
(19) United States
US 2010O251 196A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0251196 A1
Stern (43) Pub. Date: Sep. 30, 2010

(54) METHOD AND SYSTEM FOR DESIGNINGA
STRUCTURAL LEVEL, DESCRIPTION OF AN
ELECTRONIC CIRCUIT

(75) Inventor: Michael Stern, Tel Aviv (IL)

Correspondence Address:
The Law Office of Michael E. Kondoudis
888 16th Street, N.W., Suite 800
Washington, DC 20006 (US)

(73) Assignee: LOGCCON DESIGN
AUTOMATION LTD., Tel Aviv
(IL)

(21) Appl. No.: 12/816,119

(22) Filed: Jun. 15, 2010

Related U.S. Application Data

(63) Continuation of application No. 1 1/574,667, filed on
Mar. 2, 2007, now Pat. No. 7,769,569, filed as appli
cation No. PCT/IL2005/000935 on Sep. 1, 2005.

Obtaining rules
(201)

Functional description

Obtaining control path
elements

Extracting unresolved variables (204)

Valid State Processing (205)

State Machine Formulation (206)

Synthesizing structural description (207)

(60) Provisional application No. 60/606.425, filed on Sep.
2, 2004.

Publication Classification

(51) Int. Cl.
G06F 7/50 (2006.01)

(52) U.S. Cl. ... 716/5: 716/18

(57) ABSTRACT

A method and system for designing a structural level descrip
tion of an electronic circuit with functional behavior
described by a plurality of rules, the circuit being specified by
data path and control path elements wherein at least one
control path element is provided in a form of unresolved
variable. The design comprises extracting a plurality of unre
Solved variables among the control path elements and auto
mated processing of data path and control path elements for
accomplishing a state machine formulation, wherein the
states of the State machine include states representing at least
combinations of unresolved variables and corresponding
transitions satisfying said plurality of rules and predefined
design criteria.

Obtaining data path
elements

| eun61-I

US 2010/025.1196 A1

(801

Sep. 30, 2010 Sheet 1 of 6

Deriving steps

Levels of abstraction

Patent Application Publication

Z ?un61–

US 2010/025.1196 A1 Sep. 30, 2010 Sheet 2 of 6 Patent Application Publication

Patent Application Publication Sep. 30, 2010 Sheet 4 of 6 US 2010/0251196 A1

ara

S
O

u

9
CS

S
r

Patent Application Publication Sep. 30, 2010 Sheet 5 of 6 US 2010/025.1196 A1

i i i

US 2010/025.1196 A1 Sep. 30, 2010 Sheet 6 of 6 Patent Application Publication

9 ?un6|-

£09 / Z09 /

US 2010/025 1196 A1

METHOD AND SYSTEM FOR DESIGNINGA
STRUCTURAL LEVEL, DESCRIPTION OF AN

ELECTRONIC CIRCUIT

CROSS-REFERENCES TO RELATED
APPLICATIONS

0001. The present application is a Continuation of prior
U.S. application Ser. No. 1 1/574,667, filed Sep. 1, 2005, the
entirety of which is hereby incorporated by reference.

FIELD OF THE INVENTION

0002 This invention relates to the field of computerized
electronic circuit design and, more particular, to high-level
synthesis of structural (e.g. RTL) design description.

BACKGROUND OF THE INVENTION

0003 Typical circuit design methodology involves pro
viding an abstracted description of the circuit and transform
ing it into a physical layout with an aid of a synthesis tool(s).
Generally, the design flow involves various levels of design
abstraction and corresponding deriving steps, as will be fur
ther detailed with reference to FIG. 1. This process is time
consuming and is subject to human error. The rapidly increas
ing complexity of modern electronic circuit architecture has
often forced designers to employ computer-aided techniques.
0004. The problem to automate the transformation from
system description to physical layout has been recognized in
prior art and various systems and methods have been devel
oped to provide a solution.
0005 For example, U.S. Pat. No. 5,537,580 (Giomi et al.)
discloses a method for fabricating an integrated circuit
including the steps of: (a) describing the functionality of an
integrated circuit; (b) extracting a register level State machine
transition table of the state machine from the hardware
description language; (c) generating a logic level state tran
sition table representing the state machine from the register
level state machine description; (d) creating a state machine
structural netlist representing the state machine from the logic
level state transition table; and (e) combining the state
machine structural netlist with an independently synthesized
structural netlist to create an integrated circuit structural
netlist including the State machine to provide a basis for chip
compilation, mask layout and integrated circuit fabrication.
The method results in a synchronous state machine being
extracted from a register-transfer (RT) level representation.
0006 U.S. Pat. No. 6,415,420 (Cheng et al.) discloses a
method using at least a portion of a control data flow graph
(CDFG) which includes multiple control structures in a com
puter readable storage medium representing at least a portion
of a high level design language (HDL) description of an
actual or planned logic circuit to evaluate a need for a sequen
tial state element in the portion of the logic circuit comprising
producing a graph structure in the storage medium by provid
ing a path origination node in the storage medium; providing
a path destination node in the storage medium; producing
respective complete paths between the path origination node
and the path destination node by separately concatenating
each branch of a first control structure of the CDFG with each
branch of a second control structure of the CDFG such that a
different respective complete path is produced for each pos
sible combination of a respective branch from the first control
structure and a respective branch from the second control
structure; associating respective complete paths with respec

Sep. 30, 2010

tive control statements associated in the CDFG with corre
sponding branches that have been concatenated with other
corresponding branches to produce Such respective complete
paths; and traversing respective complete paths of the graph
information structure to determine whether there is a respec
tive path that is not associated with a respective control state
ment.

0007 U.S. Pat. No. 6,421,808 (McGeer et al.) discloses
hardware design language V++. V++provides an automati
cally designed and implemented communications protocol,
embedded by a compiler in the design itself. This protocol
permits transparent, automatic communication between
modules in a hardware design. The protocol generalizes cur
rent design practice and impacts neither the cycle time, nor
the area, of a typical system. Incorporating this protocol in the
language itself frees the designer from the task of writing
communications code, and ensures that two communicating
modules follow the same low-level protocol. In V++each
program is directly interpreted as a network of communicat
ing finite state machines. The composition of two V----pro
grams is a V----program, with well-defined, deterministic
semantics.

0008 U.S. Pat. No. 6,557,160 (Shalish) discloses a system
and method for providing correlation of HDL signal names in
the structural gate level description. In one embodiment, an
HDL behavioral description of a circuit is processed by a
correlation compiler to identify intermediate signals. The
behavioral description is modified to specify that the inter
mediate signals are primary outputs of the circuit. The modi
fied behavioral description is then processed by a synthesis
tool to generate a structural description corresponding to the
modified behavioral description. The structural description
includes as outputs the identified intermediate signals.
0009 U.S. Pat. No. 6,591,403 (Bass et al.) discloses a
method and system in Support thereof, for specifying hard
ware description language assertions targeting a diverse set of
Verification tools to provide verification of a logic design by
the set of verification tools. The constraints and properties of
the logic design are described in the HDL using one or more
high-level assertion specification macros representative of
the assertions of the logic design. The one or more assertion
specification macros are stored as components within a speci
fication macro library for later retrieval as needed. Upon
reading original HDL Source code containing assertion macro
calls to the assertion specification macros, a specification
macroprocessor accesses the definitions of the assertion mac
ros stored, if contained within a definition library, and uses
these definitions as templates to automatically write expan
sion HDL code into the HDL source code and to automati
cally store tool-specific HDL code into corresponding tool
specific modules libraries for later use by one or more
verification tools. If definitions of one or more of the assertion
macros are not contained with the definition library, they may
be written as needed.

(0010 U.S. Pat. No. 6,597.664 (Mithal et al.) discloses a
method for specifying and synthesizing a synchronous digital
circuit by first accepting a specification of an asynchronous
system in which stored values are updated according to a set
of state transition rules. For instance, the State transition rules
are specified as a Term Rewriting System (TRS) in which
each rule specifies a number of allowable state transitions,
and includes a logical precondition on the stored values and a
functional specification of the stored values after a state tran
sition interms of the stored values prior to the state transition.

US 2010/025 1196 A1

The specification of the asynchronous circuit is converted
into a specification of a synchronous circuit in which a num
ber of State transitions can occur during each clock period.
The method includes identifying sets of state transitions, for
example by identifying sets of TRS rules, that can occur
during a single clocking period and forming the specification
of the synchronous circuit to allow any of the state transitions
in a single set to occur during any particular clocking period.
0011 U.S. Pat. No. 6,604.232 (Okada et al.) discloses a
high-level synthesis method comprising the steps of convert
ing an operating description describing one or more opera
tions to a control data flow graph (CDFG) including one or
more nodes representing the one or more operations and one
or more I/O branches representing a flow of data, Scheduling
the CDFG obtained by the converting step, and allocating one
or more logic circuits required for executing the CDFG
obtained by the scheduling step. A portion of the CDFG in the
converting step is subjected to logical synthesis in advance to
generate a node, and the portion of the CDFG is replaced with
that node.
0012 U.S. Pat. No. 6,675.359 (Gilford et al.) discloses a
method and apparatus for recognizing a state machine in
circuit design in a high-level IC description language. The
present invention analyzes high-level IC description lan
guage code, Such as VHDL and Verilog(R), of an IC design and
extracts description information corresponding to a state
machine. The description information can be, for example,
the high-level IC description language code corresponding to
the state machine, a state diagram of the state machine, a state
table for the state machine, or other representation of the state
machine. In one embodiment, the present invention identifies
a set of one or more processes as defined by VHDL “process”
statements. By identifying one or more clocked processes,
one or more transition processes, and one or more output
processes, the present invention provides a state machine
Summary to describe the state machine identified in the high
level IC description language code.
0013 International Publication No. WO2004/084086
(Möhlet al.) discloses a method for generating descriptions of
digital logic from high-level source code specifications is
disclosed. At least part of the source code specification is
compiled into a multiple directed graph representation com
prising functional nodes with at least one input or one output,
and connections indicating the interconnections between the
functional nodes. Hardware elements are defined for each
functional node of the graph and for each connection between
the functional nodes. Finally, a firing rule for each of the
functional nodes of the graph is defined.

SUMMARY OF THE INVENTION

0014 AS any mistake on a step of structural (e.g. register
transfer level) design may drastically affect the accuracy of
the whole design flow, it would clearly be beneficial to ensure
consistency of derived circuit structure.
0015. According to some aspects of the present invention,
there is provided a method of designing a structural level
description of an electronic circuit, the method comprising:

0016 (a) obtaining data path and control path elements
specifying the electronic circuit, wherein at least one
control path element is provided in a form of unresolved
variable;

0017 (b) obtaining plurality of rules:
0018 (c) extracting a plurality of unresolved variables
among the control path elements;

Sep. 30, 2010

0.019 (d) automatic processing of data path and control
path elements for obtaining values of unresolved vari
ables satisfying said plurality of rules and predefined
design criteria.

0020. According to further aspects of the present inven
tion, the automatic processing may be provided for accom
plishing a state machine formulation, wherein the states of the
state machine include states representing at least combina
tions of unresolved variables and corresponding transitions
satisfying said plurality of rules and predefined design crite
18

0021. According to further aspects of the present inven
tion, there is provided a system for designing a structural level
description of an electronic circuit with functional behavior
described by a plurality of rules, the circuit being specified by
data path and control path elements wherein at least one
control path element is provided in a form of unresolved
variable; the system comprising a processor for automatic
processing of data path and control path elements for accom
plishing a state machine formulation, wherein the states of the
state machine include states representing at least combina
tions of unresolved variables and corresponding transitions
satisfying said plurality of rules and predefined design crite
18

0022. According to further aspects of the present inven
tion, the automatic processing may further comprise:

0023 (a) asserting probable values for unresolved vari
ables among the plurality of unresolved variables and
specifying potential combinations of said values;

0024 (b) specifying data path elements being con
trolled by said plurality of unresolved variables;

0.025 (c) validating, in respect of each of the specified
combinations of values of unresolved variables among
the plurality of the unresolved variables, whether said
data path elements comply with said plurality of rules
and predefined design criteria and, thus giving rise to
valid combinations of values of the plurality of unre
solved variables to be specified in states of said state
machine.

0026. According to further features of the present inven
tion, the automatic processing may comprise:

0027 (a) asserting probable values for unresolved vari
ables among the plurality of unresolved variables and
specifying potential combinations of said values;

0028 (b) specifying data path elements being con
trolled by said plurality of unresolved variables;

0029 (c) defining combinations of resulting states of
the data path elements in respect of each specified com
bination of values of the plurality of unresolved vari
ables in accordance with the plurality of rules;

0030 (d) validating, in respect of each specified com
bination of values of unresolved variables among the
plurality of unresolved variables, if the corresponding
combination of said resulting states of the data path
elements meet predefined design criteria, thus giving
rise to valid combinations of values of the plurality of
unresolved variables to be specified in states of said state
machine.

0031. According to further aspects of the present inven
tion, the predefined design criteria comprise criterion of logic
contradiction; criterion of data integrity; and criterion of
design flow enabling.

US 2010/025 1196 A1

0032. Thus, the present invention, in some of its aspects, is
aimed to provide a novel solution capable of facilitating cor
rectness preserving educing of the structural level design.

BRIEF DESCRIPTION OF THE DRAWINGS

0033. In order to understand the invention and to see how
it may be carried out in practice, a preferred embodiment will
now be described, by way of non-limiting example only, with
reference to the accompanying drawings, in which:
0034 FIG. 1 illustrates a typical electronic circuit design
flow as known in the art.
0035 FIG. 2 illustrates a process of high-level synthesis in
accordance with certain embodiments of the present inven
tion.
0.036 FIGS. 3a and 3b illustrate a schematic functional
description of an exemplary electronic circuit.
0037 FIG. 4 illustrates a valid state processor in accor
dance with certain embodiments of the present invention.
0038 FIG. 5 illustrates a state machine formulated in
accordance with certain embodiments of the present inven
tion.
0039 FIG. 6 illustrates meta-language description of
functional behavior rules in accordance with certain embodi
ments of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

0040. In the following detailed description, numerous spe
cific details are set forth in order to provide a thorough under
standing of the invention. However, it will be understood by
those skilled in the art that the present invention may be
practiced without these specific details. In other instances,
well-known methods, procedures, components and circuits
have not been described in detail, so as not to obscure the
present invention. In the drawings and description, identical
reference numerals indicate those components that are com
mon to different embodiments or configurations.
0041 Unless specifically stated otherwise, as apparent
from the following discussions, it is appreciated that through
out the specification discussions utilizing terms such as “pro
cessing, “computing, "calculating”, “determining, or the
like, refer to the action and/or processes of a computer or
computing system, or processor or similar electronic comput
ing device, that manipulate and/or transform data represented
as physical. Such as electronic, quantities within the comput
ing system's registers and/or memories into other data, simi
larly represented as physical quantities within the computing
system's memories, registers or other Such information stor
age, transmission or display devices.
0042 Bearing this in mind, attention is drawn to FIG. 1
illustrating a typical electronic circuit design flow as known
in the art (e.g. see R. Namballa et al. “Control and Data Flow
Graph Extraction for High-Level Synthesis IEEE Computer
Society Annual Symposium on VLSI, 2004). The design flow
involves various levels of design abstraction. The highest
level of the design abstraction is a system level specification
101, which mostly gives its description in a plain natural
language. The next, lower level is a functional description 103
which specifies the functions of the electronic circuit (e.g.
operations, order and dependences thereof) while avoiding
the structural details. The next abstraction level is a structural
description 105 (e.g. register transfer level (RTL) descrip
tion), which provides the structuralism of the design and

Sep. 30, 2010

comprises instances of modules (e.g. adders, multipliers, reg
isters, etc.) and interconnections thereof. The next level of
abstraction is an implementation description 107 (e.g. list of
logic gates and the interconnections between them) resulting
in a netlist. A physical layout 109 virtually places the netlist
on a wafer. Introduced in the system description, the behavior
view (i.e. description of system behavior) of the electronic
circuit may be further detailed at the lower levels of abstrac
tion (e.g. as a set of rules and conditions in the functional
description, finite state machines at the structural and imple
mentation levels of abstraction, etc.). Generally, the structural
and lower-level descriptions are composed by writing code in
a Hardware Description Language (HDL). For that purpose
there are several languages known in the art, common among
them being Verilog and VHDL, but other syntaxes may be
used.

0043. Accordingly, the process of translating the system
specification into a hardware circuit exhibiting the described
behavior may comprise at least the following steps:

0044 a system-level design 102 of the functional
description from the system description;

0.045 a high-level synthesis 104 of the structural (e.g.
RTL) description from the functional description;

0046 a logic level synthesis 106 resulting in the imple
mentation (e.g. gate level) description, and

0047 a layout synthesis 108 emulating a real physical
location of the registers and gates, e.g. Viewing them on
a screen or by printable drawings.

0048. Note that the invention is not bound by the specific
design flow described with reference to FIG.1. Those versed
in the art will readily appreciate that the invention is, likewise,
applicable to any design flow comprising educing of the
structural level design.
0049 Bearing this in mind, attention is drawn to FIG. 2
illustrating a process of high-level synthesis in accordance
with certain embodiments of the present invention.
0050 Typically, at the functional level of abstraction, a
circuit (or Sub-component of a circuit) can be described in
terms of inputs to the circuit, outputs from the circuit, and the
processes (and their conditions) which are performed by the
circuit and thereby transform the input signals into the output
signals. The non-limiting example of functional description is
further illustrated with reference to FIG. 3.

0051. In accordance with certain embodiments of the
present invention, the process of high-level synthesis starts by
first obtaining from the functional description control path
elements 202, data paths elements 203 and a set of rules 201
describing functional behavior of the circuit. The set of rules
may include also conditions comprised in the functional
description. Some of the rules may be related to the data path
and/or control path elements, while Some rules may represent
additional behavior constrains introduced by a designer.
0052) Obtaining data path and control path elements from
the functional description is well known in the art and
described, for example, in Wolf, Wayne, FPGA-Based System
Design, Prentice-Hall Publishers, Inc., 2004. This process
may be done entirely automatically, automatically with a
designer intervention and entirely manually. In certain
embodiments of the present invention a designer may start to
specify data and control path elements having functional
description or alike just in mind.

US 2010/025 1196 A1

0053. The data path comprises at least one of the follow
ing:

0054 Operational elements responsible for arithmetic,
logical or relational operations, e.g. adders, multiplex
ers, etc.

0055 Storage elements representing assignment opera
tions associated with variables and signals e.g. hardware
registers, FIFOs, latches, etc.

0056 Call elements denoting calls to subprogram mod
ules.

0057 Interfaces, e.g. bus interface, module interface,
etc.

0.058 Others may also apply.
0059. The data path elements may contain variables or
signals explicitly controlling other design elements (e.g. bus
MSB bit controlling a mux operation).
0060. The control path comprises elements responsible for
operations, like conditionals constructs, loop constructs,
sequencing and other notations controlling the data path ele
ments and/or derivates thereof.

0061 The control path comprises at least one of the fol
lowing:

0062 variables which control some other element;
0063 start conditions and end conditions (in pairs or
separately);

0064 unresolved variables:
0065 data path validity indications;
0.066 others may also apply

0067. As a result of this process, all design elements shall
be specified as data path or control path elements. The control
path elements may be a function from other elements and
depend, for example, on values of input data, existence of
valid data at inputs or outputs, results of a function applied to
the inputs, etc. As a result, the control path may comprise
unresolved variables, i.e. having no explicit expression within
the data path, control path and/or their combination. It is
important to note that in accordance with certain aspects of
the present invention, all unresolved variables shall be
derived as control path elements.
0068. In accordance with certain embodiments of the
present invention, the next step of the high-level synthesis is
extracting 204 the unresolved variables in accordance with
the set of rules 201. This step is followed by valid state
processing, wherein at least one input to the processing com
prises at least one unresolved variable. The valid state pro
cessing is further detailed with reference to FIG. 4 and results
in definition of valid states of unresolved variables and pos
sible transitions, thus enabling the state machine formulation
206. The formulated state machine is processed to provide
corresponding resolution of the variables. Thus, control path
elements may be fully specified for resulting description 207.
In accordance with certain embodiments of the present inven
tion the processing is providing in a correctness-preserving
manner as further detailed with reference to FIG. 4.

0069. Referring to FIGS. 3a and 3b, there are illustrated,
by way of non-limiting example, a schematic functional
description of an exemplary circuit. FIG. 3a schematically
illustrates inputs, outputs and the data path structure of the
circuit, wherein FIG.3b illustrates a relationship of variables
thereof.

Sep. 30, 2010

(0070. As illustrated in FIG. 3a, the exemplary Flip-Flop
circuit 300 has the following elements:

0071. DI (Data In) input signal (represents storage ele
ment value to be sampled by DO upon certain condi
tions)301;

0072 VI (Valid In) input signal 302
0.073 “GO’ input signal 303
0074 "END input signal 304
0075 DO (Data Out) output signal (represents storage
element value to be sampled by DOV upon certain con
ditions) 305

0076) DOV (Data Out Virtual) external reflected signal
(represents storage element which samples DO upon
certain conditions) 306

0077. VO (Valid Out) output signal 307
0078 RO (Ready-out) output signal 309
0079) “DONE” output signal 310
0080 DO.v signal of internal validation of DO output
signal 308

I0081. The following design rules describe the required
functional behavior of the exemplary circuit:

0082) 1) Asserting of one clock pulsed “GO’ input sig
nal starts off receiving the input data (DI) signal;

I0083. 2) Asserting of one clock pulsed “END” input
signal ends off receiving the input data (DI) signal;

0084 3) Data must be transferred from the input to the
output (from DI to DO) if P1 is true and conditioned with
the following: VI input signal is provided together with
the RO output signal and must not be transferred other
wise;

I0085 4) “P1’ is defined as “true” the cycle following
the “GO cycle and until end of the “END” cycle:

I0086 5) An availability of the output data (DO) for
further processing is Subject to provision of VO signal;

I0087 6) “P3” is defined as “true” the cycle following
last P1 true cycle until DO contains no valid data, i.e.
DO.v is false;

I0088 7) Asserting of one clock pulsed “DONE” signal
shall be provided in the cycle following P3 last true
cycle.

I0089. The following rules describe design criteria further
detailed with reference to FIG. 4.

0090 8) Data should not be overridden or generated
within the circuit;

(0.091 9) The “GO signal cannot be re-asserted until
assertion of DONE signal (example of design constrains
introduced by designer).

0092 10) Data should be accepted (thus, sampled from
DI into DO) whenever possible and be provided for
DOV whenever possible (subject to rule 8).

(0093. Accordingly, FIG. 3b illustrates the relationship of
variables for the exemplary circuit with reference to FIG.3a
and the above requirements.
0094. An arrow directed from variable A to variable B
means that variable A influences variable B, dual directed
arrow means that variables A and B influence each other or
their influencing state cannot be determined a-priori (e.g.
unresolved variables in Some situations).
(0095 Inaccordance with rules 4 and 6 above, P1 (311)and
P3 (312) represent start and end conditions of the circuit
operation process.
0096. Accordingly, from the above functional description
of the exemplary circuit, one can derive the data path elements
DI, DO, DOV controlled by the control path elements VI, VO,

US 2010/025 1196 A1

RO, GO, END, DONE and DO.V. Among these control path
elements RO, VO and DO.V have no explicit expressions and,
hence, are unresolved variables. The other control path ele
ments have explicit expression assignments: e.g. DO will
sample DI under rule 3 condition supervision, DOV will
sample DO under rule 5, DONE is generated according to rule
7, P1 and P3 are generated according to rules 4 and 6 respec
tively.
0097. The obtained data path and control path elements
are further processed in order to accomplish a state machine
formulation. The states of the formulated state machine shall
represent combinations of unresolved variables facilitating
transitions satisfying design rules describing functional
behavior of the circuit (e.g. illustrated with reference to FIG.
3a). The transitions shall also match correctness-preserving
design criteria as will be further detailed with reference to
FIG. 4. In certain embodiments of the present invention, some
of the states of the formulated state machine may represent
combinations of resolved and unresolved variables and/or
Some of the States may represent only resolved variables.
0098. The corresponding valid state processor (VSP) is
illustrated in FIG. 4 by way of non-limiting example. The
VSP comprises at least two categories of inputs:

0099 a data path input 401 comprising data path ele
ments (DI, DO, DOV) and

0100 a control path input 402 comprising unresolved
variables (RO, VO and DO.V) controlling the data path
elements. The control path input may comprise, also, the
resolved variables or part of them.

0101 Please note that all data path elements comprised in
the data path input shall be related to the same data flow (or its
part) and all elements of the processing dataflow (or its part)
shall be comprised in said input 401. Accordingly, the control
path input shall comprise all unresolved variables controlling
input data path elements. For a complicated data flow (e.g.
split, merged, large, etc.) and/or for a control flow with large
amount of unresolved variables, the data path and the control
path inputs may be divided into several parts for Sub-process
ing in a similar manner.
0102) The VSP asserts probable values (states) for the
unresolved variables comprised in the control path input and
specifies potential combinations of said values. In the illus
trated example a state table 403 includes possible combina
tions of probable states (Idle, 1-7) of unresolved variables
comprised in the control path input for the exemplary circuit
illustrated with reference to FIGS. 3a and 3b. Each of the
illustrated unresolved variables may have 2 states: an active
state (denoted as 1) facilitating a flow of the corresponding
data path elements, and a passive state (denoted as 0) prevent
ing the flow of the corresponding data path elements.
0103) The examples of active and passive states of the
unresolved variables for the exemplary circuit illustrated with
reference to FIGS. 3a and 3b, are illustrated in Table 1.

TABLE 1.

RO VO DO.w

Active state (1) implied possible forces output data implies data
data movement (if sampling existence in a
VI = 1) storage element

Passive state forces DO not to forces DO to be
(O) sample DI empty (no valid

data)

forces DO not to
be sampled

Sep. 30, 2010

0104. The idle state in the state table 403 corresponds to
passive states (0) of all of its input elements. In a conflict case
(e.g. if there are at least two expressions comprising the same
variable, while the same value of the variable may cause
different (passive or active) states in different expressions),
any of the expressions may be selected for defining the pas
sive state of that variable. If it follows that the resulting state
machine cannot be realized, the contradicting expression
shall be selected for defining the idle state, and the state
generation process shall be re-started. In a case where state
machine cannot be realized, a user can promptly alter design
specifications.
0105. In accordance with certain embodiments of the
present invention, the VSP processes all specified combina
tion of probable states of the unresolved variables in order to
derive the valid states (combinations) of said variables.
0106 Two combinations of probable states of unresolved
variables are considered to be valid if the data flow corre
sponding to the transition between the states meets predefined
design criteria and satisfies predefined design rules describ
ing at least functional behavior of the circuit (referred here
inafter as “legal transition').
0107. In accordance with certain embodiments of the
present invention, the processing may be provided as follow
ing:

0.108 a) VSP starts processing from the idle state and
processes the combinations of probable values of unre
Solved variables until found all states enabling a legal
transition from the idle state;

0.109 b) VSP continues the processing in respect of all
pairs of probable states, wherein one of the states in the
pair is the last previously derived valid state, until found
all state enabling a legal transition from these states;

0110 c) VSP repeats the processing in a manner
described in b) until no new valid state can be derived.

0111. It should be noted that the invention is not bound by
the specific algorithm of processing the combination of prob
able values of the unresolved variables in order to derive the
valid states. It should be also noted that in general cases, after
and/or during deriving of valid state, the state machine for
mulation may be done (or reduced thereof) by different
known techniques (see e.g. “Formal Hardware Verification
with BDDs: An Introduction.” IEEE Pacific Rim Conference
on Communications, Computers, and Signal Processing
(PACRIM), pp. 677-682, 1997).
0.112. In accordance with certain embodiments of the
present invention, the predefined design criteria shall enable
correctness-preserving transitions between the valid states.
The criteria may comprise the following requirements:

0113 eliminate logic contradiction, i.e. the data flow
between the valid states shall not cause any simulta
neous assertion of a statement and its negation and/or
any violation of a design rule (see, e.g., “Foundations of
Digital Logic Design' World Scientific, 1998 for a digi
tal logic design introduction);

0114 keep data integrity of the data flow in accordance
with requirements of a specific design (e.g. in bus trans
action the data flow between two valid states shall be
preserved from data generation and/or data overridden;
data flow may not be preserved from occasional data
sampling by an interrupt signal thus loosing some data;
data flow may not be preserved from a random number
generator in which data is generated inside a data path,
etc.);

US 2010/025 1196 A1

0115 keep data flow enabling in accordance with
requirements of a specific design, i.e. data flow shall be
enabled whenever possible Subject to design rules (e.g.
data flow shall be always enabled if new data is intro
duced and disabled for other conditions thus eliminating
“holes' in the data flow).

0116 keep various demands and constrains introduced
by user as additional design rules and functionality, etc.
(e.g. requirements introduced in the rule 9).

0117. Accordingly, VSP specifies data path elements
being controlled by the unresolved variables and, for each of
the specified combinations of the probable states of the unre
Solved variables, analyzes matching of the resulting data flow
between a pair of combinations to the design rules and the
design criteria, and specifies the valid combinations 405 of
the unresolved variables. The analysis of resulting data flow
shall be provided for all combination of input conditions
(including resolved variables and respective probable values
of unresolved variables).
0118. In accordance with certain embodiments of the
present invention, the analysis of the resulting data flow may
comprise specification, in respect of each of the specified
combinations of the probable states of the unresolved vari
ables, of resulting behavior states of the data path elements
404 in accordance with design rules, and further analysis of
matching the resulting behavior states to the design criteria.
0119) A data path element may have 3 states describing the
data flow behavior:

I0120 Stop (S) when data movement is not possible;
I0121 Flow (F) when data movement is compulsory;
and

0.122 Stop/Flow (S/F) when data movement is possible
but not compulsory.

0123. The resulting behavior states of the data flow ele
ments 404 are illustrated in FIG. 4 by way of non-limiting
example:

0.124 the states of DOV data path element, correspond
ing to all combinations of probable states where VO=0
(Idle, 1, 4 and 5) shall be S; and corresponding to all
combinations of probable states where VO=1 (2, 3, 6,
and 7) shall be F (data flow is compulsory), as availabil
ity of the output data (DO) for further processing by an
external circuit (DOV sampling) is subject of VO provi
sion, (see rule #5 with reference to FIG. 3):

0.125 the states of DO data path element, corresponding
to all combinations of probable states where RO=0 (Idle,
1, 2 and 3) shall be S; and corresponding to all combi
nations of probable states where RO=1 (4, 5, 6 and 7)
shall be S/F (data flow is possible if VI=1), as the data
cannot be transferred from the input to the output (from
DI to DO) without asserting of RO signal (see rule #3
with reference to FIG. 3):

0.126 the states of DI data path elements are similar to
those of DO data path element

0127 Thus, in accordance with certain embodiments of
the present invention, the resulting behavior states of the data
path elements are defined for each combination of the prob
able states of the unresolved variables subject to specified
design rules. The valid state processor may be configured to
derive valid states of unresolved variables 405 by processing
the resulting behavior states 404 of data path elements in
accordance with design criteria.

Sep. 30, 2010

I0128 Bearing this in mind, attention is drawn to non
limiting example of processing the combinations of unre
solved variables 403 and corresponding data flow resulting in
the valid combinations of the unresolved variables (valid
states) 405. The processing is provided subject to design
criteria formulated above and considering given design rules
1-10 detailed with reference to FIG.3a and input conditions.
The similar reasoning in the square breaks is related to analy
sis based on behavior states of the data path elements.
0129. Idle State
0.130 Assuming next P1 =0 (VI input is not relevant for the
Idle state). GO is possible according to design criteria (con
strain introduced by a designer in rule (9), educing may be
provided, for example, by techniques described in the
referred above “Formal Hardware Verification with BDDs:
An Introduction). Combinations 4-7 fail on logic contradic
tion with rule (3) as P1 =0 means that no information flow is
possible. Combinations 1 and 3 fail on data integrity (rule 8),
as DO.v shall be 0, as in Idle State no data enter DO“5” state
of DO in idle in 404. Combination 2 fails on data integrity
(rule 8) since outer circuit cannot see a valid signal when no
data exist in DOThe resulting behavior state of DOV for this
combination is “F” meaning that the flow is compulsory. As
DO.V=0, no data shall exist in DO, hence the combination
fails on data integrity. Accordingly, when next P1 =0, next
valid state is Idle again.
I0131 Assuming next P1 =1.. GO is possible according to
rule (9) and is compulsory according to rule (4). Combina
tions 1,3,5 and 7 fail on data integrity (rule 8), as no data enter
DO in Idle, so DO.v shall be 0“5” state of DO in idle in 404.
Combinations 2 and 6 fail on data integrity (rule 8), since
outer circuit cannot see a valid signal as no data exist in DO
The resulting behavior state of DOV for these combinations
is “F” meaning that the flow is compulsory. As DO.v=0, no
data shall exist in DO, hence these combinations fail on data
integrity. Idle combination fails on design flow enabling
(rule 10) since input data is blocked for no purpose. Accord
ingly, when next P1 =1, next valid state is combination #4.
(0132 State #4
0.133 Assuming next P1-0. GO is not possible according
to rule (9). Combinations 4-7 fail on logic contradiction with
rule (3) as P1 =0 means that no flow is possible. Combination
2 fails on data integrity (rule 8) since outer circuit can’t see a
valid signal when no data existin DO. The resulting behavior
state of DOV for this combination is “F” meaning that the
flow is compulsory. As DO.V=0, no data shall exist in DO,
hence the combination fails on data integrity. If VI-0, then
combinations 1 and 3 fail on data integrity as DO.v must be 0
if no new data has been entered “S” state of DO in state 4
(when VI-0) in 404. Accordingly, next valid state is Idle. If
VI=1, then combinations Idle and 2 fail on data integrity as
DO.v must be 1 if new data has been entered “F” state of DO
in state 4 (when VI =1) in 404. Combination 1 fails on design
flow enabling (rule 10) since output data is blocked for no
purpose. Accordingly, next valid state is combination #3.
0.134 Assuming next P1 =1. If VI-0 then combinations 1,
3, 5 and 7 fail on data integrity as DO.V must be 0 if no new
data has been entered “S” state of DO in state 4 (when VI-0)
in 404. Combinations 2 and 6 fail on data integrity (rule 8)
since outer circuit cannot see a valid signal when no data exist
in DO (actually these combinations will always fail since
there is an inherent data integrity problem. The analysis
shows these cases each time only for completeness purpose.
Attention is drawn to the fact that in general. Some specific

US 2010/025 1196 A1

state and/or state transition can fail on more than one design
criteria simultaneously). Idle combination fails on design
flow enabling (rule 10) since input data is blocked for no
purpose. Accordingly, next valid state is combination #4. If
VI=1, then combinations Idle, 2, 4 and 6 fail on data integrity.
DO.v must be 1 if new data has been entered “F” state of DO
in state 4 (when VI=1) in 404). Combinations 1 and 5 fail on
design flow enabling (rule 10) since output data is blocked for
no purpose. Combination3 fails on design flow enabling (rule
10) since input data is blocked for no purpose. Accordingly,
next valid state is combination #7.
0135) In a similar manner the processing is provided for
combinations 3 and 7. Table 2 below summarizes the illus
trated steps of the processing. “LC stands for a validation
failure because of logic contradiction, “DI' stands for a vali
dation failure because of data integrity and “DF stands for a
validation failure because of design flow requirements.

TABLE 2

Next
Walid Combinations Walid

States Condition Idle 2 3 4 5 6 7 States

Idle leX DI D DI LC LC LC LC Idle
P1 -

Idle, Next DF DI D DI DI DI DI State
P1 i4

State leX DI D DI LC LC LC LC Idle
#4, P1 = 0;

VI- O
State leX DI DF D LC LC LC LC State
i4 P1 = 0; #3

VI = 1
State leX DF DI D DI DI DI DI State
#4, P1 = 1; i4

VI = O
State leX DI DF D DF DI DF DI State
i4 P1 = 1; #7

VI = 1
State leX DI D DI LC LC LC LC Idle
#7 P1 = 0;

VI =
State leX DI DF D LC LC LC LC State
#7 P1 = 0; #3

VI = 1
State leX DF DI D DI DI DI DI State
#7 P1 = 1; i4

VI = O
State leX DI DF D DF DI DF DI State
#7 P1 = 1; #7

VI =
State Always DI D DI LC LC LC LC Idle
#3

0136. It should be noted that the invention is not bound by
the specific structure of the valid state processor and data
representation described with reference to FIG. 4. Those
versed in the art will readily appreciate that the invention is,
likewise, applicable to any other processing with equivalent
and/or modified functionality which may be consolidated or
divided in another manner.
0.137 The above processing and deriving of valid states
facilitates formulation of behavior state machine illustrated in
FIG. 5 by way of non-limiting example.
0138. It should be noted that the term “state machine' used
in this patent specification should be expansively construed to
cover any kind of a model of sequential behavior composed of
states and transitions, when behavior cannot be defined by the
knowledge of inputs only, but depends at least on the

Sep. 30, 2010

sequence of input changes. The model may be represented in
different forms as, for example, finite-state machines, control
& data graphs, state diagrams, behavior tables, the models
used in PLC languages, Petry-nets, etc. A state stores infor
mation about the past, i.e. it reflects the input changes from
the system start to the present moment. A transition indicates
a state change and is described by a condition that would need
to be fulfilled to enable the transition.

0.139. The state machine illustrated in FIG. 5 comprises
the valid states presented as nodes (Idle, 3, 4 and 7 per
numeration of FIG. 4) and transitions between them pre
sented as arcs connecting the nodes. This exemplary state
machine corresponds to the valid state derived by the process
ing illustrated, by way of non-limiting example, with refer
ence to FIG. 4. Since the variables dependencies and their
explicit expressions in the illustrated example are fairly
simple, the state machine may be formulated by identifying
possible values of next state of P1 condition.
(O140 P1 logic rises to 1 with GO and returns to 0 with
END (rule 4). Next P1 is hence straightforward. P3 logic
raises to 1 with P1 active and END while returning to 0
with DO.v (rule 6). DONE logic raises for a cycle if P3 is
active and DO.v is satisfied (rule 7). DO.V., RO and VO are
determined easily from the above resulted state machine.
DO.v is 1 in States 3 or 7. RO is 1 in States 4 or 7. VO is 1
in states 3 or 7.

0141. The following Table 3 summarizes the transitions
illustrated in FIG. 5. The names of states may be assigned in
various ways, for example information flow situations (as
illustrated in FIG. 5), user defined rules, etc. State machine
inputs are: P1 (which convey GO and END signals in it) and
VI.

TABLE 3

Arc if Arc direction Condition Comments

SO1. From IDLE to Next P1 = 1 Operation start
WAIT FOR FLOW condition exists

SO2 From IDLE to IDLE: Next P1 = O
503 From WAIT FOR FLOW Next P1 = 1 and New data

o ACTIVE FLOW VI = coming in
504 From WAIT FOR FLOW Next P1 = 1 and

o WAIT FOR FLOW: VI = 0
505 From WAIT FOR FLOW WI = 1 and next Last data

o LAST FLOW P1 = 0 coming in
506 From WAIT FOR FLOW WI = 0 and next

o IDLE P1 = 0
507 From ACTIVE FLOW to Next P1 = 1 and New data

ACTIVE FLOW VI = coming in while
old data is
taken out

508 From ACTIVE FLOW to Next P1 = 1 and
WAIT FOR FLOW VI = 0

509 From ACTIVE FLOW to VI = 1 and next Last data
LAST FLOW P1 = 0 coming in while

old data is
taken out

510 From ACTIVE FLOW VI = 0 and next
o IDLE P1 = 0

511 From LAST FLOW to “always' (no
DLE condition)

0142. Thus, in accordance with certain embodiments of
the present invention, the formulated State machine enables
resolving of variables having no explicit expressions and
fully specifying the control path elements.

US 2010/025 1196 A1

0143. The method disclosed in the present invention may
be done entirely automatically, automatically with a designer
intervention at any step, and entirely manually and may use
any programmable language Suitable for design of electronic
circuits. The principles of the present invention also allow
formulation of special language optimized for certain aspects
of the present invention.
0144. Referring to FIG. 6, there is illustrated, by way of
non-limiting example, functional behavior rules describing
design functionality in a meta-language. Connections
between the illustrated code lines and the design rules illus
trated with reference to FIG.3a are the following:
0145 A structure section 601 comprises behavior rules
and conditions related to the data path elements; a control
section 602 comprises behavior rules and conditions related
to the control path elements and an attributes section 603
comprises design criteria conveys general design informa
tion.
0146 Line 1 corresponds to rule 3: DI will be sampled into
DO under P1 control condition.
0147 Line 2 corresponds to rule 5: DO will be sampled
provided VO is asserted. This shows alternative syntax as the
VO condition might be detailed in the control section.
0148 Line 3 corresponds to rule 7: DONE signal is a
sampled version of the end condition of P3 control definition.

ACT

WAIT FOR FLOW:

Sep. 30, 2010

0149 Line 4 corresponds to rule 4: P1 is asserted between
GO and END signals and the flow associated with this con
dition is further conditioned by the existence of VI && RO
logical combination. The virtual indication states that the
relevant virtual condition (i.e. VI && RO) is the only condi
tion upon which the input is considered as valid by the outer
circuit.

(O150 Line5 corresponds to rule 6: P3 is asserted between
end condition of P1 control condition and the non-validity of
the DO data element.

0151. Line 6 corresponds to rule 8: data cannot be gener
ated inside the circuit nor can it be overwritten and ignored
(design criterion of data integrity).
0152 Line 7 corresponds to rule 9: external condition
exists for GO assertion. GO can be asserted only if DONE
was asserted after GO previous assertion. This kind of con
dition limits the possible design state machine transitions.
0153. The certain embodiments of the present invention
facilitate easily structured and short specification of the out
put structural level description. The following Verilog RTL
code illustrates, by way of non-limiting example and without
general definitions (e.g. module, inputs, outputs), structural
level description of the exemplary circuit illustrated with
reference to FIG. 3.

// States encoding
define IDLE 2bOO

define WAIT FOR FLOW 2b01
define ACTIVE FLOW 2b10
define LAST FLOW

if Design registers
reg DO, P1, P3, DONE;
reg 1:0 state;
// Design wires
wire DO valid, RO, VO, next P1;
reg 1:0 next state;
// Information flow through DO
always (c) (posedge clock or negedge reset) begin

end
if State machine logic contro

if (reset)
else if (VI && RO)

ling DO flow
always (a) (state or next P1 or VI) begin case (state)
IDLE:

WAIT FOR FLOW:

WAIT FOR FLOW:
VE FLOW:

if (next P1) leX

(ISO next State = IDLE:
if (next P1 && VI) leX

else if (next P1 && VI) leX

else if (next P1 && VI) leX
LAST FLOW: w

w (ISO next state = IDLE:
ACTIVE FLOW: if (next P1 && VI) next State =

ACTIVE FLOW:

LAST FLOW:

next state=WAIT FOR FLOW:

LAST FLOW:

else if (next P1 && VI)

else if (next P1 && VI) leX

St. next State = ID LE:
LE: next State = ID

end case end
always (c) (posedge clock or negedge reset) begin

end

if (reset)
else state

State <= IDLE:
<= next state;

if Information flow control signals generation
assign DO valid = (state == LAST FLOW) || (state ==

US 2010/025 1196 A1

-continued

ACTIVE FLOW); w
w assign RO = (state == WAIT FOR FLOW
ACTIVE FLOW); w

assign. VO = (state == LAST FLOW)
ACTIVE FLOW);

if Misc. control generation
// GO is valid out of (go, done)
assign next P1 = GO 2 1: (END 20: P1);
always (c) (posedge clock or negedge reset) begin

if (reset) begin

end
else begin

P1 <= next P1;
if (P1 & & END) P3 <= 1;
else if (DO valid) P3 <= 0;

end
end
if Output signals generation
always (c) (posedge clock or negedge reset) begin

if (reset)
DONE <= 0;

else begin
if (P3 & & DO valid) DONE
else DONE

end
end

0154 It is to be understood that the invention is not limited
in its application to the details set forth in the description
contained herein or illustrated in the drawings. The invention
is capable of other embodiments and of being practiced and
carried out in various ways. Hence, it is to be understood that
the phraseology and terminology employed herein are for the
purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the con
cept upon which this disclosure is based may readily be
utilized as a basis for designing other structures, methods, and
systems for carrying out the several purposes of the present
invention.
0155 Those skilled in the art will readily appreciate that
various modifications and changes can be applied to the
embodiments of the invention as hereinbefore described
without departing from its scope, defined in and by the
appended claims.
0156. It will also be understood that the system according
to the invention may be a suitably programmed computer.
Likewise, the invention contemplates a computer program
being readable by a computer for executing the method of the
invention. The invention further contemplates a machine
readable memory tangibly embodying a program of instruc
tions executable by the machine for executing the method of
the invention.

1. A method of designing a structural level description of an
electronic circuit, the method comprising:

(a) obtaining data path and control path elements specify
ing the electronic circuit, wherein at least one control
path element is provided in a form of unresolved vari
able;

(b) obtaining a plurality of rules describing, at least, a
functional behavior of the electronic circuit;

(c) extracting a plurality of unresolved variables among the
control path elements;

(d) automated processing data path and control path ele
ments for accomplishing a state machine formulation,

Sep. 30, 2010

| (state ==

| (state ==

h

wherein the states of the state machine include states
representing at least combinations of unresolved vari
ables and corresponding transitions satisfying said plu
rality of rules and predefined design criteria.

2. The method of claim 1 wherein the automated process
ing facilitates correctness-preserving educing of the struc
tural level design.

3. The method of claim 1 wherein the predefined design
criteria comprise: (a) criterion of logic contradiction; (b) cri
terion of data integrity; (c) criterion of design flow enabling.

4. The method of claim 1 wherein the predefined design
criteria comprise constrains introduced for a special purpose.

5. The method of claim 4 wherein the special purpose is
reduction of power consuming of the electronic circuit.

6. The method of claim 1 wherein the structural level
description comprises register transfer level description.

7. The method of claim 1 wherein the structural description
comprises statements in at least one of the languages selected
from a group comprising Verilog, VHDL, SystemVerilog and
SystemC description.

8. The method of claim 1 wherein said plurality of unre
solved variables includes all unresolved variables comprised
among the control path elements.

9. The method of claim 1 wherein the states of the state
machine include States representing combinations of resolved
and unresolved variables.

10. A method of designing a structural level description of
an electronic circuit, the method comprising:

(a) obtaining data path and control path elements specify
ing the electronic circuit, wherein at least one control
path element is provided in a form of unresolved vari
able;

(b) obtaining plurality of rules;
(c) extracting a plurality of unresolved variables among the

control path elements;

US 2010/025 1196 A1

(d) automated processing of data path and control path
elements for obtaining values of unresolved variables
satisfying said plurality of rules and predefined design
criteria.

11. The method of claim 10 wherein the predefined design
criteria comprise: (a) criterion of logic contradiction; (b) cri
terion of data integrity; (c) criterion of design flow enabling.

12. The method of claim 10 wherein the predefined design
criteria comprise constrains introduced for a special purpose.

13. The method of claim 12 wherein the special purpose is
reduction of power consuming of the electronic circuit.

14. The method of claim 10 wherein the structural level
description comprises register transfer level description.

15. The method of claim 10 wherein the states of the state
machine include States representing combinations of resolved
and unresolved variables.

16. A system for designing a structural level description of
an electronic circuit with functional behavior described by a
plurality of rules, the circuit being specified by data path and
control path elements wherein at least one control path ele

Sep. 30, 2010

ment is provided in a form of unresolved variable; the system
comprising a processor for automated processing of data path
and control path elements for accomplishing a state machine
formulation, wherein the states of the state machine include
states representing at least combinations of unresolved vari
ables and corresponding transitions satisfying said plurality
of rules and predefined design criteria.

17. The system of claim 16 wherein said plurality of unre
solved variables includes all unresolved variables comprised
among the control path elements.

18. The system of claim 16 wherein the states of the state
machine include States representing combinations of resolved
and unresolved variables.

19. A computer program comprising computer program
code means for performing all the steps of claim 1 when said
program is run on a computer.

20. A computer program as claimed in claim 19 embodied
on a computer readable medium.

c c c c c

