);
vec.print(); */

prot [protnum] .moveaway (&vec, movefactor);

/* fprintf (stderr, *Result is\n");
prot {protnum] .print();
*/
}
basenum++;

lastcall = curr.tag;
timeofcall = time;
}
/* move to next time */
time++;
prev = curr;
curr = next;

/* fprintf(stderr, "New prototypes:\n");
for (i=0; i < NUMPROT; i++) {
prot[i].priﬂt();

}
*/
fclose(datafile);

~ /* now use prototypes to call */

datafile = fopen{argv{l]l, *r"):; /* reopen to beginning of file */
time = 0;

basenum = 0;

double twoprevmin = 0, prevmin = 0;

WO 96/35810 PCT/US96/06579

int prevcall = -1, prevbase = 0;
int disttocall = 0;

/* initialize prev to first time points */
fscanf (datafile, "$1f%1f£%1£%1£f%1ls",
&prev.c, &prev.t, &prev.a, &prev.g, ctag);
prev.tag = calltoint(ctag(0]);
fscanf (datafile, "%1f%1£f%1£%1£f%1s",
&curr.c, &currlt, &curr.a, &curr.g, ctag);

curr.tag = calltoint(ctag(0]); .
time = 2;
lastcall = 0;

timeofcall = 0;

/* read through */
fprintf (stderr, "Calling data.\n\n");
while ((fscanf(datafile, "%1f%$1£%$1£%1f%1s",
&next.c, &next.t, &next.a, &next.g, ctag)) != EOF) ({
next.tag = calltoint(ctag{0]);

/* determine closest prototype */
vec.prev = prev;

vec.curr = curr;

vec.next = next;

vec.tag = curr.tag;

vec.lastcall = lastcall;
vec.timetocall = time - timeofcall;
vec.normalize();

protnum = vec.call(prot);

call = prot[protnum].tag;

if (CALLS_ONLY) {
if (iscall(curr.tag)) {
printf(“%c", inttocall(call));

if (iscall(vec.tag)) {
lastcall = vec.tag;
timeofcall = time;

if (iscall{(call)) {
basenum++;
lastcall = call;
timeofcall = time;
if (call == vec.tag) {
right++;

WO 96/35810 PCT/US96/06579

}
else {

wrong++;

printf(*(%c)", inttocall(vec.tagq));
}

if (basenum$10 == 5) printf(" *);
if (basenum$50 == 25) printf("\n");

if (!CALLS_ONLY) {

/* determine if distance is a local minimum */

if ((twoprevmin > prevmin) && (prevmin <= currmin)
&& (disttocall > (0.45*avetimetocall (prevcall, prevbase)))) {(

/*)y { */

lastcall = prevcall;
timeofcall = time-1;
printf(*%c", inttocall (prevcall));
basenum++; .
if (! (basenum%79)-) printf("\n");
disttocall = 0;
prevbase = prevcall;

}
else {
// printf(*.");
disttocall++;
}
// printf (" {%c]", inttocall (prev.taq));

/* move to next time */
time++; '

prev = curr;

curr = next;

prevcall = call;
twoprevmin = prevmin;
prevmin = currmin;

printf(*\n*");

if (CALLS_ONLY) { .
fprintf (stderr, "\nCalling completed. Read %d time units, %d calls\n",

WO 96/35810 PCT/US96/06579

time, basenum);
fprintf (stderr, "Calls right: $d\nCalls wrong: $d\nSuccess rate:
%4.3f\n",
right, wrong, double (right) /double (basenum)) ;

fclose(datafile);
exit(0);

WO 96/35810 PCT/US96/06579

/* Contains member functions for cluster and vector classes, as well as
other auxilliary functions. */

#include "cluster.h*

extern double currmin;
extern int currcluster;

int round(double x) {
return ((x - int(x) > .5) ? (int(x)+1) : int(x));

void datapoint::print (FILE *fp, int flag) {
/* if flag is one, print tag; if zero don’t print tag */
fprintf (fp, "$10.6f *, c);
fprintf (fp, *$10.6f ", t);
fprintf (fp, "%10.6f ", a);
fprintf (fp, "%10.6f", g):
if (flag) fprintf (fp, “g6c",. inttocall(tag)):
fprintf(fp, "\n");

void vector: :print(FILE *fp) {

threeprev.print (£p) ;

prev.print (fp);

curr.print (fp);

next.print (fp):

threenext.print (fp);

fprintf (fp, "%3d %34 %10.6f %$10.6f %$10.6f %10.6f %¥3d\n",
lastcall, timetocall, lastcallval, max, threeprevmax, threenextmax,
tag);

int datapoint::input(FILE *fp, int flag) {

/* read in from file. 1If flag is 0, don’t look for tag. Sets all negative
values to 0. If flag is 1, looks for alphabetic tags, if 2, looks for
numeric tags. */

int rv;

char ctagl2]:

rv = fscanf(fp, "%1f %1f %1f %1f", &c, &t, &a, &g
if ((flag == 1) && (rv != EOF)) {

rv = fscanf(fp, "%1s", ctag);

tag = calltoint(ctag(0]):
}

if ((flag == 2) && (rv != EOF)) rv fscanf (fp, "%d". &tag):

]

- 80 -

WO 96/35810 PCT/US96/06579

if (c < 0)
if (£ < 0)
if (a < 0)
if (g < 0)

~

Q o QO
no
O O o o

return rv;

double datapoint::fluorescence(iﬁt tag) {

switch (tag). {

case 0: -
return c;
break;

case 1:
return t;
break;

case 2:
return a;
break;

case 3:
return g;
break;

default:
return O0;
break;

void vector::input(FILE *fp) {

/* read in from file */

threeprev. input (fp) ;

prev.input(fp);

curr.input(fp);’

next.input(fp);

threenext. input (fp) ;

fscanf (fp, "%d %d $1f $1f $1f $1f %d\n",
&lastcall, &timetocall, &lastcallval,
«max, &threeprevmax, &threenextmax, &tag) ;

void vector::normalize() {
/* normalize all fluorescence values so that max value is 100, and set
max field to absolute max. */

double maxl, max2, max3, max4, max5, max6, max7, max8, max9, maxl0;

- 81 -

WO 96/35810 PCT/US96/06579

/* quick hack! */

/* round one - compare pairs of values */ v
maxl = (prev.c > prev.a)? prev.c : prev.a;

max2 = (prev.g > prev.t)? prev.g : prev.t; .
max3 = (curr.c > curr.a)? curr.c : curr.a;

max4 = (curr.g > curr.t)? curr.g : curr.t;

max5 = (next.c > next.a)? next.c : next.a;

max6 = (next.g > next.t)? next.g : next.t;

max7 = (threeprev.c > threepre&.a)? threeprev.c : threeprev.a;

max8 = (threeprev.g > threeprev.t)? threeprev.g : threeprev.t;

max9 = (threenext.c > threenext.a)? threenext.c : threenext.a;

maxl0 = (threenext.g > threenext.t)? threenext.g : threenext.t;

/* round two - compare winners of round 1 */

maxl = (maxl > max2)? maxl : max2;
max2 = (max3 > max4)? max3 : max4;
max3 = (max5 > max6)? max5 : max6;
max4 = (max7 > max8)? max7 : max8;
threeprevmax = max4;

max5 = (max9 > max10)? @ax9 : maxl10;

threenextmax = max5;

/* round three - determine largest winner of round 2 */
maxl = (maxl > max2)? maxl : max2;
max2

(max3 > max4)? max3 : max4;
max3

maxs;

/* round four - determine largest winner of round 3 */
maxl = (maxl > max2)? maxl : max2;

maxl = (maxl > max3)? maxl : max3;

max = maxl; /* set max field */

/* maxl is now max. Normalize values */
if (maxl !'= 0) {
threeprev.c = threeprev.c / maxl;
threeprev.a = threeprev.a / maxl;
threeprev.g = threeprev.g / maxl;
/

threeprev.t = threeprev.t maxl; p

prev.c = prev.c / maxl;
prev.a = prev.a / maxl;
prev.g = prev.g / maxl; :
prev.t = prev.t / maxl;
curr.c = curr.c / maxl; .
curr.a = curr.a / maxi;
curr.g = curr.g / maxl;

WO 96/35810

curr.t
next.c
next.a
next.g
next.t

threenext.c
threenext.a
threenext.g
threenext.t

= curr.t /
= next.c /
= next.a / maxl;
= next.g /

maxl;
maxl;

maxl;

= next.t / maxl;

threenext.c /
threenext.a /
threenext.qg /
threenext. t /

int iscall(int call) {
/* determines whether a data line has been called */
return((call >= 0) && (call <= 4));

int calltoint(char call) {
/* converts character tag to int */
switch (call)

case ‘'C’:
return
case 'A’:
return
case ‘G’:
return
case ‘T’:
return
case ‘X’:
default:
return

0;

1;

2;

3;

-1;

{

char inttocall(int tag) {

switch (tag) {

case 0:
return
case 1:
return
case 2:
return
case 3:
return
case -1l:
default:

ICI;

IAI;

IGI’.

ITI;

maxl;
maxl;
maxl;
maxl;

PCT/US96/06579

WO 96/35810 PCT/US96/06579

return ‘X’;

void cluster:: addvec(vector *vec) ({
/* adds the vector vec to the cluster clust */
if (vec->max != 0) {
if (size >= 64) {
fprintf(stderr, "Warning: Too many vectors in cluster %c %c\n",
inttocall(vec—>laétcall),inttocall(vec->tag));
}
else {
‘ datal[size] = *vec;
size++;

void cluster:: create_average() (
/* creates arithmetic average vector from vectors in data array */
int i;
double tpecs = 0.0, tpas‘= 0.0, tpgs = 0.0, tpts = 0.0;

double pcs = 0.0, pas = 0.0, pgs = 0.0, pts = 0.0;

double ccs = 0.0, cas = 0.0, cgs = 0.0, cts = 0.0;

double ncs = 0.0, nas = 0.0, ngs = 0.0, nts = 0.0;

double tncs = 0.0, tnas = 0.0, tngs = 0.0, tnts = 0.0;

double ttcs = 0.0, lcvs = 0.0, ms = 0.0, pms = 0.0, nms = 0.0;

vector *cp;

/* sum up each vector component */

if (size == 0) fprintf(stderr, *No data points in this cluster!\n");
// fprintf(stderr, "\nCluster %c%c:\n *, inttocall(data(0].lastcall),
// inttocall (data{0].tag)):;

for (1 = 0; i < size; i++) |
cp = &datali];

// ~ if (i>0) fprintf(stderr, "%d ", cp->timetocall);
tpcs += cp->threeprev.c;
tpas += cp->threeprev.a;
tpgs += cp->threeprev.g:
tpts += cp->threeprev.t;
pcs += Cp->prev.c;
pas += cp->prev.a;
pPgs += cp->prev.g;
pts += cp->prev.t;

WO 96/35810 PCT/US96/06579

CCs += Cp->Curr.c;
cas += Cp->Ccurr.a;
cgs += cp->Ccurr.g;
cts += cp->curr.t;
‘ncs += cp->next.c;
nas += cp->next.a;
ngs += cp->next.g;
nts += cp->next.t;
tncs += cp->threenext.c;
tnas += cp->threenext.a;
tngs += cp->threenext.g;
tnts += cp->threenext.t;
if (i>0) { /* ignore timetocall and lastcallval for first data point,

since may be bad */
ttcs += cp->timetocall;
lcvs += cp->lastcallval; .

}
ms += cp->max;
pms += cp->threeprevmax;
nms += cp->threenextmax;

} .

/* take averages */

average.threeprev.c = tpcs/size;
average.threeprev.a = tpas/size;
average.threeprev.g = tpgs/size;
average.threeprev.t = tpts/size;
average.prev.c = pcs/size;

average.prev.a = pas/size;
average.prev.g = pgs/size;
average.prev.t = pts/size;
average.curr.c = ccs/size;
average.curr.a = cas/size;
average.curr.g = cgs/size;
average.curr.t = cts/size;
average.next.c = ncs/size;
average.next.a = nas/size;
average.next.g = ngs/size;
average.next.t = nts/size;
average.threenext.c = tncs/size;

average.threenext.a = tnas/size;
average.threenext.g = tngs/size;
average.threenext.t = tnts/size;

average.timetocall = round(ttcs/(size-1));
average.lastcallval = lcvs/(size-1);
average.max = ms/size;

WO 96/35810

average.threeprevmax =

average

average.lastcall = data[0].lastcall;
.tag = data[0].curr.tag;

average

//

double cluster::

.threenextmax =

fprintf (stderr, *(average %.2f gd) ",

pms/size;
nms/size;

/*

distance(vector *vec) {

double dist, vmax, amax, vlast, alast;

if (vec->max <= 0) vmax =

else vmax

= vec->max;

1;

if (average.max <= 0) amax
else amax = average.max;

if (vec->lastcallval <= 0) vlast =
vec->lastcallval;
if (average.lastcallval <= 0) alast =
average.lastcallval;

else vlast =

else alast =

dist =((

//
//
/7
//

/1
/7
/7

pow((vec->threeprev.c -
pow((vec->threeprev.a -
pow ((vec~>threeprev.g -
pow((vec->threeprev.t -

pow ((vec->prev.c
pow((vec->prev.a
pow((vec->prev.g
pow({vec->prev.t
pow((vec->curr.c
pow((vec->curr.a
pow((vec->curr.g
pow ((vec->curr. t .
pow((vec->next.c
pow((vec->next.a
pow((vec->next.g
pow((vec->next.t
pow (vec->prev.c -
pow(vec—>prev.a -
pow(vec—>prev.g -
pow(vec->prev.t -

=1;

1;

1;

average. threeprev

average.threeprev.g),

average. threeprev.t),
average.prev.c)*1.5, 2) +
average.prev.a)*1.5, 2)
average.prev.g)*1.5, 2) +
average.prev.t)*1.5, 2) +
average.curr.c)*2.0, 2) +
average.curr.a)*2.0, 2) +
average.curr.g)*2.0, 2) +
average.curr.t)*2.0, 2) +
average.next.c)*1.5, 2) +
average.next.a)*1.5, 2) +
average.next.g)*1.5, 2) +
average.next.*%)*1.5, 2) +
average.prev.c + vec->next.
average.prev.a + vec->next.

average.prev.g +
average.prev.t +

.a),

vec->next.
vec->next.

same for whole

average. threeprev.c), 2)

Q o N

PCT/US96/06579

cluster */

/* same for whole cluster */

ttes/(size-1), average.timetocall);

+
2) +
2) +
2) +
- average.next.c, 2)
- average.next.t, 2)
- average.next.a, 2)
- average.next.g, 2)

pow ((vec->threenext.c - average.threenext.c), 2) +
pow ((vec->threenext.a - average.threenext.a), 2) +
pow{ (vec->threenext.g - average.threenext.qg), 2) +

- 86 -

+ o+ o+ 4+

WO 96/35810 PCT/US96/06579

// pow((vec->threenext.t - average.threenext.t), 2) +

pow (vec->threeprev.c - average.threeprev.c +
vec->threenext.c - average.threenext.c, 2) +

pow (vec->threeprev.a - average.threeprev.a +
vec->threenext.t - average.threenext.t, 2) +

pow(vec->threeprev.g - average.threeprev.g +
vec->threenext.a - average.threenext.a, 2) +

pow(vec->threeprev.t - average.threeprev.t +
vec->threenext.g - average.threenext.g, 2)) *

(pow(0.3* (vec->timetocall - average.timetocall), 2) + 1) +

// (pow(0.01* (vmax/vlast - amax/alast), 2) + 1)

!/ ((vinax < amax)? (pow(0.3* (vmax - amax), 2) + 1) : 1) +
(pow((log(vmax) - log(amax))*.5, 2) +
pow ({log(vec->threeprevmax) - log(average.threeprevmax))*.25, 2) +
pow((log(vec~->threenextmax) - log(average.threenextmax))*.25, 2))

Y

// if (vec->lastcall == average.lastcall) dist = dist-1000;

return(dist) ;

int vector::call(cluster **clust) {

/* determines tag of closest cluster */

double dist [NUMCLUSTS];
int i;

for (i=0; i < NUMCLUSTS; i++) {
dist{i] = clust[i]—>distange(this);
// clust{lastcall*4 + i]->distance(this);
}

/* note: for coding purposes, use linear min. Should change
to log time min by pairing */
double min;

/* go through array updating min as you go */
min = dist([0];
.~ for (i = 1; i < NUMCLUSTS; i++) {
if (dist[i] < min) min = dist(i];

/* min is now minimum distance - determine cluster */
// if (min < 10000) {

WO 96/35810

/* set currmin to this value */
currmin = min;
// printf("\n%15.0f ", min) ;
' for (i = 0; i < NUMCLUSTS; i++) {
if (min == dist(i]) {
/* printf ("Current vector: \n");
this->print();
printf ("Closest cluster: \n");
clust[i]->average.print(); */
/1 printf(* (%d) ", i); '
currcluster = i;
return {(clust[i]->average.tag);

}
11/}

/* default */
return(-1);

int vector::findclust() {

PCT/US96/06579

/* returns index of cluster to which this vector belongs */

return(4*lastcall + curr.tag):;

}

double avedist (int prev, int curr, cluster **clust) {
/* find cluster and return average timetocall */
return(clust[4*prev + curr]->average.timetocall);

int clusterprevtag(int cl} {

/* return tag of previous base of cluster number cl */

return (cl/4);

}

int clustercurrtag(int cl) {

/* return tag of current base of cluster number cl */

return (cl%4);
) .

WO 96/35810

/* BAdds consecutive rows in a four channel file.

writes to standard output. */
extern "C" {

#include <stdio.h>

ginclude <stdlib.h>

main() {

double pl, rl, vi, gl, p2. r2, vy2, g2;

PCT/US96/06579

Reads from standard input,

while ((scanf ("%1f 21f $1f %1f", &pl, &rl, &yl, &gl) == 4) &&
(scanf ("$1f $1f g1f %1f", &p2, &r2, &y2, &g2) == 4))
/* if odd number of frames, ignores last frame */

printf ("%10.6f %10.6f %10.6f %$10.6f\n",
pl+p2, rl+r2, yl+y2, gl+g2):

exit (0);

WO 96/35810 PCT/US96/06579

/* Read two cluster files, produce output that averages corresponding cluster
values from the two clusters. */

#include "cluster.h"

int main(int argc, char *argv(]) {
FILE *clusterfilel, *clusterfile2;
if (argc != 3) {

fprintf (stderr, "Usage: %s <cluster file> <cluster file>\n", argv{0]);
exit(l);

if (! (clusterfilel = fopen(argv{l], *r"))) {
fprintf (stderr, "Can not open cluster file %s.\n", argv(1l]);

exit(1);

}

if (!(clusterfile2 = fopen(argvi2], "r")}) {
fprintf (stderr, "Can not open cluster file %s.\n", argv[2]);
exit(1l); .

}

int i;

vector vecl, vec2, average;

for (i = 0; i < NUMCLUSTS; i++) {
vecl.input (clusterfilel) ;
vec2.input (clusterfile2);
averagetwovecs (&vecl, &vec2, &average);
average.print():;

WO 96/35810 PCT/US96/06579

#include “cluster.h*

/* Using all calls, create “"clusters" for each base called
(plus additional information if desired).
Find average vector of each cluster.
Run through file again, this time calling even numbered calls by
closest cluster.
Possible tags are C, A, G, T, (N?), and X, where X is for no base.
*/

int main(int argc, char *argv(]) (
int time; /* current time */
int basenum=0;

int timeofcall; /* time of last base call */
int lastcall; /* last base call */

int i;

char ctagl2]; /* for reading tag character */

if (argc < 2) {
fprintf (stderr, "Usage: %s <datafile>\n", argvi0]);
exit(l);

FILE *datafile;

if (!(datafile = fopen(argv[l]l, "r"))) {
fprintf (stderr, *Can not open data file %s.\n", argv(1]);
exit(1l):

datapoint threeprev, twoprev, twonext, threenext;

datapoint prev, curr, next; /* previous, current, and next data points */
vector vec; /* current vector */

cluster *clust[NUMCLUSTS]}; /* clusters */

cluster *rv;

/* read through, collecting calls */
for (i = 0; i < NUMCLUSTS; i++) { /* initialize */
if ((rv = (cluster *) malloc(sizeof(cluster))) != NULL) {
clust[i] = rv;
clust(i)->size = 0;
}
else {
fprintf (stderr, “\nNot enough memory - Cluster %d\n", 1i);
exit(l);

WO 96/35810 PCT/US96/06579

/* initialize threeprev through twonext to first six time points */
fscanf (datafile, "$1f%1£%1f%1f%ls",
, &threeprev.c, &threeprev.t, &threeprev.a, &threeprev.g, ctag);

threeprev.tag = calltoint(ctag[0]);
fscanf (datafile, "$1f%1£f%1£f%1£f%1s",

&twoprev.c, &twoprev.t, &twoprev.a, &twoprev.g, ctag):
twoprev.tag = calltoint(ctagl0]);
fscanf(datafile, “$%1f%1f%1£%1£f%1s",

&prev.c, &prev.t, &prev.a, &prev.g, ctag):;
prev.tag = calltoint(ctag{0]});
fscanf (datafile, "$%1f%1f%1£f%1£f%1s",

&curr.c, &curr.t, &curr.a, &curr.g, ctag);
curr.tag = calltoint{ctag([0]);
fscanf(datafile, "$1£f%1£%1f%1£f%ls",

&next.c, &next.t, &next.a, &next.g, ctag);
next.tag = calltoint(ctag[0]);
fscanf (datafile, "%1f%1£%1£%1f%1s",

&twonext.c, &twonext.t, &twonext.z, &twonext.g, ctag);
twonext.tag = calltoint(ctagl[0]);
time = 2;
lastcall = 3;
timeofcall = 0;

fprintf (stderr, "Reading file.\n Scanning line ");
while ((fscanf(datafile, "%$1£%1£%1f%lf%ls",
&threenext.c, &threenext.t, &threenext.a, &threenext.g,

!'= EOF) {
threenext.tag = calltoint(ctag(0]);
if ((time%500) == 0) {
fprintf (stderr, *%d...", time);

}
if (iscall (curr.tag)) {
/* if call, create and normalize vector, and
add to appropriate cluster */
vec.threeprev = threeprev;
vec.prev = prev;
vec.curr = curr;
vec.next = next;
vec.threenext = threenext;
vec.tag = curr.tag;
vec.lastcall = lastcall;
vec.timetocall = time - timeofcall;
vec.normalize() ;
clust [vec. findclust () } ->addvec (&vec) ;

ctag))

'

WO 96/35810 PCT/US96/06579

basenum++;
lastcall = curr.tag:;
timeofcall = time;
}
/* move to next time */
time++;
threeprev = twoprev;
twoprev = prev;
prev = Curr;
curr = next;
next = twonext;
twonext = threenext;

fprintf (stderr, “\nFile scanned. Creating clusters ...");
/* create cluster averages */
fprintf (stderr, *“\n"):

for (i = 0; i < NUMCLUSTS; i++) ({
clust[i}->create_average();

fprintf (stderr, *"\nClustering completed. Read %d time units, ", time);
fprintf (stderr, "%3d total calls\n", basenum); ‘
/* for (i = 0; i < NUMCLUSTS; i++) (
fprintf (stderr, "\nCluster %d, sizé $d.\n", i, clust{i]->size);
fprintf (stderr, "Average vector:\n");
clust (i) ->average.print();
Y*/
fprintf(stderr, "\n");

/* reset */

fclose(datafile);

datafile = fopen(argv(l], "r"); /* reopen to beginning of file */
time = 0;

basenum = 0;

char call;

int right = 0, wrong = 0;

/* initialize threeprev through twonext to first six time points */
fscanf(datafile, "$1£f%1f%1£%1£f%ls",

&threeprev.c, &threeprev.t, &threeprev.a, &threeprev.g, ctag);
threeprev.tag = calltoint(ctag(0]);
fscanf (datafile, "%1£f%1f%1£f%1f%l1s",

- 93 -

WO 96/35810

&twoprev.c, &twoprev.t, &twoprev.a,
twoprev.tag calltoint(ctag(0]);
fscanf (datafile, "$1£f%1£%1£%1£f%ls",

&prev.c, &prev.t, &prev.a,
prev.tag calltoint (ctag[0]);
fscanf (datafile, "$1£%1£%31£%1£%1s",

&curr.c, &curr.t, &curr.a,
curr.tag = calltoint(ctagl0]);
fscanf(datafile, "%1f%1£%1£%1£f%1s",

&next.c, &next.t, &next.a,
next.tag calltoint(ctag(0]);
fscanf (datafile, "%1f£%1£f%1£f%1f%1s",

&twonext.c, &twonext.t, &twonext.a,
twonext.tag calltoint(ctag[0]);
time = 2;
lastcall
timeofcall

&prev.g,

&curr.g,

&next.g,

/* read through */
fprintf (stderr, "Calling data.\n\n");
while ((fscanf(datafile, *%$1£%1f%1f%1f%1s",
&threemext.c, &threenext.t,
t= EOF) {
threenext.tag calltoint (ctag{0]);
if (iscall{curr.tag)) {
/* determine call */
vec.threeprev threeprev;

vec.prev = prev;

vec.curr curr;
vec.next next;
vec.threenext
vec.tag = curr.tag;
vec.lastcall lastcall;
vec.timetocall
vec.normalize();

call vec.call(clust);

printf("%c", inttocall(call));

threenext;

time - timeofcall;

if (iscall(vec.tag)) {

lastcall = vec.tag;
timeofcall

time;

}

if (iscall(call)) {
basenum++;
lastcall

call;

PCT/US96/06579

&twoprev.g, ctag);
ctag) ;
ctag);
ctag);
&twonext.g, ctag);

&threenext.a, &threenext.g, ctag))

WO 96/35810 PCT/US96/06579

timeofcall = time;

if (call == vec.tag) ({
right++;
}
else {
wrong++;
printf (" (%c)", inttocall(vec.tag)):
}

if (basenum%1l0 == 5) printf(* ");
if (basenum%$50 == 25) printf("\n");

/* move to next time */
time++;

threeprev = twoprev;
‘twoprev = prev;

prev curr;
curr = next;
next = twonext;

twonext = threenext;

printf("\n");

fprintf (stderr, "\nCalling completed. Read %d time units, %d calls\n",
time, basenum);
fprintf (stderr,
"Calls right: $d\nCalls wrong: $d\nSuccess rate: %$4.3f\n",
right, wrong, double(right)/double(basenum));

fclose(datafile);
exit (0);

WO 96/35810 PCT/US96/06579

/* Create clusters from argument file if there is one, standard input
otherwise. Write cluster averages to standard output. */

"#include "cluster.h"

/* Using all calls, create "clusters® for each base called
(plus additional information if desired).
Find average vector of each cluster.

*/

int main(int argc, char *argv([]) {
int time; /* current time */
int basenum=0;
int timeofcall; /* time of last base call */
int lastcall; /* last base call */
double lastcallval; /* fluorescence value of last call */

int i;
FILE *datafile;

if (argc == 1) datafile = stdin;
else {
if (!(datafile = fopen(argv(ll], r*))) |
fprintf (stderr, "Can not open data file %$s.\n", argvill]);
exit(1);

datépoint threeprev, twoprev, twonext, threenext;

datapoint prev, curr, next; /* previous, current, and next data points */
vector vec; /* current vector */

cluster *clust[NUMCLUSTS); /* clusters */

cluster *rv;

/* read through, collecting calls */
for (i = 0; i < NUMCLUSTS; i++) { /* initialize */
if ((rv = (cluster *) malloc (sizeof (cluster))) != NULL) {
clust[i] = rv;)
clust[i]->size = 0;
}
else {
fprintf (stderr, "\nNot enough memory - Cluster %d\n", i);
exit(l):

WO 96/35810

PCT/US96/06579

/* initialize threeprev through twonext to first six time points */

threeprev. input (datafile, 1);
twoprev.input (datafile, 1);
prev.input (datafile, 1);
curr.input (datafile, 1);
next.input (datafile, 1);
twonext.input (datafile, 1);
time = 2;

lastcall = 3;

timeofcall = 0;

lastcallval = 1.0;

fprintf(stderr, "Reading file.\n

~while (threenext.input(datafile, 1)
if ((time%500) == 0) {(
fprintf (stderr, "%d...", time);

}

if (iscall{(curr.tag)) {

Scanning line ");
= EOF) {

/* if call, create and normalize vector, and
add to appropriate cluster */

vec.threeprev = threeprev;
vec.twoprev = twoprev;

vec.prev prev;

vec.curr = Curr;

vec.next = next;
vec.twonext = twonext;
vec.threenext = threenext;
vec.tag = curr.tag;

vec.lastcall = lastcall;

vec.timetocall = time -~ timeofcall;

vec.lastcallval = lastcallval;

/* update lastcallval before normalizing */

lastcallval = curr.fluorescence(curr.tag);

vec.normalize();

clust{vec. findclust ()] ->addvec(&vec) ;

basenum++;
lastcall = curr.tag;
timeofcall = time;
}
/* move to next time */
time++;
threeprev = twoprev;
twoprev = prev;
prev = curr;
curr = next;

97

WO 96/35810 PCT/US96/06579

next = twonext;
twonext = threenext;

fprintf (stderr, “\nFile scanned. Creating clusters LD P

/* create cluster averages */
fprintf (stderr, “\n");.

for (i = 0; i < NUMCLUSTS; i++) {
clust[i]->create_average();

fprintf (stderr, "\nClustering completed. Read %d time units, *, time) ;
fprintf (stderr, “%d total calls\n", basenum);
for (i = 0; i < NUMCLUSTS; i++) {
// fprintf (stderr, "\nCluster %d, size %d.\n", i, clust{i]->size);
// fprintf (stderr, "Average vector:\n");
clust{i}->average.print();
}
// fprintf(stderr, “\n");

fclose(datafile);
exit (0);

WO 96/35810 PCT/US96/06579

/*

*

*/

convert.c

4 August, 1993
Rebecca N. Wright

Program to convert binary raw CCD data into smaller, ASCII files.

Assumes input file begins with header as specified in the CSMA file
head.doc. NOTE: throughout CSMA documentation, integer means short integer
Currently, only unscrambled data is supported, along with the following
data types are supported:

datatype from header:
1 -> long integer (4 byte)
2 -> integer (2 byte) (Actually SHORT int)
3 -> unsigned integer (2 byte) (Actually unsigned SHORT int)

First argument is file to be processed. Optional second argument
specifies number of lanes.

Prompts for number of lanes (if not specified as command line argument)
and super-pixels per lane, and adds together

to form lanes.

Output is one file for each lane, with two digit
lane number appended to filename. Each output file has four columns

(C, T, A, G) and one row for each time (starting with time 0).

Exit value: 0 if successful, 1 if error.

#include <stdio.h>
#include <stdlib.h>

#define HEADER_SIZE 4100

#define HEADER_TYPE short int

#define DATA_TYPE_1 long int

#define DATA_TYPE_2 short int

#define DATA_TYPE_3 unsigned short int
#define GENERAL_TYPE long int

#define NOSCAN_LOC 34
#define FACCOUNT_LOC 42
#define DATA_TYPE_LOC 108

WO 96/35810

PCT/US96/06579
#define STRIPE_LOC 656
#define SCRAMBLE_LOC 658
#define CHUNK_SIZE 1024
struct lane {
int low; /* what superpixel does lane begin? */

Yi

int high; /* what superpixel does lane end? */
char filename[l6]; /* name of output file for lane */
FILE *fp; /* pointer to output file for lane */

main(int argc, char *argv(]) {

FILE *infile;
HEADER_TYPE *headerbuf;
HEADER_TYPE total_stripes, num_super_pixels, data_type, stripes_per_frame;
HEADER_TYPE scramble, num_frames, frame_size;

DATA_TYPE_1 *databufi; /* for datatype 1 */

DATA_TYPE_2 *databuf2; /* for datatype 2 */

DATA_TYPE_3 *databuf3; /* for datatype 3 */

GENERAL_TYPE sum;

int i, curr_frame,‘curr;stripe, curr_lane, curr_val, num_lanes, left_end;
int in, offset, total_vals, frames_left, frames_read;

int this_chunk_size, prefixindex;

struct lane *lanes;

char prefix([32], *infilename;

int hs = sizeof (HEADER_TYPE), hn = HEADER SIZE/hs;

/* check for correct usage */

if (argc < 2) {
fprintf (stderr, “Usage: %s <binary data file>\n", argvi[0])};
exit(0);

/* open data file */

if (!{infile = fopen{argv[l]}, "r"))) {
fprintf (stderr, “%s: Can not open $s\n", argv{0], argv(l]));
exit(1);

infilename = argv(l];
/* read in header and extract needed fields */

if (! (headerbuf = (HEADER_TYPE *) calloc(hn, hs}))) {
fprintf (stderr, "%s: Can not allocate memory for header.\n", argv([0]):

- 100 -

WO 96/35810

PCT/US96/06579
exit(1l);
}
if (fread(headerbuf, hs, hn, infile) != hn) {
fprintf (stderr, "$s: Incorrect file type $s - header too short.\n",
argv(0], argv(l]):
exit(1);

}

total_stripes = headerbuf[NOSCAN_LOC/sizeof(HEADER_TYPE)];
num_super_pixels = headerbuf [FACCOUNT_LOC/sizeof (HEADER_TYPE)];
data_type = headerbuf[DATA_TYPE_LOC/sizeof(HEADER_TYPE)];
stripes_per_frame = headerbuf [STRIPE_LOC/sizeof (HEADER_TYPE)];
scramble = headerbuf[SCRAMBLE_LOC/sizeof(HEADER_TYPE)];
num_frames = total_stripes / stripes_per_frame;

total_vals = total_stripes * num_super_pixels;

frame_size = stripes_per_frame * num_super_pixels;

printf ("\n");

printf ("There are %d stripes, %4 stripes per frame, $d super pixels.\n",
total_stripes, stripes_per_ frame, num_super_pixels);

printf ("Data type is %d.\n", data_type);

printf ("Data is %sscrambled.\n*, (scramble == 1)? "un" : ") ;

printf (*\n");

if (scramble != 1) {
fprintf (stderr, "%s: Scrambled data unsupported.\n*, argv({0]);
exit(1l);

}

/* prompt for lane information and open output file for each lane */

if (argc > 2) num_lanes = atoi(argvi2l);

else { .
printf ("How many lanes are there? (1 - %4) ", num_super_pixels);
scanf ("$4d", &num_lanes);

}

if ((num_lanes < 1) || (num_lanes > num_super_pixels)) {
fprintf (stderr, "%s: Number of lanes out of range.\n", argvi0]);
exit(1l);

if (!{lanes = (struct lane *) calloc(num_lanes, sizeof(struct lane)))) |
fprintf (stderr, "%s: Can not allocate memory for lanes.\n", argv[0]):
exit(1l);

/* strip out filename */

- 101 -

WO 96/35810 PCT/US96/06579

prefixindex = 0;

while ((*infilename != ’.’) &&
(*infilename != ‘\0‘)) {

if (*infilename == ’/’) {
prefixindex = 0;
infilename++;

}

else ({ .
prefix[prefixindex++] = *infilename++;

}

left_end = 1;
for (i = 0; i < num_lanes; i++) {
printf ("Low superpixel for lane $d4? (%d - %d4) *
i+l, 1eft_end, num_super_pixels);
scanf (“%4", &in);

v

if ((in < left_end) || (in > num_super pixels)) {
fprintf (stderr, "$s: Low superpixel out of range.\n®", argv{0]);
exit(l);

}

else {

lanes{i).low = in;
left_end = in;
}
printf("High superpixel for lane %d? (%4 - %d) *,
i+l, left_end, num_super_pixels);
scanf ("%d", &in);

if ((in < left_end) || (in > num super_pixels)) {
fprintf (stderr, "%s: High superpixel out of range.\n", argv([0]);
exit(1);

}

else {

lanes(i].high = in;

left_end = in+l;
}
/* write i+l to end of filename prefix */
sprintf(lanes(i].filename, "“%s", prefix);
if (i < 9) sprintf(lanes(i].filename + prefixindex, "0%d", i+l);
else sprintf(lanes[i].filename + prefixindex, "%d", i+l);
printf("File name for lane %d is %s\n*, i+l, lanes[i].filename);
if (!(lanes(i]l.fp = fopen(lanes(i].filename, "w"))) {

fprintf(stderr, "%s: Can‘t open output file %s.\n*, argv[0],

lanes{i].£filename);
exit(1);

- 102 -

WO 96/35810 PCT/US96/06579

/* read in a chunk of frames at a time and output to desired format */
frames_left = num_frames;
frames_read = 0;

switch (data_type) {

case 1:
databufl = (DATA_TYPE_1 *) calloc(CHUNK_SIZE*frame_size,
sizeof (DATA_TYPE_1));
break;
case 2:
databuf2 = (DATA_TYPE_2 *) calloc(CHUNK_SIZE*frame_size,
sizeof (DATA_TYPE_2));
break;
case 3: .
databuf3 = (DATA_TYPE_3 *) calloc(CHUNK_SIZE*frame_size,
sizeof (DATA_TYPE_3));
break;
default:
fprintf(stderr, "%s: Unsupported data type %d.\n“,‘argv[O], data_type);
exit(1l);
}

printf ("Processing frame ");
while (frames_left > 0) {
this_chunk_size = (frames_left < CHUNK_SIZE)? frames_left : CHUNK_SIZE;

/* depending on data type, use appropriate data buffer for reading data */
switch (data_type) {
case 1:
if (fread(databufl, sizeof (DATA_TYPE_1l), this_chunk_size*frame_size,
infile) !'= this_chunk_size*frame_size) {
fprintf (stderr, "%s: Unexpected end of file %s.\n", argv(0], argv(i]);
exit(1l);
}
for (i = 0; i < this_chunk _size*frame_size; i++) {
printf ("%64\n", databufl([i]);
}
break;
case 2:
if (fread(databuf2, sizeof (DATA_TYPE_2), this_chunk_size*frame_size,
infile) !{= this_chunk_size*frame_size) {
fprintf (stderr, "%$s: Unexpected‘end of file %s.\n", argv(0], argv(1]):;
exit (1) ;

- 103 -

/*

/*

/*

/*

/*

WO 96/35810 PCT/US96/06579

for (i = 0; i < this_chunk_size*frame_size; i++) {
printf ("%6d\n", databuf2(i});

}

break;

case 3:
/* read in chunk of frames */
if (fread(databuf3, sizeof (DATA_TYPE_3), this_chunk_size*frame_size,
infile) 1i= _this_chunk_size*frame_size) {

fprintﬁ(stderr, "%$s: Unexpected end of file ¥s.\n", argv(0], argv([i]);
exit(1);

/* process frame chunk */
for (curr_frame = 0; curr_frame < this_chunk_size; curr_frame++) {
/* process one frame */
if (! (frames_read%500)) printf("sd...", frames_read+1);
printf ("Frame %d\n", frames_read+1); */
for (curr_stripe = 0; curr_stripe < stripes_per_ frame; curr_stripe++)
/* process one stripe - find lanes */
printf (" Stripe %$d\n", curr_stripe+l); */
for (curr_lane = 0; curr_lane < num_lanes; curr_lane++) {
/* process one lane - add up entries low to high */
printf(" Lane %d: low is %d, high is %d4.\n", curr_lane+1,
lanes([curr_lane].low, lanes[curr_lane].high); */
sum = 0; .
offset = (curr_frame * frame_size) +
(curr_stripe * num_super_pixels) + lanes[curr_lane].low—l;
for (curr_val = lanes[curr_lane).low - 1;)
curr_val < lanes[curr_lane].high; curr_val++)‘{
printf (" Adding field %d at %d: ¥d\n", curr_val+l, offset,
databuf3[offset]); */
sum = sum + databuf3{offset];
offset++;
}
printf(" Sum for lane %d is %d\n", curr_lane+1l, sum); */
fprintf(lanes[curr_lane].fp, "%$10d4d", sum);

}
frames_read++;
for (i = 0; i < num lanes; i++) fprintf(lanes(i].fp, *\n*);

break;

frames_left -= this_chunk_size;

- 104 -

{

WO 96/35810 v PCT/US96/06579

printf ("Done\n");
for (i = 0; i < num_lanes; i++) fclose(lanes([i].£fp);

fclose(infile);
exit (0);

- 105 -

WO 96/35810 PCT/0S96/06579

/* Determines edit distance between two sequences of letters as specified
in two argument files (ignores whitespace in sequences). If one argument,
reads sequencel from standard input, sequence two from argument file.
Uses a dynamic programming algorithm. In order to make the final output
simpler, runs sequences backwards along edges of matrix. */

#define debug 0
extern "C* {

#include <stdio.h>
#include <stdlib.h>

class entry {

public:
int 4; /* distance */
int p; /* previous - 0 for none, 1 for left, 2 for diagonal, 3 for up */

}:

char *seql, *seq2;
int lengthl, length2;

int equal(int i, int j) (
return (seqlllengthl-i] == seq2[length2-j]);

int min(int a, int b) {(
return (a < b? a : b);

rmain(int argc, char **argv) {
FILE *seqglfile, *seqg2file;
char c[2];

entry **distance; /* edit distance matrix */
// malloc_debug(8):;
if (argc < 2) {
fprintf (stderr, "Usage: %s <sequence file> <sequence file>\n", argv{0]):
exit(l);)
}
if (argec == 3) {

/* open sequence files */
seqlfile = fopen(argv{l], "r");

- 106 -

WO 96/35810 PCT/US96/06579

seq2file = fopen{argv[2], "r");

if (!seq2file) {
fprintf (stderr, "Can not open sequence file %s.\n", argv(2]);
exit(1); '

if (argec == 2) {
seglfile = stdin;
seq2file = fopen(argv(l], "r");

if (iseqlfile) {
fprintf (stderr, "Can not open sequence file %s.\n", argv(l});
exit(l);

int buflsize = 512, buf2size = 512;

/* read in sequences */
seql = (char *) malloc(buflsize * sizeof(char));
seq2 = (char *) malloc(buf2size * sizeof (char));

/* read sequences in, ignoring whitespace */
lengthl = 0;
while (fscanf (seqlfile, *%1ls", c) == 1} {
if (buflsize <= lengthl) {
buflsize *= 2;
seql = (char *) realloc(seql, buflsize*sizeof (char));
}
seqgl [lengthl++] = c{0];

}
length2 = 0;
while (fscanf(seq2file, "%1s", c) == 1) {

if (buf2size <= length2) {

buf2size *= 2;

seq2 = (char *) realloc(seq2, buf2size*sizeof (char));
}
seq2[length2++] = c[0];

printf (“\nBases: %4d\n $4d\n", lengthl, length2);

/* allocate distance array */

- 107 -

WO 96/35810 PCT/US96/06579

distance = (entry **) calloc(length1+l, sizeof (entry *));
int 1,3;
for (i=0; i <= lengthl; i++) {
distance(i] = (entry *) calloc(length2+1, sizeof(entry));
entry *curr;
/* initialize (dummy) outer row and column */
curr = &distance(0][0];
curr->d = 0;

curr->p = 0;

for (3 1; j <= length2; j++) {

curr = &distance[0](j}1;
curr->d = j;
curr->p = 1;

for (i 1; i <= lengthl; i++) {
curr = &distancel[i][0];
curr->d = i;

curr->p = 3;

/* actual entries */
for (i = 1; i <= lengthl; i++) {
for (3

1; j <= length2; j++) {

curr = &distance(il[3j};

/* first get minimum of upper and left neighbor */

if (distance[i-1]1[j1.d < distance[i][j-1].d) {
curr->d = distance(i-1][j].d + 1;

curr->p = 3;

}

else {
curr->d = distance[il[j-1].d + 1;
curr->p = 1;

/* if equal, see if diagonal entry is less, if not equal,

see if diagonal entry + 1 is less */

if ((distance[i-1]1[j-1)1.d + (equal(i,j)?0:1)) < curr->d) {
curr->d = distance{i-1][j-1]1.d4 + (equal(i,j)?0:1);
curr->p = 2;

- 108 -

WO 96/35810 PCT/US96/06579

if (debug) {

printf("\n *);

for (j = 0; j < length2; j++) {
printf("%c *, seq2[jl);

}

printf("\n");

for (i = 1; i <= lengthl; i++) {
printf(*"%c ", seqlllengthl-i]);
for (j = 1; j <= length2; j++) {

printf("%d *, distance(i][j].d);

}
printf (*“\n");

}

printf(“\n");

/* starting at lower right corner of matrix, construct matching */
class match {
public:

char cl;

char mid;

char c2;

}i:

match *matching;
matching = (struct match *) calloc(lengthl + length2, sizeof(struct match));

int currl = lengthl, curr2 = length2, matchlength = 0;
match *currmatch = &matching(0];
int additions = 0, deletions = 0, substitutions = 0;

curr = &distance(currl] [curx2];

while (curr->p != 0) {

switch (curr->p) {

case 1:
currmatch->cl = ‘-‘;
currmatch->mid = * ‘;
currmatch->c2 = seq2[length2-curr2];
curr2--;
deletions++;

- 109 -

WO 96/35810 PCT/US96/06579

break;

case 2:

currmatch->cl = seql[lengthl-currl];
if (equal(currl, curr2)) currmatch->mid = ‘:7;
else {
currmatch->mid = * *;
substitutions++;
}

currmatch->c¢2

1}

seqg2[length2-curr2];
currl--;

curr2--;

break;

case 3:

}

currmatch->cl = seql{lengthl-currl];
currmatch->mid = * /;

currmatch->c2 = '-/;

currl--;

additions++;

break;

curr = &distancel[currl] [curr2];
matchlength++;
currmatch++;

printf(“\n");

int currline, lengthleft = matchlength, offset = 0;

while (lengthleft > 0) {
currline = (lengthleft < 80) ? lengthleft : 80;
lengthleft -= currline;

/* write sequence 1 */
currmatch = &matching(offset];
for (i = 0; i < currline; i++) {

}

printf (“%$c", currmatch->cl);
currmatch++;

printf("\n*);

/* write middle */
currmatch = &matchingl[offset];
for (i = 0; i < currline; i++) {

printf ("$c", currmatch->mid);
currmatch++;

- 110 -

WO 96/35810 PCT/US96/06579

}
printf(“\n“);

/* write sequence 2 */

currmatch = &matching{offset];

for (i =0; i < currline; i++) {
printf("%c", currmatch->c2);
currmatch++;

}

offset += currline;

printf("\n\n");

}
if (additions > 0) printf("Additions: %¥4d\n", additions);
if (deletions > 0) printf (“Deletions: $4d\n", deletions);

if (substitutions > 0) printf(“Substitutions: %$4d\n", substitutions);
if (distance[lengthl][1ength2].d > 0)

printf("\nTotal: $4d\n\n", distance[lengthl][length2].d);
else printf ("Sequences identical.\n\n");

fclose(seqlfile);
fclose(squfile);

exit (0);

- 111 -

WO 96/35810 : PCT/US96/06579

/* Determines edit distance between two sequences of letters as specified
in two argument files (ignores whitespace in sequences). If one argument,
reads sequencel from standard input, sequence two from argument file.
Uses a dynamic programming algorithm. In order to make the final output
simpler, runs sequences backwards along edges of matrix. */

extern "C" {
#include <stdio.h>
#include <stdlib.h>

class entry {

public:
int 4; /* distance */
int p; /* previous - 0 for none, 1 for left, 2 for diagonal, 3 for up */

}; '

char *seql, *seq2;
int lengthl, length2;

int equal(int i, int j) ¢ ‘
return (seql[lengthl-i) == seq2[length2-3j]);
}

int min(int a, int b) {

return (a < b? a : b);

main(int argc, char **argv) ({
FILE *seqglfile, *seqg2file;
char c[2];

entry **distance; /* edit distance matrix */
/* open sequence files */

seqlfile = fopen(argv(l], *r");

seq2file = fopen(argv([2], “r");

int buflsize = 512, buf2size = 512;

/* read in sequences */

seqgl = (char *) malloc(buflsize * sizeof(char));

seg2 = (char *) malloc(buf2size * sizeof(char));

/* read sequences in, ignoring whitespace */
lengthl = 0;

- 112 -

~

WO 96/35810 PCT/US96/06579

while (fscanf(seqlfile, "%1s", c) == 1) {
if (buflsize <= lengthl) {
buflsize *= 2;
seql = (char *) realloc(seqgl, buflsize*sizeof (char));
}
‘seql[lengthl++] = c[0];

length2 = 0;
while (fscanf (seq2file, "%1s", c¢) == 1) {
if (buf2size <= length2) {(
buf2size *= 2;
seq2 = (char *) realloc(seq2, buf2size*sizeof(char)):
}
seqg2[length2++] = c[0];

printf ("\nBases: %4d\n $4d\n", lengthl, length2);

/* allocate distance array */
distance = (entry **) calloc(lengthl+l, sizeof (entry *));

.

int i,3;

for (i=0; i <= lengthl; i++) {
distance[i] = (entry *) calloc(length2+1l, sizeof(entry)):;

entry *curr;

/* initialize (dummy) outer row and column */
curr = &distance(0]{0];

curr->d = 0;

curr->p = 0;

for (j = 1; j <= length2; j++) {
curr = &distance[0](Jj];
curr->d = Jj;
curr->p = 1;

}

for (i = 1; i <= lengthl; i++) {
curr =.&distance[i] (0];
curr->d = 1i;
curr->p = 3;

}

- 113 -

WO 96/35810 PCT/US96/06579

/* actual entries */
for (i = 1; i <= lengthl; i++) {
for (j = 1; j <= length2; j++) {
- curr = &distance(i] {j];
/* first get minimum of upper and left neighbor */
if (distanceli-1][j].4 < distance(i] [j-1].d) {
curr->d = distance(i-1]({j].d + 1;:
curr->p = 3;
}

else {
curr->d = distance(i]{j-1).4 + 1;
curr->p = 1;

}

/* if equal, see if diagonal entry is less, if not equal,

see if diagonal entry + 1 is less */

if ((distance[i-1)([j-1].4 + (equal (i, j)20:1)) < curr->d) {
curr->d distance(i-1](j-1}.4 + (equal(i,j)?0:1);
curr->p = 2;

/* starting at lower right corner of matrix, construct matching */
class match {
public:
char ci1;
char mid;
char c2;
}:

match *matching;

.matching = (struct match *) calloc(lengthl + length2, sizeof(struct match)) ;

int currl = lengthl, curr2 = length2, matchlength = 0;
match *currmatch = &matching{0];
int additions = 0, deletions = 0, substitutions = 0;

curr = &distance(currl] {curr2];
while (curr->p != 0) {

switch (curr->p) (

case 1: '

currmatch->cl = ‘-;
currmatch->mid = * *;

- 114 -

WO 96/35810

currmatch->c2 = seqg2[length2-curr2];
curr2--;
deletions++;
break;
case 2:

currmatch->cl seql(lengthl-curxl]; -
if (equal(currl, curr2)) currmatch->mid = ‘:’;
" else {
currmatch->mid = * *;
substitutions++;
}
currmatch->c2 = seq2(length2-curr2];
currl--;
curr2--;
break;
case 3:
currmatch->cl = seql{lengthl-currl];
currmatch->mid = * ‘;
currmatch->c2 = ‘~-';
currl--;
additions++;
break;
}
curr = &distance(currl] [curr2];
matchlength++;
currmatch++;

printf("\n");

int currline, lengthleft = matchlength, offset = 0;

while (lengthleft > 0)

{

currline = (lengthleft < 80) ? lengthleft : 80;
lengthleft -= currline;

/* write segquence 1 */

currmatch = &matchingl[offset];

for (i = 0; i < currline; i++) {
printf("%c*, currmatch->cl};
currmatch++;

}

printf("\n");

/* write middle */
currmatch = &matching{offset];

- 115 -

PCT/US96/06579

WO 96/35810 PCT/US96/063579

for (i = 0; i < currline; i++) {
printf(*%c", currmatch->mid);
currmatch++;

}

printf("\n");

/* write sequence 2 */

currmatch = &matchingloffset];

for (i = 0; i < currline; i++) {
printf(*%c", currmatch->c2);

currmatch++;
}
offset += currline;
printf("\n\n");
}
if (additions > 0) printf("Additions: %4d\n", additions);
if (deletions > 0) printf("Deletions: $4d\n", deletions);

if (substitutions > 0) printf("Substitutions: %4d\n", substitutions);
if (distance[lengthl][length2].d > 0)

printf("\nTotal: %4d\n\n", distance{lengthl][length2}.d);
else printf ("Sequences identical.\n\n");

fclose(seqglfile);
fclose(seq2file);

exit(0);

- 116 -

WO 96/35810 PCT/US96/06579

extern "C" ({
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "invert.h"

void copy (double a[4], ‘double b[4]) {

a[0] = bl0O];
a[l) = bll];
al2] = b[2):
al3] = b[3]:

int maxcol (double result{4]l) ({
/* returns column number of max value */
double maxl, max2;

maxl

(result[0] > result[l]) ? result{0] : result{l];
(result{2] > result[3]) ? result[2] : result([3];
if (max2 > maxl) maxl =-max2;

max2

if (maxl == result([0]) return 0;
if (maxl == result{l]) return 1;
if (maxl == result[2]) return 2;
if (maxl == result[3]) return 3:

/* default */
return -1;

void findmax(FILE *datafile, int column, double *result) ({
/* find vectors with maximum value in column column (indexed by 0-3),
subject to constraint that second max should be looked for excluding
100 points surrounding first max. */

double max[4];

double curr(4];

int maxtime, max2time, time = 0;
/* initialize */

for (time = 0; time < 200; time++)

fscanf (datafile, *“$*1E3*LES*1E%*1fE");

fscanf (datafile, "$1f%1£f%1£f%$1f", &curr(0), &curr([l], &curr(2], &curr(3]);

- 117 -

WO 96/35810 PCT/US96/06579

time++;
copy (max, curr);

fscanf (datafile, "%1f%1f%1£f%1f", &curr([0], &curr[l], &curr([2], &curr{3]);
time++;
copy (max, curr);

while (fscanf(datafile, "$1f£%1£%1f%1f",
&curr (0], &curr[l], &curr[2], &curr{3]) != EOF) {
time++;
if ((curri{column] > max[column]) && (column == maxcol(curr))) {
copy (max, curr);
maxtime = time;

fprintf (stdexrr, " Time %44:", maxtime);

fprintf (stderr, "“%10.01f $10.01f %10.01f %10.01f\n",
max[0], max[1l], max[2], max{3]);

copy (result, max);

/* initialize */ -
time = 0;

fseek (datafile, OL, SEEK_SET);

for (time = 0; time < 200; time++)
fscanf (datafile, "%*1£%*1£$*1£%*1f");

fscanf (datafile, "$1£f%$1£%1£%1f", &curr{0], &curr(l], &curr(2], &curr(3]):;
time++;

copy (max, curr);

while (fscanf(datafile, "$1f%$1f%1£%1f",

&curr (0], &curr[l], &currx([2], &curr[3]) != EOF) {
time++;
if ((abs(time - maxtime) > 50) && (curr{column] > max[column])
&& (column == maxcol(curr))) {

copy (max, curr);
max2time = time;

fprintf (stderr, * Time %$4d:", max2time);
fprintf (stderr, "$10.01f %10.01f %10.01f %10.01f\n",
max[0], max[1l], max([2], max(3]);

- 118 -

WO 96/35810 PCT/US96/06579

fseek(datafile, 0L, SEEK_SET);

fprintf (stderr, "Yellow (A):\n");

findmax(datafile, 2, max);

for (i = 0; i < 4; i++)
matrix{i] [2] = max[i];

fseek(datafile, OL, SEEK_SET);

fprintf (stderr, "Green (G):\n");

findmax(datafile, 3, max);

for (i = 0;‘i < 4; i++)
matrix{i] [3] = max[i];

fprintf (stderr, "Matrix:\n");
for (i =0 ; i < 4; i++) {
for (j = 0; j < 4; j++)
fprintf (stderr, "$10.01f ", matrix([i){jl);:
fprintf (stderr, "\n");

invert (matrix, inversion, 4);

fprintf (stderr, "Inverting matrix ... \n");
for (i =0 ; 1 < 4; i++) {
for (3 = 0; j < 4; j++)
printf ("$15.101f ", inversion[i](jl):
printf("\n");
}
fprintf (stdexrr, "Done.\n");

- 119 -

WO 96/35810 - PCT/US96/06579

result[0] = (result(0] + max[0])/2;
result[1l] = (result(l) + max[1])/2;
result[2] = (result[2] + max{[2])/2;

= (result[3] + max[3])/2;

result[3]

main(int argc, char *argv(}) {
if (argec < 2) {
fprintf (stderr, "Usage: %s <datafile> \n", argv([0]);
exit(1);

malloc_debug(8);
FILE *datafile;

/* read from argument file */

if (!(datafile = fopen(argv([l], "r"))) {
fprintf (stderr, "%s: can not open file %s\n", argv([0], argv(l]);
exit(1l);

double max(4];
double **matrix, **inversion;
int i,3;

matrix = (double **) calloc(4, sizeof(double *));
inversion = {(double **) calloc(4, sizeof(double *));

for (i = 0; i < 4; i++) {
matrix[i]) = (double *) calloc(4, sizeof(double));
inversion[i] = (double *) calloc(4, sizeof(double));

}

fprintf (stderr, "Purple (C):\n");

findmax (datafile, 0, max);

for (i = 0; i < 4; i++)
matrix[i} [0] = max(i];

fseek(datafile, 0L, SEEK_SET);

fprintf (stderr, "Red (T) :\n");

findmax(datafile, 1, max);

for (i = 0; i < 4; i++)
matrix(i) (1] = max[i];

- 120 -

WO 96/35810 PCT/US96/06579

/* Reads tags off a four channel tagged file and writes them to
standard output.*/

. extern “C" {
#include <stdio.h>
#include <stdlib.h>
}

main(int argc, char **argv) ({

if (arge < 2) {
fprintf (stderr, "Usage: %s <tagged file>\n", argv(0]);
exit(1);

FILE *taggedfile;
taggedfile = fopen(argv[l], "xr");

if (itaggedfile) {
fprintf (stderr, "$s: Can not open tagged file %s.\n", argv[0], argv(l]};
exit(1);

double ¢, a, g, t;
char call(2];
int 1 = 0;

while ((fscanf(taggedfile, "%*1f $*1f %*1f %*1f %1s", call) == 1)) {
if (call(0] != ‘X7) {
i++;
printf ("$c", calll0]):
if (!(i%10)) printf(" *);
if (!(i%4Q)) printf("\n*);

printf('\p“);

fclose(taggedfile);
exit (0);

- 121 -

WO 96/35810

dist =({
//
/!
//
//

/7.
//
//
//

pow ((vec->threeprev.c

pow ((vec~>threeprev.a
pow((vec->threeprev.g -
pow((vec~->threeprev.t

pow((vec->prev.c -
pow((vec->prev.a -
pow((vec->prev.g'
pow ((vec->prev.t
pow((vec->curr.c
pow ((vec->curr.a
pow ((vec->curr.g

pow((vec->curr.t

pow((vec->next.c -
pow ((vec->next.a
pow((vec->next.g -
pow((vec->next.t -
pow (vec->prev.c -~ avera
pow(vec->prev.a -
pow(vec->prev.g -
pow (vec->prev.t®-
pow ((vec->threenext.c -
pow ((vec~->threenext.a -
pow ((vec->threenext.g -
pow((vec->threenext.t -
pow (vec->threeprev.c -
vec->threenext.c -
pow (vec->threeprev.a -
vec~->threenext.t -
pow(vec->threeprev.g -
vec->threenext.a
pow (vec->threeprev.t -
vec->threenext.g -
pow ((vec->timetocall
pow((vliast - alast), 2)

average.prev.c)*1.5, 2)
average.prev.a)*1l.5,
average.prev.g)*1l.5, 2)
average.prev.t)*l.s, 2)
average.curr.c)*2, 2)
average.curr.a)*2, 2)
average.curr.g)*2, 2)
average.curr.t)*2, 2)
average.next.c)*1l.5, 2)
average.next.a)*1l.5, 2)
average.next.g)*1.5, 2)
average.next.t)*1.5, 2)

average.prev.a
average.prev.g
average.prev.t

average.threeprev.c), 2)
average.threeprev.a), 2)
average.threeprev.g), 2)
average.threeprev.t), 2)

+
2) +
+
+
+
+

+
+

+ o+ 4+

+
ge.prev.c + vec->next.c
+ vec->next.t
+ vec->next.a
2)
2)
2)
2)

+ vec->next.g
average.threenext.c),
average.threenext.a),
average.threenext.qg),
average.threenext.t),

average.threeprev.c +

average.threenext.c, 2) +

average.threeprev.a +

average.threenext.t, 2)

average.threeprev.g +

average.threenext.a, 2)

average.threeprev.t +

aVerage.threenext.g, 2) +

average.timetocall)*.3,
+

pow((log(vmax) - log(amax))*.5, 2) + ‘
pow((log(vec->threeprevmax) - log(average.threeprevmax))*.25, 2) +
pow((log (vec->threenextmax) - log(average.threenextmax))*.25, 2)

)i

dist =((

//
//
/7

PCT/US96/06579

+ o+ o+ o+

average.next.c, 2)
2)
2)

2)

average.next.t,
average.next.a,

+ 4+ 4+ o+

average.next.g,

+

+

+

2) +

pow((vec->threeprev.c - average.threeprev.c), 2) +
pow((vec->threeprev.a - average.threeprev.a), 2) +
pow((vec->threeprev.g - average.threeprev.g), 2) +

122 -

/7

//
//
//
//

/7
//
/7
/7

WO 96/35810

PCT/US96/06579

pow ((vec->threeprev.t - average.threeprev.t), 2) +
pow((Vec—>prev.c - average.prev.c)*1.5, 2) +

pow((vec->prev.a - average.prev.a)*1.5, 2)
pow((vec->prev.g - averagé.prev.g)*l.s, 2)
pow((vec->prev.t - average.prev.t)*1.5, 2)
pow((vec~>curr.c - average.curr.c)*2.0, 2)
pow((vec~>curr.a - average.curr.a)*2.0, 2)
pow((vec—chrr.g ~ average.curr.g)*2.0, 2)
pow((vec->curr.t - average.curr.t)*2.0, 2)
pow((vec->next.c - average.next.c)*1.5, 2)
pow((vec->next.a - average.next.a)*1.5, 2)
pow((vec->next.qg - average.next.g)*1.5, 2)

+ + o+ o+ o+ o+ o o4

+

pow((vec-s>next.t - average.next.t)*1.5, 2) +
pow(vec->prev.c - average.prev.c + vec-snext.c -
pow(vec->prev.a - average.prev.a + vec-snext.t -

pow(vec->prev.g - average.prev.g + vec->next.a -

pow(vec->prev.t - average.prev.t + vec->next.g -
pow((vec->threenext.c - average.threenext.c), 2)
pow((vec->threenext.a - average.threenext.a), 2)
pow((vec->threenext.g = average.threenext.g), 2)
pow((vec->threenext.t - average.threenext.t), 2)
pow{vec->threeprev.c - average. threeprev.c +

vec->threenext.c
pow(vec->threeprev.a
vec->threenext.t
pow (vec->threeprev.g
vec->threenext.a
pow(vec->threeprev.t
vec->threenext.g

average.threenext.c, 2) +
average.threeprev.a +
average.threenext.t, 2) +
average.threeprev.g +
average.threenext.a, 2) +
average.threeprev.t +
average.threenext.g, 2)) *

average.next.c,

average.next.t,

average.next.a,

average.next. g,

o+

+
+
+

(pow(0.3* (vec->timetocall - average.timetocall), 2) + 1) 7/7%*
(pow(0.01* (vmax/vlast -~ amax/alast), 2) + 1)
((vmax < amax)? (pow(0.3*(vmax - amax), 2) + 1) :

pow((1og(vec->threeprevmax) - log(average.threeprevmax))*.25,
pow((1og(vec->threenextmax) - log(average.threenextmax))*.25,

):

123 -

1)//7 +

2) +
2)

+ o+ o+ 4

WO 96/35810 PCT/US96/06579

/* Routines for matrix inversion, from Numerical Recipes in C, p.43-45,
but with indexing running from 0 to n-1 */

éxtern "Cc" {
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define TINY 1.0e-20;

void nrerror(char error_text([]) {
/* Numerical Recipes standard error handler */

fprintf (stderr, "“Numerical Recipes run-time error...\n");
fprintf (stderr, "%$s\n", error_text);
exit(1);

}i

double *vector(int nl, int nh) (
double *v;

v = (double *) malloc((unsigned) (nh-nl+l) * sizeof(double));
if (!'v) nrerror(“allocation failure in vector()");
return v-nl;

void free_vector(double *v, int nl, int nh) {
free((char *) (v+nl));

void ludcmp(double **a, int n, int *indx, double *d) ({
int i, imax, Jj, ki
double big, dum, sum, temp;
double *vv; '

vv = vector(0,n-1);

*d = 1.0;

for (i=0; i<n; i++) {
big=0.0;

for (3=0; j<n; j++)
if ((temp=fabs(alil(jl)) > big) big=temp;
if (big == 0.0) nrerror("Singular matrix in routine LUDCMP");
vv[i] = 1.0/big;
}
for (3=0;j<n;j++) {

- 124 -

WO 96/35810 PCT/US96/06579

for (i=0;i<j;i++) {
sum = a[i][jl;
for (k=0;k<i;k++) sum -= a[i])[k]l*alk][j]:
alil{j] = sum;
}
big = 0.0;
for (i=j;i<n;i++) {
sum = ali][j]; _
for (k=0;k<j;k++)
“sum -= al[i][k]*alk])(]];
alil[j] = sum; :
if ((dum = vv{i]*fabs(sum)) >= big) {

big=dum;
imax=1i;
}
}
if (3 !'= imax) |

for (k=0; k<n; k++) {
dum = alimax] [k];
alimax] {k] = aljl[k]);
aljl k] = dum;

}

*d = -(*d);

vv[imax]=vv(jl;:
}
indx(jl=imax; -
if (aljl(j] == 0.0) afjllj) = TINY;
if (3 = n) {
dum = 1.0 / (aljllil);.
for (i = j+1; i<m; i++) afil[j) *= dum;

}
free_vector(vv,0,n-1);

}

. void lubksb(double **a, int n, int *indx, double b[l)} {
int i, ii=-1, ip. 3J:
double sum;

for (i=0; i<n; i++) {
ip=indx(i]};
sum=b[ip];
blipl=blil:
if (ii)
for (j=ii; j<=i-1; j++) sum -= alil [F)*b[jl;

- 125 -

WO 96/35810 PCT/US96/06579

else if (sum) ii=i;
b[i]=sum;
.
for (i=n-1; i>=0; i--) {
sum = bi]; _
‘for (j=i+l; j < n; j++) sum -= a[il[3]1*b[]l;
b{il=sum/al[il[i];
-
}

void invert (double **a, double **y, int n) {
int *indx, i, 3j:
double *col, 4;

indx = (int *) calloc(n, sizeof(int)):;
col = (double *) calloc(n, sizeof(double));

ludcmp{a, n, indx, &d4d);

for (j=0; j < n; j++) {
for (i=0; i < n; i++) col[i])=0.0;
col{j] = 1.0;
lubksb(a, n, indx, col);
for (i=0;i<n;i++) y[il[3] = collil;

- 126 -

WO 96/35810 PCT/US96/06579

/* Fits a line to a set of points. Taken from Numerical Recipes in C,
* p. 527.

*/

extern "C" {
#inclu&e <math.h>
#include <stdio.h>
#include <stdlib.h>
}

static double sqrarg;

#define SQR(a) (sqrarg=(a), sqrarg*sqgrarg)
#define ITMAX 100

#define EPS 3.0e-7

void nrerror(char error_text([]) {
/* Numerical Recipes standard error handler */

fprintf (stderr, *Numerical Recipes run-time error...\n");
fprintf (stderr, "%$s\n", error;téxt);
exit(1l);

}:

double gammln(double xx) {
/* Returns the value 1ln(floor(gamma(xx))) for xx > 0. Full accuracy is

obtained for cc > 1. For 0 < xx < 1, the reflection formula can be
used first. */

double x, tmp, ser;
static double cof[6] = {76.18009173, -86.50532033, 24.01409822,

-1.231739516, 0.120858003e-2, -0.536382e-5};
int j;

x = xx-1.0;
tmp = x + 5.5;°
tmp -= (x + 0.5) * log(tmp):
ser = 1.0;
for (3=0: j<=5; j++) (
x += 1.0;
ser += cof[jl/x;
}
return -tmp + log(2.50662827465 * ser);
}:

void gser(double *gamser, double a, double x, double *gln) {
/* Returns the incomplete gamma function P(a, x) evaluated by its series

- 127 -

WO 96/35810 PCT/US96/06579

representation as gamser. Also returns ln(gamma(a)) as gln. */

int n;
‘double sum, del, ap;

*gln = gammln(a);
if (x <= 0.0) {
if (x < 0.0) nrerror("x less than 0 in GSER");
*gamser=0.0; '
return;
}
else {
ap = a;
del = sum = 1.0/a;
for (n = 1; n <= ITMAX; n++) {
ap += 1.0;
del *= x/ap;
sum += del;
if (fabs(del) < fabs(sum)*EPS) ({

*gamser = sum * exp(-x + a * log(x) - (*gln));
return;
} .
}
nrerror ("a too large, ITMAX too small in GSER");

}
};

void gcf (double *gammcf, double a, double x, double *gln) {
/* Returns the incomplete gamma function Q(a, x) evaluated by its continued
fraction representation as gammcf. Also returns ln(gamma(a)) as gln. */

int n;
double gold = 0.0, g, fac = 1.0, bl = 1.0;
double b0 = 0.0, anf, ana, an, al, a0 = 1.0;

*gln = gammln({a);

al = x;

for (n = 1; n <= ITMAX; n++) {
an = (double) n;
ana = an - a;
a0 = (al + a0 * ana) * fac;
b0 = (bl + b0 * ana) * fac;
anf = an * fac;
al = x * a0 + anf * al;
bl = x * b0 + anf * bl;
if (al) {

- 128 -

WO 96/35810 PCT/US96/06579

fac = 1.0/al;

g = bl * fac;

if (fabs((g-gold)/g) < EPS) {
*gammcf = exp(~x + a * log(x) - (*gln))*g;
return; »

}

gold = g;

}

nrerror(*a too large, ITMAX too small in routine GCF");

Y

double gammg(double a, double x) (

/* Returns the incomplete gamma function Q(a, x) =1 - P(a, x) */
double gamser, gammcf, gln;

if (x < 0.0 || a <= 0.0) nrerror("Invalid arguments in GAMMQ");
if (x < (a + 1.0)) { /* use the series representation */
gser (&gamser, a, X, &gln);
return 1.0 - gamser; /* and take its complement */
} .
else { /* use the continued fraction representation */
gcf (&gammcf, a, x, &gln);
return gammct;

}
}:

void fit(double x[], double y[], int ndata, double sig[], int mwt,

double *a, double *b, double *siga, double *sigb,
double *chi2, double *q) (

/* Given a set of points x[1..ndata], y[l..ndata] with standard deviations
sig[l..ndata), £it them to a straight line y=ax+b by minimizing
chi-squared. Returned are a, b, and their respective probable
uncertainties siga and sigb, the chi-square chi2, and the goodness-of-fit
probability g (that the f£it would have chi-square this large or larger).
If mwt=0 on input, then the standard deviations are assumed to be

unavailable: g is returned as 1.0 and the normalization of chi2 is to unit
standard deviation on all points. */

int i;

double wt, t, sxoss, sx = 0.0, sy = 0.0, st2 = 0.0, ss, sigdat;
*b = 0.0;

if (rwt) (

ss = 0.0;
for (i=1; i <= ndata; i++) {

- 129 -

WO 96/35810 PCT/US96/06579

wt = 1.0/SQR(sigli]);
ss += wt;

sx += x[i]*wt;

sy += y[i]*wt;

}
)
else (
for (i=l; i <= ndata; i++) {
sx += x[i]; 4
sy += yl[i];
}
ss = ndata;
Y.
sxXoss = sx/ss;
if (mwt)
for (i=1; i < ndata; i++) {
t = (x{i} - sxoss)/sigli];
st2 += t*t;
*b += t * y[i] / sig(il:
}
}
else {
for (i=1; i <= ndata; i++) {
t = x{i] - sxoss;
st2 += t*t;
*b += t*y[il;
}
}
*b /= st2;

a = (sy-sx(*b))/ss;

*siga = sqrt((1.0+sx*sx/(ss*st2))/ss);
*sigb = sqgrt(1.0/st2);
*chi2 = 0.0;

if (mwt == 0) {(
for (i=1l; i <= ndata; i++)
*chi2 += SQR(y[il-(*a)-(*b)*x[i]):
*q = 1.0;
sigdat = sqgrt((*chi2)/(ndata-2));
*siga *= sigdat; :
*sigb *= sigdat;

)
else {
for (i=1; i <=ndata; i++)
*chi2 += SQR((y[i)l-(*a)-(*b)*x[i])/sigl[il);
*q = gammg(0.5 * (ndata - 2), 0.5*(*chi2)});
}

- 130 -

WO 96/35810 PCT/US96/06579

/* Multiplies four channel file by four x four matrix, one vector at a time.
If two arguments, considers them data file and matrix file. If one,
considers it matrix file, and reads data from standard input. Writes
to standard output. */

extern "C* {
#include <stdio.h>
#include <stdlib.h>

void matrix_vector_multiply(double **matrix, double *vector,
int n, double *result) {
/* multiply nxn matrix by length n vector and put result in
(already allocated) length n vector result */
int i, 3;
double sum;

for (i = 0; i < mn; i++) {
sum = 0;
for (j = 0; 3 < n; j++) {
sum += (matrix([i][j} * vector(jl});
}

result{i] = sum;

void vector_matrix_multiply(double **matrix, double *vector,
int n, double *result) (
/* multiply length n vector by nxn matrix by and put result in
(already allocated) length n vector result */
int i, 3j;
double sum;

for (3 = 0; 3 < m; j++) {
sum = 0;
for (i = 0; i < n; i++) (
sum += (matrix([il(j] * vector(i});
}

result[j] = sum;

main(int argc, char **argv) {
if (arge < 2) {
. fprintf(stderr, "Usage: %s <matrix file> <datafile> \n", argv(0]);
exit(1):

- 131 -~

WO 96/35810 PCT/US96/06579

FILE *datafile, *matrixfile;
matrixfile = fopen(argv(l], "r*);

if ('matrixfile) {
fprintf (stderr, "%s: Can not open matrix file %s.\n", argv{0], argv{l]};
exit(1);

if (argc == 3) {
datafile = fopen(argv([2], "r"):;

if (!datafile) {
fprintf (stderr, "%s: Can -not open data file $s.\n", argv(0], argv{2]);
exit(1l);

}

else datafile = stdin;

double **matrix, *currveéc, *result;
int i, 3j;

matrix = (double **) calloc(4, sizeof(double *));
currvec = (double *) calloc(4, sizeof(double));
result = (double *) calloc(4, sizeof(double));

for (i=0; i<4; i++)
matrix{i] = (double *) calloc(4, sizeof(double));

for (i=0; i<4; i++)
for (j=0; j<4; j++) {
if (fscanf (matrixfile, *$1f", &matrix([il[j]) !'= 1) {
fprintf (stderr, "%s: matrix file %s incompléte \n", argv(0]l, argv([l]):
exit (1)

fclose{matrixfile);

,*
printf ("Matrix: \n");
for (i=0; i<4; i++) (
for (j=0; j<4; j++) {
printf ("$10£", matrix(il(jl);

- 132 -

WO 96/35810 PCT/US96/06579

FILE *datafile, *matrixfile;
matrixfile = fopen(argv{l]l, "xr");

if (!matrixfile) {
fprintf (stderr, "%s: Can not open matrix file %s.\n", argv([0], argv(l]);
exit(l):

if (argc == 3) {
datafile = fopen(argv[2], "r"):

if (tdatafile) {
fprintf (stderr, *%$s: Can not open data file %s.\n", argv[0], argv([2]l);
exit(1l);

}

else datafile = stdin;

double **matrix, *currveéc, *result;
int i, 3J:

matrix = (double **) calloc(4, sizeof (double *));
currvec = (double *) calloc(4, sizeof(double));
result = (double *) calloc(4, sizeof(double));

for (i=0; i<4; i++)
matrix[i] = (double *) calloc(4, sizeof(double));

for (i=0; i<4; i++)

for (j=0; G<d; j++) {

if (fscanf (matrixfile, *"$1lf", &matrix[i]([j]) t= 1) {
fprintf (stderr, "%$s: matrix file %s incomplete \n", argv(0], argv(1]):;
exit(1);
)

fclose(matrixfile);

/*
printf ("Matrix: \n*");
for (i=0; i<4; i++) (
for (j=0; j<4; j++) {
printf (*%10£f*, matrix{i)(jl);

- 133 -

*/

WO 96/35810 PCT/US96/06579

}
printf("\n");
}
printf("\n");

while (fscanf(datafile, *$1f3$1£f%1£%1f",
&currvec[0], &currvecl[l], &currvec[2], &currvec[3]) ==

matrix_vector_multiply(matrix, currvec, 4, result);
printf("%10.6£f %10.6f %10. 6f %10.6£f\n",
result[0], result{l], result(2], result{3]);

fclose(datafile);

exit (0);

- 134 -

WO 96/35810 PCT/US96/06579

/* Contains member functions for vector class, as well a
other auxilliary functions. */

#include "prototype.h"
extern double currmin;

void datapoint::print(FILE *fp, int flag) {
/* if flag is one, print tag; if zero don’t print tag */
fprintf (fp, "%8.0f", c); ’
fprintf(fp, "%8.0f", t):
fprintf (fp, "%8.0f", a);
fprintf (fp, "%8.0f", g);
if (flag) fprintf(fp, *%8c", inttocall(tag)):
fprintf (fp, "\n%);
}

void datapoint::init(double cp, double tp, double ap, double gp, int tg)

c = cp;
t = tp;
a = ap;
g = gp:
tag = tg;

void vector: :print (FILE *£fp) {
prev.print (fp);
curr.print(fp):;
next.print (fp);
fprintf(fp, "%$3c%10.0f\n", inttocall (tag), max);

void vector::normalize() {
/* normalize all fluorescence values so that max value is 100, and set
max field to absolute max. */

double maxl, max2, max3, max4, max5, max6é; /* quick hack! */

/* round one - compare pairs of values */

maxl = (prev.c > prev.a)? prev.c : prev.a;
max2 = (prev.g > prev.t)? prev.g : prev.t;
max3 = (curr.c > curr.a)? curr.c : Curr.a;
max4 = (curr.g > curr.t)? curr.g : curr.t;
max5 = (next.c > next.a)? next.c : next.a;
max6 = (next.g > next.t)? next.g : next.t;

- 135 -

WO 96/35810

/* round two

maxl = (maxl
max2 = (max3
max3 = (max5

VvV v Vv

/* round three

maxl = (maxl
maxl = (maxl
max = maxl;

/* maxl is now

>
>

compare winners of round 1 */

max2)? maxl

max4)? max3

max6) ? max5

- determine largest winner of round 2 */

: max2;
: maxé4;
: max6;

max2)? maxl : max2;
max3)? maxl : max3;

max.

if (maxl f= 0) {

prev.c = (prev.c
prev.a = (prev.a
prev.g = (prev.g
prev.t = (prev.t
curr.c = (curr.c
curr.a = (curr.a
curr.g = (curr.g
curr.t = (curr.t
next.c = (next.c
next.a = (next.a
next.g = (next.g
next.t = (next.t

int iscall(int call) {
/* determines whether a data line has been called */

Normalize values */

100.0)
100.0)
100.0)
100.0)
100.0)
100.0)
100.0)
100.0)
100.0)
106.0)
100.0)
100.0)

NN N N N N N N NN NN

maxl;
maxl;
maxl;

‘maxl;

maxl;
maxl;
maxl;
maxl;
maxl;
maxl;
maxl;
maxl;

-return((call >= 0) && (call <= 4));

int calltoint (char call) {

/* converts character tag to int */
switch (call) {

case 'C’:
return 0;
case 'A‘:
return 1;
case ‘G’:
return 2;
case ‘T‘:
return 3;
case ‘'X‘:
default:
return -1;

- 136

PCT/US96/06579

WO 96/35810

char inttocall (int tag) {-

switch (tag) {
case 0:
return ‘C‘;
case 1:
return ‘A’;
case 2:
retﬁrn G
case 3:
return ‘T’;
case -1:
default:
return ‘.‘;

)

double vector::distance(vector *vec) {

//

double dist, vmax, amax;

if (vec->max <= 0) vmax = 1;
else vmax = vec->max;
if (this->max <= 0) amax = 1;

else amax = this->max;

dist =(pow(vec->prev.c - this->prev.c, 2) +
pow(vec->prev.a - this->prev.a, 2)
pow{vec->prev.g - this->prev.g, 2)
pow (vec->prev.t - this->prev.t, 2)
pow(vec->curr.c - this->curr.c, 2)
pow(vec~>curr.a - this->curr.a, 2)
pow(vec->curr.g - this->curr.g, 2)
pow{vec->curr.t - this->curr.t, 2)
pow(vec->next.c - this->next.c, 2)
pow (vec->next.a - this->next.a, 2)

4 0+ + + + + .+ 4 4

pow(vec->next.g - this->next.g, 2)
pow(vec->next.t - this->next.t, 2) +

pow((vec->timetocall - this->timetocall)*20, 2) +
pow((log (vmax) - log(amax))*50, 2)
):

return{dist):

- 137 -

PCT/US96/06579

WO 96/35810 PCT/US96/06579

int vector::call(vector *prot) {
/* determines tag of closest prototype */

double dist [NUMPROT]:;
int i; '

for (i=0; i < NUMPROT; i++) (
dist[i] = prot(i].distance(this);

/* note: for coding purposes, use linear min. Should change
to log time min by pairing */
double min;

/* go through array updating min as you go */
min = dist[0];
for (i = 1; i < NUMPROT; i++) ({

if (dist[i] < min) min = dist[i];

/* min is now minimum distance - determine call */

/* set currmin to this value */

currmin = min;

// fprintf(stderr, "\n%15.0f ", min);

for (i = 0; i < NUMPROT; i++) {

if (min == dist[i]) {
/* fprintf (stderr, "Current vector: \n");

this->print();
fprintf (stderr, "Closest prototype: \n");
prot{i] .print();
fprintf (stderx, *(%d) ", i); */
return (i):

/* default */
return(-1);

int avetimetocall(int prev, int curr) {
switch (4*prev + curr) {
case 0:
case 2:
case 6:
return 6;
case 1:

- 138 -

WO 96/35810

case

3
case 4:
case 5
case 7
case 10:
case 12:
case 14:

case 15:

return 7

case 8:
case 11:
case 13:
return
case 9:
return
}

return 0;

void vector: :movetowards (vector *vec,

~

/* move this towards vec

prev.c +=
prev.t +=
prev.a +=
prev.g +=
curr.c +=
curr.t +=
curr.a +=
curr.g +=
next.c +=
next.t +=
next.a +=
next.g +=

max += (vec->max - max)

return;

void vector: :moveaway (vector *vec, double movefactor) ({

(vec->prev.c
(vec->prev.t
(vec->prev.a
(vec->prev.g
(vec->curr.c
(vec->curr.t
(vec->curr.a
(vec->curr.g
(vec->next.c
(vec->next.t
(vec->next.a
(vec->next.g

prev.c) *movefactor; .

prev.t) *movefactor;
prev.a) *movefactor;
prev.g) *movefactor;
curr.c) *movefactor;
curr.t) *movefactor;
curr.a) *movefactor;
curr.g) *movefactor;
next.c) *movefactor;
next.t) *movefactor;
next.a) *movefactor;
next.g) *movefactor;

*movefactor;

/* move this away from vec

prev.c -=
prev.t -
prev.a -
prev.g -
curr.c -
curr.t -

(vec->prev.c
(vec->prev.t
(vec->prev.a
(vec->prev.g
(vec->curr.c
(vec->curr.t

by movefactor */

prev.c) *movefactor;
prev.t) *movefactor;
prev.a) *movefactor;
prev.g) *movefactor;
curr.c) *movefactor;
curr.t) *movefactor;

- 139 -

double movefactor)
by factor movefactor */

{

PCT/US96/06579

WO 96/35810

curr.a
curr.g
next.c
next.t
next.a
néxt.g
max =-=

return;

-= (vec->curr.a
-= (vec->curr.g
~= (vec->next.c
-= (vec->next.t
-= (vec->next.a
-= (vec->next.g

curr.a) *movefactor;
curr.g) *movefactor;
next.c) *movefactor;
next.t) *movefactor;
next.a) *movefactor;
next.qg) *movefactor;

(vec->max - max) *movefactor;

- 140 -

PCT/US96/06579

WO 96/35810 PCT/US96/06579

/* Reads tags off a four channel tagged file and copies them on to a
four channel untagged file. First argument is tagged file. Second, if
there is one, is untagged file. Otherwise, reads untagged file
from standard input. Writes to standard output.*/

extern "C" {
#include <stdio.h>
#include <stdlib.h>

main(int argc, char **argv) {
if (argec < 2) (

fprintf (stderr, "Usage: %s <tagged file> <untagged file> \n*, argv(0]):
exit(1l);

FILE *taggedfile, *untaggedfile;
taggedfile = fopen(argv{l], "r");

if (!taggedfile) {

fprintf (stderr, "$s: Can not open tagged file %s.\n", argv(0], axrgvil]):
exit(1l);

if (argc == 3) {
untaggedfile = fopen(argv(2], "r");

if (!untaggedfile) {
fprintf (stdexr, *%s: Can not open untagged file $s.\n",
argv[0], argv(2]);
exit(1l);

}

else untaggedfile = stdin;

double ¢, a, g, ti
char call(2];

while ((fscanf(taggedfile, "%*1f %*1f %*1f $*1f %$1ls", call) == 1) &&
fscanf (untaggedfile, "%1f %1f %1f %$1f*, &c, &t, &a, &a)) {

printf(*$10.6f %10.6f %10.6f %10.6f gc\n",
C, t, a, 9. Call[o]);

fclose(taggedfile);

- 141 -

WO 96/35810 PCT/US96/06579

fclose(untaggedfile);

exit(0);

- 142 -

WO 96/35810 PCT/US96/06579

#include *"cluster.h"

int main(int argc, char *argv[]) {

int time; /* current time */

int basenum=0;

int timeofcall; /* time of last base call */
int lastcall; /* last base call */

int i;

char ctagl[2]; /* for reading tag character */

double cmax, tmax, amax, gmax;
FILE *datafile;

if (argc == 1) datafile = stdin;
else {
if (!(datafile = fopen(argv(l], “r"))) {
fprintf (stderr, "Can not open data file %s.\n", argv(l]);
exit(l);

datapoint prev, curr, néxt; /* previous, current, and next data points */
double threshold 0;

int timesincetag 0;

double multiplier;

n

/* initialize prev and curr to first two time points */
multiplier = .0204*(14*timesincetag - timesincetag*timesincetag):
fscanf (datafile, "$1£%1£%1£%1£f%ls",
&prev.c, &prev.t, &prev.a, &prev.g, ctag);
prev.tag = calltoint(ctaglO0]);
prev.c *= multiplier;
prev.t *= multiplier;
prev.a *= multiplier;
prev.g *= multiplier;
fscanf (datafile, "$1f%$1£%1£%1£f%1s",
&curr.c, &curr.t, &curr.a, &curr.g, ctag):
curr.tag = calltoint(ctag(0]):
timesincetag++;
multiplier = .0204*(14*timesincetag - timesincetag*timesincetag):
curr.c *= multiplier;
curr.t *= multiplier;
curr.a *= multiplier;
curr.g *= multiplier;
time = 2;
lastcall = 3;

- 143 -

//
l/
/!
l/

WO 96/35810

PCT/US96/06579
timeofcall = 0O;
fprintf (stderr, "Reading file...\n");
while ((fscanf(datafile, “%1f%1f%1£f%1f%ls",
) &next.c, &next.t, &next.a, &next.g, ctag))
I= EOF) {
next.tag = calltoint(ctag(0]);
if (basenum == 0) threshold = 0.145;
if (basenum == 150) threshold = 0.065;
if (basenum == 300) threshold = 0.06;
if (basenum == 450) threshold = 0.055;
if (basenum == 600) threshold = 0.05;
timesincetag++;
multiplier = .0204*(l4*timesincetag - timesincetag*timesincetag);

next.c *= multiplier;
next.t *= multiplier;
next.a *= multiplier;
next.g *= multiplier;

/* call according to channel that is highest of those channels that

have local maxima at, current time (no call if none) */

cmax = ((curr.c >= prev.c) && (curr.c > next.c) && (curr.c >
curr.c : 0;

tmax = ((curr.t >= prev.t) && (curr.t > next.t) && (curr.t >
curr.t : 0;

amax = ({curr.a >= prev.a) && (curr.a > next.a) && (curr.a >
curr.a : 0;

gmax = ((curr.g >= prev.g) && (curr.g > next.g) && (curr.g >
curr.g : 0; '

if ((cmax > 0) || (tmax > 0) || (amax > 0) || (gmax > 0)) {
if ((basenum % 10) == 0) printf(" "):
if ((basenum % 40) == 0) printf("\n");
basenum++;

timesincetag = 0;
/* find largest max */
if (cmax > tmax) {
if (cmax > amax) {
if (cmax > gmax) {
printf(*C");
} else {
printf ("G");
}
} else {
if (amax > gmax) (

- 144 -

threshold))?

threshold))?

threshold))?

threshold))?

WO 96/35810 PCT/US96/06579

printf ("A®);
} else {
printf("G");

}
else {
if (tmax > amax) {
if (tmax > gmax) {
printf("T");
} else {
printf (“G");
}
} else {
if (amax > gmax) {
printf ("A");
} else {
printf ("G");

/* move to next time */
time++;

prev = curr:

curr = next;

printf(*\n"):

fclose(datafile);
exit (0);

- 145 -

WO 96/35810 PCT/US96/06579

#include "cluster.h"

#define TAGFILE 0
, /* if nonzero, writes a new tagged file with obtained tags */
#define TAGGEDFILE 0

J* if 1, expects input file to be tagged with character tags */
#define FULLOUTPUT 0

/* if nonzero, prints out distances and closest cluster */

/* Call data by closest cluster. */

extern double currmin;
extern int currcluster;

int main(int argc, char *argvl[]) {

int time=0; /* current time */

int basenum=0; /* number of bases called */
int timeofcall; /* time of last base call */
int lastcall; /* last base call */

double lastcallval; /* value of call channel at last call */
int i;

FILE *datafile, *clusterfile;

if (arge < 2) {
fprintf (stderr, "Usage: %s <cluster file> <data file>\n", argv(0]l):
exit (1) ;

if (! (clusterfile = fopen(argv([l], "xr"))) {
fprintf (stderr, "Can not open cluster file %s.\n", argv(l]);
exit(1);

if (argc < 3) datafile = stdin;

else {
if (!(datafile = fopen(argvi2], “r*))) {
fprintf (stderr, "Can not open data file %s.\n", argv(2]):
exit(1l);
}

}

/* read in clusters - later, fix to have only cluster averages and
check for premature end of cluster file */

cluster *clust[NUMCLUSTS]; /* clusters */

cluster *rv;

- 146 -

WO 96/35810 PCT/US96/06579

/* read through, collecting calls */
for (i = 0; i < NUMCLUSTS; i++) { /* initialize */
if ((rv = (cluster *) malloc(sizeof(cluster))) != NULL) {
clust([i] = rv;
clust{i]->average.input (clusterfile);
}
else {
fprintf (stderr, "\nNot enough memory - Cluster %d\n*, i);
exit(1l);

datapoint threeprev, twoprev, twonext, threenext;
datapoint prev, curr, next; /* previous, current, and next data points */
vector vec; /* current vector */

char call;

double twoprevmin = 0, prevmin = 0;
int prevcluster;

int prevcall = -1

~e

n

i
double prevval =1
int disttocall 0

~

/* initialize threeprev through twonext to first six time points */
threeprev.input(datafile, TAGGEDFILE);
twoprev.input (datafile, TAGGEDFILE);
prev.input (datafile, TAGGEDFILE);
curr.input (datafile, TAGGEDFILE):;
next.input(datafile, TAGGEDFILE);
twonext.input (datafile, TAGGEDFILE);
time = 2;

lastecall = 0;

lastcallval = 1;

timeofcall = 0;

if (TAGFILE) {
threeprev.tag = ~-1;
twoprev.tag = -1;
prev.tag = -1;
curr.tag = -1;

-1;

twonext.tag = -1;

1l

next.tag

threeprev.print (stdout, 1);

- 147 -

WO 96/35810 PCT/US96/06579

twoprev.print (stdout, 1);

/* read through */ _ “
forintf (stderr, "Calling data.\n\n");
while (threenext.input(datafile, TAGGEDFILE) != EOF) {

/* determine closest cluster */ '
veé.threeprev = threeprev;

vec. twoprev = twoprev;

vec.prev = prev;

vec.curr = curr;

vec.next = next;

vec.twonext = twonext;
vec.threenext = threenext;
vec.lastcall = lastcall;
vec.timetocall = time - timeofcall;
vec.lastcallval = lastcallval;
vec.normalize();

call = vec.call(clust);

/* determine if distance at previous time point is a local minimum */
if (FULLOUTPUT) printf("\n%8.2f ", prevmin);
if ((twoprevmin > prevmin) && (prevmin <= currmin)

&& (prevmin < 300)

&& (disttocall > (0.35*avedist(lastcall, prevcall, clust)))

) {

/* actual call - update call variables and print (Note: since distance
must be a local minimum to call, won'’t ever have two adjacent calls,
so if prev time is a call, the lastcall values at next time are those
from prev time (i.e. current time can‘t be a call). */

lastcall = prevcall;

timeofcall = time-1;

lastcallval = prevval;

basenum++;

if (!TAGFILE) printf("%c", inttocall(prevcall));

if (FULLOUTPUT && TAGGEDFILE) printf (" [%c]®, inttocall(prev.tag)):;

prev.tag = prevcall;

printf (" %44", timeofcall-l);

if ((!TAGFILE) && (basenum%79 == 0) && (!FULLOUTPUT)) printf(*\n");

disttocall = 0;

) .
else {

if (FULLOUTPUT) printf(".");

if (TAGGEDFILE && FULLOUTPUT) printf(" [%c]", inttocall(prev.tag));

disttocall++;

- 148 -

WO 96/35810 PCT/US96/06579

if (FULLOUTPUT) printf(" (%c%c)", inttocall(clusterprevtag(prevcluster)),
inttocall (clustercurrtag(prevcluster)));

if (TAGFILE) prev.print(stdout, 1):

'/* move to next time */

time++;

prevcall = call;

prevval = curr.fluorescence(call);
threeprev = twoprev; '

twoprev = prev;

prev = curr;

curr = next;

next twonext;
twonext = threenext;

twoprevmin = prevmin;
prevmin = currmin;
prevcluster = currcluster;

printf (*\n");

fclose(datafile);
exit (0);

- 149 -

WO 96/35810 PCT/US96/06579

#include “cluster.h”
/* Call data by closest cluster. */
extern double currmin;

int main(int argec, char *argv([]) {

int time=0; /* current time */

int basenumn=0; /* number of bases called */
int timeofcall; /* time of last base call */
int lastcall; /* last base call */

int i;

char ctagl2]); /* for reading tag character */

FILE *datafile, *clusterfile;

if (argc < 2) {
fprintf (stderr, “Usage: %s <cluster file> <data file>\n", argv([O0]):
exit(1);

if (1(clusterfile = fopen(argv(1l], *r"))) {
fprintf (stderr, "Can not open cluste; file %s.\n", argv(1l]);
cexit (1)

if (argc < 3) datafile = stdin;
else {
if (1(datafile = fopen(argv(2], "r"))) {
fprintf(stderi, *Can not open data file %s.\n", argvi{2]);
exit(1l):;

}

/* read in clusters - later, fix to have only cluster averages and
check for premature end of cluster file */

cluster *clust[NUMCLUSTS]; /* clusters */

cluster *rv;

/* read through, collecting calls */
for (i = 0; i < NUMCLUSTS; i++) { /* initialize */
if ((rv = (cluster *) malloc(sizeof(cluster))) != NULL) {
clust(i] = rv;
clust[i]->average.input(clusterfile);
}
else {(

- 150 -

WO 96/35810 PCT/US96/06579

fprintf (stderr, "\nNot enough memory - Cluster %d\n", 1i);
exit(1l);

datapoint threeprev, twoprev, twonext, threenext;
datapoint prev, curr, next; /* previous, current, and next data points */
vector vec; /* current vector */

chér call;

double twoprevmin = 0, prevmin = 0;
int prevcall = -1, prevbase = 0;
int disttocall = 0;

/* initialize threeprev through twonext to first six time points */
fscanf (datafile, "%1f31f%1f%1f%1s",
&threeprev.c, &threeprev.t, &threeprev.a, &threeprev.g, ctag):
threeprev.tag = calltoint(ctag(0]);:
fscanf (datafile, *%1f£%1£f%1£%1f%ls",
&twoprev.c, &twoprev.t, &twoprev.a, &twoprev.g, ctag);
twoprev.tag = calltoin€/(ctag{0]}; ‘
fscanf (datafile, "$1f3%1£%1£f%1f%ls",
&prev.c, &prev.t, &prev.a, &prev.g, ctag):
prev.tag = calltoint(ctag{0]));
fscanf (datafile, "$1f%1£%1£%1£f%1s",
&curr.c, &curr.t, &curr.a, &curr.g, ctag);
curr.tag = calltoint(ctag(0l);
fscanf (datafile, “$1f31£f%$1f%1f%ls",
&next.c, &next.t, &next.a, &next.g, ctag);
next.tag = calltoint(ctag{0]);
fscanf (datafile, "$1f%1£%1£f%1f%ls",
&twonext.c, &twonext.t, &twonext.a, &twonext.g, ctag):
twonext.tag = calltoint{ctagl0]);
time = 2;°
lastcall = 0;
timeofcall = 0;

/* read through */
fprintf (stderr, "Calling data.\n\n");
while ({fscanf(datafile, "$1f%1£%1£%1f%1s",
&threenext.c, &threenext.t, &threenext.a, &threenext.g, ctag))
‘= EOF) {(
threenext.tag = calltoint(ctag[0]);

/* determine closest cluster */

- 151 -

WO 96/35810

vec.threeprev = threeprev;
vec.prev = prev;
vec.curr = Curr;
vec.next = next;

. vec.threenext = threenext;

/*

/7

//

/*

/*

/1l

vec.tag = curr.tag;
vec.lastcall = lastcall;

‘vec.timetocall = time - timeofcall;

vec.normalize();
call = vec.call(clust);

/* determine if distance is a local minimum */
printf("\n%15.6f *, prevmin); */
if ((twoprevmin > prevmin) && (prevmin <= currmin)
&& (prevmin < 20000)

&& (disttocall > (0.35*avedist(prevbase, prevcall,

) {
lastcall = prevcall;
timeofcall = time-1;
basenum++;
printf ("%c", inttocall(prevcall));
printf(* $4d\n", timeofcall-1);
disttocall = 0;
prevbase = prevcall;
}
else {
printf(".");: */
disttocall++;

printf(" {%cl", inttocall (prev.tag)): */

/* move to next time */
if (basenum%79 == 1) printf("\n");
time++;
threeprev = twoprev;
twoprev = prev;
prev = curr;
next;

curr
next = twonext;
twonext = threenext;
prevcall = call;
twoprevmin = prevmin;
prevmin = currmin;

- 152 -

PCT/US96/06579

clust)))

WO 96/35810 PCT/US96/06579

printf ("\n");

fclose(datafile);
exit(0);

- 153 -

WO 96/35810 PCT/US96/06579

/* Smooths out spikes. Writes to standard output. Reads from argument file
if there is one, otherwise reads from standard input. */

extern "C" {
"#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "cluster.h"

main(int argc, char *argv{]) {
FILE *infile;

if (argc < 2) infile = stdin;

else if (! (infile = fopen(argvi{i}, "r"})) {
fprintf (stderr, "%s: can not open $s\n", argv(0], argv(l]);
exit(1l);

datapdint prev, curr, next;

/* initialize prev and curr */

prev.input (infile);

curr.input (infile);

printf("$10.0f %10.0f %10.0f %10.0f\n", prev.c, prev.t, prev.a, prev.g);

while (next.input(infile) != EOF) {
if ((fabs(curr.c-prev.c) > 20000) && (fabs (curr.c-next.c) > 20000) &&
(fabs (next .c-prev.c) < 20000))
curr.c = {(prev.c + next.c) / 2.0;
if ((fabs(curr.t-prev.t) > 20000) && (fabs(curr.t-next.t) > 20000) &&
(fabs (next.t-prev.t) < 20000))
curr.t = (prev.t + next.t) / 2.0;
if ((fabs(curr.a-prev.a) > 20000) && (fabs (curr.a-next.a) > 20000) &&
(fabs (next.a-prev.a) < 20000))
curr.a = (prev.a + next.a) / 2.0;
if ((fabs(curr.g-prev.g) > 20000) && (fabs(curr.g-next.g)
(fabs (next.g-prev.g) < 20000))
curr.g = (prev.g + next.g) / 2.0;
printf(*%$10.0f %10.0f $10.0f %10.0f\n"*, curr.c, curr.t, curr.a, curr.g);
prev = Curr;
curr = next;

}

v

20000) &&

printf(*%10.0£f %10.0f %10.0f %10.0f\n", next.c, next.t, next.a, next.q);

- 154 -

»

WO 96/35810

fclose(infile);

exit(0);

155

PCT/US96/06579

WO 96/35810 PCT/US96/06579

/* Background subtraction. Takes four minima: current - BIGWIN to
current, current - SMALLWIN to current, current to current +
SMALLWIN, and current to current + BIGWIN. Fits a line to these points
using code from p. 527 of Numerical Recipes in C. Evaluates this line

at the current point and subtracts that value. Does concurrently for four

channels. Writes to standard output. If argument, reads input from
argument file, otherwise reads from standard input.
*/

extern "C" {
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "linefit.h"

#idefine SMALLWIN 50
#define BIGWIN 100

int bufsize = 0;

class entry {
public:
double val;
int time;
entry *prevval;
entry *nextval;
entry *prevtime;
entry *nexttime;
entry(double v = 0, int t = 0) {val = v; time = t;};
void init(double v = 0, int t = 0) {val = v; time = t;};

class window {
entry *lowval = NULL;
entry *lowtime = NULL;
entry *hightime = NULL;
public:
void insert(entry *);
entry *clearlowtime();
void walkvals();
void walktime();
double min() {return jowval->val;};
int mintime()(return lowval->time;};

- 156 -

»

WO 96/35810 PCT/US96/06579

class channel ({
public:
window smallprevwin, bigprevwin, smallnextwin, bignextwin;
" double bigprevmin, smallprevmin, smallnextmin, bignextmin;
int bigprevmintime, smallprevmintime, smallnextmintime, bignextmintime;
int previndex, smallnextindex, bignextindex;
int prevtime, smallnexttime, bignexttime;

double buf[2*BIGWIN - 1};
void walkalltimes();
void walkallvals();
void setallmins();
void printallmins():
void timezero();
void firstphasestep():;
void secondphasestep():
void mainphasestep():
void endphaseonestep();
void endphasetwostep():
double fitcurrtime();
void subtract();

Yi

class fourchannels {
public:
channel ¢, a, g, t;
void bufinit (FILE *);
void timezero():;
void firstphase();
void secondphase():;
void mainphase(FILE *);
void endphaseone();
void endphasetwo();

}i

void channel::subtract() {

printf("%10.0£", buf[previndex] - fitcurrtime());

// printf("%10.0f", fitcurrtime()): /* To get background */
}

double channel::fitcurrtime() (

// walkalltimes();
setallmins () ;

// printallmins();

// printf("Fitting line: "}:

- 157 -

WO 96/35810 PCT/US96/06579

/* if all are equal, return that value */

if ((bigprevmintime == bignextmintime) &&
(smallprevmintime == smallnextmintime) &&
_ (bigprevmintime == smallprevmintime))
(,
// printf("all points are equal\n");
// . printf("Subtraction value at %d is %$.2f\n",
// prevtime, bigprevmin);

return (bigprevmin);

/* otherwise fit to a line */

double x[4] = {double (bigprevmintime), double (smallprevmintime),
double (smallnextmintime), double (bignextmintime) };

double y[4]

double *xx = x-1;

{bigprevmin, smallprevmin, smallnextmin, bignextmin};

double *yy = y-1;
double sigl(4]: v
double a, b, siga, sigb, chi2, q;

fit(xx, yy, 4, sig, 0, &a, &b, &siga, &sigb, &chi2, &q):

// printf("y = %.2f + $.2£(x)\n", a, b);

// printf("Subtraction value at %d is %.2f\n",

// prevtime, a + b* (double (prevtime)));
return (a + b*(double(prevtime)));

void fourchannels: :endphaseone() {
int i;

for (i = 0; i < SMALLWIN; i++) {

c.endphaseonestep () ;

printf(" *); -
t.endphaseonestep() ;

printf (" ");
a.endphaseonestep () ;

printf(" "):
g.endphaseonestep () ;
printf("\n");

void channel::endphaseonestep() {
/* scroll off ends */

- 158 -

WO 96/35810 ' PCT/US96/06579

entry *curr;

/* scroll all but bignextwin, drop low entry for bignextwin */
curr = bigprevwin.clearlowtime();

curr->init (buf [previndex], prevtime);
bigprevwin.insert(curr);

curr = smallprevwin.clearlowtime();
curr->init (buf {previndex], prevtime);
smallprevwin. insert(curr);

curr = smallnextwin.clearlowtime();
curr->init (buf[smallnextindex], smallnexttime);
smallnextwin.insert (curr);

curr = bignextwin.clearlowtime();
delete curr;

subtract () ;

prevtime++;

smallnexttime++;

previndex = (previndex+l)%$bufsize;
smallnextindex = (smallnextindex+l)$%bufsize;

void fourchannels: :endphasetwo() {
int 1i;

for (i = SMALLWIN; i < BIGWIN - 1; i++) {
c.endphasetwostep () ;
printf(* ");" -
t.endphasetwostep() ;
printf(* *);
a.endphasetwostep() ;
printf (" *);
g.endphasetwostep() ;
printf(*\n");

void channel::endphasetwostep() {
entry *curr;

/* scroll previous windows, drop low entry for nextwindows */
curr = bigprevwin.clearlowtime();

- 159 -

WO 96/35810

curr->init (buf [previndex], prevtime);

bigprevwin. insert (curr);

curr = smallprevwin.clearlowtime();
curr->init (buf [previndex], prevtime);

smallprevwin.insert (curr);

curr = smallnextwin.clearlowtime();

delete curr;
curr = bignextwin.clearlowtime();
delete curr;

subtract () ;

prevtime++;

previndex = (previndex+l)%bufsize;

void fourchannels::mainphase(FILE *infile) {

int i;
entry *curr;

PCT/US96/06579

/* all windows are full - continue moving current time forward */

while ((fscanf(infile, "“%1f%1f%1£%1f",

&c.buf[c.bignextindex]), &t.buf[t.bignextindex],
&a.buf[a.bignextindex], &g.buflg.bignextindex]) != EOF))

/* scroll all windows */
c.mainphasestep();
printf(" ");

t .mainphasestep()
printf (" ")
a.mainphasestep():
printf(* *);
g.mainphasestep();
printf(*"\n"); -

void channel::mainphasestep() {
int i;
entry *curr;

/* scroll all windows */
curr = bigprevwin.clearlowtime();

curr->init (buf [previndex], prevtime);

bigprevwin.insert (curr);

- 160

{

=

WO 96/35810 PCT/US96/06579

curr = smallprevwin.clearlowtime();
curr->init (buf [previndex]}, prevtime);
smallprevwin. insert (curr);

curr = smallnextwin.clearlowtime():;
curr->init (buf [smallnextindex], smallnexttime) ;
smallnextwin. insert (curr) ;

curr = bignextwin.clearlowtime();
curr->init (buf [bignextindex], bignexttime);
bignextwin.insert (curr);

subtract();

previndex = (previndex+l)sbufsize;
smallnextindex = (smallnextindex+l)%bufsize;
bignextindex = (bignextindex+l)%bufsize;
prevtime++;

smallnexttime++;

bignexttime++;

void fourchannels::secondphase() {
int i;

for (i = BIGWIN + SMALLWIN - 1; i < 2*BIGWIN - 1; i++) {

c.secondphasestep() ;

printf(" *);

t.secondphasestep();

printf(" ");

a.secondphasestep();

printf(' “):

g.secondphasestep() ;

printf(*\n");

void channel: :secondphasestep() {
entry *curr;

/* bigprevwin is still not full - continue moving current time forward */
/* insert into bigprev window, scroll other windows */

curr = new entry(buf[previndex], prevtime);

bigprevwin.insert (curr);

- 161 -

WO 96/35810 PCT/US96/06579

curr = smallprevwin.clearlowtime();
curr->init (buf [previndex], prevtime);
smallprevwin. insert {(curr);

" curr = smallnextwin.clearlowtime();
curr->init (buf [smallnextindex], smallnexttime);
smallnextwin.insert (curr);

curr = bignextwin.clearlowtime();
curr->init (buf [bignextindex], bignexttime);
bignextwin.insert (curr);

subtract();

previndex = (previndex+l)%bufsize;
smallnextindex = (smallnextindex+l)%bufsize;
bignextindex = (bignextindex+l)%bufsize;
prevtime++;

smallnexttime++;

bignexttime++;

void fourchannels::firstphase() {
/* move current time forward - still have incomplete prev windows */
int i;

for (i = BIGWIN; i < BIGWIN + SMALLWIN - 1; i++) {

c.firstphasestep();

printf(* ");

t.firstphasestep();

printf(* “);

a.firstphasestep():

printf(* ");

g.firstphasestep();

printf("\n");

void channel::firstphasestep() {
entry *curr;

/* insert into previoué windows, scroll next windows */
curr = new entry(buf[previndex], prevtime);

bigprevwin.insert (curr);

curr = new entry(buf[previndex], prevtime);

- 162 -

L]

WO 96/35810 PCT/US96/06579

smallprevwin.insert (curr);

curr = smallnextwin.clearlowtime();
curr->init (buf[smallnextindex], smallnexttime);
smallnextwin.insert (curr);

curr = bignextwin.clearlowtime();
curr->init (buf [bignextindex], bignexttime);
bignextwin.insert (curr) ;

subtract();

previndex = (previndex+l)$bufsize;
smallnextindex = (smallnextindex+1l)%bufsize;
bignextindex = (bignextindex+l)%bufsize;
prevtime++;

smallnexttime++;

bignexttime++;

void channel::timezero() {
entry *curr;

/* initialize to current time 0 */
previndex = prevtime = 0;
smallnextindex = smallnexttime = 0;
bignextindex = bignexttime = 0;

/* insert entry 0 into all windows */
curr = new entry(buf[previndex], previndex);

bigprevwin. insert(curr);

curr = new entry(buf[previndex], previndex);
smallprevwin.insert (curr) ;

curr = new entry(buf{smallnextindex], smallnextindex):
smallnextwin.insert (curr);

curr = new entry(buf[bignextindex], bignextindex);
bignextwin.insert{curr);

previndex = (previndex+1l)%bufsize;

smallnextindex = (smallnextindex+1l)t%bufsize;
bignextindex = (bignextindex+1)%bufsize;
prevtime++;

smallnexttime++;

- 163 -

WO 96/35810 PCT/US96/06579

bignexttime++;
int i;

for (i = 1; i < SMALLWIN; i++) {
/* insert into smallnextwin and bignextwin*/
curr = new entry(buf[smallnextindex], smallnextindex);
-smallnextwin.insert (curr);

curr = new entry(buf[bignextindex], bignextindex);
bignextwin.insert (curr) ;

smallnextindex = (smallnextindex+l)%bufsize;
bignextindex = (bignextindex+1)%bufsize;
smallnexttime++;
bignexttime++;

}

for (i = SMALLWIN; i < BIGWIN; i++) {
/* insert into bignextwin */
curr = new entry(buf[bignextindex], bignextindex);
bignextwin.insert (curr);

bignextindex = (bignextindex+1)%bufsize;
bignexttime++;

subtract();

void fourchannels::timezero() {
c.timezero();
printf(" ");
t.timezero();
printf(* *):
a.timezero();
printf (" ");
g.timezero();
printf("\n");

void fourchannels::bufinit(FILE *infile) {
/* read in buffers */
while ((bufsize < 2*BIGWIN - 1) &&
(fscanf (infile, "$1f%1f%1£%1f",
&c.buf [bufsize), &t.bufl[bufsize],
&a.buf [bufsize], &g.bufl[bufsize]) != EOF))

- 164 -

WO 96/35810 PCT/US96/06579

bufsize++;

if (bufsize < 2*BIGWIN - 1) {
fprintf (stderr, "Input too short for window size $d\n", BIGWIN);
.exit(1);

}

void window: :insert (entry *e) {
entry *p;

/* insert in value list */
p = lowval;

if (p == NULL) { /* list is empty - make first element */
NULL;
NULL;

e->prevval

i

e->nextval
lowval = e;
}
‘else {
while ((p->val < e->val) && (p->nextval != NULL)) p = p->nextval;
if (e->val <= p->val)*{ /* insert before p */
e->prevval = p->prevval;
p->prevval = e;
p:
if (e->prevval != NULL) e->prevval->nextval = e;

e->nextval

if (e->val <= lowval->val) lowval = e;
}

else { /* reached end of list - insert at end */

e->prevval = p;
p->nextval = e;
e->nextval = NULL;

/* insert in time list */
if (lowtime == NULL) { /* list is empty - make first element */
e->prevtime = NULL;
e->nexttime = NULL;
lowtime = e;
hightime = e;
}

else {
e->prevtime = hightime;
if (e->prevtime != NULL) e->prevtime->nexttime = e;

e->nexttime = NULL;

- 165 -

WO 96/35810

hightime = e;

entry *window::clearlowtime() {

PCT/US96/06579

/* removes low time entry from the list, returns pointer

to entry for reuse */
entry *temp;

temp = lowtime;

if (lowtime == NULL) return NULL;

if (lowval == lowtime) lowval = lowval->nextval;
if (hightime == lowtime) hightime = NULL;
lowtime = lowtime->nexttime;

if (lowtime != NULL) lowtime->prevtime = NULL;

if (temp->nextval != NULL) temp->nextval->prevval
if (temp->prevval != NULL) temp->prevval->nextval

return(temp) ;

}:

void window: :walkvals() (¢
entry *temp = lowval;

while (temp != NULL) {
printf(*%.0f *, temp->val);
temp = temp->nextval;
}
printf("\n");
}:

void window: :walktime() {
entry *temp = lowtime;

while (temp !=-NULL) {
printf("%.0f ", temp->val};
temp = temp;>nexttime;
}
printf("\n");
}i

void channel::walkalltimes() (
bigprevwin.walktime():
smallprevwin.walktime();
smallnextwin.walktime();
bignextwin.walktime();

- 166 -

temp->prevval;
temp->nextval;

r

WO 96/35810 PCT/US96/06579

printf (*\n");

void channel::walkallvals() {
bigprevwin.walkvals();
smallprevwin.walkvals();
smallnextwin.walkvals();
bignextwin.walkvals():
printf ("\n");

void channel::setallmins() (
bigprevmin = bigprevwin.min():
smallprevmin = smallprevwin.min();
smallnextmin = smallnextwin.min();
bignextmin = bignextwin.min();
bigprevmintime = bigprevwin.mintime();
smallprevmintime = smallprevwin.mintime();
smallnextmintime = smallnextwin.mintime();
bignextmintime = bignextwin.mintime();

void channel::printallmins() {
printf ("\nMins: (3d, %.0f) (%4, %.0f) (%4, %.0f) (%d, %.0f)\n",
bigprevmintime, bigprevmin, smallprevmintime, smallprevmin,
smallnextmintime, smallnextmin, bignextmintime, bignextmin);

main(int argc, char *argv(]) {
FILE *infile;

// malloc_debug(8);

/* read from standard input if no arguments, otherwise read from
argument file */

if (argc < 2) infile = stdin;

else if (!(infile = fopen(argv(l], "r")}) |
fprintf (stderr, “%s: can not open file %$s\n", argv([0], argv(l]):
exit(1);

entry *curr;
fourchannels chan;

chan.bufinit(infile);
chan.timezero();

- 167 -

WO 96/35810 PCT/US96/06579

chan.firstphase();
chan.secondphase() ;
chan.mainphase (infile);
chan.endphaseone() ;
chan.endphasetwo () ;

fclose(infile);

exit(0);

- 168 -

.

WO 96/35810 PCT/US96/06579

/* Background subtraction. Takes four minima: current - 200 to current - 100,
current - 100 to current, current to current + 100, and current + 100 to
current + 200. Fits a line to these points using code from p. 527
of Numerical Recipes in C. Evaluates this line at the cufrent point

. and subtracts that value. Writes to standard output. If argument,
‘reads input from argument file, otherwise reads from standard input.
*/

extern "C" {

" #include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <linefit.h>
$define WINSIZE S50

class entry {
public:
double val;
int time;
entry *prevval;
entry *nextval;
entry *prevtime;
entry *nexttime;
entry(double v = 0, int t = 0) {val = v; time = t;};
void init(double v = 0, int t = 0) {val = v; time = t;};

class window {
entry *lowval = NULL;
entry *lowtime = NULL;
entry *hightime = NULL;
public:
void insert(entry *):
entry *clearlowtime();
void walkvals():
void walktime();
double min() {return lowval->val;}:
int mintime() {return lowval->time;};

Y
class channel ({

public:
window closeprevwin, farprevwin, closenextwin, farnextwin;

- 169 -

WO 96/35810 PCT/US96/06579

double farprevmin, closeprevmin, closenextmin, farnextmin;

int farprevmintime, closeprevmintime, closenextmintime, farnextmintime;
int farprevindex, closeprevindex, closenextindex, farnextindex;

int farprevtime, closeprevtime, closenexttime, farnexttime;

double buf [4*WINSIZE - 1];
int bufsize = 0;
void walkalltimes();
void walkallvals();
void setallmins();
void printallmins();
void bufinit (FILE *);
void timezero();
void firstphase():
void secondphase();
void mainphase(FILE *);
void endphase():;
double fitcurrtime();
void subtract();

}i

void channel::subtract{) ¢

printf("%.0f\n", buf [closeprevindex] - fitcurrtime()):

// printf(*$.0£f\n", fitcurrtime(}); /* To get background */
}

double channel::fitcurrtime() (

// walkalltimes();
setallmins () ;

// printallmins();

// printf("Fitting line: ");

/* if all are equal, return that value */

if ((farprevmintime == farnextmintime) &&
(closeprevmintime == closenextmintime) &&
(farprevmintime == closeprevmintime))
A ¢
// printf ("all points are equal\n");
// printf ("Subtraction value at $d is %.2f\n",
// farprevtime, farprevmin);

return (farprevmin);

/* otherwise fit to a line */
double x[4] = {double (farprevmintime), double (closeprevmintime),
double (closenextmintime), double (farnextmintime) };

- 170 -

WO 96/35810 PCT/US96/06579

double y(4] = {farprevmin, closeprevmin, closenextmin, farnextmin);
double *xx = x-1;

double *yy = y-1;

double sigl4];

double a, b, siga, sigb, chi2, q;

fit(xx, vy, 4, sig, 0, &a, &b, &siga, &sigb, &chi2, &q);

// printf("y = %.2f + %.2f(x)\n", a, b);

// printf(*Subtraction value at %4 is %.2f\n",

// closeprevtime, a + b*(double(closeprevtime)));
return (a + b*(double(closeprevtime))};

void channel::endphase() {
/* scroll off ends */
int i;
entry *curr;

for (1 = 0; i < WINSIZE; i++) (
/* scroll all but farnextwin */
curr = farprevwin.clearlowtime();
curr->init (buf[farprevindex], farprevtime);
farprevwin.insert(curr);

curr = closeprevwin.clearlowtime();
curr->init (buf [closeprevindex], closeprevtime);
closeprevwin. insert (curr) ;

curr = closenextwin.clearlowtime();
curr->init (buf [closenextindex], closenexttime);
closenextwin.insert (curr) ;

subtract () ;

farprevtime++;

closeprevtime++;

closenexttime++;

farprevindex = (farprevindex+l)%bufsize;
closeprevindex = (closeprevindex+l)%bufsize;
closenextindex = (closenextindex+1)%bufsize;

for (i = 1; i < WINSIZE; i++) {
/* scroll previous windows, drop low entry for nextwindows */
curr = farprevwin.clearlowtime();

- 171 -

WO 96/35810 PCT/US96/06579

curr->init (buf [farprevindex], farprevtime};
farprevwin.insert (curr) ;

curr = closeprevwin.clearlowtime();
curr->init (buf [closeprevindex], closeprevtime) ;
closeprevwin. insert (curr);

curr = closenextwin.clearlowtime();
delete curr;

curr = farnextwin.clearlowtime();
delete curr;

subtract();

farprevtime++;

closeprevtime++;

farprevindex = (farprevindex+l)%bufsize;
closeprevindex = (closeprevindex+1)$bufsize;

void channel::mainphase(FIEE *infile) {
int i;
entry *curr;

/* all windows are full - continue moving current time forward */
while ((fscanf(infile, "%$1f", &buf[farnextindex]) == 1)) {
/* scroll all windows */
curr = farprevwin.clearlowtime();
curr->init (buf [farprevindex], farprevtime);
farprevwin. insert (curr);

curr = closeprevwin.clearlowtime():
curr->init (buf [closeprevindex], closeprevtime);
closeprevwin.insert(curr);

curr = closenextwin.clearlowtime();
curr->init (buf [closenextindex], closenexttime);
closenextwin.insert(curr);

curr = farnextwin.clearlowtime();
curr->init (buf [farnextindex], farnexttime);

farnextwin.insert (curr);

subtract();

- 172 -

WO 96/35810 PCT/US96/06579

farprevindex = (farprevindex+l)%bufsize;
closeprevindex = (closeprevindex+l)$bufsize;
closenextindex = (closenextindex+1)%bufsize;
farnextindex = (farnextindex+l)$%bufsize;
farprevtime++;

closeprevtime++;

closenexttime++;

farnexttime++;

void channel::secondphase() {
int i;

entry *curr;

for (i = 0; i < WINSIZE; i++) |
/* leave farprev window alone, scroll other windows */

curr = closeprevwin.clearlowtime();
curr->init (buf [closeprevindex], closeprevtime) ;
closeprevwin.insert(curr) ;

curr = closenextwin.clearlowtime();
curr->init (buf {closenextindex], closenexttime) ;
closenextwin.insert(curr) ;

curr = farnextwin.clearlowtime():;
curr->init (buf [farnextindex], farnexttime);

farnextwin.insert (curr) ;

subtract () ;

closeprevindex = (closeprevindex+1) $bufsize;
closenextindex = (closenextindex+1)S$bufsize;
farnextindex = (farnextindex+l)%bufsize;
closeprevtime++;

closenexttime++;

farnexttime++;

void channel::firstphase() {
/* move current time forward - still have incomplete prev windows */
int i;
entry *curr;

- 173 -

WO 96/35810

for (i = 1; i < WINSIZE; i++) {
/* insert into previous windows, scroll next windows */
curr = new entry(buf[farprevindex}, farprevtime);
farprevwin.insert (curr);

curr = new entry(buf[closeprevindex], closeprevtime);
closeprevwin. insert(curr);

curr = closenextwin.clearlowtime();
curr->init (buf[closenextindex], closenexttime);
closenextwin.insert (curr);

curr = farnextwin.clearlowtime();
curr->init (buf [farnextindex], farnexttime);
farnextwin.insert (curr);

subtract():;

farprevindex = (farprevindex+l)sbufsize;
closeprevindex = (closeprevindex+l)t%bufsize;
closenextindex = (closenextindex+l)tbufsize;
farnextindex = (farnextindex+1)%bufsize;
farprevtime++;

closeprevtime++;

closenexttime++;

farnexttime++;

void channel::timezero() {
entry *curr;

/* initialize to current time 0 */
farprevindex = farprevtime = 0;

0;
closenextindex = closenexttime = 0;
farnextindex = farnexttime = WINSIZE;

closeprevindex =.closeprevtime

/* insert entry 0 into prev windows */
curr = new entry(buf[farprevindex], farprevindex);
farprevwin.insert (curr);

curr = new entry(buf{closeprevindex], closeprevindex);
closeprevwin.insert (curr);

farprevindex =. (farprevindex+1l)%bufsize;

- 174 -

PCT/US96/06579

WO 96/35810 PCT/US96/06579

closeprevindex = (closeprevindex+l)$bufsize;
farprevtime++;
closeprevtime++;

int i;

/* £ill next windows */

for (i = 0; i < WINSIZE; i++) {
/* insert into closenextwin and farnextwin*/
curr = new entry(buf[closenextindex], closenextindex) ;
closenextwin.insert (curr) ;

curr = new entry(buf[farnextindex], farnextindex);
farnextwin. insert (curr);

closenextindex = (closenextindex+l)%bufsize;
- farnextindex = (farnextindex+1)$%bufsize;
closenexttime++;

farnexttime++;

subtract();

void channel::bufinit(FILE *infile) {
/* read in buffer */
while ((bufsize < 4*WINSIZE - 1) &&
(fscanf(infile, *“%1f", &buf([bufsize]) == 1))
bufsize++;

if (bufsize < 4*WINSIZE - 1) {

fprintf (stderr, *Input too short for window size $d\n", WINSIZE);
exit(1);

void window: :insert (entry *e) {
entry *p;

/* insert in value list */
P = lowval;

Af (p == NULL) { /* list is empty - make first element */
e->prevval = NULL;
e->nextval = NULL;
lowval = e;

- 175 -

WO 96/35810 PCT/US96/06579

}
else {
while ((p->val < e-»>val) && (p->nextval != NULL)) p = p->nextval;
if (e->val <= p->val) { /* insert before p */
e->prevval = p->prevval;
p->prevval = e;

e->nextval = p;
if (e->prevval {= NULL) e->prevval->nextval = e;
if (e->val <= lowval->val) lowval = e;

}

else { /* reached end of list - insert at end */
e~->prevval = p;
p->nextval = e;
e->nextval = NULL;

/* insert in time list */
if (lowtime == NULL) { /* list is empty - make first element */
e->prevtime = NULL;
e->nexttime = NULL;
lowtime = é;
hightime = e;
} .
else {
e->prevtime = hightime;
if (e->prevtime != NULL) e->prevtime->nexttime = e;
e->nexttime = NULL;
hightime = e;
}
}i

entry *window::clearlowtime() {
/* removes low time entry from the list, returns pointer
to entry for reuse */
entry *temp;

temp = lowtime;

if (lowtime == NULL) return NULL;

if (lowval == lowtime) lowval = lowval->nextval;
if (hightime == lowtime) hightime = NULL;
lowtime = lowtime->nexttime;

if (lowtime != NULL) lowtime->prevtime = NULL;
if (temp->nextval != NULL) temp->nextval->prevval = temp->prevval;
if (temp->prevval != NULL) temp->prevval->nextval

temp->nextval;

- 176 -

WO 96/35810 PCT/US96/06579

return(temp) ;
}i

void window: :walkvals() {
entry *temp = lowval;

while (temp !{= NULL) {
printf("%$.0f ", temp->val);
temp = temp->nextval;
}
printf("\n");
}i

void window: :walktime() {
entry *temp = lowtime;

while (temp != NULL) {
printf(*%$.0f ", temp->val);
temp = temp->nexttime;
}
printf("\n");
}:

void channel::walkalltimes() {
farprevwin.walktime () ;
closeprevwin.walktime();
closenextwin.walktime() ;
farnextwin.walktime();
printf("\n");

void ¢hannel::walkallvals() {
farprevwin.walkvals() ;
closeprevwin.walkvals() ;
closenextwin.walkvals();
farnextwin.walkvals();
printf("\n");

}

void channel::setallmins() {
farprevmin = farprevwin.min();
closeprevmin = closeprevwin.min();
ciosenextmin = closenextwin.min();
farnextmin = farnextwin.min();
farprevmintime = farprevwin.mintime():
closeprevmintime = closeprevwin.mintime();

- 177 -

WO 96/35810 PCT/US96/06579

closenextmintime = closenextwin.mintime();
farnextmintime = farnextwin.mintime();

void channel::printallmins() {
printf ("\nMins: (%d, %.0f) (%d, %.0f) (%d, %.0f) (%4, %.0f)\n*",
farprevmintime, farprevmin, closeprevmintime, closeprevmin,
closenextmintime, closenextmin, farnextmintime, farnextmin);

main(int argc, char *argﬁ[]) {
FILE *infile;

// malloc_debug(8);

/* read from standard input if no arguments, otherwise read from
argument file */. '

if (argc < 2) infile = stdin;

else if (! (infile = fopen(argv{l], "r"))) {
fprintf (stderr, "%s: can not open file %s\n", argv(0], argv(1l}});
exit(1l); ’

entry *curr;
channel c; -

.bufinit (infile);
.timezero();
.firstphase();
.secondphase() ;
.mainphase(infile);
.endphase() ;

o 0 00 00

fclose(infile);

exit (0);

- 178 -

WO 96/35810 PCT/US96/06579

/* Contains member functions for cluster and vector classes, as well as
other auxilliary functions. */

#include “cluster.h"

extern double currmin;
extern int currcluster;

int round(double x) {
return ((x - int(x) > .5) ? {int(x)+1) : int(x)):;
}

void datapoint: :print (FILE *fp, int flag) {
/* if flag is one, print tag; if zero don‘t print tag */
fporintf(fp, "%10.6f *, c¢);
fprintf(fp, "%10.6f *, t);
fp;intf(fp, “$10.6Ff *, a);
fprintf (fp, "%10.6f", g);
if (flag) fprintf(fp, "%6c", inttocall(tag));
fprintf (fp, "\n");

void vector::print (FILE *fp) {

threeprev.print (fp);

twoprev.print (£fp) ;

prev.print (fp);

curr.print (£p) ;

next.print (fp) ;

twonext.print (£p) ;

threenext.print (fp);

fprintf(fp, *"%3d %5.1f %10.6f $10.6f %10.6f %10.6f %34\n",
lasteall, timetocall, lastcallval, max, twoprevmax, twonextmax,
tag); -

int datapoint: : input (FILE *fp, int flag) {

/* read in from file. If flag is 0, don’t look for tag. Sets all negative
values to 0. If flag is 1, loocks for alphabetic tags, if 2, looks for
numeric tags. */

int rv;

char ctag(2]};

rv = fscanf(fp, "%$1f ¥1f $1f $1f*, &c, &t, &a, &g);
if ((flag == 1) && (rv i= EOF)) (

rv = fscanf(fp, *%ls", ctagq);

tag = calltoint(ctag(0]);

- 179 -

WO 96/35810

}
if
if

it
if
if

if

((flag == 2) && (rv != EOF)) rv =
(flag == 0)

(c
(t
(a
(g

< 0)
< 0)
< 0)
< 0)

return rv;

Q @ 0

double datapoint
switch (tag)
case 0:

return c;

break;
case 1l:

return t;
break;

case 2:

return a;
break;

case 3:

return g;
break;

default:

return 0;
break;

{

tag = -1;

::fluorescence(int tag)

void vector::input (FILE *fp) {
/* read in from file */

threeprev.input (£p);

twoprev. input (£fp) ;
prev.input (fp) ;
curr.input (£fp);
next.input (fp):
twonext.input (fp) ;
threenext. input (£p);
*3$d $1f %1f $1f $1f %1f ¥d\n",
&lastcall, &timetocall, &lastcallval,

fscanf (fp,

&max, &twoprevmax,

- 180

fscanf (fp,

{

&twonextmax, &tag);

PCT/US96/06579

"¥d", &tag);

WO 96/35810 PCT/US96/06579

void vector::normalize() {

/* normalize all fluorescence values so that max value is 100, and set
max field to absolute max. */

double maxl, max2, max3, maxd, max5, max6, max7, max8, max9, maxl0;
/* quick hack! */

/* round one - compare pairs of values */

maxl = (prev.c > prev.a)? prev.c : prev.a;
max2 = (prev.g > prev.t)? prev.g : prev.t;
max3 = (curr.c > curr.a)? curr.c : curr.a;
max4 = (curr.g > curr.t)? curr.g : curr.t;
max5 = (next.c > next.a)? next.c : next.a;
max6 = (next.g > next.t)? next.g : next.t;
max7 = (twoprev.c > twoprev.a)? twoprev.c : twoprev.a;
max8 = (twoprev.g > twoprev.t)? twoprev.g : twoprev.t;
max9 = (twonext.c > twonext.a)? twonext.c : twonext.a;
maxl0 = (twonext.g > twonext.t)? twonext.g : twonext.t;

/* round two - compare winners of round 1 */

maxl = (maxl > max2)? maxl : max2;
max2 = (max3 > max4)? max3 : max4;
max3 = (max5 > max6)? max5 : max6;
max4 = (max?7 > max8)? max7 : max8;

twoprevmax = max4;
max5 = (max9 > max10)? max9 : maxl0;
twonextmax = max5;

/* round three - determine largest winner of round 2 */

maxl = (maxl > max2)? maxl : max2;
max2 = (max3 > max4)? max3 : max4;
max3 = max5;

/* round four - determine largest winner of round 3 */
maxl (maxl > max2)? maxl : max2;

maxl (maxl > max3)? maxl : max3;

max = maxl; /* set max field */

/* maxl is now mak. Normalize values */

if (maxl !'= 0) {
threeprev.c = threeprev.c / maxl;
threeprev.a = threeprev.a / maxl;
threeprev.g threeprev.g / maxl;
threeprev.t = threeprev.t / maxl;
twoprev.c = twoprev.c / maxl:
twoprev.a = twoprev.a / maxl;

- 181 -

WO 96/35810 PCT/US96/06579

twoprev.g twoprev.g / maxl;
twoprev.t = twoprev.t / maxl;
prev.c = prev.c / maxl;
prev.a = prev.a / maxl;
prev.g = prev.g / maxl;
prev.t = prev.t-/ maxl;
curr.c = curr.c / maxl;
curr.a = curr.a / maxl;
curr.g = curr.g / maxl;
curr.t = curr.t / maxl;
/ maxl;
/ maxl;
/ maxl;

next.t = next.t / maxl;

next.c = next.c
next.a = next.a
next.g = next.g

twonext.c = twonext.c / maxl;
twonext.a = twonext.a / maxl;
twonext.g = twonext.g / maxl;
twonext.t = twonext.t / maxl;
‘threenext.c = threenext.c / maxl;
threenext.a / maxl;
threenext.g threenext.g / maxl;
threenext.t = threenext.t / maxl;

threenext.a

int iscall(int call) {
/* determines whether a data line has been called */
return((call >= 0) && (call <= 4));

int calltoint(char call) {
/* converts character tag to int */
switch (call) {
case ‘C’':
return 0;
case ‘A‘:
return 1;
case ‘G‘:
return 2;
case ‘T':
return 3;
case ‘X':
default:
return -1;

- 182 -

-

r .

WO 96/35810 PCT/US96/06579

char inttocall(int tag) {
switch (tag) (
. case 0:
return ‘C’;
case 1:
return ‘A’;
case 2:
return ‘G’;
case 3:
return ‘T’;
case -1:
default:
return ‘X‘;

void cluster:: addvec(vector *vec) {
/* adds the vector vec to the cluster clust */
if (vec->max != 0) {
if (size >= 64) {
fprintf (stderr, "Warning: Too many vectors in cluster %c %c\n",
inttocall (vec->lastcall),inttocall (vec->tag));
}
else {
data(size] = *vec;
size++;

void cluster:: create_average() {
/* creates arithmetic average vector from vectors in data array */
int i;
double tpcs = 0.0, tpas = 0.0, tpgs = 0.0, tpts = 0.0;
.double twpcs = 0.0, twpas = 0.0, twpgs = 0.0, twpts = 0.0;

double pcs = 0.0, pas = 0.0, pgs = 0.0, pts = 0.0;
double ccs = 0.0, cas = 0.0, cgs = 0.0, cts = 0.0;
double ncs = 0.0, nas = 0.0, ngs = 0.0, nts = 0.0;

double twnecs = 0.0, twnas = 0.0, twngs = 0.0, twnts =.0.0;
double tnecs = 0.0, tnas = 0.0, tngs = 0.0, tnts = 0.0;

double ttecs = 0.0, lcvs = 0.0, ms = 0.0, pms = 0.0, nms = 0.0;
vector *cp;

/* sum up each vector component */
if (size == 0) fprintf(stderr, "No data points in this cluster!\n");

- 183 -

WO 96/35810 PCT/US96/06579

// fprintf(stderr, "\nCluster %c%c:\n ", inttocall(data[0].lastcall),
// inttocall(data[0].tag));

for (i = 0; i < size; i++) {
cp = &datalil;

// if (i>0) fprintf(stderr, "%d ", cp->timetocall);
tpcs += cp->threeprev.c;
tpas += cp->threeprev.a;
tpgs += cp->threeprev.g;
tpts += cp->threeprev.t;
twpcs += cp->twoprev.c;
twpas += cp->twoprev.a;
twpgs += cp->twoprev.g;
twpts += cp->twoprev.t;
pcs += cp->prev.c;
pas += cp->prev.a;
pgs += cp->prev.g;
pts += cp->prev.t;
ccs += Cp->Curr.c;
cas += cp->curr.a;
cgs += cp->curr.g;’
cts += cp->curr.t;
ncs += cp->next.c;
nas += cp->next.a;
ngs += cp->next.g;
nts += cp->next.t;
twncs += cp->twonext.c;
twnas += cp->twonext.a;
twngs += cp->twonext.g;
twnts += cp->twonext.t;
tncs += cp->threenext.c;
tnas += cp->threenext.a;.
tngs += cp->threenext.g:;
tnts += cp->threenext.t;
if (i>0) { /* ignore timetocall and lastcallval for first data point,

since may be bad */
ttcs += cp->timetocall;
lcvs += cp->lastcallval;
}
ms += Cp->max;
pms += cp->twoprevmax;
nms += cp->twonextmax;

/* take averages */

- 184 -

yw

>

WO 96/35810 PCT/US96/06579

average.threeprev.c = tpcs/size;
average.threeprev.a = tpas/size;
average.threeprev.g = tpgs/size;
average.threeprev.t = tpts/size;

average.twoprev.c = twpcs/size;
average.twoprev.a = twpas/size;

average.twoprev.g = twpgs/size;
average.twoprev.t = twpts/size;
average.prev.c = pcs/size;

average.prev.a = pas/size;
average.prev.g = pgs/size;
average.prev.t = pts/size;
average.curr.c = ccs/size;
average.curr.a = cas/size;
average.curr.g = cgs/size;
average.curr.t = cts/size;
average.next.c = ncs/size;
average.next.a = nas/size;
average.next.g = ngs/size;
average.next.t = nts/size;
average.twonext.c = twncs/size;
average.twonext.a = twnas/size;
average.twonext.g = twngs/size;
average.twonext.t = twnts/size;

average.threenext.c = tncs/size;
average.threenext.a = tnas/size;
average.threenext.g = tngs/size;
average.threenext.t = tnts/size;

average.timetocall = ttes/(size-1);
average.lastcallval = lcvs/(size-1);
average.max = ms/size;
average.twoprevmax = pms/size;
average.twonextmax = nms/size;

average.lastcall = data[0].lastcall; /* same for whole cluster */
average.tag = datal0].curr.tag; /* same for whole cluster */

// fprintf (stderr, "(average %.2f)", average.timetocall);

double cluster:: distance(vector *vec) {
double dist, vmax, amax, vlast, alast;

if (vec->max <= 0) vmax = 1;
else vmax = vec->max;

WO 96/35810

if (average.max <= 0) amax = 1;
else amax = average.max;
if (vec->lastcallval <= 0) vlast = 1;

else vlast = vec->lastcallval;

if (average.lastcallval <= 0) alast = 1;

else alast = average.lastcallval;

dist = (

/*

*/

/*

*/

PCT/US96/06579

pow((vec~->threeprev.c - average.threeprev.c), 2) +

pow((vec->threeprev.a - average.threeprev.a), 2) +

pow{ (vec->threeprev.g - average.threeprev.g), 2) +

pow((vec->threeprev.t - average.threeprev.t), 2) +

pow((vec->twoprev.c - average.twoprev.c), 2) +

pow ((vec->twoprev.a - average.twoprev.a), 2) +
pow{ (vec->twoprev.g - average.twoprev.g), 2) +
pow((vec->twoprev.t - average.twoprev.t), 2) +

pow((vec->prev.c - average.prev.c)*1l.5,
pow((vec->prev.a - average.prev.a)*l.5,
pow((vec->prev.g - average.prev.g)*l.5,
pow((vec->prev.t - average.prev.t)*1.5,
pow((vec->curr.c - average.curr.c)*2.0,
pow((vec->curr.a - average.curr.a)*2.0,
pow((vec->curr.g - average.curr.g)*2.0,
pow((vec->curr.t - average.curr.t)*2.0,
pow((vec->next.c - average.next.c)*1.5,
pow((vec->next.a - average.next.a)*1.5,
pow((vec->next.g - average.next.g)*1.5,
pow((vec->next.t - average.next.t)*1.5,

pow(vec->prev.c - average.prev.c + vec->next.
pow(vec->prev.a - average.prev.a + vec->next.a
pow(vec->prev.g - average.prev.g + vec->next.g
pow(vec->prev.t - average.prev.t + vec->next.t

pow (vec->twoprev.c - average.twoprev.c +
vec->twonext.c - average.twonext.c,
pow (vec~>twoprev.a - average.twoprev.a +
vec->twonext.a -.average.twonext.a,
pow({vec->twoprev.g - average.twoprev.g +

vec->twonext.g - average.twonext.g, 2) +

pow(vec->twoprev.t - average.twoprev.t +

vec->twonext.t - average.twonext.t, 2) +

2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)

2) +

2) +

+

+ + + + + + 4+ 4+ o+ o+

+

c -~ average.next.c, 2) +

- average.next.a,
- average.next.g,
- average.next.t,

pow ((vec->twonext.c - average.twonext.c), 2) +

pow((vec~->twonext.a - average.twonext.a), 2) +
pow((vec->twonext.g - average.twonext.g), 2) +

pow((vec->twonext.t - average.twonext.t), 2) //+

- 186 -

2) +
2) +
2) ¥

-

WO 96/35810 . PCT/US96/06579

/* pow((vec->threenext.c - average.threenext.c), 2) +
pow((vec->threenext.a - average.threenext.a), 2) +
pow((vec->threenext.g - average.threenext.g), 2) +
pow ((vec->threenext.t - average.threenext.t), 2) +
- pow(vec->threeprev.c - average.threeprev.c +
vec->threenext.c - -average.threenext.c, 2} +
pow (vec~>threeprev.a - average.threeprev.a *
vec->threenext.a - average.threenext.a, 2) +
pow(vec->threeprev.g - average.threeprev.g +
vec->threenext.g - average.threenext.g, 2) +
pow(vec->threeprev.t - average.threeprev.t +
vec->threenext.t - average.threenext.t, 2)
/)

(pow(0.3* (vec->timetocall - average.timetocall), 2) + 1) // *

// (pow(0.01* (vmax/vliast - amax/alast), 2) + 1)

// ((vmax < amax)? (pow(0.5*(vmax - amax), 2) + 1) : 1)

// '(pow((1og(vec—>twoprevmax) - log(average.twoprevmax))*.25, 2) +
// pow((log(vec->twonextmax) - 1og(average.twonextmax)f*.25, 2))

):

// if (vec->lastcall == average.lastcall) dist = dist-1000;

return(dist) ;

int vector::call(cluster **clust) ({
/* determines tag of closest cluster */

double dist{NUMCLUSTS];
int i;

for (i=0; i < NUMCLUSTS; i++) {
dist{i]) = clust(i]->distance(this);
// clust[lastcall*4 + i}->distance(this);
}

/* note: for coding purposes, use linear min. Should change
to log time min by pairing */ '
double min;

/* go through array updating min as you go */
min = dist(0);
for (i = 1; i < NUMCLUSTS; i++) (

if (dist[i] < min) min = dist[i];

- 187 -

WO 96/35810 PCT/US96/06579

/* min is now minimum distance - determine cluster */
// if (min < 10000) ¢
/* set currmin to this value */
currmin = nin;
// printf("\n%15.0f ", min);
for (i = 0; i1 < NUMCLUSTS; i++) {
if (min == dist(i]) {
/* printf ("Current vector: \n*);
this->print();
printf (*Closest cluster: \n*");
clust{i]->average.print(); */
/* printf(* (%d4) ", i); */
currcluster = i;
return (clust[i]->average.tagq);

}
/1}

/* default */
return(-1);

int vector::findclust () {

/* returns index of cluster to which this vector belongs */
return(4*lastcall + curr.taqg);

double avedist(int prev, int curr, cluster **clust) {
'/* £ind cluster and return average timetocall */
return(clust(4*prev + curr]->average.timetocall);

int clusterprevtag(int cl) {
/* return tag of previous base of cluster number cl */
return (cl/4);

int clustercurrtag(int cl) { _
/* return tag of current base of cluster number cl */
return (cl%4);

void averagetwovecs(vector *vecl, vector *vec2, vector *average) ({
averagetwodps (&vecl->threeprev, &vec2->threeprev, &average->threeprev);

- 188 -

EY

5

WO 96/35810 PCT/US96/06579

averagetwodps (&vecl->twoprev, &vec2->twoprev, &average->twoprev);
averagetwodps (&vecl->prev, &vec2->prev, &average->prev);

averagetwodps (&vecl->curr, &vec2->curr, &average->curr);

averagetwodps (&vecl->next, &vec2->next, &average->next);

averagetwodps (&vecl->twonext, &vec2->twonext, &average->twonext);
averagetwodps (&vecl->threenext, &vec2->threenext, &average->threenext);

if (vecl->lastcall == vec2->lastcall) average->lastcall = vecl->lastcall;
else {

vecl->lastcall = -1;

fprintf (stderr, ‘Warning; averaging unmatched vectors.\n");
}
average->timetocall = (vecl->timetocall + vec2->timetocall)/2;
average->lastcallval = (vecl->lastcallval + vec2->lastcallval)/2;
average->max = (vecl->max + vec2->max)/2;
average-Qtwoprevmax = (vecl->twoprevmax + vec2->twoprevmax)/2;
average->twonextmax = (vecl->twonextmax + vec2->twonextmax)/2;
if (vecl->tag == vec2->tag) average->tag = vecl->tag;
else {

average->tag = -1;

fprintf (stderr, "Warning: averaging unmatched vectors.\n");

void averagetwodps (datapoint *dpl, datapoint *dp2, datapoint *average) {
average->c = (dpl->c + dp2->c)/2;

(dpl->t + dp2->t)/2;

(dpl->a + dp2->a)/2;

(dpl->g + dp2->g)/2;

if (dpl->tag == dp2->tag) average->tag = dpl->tag;

else {

average->t
average->a

average->g

average->tag = -1;
fprintf (stderr, "Warning: averaging unmatched datapoints %c %c.\n",
inttocall(dpl->tag), inttocall (dp2->tag)):

- 189 -

WO 96/35810 PCT/US96/06579

extern “C" {

#include <stdio.h>
#include <stdlib.h>

main(int argc, char **argv) {

FILE *datafile, *seqgfile;

if (argc < 2) {
fprintf(stderr, "Usage: %s <datafile> <sequence file>\n", argv[0]):;
exit(1l);

datafile = fopen(argv(1l], "r");
seqgfile = fopen(argv(2], “r");

double ¢, a, g, t;
char call[2], realcall(2];

if" (tdatafile) {
fprintf (stdexrr, *"Can not open data file %s.\n", argv(1l]):
exit(l); '

if (!seqfile) {
fprintf(stderr, "Can not open sequence file %s.\n", argv(2]):
exit(1);

int line = 0, base = 0;

while ((fscanf(datafile, "%$1f%1f%1f%1£f%1ls", &c, &a, &g, &t, call)) i= 5)
line++;
if (callf0] != 'X*) {
base++; »

if (fscanf (segfile, "$1s*, realcall) != 1) {
fprintf(stderr, "Sequence file ends too early!\n");
exit(1l);
}
if (call[0] != realcalll0]) (
fprintf (stderr, ®“Sequence discrepancy at line %d, base %d\n",
line, base);
exit(1l);

- 190 -

{

»

>

WO 96/35810

printf ("Sequences match.\n");

fclose(datafile);
fc_:lose(seqfile) :

exit(0);

- 191 -

PCT/US96/06579

WO 96/35810 PCT/US96/06579

extern "C" {
#include <stdio.h>
#include <stdlib.h>

main(int argc, char-*argv[]) {
FILE *pfile, *rfile, *yfile, *gfile, *infile;

char prefix[321, *infilename;
int i=0;

if (arge < 2) {
fprintf (stderr, "Usage: %s <datafile>\n", argv([0]);
exit(1);

infilename = argvi{ll;

if (!(infile = fopen(infilename, "r"))) {
fprintf (stderr, "%s: can not open file %s\n", argv(0]), infilename);

exit(1);

}

while ((infilename(i] != ‘.’) && (infilename[i] != ‘\0’)) {
prefix[i] = infilename(i];
i4+4;

}

prefix{i] = *.*;

char *prefixend;
prefixend = &prefix([++i];

sprintf (prefixend, "pur\0"):
printf("$s\n", prefix);
pfile = fopen(prefix, "w");
sprintf (prefixend, "red\0"):
printf("$s\n", prefix);
rfile = fopen(prefix, "w");
sprintf (prefixend, “"yel\0");
printf(*$s\n", prefix);
yfile = fopen(prefix, "w");
sprintf (prefixend, “grn\0");
printf (*"$s\n*, prefix):
gfile = fopen(prefix, "w"):;

double p, r, Y. 9:

- 192 -

»

WO 96/35810 PCT/US96/06579

while (fscanf(infile, *$1f %1f %1f %1f\n", &p, &r, &Yy, &g) == 4) {
fprintf (pfile, "%.0f\n", p);
fprintf(rfile, "%.0f\n", r);
fprintf (yfile, "%.0f\n", vy);
fprintf(gfile, "%.0f\n", g):
}

fclose(pfile);
fclose(rfile);
fclose(yfile);
fclose(gfile);
fclose(infile);

exit(0);

- 193 -

WO 96/35810 PCT/US96/06579

/* zips together files into standard output */

extern "C" {
‘#include <stdio.h>
#include <stdlib.h>
)

main(int argc, char **argv) {
FILE *pfile, *rfile, *yfile, *gfile;

if (argec < 5) {

fprintf (stderr,
“Usage: %s <purple file> <red file> <yellow file> <green'file>\n',
argv(0});
exit(1);
}
pfile = fopen(argv[l], "r");

rfile = fopen(argv({2], *r");
yvfile = fopen(argv(3], *r");:
gfile = fopen(argv(4}]., *"r");

r

double p, r, vy, g;

while ((fscanf (pfile, "$1f", &p) == 1) &&
(Escanf (rfile, *"$1f", &r) == 1) &&
(fscanf (yfile, *"$1f", &y) == 1) &&
(fscanf (gfile, "$1f", &g) == 1)) {
printf("%10.0f %10.0f $10.0f %10.0f\n", p, r, v, g);
}

fclose(pfile);
fclose(rfile);
fclose(yfile);
fclose(gfile);

exit (0);

- 194 -

N

3w

WO 96/35810 PCT/US96/06579

/* Background subtraction. Takes four minima: current - BIGWIN to
current, current - SMALLWIN to current, current to current +
SMALLWIN, and current to current + BIGWIN. Fits a line to these points
using code from p. 527 of Numerical Recipes in C. Evaluates this line
at the current point and subtracts that value. Writes to standard output.

If argument, reads input from argument file, otherwise reads from standard
input.
*/

extexrn "C" {
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <linefit.h>

#define SMALLWIN 50
#define BIGWIN 100

class entry {
public:
double val;
int time;
entry *prevval;
entry *nextval;
entry *prevtime;
entry *nexttime;
entry(double v = 0, int t = 0) {val = v; time = t;};
void init(double v = 0, int t = 0) {val = v; time = t;};
}:

class window {
entry *lowval = NULL;
entry *lowtime = NULL;
entry *hightime = NULL;
public:
void insert(entry *);
entry *clearlowtime();
void walkvals();
void walktime();
double min() {return lowval->val;};
int mintime() {return lowval->time;};
Y:

class channel {

- 195 -

WO 96/35810 PCT/US96/06579

public:

window smallprevwin, bigprevwin, smallnextwin, bignextwin;

double bigprevmin, smallprevmin, smallnextmin, bignextmin;

int bigprevmintime, smallprevmintime, smallnextmintime, bignextmintime;
int previndex, smallnextindex, - bignextindex;

int prevtime, smallnexttime, bignexttime;

double buf[2*BIGWIN - 1];
int bufsize = 0; '
void walkalltimes();
void walkallvals();
void setallmins();
void printallmins();
void bufinit (FILE *);
void timezero();
void firstphase();
void secondphase();
void mainphase(FILE *);
void endphase();
double fitcurrtime();
void subtract();

}:

void channel::subtract() ({

printf("%.0f\n", buf[previndex] - fitcurrtime());

// printf(*%.0f\n", fitcurrtime()); /* To get background */
}

double channel::fitcurrtime() (

// walkalltimes();
setallmins () ;

// printallmins();

// printf("Fitting line: *);

/* if all are equal, return that value */

if ((bigprevmintime == bignextmintime) &&
(smallprevmintime == smallnextmintime) &&
(bigprevmintime == smallprevmintime))
{ .
// printf("all points are equal\n®);
// printf{“Subtraction value at %d is %.2f\n",
// prevtime, bigprevmin);

return (bigprevmin);

/* otherwise fit to a line */

- 196 -

s

R Y

WO 96/35810 PCT/US96/06579

double x[4]

"

{double (bigprevmintime), double (smallprevmintime),

double (smallnextmintime), double (bignextmintime)};
double y[4] {bigprevmin, smallprevmin, smallnextmin, bighextmin};
double *xx = x-1;

double *yy = y-1;
double sig(4];
double a, b, siga, sigb, chi2, q;

fit(xx, yy. 4, sig, 0, &a, &b, &siga, &sigb, &chi2, &q);

// printf("y = %.2f + $.2£(x)\n", a, b);

// printf(*"Subtraction value at %4 is %.2f\n",

// prevtime, a + b*(double(prevtime)));
return (a + b*(double(prevtime)));

void channel::endphase() {
/* scroll off ends */
int i;
entry *curr;

for (i = 0; 1 < SMADLWIN; i++) (
/* scroll all but bignextwin, drop low entry for bignextwin */
curr = bigprevwin.clearlowtime();
curr->init (buf [previndex], prevtime);
bigprevwin. insert (curr) ;

curr = smallprevwin.clearlowtime();
curr->init (buf [previndex], prevtime);
smallprevwin.insert (curr) ;

curr = smallnextwin.clearlowtime();
curr->init (buf[smallnextindex], smallnexttime);
smallnextwin.insert (curr);

curr = bignextwin.clearlowtime();
delete curr;

subtract () ;
prevtime++;
smallnexttime++;

previndex = (previndex+l)S$bufsize;
smallnextindex = (smallnextindex+l)%bufsize;

- 197 -

WO 96/35810 PCT/US96/06579

for (i = SMALLWIN; i < BIGWIN - -1; i++) {
/* scroll previous windows, drop low entry for nextwindows */
curr = bigprevwin.clearlowtime();
curr->init (buf [previndex], prevtime);
bigprevwin.insert(curr);

curr = smallprevwin.cledrlowtime():;
curr->init (buf [previndex], prevtime);
smallprevwin.insert (curr);

curr = smallnextwin.clearlowtime();
delete curr;

curr = bignextwin.clearlowtime();
delete curr;

subtract();

prevtime++;
previndex = (previndex+1)%bufsize;

void channel::mainphase(FILE *infile) {
int i;

entry *curr;

/* all windows are full - continue moving current time forward */
while ((fscanf(infile, "$1£f", &bufibignextindex]) == 1)) {

/* scroll all windows */

curr = bigprevwin.clearlowtime();

curr->init (buf {[previndex], prevtime);

bigprevwin.insert (curr);

curr = smallprevwin.clearlowtime();
curr->init (buf [previndex], prevtime);
smallprevwin.insert (curr);

curr = smallnextwin.clearlowtime():;
curr->init (buf{smallnextindex], smallnexttime);
smallnextwin.insert(curr):

curr = bignextwin.clearlowtime();

curr->init (buf [bignextindex), bignexttime);
bignextwin.insert (curr);

- 198 -

‘e

X}

WO 96/35810 ’ PCT/US96/06579

subtract () ;

previndex = (previndex+l)%bufsize;
smallnextindex = (smallnextindex+1)%bufsize;
bignextindex = (bignextindex+1)%bufsize;
prevtime++;

smallnexttime++;

bignexttime++;

void channel::secondphase() {
v int i,

entry *curr;

/* bigprevwin is still not full - continue moving current time forward */
for (i = BIGWIN + SMALLWIN - 1; i < 2*BIGWIN - 1; i++) {

/* insert into bigprev window, scroll other windows */

curr = new entry(buf(previndex], prevtime);

bigprevwin.insert (curr) ;

curr = smallprevwin.clearlowtime();
curr->init (buf [previndex], prevtime);
smallprevwin.insert (curr);

curr = smallnextwin.clearlowtime();
curr->init (buf [smallnextindex], smallnexttime);
smallnextwin.insert (curr);

curr = bignextwin.clearlowtime();
curr->init (buf (bignextindex], bignexttime);
bignextwin. insert (curr) ;

subtract () ;

previndex = (previndex+l)$bufsize;]
smallnextindex = (smallnextindex+l)$bufsize;
bignextindex = (bignextindex+1)%bufsize;
prevtime++;

smallnexttime++;

bignexttime++;

void channel::firstphase() {
/* move current time forward - still have incomplete prev windows */

- 199 -

WO 96/35810

int 1i;
entry *curr;

for (i = BIGWIN; i < BIGWIN + SMALLWIN - 1; i++) {
/* insert into previous windows, scroll next windows
curr = new entry(buf[previndex], prevtime);
bigprevwin. insert (curr);

curr = new entry(buf[previndex], prevtime);
smallprevwin.insert (curr);

curr = smallnextwin.clearlowtime();
curr->init (buf [smallnextindex], smallnexttime);
smallnextwin.insert (curr);

curr = bignextwin.clearlowtime();
curr->init (buf [bignextindex], bignexttime);
bignextwin. insert (curr);

subtract();

previndex = (previndextl)$%bufsize;

smallnextindex = (smallnextindex+l)$bufsize;
bignextindex = (bignextindex+1)%bufsize;
prevtime++;

smallnexttime++;

bignexttime++;

void channel::timezero()

entry *curr;

/* initialize to current time 0 */
previndex = prevtime = 0;
smallnextindex = smallnexttime = 0;
bignextindex = bignekttime = 0;

/* insert entry 0 into all windows */
curr = new entry(buf[previndex], previndex);

bigprevwin.insert (curr):;

curr = new entry(buf[previndex], previndex);
smallprevwin. insert (curr);

curr = new entry(buf(smallnextindex], smallnextindex);

- 200 -

*/

PCT/US96/06579

¥

WO 96/35810

smallnextwin.insert(curr);

curr = new entry(buf[bignextindex], bignextindex) ;
bignextwin.insert (curr);

prévindex = (previndex+1l)$bufsize;
smallnextindex = (smallnextindex+1)%bufsize;
bignextindex = (bignextindex+l)%bufsize;
prevtime++;

smallnexttime++;

bignexttime++;

int i;

for (i = 1; i < SMALLWIN; i++) {

}

/* insert into smallnextwin and bignextwin*/

curr = new entry(buf(smallnextindex), smallnextindex);

smallnextwin.insert (curr);

curr = new entry(buf(bignextindex]), bignextindex);
bignextwin.insert (curr);

smallnextindex = (smallnextindex+1)%bufsize;
bignextindex = (bignextindex+1l)$bufsize;
smallnexttime++;

bignexttime++;

for (i = SMALLWIN; i < BIGWIN; i++) {

/* insert into bignextwin */
curr = new entry(buf[bignextindex], bignextindex);
bignextwin.insert (curr);

bignextindex = (bignextindex+l)$%bufsize;
bignexttime++;

subtract () ;

void channel::bufinit (FILE *infile) {
/* read in buffer */
while ((bufsize < 2*BIGWIN - 1) &&

(fscanf (infile, "%1f*, &buf([bufsize]) == 1))
bufsize++;

if (bufsize < 2*BIGWIN - 1) {

- 201 -

PCT/US96/06579

WO 96/35810 PCT/US96/06579

fprintf(stderr, "Input too short for window size %d\n", BIGWIN) ;
exit(1);

}

void window: :insert (entry *e) {
entry *p;

/* insert in value list */
p = lowval;

if (p == NULL) { /* list is empty - make first element */
e->prevval = NULL;
e->nextval = NULL;
lowval = e;
}
else { _
while ((p->val < e->val) && (p->nektval != NULL)) p = p->nextval;
if (e->val <= p->val) { /* insert before p */
e->prevval p->prevval;
p->prevval e;
e->nextval = p; .,

if (e->prevval != NULL) e->prevval->nextval = e;
if (e->val <= lowval->val) lowval = e;

}

else { /* reached end of list - insert at end */
e~->prevval = p;
p->nextval = e;
e->nextval = NULL;

/* insert in time list */
if (lowtime == NULL) { /* list is empty - make first element */
e->prevtime = NULL;
e->nexttime = NULL;
lowtime = e;
hightime = e;
}
else {
e->prevtime = hightime;
if (e->prevtime != NULL) e->prevtime->nexttime = e;
e->nexttime = NULL;
hightime = -e;

- 202 -

&

WO 96/35810 _ PCT/US96/06579

entry *window::clearlowtime() (

Y

/* removes low time entry from the list, returns pointer
to entry for reuse */
entry *temp;

temp = lowtime;

if (lowtime == NULL) return NULL;

if (lowval == lowtime) lowval = lowval->nextval;
if (hightime == lowtime) hightime = NULL;

lowtime = lowtime-~>nexttime;

if (lowtime != NULL) lowtime->prevtime = NULL;

if (temp->nextval {= NULL) temp->nextval->prevval
if (temp->prevval != NULL) temp->prevval->nextval

temp->prevval;
temp->nextval;

return(temp) ;

void window: :walkvals() (

}:

entry *temp = lowval;

while (temp != NULL) { .

printf("%$.0f *, temp->val);
temp = temp->nextval;

}

printf("\n");

void window: :walktime () {

}:

entry *temp = lowtime;

while (temp != NULL) (
printf(*%.0£f *, temp->val);
temp = temp->nexttime;-

}

printf(*\n");

void channel::walkalltimes() (

bigprevwin.walktime();
smallprevwin.walktime();
smallnextwin.walktime();
bighextwin.walktime():
printf("\n");

- 203 -

WO 96/35810 PCT/US96/06579

void channel::walkallvals() {
bigprevwin.walkvals();
smallprevwin.walkvals();
smallnextwin.walkvals(); :
bignextwin.walkvals();
printf(*\n");

void channel::setallmins() {
bigprevmin = bigprevwin.min();

smallprevmin = smallprevwin.min();
smallnextmin = smallnextwin.min();
bignextmin = bignextwin.min();
bigprevmintime = bigprevwin.mintime():;
smallprevmintime = smallprevwin.mintime();
smallnextmintime = smallnextwin.mintime();

bignextmintime = bignextwin.mintime();

void channel::printallmins() {
printf(“\nMins: (%d, %.0f) (%d, %.0f) (%d, %.0f) (%d, %.0f)\n",
bigprevmintime, bigprevmin, smallprevmintime, smallprevmin,
smallnextmintime, smallnextmin, bignextmintime, bignextmin);

main(int argc, char *argv[]) {
FILE *infile;

// malloc_debug(8);

/* read from standard input if no arguments, otherwise read from
argument file */

if (argc < 2) infile = stdin;

else if (!(infile = fopen(argv[l], "r*)))
fprintf (stderr, "%s: can not open file %s\n", argv(0], argvill);
exit(1l);

entry *curr;
channel c;

c.bufinit(infile);
.timezero();
.firstphase();
.secondphase():
.mainphase(infile);

00 an

- 204 -

e

WO 96/35810

c.endphase() ;

fclose(infile);

exit(0);

- 205

PCT/US96/06579

10

15

WO 96/35810 PCT/US96/06579

What is claimed is:

1. An integrated apparatus for concurrent preparation and
analysis of a plurality of biopolymer fragment samples, each
sample comprising a plurality of fragments obtained from one
Oor more biopolymers, the apparatus comprising:

(a) means for substantially concurrent electrophoretic
separation of each of a plurality of biopolymer fragment
samples loaded into an electrophoretic separation medium;

(b) means for substantially simultaneously stimulating
light emissions from fragments in a pPlurality of biopolymer
fragment samples; and

-

(c) means for substantially simultaneous resolution of
said light emissions into spatial and spectral components and
generation of output signals representative thereof.

2. The apparatus of claim 1 further comprising means for
the analysis of the detected light emission to give
information on identity of the biopolymer samples.

20

25

30

35

3. The apparatus of claim 1 further comprising means for

loading the plurality of biopolymer fragment samples into the
electrophoretic separation medium.

4, The apparatus of claim 3 wherein the means for loading
the plurality of biopolymer fragment samples comprises:

(a) a plurality of wells in the electrophoretic
separation medium from which the biopolymer fragment samples
migrate for separation, each well containing a buffer medium;

(b) a solid phase loading comb having a plurality of
teeth, each tooth being spaced and sized to fit into one of
the plurality of wells, the teeth having means for the
adhesion of the biopolymer fragment samples, the adhesion
being such that the fragment samples are released upon
insertion into the buffer medium in the wells.

- 206 -

b

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

5. The apparatus of claim 4 wherein the biopolymer fragment
samples are DNA sequencing reaction fragment samples, the
means for the adhesion of the samples are a plurality of
sequencing templates bound to the teeth of the comb, the
release upon insertion into the wells occurring with
denaturation of the bound fragments from the templates.

6. The apparatus of claim 4 in which the solid phase
loading comb is guided into the sample wells by notches

formed on a plate, the notches being sized to match the teeth
of the comb.

7. The apparatus of claim 3 wherein the means for loading
the plurality of biopolymer fragment samples comprises:

(a) a plurality of wells in the electrophoretic
separation medium from which the biopolymer fragment samples
migrate for separation, each well containing a buffer medium;
and ‘

(b) a solid.phase loading system comprising a plurality
of magnetic beads, such beads being placed into the plurality
of wells, the beads having means for adhesion of the
biopolymer fragment samples, the adhesion being such that the .
fragment samples are released upon insertion into the buffer
medium in the wells.

8. The apparatus of claim 3 wherein the means for loading
further comprises a sample focusing electrode and a means for
controlling voltage applied to said electrode for the purpose
of concentrating loaded samples.

9. The apparatus of claim 1 further comprising means for
Preparing from an input sample of a plurality of biopolymers

a plurality of biopolymer fragment samples for subsequent
analysis.

- 207 -

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

10. The apparatusAof claim 1 wherein the means for
substantially concurrent electrophoretic separation is a
electrophoretic module comprising:

(a) a substantially flat bottom plate; and

(b) a substantially flat top plate, the top plate being
positioned above the bottom plate for forming a narrow cavity
to hold the electrophoretic separation medium.

11. The apparatus of claim 10 wherein the top and bottom

plates are separated by approximately 25 um to approximately
250 pum.

12. The apparatus of claim 10 further comprising thermal
control means for maintaining a selected uniform temperature
in the bottom plate.

13. The apparatus of claim 12 wherein the thermal control
means further comprises:

(a) a heat sink for exchanging heat with the
surroundings; and

(b) a plurality of thermal transfer devices disposed
between and in thermal contact with the heat sink and the
bottom plate for bi-directional heat transfer.

14. The apparatus of claim 13 wherein the thermal transfer
devices are Peltier thermo-electric devices.

15. The apparatus of claim 10 wherein electrophoretic
migration lanes are formed between the top and bottom plates.

16. The apparatus of claim 1 wherein the means for
substantially concurrent electrophoretic separation is an
electrophoresis module comprising:

(a) a substantially flat bottom plate; and

(b) a substantially flat top plate having a plurality
of grooves on one side, the top plate being positioned in
contact with the bottom plate so that the grooves form with

- 208 -

A

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

the bottom plate a plurality of separated channels, the
channels holding the electrophoretic medium to form
electrophoretic migration lanes.

17. The apparatus of claim 16 wherein the grooves in the top

plate are from approximately 25 um to approximately 250 um in
cross-section. ;

18. The apparatus of claim 16 wherein the grooves in the top
plate are straight and spaced to be parallel.

19. The apparatus of claim 16 wherein the grooves in the top
plate are spaced to converge toward one end of the plate.

20. The apparatus of claim 16 wherein the top plate is glass
and the lanes are formed by etching.

21. The apparatus of claim 20 wherein the top plate is

borofloat glass and the lanes are formed by hydrogen fluoride
etching.

22. The apparatus of claim 16 wherein the grooved top plate
is cast in a mold.

23. The apparatus of claim 16 wherein the top piate is
disposable.

24. The apparatus of claim 16 in which the grooves are
formed in polymer.

25. The apparatus of claim 16 further comprising:

(a) cross-lane grooves between selected adjacent lanes
forming cross-lane connecting channels, the channels holding
separation medium so that biopolymer fragments can migrate
between the selected adjacent lanes through the channels; ang

(b) electrodes formed in the walls of the selected
lanes adjacent to the cross-lane connecting channels for

- 209 -

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

causing fragment migration through the connecting channels
upon being energized with voltage.

26. The apparatus of claim 16 in which either the top plate
or the bottom plate is a thermal conductor coated with an
electrical insulator, and the grooves are formed on the
insulator.

27. The apparatus of claim 1 in which the separation medium
comprises small posts fabricated directly in the migration
lanes.

28. The apparatus of claim 1 in which the separation medium
comprises small spheres of an inert material such as
polystyrene.

29. The apparatus of claim 1 wherein the means for
substantially simultaneous resolution of each of a plurality
of light emissions is a transmission imaging spectrograph
comprising:

(a) an optic assembly positioned to receive a
substantial fraction of the plurality of light emissions for
simultaneous spatial imaging along a first axis and spectral
dispersion along a second axis; and .

(b) a detector array for simultaneous spatial and
spectral detection of the plurality of light emissions imaged
along the first axis and dispersed along the second axis by
the optic assembly, the detector producing output signals
representative of the detected light.

30. The apparatus of claim 29 wherein the detector array is
a CCD array producing electronic output signals.

31. The apparatus of claim 29 wherein the optic assembly

further comprises binary optics for spectrally dispersing the
light emissions along the first axis and for focusing the

- 210 -

~w

WO 96/35810 ' PCT/US96/06579

10

15

20

25

30

35

light emissions along the second axis onto the detector
array.

32. The apparatus of claim 29 wherein the optic assembly
further comprises:

(a) a collection lens positioned to initially receive
and collimate the plurality of light emissions;

(b) a transmission dispersion element for spectrally
dispersing the collimated signals along the first axis; and

(c) a focusing lens for spatially focusing the signals
along the second axis onto the detector array.

33. The apparatus of claim 32 further comprising a spectral
filter element positioned between the collection lens and
transmission dispersion element for filtering from the light
emissions extraneous light.

34. The apparatus of claim 32 in which the transmission
dispersion element is a transmission diffraction grating, or
a transmission grating-prism.

35. The apparatus of claim 1 wherein the biopolymer fragment
samples are labeled with spectrally distinctive dyes and
further comprising a laser illuminating the separated

biopolymer fragment samples to stimulate light emission from
the dye labels.

36. The apparatus of claim 35 wherein the fragment samples
are illuminated at multiple wavelengths.

37. The apparatus of claim 35 wherein the laser is a solid
state laser.

38. The apparatus of claim 3 wherein the means for loading
the plurality of biopolymer fragment samples for separation
comprises:

- 211 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

(a) an array of micro-reactors in which biopolymer
fragment samples are generated from biopolymer samples, each
micro-reactor having a minute inlet for loading a biopolymer
sample;

(b) a plurality of capillary inlet passages, each
micro-reactor having an inlet passage, through which reagents
needed for fragmént generation are loaded; ,

(c) a plurality of capillary outlet passages, each
micro-reactor having an outlet passage, through which
biopolymer fragment samples are ejected into the
electrophoresis module for separation; and

(d) a plurality of capillary controllers, one
controller in each capillary inlet and outlet passage, for
controlling fluid flow in the capillaries.

39. The apparatus of claim 38 wherein the capillary
controller for controlling fluid flow in a capillary
comprises: v

(a) an electrical micro-heating element in thermal
contact with the capillary; and

(b) electrical leads to the heating elements for
energizing the heating elements, whereby current in the leads
to a micro-heating element causes fluid evaporation in the
contacted capillary and formation of a vapor bubble which
blocks fluid flow in the capillary. |

40. 'The apparatus of claim 39 wherein the micro-heating
elements comprise:

(a) a layer of a resistive material deposited adjacent
to the contacted capillary; and

(b) a layer of protective material deposited over the
layer of resistive material for separating the resistive
layer from the capillary contents.

41. The apparatus of claim 1 wherein the biopolymer samples
are DNA samples, the biopolymer fragment samples are DNA
sequencing reaction fragments labeled with dyes, each dye

- 212 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

having distinctive spectral properties, said apparatus
further comprising: _

(a) memory means for storing the output signals of the
means for resolution and detection and for storing a set of
prototype signals;

(b) means for cumulating the stored output signals into
spectral samples, each such spectral sample representative of
the distinctive spectral characteristics of the dye labels of
one biopolymer fragment sample,

(c) means for comparing the time behavior of the
spectral samples with the time behaviors of the set of
prototype signals and for selecting prototypes from the set
that most closely match the spectral samples; and

(d) means for outputting identities of the selected
prototypes as the DNA sequences of the DNA samples.

42. The apparatus of claim 41 wherein the set of prototype

signals comprises the output from the analysis of well known
DNA sequences.

43. The apparatus of claim 41 wherein the selected

prototypes represent pairs or triples of sequential DNA
bases.

44. The apparatus of claim 41 wherein the means for
selecting comprises comparing a distance metric between the
time behaviors of the spectral samples and the time behaviors
of the prototypes and selecting as representative that
prototype with the closest distance.

45. The apparatus of claim 44 wherein the distance metric is
output as an indication of the probable accuracy of the DNA
sequences.

46. The apparatus of claim 44 wherein the distance metric is
the sum of the squares of the differences in signal values
between the spectral samples and the prototype signals.

- 213 -

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

47. The apparatus of claim 41 further comprising means for
outputting identities of multiple samples and relationships
between said sample identities.

48. The apparatus of claim 41 further comprising:)

(a) means for trimming from the output DNA sequences of
the DNA samples stored in memory known DNA sequences in the
DNA sample;

(b) means for'proofreading in a Monte Carlo manner the
trimmed DNA sequences stored in memory, the means for
proofreading comprising means for repetitively making at a
random point in the trimmed output a random sequence
alteration and evaluating sequence improvement until no
further substantial sequence improvement occurs; and

(¢) means for storing and outputting the improved
sequences.

49. The apparatus of claim 48 wherein sequence improvement
is evaluated by evaluating a probabilistic Boltzman condition
on the difference in two distance metrics, one distance
metric being between the original DNA sequence and the
spectral samples, the other distance metric being between
alternative DNA sequences and the spectral samples.

50. The apparatus of claim 1 wherein the biopolymer samples
are DNA samples, the biopolymer fragment samples are DNA
sequencing reaction fragments labeled with dyes, each dye
having distinctive spectral properties, said apparatus
further comprising:

(a) memory means for storing the output signals of the
means for resolution and detection and for storing a set of
prototype signals;

(b) means for cumulating the stored output signals into
a time series of spectral samples, each such spectral sample
representative of the distinctive spectral characteristics of

-8

the dye labels of one biopolymer fragment sample;

- 214 -

-9

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

(c) means for comparing at a plurality of successive
observation times the time behavior of the time series of
spectral samples with the time behaviors of the set of
prototype signals and for selecting a prototype from the set
that most closely matches the spectral samples; and

(d) means for outputting the identity of the prototype
that is the closest match.

51. Avmethod for generating DNA sequence reaction fragments
in one reaction chamber without an intermediate separation
step the method comprising the sequential steps of:

(a) performing the polymerase chain reaction
amplification step with dQUTP rich PCR primers;

(b) fragmenting the AUTP primers with Uracil DNA
Glycosylase into fragments ineffective as DNA polymerase

primers; and

(c) performing the Sanger sequencing reactions.

52. The method of claim 51 wherein the QUTP rich PCR primers

have dUTP residues spaced no more than approximately six
bases apart.

53. The method of claim 51 performed in an array of micro-

reactors for ejection onto a biopolymer separation apparatus.

54. A method for determining the DNA sequences of a
plurality of DNA samples, the method using spectral signals
obtained by spectrographic observation of electrophoretically
separated labeled DNA fragments, the fragments being produced
by the Sanger sequencing reactions and being labeled with
dyes having distinctive spectral properties, the method
comprising the sequential steps of:

(a) cumulating the spectrographic signals into a
plurality of spatial samples, each spatial sample being
representative of fragments of one DNA sample, and for each
spatial sample, cumulating the spectrographic output signals
into spectral samples, each spectral sample being

- 215 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

representative of the distinctive spectral characteristics of
one of the dye labels;

' (b) comparing the time behavior of the spectral samples
with a set of prototype signal time behaviors and selecting
prototypes from the set that most closely match the spectral
samples; and

(c) outputting the identities of the selected
prototypes.

55. The method of claim 54 wherein the time behaviors of the
set of prototype signals comprises the grouped output from
the analysis of well known DNA sequences.

56. The method of claim 55 wherein the selected prototypes
are pairs of sequential DNA fragments.

57. The method of claim 54 wherein the step of selecting
comprises comparing a distance metric between the time
behaviors of the spectral samples and the time behaviors of

. the prototypes and selecting as representative that prototype

with the closest distance.

58. The method of claim 57 wherein the distance metric is
the sum of the squares of the differences in signal yalues
between the spectral samples and the prototypes.

59. The method of claim 57 wherein the distance metric is
the product of (x), the sum of the squares of the differences
in signal values between the spectral samples and the
prototypes, and (y) a metric distance representing the
difference between the prototypically expected time between
observation times of closest match, and the actual time
between observation times of closest match.

60. The method of claim 59 in which the metric distance (y)
is a function of the square of the difference between the
prototypically expected time between observation times of

- 216 -

b

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

closest match and the actual time between observation times
of closest match.

61. The apparatus of claim 57 wherein the distance metric is

output as an indication of the probable accuracy of the DNA
sequences.

62. The method of claim 54 further comprising the steps of:

(a) trimming from the output identities of the DNA
samples known DNA sequences in the DNA sample; and

(b) proofreading in a Monte Carlo manner the trimmed
DNA sequences stored in memory, the step of proofreading
comprising repetitively making at a random point in the
trimmed output a random sequence alteration and evaluating
sequence improvement until no further substantial sequence

improvement occurs; and

(c) storing and outputting the improved sequence.

63. The method of claim 62 wherein evaluating sequence
improvement is done by evaluating a probabilistic Boltzman
condition on the difference in two distance metrics, one
distance metric being between the original DNA sequence and
the spectral samples, the other distance metric being between
alternative DNA sequences and the spectral samples.

64. A method for determining the DNA sequences of a
plurality of DNA samples, the method using spectral signals
obtained by spectrographic observation of electrophoretically
separated labeled DNA fragments, the fragments being produced
by the Sanger sequencing reactions and being labeled with
dyes having distinctive spectral properties, the method
comprising the sequential steps of:

(a) storing the output signals of the means for
resolution and detection and for storing a set of prototype
signals;

(b) cumulating the stored output signals into a time
series of spectral samples, each such spectral sample

- 217 -

WO 96/35810 PCT/US96/06579

10

15

20

25

30

35

representative of the distinctive spectral characteristics of
the dye labels of one biopolymer fragment sample;

(c) comparing at a plurality of successive observation
times the time behavior of the time series of spectral .
samples with the time behaviors of the set of prototype
signals and selecting a prototype from the set that most
closely matches the spectral samples; and

(d) outputting the identity of the prototype that is
the closest match.

65. An apparatus for the concurrent analysis of a plurality
of DNA sequencing reaction fragment samples, each sample
comprising a plurality of labeled DNA sequencing reaction
fragments generated from one DNA sample, the labels being
dyes with distinctive spectral characteristics, the apparatus
comprising:

(a) means for loading on the apparatus the plurality of
DNA fragment samples for separation;

(b) an electrophoresis module for the substantially
concurrent separation of each of the plurality of DNA
fragment samples, the electrophoresis module further
comprising:

i. a substantially flat bottom plate; and

ii. a substantially flat top plate having.a
plurality of grooves on one side, the top plate being
positioned in contact with the bottom plate so that the
grooves form with the bottom plate a plurality of separated
channels, the channels holding the electrophoretic medium to
form electrophoretic'migration lanes.

(c) a heat control subunit for maintaining a controlled
uniform temperature in the electrophoresis module, the
subunit further comprising:

i. a heat sink for exchanging heat with the
surroundings;

ii. a plurality of thermal transfer devices
disposed between and in thermal contact with the heat sink

-n

and the bottom plate for bi-directional heat transfer;

- 218 -

-

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

(d) a laser illuminating the separated biopolymer
fragment samples to stimulate emission of the dye labels and
thereby to generate the plurality of light signals;

(e) a transmission imaging spectrograph for
substantially simultaneous detection of each of the plurality
of light signals, the spectrograph further comprising:

i. an optic assembly positioned to receive a
substantial fraction of the plurality of light signals for
simultaneous spatial imaging along a first axis and spectral
dispersion along a second axis; and

ii. a detector array for simultaneous spatial and
spectral detection of the plurality of light signals imaged
along the first axis and dispersed along the second axis by
the optic assembly, the detector producing output signals
representative of the detected light;

(f) means for the analysis of the detection output
signals to determine the sequences of the DNA samples from
the detector comprising:

i. memory means for storing output signal data,
processed signal data, and prototype signal data;

ii. means for cumulating the detection output
signals into spatial samples representative of one migration
lane, and for each spatial sample, for cumulating the
detection output signals into spectral samples representative
of the distinctive spectral characteristics of fhe dye
labels;

iii. means for comparing the time behavior of the
spectral samples with a set of prototype time behaviors also
stored in memory and for selecting prototypes that most
closely match the spectral samples; and

iv. means for outputting identities of. the
selected prototypes as the DNA sequences of the DNA samples.

66. The apparatus of claim 65 wherein the apparatus further
comprises:

(a) means for trimming from the output identities of
the DNA samples known DNA sequences in the DNA sample;

- 219 -

10

15

20

25

30

35

WO 96/35810 PCT/US96/06579

~(b) means for proofreading in a Monte Carlo manner the
trimmed DNA sequences, the means for proofreading comprising
repetitively making at a random point in the trimmed output a
random sequence alteration and evaluating sequence
improvement until no further substantial sequence improvement

occurs; and

(c) means for outputting the improved sequence as the
DNA sequences of the DNA samples.

- 220 -

-4

PCT/US96/06579

WO 96/35810

1/18

c07

o

<

Q¥
~—

e

017

WO 96/35810 PCT/US96/06579

2/18
228
244
245
226 ~ 100
102
- 224
236
113
222
A 20
T —aa
107
241

FIG. 2A

WO 96/35810 PCT/US96/06579

3/18

8

QQ ee
Ny
QQ |

239

oy LTI 20002007 070000007777

c38

O
5

1137

-16. 2B

PCT/US96/06579

WO 96/35810

4/18

£ 94

8ce

PCT/US96/06579

WO 96/35810

5/18

chy

v 9L4

vmj \mmv

4747 \mmv r9rp \moﬁ \Lmv \mmv
/

LN

19y

A1

WO 96/35810 PCT/US96/06579

6/18

~1G. bA

168 "\

~1G. BB

170 - _

FIG. BC

FIG. BD

FIG. BE

WO 96/35810 PCT/US96/06579

7118
676 (648 678
- as{fy 7 (T{‘
N EK =
= NN N R
L 7 . | / > |
652 \ 650
114
FIG. B
458 780 3 18 782 117
777777777, T 7 AN A T T TR
/ ’ , /’ . —ﬂgt 4 /. j
764”7807 118/ 784 7807 116
FIG. 7

0 Normal 8 Tumor

PCT/US96/06579

8/18

WO 96/35810

8 9Ild

\ \
068/ /. _|cereeeeeee P A o
=T Ry 2y ----------._‘\.\ \\
1]
qmm r 7 \.Na.w: Ve
\\\\\\\\ Pd ll Ve
068 i . Vs
it C it LT FHfmmmmmmaenns x) ' /
[~ f9=f======mn b o R e ' Y.
P9B8 - U i /
SR ! ! /7
\ \\ I‘l 13 \
3988 L : /
: e et 1
' | /
" “ v
eiiiiieoes - Loy
............ R B S A — c
7 “ 7 008
. 7/
= e v68
lllllllll L‘ l-Mullilulln_lN\lVM\\A.
.......... yctomete m o mm T w3, L e ...I|M|
——— — — I# yak
Q988 o |, 008
eggg -1 _ 688

c08

WO 96/35810

FIG. 9A

F1G.

-1G.

-1G.

- 16

F1G.

9/18

987
R ﬁ@\‘*\’ BAR

PCT/US96/06579

AR AN 22N

888~ 99 _gg_—
/ 985
B L
m&g&x\
ag2 ‘986
10A
10B
10C
10D ‘\y1010

L2

PCT/US96/06579

WO 96/35810
10/18
Unpurified DNA: 100,000 copies
. . Amplification
- Amplification AN ; UTP-ri
reagents 7/ with dUTP-rich
outer primers
1102
Removal of outer
primers with uracil DNA
glycosylase
Add sequencing .
primer, buffer S:g:c?:ionsg
and ddNTP
1100
N
Extension
product
injection

DNA fragment
separation

Figure 11

1101

1114

1116

1118

1120

1122

WO 96/35810

known
partial

PCT/US96/06579

sequence

postprocessing

Figure 12

11/18
1229
store
raw data from j
fransmission
imaging
spectrograph
NF 1230
1234
traini
1228 1235 1236
Preprocessed lanes
or signal traces > tag cluster
. 1232 1237
sequence or astore event
basecalling prototype
algorithm file
, 1242 1243
i
I nucleotide sequence
i sequence output
1244
\ 1238
|
| sequence
i ' input a priori
— 1240 known
biological
information
7| Monte Carlo regarding
proofread samples

WO 96/35810

1454

12/18

raw data from
transmission
imaging
spectrograph

human input:
lane boundaries

1440

1466

isolate lanes

(<, 1442

file for each lane

1444

remove spikes

1446

subtract
background

human input:
range of data
to consider,
or default

| 1448
\l/

1447 f’

find conversion
factor

1450

convert to

dye signals

1452

normalize

PCT/US96/06579

sampling
interval

Figure 13

to memory

WO 96/35810 PCT/US96/06579

13/18
signal
{ - 1326
0.8 -
0.6 -
1328
0.4 7 1330+
0.2 1 7 ~1332
] | | I I
10 20 30 40 50
Lime
1 -
1322
1324
L+1
1340
1342 -

-1G. 14B

WO 96/35810 PCT/US96/06579

14/18
1228
f’reprocessed
1676 anes
Terminate
at start
of file NP 1666 1674
Move one timestep,
conatract vectar 1 Average
co ation space between
1578
1680
Terminate No
at end More data
of file
N 1668
For each prototype
compute "distance"
involving intensities at
nearby timepoints
, 1560 15672
1242
Compute "distance” Make]
involving information basecall Nucleotide
from previous call and sequence
save data _
p 1662
Multiply distance
results; record closest
prototype and
associated class
1570
NP 1666
Ie orod ct : Note base
No 8 product o corresponding
distances a local L BN Isihotiaen
minimum .(at prototype at
previous timestep)? previous time

Figure 15

Sequence
output

WO 96/35810 PCT/US96/06579
15/18
1610 1612 1614 1616
y Choose initial Run one Decrement No
@ temperature, T [“A”] EPOCH T exponentially
A /
Yes
1228
Processed Lanes
1242
Nucleotide
Sequence
1686 1688 1690 1692
Select Randomly Compute Is
loi.gndom g?leﬁ One Associated gew
servatory - e Change | Energy
In File Alterations In Energy Lower?
Y, 7
1602
Convergence or
‘ number of iterationa v N
stop condition es o
1600
te
e
| determined
by move
A
Yes
1698 1696 1694
Is Compare Generate
No Move with energy Random
Allowed? anneali Number
schedule

Figure 16

WO 96/35810 PCT/US96/06579

16/18

H
PYYTTTIIN
asrzeen

-

h
"
H
e
"
"
]
‘v
i
[}

Ane

-.......

G GCE CGCTCT TCCG CTT CET CG CI‘ CCT GACTCGCTGCGCTCGGTCG TI‘ CGGCT CCGGCG ACI?GG 'IATCAGC’I‘CA

'“']1_."".1 RISV G A/mhm%‘ - Y\M"...[\ sl

CTCAMA GAXG GTAATACGG T ATQCACA GAATCAG G GATACGAGGIAAG

Time —

FIG. 17

WO 96/35810 PCT/US96/06579

17/18

CGTTG AAAATCTCCARAZ A
Time ——p

é
it
b3
i

{
i

FIG. 18B

WO 96/35810 PCT/US96/06579

18/18

| 8.1cm |

| |
600 - 610 nm
580 - 590 nm M
555 - 565 nm J
//i

530 - 540 nm

-

530 - 540 nm
-_'_‘-——-_/— M

FIG. 19B

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/06579

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :Please See Extra Sheet.
US CL :435/5, 6, 91.1, 91.2, 91.21; 204/182.8, 182.9, 186, 299R, 403
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCIIED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 43505, 6, 91.1, 91.2, 91.21; 204/182.8, 182.9, 186, 299R, 403

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X LAGERKVIST et al. Manifold sequencing: Efficient processing| 1-6, 9-13, 15,
---- of large sets of sequencing reactions. Proc. Natl. Acad. Sci. | 29-37, 41-50
Y March 1994, Vol. 91, pages 2245-2249. | ===mmcmmmmmeeme
7,8, 14, 16-28,
38-40,
_ 51-66
Y HULTMAN et al. Direct solid phase sequencing of genomic| 7, 65, 66
and plasmid DNA using magnetic beads as solid support.
Nucleic Acids Research. 1989, Vol. 17, No. 13, pages 4937-
4946.
Y US 5,149,416 A (OSTERHOUDT et al.) 22 September 1992, | 8, 65, 66
column 5, lines 24-26. ‘
Further documents are listed in the continuation of Box C. D See patent family annex.
b Special categories of cited documents: T luter document published after the international filing date or priority
“A* document defining the general state of the art which is not considered ﬁ:{:‘:;ilg): :ir::;o;ﬂ;ﬁh::g}h?;clﬂzp&iiﬁg';:m cited to understand the
10 be part of particulur relevance
"E” earlier document published on or after the international filing date kS fz;:j:;::‘;]!:1252{‘:7:\21:;“‘;[?;“:‘;;;lcﬁ:efll:‘:?ne:lox::nm’:m ::&?3::[:;
L document which muy throw doubts on priority claim(s) or which is when the document is taken alone

cited to estublish the publication date of another citation or other
special reason (as specified)

0" document referring to an oral disclosure, use, exhibition or other
mneans
rr document published prior to the international filing date but later than

the priority date cluimed

°Y* document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such coimbination
being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

08 AUGUST 1996

Date of mailing of the international search report

05 SEP 1996

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Aulhorizgg,;)fﬁccr o
JEFFREY FREDMAN
Telephone No. (703) 308-0196

Form PCT/ISA/210 (second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/06579

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

US 5,066,382 A (WEINBERGER et al.) 19 November 1991,
column 7, lines 33-48.

HARRISON et al. Capillary electrophoresis and sample injection

systems integrated on a planar glass chip. Anal. Chem. 1991, Vol.

64, pages 1926-1932, see entire document.

WOOLLEY et al. Ultra-high-speed DNA fragment separations
using microfabricated capillary array electrophoresis chips. Proc.
Natl. Acad. Sci. November 1994, Vol. 91, pages 11348-11252,
see entire document.

MATHIES et al. Capillary array electrophoresis: an approach to
high-speed high-throughput DNA sequencing. Nature. Vol. 359,
10 September 1992, pages 167-169, see figure 1.

HUBER et al, High-resolution liquid chromatography of DNA
fragments on non-porous poly(styrene-divinylbenzene) particles.
Nucleic Acids Research 1993, Vol. 21, No. 5, pages 1061-1066,
see entire document.

BALL et al. The use of uracil-N-glycosylase in the preparation of
PCR products for direct sequencing. Nucleic Acids Research
1992, Vol. 20, No. 12, page 3255, see entire document.

KARGER et al. Multiwavelength fluorescence detection for DNA
sequencing using capillary electrophoresis. Nucleic Acids _
Research, 1991, Vol. 19, No. 18, pages 4955-4962, see entire

"l document.

SMITH et al. Quantitative analysis of one-dimensional gel
electrophoresis profiles. CABIOS. 1990, Vol. 6, No. 2, pages 93-
99, see entire document.

AHN etal, A quy integrated micromachined magneitc particle
manipulator and separator. J. Micromechanical Syst. 1993, Vol.
2, No. 1, pages 15-22, see entire document.

JERMAN. 'Electrically activated, normally closed diaphragm
valves'. In: International Conference on Solid State Sensors,
1991, see entire document. I

LIN et al. "Microbubble powered actuator’. In: International
Conference on Solid State Sensors, and Actuators, Transducers,
June 1991, pages 1041-1044.

14, 65, 66

15-18, 20-24, 26,
38-40, 65, 66

15-18, 20-24, 26,
38-40, 51-66

119, 65, 66

28, 65, 66

54-64, 66

54-64, 66

7,25

39

Form PCT/ISA/210 (continuation of second sheet)(July 1992)«

INTERNATIONAL SEARCH REPORT International application No.

PCT/US96/06579

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

TRAUB. Constant-dispersion gisrm spectrometer for channeled
spectra. J. Opt. Soc. Am. A. September 1990, Vol. 7, No. 9,
pages 1779-1791, see entire document.

LOEWEN et al. Grating efficiency theory as it applies to blazed
and holographic gratings. Applied Optics. October 1977, Vol. 16,
No. 10, pages 2711-2721, see entire document.

EP 0 376 611 A2 (THE BOARD OF TRUSTEES OF THE
LELAND STANFORD JUNIOR UNIVERSITY) 04 July 1990,
see entire document.

LIANG et al. Distribution and cloning of eukaryotic mRNAs by
means of differential display: refinements and optimization.
Nucleic Acids Research, 1993, Vol. 21, No. 14, pages 3269-3275,
see entire document.

SWERDLOW et al. Capillary gel electrophoresis for rapid, high
resolution DNA sequencing. Nucleic Acids Research, 1990, Vol.
18, No. 6, pages 1415-1419, see entire document.

COMPTON et al. Capillary Electrophoresis. Biotechniques. 1988,
Vol. 6, No. 5, pages 432-439, see entire document.

KUHR et al. Capillary Electrophoresis. Anal. Chem. 1992, Vol.
64, pages 389R-407R, see entire document.

29-34

29-34

1-66

51-64

1-66

1-66

1-66

Form PCT/ISA/210 {continuation of sccond shee)(July 1992)x

INTERNATIONAL SEARCH REPORT International application. No.
PCT/US96/06579

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2 D Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. D Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(2).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims. >

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
of any additional fee.

3. As only some of the required additional scarch fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanied by the applicant's protest.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

INTERNATIONAL SEARCH REPORT International application No.
. PCT/US96/06579

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (6):

C12Q 1/68, 1/70; C12P 19/34; CO7H 21/02, 21/04; C25B 1/00, 7/00; BO1D 61/42, 61/44; C25D 13/00; GOIN 27/26

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terins used):

APS, MEDLINE, BIOSIS, CAPLUS, WPIDS

search terms: sequencer, sequencing, automat?, machin?, electrophor?, nucleic, DNA, RNA,
protein, solid, phase, loading, comb, separat?, denatur?, adhesion, plate, glass, Peltier,
grooves, etching, capillary, controller, dUTP, degrade, PCR, polymerase, chain

BOX 1I. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single
inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional
examination fees must be paid.

Group I, claim(s) 1-50, 65 and 66, drawn to an apparatus for preparation of biopolymer fragment samples.
Group II, claim(s) 51-53, drawn to a method for generating reaction fragments.
Group 111, claim(s) 54-64, drawn to a method for scquencing DNA.

The inventions listed as Groups I-III do not relate to a single inventive concept under PCT Rule 13.1 because, under
PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The apparatus
of Group 1, which is designed to separate biofragments is not specially adapted in any way to perform the methods of
either Group Il or Group IIl. The apparatus can be used to separate the nucleic acids of Groups II or III but it could
also be used in a varicty of other nucleic acid methods as well as methods of separation of polypeptides, lipids or
carbohydrates. The methods of Groups I or Il are not specially adapted to be performed together or with the
apparatus of Group I and could be performed "by hand” as well as in a variety of other apparatus..

Form PCT/ISA/210 (cxtra sheet)(July 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

