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contain any samples from the tile.
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GENERATION OF A CONTROL STREAM FOR A TILE

Background

[0001] Graphics processing systems are used to process graphics data. For
example, an application running on a computing system may need to render
an image of a three dimensional (3D) scene for display to a user. The
application can send graphics data to a graphics processing system to be
rendered, wherein the graphics data describes primitives to be rendered. As
is known in the art, primitives are usually convex polygons, such as triangles
or convex quadrilaterals, wherein a primitive typically has its position in the
rendering space of the graphics processing system defined by the position of
its vertices, and may have its appearance defined by other attributes such as
colour or texture attributes. An object in a scene may be represented by one
or more primitives. As graphics processing systems progress, their capability
to render complex images improves, and as such applications make use of
this and provide more complex images for graphics processing systems to
render. This means that the number of primitives in images tends to increase,
so the ability of a graphics processing system to process the primitives

efficiently becomes more important.

[0002] One known way of improving the efficiency of a graphics processing
system is to render an image in a tile-based manner. In this way, the
rendering space into which primitives are to be rendered is divided into a
plurality of tiles, which can then be rendered independently from each other.
In order to render primitives, a rendering unit uses memory to store
intermediate results (e.g. depth values and primitive identifiers, etc.) for
different sample positions. If the rendering unit operates on a tile at a time
then most (or all) of this memory can be situated “on-chip”, i.e. on the
Graphics Processing Unit (GPU), which might not be possible if the whole
rendering space is rendered at once. Therefore, in a tile-based graphics
system, the number of read and write operations between the GPU and an

off-chip memory (i.e. which may be referred to as “system memory”) is
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typically reduced compared to a non-tile-based graphics system. Since read
and write operations between the GPU and the system memory are typically
very slow and use lots of power (compared to operations performed within the
GPU), tile-based graphics systems are often more efficient (in terms of power
and speed) than non-tile-based graphics systems. A tile-based graphics
system includes a tiling unit to tile the primitives. That is, the tiling unit
determines, for a primitive, which of the tiles of a rendering space the primitive
is in. Then, when a rendering unit renders the tile, it can be given information

indicating which primitives should be used to render the tile.

[0003] For example, FIG. 1 shows some elements of a tile-based graphics
processing system 100 which may be used to render an image of a 3D scene.
The graphics processing system 100 comprises a graphics processing unit
(GPU) 102 and two portions of memory 1044 and 104,. It is noted that the two
portions of memory 1041 and 104, may, or may not, be parts of the same
physical memory, and both memories 104, and 104, may be situated “off-
chip’, i.e. not on the same chip as the GPU 102. Communication between the
memories (1044 and 104,) and the GPU 102 may take place over a

communications bus in the system 100.

[0004] The GPU 102 comprises a pre-processing module 106, a tiling unit 108
and a rendering unit 110. The tiling unit 108 comprises processing logic 112
and a data store 114, and the rendering unit 110 comprises a hidden surface
removal (HSR) module 116 and a texturing/shading module 118. The
graphics processing system 100 is arranged such that graphics data
describing a sequence of primitives provided by an application is received at
the pre-processing module 106. The pre-processing module 106 performs
functions such as geometry processing including clipping and culling to
remove primitives which do not fall into a visible view. The pre-processing
module 106 may also project the primitives into screen-space. The pre-

processing module 106 outputs primitives to the tiling unit 108.



[0005] The tiling unit 108 receives the primitives from the pre-processing
module 106 and determines which of the primitives are present within each of
the tiles of the rendering space of the graphics processing system 100. A
primitive may be in one or more of the tiles of the rendering space. The tiling
unit 108 assigns primitives to tiles of the rendering space by creating display
lists for the tiles, wherein the display list for a tile includes indications of
primitives (i.e. primitive IDs) which are present in the tile. The display lists
and the primitives are outputted from the tiling unit 108 and stored in the
memory 1044. The rendering unit fetches the display list for a tile and the
primitives relevant to that tile from the memory 1044, and the HSR module
116 performs hidden surface removal to thereby remove fragments of
primitives which are hidden in the scene. The remaining fragments are
passed to the texturing/shading module 118 which performs texturing and/or
shading on the fragments to determine pixel colour values of a rendered
image which can be passed to the memory 104, for storage in a frame buffer.
The rendering unit 110 processes primitives in each of the tiles and when the
whole image has been rendered and stored in the memory 104, the image
can be outputted from the graphics processing system 100 and, for example,
displayed on a display. In the example shown in FIG. 1, the tile-based
graphics processing system 100 is a deferred rendering system, meaning that
the rendering unit 110 performs hidden surface removal on a primitive
fragment prior to performing texturing and/or shading on the primitive
fragment in order to render the scene. However, in other examples, graphics
processing systems might not be deferred rendering systems, such that
texturing and/or shading is performed on a primitive fragment before hidden

surface removal is performed on the primitive fragment.

[0006]FIG. 2 shows an example of a rendering space 202 which has been
divided into an 8x12 array of tiles 204, wherein the tile in the m" row and the
n" column is referred to as 204, A primitive 206 is illustrated. The tiling unit
108 operates to determine which of the tiles 204 the primitive 206 is in. The

primitive 206 is “in” a tile 204 if the primitive 206 at least partially overlaps with



the tile 204. The tiling unit 108 determines a bounding box 208 by finding the
minimum and maximum x and y coordinates of the three vertices of the
primitive 206 and forming the bounding box 208 from those coordinates. The
tiling unit 108 can thereby determine that the primitive 206 is not in any of the
tiles 204 which are not in the bounding box 208. A tile 204 is “in” the
bounding box 208 if the tile 204 at least partially overlaps with the bounding
box 208. In some examples, the bounding box may be determined at tile-
resolution, whereby the bounding box may be increased in size such that the
edges of the bounding box fall on tile boundaries. In FIG. 2, the tiles which
are dotted (i.e. the top and bottom rows of tiles, the first column and the last
two columns of tiles of the rendering space 202) are outside of the bounding
box 208 and therefore, on that basis, the tiling unit 108 can determine that the
primitive 206 is not in those tiles. In a very simple implementation, the tiling
unit 108 might simply indicate that the primitive is in all of the tiles in the
bounding box 208. However, this means that the primitive is indicated as
being in some tiles which it is not actually in. This can lead to additional
memory consumption due to the storage of unnecessary primitives and/or
primitive IDs in memory 1044, and inefficiencies in the rendering unit 110 as
primitives are read from memory 1044 and are processed for tiles in which
they are not visible. Therefore, it is generally preferable for the tiling unit 108

to determine which of the tiles in the bounding box 208 the primitive is in.

[0007] For each tile in the bounding box 208 (e.g. each of the white tiles in
FIG. 2) tiling calculations can be performed to determine whether the primitive
206 is in the tile. For example, the tiling calculations to determine whether the
primitive 206 is in a tile 204 might include calculations for each edge of the
primitive. For example, as illustrated in FIG. 3, equations representing edge
lines (3024, 302, and 3023) defining the edges of the primitive 206 are
determined using the locations of the vertices (3044, 304, and 304,) of the
primitive 206. Then for each edge line 302, a test can be performed to
determine whether a tile 204 is inside or outside the respective edge line 302

by comparing a position of a test point in the tile with the equation of the edge



line 302. The test point in the tile may be different for testing with respect to
different edges, i.e. the test point may be edge-specific. For example, for
testing whether a tile is inside edge line 302, the test point is in the bottom left
of the tile; for testing whether a tile is inside edge line 302, the test point is in
the top left of the tile; and for testing whether a tile is inside edge line 302; the
test point is in the bottom right of the tile. If it is determined that the tile is
inside all of the edge lines 302 then it is determined that the primitive is in the
tile. However, if it is determined that the tile is outside any of the edge lines

302 then it is determined that the primitive is not in the tile.

[0008] The tiling calculations may be performed for each of the tiles in the
bounding box 208 in order to determine whether the primitive is in the
respective tiles. For each edge of the primitive, and for each tile in the
bounding box, the comparison of the position of the edge-specific test point in
the tile with the equation of the appropriate edge line typically involves
performing one or more floating point operations. Floating point operations
are costly to perform (in terms of time and power consumption). This may
cause a problem, particularly due to the tendency for the number of primitives
in an image to increase, because the number of floating point operations
involved in the tiling process may become large enough to significantly
detrimentally affect the performance of the graphics processing system 100.
Therefore, it would generally be beneficial to reduce the time and power that

is consumed in the tiling process.

[0009] The embodiments described below are provided by way of example
only and are not limiting of implementations which solve any or all of the

disadvantages of known method for tile-based rendering.

Summary

[0010] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description.

This Summary is not intended to identify key features or essential features of



the claimed subject matter, nor is it intended to be used to limit the scope of

the claimed subject matter.

[0011] A method of determining associations between tiles and primitives
within a tiling unit of a graphics processing system is described. The method
comprises determining whether a primitive falls within a tile based on
positions of samples within pixels in the tile. If it is determined that the
primitive does fall within a tile based on the positions of samples within pixels
in the tile, data can be stored to indicate which of the tiles the primitives is
determined to be in. For example, if it is determined that the primitive does
fall within a tile, an identifier for the primitive may be added to a control stream
for the tile and if it is determined that the primitive does not fall within the tile,
the identifier for the primitive is not added to the control stream for the tile. In
alternative examples, the associations between primitives and tiles may be
stored in different ways. For example, in some alternative examples, a list of
tiles could be stored for each primitive, wherein the list of tiles for a primitive
includes tile IDs of the tiles in which the primitive is present. Various different
methods are described to make the determination and these may be used

separately or in any combination.

[0012] A first aspect provides a method of processing primitives within a tiling
unit of a graphics processing system, the method comprising: determining
whether a primitive that covers at least one sample position in a rendering
space falls within a tile based on positions of samples within pixels in the tile;
and in response to determining that a primitive that covers at least one
sample position in a rendering space does fall within a tile based on the
positions of samples within pixels in the tile, storing an association between

the tile and the primitive to indicate that the primitive is present in the tile.

[0013] A second aspect provides a graphics processing system comprising a
tiling unit for processing primitives for each of a plurality of tiles, the tiling unit
being configured to: determine whether a primitive that covers at least one

sample position in a rendering space falls within a tile based on positions of
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samples within pixels in the tile; and cause an association between the tile
and the primitive to be stored to indicate that the primitive is present in the tile
in response to determining that the primitive that covers at least one sample
position in a rendering space does fall within the tile based on the positions of

samples within pixels in the tile.

[0014] A third aspect provides an integrated circuit manufacturing system
comprising: a non-transitory computer readable storage medium having
stored thereon a computer readable description of an integrated circuit that
describes a graphics processing system; a layout processing system
configured to process the integrated circuit description so as to generate a
circuit layout description of an integrated circuit embodying the graphics
processing system; and an integrated circuit generation system configured to
manufacture the graphics processing system according to the circuit layout
description, wherein the graphics processing system comprises a tiling unit for
processing primitives for each of a plurality of tiles, the tiling unit being
configured to: determine whether a primitive that covers at least one sample
position in a rendering space falls within a tile based on positions of samples
within pixels in the tile; and cause an association between the tile and the
primitive to be stored to indicate that the primitive is present in the tile in
response to determining that a primitive that covers at least one sample
position in a rendering space does fall within a tile based on the positions of

samples within pixels in the tile.

[0015] The graphics processing system which implements one or more of the
methods described herein may be embodied in hardware on an integrated
circuit. There may be provided a method of manufacturing, at an integrated
circuit manufacturing system, a graphics processing system which
implements one or more of the methods described herein. There may be
provided an integrated circuit definition dataset that, when processed in an
integrated circuit manufacturing system, configures the system to
manufacture a graphics processing system which implements one or more of
the methods described herein. There may be provided a non-transitory

7



computer readable storage medium having stored thereon a computer
readable description of an integrated circuit that, when processed, causes a
layout processing system to generate a circuit layout description used in an
integrated circuit manufacturing system to manufacture a graphics processing

system which implements one or more of the methods described herein.

[0016] There may be provided an integrated circuit manufacturing system
comprising: a non-transitory computer readable storage medium having
stored thereon a computer readable integrated circuit description that
describes the graphics processing system which implements one or more of
the methods described herein; a layout processing system configured to
process the integrated circuit description so as to generate a circuit layout
description of an integrated circuit embodying the graphics processing system
which implements one or more of the methods described herein; and an
integrated circuit generation system configured to manufacture the graphics
processing system which implements one or more of the methods described

herein according to the circuit layout description.

[0017] There may be provided computer program code for performing a
method as described herein. There may be provided non-transitory computer
readable storage medium having stored thereon computer readable
instructions that, when executed at a computer system, cause the computer

system to perform the method as described herein.

[0018] The above features may be combined as appropriate, as would be
apparent to a skilled person, and may be combined with any of the aspects of

the examples described herein.

Brief Description of the Drawings

[0019] Examples will now be described, in detail, with reference to the

accompanying drawings, in which:

[0020]FIG. 1 is a schematic diagram of a graphics processing system;



[0021]FIG. 2 shows a primitive in tiles of a rendering space;
[0022]FIG. 3 illustrates edge lines which define the edges of a primitive;

[0023]FIG. 4 is a flow diagram of a first example method of generating control

streams for tiles in a tiling unit of a GPU;

[0024]FIG. 5 is a schematic diagram showing an example primitive and its

position with reference to one or more tiles;
[0025]FIG. 6 is a schematic diagram showing sample positions within a pixel;

[0026]FIG. 7 is a flow diagram of a second example method of generating

control streams for tiles in a tiling unit of a GPU,;

[0027]FIG. 8 is a schematic diagram showing an example primitive and its

position with reference to one or more tiles;

[0028]FIG. 9 is a flow diagram of a method of assessing a primitive and parts

of the method may be used in the methods of FIGs. 7 and 10;

[0029]FIG. 10 is a flow diagram of a third example method of generating

control streams for tiles in a tiling unit of a GPU,;

[0030]FIG. 11 is a schematic diagram showing an example primitive and its

position with reference to one or more tiles;

[0031]FIG. 12 is a schematic diagram showing example primitives and their

position with reference to one or more tiles;

[0032]FIG. 13 is a schematic diagram showing example primitives and their

position with reference to one or more tiles;

[0033]FIG. 14 is a flow diagram of part of a fourth example method of

generating control streams for tiles in a tiling unit of a GPU;



[0034]FIG. 15 is a flow diagram of part of a fourth example method of

generating control streams for tiles in a tiling unit of a GPU;

[0035]FIG. 16 is a schematic diagram showing example primitives and their

position with reference to one or more tiles;

[0036]FIG. 17 is a flow diagram of a fifth example method of generating

control streams for tiles in a tiling unit of a GPU,;

[0037]FIG. 18 shows a computer system in which a graphics processing

system is implemented; and

[0038]FIG. 19 shows an integrated circuit manufacturing system for

generating an integrated circuit embodying a graphics processing system.

[0039] The accompanying drawings illustrate various examples. The skilled
person will appreciate that the illustrated element boundaries (e.g., boxes,
groups of boxes, or other shapes) in the drawings represent one example of
the boundaries. It may be that in some examples, one element may be
designed as multiple elements or that multiple elements may be designed as
one element. Common reference numerals are used throughout the figures,

where appropriate, to indicate similar features.

Detailed Description

[0040] The following description is presented by way of example to enable a
person skilled in the art to make and use the invention. The present invention
is not limited to the embodiments described herein and various modifications
to the disclosed embodiments will be apparent to those skilled in the art.

Embodiments will now be described by way of example only.

[0041] As described above, a tiling unit within a GPU receives the primitives
and determines which of the primitives are present within each of the tiles of
the rendering space of the graphics processing system. The tiling unit outputs

data which can be used to indicate which of the tiles a primitive is in. If a
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primitive is determined to be present in a tile then an association between the
primitive and the tile is stored, thereby indicating that the primitive is present
in the tile. In most of the examples described herein the tiling unit outputs a
control stream (which may also be referred to as a control list or display list)
for each tile, where a control stream comprises one or more primitive
identifiers (IDs) for primitives which are present in the tile. However, itis to be
understood that in some other examples, the data indicating the associations
between primitives and tiles (i.e. which primitives are present in which tiles)
could take a different form, e.g. for each primitive a list of tile IDs indicating
the tiles in which the primitive is present could be stored. This alternative way
of storing the associations between primitives and tiles could be particularly

useful in an immediate mode renderer.

[0042] Described herein are a number of methods for determining whether to
include a primitive ID in the control stream for a tile and these methods may
be implemented independently of each other, or any two or more of these
methods may be implemented together. The methods (which may also be
referred to as methods for forming the control streams) may be implemented
within a tiling unit and an improved tiling unit (which implements any one or

more of the methods) is also described herein.

[0043] The methods described herein determine whether a primitive falls
within a tile based on the positions of a plurality of sample points within pixels
in the tile. The analysis based on the positions of sample points per tile
(where there may be one or more sample points per pixel) as described
herein reduces the number of primitive IDs that are included in a control
stream for a tile but are subsequently discarded in the rendering unit (e.g.
during rasterization) after they have been fetched from memory. The
rendering unit is configured to determine rendered values at the sample
positions within a tile, and a primitive may be relevant to the rendering at a

sample position if the primitive overlaps the sample position.
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[0044] Where two or more of the methods described herein are combined,
only those primitives that are identified as needing to be added to the control
stream for a tile in a first method (i.e. those primitives which are not excluded
from the control stream using the first method) are fed into the next method
(e.g. as members of a set of candidate primitives). Once a method has
identified that a primitive does not need to be added to a control stream for a
tile, no further analysis of the primitive is performed. An exception to this is
where a primitive is divided into a plurality of sub-polygons and in such
examples, each sub-polygon is tested individually. Once a method has
identified based on one of the plurality of sub-polygons that the sub-polygon
does not need to be added to a control stream for a tile, no further analysis of
that sub-polygon is performed; however, the ID for the primitive may still be
added to the control stream for the tile as a consequence of analysis of
another of the sub-polygons formed from the primitive. A primitive divided into
a plurality of sub-polygons is added to the control stream for a tile if any one

or more of the sub-polygons is needed in the tile.

[0045] Those primitives which are initially included in a control stream of a tile
but are then fetched and discarded in the rendering unit (e.g. during
rasterization) may be referred to as ‘non-contributing primitives’ or 'invisible
primitives' as they have no effect on the rendered output of the tile. The
methods and apparatus described herein reduce the number of non-

contributing primitives which are included in a control stream for a tile.

[0046] By reducing the number of non-contributing primitives included in a
control stream for a tile using the methods described herein, unnecessary
workload in the rendering unit is reduced (i.e. the rendering unit fetches fewer
non-contributing primitives so the amount of data transferred between the
GPU and the system memory is reduced) and as triangle-size reduces, the
proportional saving in processing load increases. Experimental results have
shown that by using the three methods described herein together (e.g. as
shown in FIG. 17), the number of primitives included in control streams can be
reduced and the percentage of non-contributing primitives fetched and then
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discarded by the rendering unit can be reduced by a factor of the order of 10
in some examples (with the most significant improvements being seen in

examples where there were many small primitives).

[0047] The graphics processing system 100 shown in FIG. 1 may be used to
implement methods of the examples described herein. As described above,
the graphics processing system 100 is a tile-based deferred rendering
graphics processing system which includes a GPU 102 and two portions of
memory 1041 and 104,. As mentioned above, the two portions of memory
10441 and 104, may, or may not, be parts of the same physical memory, and
both memories 1044 and 104, may be situated “off-chip”, i.e. not on the same
chip as the GPU 102. Communication between the memories (1044 and
104;) and the GPU 102 may take place over a communications bus in the
system 100. The GPU 102 comprises a pre-processing module 106, a tiling
unit 108 and a rendering unit 110. The tiling unit 108 comprises processing
logic 112 and a data store 114, and the rendering unit 110 comprises a
hidden surface removal (HSR) module 116 and a texturing/shading module
118.

[0048] In operation, the graphics processing system 100 receives graphics
data (e.g. from an application) describing a sequence of primitives. The pre-
processing module 106 performs functions such as geometry processing
including clipping and culling to remove primitives which do not fall into a
visible view. The pre-processing module 106 may also project the primitives
into screen-space. The pre-processing module 106 outputs primitives to the
tiling unit 108.

[0049] The tiling unit 108 determines which of the primitives are present within
each of the tiles of the rendering space of the graphics processing system
100. The processing logic 112 of the tiling unit 108 performs the operations of
the tiling unit 108 (including determining whether to include a primitive ID in
the control stream for a tile using one or more of the methods described

herein), and the data store 114 stores data of intermediate results of the tiling
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process, such as results of tiling calculations and partially filled control
streams. The processing logic 112 may be implemented in dedicated
hardware designed specifically for performing the operations of the tiling unit
108. Alternatively, the processing logic 112 may be implemented by
executing software on a processor wherein the software is written such that
when it is executed it causes the processor to perform the operations of the
tiling unit 108.

[0050] In various examples, once all of the primitives for a render have been
tiled then the control streams are complete and they are passed to the off-chip
memory 104, for storage therein. In other examples, the tiling unit 108 might
not use an internal store (such as store 114) to store control streams, and
instead primitive identifiers may be written directly to control streams in
memory 104, as tiling is performed. Furthermore, in some further examples,
the internal store 114 may be implemented in the tiling unit 108, but the
internal store 114 might not be big enough to store all of the control streams
for all of the tiles at once. Therefore, the internal store 114 may be used to
gather tiling results that can then be written out to memory 1044 in chunks (or
“batches”) as the tiling is performed. This can avoid inefficient memory
access patterns when primitives are written to different control streams in

memory 104,.

[0051] The rendering unit 110 can then render the primitives in each of the
tiles in accordance with the control streams. In order to render the primitives
for a tile, the rendering unit 110 retrieves the control stream from the memory
1044 for the tile. The rendering unit 110 can then retrieve the primitives
indicated by the control stream as being in the tile currently being rendered.
These primitives may be retrieved from the memory 1044. The rendering unit
110 then renders the primitives in the tile. In the example shown in FIG. 1, the
rendering unit 110 implements deferred rendering whereby hidden surface
removal is performed before texturing and/or shading, but in other examples
non-deferred rendering may be implemented. The rendered result is then
output and can be passed to the memory 104, for storage, e.g. in a frame
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buffer. The rendering unit 110 processes primitives in each of the tiles and
when the whole image has been rendered and stored in the memory 104, the
image can be outputted from the graphics processing system 100 and, for

example, displayed on a display.

[0052] A first method of determining whether a primitive should be associated
with a tile (e.g. whether a primitive ID should be added to a control stream for
a tile) can be described with reference to FIGs. 4-6. As described above, this

method may be implemented in a tiling unit 108.

[0053] As shown in the flow diagram of FIG. 4, a bounding box 506 of a tile
508 is generated at sample precision (block 402) and this is shown graphically
in the first diagram 51 in FIG. 5. As shown in FIG. 5, all the samples 502 in a
tile 508 form a bounding box 506 that is smaller than the tile borders and this
bounding box 506 may be referred to as the 'restricted sample bounding box'
in a tile. The sample points may, for example, be at 1/16 pixel precision in
16.4 fixed point format (i.e. with 16 integer bits followed by 4 fractional bits),
while the representation of X and Y coordinates on screen may be in 16.8

fixed point format (i.e. with 16 integer bits followed by 8 fractional bits).

[0054] The method then considers each primitive in a set of candidate
primitives (which comprise all primitives or alternatively, the set may be a
proper subset of a set comprising all primitives) and for each primitive 510 in
the set, generates a bounding box 512 of the primitive at the sample precision
being used (block 404), e.g. in 16.8 fixed point format. It is then determined if
the two bounding blocks 506, 512 overlap (block 406) and if they overlap
('Yes' in block 406), the ID for the primitive 510 is added to the control stream
for the tile (block 408).

[00565] As shown in FIG. 4, the method may iterate through each primitive in
the set of candidate primitives to generate a control stream for a tile and then
once all primitives in the set have been considered for a particular tile ("Yes' in

block 410), the method may be repeated until a control stream has been
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generated for every tile ('Yes' in block 412). It will be appreciated, however,
that aspects of the method may be performed in parallel (e.g. some or all of
the tiles may be considered in parallel) and the set of candidate primitives
may be the same for all tiles (e.g. where the candidate set comprises all
primitives) or may be different for different tiles or groups of tiles. The method
could alternatively iterate through each tile to add a primitive to each tile
control stream where needed and then once all the tiles have been
considered for a particular primitive the method may be repeated until all the

primitives have been considered.

[0056] Using the method shown in FIG. 4, the primitive 510 is not added to the
control stream for either of tiles A and B. This is in contrast to known methods
which would add the ID of the primitive to the control stream for both tile A
and tile B (because the bounding box 512 overlaps with the tile areas for tile A
(denoted 508) and tile B) even though the bounding box of the primitive does

not cover any sample point in the tile.

[0057] The generation of the bounding box of a tile at sample precision (in
block 402) may be determined based on the distances between the samples
inside a pixel and the boundary of the pixel and this is shown in more detail in
the second diagram 52 in FIG. 5. As shown in FIG. 5, Delta XI (which may
also be written AXI) is the distance between the left boundary of a pixel and
the minimum X value of all the samples inside the pixel, Delta Xr (which may
also be written AXr) is the distance between the right boundary of a pixel and
the maximum X value of all the samples inside the pixel. Similarly Delta Yt
(which may also be written AYt) is the distance on the top pixel boundary and
Delta Yb (which may also be written AYDb) is the distance on the bottom pixel
boundary. Although FIG. 5 shows multiple sample positions per pixel, in other

examples there may only be a single sample position per pixel.

[0058] Given tile boundaries defined by four parameters which define the
maximum and minimum extent of the tile along two perpendicular axes (X and

Y) that are TileXmin, TileXmax, TileYmin, TileYmax, (i.e. such that the four
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corners of the tile have coordinates (TileXmin, TileYmax), (TileXmakx,
TileYmax), (TileXmax, TileYmin) and (TileXmin, TileYmin)) all in pixel
precision (integer format), the bounding box of a tile at sample precision (e.g.
16.8 format) is defined by four parameters: TileXmin+Delta Xl, TileXmax-Delta
Xr, TileYmin + Delta Yt, TileYmax — Delta Yb, which define the maximum and
minimum extent of the bounding box of the tile at sample precision along the

two perpendicular axes.

[0059] If the bounding box of a primitive at sample precision (as determined in
block 404) is defined by four parameters PrimXmin, PrimXmax, PrimYmin,
PrimYmax (which again define the maximum and minimum extent of the
bounding box along the two perpendicular axes), then the bounding boxes do
not overlap ('No' in block 406), i.e. the primitive is not considered to be in the
tile, if:

PrimXmax < (TileXmin + Delta XI) or
PrimXmin > (TileXmax - Delta Xr) or
PrimYmax < (TileYmin + Delta Yt) or
PrimYmin > (TileYmax - Delta Yb)

[0060] The elimination of primitives from a control stream using the method
shown in FIG. 4 is performed without having to calculate the edge equations
of any of the primitives. Where this method is used in combination with other
methods (e.g. known methods and/or other methods described herein), it may
be used first to eliminate one or more primitives and so avoid the
computational effort that would otherwise be performed to calculate the edge
equations of a primitive which is ultimately discarded because it has no effect

on the rendered output (e.g. as shown in FIG. 17).

[0061] In the examples shown in FIG. 5, the number of samples 502 and the
sample positions within each pixel 504 are the same. The method of FIG. 4
may still be used if the number of samples and/or sample positions differs

between pixels, as can be described with reference to FIG. 6. In the example
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shown in FIG. 6, the "worst case" sample positions are used, i.e. a bounding
box at sample precision 602 is defined which is guaranteed to encompass all
of the sample positions in all of the pixels in the tile and then the bounding
boxes do not overlap ('No' in block 406), i.e. the primitive is not considered to
be in the tile, if:

PrimXmax < (TileXmin + AXlqin) or
PrimXmin > (TileXmax - AXrmin) or
PrimYmax < (TileYmin + AYtnyin) or
PrimYmin > (TileYmax - AYbmin)

Where:

AXlmin = min (L4, La,...)
AXrmin = min (Ry, Ra,...)
AYtmin = min (Tq, Ta,...)
AYDbmin = min (B4, Ba,...)

Where Ly, Ry, T, By are the distances from a sample position x to each of the

edges of the pixel (as shown in FIG. 6).

[0062] In an alternative to the method shown in FIG. 6, if there are different
proper subsets of pixels with different numbers of samples and/or different
sample positions, multiple bounding boxes for a tile at sample precision may
be generated (in block 402), i.e. one for each proper subset, and then the
bounding boxes do not overlap ('No' in block 406), i.e. the primitive is not

considered to be in the tile, if:

PrimXmax < (TileXmin + AXly) or
PrimXmin > (TileXmax — AXry) or
PrimYmax < (TileYmin + AYty) or
PrimYmin > (TileYmax — AYby)

where AXIly, AXry, AYty, AYby are the values for subset X.

18



[0063] A second method of determining whether a primitive should be
associated with a tile (e.g. whether a primitive ID should be added to a control
stream for a tile) can be described with reference to FIGs. 7-9. This method
requires additional processing compared to the method described above with
reference to FIGs. 4-6, but results in additional non-contributing primitives not
being added to the control stream. As described below, the two methods may
be used together (e.g. the candidate set of primitives considered by the
second method may comprise only those primitives that are identified as
needing to be added to the control stream for a tile in the first method). The

method may be implemented in a tiling unit 108.

[0064] As shown in the flow diagram of FIG. 7, the intersection points between
the edges of a primitive (e.g. a triangle) are generated (block 702). Referring
to the primitive 802 (with vertices VO, V1, V2) shown in FIG. 8, these
intersection points are Va and Vb. Line equations of the edges of the
primitive (e.g. the triangle) may be used to generate the intersection points
between triangle edges and tile boundaries (in block 702). Although the
method is described with reference to primitives which are triangles, the

method may also be used for other primitive types (e.g. quads and lines).

[0065] Referring to the example shown in FIG. 8, the equation of the edge
between VO and V1 may have the form Ax + By + C = 0. When the edge
crosses the left tile boundary Xtileleft, then the coordinates of the intersection

point are:
Xintersec = Xtileleft
Yintersec = - (C + A * Xtileleft) / B

When the edge crosses the right tile boundary Xtileright, then the coordinates

of the intersection point are:
Xintersec = Xtileright

Yintersec = - (C + A * Xtileright) / B
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When the edge crosses the top tile boundary Ytiletop, then the coordinates of

the intersection point are:
Xintersec = - (C + B * Ytiletop) / A
Yintersec = Ytiletop

When the edge crosses the bottom tile boundary Ytilebottom, then the

coordinates of the intersection point are:
Xintersec = - (C + B * Ytilebottom) / A
Yintersec = Ytilebottom

[0066] Once the intersection points have been generated (in block 702), a
sub-polygon is then formed inside the tile using the intersection points to
replace the vertices outside the tile (block 704). Referring again to the
example shown in FIG. 8, intersection point Va replaces vertex V1 and

intersection point Vb replaces vertex V2 as both V1 and V2 are outside Tile A.

[0067] A bounding box 804 for the sub-polygon (with vertices VO, Va, Vb) is
generated at sample precision (block 706) and this sample precision bounding
box of the sub-polygon is tested against the sample positions in the tile (block
708). Only if the bounding box of the sub-polygon 804 overlaps at least one
sample position ("Yes' in block 708), is the ID for the primitive 802 added to
the control stream for the tile (block 408), thereby associating the primitive
802 with the tile.

[0068] The determination (in block 708) of whether the bounding box of the
sub-polygon overlaps any of the samples may be performed using part of a
method described in GB Patent No. 2401522 and shown in FIG. 9 (which
corresponds to FIG. 10 in GB2401522). Four pixel sampling locations in the
tile {Sp0, So1, S10, 511} are first identified (block 80) using the bounding box of
the sub-polygon 804 as follows:

Sy min = [px min]
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Sxmax = [Pxmax]

Sy min = [Py min]

Sy max = |Py max)
So0 = (Sx mins Sy min)
So1 = (Sx maxs Sy min)
S10 = (Sx min» Sy max)

S = (Sxmaxr Sy max)
where |x] and [x] are the standard 'floor' and 'ceiling' operators.

[0069] It can then be determined if the bounding box of the sub-polygon 804
misses all sample locations in the tile, e.g. all sample locations in tile A (block
81) and if it does ('Yes' in block 81, which corresponds to a 'No' in block 708
of FIG. 7) then the ID for the primitive 802 is not included in the control stream
for the tile (i.e. the primitive is culled, using the terminology shown in FIG. 9)
and the method of FIG. 9 does not proceed further in relation to the particular
primitive and the particular tile (although the method may be repeated in a
subsequent iteration of the method of FIG. 7 for the same primitive but a
different tile, e.g. tile B). It can be determined if the bounding box of the sub-
polygon misses all four sampling locations in the tile (in block 81) using the

test:
IF (Sxmin > Sxmax OR Sy min > Sy max) THEN MISSES

[0070] If the bounding box of the sub-polygon 804 does not miss all sample
locations in the tile, e.g. in tile A ('No' in block 81 which corresponds to a 'Yes'
in block 708 of FIG. 7) then the ID for the primitive 802 is included in the

control stream for the tile (block 408, with the rest of the method blocks in
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FIG. 9 not being used), or is further tested with the third method as described

below with reference to FIGs. 9-11.

[0071] As shown in FIG. 7, the method may iterate through each primitive in a
set of candidate primitives (which may comprise all primitives or alternatively,
the set may be a proper subset of a set comprising all primitives and may, for
example, be generated using the first method as described above with
reference to FIGs. 4-6) to generate a control stream for a tile and then once
all primitives in the set have been considered for a particular tile ("Yes' in block
410), the method may be repeated until a control stream has been generated
for every tile ("Yes' in block 412). It will be appreciated, however, that aspects
of the method may be performed in parallel (e.g. some or all of the tiles may
be considered in parallel) and the set of candidate primitives may be the same
for all tiles (e.g. where the candidate set comprises all primitives) or may be
different for different tiles (e.g. where the candidate set is generated using the
first method described above with reference to FIGs. 4-6) or groups of tiles.
The method could alternatively iterate through each tile to add a primitive to
each tile control stream where needed and then once all the tiles have been
considered for a particular primitive the method may be repeated until all the

primitives have been considered.

[0072] Using the method shown in FIG. 7, the primitive 802 is not added to the
control stream for tile A. This is in contrast to known methods which would
add the ID of the primitive to the control stream for tile A even though the
bounding box of the primitive does not cover any sample point in the tile (e.qg.
because the bounding box for the whole primitive 802 covers four of the

sample positions in tile A).

[0073] In the method shown in FIG. 7 and described above, the intersection

points are generated between the primitive edges and the tile boundaries (in
block 702). In a variation of this method, the intersection points may instead
be generated between the primitive edges and the bounding box of the tile at

sample precision (e.g. as generated in block 402 of FIG. 4). This results in a
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smaller sub-polygon (as generated in block 704) and a smaller bounding box
of the sub-polygon (as generated in block 706); however, otherwise the
method proceeds as described above. The method may be implemented in a
tiling unit of a GPU.

[0074] A third method of determining whether a primitive should be associated
with a tile (e.g. whether a primitive ID should be added to a control stream for
a tile) can be described with reference to FIGs. 9-11. This method requires
additional processing compared to the methods described above with
reference to FIGs. 4-6 and FIGs. 7-9, but results in additional non-contributing
primitives not being added to the control stream. As described below, this
method may be implemented in combination with either or both of the

methods described above.

[0075] As shown in the flow diagram of FIG. 10, the intersection points
between the edges of a primitive (e.g. a triangle) and tile boundaries are
generated (block 702). Referring to the primitive 1102 (with vertices VO, V1,
V2) shown in FIG. 11, these intersection points are Va and Vb. Line
equations of the edges of the primitive (e.g. the triangle) may be used to
generate the intersection points between triangle edges and tile boundaries
(in block 702). These intersection points may be generated (in block 702)
using the method described above with reference to FIG. 8. As noted above,
although the method is described with reference to primitives which are
triangles, the method may also be used for other primitive types (e.g. quads

and lines).

[0076] Once the intersection points have been generated (in block 702), a
sub-polygon is then formed inside the tile using the intersection points to
replace the vertices outside the tile (block 704). Referring again to the
example shown in FIG. 11, intersection point Va replaces vertex V1 and
intersection point Vb replaces vertex V2 as both V1 and V2 are outside Tile A.
A bounding box 1104 for the sub-polygon (with vertices VO, Va, Vb) is

generated at sample precision (block 706).
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[0077] Each of the sample points inside the bounding box of the sub-polygon
1104 is then tested against the original edges of the sub-polygon (where an
original edge is an edge of the sub-polygon which is also at least part of an
edge of the primitive from which the sub-polygon was formed) to see if there
are any sample points inside the sub-polygon (block 1007). The new edge
(between vertices Va and Vb in the example shown in FIG. 11) does not
need to be tested because this edge lies on the boundary of tile A so all
sample positions within tile A will be within this new edge of the sub-primitive.
Only if there is a sample point inside the sub-polygon ('Yes' in block 1008), is
the ID for the primitive 1102 is included in the control stream for the tile (block
408). If there are no sample points inside the sub-polygon ('No' in block

1008), then the ID is not included in the control stream for the tile.

[0078] The testing of original edges against the sample positions in the
bounding block 1104 (in block 1007) may be performed using another part of
the method described in GB Patent No. 2401522 and shown in FIG. 9;
however, unlike in the description of GB 2401522, in the method of FIG. 10,
the edges checked are the original edges of sub-polygon instead of all the
edges from the triangle as in GB Patent No. 2401522.

[0079] The edge parameters for each of the original edges of the sub-polygon
are computed (block 85) and then each sampling point within the bounding
box of the sub-polygon 1104 is tested against each edge (block 86) and if any
of the samples pass ('Yes in block 87, which corresponds to 'Yes' in block
1008) i.e. such that any of the samples are inside the sub-polygon, then the
ID of the primitive 1102 is added to the control stream for the tile (in block
408).

[0080] The edge parameters for an edge i are denoted A;, B;, C;, and depend
upon the end points of the edge (i.e. the edge equation is A;x + B;y + C; = 0).

If these end points are denoted (x;, y;) and (x;.4, v;+1) then:
A=Y= Yin
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B; = X1 —x;

Ci = XiYiy1 — Xit1Yi

and the four test inequalities for an edge and for the four distinct sampling

locations Sy min, Sx max» Sy mins Sy max (@S defined above) are:

Ainmin + BiSy min T Ci =0

Ainmax + BiSy min T Ci =0
S AiSxmin t D+ BiSymin + 6,20

= Ain min T BiSy min T Ci = _Ai

Ainmin + BiSy max T Ci =0

= Ainmin + BiSymin + Ci = _Bi

Ainmax + BiSy max + Ci >0
& AiSymin + BiSy min + 6 = —B; — 4;

[0081] The edge parameters which are computed (in block 85) relate only to
the original edges of the sub-polygon and not to the newly added edge (e.qg.
between Va and Vb) which corresponds to the edge of the tile. \When
calculating the edge parameters (in block 85), the entire edges of the primitive
may be used (i.e. between the original vertices of the primitive, e.g. for one
edge between VO and V1 and a second edge between V2 and VO in the

example shown in FIG. 11) or the edges of the sub-polygon may be used (e.qg.
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for one edge between VO and Va and a second edge between Vb and VO in

the example shown in FIG. 11).

[0082] By re-using parts of the method described in GB2401522 as described
above, existing hardware within a tiling unit can be re-used. This reduces the
amount of additional hardware that is required to implement the methods

described herein and thereby reduces the size and power consumption of the

hardware that implements the methods described herein.

[0083] The testing sample positions against edge equations (in block 86 of
FIG. 9 which along with block 85 corresponds to block 1007 of FIG. 10) is
done in reduced precision corresponding to 16.8 fixed point format of X and Y
coordinates, rather than at full precision floating point as in rasterization
process, to simplify and speed up the calculations in hardware. As the
reduced precision is used in the method, errors may be introduced in the
calculation. The reduced precision is safe when the triangle is relatively small
therefore the accumulated errors in the iteration from the triangle vertices are
limited, as the method in GB2401522 is designed for testing small triangles
within a few pixels across. The error that is introduced is proportionally larger
for larger primitives than for smaller primitives due to the accumulated effect
in the calculation of interpolation between vertices of the triangle.
Consequently for smaller primitives, the original vertices may be used to
compute the edge parameters (in block 85) and for larger primitives, the
intersection points (as generated in block 702) may be used instead. The
decision as to which vertices to use (i.e. the original ones or the intersection
points) may be made for the whole primitive (e.g. based on whether the
primitive covers less than a predefined number of tiles, such as less than 4x4
tiles) or may be made on an edge by edge basis (e.g. based on whether the

length of the edge exceeds a predefined threshold value or not).

[0084] As shown in FIG. 10, the method may iterate through each primitive in
a set of candidate primitives to generate a control stream for a tile and then

once all primitives in the set have been considered for a particular tile ("Yes' in
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block 410), the method may be repeated until a control stream has been
generated for every tile ('Yes' in block 412). It will be appreciated, however,
that aspects of the method may be performed in parallel (e.g. some or all of
the tiles may be considered in parallel). The method could alternatively iterate
through each tile to add a primitive to each tile control streams where needed
and then once all the tiles have been considered for a particular primitive the

method may be repeated until all the primitives have been considered.

[0085] The candidate set of primitives may comprise all primitives or
alternatively, the set may be a proper subset of a set comprising all primitives
and may, for example, be generated using the first method as described
above with reference to FIGs. 4-6 and/or the second method as described
above with reference to FIGs. 7-9. The set of candidate primitives may be the
same for all tiles (e.g. where the candidate set comprises all primitives) or
may be different for different tiles (e.g. where the candidate set is generated
using the first method described above with reference to FIGs. 4-6 and/or the
second method as described above with reference to FIGs. 7-9) or groups of

tiles.

[0086] Using the method shown in FIG. 10, the primitive 1102 is not added to
the control stream for tile A. This is in contrast to known methods which

would add the ID of the primitive to the control stream for tile A.

[0087] In the method shown in FIG. 10 and described above, the intersection
points are generated between the primitive edges and the tile boundaries (in
block 702). In a variation of this method, the intersection points may instead
be generated between the primitive edges and the bounding box of the tile at
sample precision (e.g. as generated in block 402 of FIG. 4). This results in a
smaller sub-polygon (as generated in block 704) and a smaller bounding box
of the sub-polygon (as generated in block 706) which may result in fewer

sample points to test against the original edges (in block 1007); however,

otherwise the method proceeds as described above.

27



[0088] In the description of the methods of FIGs. 7 and 10 above, it is
assumed that the arrangement of sample points in each pixel is the same (as
noted above, there may be one or more sample points in each pixel). If the
arrangement of sample points is not the same in each pixel, the methods of
FIGs. 7 and 10 are not affected and can be implemented as described above
unless a sample precision bounding box for the tile is used to generate the
intersection points instead of the actual tile boundaries (in block 702). In this
case the worst case sample positions may be used to generate the sample

precision bounding box (e.g. as described above with reference to FIG. 6).

[0089] In the examples shown in FIGs. 8 and 11, there is a single vertex, VO,
in tile A and two intersection points (Va and Vb) on the same tile boundary.
Examples where there is a single vertex in tile A and either two intersection
points on different tile boundaries or more than two intersection points are

described below with reference to FIG. 16.

[0090] In other examples, however, there may be no vertices within the tile, as
shown in the two examples 1201, 1202 in FIG. 12 and the first example 1300
in FIG. 13. In the first example 1201, there are two points of intersection, Va
and Vb and these are on tile boundaries that intersect at a corner of the tile
Vn. This results in a triangular sub-polygon with vertices Va, Vn and Vb being
created (in block 704) and the method can then proceed as shown in either or
both of FIGs. 7 and 10 and described above.

[0091] In the second example 1202 in FIG. 12, there are four points of
intersection, Va, Vb, Vc and Vd and these are on tile boundaries that intersect
at a corner of the tile Vn and the sub-polygon is a quadrilateral instead of a
triangle. In various examples, where the sub-polygon is a quadrilateral (or in
general has more than 3 edges), the ID of the primitive may be added to the
control stream for the tile without further consideration (e.g. as shown in FIGs.
14 and 15 and described below). Alternatively, the sub-polygon having more
than three edges may be divided into two or more triangles (e.g. Va, V¢, Vb

and Vc, Vd, Vb) and each of these triangles may be fed as sub-polygons into

28



the methods of either or both of FIGs. 7 and 10. The sub-polygons which are
part of the same primitive may be flagged such that it is clear that they are

part of the same primitive and the primitive ID is included in the control stream
(or the primitive is otherwise associated with the tile) if any samples are inside

any of the two or more sub-polygons formed from the primitive.

[0092] As shown in the first example 1300 in FIG. 13, it is possible for there to
be no vertices within the tile and two points of intersection, Va and Vb, which
lie on opposite boundaries of the tile. In such examples, the ID of the
primitive may be added to the control stream for the tile or alternatively, the
sub-polygon within the tile (e.g. Va, Vb, Vc, Vd) may be divided into two or
more triangles (e.g. Va, V¢, Vb and Va, Vd, Vb) and each of these triangles
may be fed as sub-polygons into the methods of either or both of FIGs. 7 and
10. The sub-polygons which are part of the same primitive may be flagged
such that it is clear that they are part of the same primitive, the primitive ID is
included in the control stream if any samples are inside any of the two or more

sub-polygons formed from the primitive.

[0093] In the second example 1301 shown in FIG. 13, there are two vertices,
VO and V1, in tile A. When the primitive is truncated (in blocks 702 and 704)
this also results in a sub-polygon which is a quadrilateral with vertices VO, V1,
Va and Vb. In various examples, where the sub-polygon is a quadrilateral, the
ID of the primitive may be added to the control stream for the tile without
further consideration. Alternatively, the quadrilateral sub-polygon may then
be divided into two triangles (e.g. VO, V1, Va and VO, Va, Vb) and both of
these triangles may be fed as sub-polygons into the methods of either or both
of FIGs. 7 and 10. As described above, the two sub-polygons which are part
of the same primitive may be flagged such that it is clear that they are part of
the same primitive, the primitive ID is included in the control stream if any
samples are inside any of the two sub-polygons. Using the method shown in
FIG. 10 for each of the two triangles (Va,Vb,V0) and (Va,V0O,V1) formed from
the sub-polygon (Va,Vb,V0,V1), the primitive 1302 is not added to the control
stream for tile A, even though the bounding box of each of the sub-polygon
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triangles covers two sample points in tile A. Instead, it can be decided using
the method shown in FIG. 10 that the two sample points in the bounding box
of the sub-polygon triangles are all located outside the sub-polygon (i.e.
outside both of the triangles formed from the quadrilateral sub-polygon). This
is in contrast to known methods which would add the ID of the primitive 1302

to the control stream for tile A.

[0094]FIGs. 14 and 15 show a flow diagram of an example method which
combines the methods of FIGs. 7 and 10 along with a test relating to the
number of vertices in a tile, as described above with reference to FIGs. 12
and 13. In this method, if any primitive has two or more vertices in the tile (No
in block 1402) e.g. as shown in example 1301 in FIG. 13, then the ID of the
primitive is added to the control stream for the tile (block 408) without further
consideration. As described above, however, such primitives may
alternatively be handled by dividing the sub-polygon (which may be a
quadrilateral) into multiple triangles and then feeding the multiple triangles (as
separate, but related sub-polygons) into the method of FIG. 15 (e.g. by

starting at block 706 for each of the triangles).

[0095] If the primitive has less than two vertices in the tile ("Yes' in block 1402,
I.e. one vertex in the tile or no vertices in the tile), the intersection points
between the primitive edges and the tile boundaries are generated (block
702), as described above. In this method, if there are more than two
intersection points ('No' in block 1404), then the ID of the primitive is added to
the control stream for the tile (block 408) without further consideration, e.g. for
example 1202 in FIG. 12, which has no vertices in the tile and more than two
intersection points, the ID of the primitive is added to the control stream for
the tile (block 408) without further consideration. As described above,
however, such primitives may alternatively be handled by dividing the sub-
polygon (which may be a quadrilateral) into multiple triangles and then
feeding the multiple triangles (as separate, but related sub-polygons) into the

method of FIG. 15 (e.g. by starting at block 706 for each of the triangles).
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[0096] If the primitive has only two intersection points ('Yes' in block 1404), the
method then divides depending upon whether there is only one vertex in the
tile ("Yes' in block 1406 then 1408) or no vertex in the tile (‘'No' in block 1406
then1410).

[0097] As shown in FIG. 14, the ID of the primitive is added to the control
stream (in block 408) if there is only one vertex in the tile ('Yes' in block 1406)
but the two intersection points are not on the same boundary ('No' in block
1408) or if there is no vertex in the tile ('No' in block 1406) but the two
intersection points are not on different tile boundaries ('No' in block 1410).
Additionally, the ID of the primitive is then added to the control stream (in
block 408) if there is no vertex in the tile ('No' in block 1406), the two
intersection points are on different tile boundaries ('Yes' in block 1410) but
those two different boundaries do not meet at a corner within the primitive
('No' in block 1412). As described above, however, such primitives may
alternatively be handled by dividing the sub-polygon (which may be a
quadrilateral) into multiple triangles and then feeding the multiple triangles (as
separate, but related sub-polygons) into the method of FIG. 15 (e.g. by
starting at block 706 for each of the triangles).

[0098] If the ID of the primitive has not yet been added to the control stream,
the method proceeds onto FIG. 15 which shows a concatenation of the tests
from FIGs. 7 and 10. As described above with reference to FIG. 7, a sub-
polygon is formed inside the tile using the intersection points to replace the
vertices outside the tile (block 704) and then a bounding box of the sub-
polygon is generated at sample precision (block 706). If the bounding box
overlaps any samples ('Yes' in block 708), the method proceeds to the tests
described above with reference to FIG. 10 and the original edges of the sub-
polygon are tested against each sample point inside the bounding box of the
sub-polygon (block 1007). If there is any sample point inside the original
edges ('Yes' in block 1008), the ID of the primitive is added to the control
stream for the tile (block 408). If, however, the bounding box does not overlap
any samples ('No' in block 708) or there are no sample points inside the
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original edges (‘No' in block 1008), then the primitive ID is not added to the

control stream.

[0099] As shown in FIG. 14, the method may iterate through each primitive to
generate a control stream for a tile and then once all primitives have been
considered for a particular tile ('Yes' in block 410), the method may be
repeated until a control stream has been generated for every tile ('Yes' in
block 412). It will be appreciated, however, that aspects of the method may
be performed in parallel (e.g. some or all of the tiles may be considered in
parallel). The method may alternatively iterate through each tile to add a
primitive to each covered tile’s tile control stream, and once all the tiles have
been considered for a particular primitive, the method may be repeated until

all the primitives have been considered.

[00100] FIG. 16 shows two further examples 1601, 1602 of primitives
which cannot be eliminated from the control stream of tile A using the method
of FIGs. 14 and 15. In the first example 1601, the primitive has a single
vertex in tile A, VO ('Yes' in block 1402) and only two intersection points, Va
and Vb ("Yes' in block 1404). However, the intersection points are not on the
same tile boundary ('Yes' in block 1406 followed by 'No' in block 1408) and so
the primitive is included in the control stream (in block 408). In the second
example 1602, the primitive has a single vertex in tile A, VO (‘Yes' in block
1402) and four intersection points, Va, Vb, Vc and Vd ('No' in block 1404) and

so the primitive is included in the control stream (in block 408).

[00101] As described above, the sub-polygons in examples 1601, 1602
may alternatively each be divided into multiple triangles and these may all be

fed into the methods described herein as separate (but linked) primitives.

[00102] FIG. 17 shows a flow diagram of an example method which
combines all the methods described above. The method described above
with reference to FIG. 4 is applied first (block 1702 with block 1704
corresponding to the test in block 406 of FIG. 4). If the primitive is not
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eliminated by this assessment (in block 1702), i.e. if it cannot be determined
that the bounding boxes do not overlap (‘No' in block 406 which corresponds
to 'No' in block 1704), then the method proceeds with a further assessment of
the primitive. In the method shown in FIG. 17, a technique referred to as
'perfect tiling' may optionally be used to eliminate some further primitives in
the tile (block 1708). This technique is also described in GB2401522 (e.g. in
FIG. 4 of that patent). Perfect tiling involves comparing the edge equations of
a primitive with the integer tile boundaries to check if the corner of the tile is
inside the primitive. In perfect tiling, there is no comparison of sample points
and the assessment is performed at the corner of the tile boundaries. In the
example shown in FIG. 17, perfect tiling is not performed ('No' in block 1706)
if the bounding box of the primitive overlaps only one tile in the X and/or Y

direction.

[00103] As part of the perfect tiling method (in block 1708) the edge
equations of the primitive are calculated and these are then re-used in the
subsequent assessment of the primitive (in block 1712). The primitive sample
precision bounding box technique (block 1702 and FIG. 4) does not require
calculation of the edge equations and so it is efficient to eliminate some
primitives (in block 1704) prior performing perfect tiling (in block 1708) and/or
the other methods described herein which do require calculation of the edge

equations.

[00104] If the primitive is not eliminated by the perfect tiling assessment
(in block 1708), where implemented, then the method proceeds with a further
assessment of the primitive using the method shown in FIGs. 14 and 15
(block 1712 with block 1714 corresponding to the decision points in blocks
1402, 1404, 1408, 1410, 1412, 708 and 1008). As described above, this
assessment involves the use of edge equations (in block 1007) and these

edge equations may have already been calculated (in block 1708).

[00105] As shown in FIG. 17, the method may iterate through each

primitive to generate a control stream for a tile (block 1718) and then once all
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primitives have been considered for a particular tile (‘No' in block 1718), the
method may be repeated until a control stream has been generated for every
tile (not shown in FIG. 17). It will be appreciated, however, that aspects of the
method may be performed in parallel (e.g. some or all of the tiles may be

considered in parallel).

[00106] In the methods described above, any testing that is performed in
relation to sampling points within a pixel only identifies whether any sample
position is within the primitive / sub-primitive / bounding box. In many
implementations, there is no determination of which sampling point falls within
the primitive / sub-primitive / bounding box. As also described above, each
pixel may comprise a single sampling point or may comprise a plurality of
sampling points and the analysis is performed at the reduced sample

precision (e.g. 16.8 format).

[00107] In the examples shown in the accompanying drawings, each
primitive covers at least one sample position within the rendering space,
although in the case of non-contributing primitives for a tile, the primitive may
not cover a sample position within the particular tile being considered (e.g. in
FIG. 8, the primitive 802 does not cover any sample positions in tile A but
does cover two sample positions in tile B). However, the methods described
herein may, in various examples, be used for primitives that do not

necessarily cover any sample positions in any tile within the rendering space.

[00108] As described above, the methods described herein may be
implemented in an improved tiling unit in a GPU (e.g. as shown in FIG. 1).
The methods may be implemented in software and/or hardware and as
described above, in various examples, existing hardware may be re-used to

perform elements of the methods described herein.

[00109] By using the methods described herein, the number of primitives
(and in particular the number of non-contributing primitives) that are added to

the control stream for a tile is reduced. This reduces the effect used in
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subsequent operations within the rendering unit and so improves the
efficiency of the overall graphics processing system. As primitive sizes
become smaller, the efficiency savings that can be achieved using the

methods described herein is expected to become larger.

[00110] The methods described herein are performed before
rasterization (which is performed within the rendering unit 110 in FIG. 1). By
reducing the number of primitives in a control stream for a tile, rasterization is
simplified. Unlike rasterization, the methods described herein only determine
if any sample point is within a primitive and the methods are agnostic to which
sample point is within the primitive (i.e. the methods described herein
eliminate primitives before the per-sample analysis is performed).
Rasterisation renders image values at the sample positions. In a tile-based
graphics system, a rendering unit can perform rendering in a tile-by-tile
manner using the control stream for a tile to identify primitives which are

relevant to the rendering of the tile.

[00111] In most of the examples described above the primitives are
associated with tiles by storing primitive IDs in control streams for the tiles. In
other examples, associations between primitives and tiles may be stored
differently, e.g. for each primitive a tile list could be stored which includes tile

IDs of tiles in which the primitive is present.

[00112] FIG. 18 shows a computer system in which the graphics
processing systems and methods described herein may be implemented.

The computer system comprises a CPU 1802, a GPU 102, a memory 1806
and other devices 1814, such as a display 1816, speakers 1818 and a
camera 1819. A tiling unit 108 which implements one or more of the methods
described herein is implemented on the GPU 102. In other examples, the
tiling unit 108 may be implemented on the CPU 1802. The components of the
computer system can communicate with each other via a communications bus

1820. A store 1044 is implemented as part of the memory 1806.
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[00113] The graphics processing system 100 of FIG. 1 is shown as
comprising a number of functional blocks. This is schematic only and is not
intended to define a strict division between different logic elements of such
entities. Each functional block may be provided in any suitable manner. It is
to be understood that intermediate values described herein as being formed
by a functional block need not be physically generated by the functional block
at any point and may merely represent logical values which conveniently
describe the processing performed by the graphics processing system

between its input and output.

[00114] The methods described herein may be embodied in hardware
on an integrated circuit. The graphics processing systems described herein
may be configured to perform any of the methods described herein.
Generally, any of the functions, methods, techniques or components
described above can be implemented in software, firmware, hardware (e.g.,
fixed logic circuitry), or any combination thereof. The terms “module,”

” o

“functionality,” “component”, “element”, “unit’, “block” and “logic” may be used
herein to generally represent software, firmware, hardware, or any
combination thereof. In the case of a software implementation, the module,
functionality, component, element, unit, block or logic represents program
code that performs the specified tasks when executed on a processor. The
algorithms and methods described herein could be performed by one or more
processors executing code that causes the processor(s) to perform the
algorithms/methods. Examples of a computer-readable storage medium
include a random-access memory (RAM), read-only memory (ROM), an
optical disc, flash memory, hard disk memory, and other memory devices that
may use magnetic, optical, and other techniques to store instructions or other

data and that can be accessed by a machine.

[00115] The terms computer program code and computer readable
instructions as used herein refer to any kind of executable code for
processors, including code expressed in a machine language, an interpreted
language or a scripting language. Executable code includes binary code,
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machine code, bytecode, code defining an integrated circuit (such as a
hardware description language or netlist), and code expressed in a
programming language code such as C, Java or OpenCL. Executable code
may be, for example, any kind of software, firmware, script, module or library
which, when suitably executed, processed, interpreted, compiled, executed at
a virtual machine or other software environment, cause a processor of the
computer system at which the executable code is supported to perform the

tasks specified by the code.

[00116] A processor, computer, or computer system may be any kind of
device, machine or dedicated circuit, or collection or portion thereof, with
processing capability such that it can execute instructions. A processor may
be any kind of general purpose or dedicated processor, such as a CPU, GPU,
System-on-chip, state machine, media processor, an application-specific
integrated circuit (ASIC), a programmable logic array, a field-programmable
gate array (FPGA), physics processing units (PPUs), radio processing units
(RPUs), digital signal processors (DSPs), general purpose processors (e.g. a
general purpose GPU), microprocessors, any processing unit which is
designed to accelerate tasks outside of a CPU, etc. A computer or computer
system may comprise one or more processors. Those skilled in the art will
realize that such processing capabilities are incorporated into many different
devices and therefore the term 'computer' includes set top boxes, media
players, digital radios, PCs, servers, mobile telephones, personal digital

assistants and many other devices.

[00117] It is also intended to encompass software which defines a
configuration of hardware as described herein, such as HDL (hardware
description language) software, as is used for designing integrated circuits, or
for configuring programmable chips, to carry out desired functions. That is,
there may be provided a computer readable storage medium having encoded
thereon computer readable program code in the form of an integrated circuit
definition dataset that when processed in an integrated circuit manufacturing
system configures the system to manufacture a GPU configured to perform
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any of the methods described herein, or to manufacture a GPU comprising
any apparatus described herein. An integrated circuit definition dataset may

be, for example, an integrated circuit description.

[00118] Therefore, there may be provided a method of manufacturing, at
an integrated circuit manufacturing system, a graphics processing system as
described herein. Furthermore, there may be provided an integrated circuit
definition dataset that, when processed in an integrated circuit manufacturing
system, causes the method of manufacturing a graphics processing system to

be performed.

[00119] An integrated circuit definition dataset may be in the form of
computer code, for example as a netlist, code for configuring a programmable
chip, as a hardware description language defining an integrated circuit at any
level, including as register transfer level (RTL) code, as high-level circuit
representations such as Verilog or VHDL, and as low-level circuit
representations such as OASIS (RTM) and GDSII. Higher level
representations which logically define an integrated circuit (such as RTL) may
be processed at a computer system configured for generating a
manufacturing definition of an integrated circuit in the context of a software
environment comprising definitions of circuit elements and rules for combining
those elements in order to generate the manufacturing definition of an
integrated circuit so defined by the representation. As is typically the case
with software executing at a computer system so as to define a machine, one
or more intermediate user steps (e.g. providing commands, variables etc.)
may be required in order for a computer system configured for generating a
manufacturing definition of an integrated circuit to execute code defining an
integrated circuit so as to generate the manufacturing definition of that

integrated circuit.

[00120] An example of processing an integrated circuit definition dataset
at an integrated circuit manufacturing system so as to configure the system to

manufacture a GPU will now be described with respect to FIG. 19.
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[00121] FIG. 19 shows an example of an integrated circuit (IC)
manufacturing system 1902 which comprises a layout processing system
1904 and an integrated circuit generation system 1906. The IC manufacturing
system 1902 is configured to receive an IC definition dataset (e.g. defining a
GPU as described in any of the examples herein), process the IC definition
dataset, and generate an IC according to the IC definition dataset (e.g. which
embodies a GPU as described in any of the examples herein). The
processing of the IC definition dataset configures the IC manufacturing
system 1902 to manufacture an integrated circuit embodying a GPU as

described in any of the examples herein.

[00122] The layout processing system 1904 is configured to receive and
process the IC definition dataset to determine a circuit layout. Methods of
determining a circuit layout from an IC definition dataset are known in the art,
and for example may involve synthesising RTL code to determine a gate level
representation of a circuit to be generated, e.g. in terms of logical components
(e.g. NAND, NOR, AND, OR, MUX and FLIP-FLOP components). A circuit
layout can be determined from the gate level representation of the circuit by
determining positional information for the logical components. This may be
done automatically or with user involvement in order to optimise the circuit
layout. When the layout processing system 1904 has determined the circuit
layout it may output a circuit layout definition to the IC generation system
1906. A circuit layout definition may be, for example, a circuit layout

description.

[00123] The IC generation system 1906 generates an IC according to
the circuit layout definition, as is known in the art. For example, the IC
generation system 1906 may implement a semiconductor device fabrication
process to generate the IC, which may involve a multiple-step sequence of
photo lithographic and chemical processing steps during which electronic
circuits are gradually created on a wafer made of semiconducting material.
The circuit layout definition may be in the form of a mask which can be used
in a lithographic process for generating an IC according to the circuit
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definition. Alternatively, the circuit layout definition provided to the IC
generation system 1906 may be in the form of computer-readable code which
the IC generation system 1906 can use to form a suitable mask for use in

generating an IC.

[00124] The different processes performed by the IC manufacturing
system 1902 may be implemented all in one location, e.g. by one party.
Alternatively, the IC manufacturing system 1902 may be a distributed system
such that some of the processes may be performed at different locations, and
may be performed by different parties. For example, some of the stages of: (i)
synthesising RTL code representing the IC definition dataset to form a gate
level representation of a circuit to be generated, (ii) generating a circuit layout
based on the gate level representation, (iii) forming a mask in accordance with
the circuit layout, and (iv) fabricating an integrated circuit using the mask, may

be performed in different locations and/or by different parties.

[00125] In other examples, processing of the integrated circuit definition
dataset at an integrated circuit manufacturing system may configure the
system to manufacture a graphics processing system without the IC definition
dataset being processed so as to determine a circuit layout. For instance, an
integrated circuit definition dataset may define the configuration of a
reconfigurable processor, such as an FPGA, and the processing of that
dataset may configure an IC manufacturing system to generate a
reconfigurable processor having that defined configuration (e.g. by loading
configuration data to the FPGA).

[00126] In some embodiments, an integrated circuit manufacturing
definition dataset, when processed in an integrated circuit manufacturing
system, may cause an integrated circuit manufacturing system to generate a
device as described herein. For example, the configuration of an integrated
circuit manufacturing system in the manner described above with respect to
FIG. 19 by an integrated circuit manufacturing definition dataset may cause a

device as described herein to be manufactured.

40



[00127] In some examples, an integrated circuit definition dataset could
include software which runs on hardware defined at the dataset or in
combination with hardware defined at the dataset. In the example shown in
FIG. 19, the IC generation system may further be configured by an integrated
circuit definition dataset to, on manufacturing an integrated circuit, load
firmware onto that integrated circuit in accordance with program code defined
at the integrated circuit definition dataset or otherwise provide program code

with the integrated circuit for use with the integrated circuit.

[00128] The methods described herein may be performed by a computer
configured with software in machine readable form stored on a tangible
storage medium e.g. in the form of a computer program comprising computer
readable program code for configuring a computer to perform the constituent
portions of described methods or in the form of a computer program
comprising computer program code means adapted to perform all the steps of
any of the methods described herein when the program is run on a computer
and where the computer program may be embodied on a computer readable
storage medium. Examples of tangible (or non-transitory) storage media
(which may be volatile or non-volatile) include disks, thumb drives, memory
cards, semiconductor-based memory, optical / magnetic / phase change
memory etc. and do not include propagated signals. The software can be
suitable for execution on a parallel processor or a serial processor such that

the method steps may be carried out in any suitable order, or simultaneously.

[00129] A particular reference to “logic” refers to structure that performs
a function or functions. An example of logic includes circuitry that is arranged
to perform those function(s). For example, such circuitry may include
transistors and/or other hardware elements available in a manufacturing
process. Such transistors and/or other elements may be used to form
circuitry or structures that implement and/or contain memory, such as
registers, flip flops, or latches, logical operators, such as Boolean operations,
mathematical operators, such as adders, multipliers, or shifters, and
interconnect, by way of example. Such elements may be provided as custom
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circuits or standard cell libraries, macros, or at other levels of abstraction.
Such elements may be interconnected in a specific arrangement. Logic may
include circuitry that is fixed function and circuitry can be programmed to
perform a function or functions; such programming may be provided from a
firmware or software update or control mechanism. Logic identified to perform
one function may also include logic that implements a constituent function or
sub-process. In an example, hardware logic has circuitry that implements a

fixed function operation, or operations, state machine or process.

[00130] Any range or device value given herein may be extended or
altered without losing the effect sought, as will be apparent to the skilled

person.

[00131] It will be understood that the benefits and advantages described
above may relate to one embodiment or may relate to several embodiments.
The embodiments are not limited to those that solve any or all of the stated

problems or those that have any or all of the stated benefits and advantages.

[00132] Any reference to 'an' item refers to one or more of those items.
The term 'comprising' is used herein to mean including the method blocks or
elements identified, but that such blocks or elements do not comprise an
exclusive list and an apparatus may contain additional blocks or elements and
a method may contain additional operations or elements. Furthermore, the

blocks, elements and operations are themselves not impliedly closed.

[00133] The steps of the methods described herein may be carried out in
any suitable order, or simultaneously where appropriate. The arrows between
boxes in the figures show one example sequence of method steps but are not
intended to exclude other sequences or the performance of multiple steps in
parallel. Additionally, individual blocks may be deleted from any of the
methods without departing from the spirit and scope of the subject matter
described herein. Aspects of any of the examples described above may be

combined with aspects of any of the other examples described to form further
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examples without losing the effect sought. Where elements of the figures are
shown connected by arrows, it will be appreciated that these arrows show just
one example flow of communications (including data and control messages)
between elements. The flow between elements may be in either direction or

in both directions.

[00134] The applicant hereby discloses in isolation each individual
feature described herein and any combination of two or more such features,
to the extent that such features or combinations are capable of being carried
out based on the present specification as a whole in the light of the common
general knowledge of a person skilled in the art, irrespective of whether such
features or combinations of features solve any problems disclosed herein. In
view of the foregoing description it will be evident to a person skilled in the art

that various modifications may be made within the scope of the invention.
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Claims

1. A method of processing primitives within a tiling unit of a graphics

processing system, the method comprising:

determining whether a primitive that covers at least one sample
position in a rendering space falls within a tile based on positions of samples

within pixels in the tile; and

in response to determining that a primitive that covers at least one
sample position in a rendering space does fall within a tile based on the
positions of samples within pixels in the tile, storing an association between

the tile and the primitive to indicate that the primitive is present in the tile.

2. A method according to claim 1, wherein said storing an association
between the tile and the primitive comprises adding an identifier for the

primitive to a control stream for the tile (408).

3. A method according to claim 1, wherein said storing an association
between the tile and the primitive comprises adding an identifier for the tile to

a tile list for the primitive.

4. A method according to any of the preceding claims, further comprising
rendering primitives in a tile using the stored associations, wherein the

rendering is performed at each sample position within the tile.

. A method according to any of the preceding claims, wherein the

determination is performed at a reduced sample precision.

6. A method according to any of the preceding claims, wherein
determining whether a primitive falls within a tile based on positions of

samples within pixels in a tile comprises:
generating a bounding box of the tile at sample precision (402);

generating a bounding box of the primitive at sample precision (404);
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determining if the bounding boxes overlap (406); and

in response to determining that the bounding boxes do not overlap,

determining that the primitive does not fall within the tile.

7. A method according to any of the preceding claims, wherein
determining whether a primitive falls within a tile based on positions of

samples within pixels in a tile comprises:

generating any intersection points between edges of the primitive and
boundaries of the tile (702);

forming a sub-polygon inside the tile by replacing vertices of the

primitive outside the tile with the intersection points (704);

generating a bounding box of the sub-polygon at sample precision
(706);

determining if the bounding box of the sub-polygon overlaps any

samples in the tile (708); and

in response to determining that the bounding box of the sub-polygon
overlaps any samples in the tile, determining that the primitive falls within the

tile.

8. A method according to claim 7, wherein generating any intersection

points between edges of the primitive and boundaries of the tile comprises:
generating a bounding box of the tile at sample precision (402); and

generating any intersection points between edges of the primitive and

edges of the bounding box of the tile at sample precision.

9. A method according to claim 7 or 8, wherein forming a sub-polygon
inside the tile by replacing vertices of the primitive outside the tile with the

intersection points comprises:
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forming an initial sub-polygon inside the tile by replacing vertices of the

primitive outside the tile with the intersection points; and

if the initial sub-polygon has more than three vertices, dividing the initial
sub-polygon into a plurality of smaller sub-polygons, each having only three

vertices,

and wherein a bounding box is generated at sample precision for each
smaller sub-polygon and it is determined, for each generated bounding box, if

it overlaps any samples in the tile.

10. A method according to any of claims 7-9, wherein determining if the

bounding box of the sub-polygon overlaps any samples in the tile comprises:

identifying four sampling locations in the tile using the bounding box of

the sub-polygon (80); and

determining if the bounding box of the sub-polygon misses all four

sampling locations in the tile (81).

11. A method according to any of the preceding claims, wherein
determining whether a primitive falls within a tile based on positions of

samples within pixels in a tile comprises:

generating any intersection points between edges of the primitive and
boundaries of the tile (702);

forming a sub-polygon inside the tile by replacing vertices of the

primitive outside the tile with the intersection points (704);

generating a bounding box of the sub-polygon at sample precision
(706);

testing each edge of the sub-polygon which is also part of an edge of

the primitive against each sample point in the bounding box of the sub-
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polygon to determine if any sample point is inside the sub-polygon (1007,
1008); and

in response to determining that any sample point is inside the sub-

polygon, determining that the primitive falls within the tile.

12. A method according to claim 11, wherein generating any intersection

points between edges of the primitive and boundaries of the tile comprises:
generating a bounding box of the tile at sample precision (402); and

generating any intersection points between edges of the primitive and

edges of the bounding box of the tile at sample precision.

13. A method according to claim 11 or 12, wherein forming a sub-polygon
inside the tile by replacing vertices of the primitive outside the tile with the

intersection points comprises:

forming an initial sub-polygon inside the tile by replacing vertices of the

primitive outside the tile with the intersection points; and

if the initial sub-polygon has more than three vertices, dividing the initial
sub-polygon into a plurality of smaller sub-polygons, each having only three

vertices,

and wherein a bounding box is generated at sample precision for each
smaller sub-polygon and wherein testing each edge of the sub-polygon which
is also part of an edge of the primitive against each sample point in the
bounding box of the sub-polygon to determine if any sample point is inside the

sub-polygon comprises:

for each smaller sub-polygon, testing each edge of the smaller sub-
polygon which is also part of an edge of the primitive against each sample
point in the bounding box of the smaller sub-polygon to determine if any

sample point is inside the smaller sub-polygon.
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14. A method according to any of claims 11-13, wherein testing each edge
of the sub-polygon which is also part of an edge of the primitive against each
sample point in the bounding box of the sub-polygon to determine if any

sample point is inside the sub-polygon comprises:

computing edge parameters for each edge of the sub-polygon which is

also part of an edge of the primitive (85); and

testing each sample point in the bounding box of the sub-polygon

against each edge (86).

15. A method according to any of claims 1-5, wherein determining whether
a primitive falls within a tile based on positions of samples within a pixel

comprises:

determining how many vertices of the primitive fall within the tile
(1402);

in response to determining that two or more vertices fall outside the tile,

determining that the primitive falls within the tile;

in response to determining that less than two vertices fall within the tile,
generating any intersection points between edges of the primitive and
boundaries of the tile (702);

in response to generating more than two intersection points,

determining that the primitive falls within the tile;

in response to generating exactly two intersection points for a primitive
with only one vertex in the tile and where the intersection points are on
different boundaries of the tile, determining that the primitive falls within the

tile;

in response to generating exactly two intersection points for a primitive

with no vertices in the tile and where the intersection points are on the same
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boundary of the tile or on different boundaries of the tile that do not cross

within the primitive, determining that the primitive falls within the tile; and

in response to generating exactly two intersection points for a primitive

with only one vertex in the tile and where the intersection points are on same

boundary of the tile and in response to generating exactly two intersection

points for a primitive with no vertices in the tile and where the intersection

points are on different boundaries of the tile which cross within the primitive:

16.

forming a sub-polygon inside the tile by replacing vertices of the

primitive outside the tile with the intersection points (704);

generating a bounding box of the sub-polygon at sample

precision (706);

determining if the bounding box of the sub-polygon overlaps any

samples in the tile (708);

in response to determining that the bounding box of the sub-
polygon overlaps any samples in the tile, determining that the primitive

falls within the tile;

In response to determining that the bounding box of the sub-
polygon does not overlap any samples in the tile, testing each edge of
the sub-polygon which is also part of an edge of the primitive against
each sample point in the bounding box of the sub-polygon to determine

if any sample point is inside the sub-polygon (1007, 1008); and

in response to determining that any sample point is inside the

sub-polygon, determining that the primitive falls within the tile.

The method according to claim 15, further comprising, prior to

determining how many vertices of the primitive fall within the tile:

generating a bounding box of the tile at sample precision (402);
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generating a bounding box of the primitive at sample precision (404);

and
determining if the bounding boxes overlap (406); and

only in response to determining that the bounding boxes overlap,

determining how many vertices of the primitive fall within the tile.

17. A graphics processing system comprising a tiling unit for processing

primitives for each of a plurality of tiles, the tiling unit being configured to:

determine whether a primitive that covers at least one sample position
in a rendering space falls within a tile based on positions of samples within

pixels in the tile; and

cause an association between the tile and the primitive to be stored to
indicate that the primitive is present in the tile in response to determining that
the primitive that covers at least one sample position in a rendering space
does fall within the tile based on the positions of samples within pixels in the

tile.

18. A graphics processing system according to claim 17, wherein the tiling
unit is configured to cause an association between the tile and the primitive to
be stored by causing an identifier for the primitive to be added to a control
stream for the tile (408).

19. A graphics processing system according to claim 17, wherein the tiling
unit is configured to cause an association between the tile and the primitive to
be stored by causing an identifier for the tile to be added to a tile list for the

primitive.

20. A graphics processing system according to any of claims 17-19, further
comprising a rendering unit configured to: render primitives in a tile using
the stored associations, wherein the rendering is performed at each sample

position within the tile.
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21. A graphics processing system according to any of claims 17-20,
wherein the tiling unit is configured to perform the determination at a reduced

sample precision.

22. A graphics processing system according to any of claims 17-21,
wherein the tiling unit is configured to determine whether a primitive falls

within a tile based on positions of samples within pixels in a tile by:
generating a bounding box of the tile at sample precision;
generating a bounding box of the primitive at sample precision;
determining if the bounding boxes overlap; and

in response to determining that the bounding boxes do not overlap,

determining that the primitive does not fall within the tile.

23. A graphics processing system according to any of claims 17-22,
wherein the tiling unit is configured to determine whether a primitive falls

within a tile based on positions of samples within pixels in a tile by:

generating any intersection points between edges of the primitive and

boundaries of the tile;

forming a sub-polygon inside the tile by replacing vertices of the

primitive outside the tile with the intersection points;
generating a bounding box of the sub-polygon at sample precision;

determining if the bounding box of the sub-polygon overlaps any

samples in the tile; and

in response to determining that the bounding box of the sub-polygon
overlaps any samples in the tile, determining that the primitive falls within the

tile.
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24. A graphics processing system according to claim 23, wherein the tiling
unit is configured to generate any intersection points between edges of the

primitive and boundaries of the tile by:
generating a bounding box of the tile at sample precision; and

generating any intersection points between edges of the primitive and

edges of the bounding box of the tile at sample precision.

25. A graphics processing system according to claim 23 or 24, wherein the
tiling unit is configured to form a sub-polygon inside the tile by replacing

vertices of the primitive outside the tile with the intersection points by:

forming an initial sub-polygon inside the tile by replacing vertices of the

primitive outside the tile with the intersection points; and

if the initial sub-polygon has more than three vertices, dividing the initial
sub-polygon into a plurality of smaller sub-polygons, each having only three

vertices,

and wherein a bounding box is generated at sample precision for each
smaller sub-polygon and it is determined, for each generated bounding box, if

it overlaps any samples in the tile.

26. A graphics processing system according to any of claims 23-25,
wherein the tiling unit is configured to determine if the bounding box of the

sub-polygon overlaps any samples in the tile by:

identifying four sampling locations in the tile using the bounding box of

the sub-polygon; and

determining if the bounding box of the sub-polygon misses all four

sampling locations in the tile.
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27. A graphics processing system according to any of claims 17-26,
wherein the tiling unit is configured to determine whether a primitive falls

within a tile based on positions of samples within pixels in a tile by:

generating any intersection points between edges of the primitive and

boundaries of the tile;

forming a sub-polygon inside the tile by replacing vertices of the

primitive outside the tile with the intersection points;
generating a bounding box of the sub-polygon at sample precision;

testing each edge of the sub-polygon which is also part of an edge of
the primitive against each sample point in the bounding box of the sub-

polygon to determine if any sample point is inside the sub-polygon; and

in response to determining that any sample point is inside the sub-

polygon, determining that the primitive falls within the tile.

28. A graphics processing system according to claim 27, wherein the tiling
unit is configured to generate any intersection points between edges of the

primitive and boundaries of the tile by:
generating a bounding box of the tile at sample precision; and

generating any intersection points between edges of the primitive and

edges of the bounding box of the tile at sample precision.

29. A graphics processing system according to claim 27 or 28, wherein the
tiling unit is configured to form a sub-polygon inside the tile by replacing

vertices of the primitive outside the tile with the intersection points by:

forming an initial sub-polygon inside the tile by replacing vertices of the

primitive outside the tile with the intersection points; and
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if the initial sub-polygon has more than three vertices, dividing the initial
sub-polygon into a plurality of smaller sub-polygons, each having only three

vertices,

and wherein a bounding box is generated at sample precision for each
smaller sub-polygon and wherein testing each edge of the sub-polygon which
is also part of an edge of the primitive against each sample point in the
bounding box of the sub-polygon to determine if any sample point is inside the

sub-polygon comprises:

for each smaller sub-polygon, testing each edge of the smaller sub-
polygon which is also part of an edge of the primitive against each sample
point in the bounding box of the smaller sub-polygon to determine if any

sample point is inside the smaller sub-polygon.

30. A graphics processing system according to any of claims 27-29,
wherein the tiling unit is configured to test each edge of the sub-polygon
which is also part of an edge of the primitive against each sample point in the
bounding box of the sub-polygon to determine if any sample point is inside the

sub-polygon by:

computing edge parameters for each edge of the sub-polygon which is

also part of an edge of the primitive; and

testing each sample point in the bounding box of the sub-polygon

against each edge.

31. A graphics processing system according to any of claims 17-31,
wherein the tiling unit is configured to determine whether a primitive falls

within a tile based on positions of samples within a pixel by:
determining how many vertices of the primitive fall within the tile;

in response to determining that two or more vertices fall outside the tile,

determining that the primitive falls within the tile;
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in response to determining that less than two vertices fall within the tile,
generating any intersection points between edges of the primitive and

boundaries of the tile;

in response to generating more than two intersection points,

determining that the primitive falls within the tile;

in response to generating exactly two intersection points for a primitive
with only one vertex in the tile and where the intersection points are on
different boundaries of the tile, determining that the primitive falls within the

tile;

in response to generating exactly two intersection points for a primitive
with no vertices in the tile and where the intersection points are on the same
boundary of the tile or on different boundaries of the tile that do not cross

within the primitive, determining that the primitive falls within the tile; and

in response to generating exactly two intersection points for a primitive
with only one vertex in the tile and where the intersection points are on same
boundary of the tile and in response to generating exactly two intersection
points for a primitive with no vertices in the tile and where the intersection

points are on different boundaries of the tile which cross within the primitive:

forming a sub-polygon inside the tile by replacing vertices of the

primitive outside the tile with the intersection points;

generating a bounding box of the sub-polygon at sample

precision;

determining if the bounding box of the sub-polygon overlaps any

samples in the tile;

in response to determining that the bounding box of the sub-
polygon overlaps any samples in the tile, determining that the primitive

falls within the tile;
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in response to determining that the bounding box of the sub-
polygon does not overlap any samples in the tile, testing each edge of
the sub-polygon which is also part of an edge of the primitive against
each sample point in the bounding box of the sub-polygon to determine

if any sample point is inside the sub-polygon; and

in response to determining that any sample point is inside the

sub-polygon, determining that the primitive falls within the tile.

32.  The graphics processing system according to claim 31, the tiling unit is
further configured, prior to determining how many vertices of the primitive fall

within the tile, to:
generate a bounding box of the tile at sample precision;
generate a bounding box of the primitive at sample precision; and
determine if the bounding boxes overlap; and

only in response to determining that the bounding boxes overlap,

determine how many vertices of the primitive fall within the tile.

33. A graphics processing system configured to perform the method of any

of claims 1 to 16.

34.  The graphics processing system of any of claims 17-32 wherein the

graphics processing system is embodied in hardware on an integrated circuit.

35.  Computer readable code configured to perform the steps of the method

of any of claims 1 to 16 when the code is run on a computer.

36. A computer readable storage medium having encoded thereon the

computer readable code of claim 35.

37. A method of manufacturing, at an integrated circuit manufacturing

system, a graphics processing system as claimed in any of claims 17 to 32.
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38.  Anintegrated circuit definition dataset that, when processed in an
integrated circuit manufacturing system, configures the integrated circuit
manufacturing system to manufacture a graphics processing system as

claimed in any of claims 17 to 32.

39. A computer readable storage medium having stored thereon a
computer readable description of an integrated circuit that, when processed in
an integrated circuit manufacturing system, causes the integrated circuit
manufacturing system to manufacture a graphics processing system as

claimed in any of claims 17 to 32.
40.  Anintegrated circuit manufacturing system comprising:

a non-transitory computer readable storage medium having stored
thereon a computer readable description of an integrated circuit that describes

a graphics processing system;

a layout processing system configured to process the integrated circuit
description so as to generate a circuit layout description of an integrated

circuit embodying the graphics processing system; and

an integrated circuit generation system configured to manufacture the

graphics processing system according to the circuit layout description,

wherein the graphics processing system comprises a tiling unit for processing

primitives for each of a plurality of tiles, the tiling unit being configured to:

determine whether a primitive that covers at least one sample position
in a rendering space falls within a tile based on positions of samples within

pixels in the tile; and

cause an association between the tile and the primitive to be stored to
indicate that the primitive is present in the tile in response to determining that
a primitive that covers at least one sample position in a rendering space does

fall within a tile based on the positions of samples within pixels in the tile.
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