

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2019/040608 A1

(43) International Publication Date
28 February 2019 (28.02.2019)

(51) International Patent Classification:
A61K 39/395 (2006.01) *C07K 16/28* (2006.01)
C07K 16/18 (2006.01)

(74) Agent: BRENNAN, Jack et al.; Fish & Richardson P.C.,
P.O. Box 1022, Minneapolis, Minnesota 55440-1022 (US).

(21) International Application Number:
PCT/US2018/047502

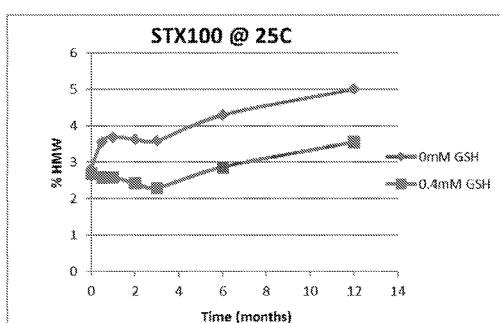
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
22 August 2018 (22.08.2018)

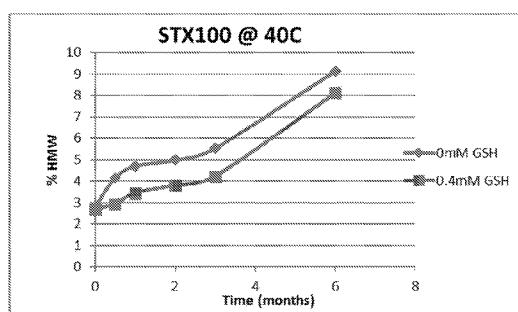
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

(26) Publication Language: English


(30) Priority Data:
62/548,772 22 August 2017 (22.08.2017) US

(71) Applicant: BIOGEN MA INC. [US/US]; 225 Binney Street, Cambridge, Massachusetts 02142 (US).


(72) Inventors: ESTEY, Tia Brie; Biogen MA Inc., 225 Binney Street, Cambridge, Massachusetts 02142 (US). GOVINDAN, Geetha; Biogen MA Inc., 225 Binney Street, Cambridge, Massachusetts 02142 (US). SALUJA, Sonal; Biogen MA Inc., 225 Binney Street, Cambridge, Massachusetts 02142 (US). GUPTA, Kapil; Biogen MA Inc., 225 Binney Street, Cambridge, Massachusetts 02142 (US). MCGRATH, Margaret; Biogen MA Inc., 225 Binney Street, Cambridge, Massachusetts 02142 (US).

(54) Title: PHARMACEUTICAL COMPOSITIONS AND DOSAGE REGIMENS CONTAINING ANTI- α 1- β 6 ANTI-TIBODIES

FIGURE 3

(57) Abstract: Formulations and dosage regimens of an anti- α 1- β 6 antibody or α 1- β 6-binding fragment thereof are provided. These formulations find use in the treatment of e.g., fibrosis (e.g., idiopathic pulmonary fibrosis), acute lung injury, and acute kidney injury.

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*
- *with sequence listing part of description (Rule 5.2(a))*

**PHARMACEUTICAL COMPOSITIONS AND DOSAGE REGIMENS CONTAINING
ANTI-ALPHA(V)BETA(6) ANTIBODIES**

Cross-Reference to Related Applications

5 This application claims the benefit of priority of U.S. Provisional Appl. No. 62/548,772, filed August 22, 2017, the content of which is incorporated by reference in its entirety herein.

Field

10 The present application relates generally to pharmaceutical compositions and dosage regimens for clinical use comprising anti- α v β 6 antibodies and uses thereof.

Background

15 Integrins are a superfamily of cell surface glycoprotein receptors, which bind extracellular matrix proteins and mediate cell-cell and cell-extracellular matrix interactions (generally referred to as cell adhesion events). These receptors are composed of noncovalently associated alpha (α) and beta (β) chains, which combine to give a variety of heterodimeric proteins with distinct cellular and adhesive specificities. Integrins regulate a variety of cellular processes including cellular adhesion, migration, invasion, differentiation, proliferation, apoptosis and gene expression.

20 The α v β 6 receptor is one member of a family of integrins that are expressed as cell surface heterodimeric proteins. While the α v subunit can form a heterodimer with a variety of β subunits (β 1, β 3, β 5, β 6, and β 8), the β 6 subunit can only be expressed as a heterodimer with the α v subunit. The α v β 6 integrin is known to be a fibronectin-, vitronectin-, latency associated peptide (LAP)-, and tenascin C-binding cell surface receptor, interacting with the extracellular matrix through the RGD tripeptide binding sites thereon. The expression of 25 α v β 6 is restricted to epithelial cells where it is expressed at relatively low levels in healthy tissue and significantly upregulated during development, injury, and wound healing.

As α v β 6's binding to LAP is important in the conversion of TGF- β to its active state, blocking the binding can result in inhibition of α v β 6-mediated activation of TGF- β and the associated fibrotic pathology.

30 High affinity antagonist antibodies that bind α v β 6 have been shown to be useful in the treatment of TGF- β -associated disorders.

Summary

This disclosure relates, in part, to compositions containing an anti- α v β 6 antibody or α v β 6-binding fragment thereof and their use in the treatment of, inter alia, fibrosis, acute lung injury, and acute kidney injury.

5 In one aspect, the disclosure features a pharmaceutical composition comprising an anti- α v β 6 antibody or α v β 6-binding fragment thereof, and arginine hydrochloride (Arg.HCl). The anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises an immunoglobulin heavy chain variable domain (VH) and an immunoglobulin light chain variable domain (VL). In certain instances, the VH comprises VH complementarity determining regions (VH-
10 CDRs), wherein VH-CDR1 comprises or consists of the amino acid sequence set forth in SEQ ID NO:1 or 11; VH-CDR2 comprises or consists of the amino acid sequence set forth in SEQ ID NO:2; and VH-CDR3 comprises or consists of the amino acid sequence set forth in SEQ ID NO:3; and the VL comprises VL-CDRs, wherein VL-CDR1 comprises or consists of the amino acid sequence set forth in SEQ ID NO:4; VL-CDR2 comprises or consists of the
15 amino acid sequence set forth in SEQ ID NO:5; and VL-CDR3 comprises or consists of the amino acid sequence set forth in SEQ ID NO:6. The composition has a pH of 5.2 to 5.7.

In certain embodiments, the composition comprises the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a concentration of 50 mg/ml to 200 mg/ml. In other embodiments, the composition comprises the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a concentration of 100 mg/ml to 175 mg/ml. In other embodiments, the composition comprises the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a concentration of 125 mg/ml to 175 mg/ml. In yet other embodiments, the composition comprises the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a concentration of 150 mg/ml.

25 In certain embodiment, the composition comprises Arg.HCl at a concentration of 50 mM to 250 mM. In another embodiment, the composition comprises Arg.HCl at a concentration of 100 mM to 200 mM. In other embodiments, the composition comprises Arg.HCl at a concentration of 125 mM to 175 mM. In yet another embodiment, wherein the composition comprises Arg.HCl at a concentration of 150 mM.

30 In certain embodiment, the composition comprises methionine. In some instances, the composition comprises methionine at a concentration of 0.5 mM to 30 mM. In other instances, wherein the composition comprises methionine at a concentration of 1 mM to 10 mM. In yet other instances, the composition comprises methionine at a concentration of 5 mM.

In certain embodiment, the composition comprises Polysorbate-80 (PS80). In some instances, the composition comprises PS80 at a concentration of 0.01% to 0.1%. In other instances, the composition comprises PS80 at a concentration of 0.03% to 0.08%. In yet other instances, the composition comprises PS80 at a concentration of 0.05%.

5 In certain embodiment, the composition comprises sodium citrate and citric acid. In certain instances, the composition comprises sodium citrate and citric acid at a concentration of 5 mM to 30 mM. In other instances, the composition comprises sodium citrate and citric acid at a concentration of 15 mM to 25 mM. In other instances, the composition comprises sodium citrate and citric acid at a concentration of 20 mM.

10 In certain embodiment, the composition has a pH of 5.3 to 5.6. In one embodiment, the composition has a pH of 5.5.

In certain embodiments, the composition comprises a thiol-containing antioxidant. In some cases, the thiol-containing antioxidant is selected from the group consisting of GSH, GSSG, the combination of GSH and GSSG, cystine, cysteine, and the combination of 15 cysteine and cystine. In one instance, the thiol-containing antioxidant is GSH. In one instance, the thiol-containing antioxidant is GSSG. In one instance, the thiol-containing antioxidant is GSH and GSSG. In one instance, the thiol-containing antioxidant is cysteine. In one instance, the thiol-containing antioxidant is cystine. In one instance, the thiol-containing antioxidant is cysteine and cystine. In certain embodiments, the thiol-containing antioxidant 20 is present in the composition at a concentration of 0.02 mM to 2 mM. In some cases, the thiol-containing antioxidant is present in the composition at a concentration of 0.2 mM. In other cases, the thiol-containing antioxidant is present in the composition at a concentration of 0.4 mM. In yet other cases, the thiol-containing antioxidant is present in the composition at a concentration of 1.0 mM. In cases where the thiol-containing antioxidant is GSH and 25 GSSG, the former is present at a concentration of 0.4 mM and the latter at a concentration of 0.2 mM. In cases where the thiol-containing antioxidant is cysteine and cystine, the former is present at a concentration of 0.4 mM and the latter at a concentration of 0.2 mM.

In some embodiments, the pharmaceutical composition comprises the anti- α v β 6 antibody or the α v β 6-binding fragment thereof at a concentration of 125 mg/ml to 175 mg/ml; Arg.HCl at a concentration of 125 mM to 175 mM; methionine at a concentration of 1 mM to 10 mM; sodium citrate and citric acid at a concentration of 15 mM to 25 mM; and PS80 at a concentration of 0.03% to 0.08%. The composition has a pH of 5.3 to 5.7.

In some embodiments, the pharmaceutical composition comprises the anti- α v β 6 antibody or the α v β 6-binding fragment thereof at a concentration of 125 mg/ml to 175

mg/ml; Arg.HCl at a concentration of 125 mM to 175 mM; methionine at a concentration of 1 mM to 10 mM; sodium citrate and citric acid at a concentration of 15 mM to 25 mM; a thiol-containing antioxidant at a concentration of 0.02 mM to 2 mM; and PS80 at a concentration of 0.03% to 0.08%. The composition has a pH of 5.3 to 5.7.

5 In some embodiments, the pharmaceutical composition comprises the anti- α v β 6 antibody or the α v β 6-binding fragment thereof at a concentration of 125 mg/ml to 175 mg/ml; Arg.HCl at a concentration of 125 mM to 175 mM; sodium citrate buffer (sodium citrate and citric acid) at a concentration of 15 mM to 25 mM; a thiol-containing antioxidant at a concentration of 0.02 mM to 2 mM; and PS80 at a concentration of 0.03% to 0.08%. The 10 composition has a pH of 5.3 to 5.7.

15 In some embodiments, the pharmaceutical composition comprises the anti- α v β 6 antibody or the α v β 6-binding fragment thereof at a concentration of 150 mg/ml; Arg.HCl at a concentration of 150 mM; methionine at a concentration of 5 mM; sodium citrate and citric acid at a concentration of 20 mM; and PS80 at a concentration of 0.03% to 0.08%. The composition has a pH of 5.5.

20 In some embodiments, the pharmaceutical composition comprises the anti- α v β 6 antibody or the α v β 6-binding fragment thereof at a concentration of 150 mg/ml; Arg.HCl at a concentration of 150 mM; methionine at a concentration of 5 mM; sodium citrate and citric acid at a concentration of 20 mM; GSH or cysteine at a concentration of 0.4 mM; and PS80 at a concentration of 0.03% to 0.08%. The composition has a pH of 5.5.

In certain embodiments, the VH consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:7 and the VL consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:8.

25 In certain embodiments, the heavy chain consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:9 and the light chain consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:10;

30 The disclosure also features methods of treating an α v β 6-mediated condition in a human subject in need thereof. The method comprises administering to the human subject a pharmaceutical composition described herein. In certain instances, the α v β 6-mediated condition is fibrosis. In specific embodiments, the fibrosis is lung fibrosis, kidney fibrosis, liver fibrosis, or cardiac fibrosis. In a particular embodiment, the fibrosis is idiopathic pulmonary fibrosis. In another instance, the α v β 6-mediated condition is acute lung injury. In another instance, the α v β 6-mediated condition is acute kidney injury. In certain embodiments, the pharmaceutical composition is administered subcutaneously to the human

subject. In some instances, the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 40 mg to 64 mg once weekly. In some instances, the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 40 mg once 5 weekly. In some instances, the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 48 mg once weekly. In some instances, the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 56 mg once 10 weekly. In some instances, the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 64 mg once weekly. In some instances, the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 0.5 mg/kg to 15 0.8 mg/kg once weekly. In certain cases, the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 0.5 mg/kg once weekly. In certain cases, the anti- α v β 6 antibody or α v β 6-binding fragment 20 thereof of the pharmaceutical composition is administered to the human subject at a dose of 0.6 mg/kg once weekly. In certain cases, the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 0.7 mg/kg once weekly. In other cases, the anti- α v β 6 antibody or α v β 6-binding fragment 25 thereof of the pharmaceutical composition is administered to the human subject at a dose of 0.8 mg/kg once weekly.

In another aspect, the disclosure provides a method of treating an α v β 6-mediated condition selected from the group consisting of fibrosis, acute lung injury, and acute kidney injury in a human subject in need thereof. The method comprises administering 25 subcutaneously to the human subject an anti- α v β 6 antibody or α v β 6-binding fragment thereof at a dose of 40 mg to 64 mg once every week. The anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises a VH and a VL. The VH comprises VH-CDRs, wherein VH-CDR1 comprises or consists of the amino acid sequence set forth in SEQ ID NO:1 or 11; VH-CDR2 comprises or consists of the amino acid sequence set forth in SEQ ID NO:2; and 30 VH-CDR3 comprises or consists of the amino acid sequence set forth in SEQ ID NO:3; and VL-CDRs, wherein VL-CDR1 comprises or consists of the amino acid sequence set forth in SEQ ID NO:4; VL-CDR2 comprises or consists of the amino acid sequence set forth in SEQ ID NO:5; and VL-CDR3 comprises or consists of the amino acid sequence set forth in SEQ ID NO:6. In certain instances, the dose is 40 mg once every week. In certain instances, the

dose is 48 mg once every week. In certain instances, the dose is 56 mg once every week. In certain instances, the dose is 64 mg once every week. In certain instances, the human subject is administered at least 4 doses of the anti- α v β 6 antibody or antigen-binding fragment thereof. In other instances, the human subject is administered at least 7 doses of the anti- α v β 6 antibody or antigen-binding fragment thereof. In yet other instances, the human subject is administered at least 10 doses of the anti- α v β 6 antibody or antigen-binding fragment thereof. In some cases, the VH consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:7 and the VL consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:8. In some instances, the anti- α v β 6 antibody comprises an immunoglobulin heavy chain and an immunoglobulin light chain, wherein the heavy chain consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:9 and the light chain consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:10. In certain instances, the condition is fibrosis. In specific embodiments, the fibrosis is lung fibrosis, kidney fibrosis, liver fibrosis, or cardiac fibrosis. In a particular embodiment, the fibrosis is idiopathic pulmonary fibrosis. In another instance, the condition is acute lung injury. In another instance, the condition is acute kidney injury.

In another aspect, the disclosure features a syringe or pump comprising a sterile preparation of a pharmaceutical composition described herein, wherein the syringe or pump is adapted for subcutaneous administration of the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a fixed dose of 40 mg, 48 mg, 56 mg, or 64 mg. In certain instances, the syringe or pump comprises 0.5 to 5.0 mL of a sterile preparation of a pharmaceutical composition described herein. In certain instances, the syringe or pump comprises 0.5 to 1.0 mL of a sterile preparation of a pharmaceutical composition described herein. In a specific embodiment, the disclosure features a syringe or pump comprising 0.8 ml of a 70 mg/ml formulation comprising the anti- α v β 6 antibody or α v β 6-binding fragment thereof. In a specific embodiment, the disclosure features a syringe or pump comprising 0.8 ml of a formulation comprising the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a fixed dose of 56 mg. In certain instances, the pump is an LVSC pump.

In another aspect, the disclosure features a syringe or pump comprising a sterile preparation of an anti- α v β 6 antibody or α v β 6-binding fragment thereof. The syringe or pump is adapted for subcutaneous administration of the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a fixed dose of 40 mg, 48 mg, 56 mg, or 64 mg. The anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises a VH and a VL. The VH-CDRs comprise VH-CDR1 consisting of the amino acid sequence set forth in SEQ ID NO:1 or 11; VH-CDR2

consisting of the amino acid sequence set forth in SEQ ID NO:2; and VH-CDR3 consisting of the amino acid sequence set forth in SEQ ID NO:3. The VL-CDRs comprise VL-CDR1 consisting of the amino acid sequence set forth in SEQ ID NO:4; VL-CDR2 consisting of the amino acid sequence set forth in SEQ ID NO:5; and VL-CDR3 consisting of the amino acid sequence set forth in SEQ ID NO:6. In certain instances, the VH consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:7 and the VL consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:8. In some instances, the anti- α v β 6 antibody comprises an immunoglobulin heavy chain and an immunoglobulin light chain, wherein the heavy chain consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:9 and the light chain consists of a sequence at least 80%, at least 90%, or 100% identical to SEQ ID NO:10.

In another aspect, the disclosure features a combination treatment regimen comprising a pharmaceutical composition described herein and prifenidone.

15 In yet another aspect, the disclosure features a combination treatment regimen comprising a pharmaceutical composition described herein and nintedanib.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the exemplary methods and 20 materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present application, including definitions, will control. The materials, methods, and examples are illustrative only and not intended to be limiting.

25 Other features and advantages of the invention will be apparent from the following detailed description and from the claims.

Brief Description of the Drawings

FIG. 1A is a graph depicting the % total aggregation as determined by size exclusion chromatography (SEC) of 150 g/L STX-100 formulations with different excipients.

30 **FIG. 1B** is a bar graph showing the total sub-visible particles per mL of 150 g/L STX-100 formulations with different excipients. For each formulation tested, T=0 is depicted as the left bar and T=4 wk is depicted as the right bar.

FIG. 1C is a bar graph showing the viscosity at ambient temperature of 150 g/L STX-100 formulations with different excipients.

FIG. 2 is a bar graph showing the results of a pH-arginine screening study. For each formulation tested, T=0 is depicted as the left bar and T=1M 40°C is depicted as the right bar.

FIG. 3 is a graph showing the effect of GSH on the aggregation of STX-100 formulations at 25°C (top) and 40°C (bottom). The STX-100 formulations contain 150 mg/ml of STX-100, 20 mM citrate/citric acid, 150 mM arginine hydrochloride, 5 mM methionine, 0.05%PS80 and a pH of 5.5, and either no GSH or 0.4 mM GSH.

FIG. 4 provides graphs depicting the percentage of HMW species of SB4 (BENEPALI®, an etanercept biosimilar referencing Enbrel®) formulation (50 mg/ml SB4; 10 mM sodium phosphate; 140 mM NaCl; 1% sucrose, pH 6.2) with or without GSH (0.4mM) at 25°C and 40°C.

FIG. 5 provides graphs depicting the percentage of HMW species of an anti- α v β 5 integrin antibody (STX200) formulation (50 mg/ml antibody; 20 mM histidine; 5% sorbitol; 0.05% PS80, pH 6.5) with or without GSH (0.4mM) at 25°C and 40°C.

Detailed Description

This application provides pharmaceutical compositions and dosage regimens of anti- α v β 6 antibodies and α v β 6-binding fragments thereof and their use in the treatment of diseases such as, but not limited to, fibrosis, acute lung injury, acute kidney injury, and cancer.

α v β 6

α v β 6 is an integrin that is expressed on epithelial cells. It can bind to several ligands including fibronectin, vitronectin, cytotactin, tenascin, and the latency associated peptide- 1 and -3 (LAP1 and LAP3) – the N-terminal 278 amino acids of the latent precursor form of TGF- β 1 - through a direct interaction with an arginine-glycine-aspartate (“RGD”) motif. The TGF- β cytokine is synthesized as a latent complex which has the N-terminal LAP non-covalently associated with the mature active C-terminal TGF- β cytokine. The latent TGF- β complex cannot bind to its cognate receptor and thus is not biologically active until converted to an active form. α v β 6 binding to LAP1 or LAP3 leads to activation of the latent precursor form of TGF- β 1 and TGF- β 3 as a result of a conformational change in the latent complex allowing TGF- β to bind to its receptor. Thus, upregulated expression of α v β 6 can lead to local activation of TGF- β , which in turn can activate a cascade of events downstream events. The TGF- β 1 cytokine is a pleiotropic growth factor that regulates cell proliferation, differentiation, and immune responses.

The amino acid sequence of human integrin αv (UniProtKB - P06756 (ITAV_HUMAN) is shown below (the 30 aa signal peptide sequence is underlined):

	10	20	30	40	50
	MAFP PPRRRLR	LGPRGLPLLL	<u>SGLLLPLCRA</u>	FNLDVDSPAЕ	YSGPEGSYFG
5	60	70	80	90	100
	FAVDFFVPSA	SSRMFLLVGA	PKANTTQPGI	VEGGQVLKCD	WSSTRRCQPI
	110	120	130	140	150
	EFDATGNRDY	AKDDPLEFKS	HQWFGASVRS	KQDKILACAP	LYHWRTEMKQ
	160	170	180	190	200
10	EREPVGTCFL	QDGTKTVEYA	PCRSQDIDAD	GQGFCQGGFS	IDFTKADRVL
	210	220	230	240	250
	LGGPGSFYWQ	GQLISDQVAE	IVSKYDPNVY	SIKYNNQLAT	RTAQAIFFDS
	260	270	280	290	300
	YLGYSVAVGD	FNGDGIDDFV	SGVPRAARTL	GMVYIYDGKN	MSSLYNFTGE
15	310	320	330	340	350
	QMAAYFGFSV	AATDINGDDY	ADVFIGAPLF	MDRGSDGKLQ	EVGQVSVSLO
	360	370	380	390	400
	RASGDFQTTK	LNGFEVFARF	GSAIAPLGLD	DQDGFDIAI	AAPYGGEDKK
	410	420	430	440	450
20	GIVYIFNGRS	TGLNAVPSQI	LEGQWAARSM	PPSEGYSMKG	ATDIDKNGYP
	460	470	480	490	500
	DLIVGAFGVD	RAILYRARPV	ITVNAGLEVY	PSILNQDNKT	CSLPGTALKV
	510	520	530	540	550
	SCFNVRFCLK	ADGKGVLPRK	LNFQVELLLD	KLKQKGAIIR	ALFLYSRSPS
25	560	570	580	590	600
	HSKNMTISRG	GLMQCEELIA	YLRDESEFRD	KLTPITIFME	YRLDYRTAAD
	610	620	630	640	650
	TTGLQPILNQ	FTPANISRQA	HILLDCGEDN	VCKPKLEVSV	DSDQKKIYIG
	660	670	680	690	700
30	DDNPLTLIVK	AQNQGEGAYE	AELIVSIPLQ	ADFIGVVRNN	EALARLSCAF
	710	720	730	740	750
	KTENQTRQVV	CDLGNPMKAG	TQLLAGLRFS	VHQQSEMDTS	VKFDLQIQSS
	760	770	780	790	800
	NLFDKVSPVV	SHKVDLAVLA	AVEIRGVSSP	DHVFLPIPWN	EHKENPETEE
35	810	820	830	840	850
	DVGPVVQHIY	ELRNNGPSSF	SKAMLHLQWP	YKYNNNTLLY	ILHYDIDGPM
	860	870	880	890	900
	NCTSDMЕINP	LRIKISSLQT	TEKNDTVAGQ	GERDHLITKR	DLALSEGDIH
	910	920	930	940	950
40	TLGCGVAQCL	KIVCQVGRLD	RGKSAILYVK	SLLWTETFMN	KENQNHSYSL

960 970 980 990 1000
 KSSASFNVIE FPYKNLPIED ITNSTLVTTN VTWGIQPAPM PVPVWVIIA
 1010 1020 1030 1040
 VLAGLLLLAV LVFVMYRMGF FKRVRRPPQEE QEREQLQPHE NGEGNSET (SEQ ID NO:12)

5 The mature αv protein corresponds to amino acids 31-1048 of SEQ ID NO:12.

The amino acid sequence of human integrin $\beta 6$ (UniProtKB - P18564 (ITB6_HUMAN) is provided below (the 21 aa signal peptide sequence is underlined):

	10	20	30	40	50
	<u>MGIELLCLFF LFLGRNDHVO GGCALGGAET CEDCLLIGPQ CAWCAQENFT</u>				
10	60	70	80	90	100
	HPSGVGERCD TPANLLAKGC QLNFIENPVS QVEILKNKPL SVGRQKNSSD				
	110	120	130	140	150
	IVQIAPOSLI LKLRPGGAQT LQVHVRQTED YPVDLYYLMD LSASMDDLN				
	160	170	180	190	200
15	TIKELGSRLS KEMSKLTSNF RLGFGSFVEK PVSPFVKTTP EEIANPCSSI				
	210	220	230	240	250
	PYFCLPTFGF KHILPLTNDA ERFNEIVKNQ KISANIDTPE GGFDAIMQAA				
	260	270	280	290	300
	VCKEKIGWRN DSLHLLVFVS DADSHFGMDS KLAGIVIPND GLCHLDSKNE				
20	310	320	330	340	350
	YSMSTVLEYP TIGQLIDKLV QNNVLLIFAV TQEQQVHLYEN YAKLIPGATV				
	360	370	380	390	400
	GLLQKDSGNI LQLIISAYEE LRSEVELEVL GDTEGLNLSF TAICNNGLTF				
	410	420	430	440	450
25	QHQKKCSHMK VGDTASFSVT VNIPHCCERRS RHIICKPVGL GDALELLVSP				
	460	470	480	490	500
	ECNCDCQKEV EVNSSKCHHG NGSFQCGVCA CHPGHMGPRC ECGEDMLSTD				
	510	520	530	540	550
	SCKEAPDHPS CSGRGDCYCG QCICHLSPYQ NIYGPYCQCD NFSCVRHKGL				
30	560	570	580	590	600
	LCGGNGDCDC GECVCRSGWT GEYCNCTTST DSCVSEDGVL CSGRGDCVCG				
	610	620	630	640	650
	KCVCTNPGAS GPTCERCPTC GDPCNSKRSC IECHLSAAGQ AREECVDKCK				
	660	670	680	690	700
35	LAGATISEEE DFSKDGSVSC SLQGENECLI TFLITTDNEG KTIIHSINEK				
	710	720	730	740	750
	DCPKPPNIPM IMLGVSLAIL LIGVVLLCIW KLLVSFHDRK EVAKFEAERS				
	760	770	780		
	KAKWQTGTNP LYRGSTSTFK NVTYKHREKQ KVDLSTDC (SEQ ID NO:13)				

40 The mature $\beta 6$ protein corresponds to amino acids 22-788 of SEQ ID NO:13.

The antibodies described herein can bind specifically to the α v β 6 protein having the amino acid sequence set forth in positions 31-1048 of SEQ ID NO:12 and the amino acid sequence set forth in positions 22-788 of SEQ ID NO:13. In some embodiments, the antibodies described herein can bind specifically to the β 6 protein having the amino acid sequence set forth in positions 22-788 of SEQ ID NO:13.

Anti- α v β 6 Antibodies

In some embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof used in the compositions and methods described herein comprises the three heavy chain variable domain complementarity determining regions (CDRs) of an antibody referred to as “STX-100”. In some embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises the three light chain variable domain CDRs of STX-100. In still other embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises the three heavy chain variable domain CDRs and the three light chain variable domain CDRs of STX-100. The CDRs can be based on any CDR definition known in the art, *e.g.*, the definitions of Kabat, Chothia, Chothia from Abysis, enhanced Chothia/AbM, or based on the contact definition. Exemplary CDR sequences of STX-100 (according to Kabat) are provided in Table 1 below.

Table 1: Sequences of the Kabat CDRs of STX-100

Domain	CDR
VH CDR1	RYVMS (SEQ ID NO:1)
VH CDR2	SISSGGRMYYPDTVKG (SEQ ID NO:2)
VH CDR3	GSIYDGYYVFPY (SEQ ID NO:3)
VL CDR1	SASSSVSSSYLY (SEQ ID NO:4)
VL CDR2	STSNLAS (SEQ ID NO:5)
VL CDR3	HQWSTYPPT (SEQ ID NO:6)

20

In some aspects, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises of a VH CDR1 comprising or consisting of the amino acid sequence set forth in SEQ ID NO:1 or GFTFSRYVMS (SEQ ID NO:11), a VH CDR2 comprising or consisting of the amino acid sequence set forth in SEQ ID NO:2; and a VH CDR3 comprising or consisting of the amino acid sequence set forth in SEQ ID NO:3. In some embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises a VL CDR1 comprising or consisting of the amino acid sequence set forth in SEQ ID NO:4, a VL CDR2 comprising or consisting

of the amino acid sequence set forth in SEQ ID NO:5; and a VL CDR3 comprising or consisting of the amino acid sequence set forth in SEQ ID NO:6.

In certain aspects, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises the CDRs comprising the amino acid sequences set forth in SEQ ID NOs:1 to 6. In certain aspects, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises the CDRs comprising the amino acid sequences set forth in SEQ ID NOs:11, 2, 3, 4, 5, and 6. In certain aspects, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises the CDRs consisting of the amino acid sequences set forth in SEQ ID NOs:1 to 6. In certain aspects, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises the CDRs consisting of the amino acid sequences set forth in SEQ ID NOs:11, 2, 3, 4, 5, and 6.

STX-100 is a humanized humanIgG1/human kappa monoclonal antibody that specifically binds to the integrin α v β 6.

The heavy chain variable domain (VH) of STX-100 comprises or consists of the following amino acid sequence (VH CDRs (Kabat definition) bolded):

15 1 EVQLVESGGG LVQPGGSLRL SCAASGFTFS **RYVMSWVRQA** PGKGLEWVAS
51 51 **ISSGGGRMYYP** DTVKGRFTIS RDNAKNSLYL QMNSLRAEDT AVYYCARG**SI**
101 101 **YDGYYVFPYW** GQGTLTVSS (**SEQ ID NO:7**)

The light chain variable domain (VL) of STX-100 comprises or consists of the following amino acid sequence (VL CDRs (Kabat definition) bolded):

1 1 EIVLTQSPAT LSLSPGERAT LSC**SASSSVS** **SSYLYWYQQK** PGQAPRLLIY
51 51 **STSNLASGIP** ARFSGSGSGT DFTLTISSL PEDFAVYY**CH** **QWSTYPPTFG**
101 101 GGTKEI**K** (**SEQ ID NO:8**)

In certain embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises a VH comprising or consisting of the amino acid sequence set forth in SEQ ID NO:7. In some embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof selectively binds to α v β 6 and comprises a VH domain that is at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence of the VH domain of STX-100 (SEQ ID NO:7), or differs at least at 1 to 5 amino acid residues, but at fewer than 40, 30, 20, 15, or 10, residues, from SEQ ID NO:7. In some embodiments, these anti- α v β 6 antibody or α v β 6-binding fragments thereof blocks the binding of α v β 6 to its ligand, latency associated peptide (LAP), as determined by blocking of ligand binding either to purified hs α v β 6 or to β 6-expressing cells. In some embodiments, these anti- α v β 6 antibody or α v β 6-binding fragments thereof have one or more (e.g., one, two, three, four) of these properties: (i) specifically bind with high affinity to α v β 6; (ii) inhibit the

binding of $\alpha v\beta 6$ to LAP, fibronectin, vitronectin, or tenascin with an IC₅₀ value lower than that of the 10D5 antibody (WO 99/07405); (iii) block or inhibit activation of TGF- β ; (iv) specifically bind to the $\beta 6$ subunit; and (v) recognize $\alpha v\beta 6$ in immunostaining procedures such as immunostaining of paraffin-embedded tissues.

5 In certain embodiments, the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof comprises a VL comprising or consisting of the amino acid sequence set forth in SEQ ID NO:8. In some embodiments, the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof selectively binds to $\alpha v\beta 6$ and comprises a VL domain that is at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence of the VL domain of STX-100 (SEQ ID NO:8), or differs at least at 1 to 5 amino acid residues, but at fewer than 40, 30, 20, 15, or 10, residues, from SEQ ID NO:8. In some embodiments, these anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragments thereof blocks the binding of $\alpha v\beta 6$ to its ligand, latency associated peptide (LAP), as determined by blocking of ligand binding either to purified hs $\alpha v\beta 6$ or to $\beta 6$ -expressing cells. In some embodiments, these anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragments thereof have one or more (e.g., one, two, three, four) of these properties: (i) specifically bind with high affinity to $\alpha v\beta 6$; (ii) inhibit the binding of $\alpha v\beta 6$ to LAP, fibronectin, vitronectin, or tenascin with an IC₅₀ value lower than that of the 10D5 antibody (WO 99/07405); (iii) block or inhibit activation of TGF- β ; (iv) specifically bind to the $\beta 6$ subunit; and (v) recognize $\alpha v\beta 6$ in immunostaining procedures such as immunostaining of paraffin-embedded tissues.

10

15

20

In some embodiments, the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof comprises a VH having the amino acid sequence set forth in SEQ ID NO:7 and a VL having the amino acid sequence set forth in SEQ ID NO:8. In some embodiments, the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof selectively binds to $\alpha v\beta 6$ and comprises (i) a VH domain that is at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence of the VH domain of STX-100 (SEQ ID NO:7), and (ii) a VL domain that is at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence of the VL domain of STX-100 (SEQ ID NO:8); or differs at least at 1 to 5 amino acid residues, but at fewer than 40, 30, 20, 15, or 10, residues, from SEQ ID NO:7 and/or SEQ ID NO:8. In some embodiments, these anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragments thereof blocks the binding of $\alpha v\beta 6$ to its ligand, latency associated peptide (LAP), as determined by blocking of ligand binding either to purified hs $\alpha v\beta 6$ or to $\beta 6$ -expressing cells. In some embodiments, these anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragments thereof have one or more (e.g., one, two, three,

25

30

four) of these properties: (i) specifically bind with high affinity to α v β 6; (ii) inhibit the binding of α v β 6 to LAP, fibronectin, vitronectin, or tenascin with an IC50 value lower than that of the 10D5 antibody (WO 99/07405); (iii) block or inhibit activation of TGF- β ; (iv) specifically bind to the β 6 subunit; and (v) recognize α v β 6 in immunostaining procedures such as immunostaining of paraffin-embedded tissues.

An antibody consisting of the mature heavy chain (SEQ ID NO:9) and the mature light chain (SEQ ID NO:10) listed below is termed “STX-100” or “BG00011” or “BG11”. STX-100 is an IgG1/kappa antibody.

10 **Mature STX-100 Heavy Chain (HC) [H-CDR1, H-CDR2, and H-CDR3 are bolded; constant region underlined; N-linked glycosylation site bolded & underlined]**

1 EVQLVESGGG LVQPGGSLRL SCAASGFTFS **RYVMSWVRQA** PGKGLEWVAS
 51 **ISSGGRMYYP DTVKGRTFIS** RDNAKNSLYL QMNSLRAEDT AVYYCARG**SI**
 15 101 **YDGYYVFPYW** GQGTLVTVSS ASTKGPSVFP LAPSSKSTSG GTAALGCLVK
 151 DYFPEPVTVS WNSGALTSGV HTFPAVLOSS GLYSISSLVVT VPSSSLGTQT
 201 YICNVNHKPS NTKVDKKVEP KSCDKTHTCP PCPAPELLGG PSVFLFPPKP
 251 KDTLMISRTP EVTCVVVDVVS HEDPEVKFNW YVDGVEVHNA KTKPREEQ**YN**
 301 STYRVVSVLT VLHQDWLNGK EYKCKVSNKA LPAPIEKTIS KAKGQPREPO
 20 351 VYTLPPSRDE LTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTPPPV
 401 LSDDGSFFLY SKLTVDKSRW QQGNVFSCSV MHEALHNHYT QKSLSLSPG
 (SEQ ID NO:9)

25 **Mature STX-100 Light Chain (LC) [L-CDR1, L-CDR2, and L-CDR3 are bolded; constant region underlined]**

1 EIVLTQSPAT LSLSPGERAT LSC**SASSSVS** **SSYLYWYQQK** PGQAPRLLIY
 51 **STSNLASGIP** ARFSGSGSGT DFTLTISLLE PEDFAVYY**CH** **QWSTYPPTFG**
 30 101 GGTKVEIKRT VAAPSVFIFP PSDEQLKSGT ASVVCLLNNF YPREAKVQWK
 151 VDNALQSGNS QESVTEQDSK DSTYSLSSL TLSKADYEKH KVYACEVTHQ
 201 GLSSPVTKSF NRGEC (SEQ ID NO:10)

35 In certain embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises a HC having the amino acid sequence set forth in SEQ ID NO:9. In some embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof selectively binds to α v β 6 and comprises a HC that is at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence of SEQ ID NO:9, or differs at least at 1 to 5 amino acid residues, but at fewer than 40, 30, 20, 15, or 10, residues, from SEQ ID NO:9. In certain embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises a heavy chain set forth in SEQ ID NO:9, except for 1 to 5 amino acid substitutions in the heavy chain constant region. In some embodiments, these

anti- α v β 6 antibodies or α v β 6-binding fragments thereof block the binding of α v β 6 to its ligand, latency associated peptide (LAP), as determined by blocking of ligand binding either to purified hs α v β 6 or to β 6-expressing cells. In some embodiments, these anti- α v β 6 antibody or α v β 6-binding fragments thereof have one or more (e.g., one, two, three, four) of these properties: (i) specifically bind with high affinity to α v β 6; (ii) inhibit the binding of α v β 6 to LAP, fibronectin, vitronectin, or tenascin with an IC₅₀ value lower than that of the 10D5 antibody (WO 99/07405); (iii) block or inhibit activation of TGF- β ; (iv) specifically bind to the β 6 subunit; and (v) recognize α v β 6 in immunostaining procedures such as immunostaining of paraffin-embedded tissues.

10 In certain embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises a LC having the amino acid sequence set forth in SEQ ID NO:10. In some embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof selectively binds to α v β 6 and comprises a LC that is at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence of SEQ ID NO:10, or differs at least at 1 to 5 amino acid residues, but at fewer than 40, 30, 20, 15, or 10, residues, from SEQ ID NO:10. In certain embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises a light chain set forth in SEQ ID NO:10, except for 1 to 5 amino acid substitutions in the light chain constant region. In some embodiments, these anti- α v β 6 antibodies or α v β 6-binding fragments thereof block the binding of α v β 6 to its ligand, 15 latency associated peptide (LAP), as determined by blocking of ligand binding either to purified hs α v β 6 or to β 6-expressing cells. In some embodiments, these anti- α v β 6 antibody or α v β 6-binding fragments thereof have one or more (e.g., one, two, three, four) of these properties: (i) specifically bind with high affinity to α v β 6; (ii) inhibit the binding of α v β 6 to LAP, fibronectin, vitronectin, or tenascin with an IC₅₀ value lower than that of the 10D5 antibody (WO 99/07405); (iii) block or inhibit activation of TGF- β ; (iv) specifically bind to the β 6 subunit; and (v) recognize α v β 6 in immunostaining procedures such as 20 immunostaining of paraffin-embedded tissues.

25 In certain embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises a HC having the amino acid sequence set forth in SEQ ID NO:9 and a LC having the amino acid sequence set forth in SEQ ID NO:10. In some embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof selectively binds to human α v β 6 and comprises 30 (i) a HC that is at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence of SEQ ID NO:9, or differs at least at 1 to 5 amino acid residues, but at fewer than 40, 30, 20, 15, or 10, residues, from SEQ ID

NO:9; and (ii) a LC that is at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence of SEQ ID NO:10, or differs at least at 1 to 5 amino acid residues, but at fewer than 40, 30, 20, 15, or 10, residues, from SEQ ID NO:10. In some embodiments, these anti- α v β 6 antibodies or α v β 6-binding

5 fragments thereof block the binding of α v β 6 to its ligand, latency associated peptide (LAP), as determined by blocking of ligand binding either to purified hsav β 6 or to β 6-expressing cells. In some embodiments, these anti- α v β 6 antibody or α v β 6-binding fragments thereof have one or more (e.g., one, two, three, four) of these properties: (i) specifically bind with high affinity to α v β 6; (ii) inhibit the binding of α v β 6 to LAP, fibronectin, vitronectin, or 10 tenascin with an IC₅₀ value lower than that of the 10D5 antibody (WO 99/07405); (iii) block or inhibit activation of TGF- β ; (iv) specifically bind to the β 6 subunit; and (v) recognize α v β 6 in immunostaining procedures such as immunostaining of paraffin-embedded tissues.

In certain embodiments, the anti- α v β 6 antibody is an IgG antibody. In specific embodiments, the anti- α v β 6 antibody has heavy chain constant region chosen from, e.g., 15 IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgD, and IgE. In one embodiment, the anti- α v β 6 antibody is of the human IgG1 isotype. In another embodiment, the anti- α v β 6 antibody is of the human IgG2 isotype. In yet another embodiment, the anti- α v β 6 antibody is of the human IgG3 isotype. In yet another embodiment, the anti- α v β 6 antibody is of the human IgG4 isotype. In further embodiments, the antibody has a light chain constant region chosen from, 20 e.g., a human kappa or human lambda light chain. In a certain embodiment, the anti- α v β 6 antibody is a human IgG1/human kappa antibody. In some cases, the heavy chain constant region is human or a modified form of a human constant region. In certain instances, the human constant region may include at least 1 and up to 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 substitutions. In a particular embodiment, the modified human Fc 25 region is a modified human IgG1 Fc region. In some cases, the constant region of an anti- α v β 6 antibody is modified by mutation of one or more amino acid residues to impart a desired functional property (e.g., altered effector function or half-life, reduced glycosylation). For example, the N-linked glycosylation site may be substituted to prevent or reduce N-linked glycosylation of Fc region (e.g., human IgG1 Fc region).

30 In some embodiments, the anti- α v β 6 antibody is a full-length (whole) antibody or substantially full-length. The protein can include at least one, and preferably two, complete heavy chains, and at least one, and preferably two, complete light chains. In some embodiments, the anti- α v β 6 antibody is an α v β 6-binding fragment. In some instances, the

$\alpha\text{v}\beta 6$ -binding fragment is a Fab, a Fab', an F(ab')2, a Facb, an Fv, a single chain Fv (scFv), a sc(Fv)2, or a diabody.

Antibodies, such as STX-100, or $\alpha\text{v}\beta 6$ -binding fragments thereof can be made, for example, by preparing and expressing synthetic genes that encode the recited amino acid sequences or by mutating human germline genes to provide a gene that encodes the recited amino acid sequences. Moreover, this antibody and other anti- $\alpha\text{v}\beta 6$ antibodies can be produced, *e.g.*, using one or more of the following methods.

Methods of Producing Antibodies

Anti- $\alpha\text{v}\beta 6$ antibodies or $\alpha\text{v}\beta 6$ -binding fragments can be produced in bacterial or eukaryotic cells. Some antibodies, *e.g.*, Fab's, can be produced in bacterial cells, *e.g.*, *E. coli* cells. Antibodies can also be produced in eukaryotic cells such as transformed cell lines (*e.g.*, CHO, 293E, COS). In addition, antibodies (*e.g.*, scFv's) can be expressed in a yeast cell such as *Pichia* (*see, e.g.*, Powers et al., *J Immunol Methods*. 251:123-35 (2001)), *Hansenula*, or *Saccharomyces*. To produce the antibody of interest, a polynucleotide encoding the antibody is constructed, introduced into an expression vector, and then expressed in suitable host cells. Polynucleotides encoding an anti- $\alpha\text{v}\beta 6$ antibody comprising the VH and/or VL, HC and/or LC of the $\alpha\text{v}\beta 6$ antibodies described herein would be readily envisioned by the ordinarily skilled artisan. Standard molecular biology techniques are used to prepare the recombinant expression vector, transfet the host cells, select for transformants, culture the host cells and recover the antibody.

If the anti- $\alpha\text{v}\beta 6$ antibodies or $\alpha\text{v}\beta 6$ -binding fragments is to be expressed in bacterial cells (*e.g.*, *E. coli*), the expression vector should have characteristics that permit amplification of the vector in the bacterial cells. Additionally, when *E. coli* such as JM109, DH5 α , HB101, or XL1-Blue is used as a host, the vector must have a promoter, for example, a lacZ promoter (Ward et al., 341:544-546 (1989), araB promoter (Better et al., *Science*, 240:1041-1043 (1988)), or T7 promoter that can allow efficient expression in *E. coli*. Examples of such vectors include, for example, M13-series vectors, pUC-series vectors, pBR322, pBluescript, pCR-Script, pGEX-5X-1 (Pharmacia), "QIAexpress system" (QIAGEN), pEGFP, and pET (when this expression vector is used, the host is preferably BL21 expressing T7 RNA polymerase). The expression vector may contain a signal sequence for antibody secretion. For production into the periplasm of *E. coli*, the *pelB* signal sequence (Lei et al., *J. Bacteriol.*, 169:4379 (1987)) may be used as the signal sequence for antibody secretion. For bacterial

expression, calcium chloride methods or electroporation methods may be used to introduce the expression vector into the bacterial cell.

If the antibody is to be expressed in animal cells such as CHO, COS, and NIH3T3 cells, the expression vector includes a promoter necessary for expression in these cells, for example, an SV40 promoter (Mulligan *et al.*, *Nature*, 277:108 (1979)), MMLV-LTR promoter, EF1 α promoter (Mizushima *et al.*, *Nucleic Acids Res.*, 18:5322 (1990)), or CMV promoter. In addition to the nucleic acid sequence encoding the immunoglobulin or domain thereof, the recombinant expression vectors may carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes. The selectable marker gene facilitates selection of host cells into which the vector has been introduced (see e.g., U.S. Pat. Nos. 4,399,216, 4,634,665 and 5,179,017). For example, typically the selectable marker gene confers resistance to drugs, such as G418, hygromycin, or methotrexate, on a host cell into which the vector has been introduced. Examples of vectors with selectable markers include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13.

In one embodiment, antibodies are produced in mammalian cells. Exemplary mammalian host cells for expressing an antibody include Chinese Hamster Ovary (CHO cells) (including *dhfr*⁻ CHO cells, described in Urlaub and Chasin (1980) *Proc. Natl. Acad. Sci. USA* 77:4216-4220, used with a DHFR selectable marker, e.g., as described in Kaufman and Sharp (1982) *Mol. Biol.* 159:601-621), human embryonic kidney 293 cells (e.g., 293, 293E, 293T), COS cells, NIH3T3 cells, lymphocytic cell lines, e.g., NS0 myeloma cells and SP2 cells, and a cell from a transgenic animal, e.g., a transgenic mammal. For example, the cell is a mammary epithelial cell.

In an exemplary system for antibody expression, a recombinant expression vector encoding both the antibody heavy chain and the antibody light chain of an anti- α v β 6 antibody (e.g., STX-100) is introduced into *dhfr*⁻ CHO cells by calcium phosphate-mediated transfection. Within the recombinant expression vector, the antibody heavy and light chain genes are each operatively linked to enhancer/promoter regulatory elements (e.g., derived from SV40, CMV, adenovirus and the like, such as a CMV enhancer/AdMLP promoter regulatory element or an SV40 enhancer/AdMLP promoter regulatory element) to drive high levels of transcription of the genes. The recombinant expression vector also carries a *DHFR* gene, which allows for selection of CHO cells that have been transfected with the vector using methotrexate selection/amplification. The selected transformant host cells are cultured

to allow for expression of the antibody heavy and light chains and the antibody is recovered from the culture medium.

Antibodies can also be produced by a transgenic animal. For example, U.S. Pat. No. 5,849,992 describes a method of expressing an antibody in the mammary gland of a transgenic mammal. A transgene is constructed that includes a milk-specific promoter and nucleic acids encoding the antibody of interest and a signal sequence for secretion. The milk produced by females of such transgenic mammals includes, secreted-therein, the antibody of interest. The antibody can be purified from the milk, or for some applications, used directly. Animals are also provided comprising one or more of the nucleic acids described herein.

The antibodies of the present disclosure can be isolated from inside or outside (such as medium) of the host cell and purified as substantially pure and homogenous antibodies. Methods for isolation and purification commonly used for antibody purification may be used for the isolation and purification of antibodies, and are not limited to any particular method. Antibodies may be isolated and purified by appropriately selecting and combining, for example, column chromatography, filtration, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, and recrystallization. Chromatography includes, for example, affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse-phase chromatography, and adsorption chromatography (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). Chromatography can be carried out using liquid phase chromatography such as HPLC and FPLC. Columns used for affinity chromatography include protein A column and protein G column. Examples of columns using protein A column include Hyper D, POROS, and Sepharose FF (GE Healthcare Biosciences). The present disclosure also includes antibodies that are highly purified using these purification methods.

Anti- α v β 6 Antibody Compositions

This disclosure also provides compositions (e.g., pharmaceutical compositions) comprising the anti- α v β 6 antibodies or α v β 6-binding fragments thereof described herein. For example, the anti- α v β 6 antibody compositions comprise an anti- α v β 6 antibody or α v β 6-binding fragment thereof comprising an immunoglobulin heavy chain variable domain (VH) and an immunoglobulin light chain variable domain (VL), wherein the VH comprises the H-CDRs and the VL comprises the L-CDRs of STX-100. In certain instances, the heavy chain

CDRs (H-CDRs) comprise or consist of the amino acid sequences set forth in SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3; and the light chain CDRs (L-CDRs) comprise or consist of the amino acid sequences set forth in SEQ ID NO:4, SEQ ID NO:5, and SEQ ID NO:6. In certain instances, the heavy chain CDRs (H-CDRs) comprise or consist of the amino acid sequences set forth in SEQ ID NO:11, SEQ ID NO:2, and SEQ ID NO:3; and the light chain CDRs (L-CDRs) comprise or consist of the amino acid sequences set forth in SEQ ID NO:4, SEQ ID NO:5, and SEQ ID NO:6. In some embodiments, the anti- α v β 6 antibody compositions comprises an anti- α v β 6 antibody or α v β 6-binding fragment thereof comprising (i) a VH comprising or consisting of an amino acid sequence that is at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence set forth in SEQ ID NO:7; and (ii) a VL comprising or consisting of an amino acid sequence that is at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence set forth in SEQ ID NO:8. In certain embodiments, the anti- α v β 6 antibody compositions comprises an anti- α v β 6 antibody comprising (i) a heavy chain comprising or consisting of an amino acid sequence that is at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence set forth in SEQ ID NO:9; and (ii) a light chain comprising or consisting of an amino acid sequence that is at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence set forth in SEQ ID NO:10. In some embodiments, the anti- α v β 6 antibodies selectively bind to α v β 6. In some embodiments, these anti- α v β 6 antibodies or α v β 6-binding fragments thereof block the binding of α v β 6 to its ligand, latency associated peptide (LAP), as determined by blocking of ligand binding either to purified hs α v β 6 or to β 6-expressing cells. In some embodiments, these anti- α v β 6 antibody or α v β 6-binding fragments thereof have one or more (e.g., one, two, three, four) of these properties: (i) specifically bind with high affinity to α v β 6; (ii) inhibit the binding of α v β 6 to LAP, fibronectin, vitronectin, or tenascin with an IC₅₀ value lower than that of the 10D5 antibody (WO 99/07405); (iii) block or inhibit activation of TGF- β ; (iv) specifically bind to the β 6 subunit; and (v) recognize α v β 6 in immunostaining procedures such as immunostaining of paraffin-embedded tissues.

In certain embodiments, these compositions are high concentration anti- α v β 6 antibody compositions. By “high concentration anti- α v β 6 antibody composition” is meant a composition comprising anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of greater than 100 mg/ml and less than 300 mg/ml. In certain instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments

thereof at a concentration of 50 mg/ml to 250 mg/ml. In certain instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 50 mg/ml to 225 mg/ml. In other instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 75 mg/ml to 225 mg/ml. In certain instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 50 mg/ml to 200 mg/ml. In other instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 75 mg/ml to 165 mg/ml. In other instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 100 mg/ml to 225 mg/ml. In yet other instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 125 mg/ml to 225 mg/ml. In other instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 125 mg/ml to 175 mg/ml. In certain instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 240 mg/ml. In certain instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 225 mg/ml. In certain instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 200 mg/ml. In certain instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 175 mg/ml. In certain instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 150 mg/ml. In other instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 125 mg/ml. In some instances, the anti- α v β 6 antibody composition comprises anti- α v β 6 antibodies or α v β 6-binding fragments thereof at a concentration of 100 mg/ml.

A composition (e.g., a pharmaceutical composition) comprising an anti- α v β 6 antibody or α v β 6-binding fragment thereof described herein may be in any one of a variety of forms. These include, for example, liquid solutions (e.g., injectable and infusible solutions), dispersions, or suspensions. The preferred form can depend on the intended mode of administration and therapeutic application. In certain embodiments, a pharmaceutical composition described herein is in the form of a sterile injectable or infusible solution.

Sterile injectable solutions can be prepared by incorporating an antibody described herein in the required amount with one or a combination of ingredients, followed by filtered sterilization. Generally, dispersions are prepared by incorporating an antibody described herein into a sterile vehicle that contains a basic dispersion medium and the required other ingredients. In the case of sterile powders for the preparation of sterile injectable solutions, an exemplary method of preparation is vacuum drying and freeze drying that yields a powder of an antibody described herein plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion, and by the use of surfactants.

The anti- α v β 6 antibody compositions (e.g., pharmaceutical compositions) may additionally comprise one or more excipients.

In one embodiment, the excipient lowers/reduces the aggregation and/or viscosity of the antibody in the composition compared to aggregation and/or viscosity of the antibody in the pharmaceutical composition without that excipient. In certain embodiments, such an excipient is arginine. In one instance, the excipient is L-arginine hydrochloride. Arginine (e.g., L-arginine hydrochloride) can be included in the composition at a concentration of 40 mM to 260 mM, 50 mM to 250 mM, 50 mM to 200 mM, 50 mM to 150 mM, 50 mM to 125 mM, 50 mM to 100 mM, 75 mM to 250 mM, 75 mM to 200 mM, 75 mM to 150 mM, or 75 mM to 100 mM. In certain embodiments arginine (e.g., Arg.HCl) is present in the composition at a concentration of 50 mM to 250 mM. In other embodiments, arginine (e.g., Arg.HCl) is present in the composition at a concentration of 50 mM to 200 mM. In certain instances, arginine (e.g., arginine hydrochloride) can be included in the composition at a concentration of 80 mM, 100 mM, 120 mM, 125 mM, 130 mM, 135 mM, 140 mM, 145 mM, 150 mM, 220 mM, or 260 mM. In a specific instance, arginine (e.g., arginine hydrochloride) can be included in the composition at a concentration of 100 mM. In another specific instance, arginine (e.g., arginine hydrochloride) can be included in the composition at a concentration of 150 mM.

Sometimes, solutions containing arginine develop visible particles after incubation at room temperature or higher temperatures (e.g., 40 $^{\circ}$ C). Addition of sucrose can reduce or prevent the formation of visible particles. Furthermore, sucrose can lower the counts of sub-visible particulates. In some embodiments, the anti- α v β 6 antibody composition comprises sucrose at a concentration of 0.05% to 5%, 0.05% to 4%, 0.05% to 3%, 1% to 5 %, 1% to 4%, 1% to 3%, 2% to 5%, 2% to 4%, or 2% to 3%. In certain embodiments, the anti- α v β 6

antibody composition comprises sucrose at a concentration of 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, or 5%. In a particular embodiment, the anti- α v β 6 antibody composition comprises sucrose at a concentration of 3%. In another particular embodiment, the anti- α v β 6 antibody composition comprises sucrose at a concentration of 1%.

5 In one embodiment, the anti- α v β 6 antibody compositions comprise methionine. In one instance, methionine is included in the composition at a concentration from 0.5 mM to 25 mM. In another instance, methionine is included in the composition at a concentration from 1 mM to 10 mM. In another instance, methionine is included in the composition at a concentration from 3 mM to 8 mM. In one instance, methionine is included in the composition at a 10 concentration of 1 mM, 2 mM, 5 mM, 10 mM, 15 mM, 20 mM or 25 mM. In a particular instance, methionine is included in the composition at a concentration of 10 mM. In another particular instance, methionine is included in the composition at a concentration of 5 mM.

15 Antibody product manufacturing is a complex process that can involve several steps such as, e.g., drug substance and bulk formulation, filtration, shipping, pooling, filling, lyophilization, inspections, packaging, and storage. During these steps, antibodies may be subjected to many different forms of stresses, e.g., agitation, temperature, light exposure, and oxidation. These types of stresses can lead to denaturation and aggregation of the antibody, which compromise the product quality and can even lead to loss of a production batch.

20 Agitation is one of the common physical stresses that antibody therapeutics are subjected to during the course of the manufacturing process. Agitation occurs, e.g., during mixing, ultrafiltration/diafiltration, pumping, shipping, and filling. To protect the antibody composition against agitation-induced stress, the composition may include a polysorbate. In certain embodiments, the composition comprises polysorbate-80 at a concentration of 0.01% 25 to 0.5%, 0.01% to 0.1%, 0.01% to 0.09%, 0.01% to 0.08%, 0.01% to 0.07%, 0.01% to 0.06%, 0.01% to 0.05%, 0.01% to 0.04%, or 0.01% to 0.03%. In certain embodiments, the composition comprises polysorbate-80 at a concentration of 0.02% to 0.08%. In some 30 embodiments, the composition comprises polysorbate-80 at a concentration of 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, or 0.1%. In a particular embodiment, the composition comprises polysorbate-80 at a concentration of 0.05%.

Any antibody composition benefits from a buffer that provides good buffering capacity. In certain embodiments, the antibody composition comprises sodium citrate and citric acid as the buffering agent. In certain embodiments, the composition comprises sodium citrate and citric acid at a concentration of 5 mM to 50 mM, 5 mM to 40 mM, 5 mM to 35

mM, 5 mM to 30 mM, 5 mM to 25 mM, 10 mM to 50 mM, 10 mM to 40 mM, 10 mM to 30 mM, 10 mM to 25 mM, 15 mM to 50 mM, 15 mM to 40 mM, 15 mM to 30 mM, or 15 mM to 25 mM. In certain embodiments, the composition comprises sodium citrate and citric acid at a concentration of 5 mM to 35 mM. In certain embodiments, the composition comprises 5 sodium citrate and citric acid at a concentration of 10 mM to 30 mM. In some embodiments, the composition comprises sodium citrate and citric acid at a concentration of 5 mM, 10 mM, 15 mM, 20 mM, 25 mM, 30 mM, or 35 mM. In a particular embodiment, the composition comprises sodium citrate and citric acid at a concentration of 20 mM.

10 The pH of the antibody composition can be from 5.0 to 6.5. In certain cases, the pH of the antibody composition can be 5.2 to 6.2. In certain instances, the pH of the antibody composition is 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, or 6.5. In a particular embodiment, the pH of the antibody composition is 5.5.

15 In some instances, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride (e.g., 150 mM) and methionine (e.g., 5 mM). In certain cases, these compositions have a pH of 5.5.

In some instances, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride (e.g., 150 mM), methionine (e.g., 5 mM) and a buffer (e.g., sodium citrate and citric acid at 20 mM). In certain cases, these compositions have a pH of 5.5.

20 In some instances, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride (e.g., 150 mM), methionine (e.g., 5 mM), and PS80 (e.g., 0.05%). In certain cases, these compositions have a pH of 5.5.

25 In certain embodiments, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride (e.g., 150 mM), methionine (e.g., 5 mM), sodium citrate and citric acid (e.g., 20 mM), and PS80 (e.g., 0.05%), and has a pH of 5.2 to 6.2. In some embodiments, the anti- α v β 6 compositions comprise L-arginine hydrochloride (e.g., 150 mM), methionine (e.g., 5 mM), sodium citrate and citric acid (e.g., 20 mM), and PS80 (e.g., 0.05%), and has a pH of 5.5. In certain embodiments, the anti- α v β 6 compositions comprise L-arginine hydrochloride (e.g., 150 mM), methionine (e.g., 5 mM), sodium citrate and citric acid (e.g., 20 mM), PS80 (e.g., 0.05%), and sucrose (up to 3%), and has a pH of 5.2 to 6.2. In some embodiments, the anti- α v β 6 compositions comprise L-arginine hydrochloride, methionine, sodium citrate and citric acid, PS80, and has a pH of 5.5. In all of these embodiments, the anti- α v β 6 antibody is 30 present at a concentration of 100 mg/ml to 165 mg/ml. In one instance, the anti- α v β 6

antibody is present at a concentration of 150 mg/ml. In one instance, the anti- α v β 6 antibody is present at a concentration of 100 mg/ml.

In some cases, the anti- α v β 6 composition comprises a thiol-containing antioxidant (e.g., reduced glutathione (GSH), oxidized glutathione (GSSG), GSH + GSSG, cysteine, 5 cystine, cysteine + cystine) at a concentration of 0.02 mM to 2 mM (e.g., 0.02, 0.03, 0.05, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2.0 mM). Such thiol-containing antioxidants can cleave unfavorable or misbrided disulfide bonds and promote the formation of favorable or properly bridged disulfide bonds. This would result in the stabilization of the native confirmation of the antibody or fragment 10 thereof and slow down aggregation rates. The antioxidant properties of these molecules may slow down oxidative processes that lead to aggregation. In some cases, the composition comprises GSH at a concentration of 0.4 mM. In some cases, the composition comprises GSSG at a concentration of 0.2 mM. In some cases, the composition comprises GSH at a concentration of 0.4 mM and GSSG at a concentration of 0.2 mM. In some cases, the 15 composition comprises cysteine at a concentration of 0.4 mM. In some cases, the composition comprises cystine at a concentration of 0.2 mM. In some cases, the composition comprises cysteine at a concentration of 0.4 mM and cystine at a concentration of 0.2 mM.

In certain embodiments, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride (e.g., 150 mM), methionine (e.g., 5 mM), sodium citrate and citric acid (e.g., 20 mM), a thiol-containing antioxidant such as GSH, GSSG, GSH and GSSG, cysteine, cystine, or cysteine and cystine (e.g., 0.02 mM to 2 mM), and PS80 (e.g., 0.05%), and has a pH of 5.2 to 6.2. In some embodiments, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride (e.g., 150 mM), methionine (e.g., 5 mM), sodium citrate and citric acid (e.g., 20 mM), a thiol-containing antioxidant such as GSH, GSSG, GSH and GSSG, 25 cysteine, cystine, or cysteine and cystine (e.g., 0.02 mM to 2 mM), and PS80 (e.g., 0.05%), and has a pH of 5.5. In certain embodiments, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride (e.g., 150 mM), methionine (e.g., 5 mM), sodium citrate and citric acid (e.g., 20 mM), PS80 (e.g., 0.05%), a thiol-containing antioxidant such as GSH, GSSG, GSH and GSSG, cysteine, cystine, or cysteine and cystine (e.g., 0.02 mM to 2 mM), and 30 sucrose (up to 3%), and has a pH of 5.2 to 6.2. In some embodiments, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride, methionine, histidine, PS80, and a thiol-containing antioxidant such as GSH, GSSG, GSH and GSSG, cysteine, cystine, or cysteine and cystine, and has a pH of 5.5. In all of these embodiments, the anti- α v β 6 antibody is present at a concentration of 100 mg/ml to 165 mg/ml. In one instance, the anti- α v β 6

antibody is present at a concentration of 150 mg/ml. In one instance, the anti- α v β 6 antibody is present at a concentration of 100 mg/ml.

In certain embodiments, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride (e.g., 150 mM), sodium citrate buffer (sodium citrate and citric acid) (e.g., 20 mM), a thiol-containing antioxidant such as GSH, GSSG, GSH and GSSG, cysteine, cystine, or cysteine and cystine (e.g., 0.02 mM to 2 mM), and PS80 (e.g., 0.05%), and has a pH of 5.2 to 6.2. In some embodiments, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride (e.g., 150 mM), sodium citrate and citric acid (e.g., 20 mM), a thiol-containing antioxidant such as GSH, GSSG, GSH and GSSG, cysteine, cystine, or cysteine and cystine (e.g., 0.02 mM to 2 mM), and PS80 (e.g., 0.05%), and has a pH of 5.5. In certain embodiments, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride (e.g., 150 mM), sodium citrate and citric acid (e.g., 20 mM), PS80 (e.g., 0.05%), a thiol-containing antioxidant such as GSH, GSSG, GSH and GSSG, cysteine, cystine, or cysteine and cystine (e.g., 0.02 mM to 2 mM), and sucrose (up to 3%), and has a pH of 5.2 to 6.2. In some embodiments, the anti- α v β 6 antibody compositions comprise L-arginine hydrochloride, histidine, PS80, and a thiol-containing antioxidant such as GSH, GSSG, GSH and GSSG, cysteine, cystine, or cysteine and cystine, and has a pH of 5.5. In all of these embodiments, the anti- α v β 6 antibody is present at a concentration of 100 mg/ml to 165 mg/ml. In one instance, the anti- α v β 6 antibody is present at a concentration of 150 mg/ml. In one instance, the anti- α v β 6 antibody is present at a concentration of 100 mg/ml.

In certain embodiments, the composition (e.g., a pharmaceutical composition) comprises an anti- α v β 6 antibody or an α v β 6-binding fragment thereof at a concentration of 75 mg/ml to 250 mg/ml, arginine (e.g., L-arginine hydrochloride) at a concentration of 50 mM to 200 mM, methionine at a concentration of 1 mM to 10 mM; polysorbate-80 at a concentration of 0.01% to 0.1%, sodium citrate and citric acid at a concentration of 10 mM to 30 mM, and sucrose at a concentration of 0% to 3%. The composition has a pH of 5.2 to 6.0. In certain embodiments, the anti- α v β 6 antibody or an α v β 6-binding fragment thereof of the composition comprises a VH and a VL comprising the CDRs of STX-100 (e.g., SEQ ID NOs: 1 or 11, 2, 3, 4, 5, and 6). In certain embodiments, the anti- α v β 6 antibody or an α v β 6-binding fragment thereof of the composition comprises a VH and a VL comprising SEQ ID NOs: 7 and 8, respectively. In some embodiments, the anti- α v β 6 antibody or an α v β 6-binding fragment thereof of the composition comprises a heavy chain and a light chain comprising SEQ ID NOs: 9 and 10, respectively. In one embodiment, the composition has a pH of 5.5 and comprises STX-100 or a STX-100-binding fragment thereof at a concentration

of 150 mg/ml, L-arginine hydrochloride at a concentration of 150 mM, methionine at a concentration of 5 mM, polysorbate-80 at a concentration of 0.05%, and sodium citrate and citric acid at a concentration of 20 mM. In certain embodiments, the composition further comprises a thiol-containing antioxidant (e.g., GSH, GSSG, GSH + GSSG, cysteine, cystine, 5 cysteine + cystine) at a concentration of 0.02 mM to 2 mM. In some embodiments, the composition further comprises sucrose at a concentration of 0.01% to 3%. In certain embodiments, the anti- α v β 6 antibody or an α v β 6-binding fragment thereof of the composition comprises a VH and a VL comprising the CDRs of STX-100 (e.g., SEQ ID 10 NOs: 1 or 11, 2, 3, 4, 5, and 6). In certain embodiments, the anti- α v β 6 antibody or an α v β 6-binding fragment thereof of the composition comprises a VH and a VL comprising SEQ ID NOs: 7 and 8, respectively. In some embodiments, the anti- α v β 6 antibody or an α v β 6-binding fragment thereof of the composition comprises a heavy chain and a light chain comprising SEQ ID NOs: 9 and 10, respectively.

In one embodiment, the composition has a pH of 5.5 and comprises STX-100 or a 15 STX-100-binding fragment thereof at a concentration of 150 mg/ml, L-arginine hydrochloride at a concentration of 150 mM, a thiol-containing antioxidant (e.g., GSH, GSSG, GSH + GSSG, cysteine, cystine, cysteine + cystine) at a concentration of 0.02 mM to 2 mM, polysorbate-80 at a concentration of 0.05%, and sodium citrate and citric acid at a concentration of 20 mM. In one embodiment, the thiol-containing antioxidant is GSH at a 20 concentration of 0.4 mM. In one embodiment, the thiol-containing antioxidant is GSH at a concentration of 0.4 mM and GSSG at a concentration of 0.2 mM. In another embodiment, the thiol-containing antioxidant is cysteine at a concentration of 0.4 mM. In another embodiment, the thiol-containing antioxidant is cysteine at a concentration of 0.4 mM and cystine at a concentration of 0.2 mM.

25

Dosing

The anti- α v β 6 antibody (e.g., STX-100) or α v β 6-binding fragment thereof described above can be administered to a subject, e.g., a human subject, at different doses. The anti- α v β 6 antibody (e.g., STX-100) or α v β 6-binding fragment thereof can be administered as a 30 fixed dose (i.e., independent of the weight of the patient), or in a mg/kg dose (i.e., a dose which varies based on the weight of the subject). Dosage unit form or “fixed dose” as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier

and optionally in association with the other agent. Single or multiple dosages may be given. The treatment can continue for days, weeks, months or even years.

In certain embodiments, for treating an indication described herein in an adult human subject, the dosage of the anti- α v β 6 antibody (e.g., STX-100) or α v β 6-binding fragment thereof is a fixed dose of 40 mg to 64 mg once weekly. In one embodiment, for treating an indication described herein in an adult human subject, the dosage of the anti- α v β 6 antibody (e.g., STX-100) or α v β 6-binding fragment thereof is a fixed dose of 40 mg once weekly. In another embodiment, the dosage of the anti- α v β 6 antibody or α v β 6-binding fragment thereof is a fixed dose of 48 mg once weekly. In another embodiment, the dosage of the anti- α v β 6 antibody or α v β 6-binding fragment thereof is a fixed dose of 56 mg once weekly. In another embodiment, the dosage of the anti- α v β 6 antibody or α v β 6-binding fragment thereof is a fixed dose of 64 mg once weekly.

In certain embodiments, for treating an indication described herein in an adult human subject, the dosage of the anti- α v β 6 antibody (e.g., STX-100) or α v β 6-binding fragment thereof is a mg/kg dose of 0.3 mg/kg to 1.0 mg/kg. In one embodiment, for treating an indication described herein in an adult human subject, the dosage of the anti- α v β 6 antibody (e.g., STX-100) or α v β 6-binding fragment thereof is a mg/kg dose of 0.5 mg/kg to 0.8 mg/kg. In one embodiment, for treating an indication described herein in an adult human subject, the dosage of the anti- α v β 6 antibody (e.g., STX-100) or α v β 6-binding fragment thereof is a mg/kg dose of 0.5 mg/kg. In another embodiment, for treating an indication described herein in an adult human subject, the dosage of the anti- α v β 6 antibody (e.g., STX-100) or α v β 6-binding fragment thereof is a mg/kg dose of 0.6 mg/kg. In another embodiment, for treating an indication described herein in an adult human subject, the dosage of the anti- α v β 6 antibody (e.g., STX-100) or α v β 6-binding fragment thereof is a mg/kg dose of 0.7 mg/kg. In yet another embodiment, for treating an indication described herein in an adult human subject, the dosage of the anti- α v β 6 antibody (e.g., STX-100) or α v β 6-binding fragment thereof is a mg/kg dose of 0.8 mg/kg.

In certain instances, the anti- α v β 6 antibody or α v β 6-binding fragment thereof is administered in combination with a therapeutically effective amount of an art recognized treatment for IPF.

Exemplary art recognized treatment options that can be used in combination with the antibody of the invention include: Corticosteroids (prednisone); Cyclophosphamide (Cytoxan®); Azathioprine (Imuran®); Mycophenolate mofetil (Cellcept®, Myfortic®); N-acetylcysteine (NAC); Nintedanib (Ofev®); Pirfenidone (Esbriet®, Pirfenex®, Pirespa®);

Proton pump inhibitors (Prilosec OTC®, Nexium®, others); or Supplemental Oxygen Therapy.

In one embodiment, an antibody of the invention is combined with prafenidone or nintedanib. In certain cases, the subject is administered prafenidone as follows:

5	<u>Treatment days</u>	<u>Dosage</u>
	Days 1 through 7	267 mg three times daily (801 mg/day)
	Days 8 through 14	534 mg three times daily (1602 mg/day)
	Days 15 onward	801 mg three times daily (2403 mg/day)

in combination with the antibody of the invention. In certain cases, the subject is

10 administered a therapeutically effective amount of nintedanib at a fixed dose of 150 mg twice daily in combination with the antibody of the invention.

In certain instances, the anti- α v β 6 antibody or α v β 6-binding fragment thereof is administered in combination with an antibody that inhibits the activity of connective tissue growth factor (CTGF) such as, but not limited to, the fully-human monoclonal antibody,

15 Pamrevlumab.

In certain instances, the anti- α v β 6 antibody or α v β 6-binding fragment thereof is administered in combination with a therapeutically effective amount of a selective autotaxin inhibitor (e.g., GLPG1690).

20 In certain instances, the anti- α v β 6 antibody or α v β 6-binding fragment thereof is administered in combination with a therapeutically effective amount of GBT-440.

A pharmaceutical composition may include a “therapeutically effective amount” of an agent described herein. Such effective amounts can be determined based on the effect of the administered agent, or the combinatorial effect of agents if more than one agent is used. A therapeutically effective amount of an agent may also vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the compound to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic, or detrimental effects, of the composition is outweighed by the therapeutically

25 beneficial effects. In certain embodiment, the therapeutically effective amount of the anti- α v β 6 antibody or α v β 6-binding fragment thereof is 40 mg to 64 mg. In one embodiment, the therapeutically effective amount of the anti- α v β 6 antibody or α v β 6-binding fragment thereof is 40 mg. In another embodiment, the therapeutically effective amount of the anti- α v β 6 antibody or α v β 6-binding fragment thereof is 48 mg. In yet another embodiment, the therapeutically effective amount of the anti- α v β 6 antibody or α v β 6-binding fragment thereof

is 56 mg. In yet another embodiment, the therapeutically effective amount of the anti- α v β 6 antibody or α v β 6-binding fragment thereof is 64 mg.

The route and/or mode of administration of the anti- α v β 6 antibody or α v β 6-binding fragment thereof can be tailored for the individual subject. For many applications, the route 5 of administration is one of: subcutaneous injection (SC), intravenous injection or infusion (IV), intraperitoneal administration (IP), or intramuscular injection. In one embodiment, the route of administration is subcutaneous. In another embodiment, the route of administration is intravenous.

10 Pharmaceutical compositions that comprise the anti- α v β 6 antibody or α v β 6-binding fragment thereof alone or in combination with non α v β 6 antibody agent(s) can be administered with a medical device. The device can be designed with features such as portability, room temperature storage, and ease of use so that it can be used in emergency situations, e.g., by an untrained subject or by emergency personnel in the field, removed to medical facilities and other medical equipment. The device can include, e.g., one or more 15 housings for storing pharmaceutical preparations that include the anti- α v β 6 antibody or α v β 6-binding fragment thereof, and can be configured to deliver one or more unit doses of the anti- α v β 6 antibody or other agent.

For example, the pharmaceutical composition can be administered with a needleless 20 hypodermic injection device, such as the devices disclosed in US 5,399,163; 5,383,851; 5,312,335; 5,064,413; 4,941,880; 4,790,824; or 4,596,556. Examples of well-known implants and modules include: US 4,487,603, which discloses an implantable micro-infusion 25 pump for dispensing medication at a controlled rate; US 4,486,194, which discloses a therapeutic device for administering medicaments through the skin; US 4,447,233, which discloses a medication infusion pump for delivering medication at a precise infusion rate; US 4,447,224, which discloses a variable flow implantable infusion apparatus for continuous 30 drug delivery; US 4,439,196, which discloses an osmotic drug delivery system having multi-chamber compartments; and US 4,475,196, which discloses an osmotic drug delivery system. Many other devices, implants, delivery systems, and modules are also known.

In one embodiment, the anti- α v β 6 antibody or α v β 6-binding fragment thereof is 30 administered to a human subject with a syringe. In another embodiment, the anti- α v β 6 antibody or α v β 6-binding fragment thereof is administered to a human subject with a pump for subcutaneous delivery. In some embodiments, the anti- α v β 6 antibody or α v β 6-binding fragment thereof is administered to a human subject with an autoinjector. In other

embodiments, the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof is administered to a human subject with a subcutaneous large volume injector.

This disclosure provides a pump or syringe comprising a sterile preparation of an anti- $\alpha v\beta 6$ antibody (e.g., STX-100) or $\alpha v\beta 6$ -binding fragment thereof. The syringe or pump can be adapted for subcutaneous administration of the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof. In some cases, the syringe or pump delivers a fixed doses(s) (e.g., 40 mg, 48 mg, 56 mg, 64 mg) of the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof.

The disclosure also provides a pump, syringe, or injector (e.g., autoinjector, subcutaneous large volume injector) comprising a sterile preparation of the pharmaceutical compositions described above. The syringe or pump can be adapted for subcutaneous administration of the pharmaceutical compositions comprising the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof. In some instances, the syringe or pump delivers a fixed doses(s) (e.g., 40 mg, 48 mg, 56 mg, 64 mg) of the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof.

15

Methods of Treatment

The antibodies of this disclosure are useful in the treatment, including prevention, of $\alpha v\beta 6$ -mediated diseases. For example, these antibodies can be used to treat fibrosis (e.g., lung fibrosis, kidney fibrosis, liver fibrosis, cardiac fibrosis), acute lung injury, acute kidney injury, Alport's Syndrome, psoriasis, scleroderma, and sclerosis of lung, liver, or kidney, by blocking the activation of TGF- β or blocking the binding of $\beta 6$ to any other ligands, such as fibronectin, vitronectin, and tenascin. The novelty of this approach includes: (1) it blocks the activation of TGF- β rather than the binding of TGF- β to its receptor, (2) it can inhibit TGF- β locally (i.e., at sites of $\alpha v\beta 6$ upregulation) rather than systemically, and (3) it inhibits binding of $\alpha v\beta 6$ to a ligand.

Other than fibrotic diseases or conditions, the antibodies of the disclosure are useful in treating cancer or cancer metastasis (including tumor growth and invasion), particularly epithelial cancers. A subset of epithelial cancers is squamous cell carcinoma, e.g., head and neck, oral, breast, lung, prostate, cervical, pharyngeal, colon, pancreatic and ovarian cancers.

30 In additional embodiments of the invention, $\alpha v\beta 6$ -binding antibodies or fragments thereof, may be used in therapeutic regimens for treating humans having, or at risk of developing carcinomas. Such methods of the invention are useful in treating cancer and associated events, including tumor growth, metastasis and angiogenesis. Particularly amenable to such an approach are those diseases or cancers that are characterized by

increased levels of $\alpha v\beta 6$ expression in the tissues or cells of a mammal suffering from the disease, and which are responsive to treatments, which target the tissues or cells expressing increased levels of $\alpha v\beta 6$ and eliminate those tissues or cells. Diseases that are particularly treatable by these methods include metastatic cancers of epithelial tissues (i.e., metastatic carcinomas and/or adenocarcinomas), including of the breast, ovary, prostate, liver, lung, pancreas, colon, head and neck tissues (e.g., oral, pharyngeal, lingual and laryngeal tissues), endometrium, cervix, stomach and spleen. Particularly suitable for treatment by these methods of the present invention are carcinomas of the endometrium, pancreas, colon (e.g., colorectal carcinomas), cervix, lung and breast (including ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) of the breast).

The following are examples of the practice of the invention. They are not to be construed as limiting the scope of the invention in any way.

15 **Examples**

These Examples relate, in part, to the development of a stable high concentration (e.g., 100 mg/ml or greater) liquid formulation for STX-100.

20 **Example 1: Pre-Formulation Evaluation**

During the initial pre-formulation evaluation, accelerated stability studies were conducted to explore pH, buffer, and excipient components suitable for a high concentration liquid formulation for STX-100. A formulation matrix containing 10 mM Na-citrate/citric acid pH 5.0, 150 mM arginine hydrochloride (Arginine-HCl) was used as a control for comparison. For the excipient screen, amino acids like glycine, lysine, arginine-HCl, and methionine, sugars like sorbitol, trehalose, mannitol, sucrose, and buffer systems such as citrate and acetate were tested. A pH range from 4.4 to 5.7 was also evaluated.

Accelerated stability evaluation was performed at 40°C incubation over 4 weeks for the formulations. The following quality attributes were monitored: visible particulates and clarity, % high molecular weight species (via SEC), total sub-visible particulates (via MFI), turbidity (via OD340), pH, fragmentation (via GXII), % total acidic isoforms (via iCIEF), and viscosity at T0. Maximum weightage was assigned to Critical quality attributes (CQA) like aggregate level and particle formation and were utilized in formulation selection. The

formulations with least amount of aggregate level and particle formation were selected for further evaluations.

The data indicated that arginine- and trehalose-containing formulations to be the most stable compared to others (Table 2; Figures 1A-1C; and Figure 2).

Table 2. Results of pre-formulation buffer-excipient screening study

Excipient / buffer	Visible appearance				Turbidity (OD340)			
	T=0	Time at 40 °C			T=0	Time at 40 °C		
		1wk	2wk	4wk		1wk	2wk	4wk
300mM Glycine	5-10 particles	10-50 particles	<10 particles	<10 particles	1.591549	1.0812	1.193952	NT
	NT	cla: 18-30NTU	cla:18-30NTU	cla:30-50NTU				
300mM Lysine	5-10 particles	10-50 particles	Few white particles	<10 particles	0.916307	1.1386	1.30471	NT
	NT	cla: 18-30NTU	cla: 18-30NTU	cla:30-50NTU				
300mM Sorbitol	50-100 particles	< 10 particles	<10 particles	<10 particles	0.85723	1.1036	1.161319	NT
	NT	cla: 18-30NTU	cla:18-30NTU	cla:30-50NTU				
200mM Trehalose	Few particles observed	< 10 particles	NT	<10 particles	1.004	1.005	1.048	NT
	NT	cla: 18-30NTU	NT	cla:30-50NTU				
100mM Mannitol	5-10 particles	10-50 particles	<10 particles	<10 particles	0.877126	1.1184	1.181954	NT
	NT	cla: 18-30NTU	cla:18-30NTU	cla:30-50NTU				
5% Sucrose	Few particles observed	< 10 particles	<10 particles	<10 particles	1.902725	1.1286	1.192552	NT
	NT	cla: 18-30NTU	cla:18-30NTU	cla:30-50NTU				
10mM Acetate	< 50 particles	< 10 particles	<10 particles	<10 particles	0.71461	0.963	1.0212	NT
	NT	cla: 18-30NTU	cla:18-30NTU	cla:30-50NTU				
10mM Succinate	< 50 particles	< 10 particles	<10 particles	<10 particles	0.925	0.923	0.929	NT
	NT	cla: 18-30NTU	cla:18-30NTU	cla:30-50NTU				
10mM Citrate	< 50 particles	< 10 particles	<10 particles	<10 particles	0.903355	1.1226	1.178035	NT
	NT	cla: 18-30NTU	cla:18-30NTU	cla:30-50NTU				

NT: Not tested

The presence of additional 25 mM methionine conferred greater aggregation resistance to the arginine-containing formulation (Figure 1A).

At pH 4.4, formulations containing 75 mM to 300 mM Arg-HCl displayed gel formation whereas in the pH 5.2 to 5.7 range, no gel formation was observed under accelerated conditions (Figure 2). As seen in Figures 1A and 2, the % total aggregate increase observed in these formulations was also lower in the entire buffer-excipient screen and the pH-arginine screen. At 150 mM ArgHCl, there was no significant difference in aggregation between pH 5.2 and pH 5.7 (Figure 2) suggesting that this pH range would most likely contain the desired set-point for minimizing aggregation.

Example 2: Medium to Long-term Stability Study & Formulation Selection

Based on the pre-formulation results in Example 1, the following five liquid formulations and corresponding container-closures (CCs) were selected for pursuing a long-term (24 month) stability study:

- 1) **Lot# 18169-62:** 150 mg/mL STX-100 in 20 mM Na-citrate/citric acid, pH 5.3, 150 mM arginine hydrochloride (Arg.HCl), 0.05% PS-80 (1 mL fill in 3 mL Schott vial)
- 2) **Lot# 18169-64:** 150 mg/mL STX-100 in 20 mM Na-citrate/citric acid, pH 5.3, 150 mM arginine hydrochloride (Arg.HCl), 0.05% PS-80 (1 mL fill in BD Hypak pre-filled syringe, 27G needle)
- 3) **Lot# 18169-66:** 150 mg/mL STX-100 in 20 mM Na-citrate/citric acid, pH 5.3, 150 mM arginine hydrochloride (Arg.HCl), 25 mM methionine, 0.05% PS-80 (1 mL fill in BD Hypak pre-filled syringe, 27G needle)
- 4) **Lot# 18169-67:** 150 mg/mL STX-100 in 20 mM Na-citrate/citric acid, pH 5.3, 200 mM trehalose, 0.05% PS-80 (1 mL fill in BD Hypak pre-filled syringe, 27G needle)
- 5) **Lot# 18169-72:** 250 mg/mL STX-100 in 20 mM Na-citrate/citric acid, pH 5.3, 150 mM arginine hydrochloride (Arg.HCl), 25 mM methionine, 0.05% PS-80 (1 mL fill in BD Hypak pre-filled syringe, 27G needle)

Aggregation Data: Stability data indicated that all the five formulations listed above displayed a low aggregation propensity throughout 12 months of storage at 5°C with only a 0.2-0.3% increase in % total aggregate across all the formulations (Table 3).

Table 3. Long-term % Total aggregate data measured using SEC-UPLC

Lot number	Temperature (°C)	% Total aggregates (via SEC-UPLC)						
		0	1	2	3	6	9	12
# 18169-62 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in 3 mL Schott vial)	5	2.5	2.5	2.4	2.5	2.5	2.6	2.6
	25	2.5	2.6	2.7	2.8	3.2	3.4	3.6
	40	2.5	3.7	4.2	5.1	11.6	NT	NT
# 18169-64 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	2.5	2.5	2.4	2.5	2.6	2.7	2.7
	25	2.5	2.7	2.7	2.9	3.2	3.5	3.7
	40	2.5	3.6	4.1	5	11.9	NT	NT
# 18169-66 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	2.5	2.5	2.4	2.5	2.5	2.6	2.6
	25	2.5	2.6	2.6	2.7	3	3.2	3.2
	40	2.5	3.4	3.8	4.7	11	NT	NT
# 18169-67 150 mg/mL, 20 mM citrate, pH 5.3, 200 mM trehalose, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	3	3	2.9	3	3.1	3.3	3.3
	25	3	3.3	3.5	3.8	4.2	4.6	4.9
	40	3	4.5	5.3	6.2	10	NT	NT
# 18169-72 250 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	1.4	1.4	1.3	1.5	1.5	1.7	1.7
	25	1.4	1.8	1.9	2.2	2.6	3	3.2
	40	1.4	3.1	3.9	5.2	14.9	NT	NT

The data also indicate that there is no significant difference in aggregate level for formulations held in a pre-filled syringe (18169-64) and a vial (18169-62).

5 *Sub-Visible Particulate (SVP) Data:* While the aggregation data was promising for a stable liquid formulation, there were some indications of high sub-visible particulate (SVP) counts via micro-flow imaging, MFI (Tables 4, 5 and 6).

Table 4. Total sub-visible particulates / mL (MFI)

Lot number	Temp (°C)	Total Particulates / mL (MFI)					
		0	1	3	6	9	12
# 18169-62 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in 3 mL Schott vial)	5	13616	5005	8126	40458	41396	16988
	25	13616	26252	34202	311593	518112	665292
	40	13616	852037	776326	2397797	NT	NT
# 18169-64 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	43413	35963	15064	5777	8076	8058
	25	43413	26300	68631	156553	278577	208307
	40	43413	708893	1467637	2111368	NT	NT
# 18169-66	5	19412	6536	11753	13795	16704	13263

150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	25	19412	15750	136088	236386	427144	566722
	40	19412	1230328	2023654	2003136	NT	NT
# 18169-67 150 mg/mL, 20 mM citrate, pH 5.3, 200 mM trehalose, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	25444	23998	17266	27329	135928	199303
	25	25444	113162	701629	527438	1602970	927081
	40	25444	178718	1183228	542746	NT	NT
# 18169-72 250 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	13482	17008	7760	10865	10633	21093
	25	13482	12741	12641	18973	63098	15062
	40	13482	25198	10126	21717	NT	NT
Ref buffer vial	5	22263	NT	86201	51685	NT	26252
	25	22263	NT	57860	40409	NT	27959
	40	22263	NT	56260	33898	NT	NT
Ref buffer PFS	5	38840	NT	76251	64420	NT	15914
	25	38840	NT	105080	40830	NT	71146
	40	38840	NT	123503	236238	NT	NT

Table 5. Sub-visible particulates (>10 um) / mL (MFI)

Lot number	Temp	Particulates / mL (size>10 um)					
Time (months)			0	1	3	6	9
# 18169-62 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in 3 mL Schott vial)	5	161	94	59	98	374	78
	25	161	128	450	6376	3781	10313
	40	161	4019	50460	57928	NT	NT
# 18169-64 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	195	274	300	128	1934	52
	25	195	872	1438	6298	5127	7942
	40	195	20497	36305	106721	NT	NT
# 18169-66 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	331	70	204	74	1014	104
	25	331	70	71	7838	7696	19841
	40	331	32528	60842	91013	NT	NT
# 18169-67 150 mg/mL, 20 mM citrate, pH 5.3, 200 mM trehalose, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	243	698	170	292	4273	2997
	25	243	3593	15312	41916	52119	67621
	40	243	5843	35691	27479	NT	NT
# 18169-72 250 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 25 mM methionine, 0.05% PS-	5	995	3121	688	1272	796	870
	25	995	1112	860	1036	3039	308
	40	995	2511	786	1816	NT	NT

80 (1 mL in BD Hypak syringe, 27G needle)							
Ref buffer vial	5	305	NT	852	20	NT	20
	25	305	NT	366	64	NT	54
	40	305	NT	108	194	NT	NT
Ref buffer PFS	5	258	NT	494	370	NT	114
	25	258	NT	348	238	NT	420
	40	258	NT	822	968	NT	NT

Table 6. Sub-visible particulates (>25 um) / mL (MFI)

Lot number	Temperature	Particulates (>25 um); <=600					
		0	1	3	6	9	12
# 18169-62 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in 3 mL Schott vial)	5	20	22	6	4	16	0
	25	20	8	20	94	66	160
	40	20	3123	4727	679	NT	NT
# 18169-64 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	27	24	16	2	1644	0
	25	27	498	132	420	326	640
	40	27	2395	2735	12288	NT	NT
# 18169-66 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	117	2	66	6	560	2
	25	179	2	162	560	712	1570
	40	117	3471	6200	9676	NT	NT
# 18169-67 150 mg/mL, 20 mM citrate, pH 5.3, 200 mM trehalose, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	43	410	42	80	908	428
	25	43	804	2091	5815	5711	8822
	40	43	624	5067	2915	NT	NT
# 18169-72 250 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	563	2307	460	850	450	308
	25	563	710	402	630	816	124
	40	563	1512	488	1308	NT	NT
Ref buffer vial	5	47	NT	88	4	NT	0
	25	47	NT	48	11	NT	2
	40	47	NT	10	32	NT	NT
Ref buffer PFS	5	10	NT	10	6	NT	0
	25	10	NT	10	2	NT	6
	40	10	NT	34	4	NT	NT

However, these SVP are thought to primarily arise from the handling and processing of STX-100 drug substance (DS) during labscale UF/DF process, pre-fill storage, shipping to testing laboratory, and likely issues with the testing method. The growth rate of SVP> 10 um (picked up more sensitively by MFI) do not suggest significant instability in any of the

arginine-HCl containing formulations except 18169-67 that contains 200 mM trehalose. SVP counts are also observed to be higher in the formulations in pre-filled syringe presentation compared to vial presentation. This indicates that the testing method also identified a significant amount of silicone oil micro-droplets that commonly occur in such syringes. SVP analysis via HIAC method (as per USP-788) that is based on light-obscuration did not indicate instability at the desired storage condition of 5 °C (Tables 7 and 8).

Table 7. Sub-visible particulates (>10 um) / mL (HIAC)

Lot number	Temperature	Particulates (>10 um); <=6000					
		0	1	3	6	9	12
# 18169-62 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in 3 mL Schott vial)	5	23	32	22	46	61	63
	25	23	111	175	55	645	936
	40	23	1594	3574	83	NT	NT
# 18169-64 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	74	7	92	69	107	63
	25	74	185	246	464	732	548
	40	74	3910	5749	213	NT	NT
# 18169-66 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	57	56	104	77	138	40
	25	57	80	526	260	709	743
	40	57	4126	10947	267	NT	NT
# 18169-67 150 mg/mL, 20 mM citrate, pH 5.3, 200 mM trehalose, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	71	83	92	53	215	137
	25	71	179	4292	289	387	1904
	40	71	1161	4993	184	NT	NT
# 18169-72 250 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	51	72	141	96	280	37
	25	51	132	117	105	442	77
	40	51	72	105	232	NT	NT
Ref buffer vial	5	41	NT	92	77	NT	48
	25	41	NT	101	53	NT	61
	40	41	NT	44	98	NT	NT
Ref buffer PFS	5	233	NT	251	325	NT	111
	25	233	NT	224	416	NT	231
	40	233	NT	415	714	NT	NT

10

Table 8. Sub-visible particulates (>25 um) / mL (HIAC)

Lot number	Temperature	Particulates (>25 um); <=600					
		0	1	3	6	9	12
# 18169-62 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM	5	2	0	1	0	2	0
	25	2	1	1	0	7	5

ArHCl, 0.05% PS-80 (1 mL in 3 mL Schott vial)	40	2	47	44	0	NT	NT
# 18169-64 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	1	0	1	0	2	0
	25	1	3	5	3	30	5
	40	1	101	118	8	NT	NT
# 18169-66 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	1	2	3	3	2	2
	25	1	6	10	6	30	3
	40	1	77	482	18	NT	NT
# 18169-67 150 mg/mL, 20 mM citrate, pH 5.3, 200 mM trehalose, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	1	4	2	0	10	1
	25	1	5	102	10	10	16
	40	1	21	75	12	NT	NT
# 18169-72 250 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	5	2	4	5	13	35	2
	25	2	11	8	2	32	7
	40	2	7	4	20	NT	NT
Ref buffer vial	5	0	NT	1	0	NT	0
	25	0	NT	0	0	NT	0
	40	0	NT	0	1	NT	NT
Ref buffer PFS	5	2	NT	0	0	NT	0
	25	2	NT	3	7	NT	4
	40	2	NT	8	15	NT	NT

Oxidation data: Forced oxidation analysis in the past on STX-100 samples had revealed oxidation propensity in Met-55 contained in the second heavy chain CDR along with two other methionines (Met-255 and Met-431) in the Fc region. Structure-activity relationship

5 studies revealed that oxidation in these residues do not lead to any change in binding activity to the antigen. In this study, it was also investigated whether oxidation in these residues over time leads to instability due to the presence of polysorbate-80 as a likely oxidizing agent. The % oxidation was determined using a LCMS method after generating in Met residues contained in corresponding peptides generated (Met-55 in peptide H2, Met-255 in peptide H15, and Met-431 in peptide H30) by LysC cleavage. Overall, there was no major increase in 10 oxidation at each site although the presence of methionine as an excipient in the formulation did suppress this oxidation reaction (Tables 9A and 9B).

Table 9A. Oxidation analysis on formulations stored at 5 °C

Lot#	t=0			t=6 months at 5 °C			t=12 months at 5 °C		
	%H2-Ox	%H15 - Ox	%H30 - Ox	%H2 - Ox	%H15 - Ox	%H30 - Ox	%H2- Ox	%H15 - Ox	%H30 - Ox

# 18169-62 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 0.05% PS-80 (1 mL in 3 mL Schott vial)	7.9	7.9	5.9	11.2	9.7	6.7	8.40	7.20	4.90
# 18169-64 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	7.9	8.1	6.2	10.3	9.4	5.9	8.70	7.40	5.00
# 18169-66 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	7.8	8.2	6.3	8.5	8.7	5.3	7.00	7.00	4.90
# 18169-68 150 mg/mL, 20 mM citrate, pH 5.3, 200 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	8.1	8.3	6.5	9.6	9.5	5.8	7.50	7.10	4.90
# 18169-72 250 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	7	5.7	3.4	9	7.8	4.2	6.60	5.10	2.60

Table 9B. Oxidation analysis on formulations stored at 25 °C

Lot#	t=0			t=6 months at 25 °C			t=12 months at 25 °C		
	%H2-Ox	%H15-Ox	%H30-Ox	%H2-Ox	%H15-Ox	%H30-Ox	%H2-Ox	%H15-Ox	%H30-Ox
# 18169-62 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 0.05% PS-80 (1 mL in 3 mL Schott vial)	7.9	7.9	5.9	17.7	10.4	6.8	18.40	8.50	5.80
# 18169-64 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	7.9	8.1	6.2	17	10.2	6.2	18.40%	8.40	5.60
# 18169-66 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	7.8	8.2	6.3	10.2	8.8	5.8	9.00%	7.20	5.20

# 18169-67 150 mg/mL, 20 mM citrate, pH 5.3, 200 mM trehalose, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	8.1	8.3	6.5	13.6	9.8	6.2	12.90%	8.10	5.50
# 18169-72 250 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	7	5.7	3.4	10.8	7.8	4	9.10%	5.70	2.90

Visible particulate data: Appearance (particulate) observations did not reveal any significant increase in visible particulates for any formulation throughout the 12-month storage period at 5°C (Table 10A). Visible particulates do appear at 25°C over long-term storage (Table 10B) and are probably linked to the increase in large SVP (>25 um) at this temperature.

Table 10A. Long-term assessment of visible particulates at 5 °C

Lot#	Months at 5 °C						
	0	1	2	3	6	9	12
# 18169-62 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in 3 mL Schott vial)	No visible particulates observed	*No visible particulates observed					
# 18169-64 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	No visible particles observed	No visible particulates observed	No visible particulates observed	No visible particulates observed	No visible particulates observed	No visible particulates observed	No visible particulates observed
# 18169-66 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	No visible particles observed	No visible particulates observed	No visible particulates observed	No visible particulates observed	No visible particulates observed	No visible particulates observed	*No visible particulates observed
# 18169-67 150 mg/mL, 20 mM citrate, pH 5.3, 200 mM trehalose, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	No visible particles observed	No visible particulates observed	No visible particulates observed	No visible particulates observed	No visible particulates observed	No visible particulates observed	No visible particulates observed
# 18169-72 250 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD	No visible particles observed	No visible particulates observed	No visible particulates observed	*No visible particulates observed			

Hypak syringe, 27G needle							
Ref Buffer vial	No visible particles observed	NT	NT	No visible particles observed	White flake particle	NT	No visible particles observed
Ref Buffer PFS	No visible particles observed	NT	NT	No visible particles observed	No visible particles observed	NT	No visible particles observed

*Samples were re-examined after initial report revealed some particulates. The internal examinations on triplicate vials/syringes failed to show any visible particulates. The initial observations are therefore thought to arise from error in handling or human error.

Table 10B. Long-term assessment of visible particulates at 25 °C

Lot#	Months at 25 °C						
	0	1	2	3	6	9	12
# 18169-62 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in 3 mL Schott vial)	No visible particulates observed	No visible particulates observed					
# 18169-64 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	No visible particles observed	No visible particulates observed	No visible particulates observed				
# 18169-66 150 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	No visible particles observed	No visible particulates observed	No visible particulates observed	No visible particulates observed	Two other white particles	White fiber like particulates observed	Small round particulate
# 18169-67 150 mg/mL, 20 mM citrate, pH 5.3, 200 mM trehalose, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	No visible particles observed	No visible particulates observed	Small fiber like particulate				
# 18169-72 250 mg/mL, 20 mM citrate, pH 5.3, 150 mM ArgHCl, 25 mM methionine, 0.05% PS-80 (1 mL in BD Hypak syringe, 27G needle)	No visible particles observed	No visible particles observed	No visible particles observed	No visible particles observed	No visible particulates observed	No visible particulates observed	No visible particulates observed

Ref Buffer vial	No visible particles observed	NT	NT	White fiber and 10 other particles	No visible particulates observed	NT	No visible particulates observed
Ref Buffer PFS	No visible particles observed	NT	NT	No visible particles observed	No visible particles observed	NT	No visible particles observed

Milestone assays: Other stability assays such as CE-SDS (non-reduced), icIEF, osmolality, viscosity and potency tested at t=0, 6, 12 months are grouped herein as milestone assays. This data does not reveal any significant degradation in the samples at 5°C over 12 months (Tables 5 11A through 11E).

Table 11A. Milestone assays performed at t=0

Assay (t=0)		Formulation				
		18169-62	18169-64	18169-66	18169-67	18169-72
CE-SDS (non-reduced)	% Purity	95.68	95.315	95.58	95.435	93.735
	% Single Largest Impurity	1.75	1.825	1.78	1.8	3.245
iCIEF	% Main Peak	53	53	53.55	52.85	55.2
	% Acidic Isoform	41.75	42.3	41.55	42.35	40.15
	% Basic Isoform	5.2	4.75	4.9	4.75	4.65
Osmolality (Freezing pt)	mOsm/kg	368	430	417	350	417
Viscosity (cP) at 25 °C		6.14	6.49	6.73	9.64	46.7
Potency	% Relative potency (95%UCL, 95%LCL)	103 (102, 97)	106 (120, 95)	95 (102, 88)	96 (102, 91)	96 (107, 86)

Table 11B. Milestone assays performed at t=6 months on formulations stored at 5 °C

Assay (t=6M) 5 °C		Formulation				
		18169-62	18169-64	18169-66	18169-67	18169-72
CE-SDS (non-reduced)	% Purity	94.49	94.76	94.82	94.62	92.9
	% Single Largest Impurity	1.86	1.83	1.8	1.77	3.08
iCIEF	% Main Peak	51.6	52.1	52.5	49.6	54.3
	% Acidic Isoform	42.5	41.7	41.6	44.2	40.5
	% Basic Isoform	5.9	6.2	5.9	6.1	5.3
Osmolality (Freezing pt)	mOsm/kg	NT	NT	NT	NT	NT
Viscosity (cP) at 5 °C		14	13.9	14.8	24	146.5
Potency	%	98 (88, 108)	105 (89, 125)	96 (77, 120)	114 (108, 119)	107 (92, 123)

Table 11C. Milestone assays performed at t=6 months on formulations stored at 25 °C

Assay (t=6M) 25 °C		Formulation				
		18169-62	18169-64	18169-66	18169-67	18169-72
CE-SDS (non-reduced)	% Purity	90.5	90.4	90.43	91.55	90.04
	% Single Largest Impurity	2.13	2.11	2.09	2.02	3.48
iCIEF	% Main Peak	41.6	41.8	42.2	39.6	43.9
	% Acidic Isoform	48.6	48.3	48	51.8	46.2
	% Basic Isoform	9.8	9.9	9.8	8.6	9.9
Osmolality (Freezing pt)	mOsm/kg	NT	NT	NT	NT	NT
Viscosity (cP) at 25 °C		6.3	6.4	6.4	9.3	46.2
Potency	%	87 (85, 89)	89 (85, 92)	92 (91, 94)	93 (86, 102)	95 (93, 97)

Table 11D. Milestone assays performed at t=12 months on formulations stored at 5 °C

Assay (t=12M) 5 °C		Formulation				
		18169-62	18169-64	18169-66	18169-67	18169-72
CE-SDS (non-reduced)	% Purity	95.21	95.03	94.95	94.69	92.88
	% Single Largest Impurity	1.61	1.7	1.75	1.88	3.44
iCIEF	% Main Peak	51.6	51.5	51	51.1	53.4
	% Acidic Isoform	42.5	42.5	42.9	43.2	41.2
	% Basic Isoform	5.9	6	6.1	5.7	5.4
Osmolality (Freezing pt)	mOsm/kg	360	170	181	146	182
Viscosity (cP) at 5 °C		15.2	14.4	15	24.5	152.6

Table 11E. Milestone assays performed at t=12 months on formulations stored at 25 °C

Assay (t=12M) 25 °C		Formulation				
		18169-62	18169-64	18169-66	18169-67	18169-72
CE-SDS (non-reduced)	% Purity	87.32	87.25	87.24	88.72	87.35
	% Single Largest Impurity	2.85	2.94	2.92	2.46	4.24
iCIEF	% Main Peak	33.5	34	34.1	30.3	34.9
	% Acidic Isoform	55.3	54.9	54.8	60.6	53.3
	% Basic Isoform	11.3	11	11.1	9.1	11.8
Osmolality (Freezing pt)	mOsm/kg	370	169	182	130	174
Viscosity (cP) at 25 °C		15.2	6.5	6.71	6.69	9.79

Color, Clarity and pH Data: The visually observed color in all formulations except 18169-72 remained below BY3 (BY4-BY5 or BY3-BY4) throughout the period of 1 year at 5°C. The color of 18169-72 was between BY3-BY4 up to 9 months and was observed to be BY3-BY2 at 12 months. The clarity of all formulations remained below 30 NTU (6-18 NTU or 18-30 NTU) throughout the storage at 5°C.

Conclusion: Formulations 18169-62, 18169-64, 18169-66 and 18169-72 were found to be stable within acceptable limits over 1 year. The trends in the most critical attributes: % total aggregates and Sub-visible particulates (HIAC) over this time period suggest that formulation 18169-64 and 18169-66 are both suitable to be pursued for a pre-filled syringe (PFS) drug product (DP).

15 **Example 3: Characterization of the Viscosity of the Formulation**

The impact of pH and methionine concentration on the viscosity of STX-100 formulation at high concentration was evaluated using a full-factorial design of experiment (DOE) study. The following formulation parameters were varied:

- 1) pH: 5.0, 5.5, 6.0
- 2) Methionine: 0, 10, 25 mM
- 3) Protein concentration: 150, 220, 240 and 260 mg/mL

The core formulation buffer was: 20 mM Citric acid / Na-citrate, 150 mM arginine HCl, 0.05% PS80.

The data indicated that the viscosity of STX-100 formulation was not significantly impacted by either the pH or the methionine concentration around a core formulation containing 20 mM Na-citrate/citric acid, 150 mM Arginine-HCl, 0.05% PS-80. Both the 5°C and 25°C data did not reveal p-values lower than 0.05 for each of the two formulation 5 parameters. The only solution parameter with a significant impact on viscosity was the protein concentration which was expected in the range examined. These results show that the pH and excipient levels can be varied within this design space without negatively impacting the viscosity of the formulation.

10 **Example 4: Drug Product Bracketing Study**

This study was done to examine the effect of increasing the methionine content from 5 mM to 10 mM as well as lowering the polysorbate-80 level from 0.05% to 0.03% on long-term stability attributes.

15 The following two formulations were prepared and filled into representative pre-filled syringes (0.8 mL fill in BD Hypak STW 27G PFS).

Formulation A: 150 mg/mL STX-100, 20 mM Na-citrate/citric acid, pH 5.5, 150 mM Arginine-HCl, 10 mM Methionine, 0.05% polysorbate-80.

Formulation B: 150 mg/mL STX-100, 20 mM Na-citrate/citric acid, pH 5.5, 150 mM Arginine-HCl, 5 mM Methionine, 0.03% polysorbate-80.

20 The results from long-term stability at 2-8°C displayed equivalent stability based on the trends in %HMW and sub-visible particulates. Stability data was also collected at 25°C and 40°C for information purposes. The formulations did not appear significantly different in their oxidized species content.

25 Thus, the data shows flexibility in polysorbate-80 and methionine concentration for the formulation.

Example 5: Process Stability Study

This study assessed the impact of different polysorbate-80 surfactant levels on 30 stability of STX-100 in small-scale DS containers (PC bottles or bags), and representative DP in pre-filled syringes (PFS). The formulation was subjected to two different stresses:

- a) Multiple freeze-thaw cycles (1, 3 and 5 freeze-thaw cycles),
- b) Shaking-induced agitation stress (orbital shaking at 650 rpm for 72 hours at ambient conditions) and

c) Representative ambient hold-times (selected PS-80 level only).

The different PS-80 levels selected for evaluations were 0, 0.01, 0.02, 0.05, 0.08, 0.1 % w/v in 150 mg/mL STX-100 formulation containing 20 mM Na-citrate/citric acid, pH 5.5, 150 mM Arginine-HCl, 5 mM Methionine. The container closure system used for the 5 evaluations were Polycarbonate bottles (1 mL fill in 5 mL bottle), Small DS bag (30 mL capacity, 5 or 15 mL fill), PFS syringes (BD Hypak 47368319 with plungers (47165919) filled with either 0.8 mL or 0.3 mL at 150 mg/mL or 0.3 mL at 40 mg/mL).

The product quality attributes examined were: Visible appearance (particulates), Turbidity (A340), % Total aggregates (SEC), Protein concentration (SoloVPE method), and 10 Sub-visible particulates (MFI)

The results from target drug product fill volume of 0.8 mL at 150 mg/mL STX-100 showed that agitating the STX-100 syringes at 650 rpm for 72 hours at ambient temperature protected from light has minimal impact on the visible particulates as long as there is 0.01 % PS-80 present in the formulation. One dust-like particle was observed in the 0.02% PS80 15 sample but this appears to be environmental. There was only a 0.05-0.1% increase in soluble aggregate after agitation in the formulations containing 0-0.01% PS80 while no observable increase in soluble aggregate in any other formulations. The turbidity data indicated no substantial increase in OD340 for all formulations except the one with 0.1% PS80 indicating some contribution from a relatively high level of PS80. However, the SVP data indicates no 20 substantial particle formation tendency as long as PS80 is present. The process study results suggested that 0.05% w/v was an optimal level of polysorbate-80 to protect the formulation against freeze-thaw stress, agitation stress, and process hold times. A suggested specification for PS80 level for product development purposes is 0.05 +/- 0.025% w/v.

25 **Example 6: Selection of Formulation**

Based on all the above studies the following STX-100 formulation displayed acceptable stability over long-term storage (1 year at 2-8°C), worst-case agitation stress (650 rpm for 72 h) and worst-case freeze-thaw stress (5 freeze-thaw cycles): 150 mg/mL STX-100, 20 mM Na-citrate/citric acid, 150 mM Arginine-HCl, 5 mM Methionine, 0.05% w/v 30 polysorbate-80, pH 5.5.

Based on trends in stability attributes, this formulation guarantees greater than 24 month stability at 2-8°C in a representative pre-filled syringe product.

Example 7: Stability of STX-100 Formulations Comprising Thiol Group Containing Excipients

The addition of thiol group containing excipients to an STX-100 formulation reduces aggregation as determined by the development of high molecular weight species during 5 storage.

The control STX-100 formulation had 150 mg/mL STX-100, 20mM citrate/citric acid, 150 mM L-Arginine HCl, 5 mM Methionine, 0.05% Polysorbate-80, pH 5.5. The control formulation was spiked with a thiol group containing excipient: GSH. The formulations were stored at 25°C and 40°C. As shown in **Figure 3**, the addition of GSH reduced aggregation 10 during storage.

Addition of glutathione negatively impacted another antibody, STX200, where an increase in aggregation was observed (**Figure 5**). STX 200 is an aglycosylated molecule, demonstrating poor conformational stability at higher temperatures. Hence, unfolding of the molecule exposes the thiol group making it more susceptible to crosslinking with the thiol in 15 glutathione and promoting further aggregation. Glutathione did not have any effect on the aggregation kinetics of SB4 (BENEPALI®, an etanercept biosimilar referencing Enbrel®) at 25°C, but facilitated faster aggregation at 40°C (**Figure 4**).

Example 8: Stability Data for STX-100 Formulations

20 Stability study data for 50 and 100 mg/mL STX-100 formulations in 20 mM sodium citrate buffer containing 150 mM Arg.HCL, 5 mM methionine, 0.05% PS80, at pH 5.5 filled into syringes (0.8 mL /syringe) supports stability for 36 months when stored at 2-8°C. This is based on stability data at the long term storage condition of 2-8°C. See **Tables 12 and 13** below. Based upon this drug product data, a stability for 36 months can be assigned to a 25 formulation at 70 mg/mL (0.8 mL/syringe) selected to deliver a dose of 56 mg.

30 **Table 12:** Stability Data for STX-100 Drug Product at 100 mg/mL in 1 mL Syringe, Stored at 2-8°C

Test/Attribute	Acceptance Criteria	0 mo	01 mo	03 mo ²	06 mo ²	09 mo ²	12 mo ²	18 mo
Appearance - Clarity (NTU)	Report Results	6 NTU < Sample < 18 NTU	18 NTU < Sample < 30 NTU	N/A	N/A	N/A	N/A	6 NTU < Sample < 18 NTU
Appearance - Clarity: LT 50 NTU	Conforms	Conforms	Conforms	N/A	N/A	N/A	N/A	Conforms

Test/Attribute	Acceptance Criteria	0 mo	01 mo	03 mo ²	06 mo ²	09 mo ²	12 mo ²	18 mo
Appearance - Color (BY Scale)	Report Results	4 <= Sample < 3	5 <= Sample < 4	N/A	N/A	N/A	N/A	5 <= Sample < 4
Appearance - Color (BY Scale): LT BY2	Conforms	Conforms	Conforms	N/A	N/A	N/A	N/A	Conforms
Appearance - Essentially free of visible particles	Conforms	Conforms	Conforms	N/A	N/A	N/A	N/A	Conforms
pH	5.0 - 6.0	5.6	5.5	N/A	N/A	N/A	N/A	5.4
Protein Concentration (RI)	90 - 110 mg/ml	100	100	N/A	N/A	N/A	N/A	99
DELFIA Blocking - Binding relative to Reference Standard	75 - 133 %	101	100	N/A	N/A	N/A	N/A	96
icIEF - Lower pI Isoforms (%)	Report Results	43.3	39.8	N/A	N/A	N/A	N/A	43.9
icIEF - Main pI Isoform (%)	Report Results	53.3	55.1	N/A	N/A	N/A	N/A	48.3
Size Exclusion Chromatography (SEC) - Aggregates	NMT 5.0 %	1.3	1.4	N/A	N/A	N/A	N/A	2.0
Non-Reducing CE-SDS - Highest Single Impurity (%)	Report Results	1.4	1.7	N/A	N/A	N/A	N/A	1.8
Non-Reducing CE-SDS - Total Purity	NLT 90.0 %	96.5	95.2	N/A	N/A	N/A	N/A	95.6
Endotoxin (USP, EP) - Endotoxin	NMT 130.00 EU/ml	<8.00	N/S	N/S	N/A	N/A	N/A	<8.00
Particulates - NLT 10um	NMT 6000 Counts/container	165	N/S	N/S	N/A	N/A	N/A	76.59
Particulates - NLT 25um	NMT 600 Counts/container	4	N/S	N/S	N/A	N/A	N/A	1.07
Container Closure Integrity - Seal Integrity	Conforms	Conforms ¹	N/S	N/S	N/A	N/A	N/A	Conforms

Table 13: Stability Data for STX-100 Drug Product at 50 mg/mL in 1 mL Syringe, Stored at 2-8°C

Description	PSTAB-14-10-033 (Cycle 2 drug product) stability data								
	Lot No.:	TR-PPD-809928	Stability Protocol:	PSTAB-14-10-033	Study Start Date:	32-Oct-14			
Manufacturing Date	16-Oct-14	myCIMS Protocol:	TR-PPD-015668	Concentration:	50 mg/mL				
Manufacturing Site:	PPD, Cambridge	Storage Condition:	2-8°C	Sample Container:	PBS 1 mL (0.8 mL fill)				
					Time Point (Month) and TD Labware LIMS submission #				
		38228	38229	38230	38231	38232	38233	PPB-14-6943	
Test Method	Acceptance Criteria¹	8	1	3	6	9	12	18	24
Appearance	Color: Report Results	BY6 - BY5	BY6 - BY5	BY6 - BY5	BY6 - BY5	BY5 - BY4	BY5 - BY4	BY7 - BY6	
	Clarity: Report Results	12 - 30	18 - 30	18 - 30	18 - 30	12 - 30	12 - 30	6 - 18	
pH	Essentially free of visible particles	NQ	NQ	NQ	NQ	NQ	NQ	NQ	
	5.0-6.0	5.5	5.5	5.5	5.6	5.5	5.5	5.5	
Chromatography	Report Results	332	NT	NT	NT	NT	NT	NT	NT
Protein Conc.	45-55 mg/mL	52	52	51	52	51	51	52	
SEC	≤ 5.0 % Aggregates	1.0	1.1	1.2	1.3	1.4	1.4	1.7	
icHPLC	Report % Lower pI Isoforms (xx.x%)	43.5	42.8	42.3	42.4	43.8	41.0	43.0	
	Report % Main Peak (xx.x%)	49.8	50.5	51.2	49.6	48.8	53.1	50.4	
	Report % Higher pI Isoforms (xx.x%)	6.8	6.7	6.5	8.0	7.4	5.9	6.7	
Non-Reducing CE- SDS	≥ 90.0 % purity results	97.1	97.1	96.6	96.6	96.3	96.4	96.3	
	Report Highest Single Impurity (x.x%)	1.7	1.7	1.7	1.7	1.6	1.8	1.7	
Reducing CE-SDS	Report % purity results	97.1	97.3	96.5	96.7	96.8	96.6	96.6	
	Report Highest Single Impurity (x.x%)	1.4	1.3	1.3	1.4	1.4	1.4	1.5	
Potency	75 to 100 % Binding relative to Reference Standard	98	N/A ²	102	98	95	100	100	
PSG	Report %	9.05	NT	NT	NT	NT	6.637	NT	6.81
Oxidation	%H2-Ox	5.3	NT	5.8	6.8	NT	N/A ²	7	
	%H15-Ox	4.9	NT	5.6	7.0	NT	N/A ²	6.6	
	%H30-Ox	2.9	NT	3.6	4.1	NT	N/A ²	2.3	
Subvisible Particles	≥ 10μm Particles: Report Results, Particles/mL (HIAc)	77	98	122	41	30	47	42	
	≥ 25μm Particles: Report Results, Particles/mL	37	9	5	6	6	6	5	
Subvisible Particles	≥ 10μm Particles: Report Results, Particles/mL ³ (MFI)	197	NT	21	400	150	235	43	
	≥ 25μm Particles: Report Results, Particles/mL ³ (MFI)	13	NT	7	59	11	14	1	
Subvisible Particles	≥ 10μm Particles ≤ 6000 Particles/Container (HIAc) ⁴	82	78	98	33	24	38	34	
	≥ 25μm Particles ≤ 600 Particles/Container	30	9	4	0	0	0	0	
Subvisible Particles	≥ 10μm Particles ≤ 6000 Particles/Container (MFI) ⁴	158	NT	17	326	126	188	34	
	≥ 25μm Particles ≤ 600 Particles/Container	10	NT	6	47	9	11	1	

¹ Based on platform specification and experimental data. This Acceptance Criteria has not been approved and may be used For Information Only.² Data is not available due to sample mishandling. ³ TO (3 month) data is from ELE: EXP-08 Jan 2015-0965; ⁴ Calculated by using particles/mL x fill volume (0.8 mL).

NQ: No particulates observed. NT: Not tested according to protocol. N/A: Study was not performed due to program changes.

Other Embodiments

While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, 5 and modifications are within the scope of the following claims.

Claims

1. A pharmaceutical composition comprising an anti- α v β 6 antibody or α v β 6-binding fragment thereof, and arginine hydrochloride (Arg.HCl), wherein the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises an immunoglobulin heavy chain variable domain (VH) and an immunoglobulin light chain variable domain (VL), the VH and VL, respectively, comprising:

(a) VH complementarity determining regions (CDRs), wherein

VH-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:1;

10 VH-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:2; and

VH-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:3; and

(b) VL CDRs, wherein

VL-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:4;

VL-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:5; and

15 VL-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:6, and

wherein the composition has a pH of 5.2 to 5.7.

2. The pharmaceutical composition of claim 1, wherein the composition comprises the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a concentration of 50 mg/ml to 200

20 mg/ml.

3. The pharmaceutical composition of claim 1, wherein the composition comprises the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a concentration of 100 mg/ml to 175 mg/ml.

25

4. The pharmaceutical composition of claim 1, wherein the composition comprises the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a concentration of 150 mg/ml.

30

5. The pharmaceutical composition of any one of claims 1 to 4, wherein the composition comprises Arg.HCl at a concentration of 50 mM to 250 mM.

6. The pharmaceutical composition of any one of claims 1 to 4, wherein the composition comprises Arg.HCl at a concentration of 100 mM to 200 mM.

7. The pharmaceutical composition of any one of claims 1 to 4, wherein the composition comprises Arg.HCl at a concentration of 150 mM.

8. The pharmaceutical composition of any one of claims 1 to 7, wherein the composition
5 comprises methionine.

9. The pharmaceutical composition of claim 8, wherein the composition comprises
methionine at a concentration of 0.5 mM to 30 mM.

10 10. The pharmaceutical composition of claim 8, wherein the composition comprises
methionine at a concentration of 1 mM to 10 mM.

11. The pharmaceutical composition of claim 8, wherein the composition comprises
methionine at a concentration of 5 mM.

15 12. The pharmaceutical composition of any one of claims 1 to 11, wherein the composition
comprises Polysorbate-80 (PS80).

13. The pharmaceutical composition of claim 12, wherein the composition comprises PS80
20 at a concentration of 0.01% to 0.1%.

14. The pharmaceutical composition of claim 12, wherein the composition comprises PS80
at a concentration of 0.03% to 0.08%.

25 15. The pharmaceutical composition of claim 12, wherein the composition comprises PS80
at a concentration of 0.05%.

16. The pharmaceutical composition of any one of claims 1 to 15, wherein the composition
comprises sodium citrate and citric acid.

30 17. The pharmaceutical composition of claim 16, wherein the composition comprises sodium
citrate and citric acid at a concentration of 5 mM to 30 mM.

18. The pharmaceutical composition of claim 16, wherein the composition comprises sodium citrate and citric acid at a concentration of 15 mM to 25 mM.

19. The pharmaceutical composition of claim 16, wherein the composition comprises sodium 5 citrate and citric acid at a concentration of 20 mM.

20. The pharmaceutical composition of any one of claims 1 to 19, wherein the composition has a pH of 5.3 to 5.6.

10 21. The pharmaceutical composition of any one of claims 1 to 19, wherein the composition has a pH of 5.5.

22. The pharmaceutical composition of any one of claims 1 to 21, wherein the composition comprises a thiol-containing antioxidant.

15 23. The pharmaceutical composition of claim 22, wherein the thiol-containing antioxidant is selected from the group consisting of GSH, GSSG, the combination of GSH and GSSG, cystine, cysteine, and the combination of cysteine and cystine.

20 24. The pharmaceutical composition of claim 22, wherein the thiol-containing antioxidant is GSH.

25. The pharmaceutical composition of claim 22, wherein the thiol-containing antioxidant is GSSG.

25 26. The pharmaceutical composition of claim 22, wherein the thiol-containing antioxidant is the combination of GSH and GSSG.

30 27. The pharmaceutical composition of any one of claims 22 to 26, wherein the thiol-containing antioxidant is at a concentration of 0.02 mM to 2 mM.

28. The pharmaceutical composition of any one of claims 22 to 26, wherein the thiol-containing antioxidant is at a concentration of 0.2 mM.

29. The pharmaceutical composition of any one of claims 22 to 26, wherein the thiol-containing antioxidant is at a concentration of 0.4 mM.

30. The pharmaceutical composition of any one of claims 22 to 26, wherein the thiol-containing antioxidant is at a concentration of 1 mM.

31. The pharmaceutical composition of claim 26, wherein the GSH is at a concentration of 0.4 mM and the GSSG is at a concentration of 0.2 mM.

10 32. The pharmaceutical composition of claim 1, comprising:

the anti- α v β 6 antibody or the α v β 6-binding fragment thereof at a concentration of 125 mg/ml to 175 mg/ml;
Arg.HCl at a concentration of 125 mM to 175 mM;
methionine at a concentration of 1 mM to 10 mM;
sodium citrate and citric acid at a concentration of 15 mM to 25 mM; and
PS80 at a concentration of 0.03% to 0.08%,

wherein the composition has a pH of 5.3 to 5.7.

33. The pharmaceutical composition of claim 1, comprising:

20 the anti- α v β 6 antibody or the α v β 6-binding fragment thereof at a concentration of 125 mg/ml to 175 mg/ml;
Arg.HCl at a concentration of 125 mM to 175 mM;
methionine at a concentration of 1 mM to 10 mM;
sodium citrate and citric acid at a concentration of 15 mM to 25 mM;
25 a thiol-containing antioxidant is at a concentration of 0.02 mM to 2 mM; and
PS80 at a concentration of 0.03% to 0.08%,
wherein the composition has a pH of 5.3 to 5.7.

34. The pharmaceutical composition of claim 1, comprising:

30 the anti- α v β 6 antibody or the α v β 6-binding fragment thereof at a concentration of 150 mg/ml;
Arg.HCl at a concentration of 150 mM;
methionine at a concentration of 5 mM;
sodium citrate and citric acid at a concentration of 20 mM; and

PS80 at a concentration of 0.05%,
wherein the composition has a pH of 5.5.

35. The pharmaceutical composition of claim 1, comprising:

5 the anti- α v β 6 antibody or the α v β 6-binding fragment thereof at a concentration of 150 mg/ml;

Arg.HCl at a concentration of 150 mM;

methionine at a concentration of 5 mM;

sodium citrate and citric acid at a concentration of 20 mM;

10 a thiol-containing antioxidant selected from the group consisting of GSH at a concentration of 0.4 mM, cysteine at a concentration of 0.4 mM, GSSG at a concentration of 0.2 mM, cystine at a concentration of 0.2 mM, GSSH at a concentration of 0.2 mM and GSSG at a concentration of 0.4 mM, and cysteine at a concentration of 0.4 mM and cystine at a concentration of 0.2 mM; and

15 PS80 at a concentration of 0.05%,

wherein the composition has a pH of 5.5.

36. The pharmaceutical composition of any one of claims 1 to 35, wherein:

20 (i) the VH consists of a sequence at least 80% identical to SEQ ID NO:7 and the VL consists of a sequence at least 80% identical to SEQ ID NO:8;

(ii) the VH consists of a sequence at least 90% identical to SEQ ID NO:7 and the VL consists of a sequence at least 90% identical to SEQ ID NO:8; or

(iii) the VH consists of the amino acid sequence set forth in SEQ ID NO:7 and the VL consists of the amino acid sequence set forth in SEQ ID NO:8.

25

37. The pharmaceutical composition of any one of claims 1 to 36, wherein the anti- α v β 6 antibody comprises an immunoglobulin heavy chain and an immunoglobulin light chain, wherein:

30 (i) the heavy chain consists of a sequence at least 80% identical to SEQ ID NO:9 and the light chain consists of a sequence at least 80% identical to SEQ ID NO:10;

(ii) the heavy chain consists of a sequence at least 90% identical to SEQ ID NO:9 and the light chain consists of a sequence at least 90% identical to SEQ ID NO:10; or

(iii) the heavy chain consists of the amino acid sequence set forth in SEQ ID NO:9 and the light chain consists of the amino acid sequence set forth in SEQ ID NO:10.

38. A method of treating a condition selected from the group consisting of fibrosis, acute lung injury, and acute kidney injury in a human subject in need thereof, the method comprising administering to the human subject the pharmaceutical composition of any one of claims 1 to

5 37.

39. The method of claim 38, wherein the condition is fibrosis.

40. The method of claim 39, wherein the fibrosis is lung fibrosis.

10

41. The method of claim 40, wherein the lung fibrosis is idiopathic pulmonary fibrosis.

42. The method of any one of claims 38 to 41, wherein the pharmaceutical composition is administered subcutaneously to the human subject.

15

43. The method of any one of claims 38 to 42, wherein the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 40 mg once weekly.

20

44. The method of any one of claims 38 to 42, wherein the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 48 mg once weekly.

25

45. The method of any one of claims 38 to 42, wherein the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 56 mg once weekly.

30

46. The method of any one of claims 38 to 42, wherein the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 64 mg once weekly.

47. The method of any one of claims 38 to 42, wherein the anti- $\alpha v\beta 6$ antibody or $\alpha v\beta 6$ -binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 0.5 mg/kg to 0.8 mg/kg once weekly.

48. The method of any one of claims 38 to 42, wherein the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 0.5 mg/kg once weekly.

5

49. The method of any one of claims 38 to 42, wherein the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 0.6 mg/kg once weekly.

10 50. The method of any one of claims 38 to 42, wherein the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 0.7 mg/kg once weekly.

15 51. The method of any one of claims 38 to 42, wherein the anti- α v β 6 antibody or α v β 6-binding fragment thereof of the pharmaceutical composition is administered to the human subject at a dose of 0.8 mg/kg once weekly.

52. A method of treating a condition selected from the group consisting of fibrosis, acute lung injury, and acute kidney injury in a human subject in need thereof, the method comprising 20 administering subcutaneously to the human subject an anti- α v β 6 antibody or α v β 6-binding fragment thereof at a dose of 40 mg once every week, wherein the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises an immunoglobulin heavy chain variable domain (VH) and an immunoglobulin light chain variable domain (VL), the VH and VL, respectively, comprising:

25 (a) VH complementarity determining regions (CDRs), wherein

VH-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:1;

VH-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:2; and

VH-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:3; and

(b) VL CDRs, wherein

30 VL-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:4;

VL-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:5; and

VL-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:6.

53. A method of treating a condition selected from the group consisting of fibrosis, acute lung injury, and acute kidney injury in a human subject in need thereof, the method comprising administering subcutaneously to the human subject an anti- α v β 6 antibody or α v β 6-binding fragment thereof at a dose of 48 mg once every week, wherein the anti- α v β 6 antibody or
5 α v β 6-binding fragment thereof comprises an immunoglobulin heavy chain variable domain (VH) and an immunoglobulin light chain variable domain (VL), the VH and VL, respectively, comprising:

(a) VH complementarity determining regions (CDRs), wherein

VH-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:1;

10 VH-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:2; and

VH-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:3; and

(b) VL CDRs, wherein

VL-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:4;

VL-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:5; and

15 VL-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:6.

54. A method of treating a condition selected from the group consisting of fibrosis, acute lung injury, and acute kidney injury in a human subject in need thereof, the method comprising administering subcutaneously to the human subject an anti- α v β 6 antibody or α v β 6-binding fragment thereof at a dose of 56 mg once every week, wherein the anti- α v β 6 antibody or
20 α v β 6-binding fragment thereof comprises an immunoglobulin heavy chain variable domain (VH) and an immunoglobulin light chain variable domain (VL), the VH and VL, respectively, comprising:

(a) VH complementarity determining regions (CDRs), wherein

VH-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:1;

VH-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:2; and

VH-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:3; and

(b) VL CDRs, wherein

VL-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:4;

30 VL-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:5; and

VL-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:6.

55. A method of treating a condition selected from the group consisting of fibrosis, acute lung injury, and acute kidney injury in a human subject in need thereof, the method comprising

administering subcutaneously to the human subject an anti- α v β 6 antibody or α v β 6-binding fragment thereof at a dose of 64 mg once every week, wherein the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises an immunoglobulin heavy chain variable domain (VH) and an immunoglobulin light chain variable domain (VL), the VH and VL,

5 respectively, comprising:

(a) VH complementarity determining regions (CDRs), wherein

VH-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:1;

VH-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:2; and

VH-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:3; and

10 (b) VL CDRs, wherein

VL-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:4;

VL-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:5; and

VL-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:6.

15 56. The method of any one of claims 52 to 55, wherein the human subject is administered at least 4 doses of the anti- α v β 6 antibody or antigen-binding fragment thereof.

57. The method of any one of claims 52 to 55, wherein the human subject is administered at least 7 doses of the anti- α v β 6 antibody or antigen-binding fragment thereof.

20

58. The method of any one of claims 52 to 55, wherein the human subject is administered at least 10 doses of the anti- α v β 6 antibody or antigen-binding fragment thereof.

59. The method of any one of claims 52 to 58, wherein:

25 (i) the VH consists of a sequence at least 80% identical to SEQ ID NO:7 and the VL consists of a sequence at least 80% identical to SEQ ID NO:8;

(ii) the VH consists of a sequence at least 90% identical to SEQ ID NO:7 and the VL consists of a sequence at least 90% identical to SEQ ID NO:8; or

30 (iii) the VH consists of the amino acid sequence set forth in SEQ ID NO:7 and the VL consists of the amino acid sequence set forth in SEQ ID NO:8.

60. The method of any one of claims 52 to 59, wherein the anti- α v β 6 antibody comprises an immunoglobulin heavy chain and an immunoglobulin light chain, wherein:

(i) the heavy chain consists of a sequence at least 80% identical to SEQ ID NO:9 and the light chain consists of a sequence at least 80% identical to SEQ ID NO:10;

(ii) the heavy chain consists of a sequence at least 90% identical to SEQ ID NO:9 and the light chain consists of a sequence at least 90% identical to SEQ ID NO:10; or

5 (iii) the heavy chain consists of the amino acid sequence set forth in SEQ ID NO:9 and the light chain consists of the amino acid sequence set forth in SEQ ID NO:10.

61. The method of any one of claims 52 to 60, wherein the condition is fibrosis.

10 62. The method of claim 61, wherein the fibrosis is lung fibrosis.

63. The method of claim 62, wherein the lung fibrosis is idiopathic pulmonary fibrosis.

15 64. A syringe or pump comprising a sterile preparation of the pharmaceutical composition of any one of claims 1 to 37 adapted for subcutaneous administration of the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a fixed dose of 40 mg, 48 mg, 56 mg, or 64 mg.

65. A syringe or pump comprising 0.5 to 5.0 mL of a sterile preparation of the pharmaceutical composition of any one of claims 1 to 37.

20 66. A syringe or pump comprising a sterile preparation of an anti- α v β 6 antibody or α v β 6-binding fragment thereof, wherein the syringe or pump is adapted for subcutaneous administration of the anti- α v β 6 antibody or α v β 6-binding fragment thereof at a fixed dose of 40 mg, 48 mg, 56 mg, or 64 mg, and wherein the anti- α v β 6 antibody or α v β 6-binding fragment thereof comprises an immunoglobulin heavy chain variable domain (VH) and an immunoglobulin light chain variable domain (VL), the VH and VL, respectively, comprising:

25 (a) VH complementarity determining regions (CDRs), wherein

VH-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:1;

VH-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:2; and

30 VH-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:3; and

(b) VL CDRs, wherein

VL-CDR1 consists of the amino acid sequence set forth in SEQ ID NO:4;

VL-CDR2 consists of the amino acid sequence set forth in SEQ ID NO:5; and

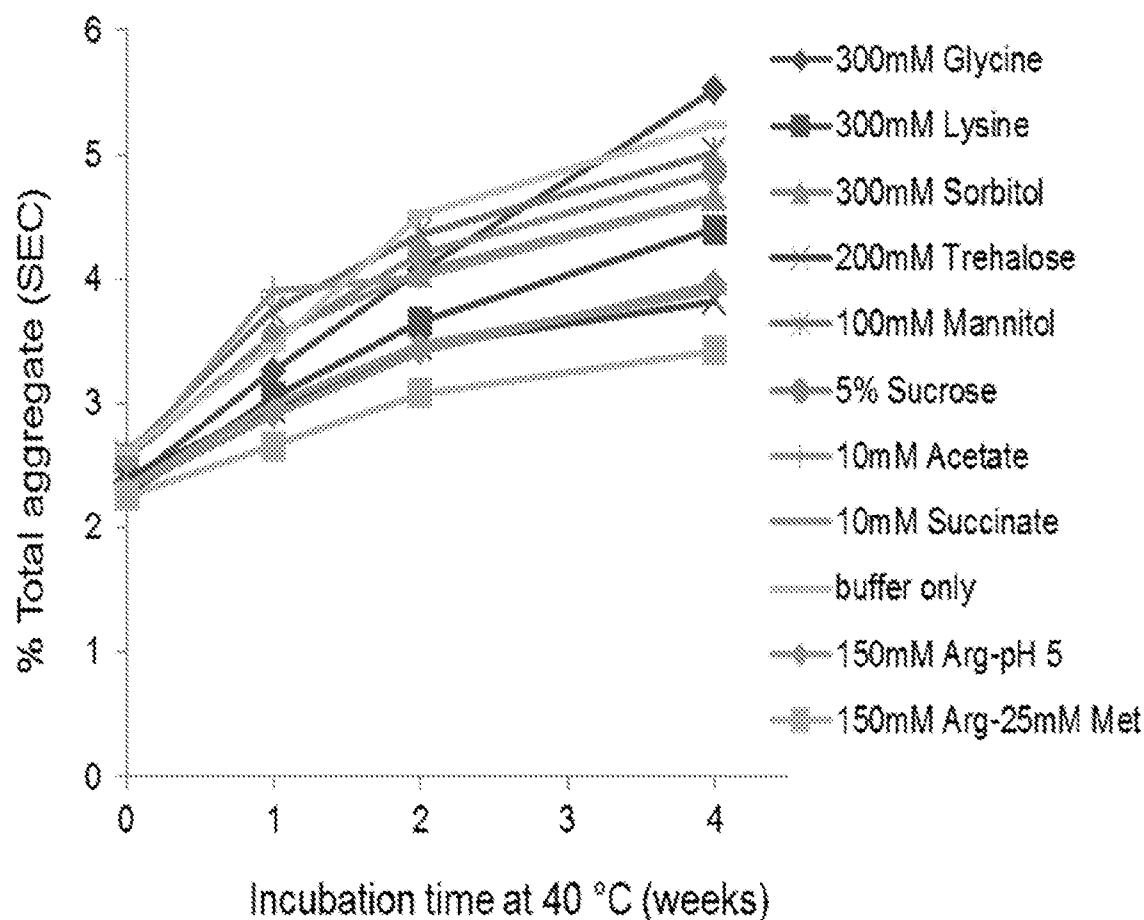
VL-CDR3 consists of the amino acid sequence set forth in SEQ ID NO:6.

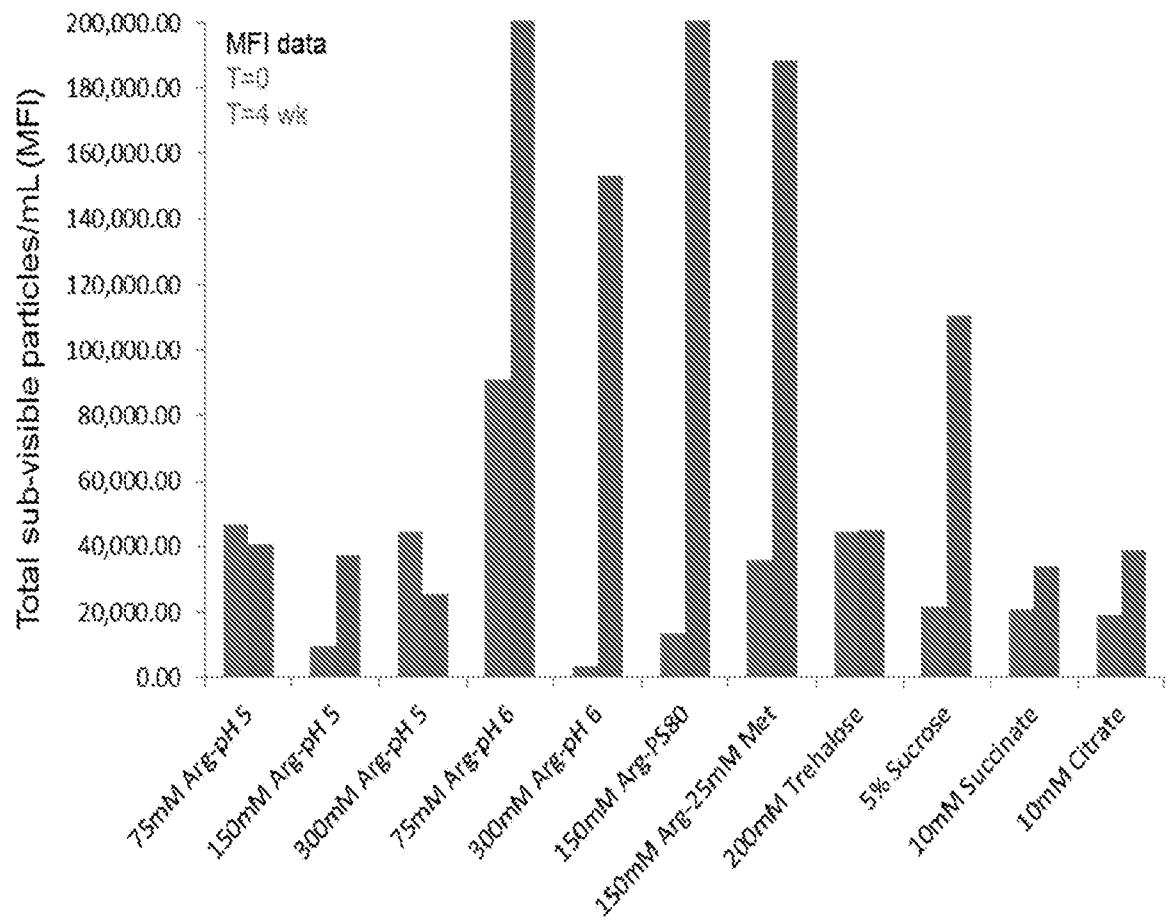
67. The syringe or pump of claim 66, wherein:

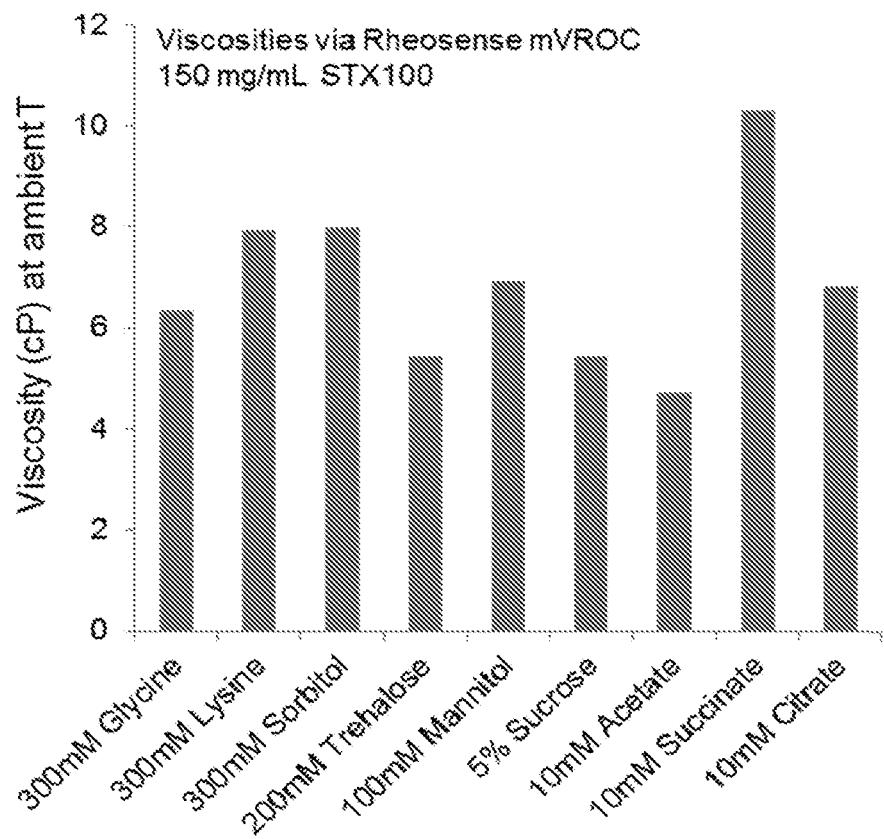
- (i) the VH consists of a sequence at least 80% identical to SEQ ID NO:7 and the VL consists of a sequence at least 80% identical to SEQ ID NO:8;
- 5 (ii) the VH consists of a sequence at least 90% identical to SEQ ID NO:7 and the VL consists of a sequence at least 90% identical to SEQ ID NO:8; or
- (iii) the VH consists of the amino acid sequence set forth in SEQ ID NO:7 and the VL consists of the amino acid sequence set forth in SEQ ID NO:8.

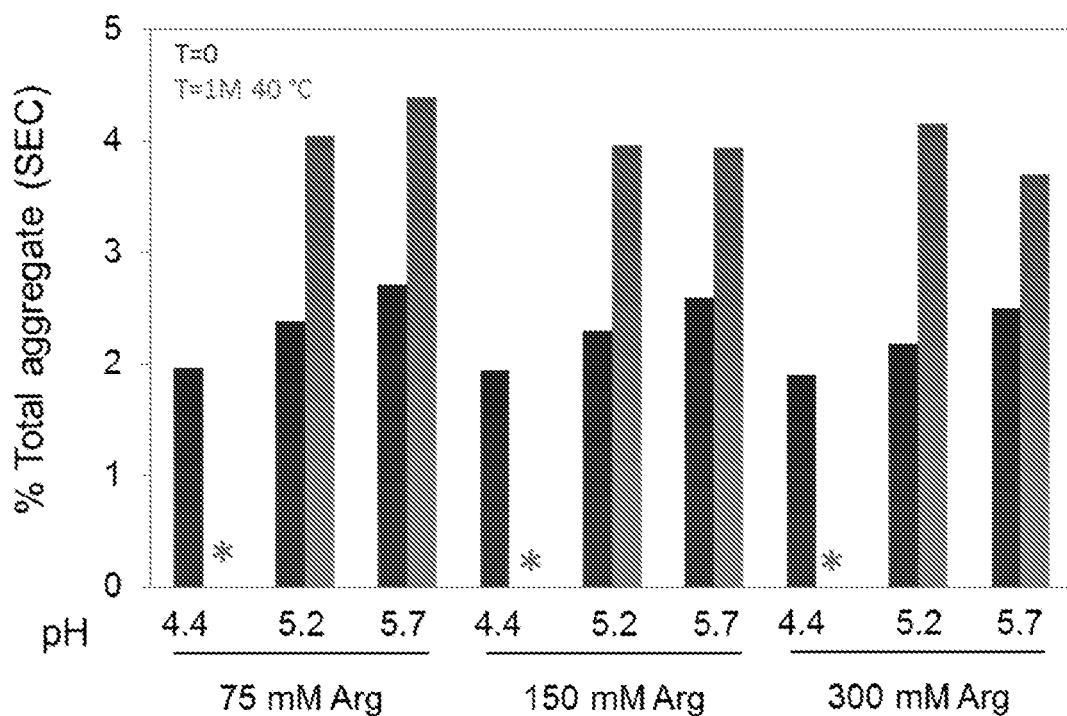
10 68. The syringe or pump of claim 66 or claim 67, wherein the anti- α v β 6 antibody comprises an immunoglobulin heavy chain and an immunoglobulin light chain, wherein:

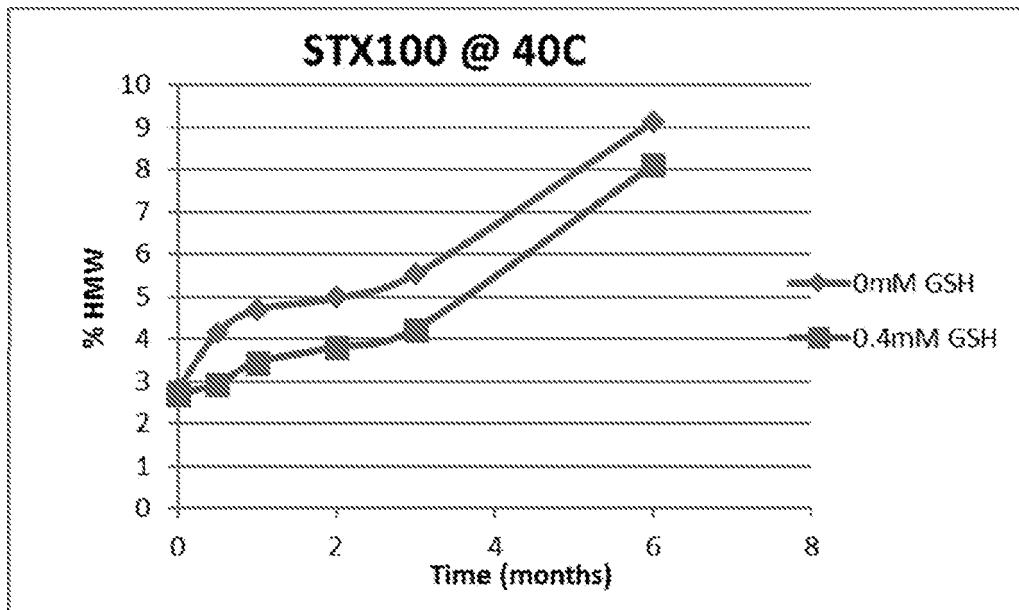
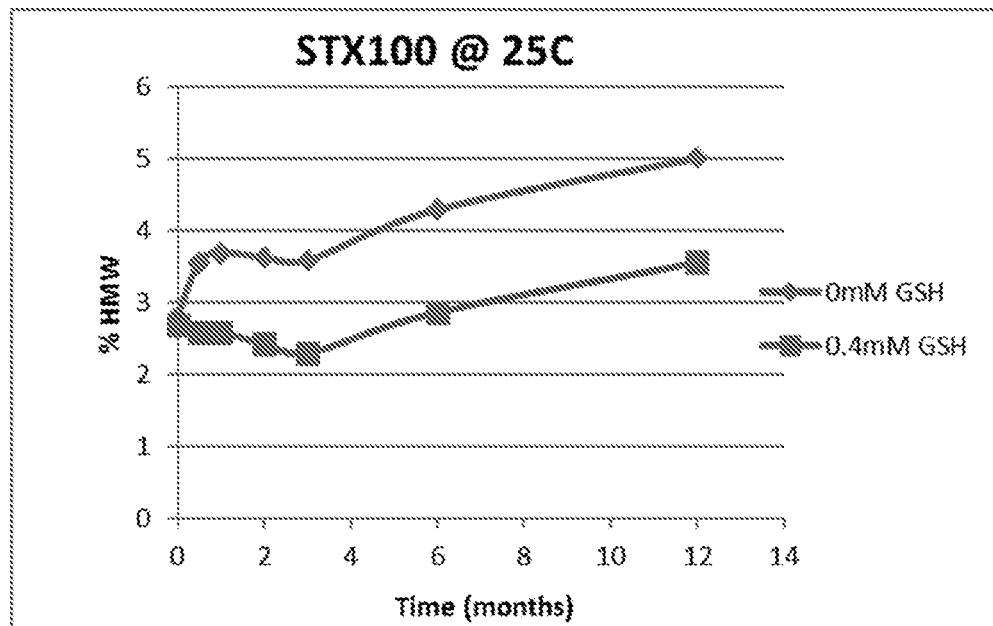
- (i) the heavy chain consists of a sequence at least 80% identical to SEQ ID NO:9 and the light chain consists of a sequence at least 80% identical to SEQ ID NO:10;
- (ii) the heavy chain consists of a sequence at least 90% identical to SEQ ID NO:9 and the light chain consists of a sequence at least 90% identical to SEQ ID NO:10; or
- 15 (iii) the heavy chain consists of the amino acid sequence set forth in SEQ ID NO:9 and the light chain consists of the amino acid sequence set forth in SEQ ID NO:10.

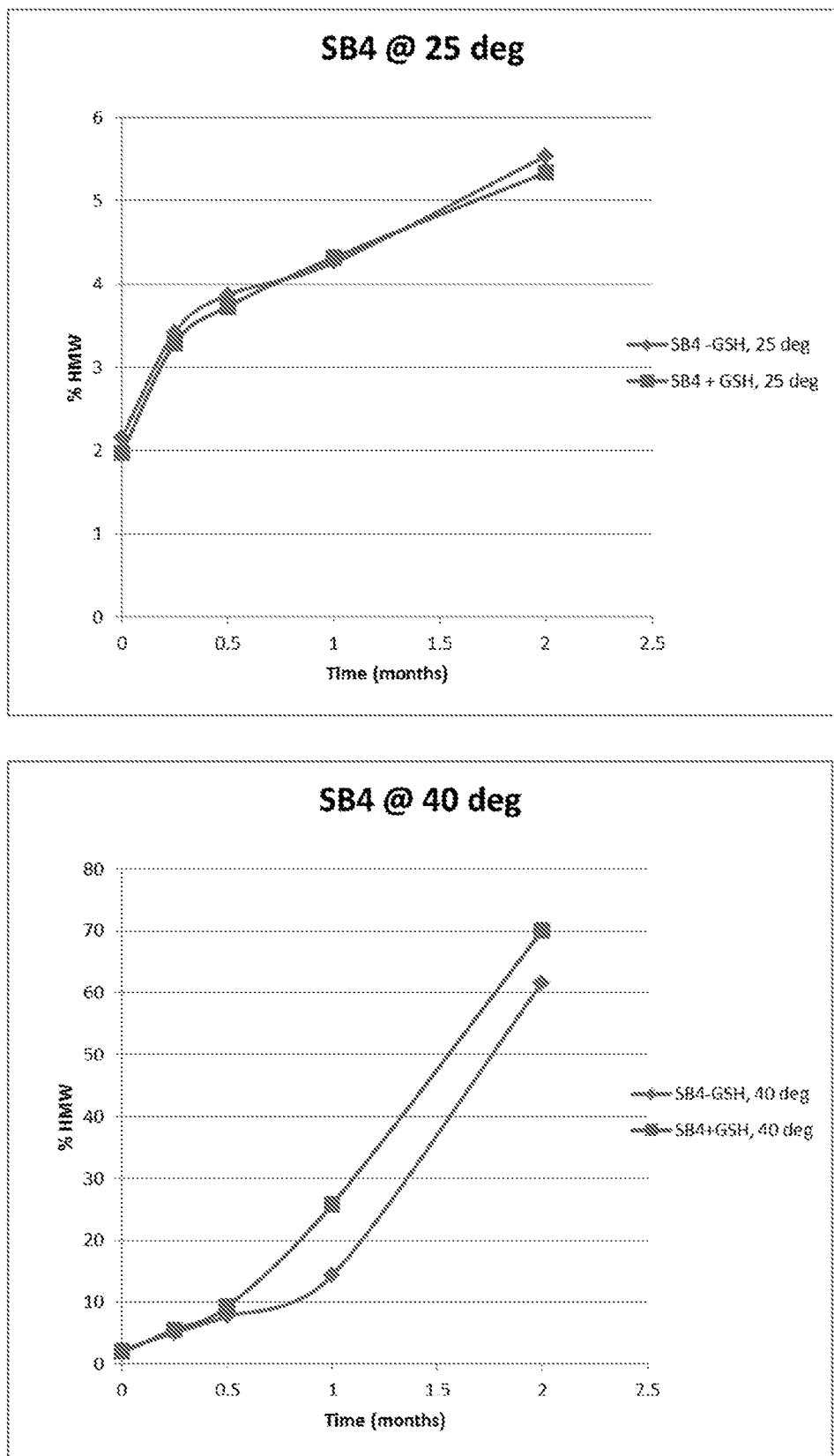

69. The method of any one of claims 38 to 63, wherein the method further comprises


20 administering to the human subject a therapeutically effective amount of prifenidone or nintedanib.


70. The method of claim 69, wherein the human subject is administered prifenidone as follows:


25	<u>Treatment days</u>	<u>Dosage</u>
	Days 1 through 7	267 mg three times daily (801 mg/day)
	Days 8 through 14	534 mg three times daily (1602 mg/day)
	Days 15 onward	801 mg three times daily (2403 mg/day).



30 71. The method of claim 69, wherein the human subject is administered nintedanib at a fixed dose of 150 mg twice daily.


FIGURE 1A

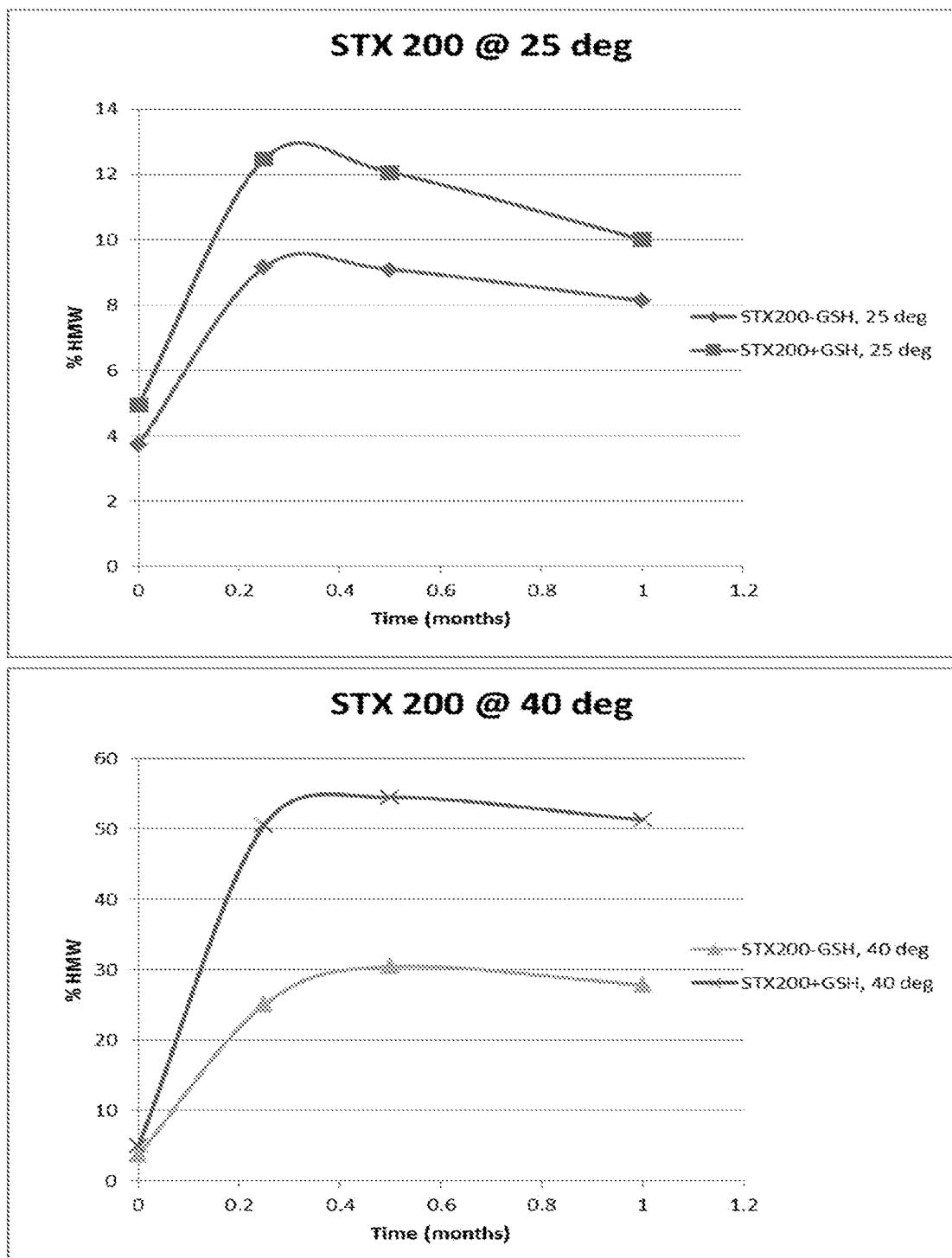

FIGURE 1B

FIGURE 1C

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

SEQUENCE LISTING

<110> BIOGEN MA INC.

<120> PHARMACEUTICAL COMPOSITIONS AND DOSAGE REGIMENS CONTAINING
ANTI-ALPHA(V)BETA(6) ANTIBODIES

<130> 13751-0289W01

<140> PCT/US2018/047502

<141> 2018-08-22

<150> 62/548,772

<151> 2017-08-22

<160> 13

<170> PatentIn version 3.5

<210> 1

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 1

Arg Tyr Val Met Ser

1 5

<210> 2

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 2

Ser Ile Ser Ser Gly Gly Arg Met Tyr Tyr Pro Asp Thr Val Lys Gly

1 5 10 15

<210> 3

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 3

Gly Ser Ile Tyr Asp Gly Tyr Tyr Val Phe Pro Tyr

1 5 10

<210> 4

<211> 12

<212> PRT

<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 4
Ser Ala Ser Ser Ser Val Ser Ser Ser Tyr Leu Tyr
1 5 10

<210> 5
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 5
Ser Thr Ser Asn Leu Ala Ser
1 5

<210> 6
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 6
His Gln Trp Ser Thr Tyr Pro Pro Thr
1 5

<210> 7
<211> 120
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 7
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Arg Tyr
20 25 30

Val Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Ser Ile Ser Ser Gly Gly Arg Met Tyr Tyr Pro Asp Thr Val Lys
50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu
65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95

Arg Gly Ser Ile Tyr Asp Gly Tyr Tyr Val Phe Pro Tyr Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 8
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 8
Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Ser Ala Ser Ser Ser Val Ser Ser Ser
20 25 30

Tyr Leu Tyr Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45

Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Ile Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu
65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys His Gln Trp Ser Thr Tyr Pro
85 90 95

Pro Thr Phe Gly Gly Thr Lys Val Glu Ile Lys
100 105

<210> 9
<211> 449
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 9
Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Arg Tyr

20

25

30

Val Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Ser Ile Ser Ser Gly Gly Arg Met Tyr Tyr Pro Asp Thr Val Lys
50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu
65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95

Arg Gly Ser Ile Tyr Asp Gly Tyr Tyr Val Phe Pro Tyr Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
115 120 125

Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
130 135 140

Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
145 150 155 160

Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
165 170 175

Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
180 185 190

Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
195 200 205

Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp
210 215 220

Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly
225 230 235 240

Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
245 250 255

Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu
260 265 270

Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His
275 280 285

Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg
290 295 300

Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys
305 310 315 320

Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu
325 330 335

Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr
340 345 350

Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu
355 360 365

Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
370 375 380

Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
385 390 395 400

Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp
405 410 415

Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His
420 425 430

Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
435 440 445

Gly

<210> 10
<211> 215
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 10
Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Ser Ala Ser Ser Ser Val Ser Ser Ser
20 25 30

Tyr Leu Tyr Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45

Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Ile Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu
 65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys His Gln Trp Ser Thr Tyr Pro
 85 90 95

Pro Thr Phe Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala
 100 105 110

Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
 115 120 125

Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
 130 135 140

Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser
 145 150 155 160

Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu
 165 170 175

Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val
 180 185 190

Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys
 195 200 205

Ser Phe Asn Arg Gly Glu Cys
 210 215

<210> 11
 <211> 10
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 11
 Gly Phe Thr Phe Ser Arg Tyr Val Met Ser
 1 5 10

<210> 12
 <211> 1048
 <212> PRT
 <213> Homo sapiens

<400> 12
 Met Ala Phe Pro Pro Arg Arg Arg Leu Arg Leu Gly Pro Arg Gly Leu
 1 5 10 15

Pro Leu Leu Leu Ser Gly Leu Leu Leu Pro Leu Cys Arg Ala Phe Asn
 20 25 30

Leu Asp Val Asp Ser Pro Ala Glu Tyr Ser Gly Pro Glu Gly Ser Tyr
35 40 45

Phe Gly Phe Ala Val Asp Phe Phe Val Pro Ser Ala Ser Ser Arg Met
50 55 60

Phe Leu Leu Val Gly Ala Pro Lys Ala Asn Thr Thr Gln Pro Gly Ile
65 70 75 80

Val Glu Gly Gly Gln Val Leu Lys Cys Asp Trp Ser Ser Thr Arg Arg
85 90 95

Cys Gln Pro Ile Glu Phe Asp Ala Thr Gly Asn Arg Asp Tyr Ala Lys
100 105 110

Asp Asp Pro Leu Glu Phe Lys Ser His Gln Trp Phe Gly Ala Ser Val
115 120 125

Arg Ser Lys Gln Asp Lys Ile Leu Ala Cys Ala Pro Leu Tyr His Trp
130 135 140

Arg Thr Glu Met Lys Gln Glu Arg Glu Pro Val Gly Thr Cys Phe Leu
145 150 155 160

Gln Asp Gly Thr Lys Thr Val Glu Tyr Ala Pro Cys Arg Ser Gln Asp
165 170 175

Ile Asp Ala Asp Gly Gln Gly Phe Cys Gln Gly Gly Phe Ser Ile Asp
180 185 190

Phe Thr Lys Ala Asp Arg Val Leu Leu Gly Gly Pro Gly Ser Phe Tyr
195 200 205

Trp Gln Gly Gln Leu Ile Ser Asp Gln Val Ala Glu Ile Val Ser Lys
210 215 220

Tyr Asp Pro Asn Val Tyr Ser Ile Lys Tyr Asn Asn Gln Leu Ala Thr
225 230 235 240

Arg Thr Ala Gln Ala Ile Phe Asp Asp Ser Tyr Leu Gly Tyr Ser Val
245 250 255

Ala Val Gly Asp Phe Asn Gly Asp Gly Ile Asp Asp Phe Val Ser Gly
260 265 270

Val Pro Arg Ala Ala Arg Thr Leu Gly Met Val Tyr Ile Tyr Asp Gly
275 280 285

Lys Asn Met Ser Ser Leu Tyr Asn Phe Thr Gly Glu Gln Met Ala Ala
290 295 300

Tyr Phe Gly Phe Ser Val Ala Ala Thr Asp Ile Asn Gly Asp Asp Tyr

305

310

315

320

Ala Asp Val Phe Ile Gly Ala Pro Leu Phe Met Asp Arg Gly Ser Asp
325 330 335

Gly Lys Leu Gln Glu Val Gly Gln Val Ser Val Ser Leu Gln Arg Ala
340 345 350

Ser Gly Asp Phe Gln Thr Thr Lys Leu Asn Gly Phe Glu Val Phe Ala
355 360 365

Arg Phe Gly Ser Ala Ile Ala Pro Leu Gly Asp Leu Asp Gln Asp Gly
370 375 380

Phe Asn Asp Ile Ala Ile Ala Ala Pro Tyr Gly Gly Glu Asp Lys Lys
385 390 395 400

Gly Ile Val Tyr Ile Phe Asn Gly Arg Ser Thr Gly Leu Asn Ala Val
405 410 415

Pro Ser Gln Ile Leu Glu Gly Gln Trp Ala Ala Arg Ser Met Pro Pro
420 425 430

Ser Phe Gly Tyr Ser Met Lys Gly Ala Thr Asp Ile Asp Lys Asn Gly
435 440 445

Tyr Pro Asp Leu Ile Val Gly Ala Phe Gly Val Asp Arg Ala Ile Leu
450 455 460

Tyr Arg Ala Arg Pro Val Ile Thr Val Asn Ala Gly Leu Glu Val Tyr
465 470 475 480

Pro Ser Ile Leu Asn Gln Asp Asn Lys Thr Cys Ser Leu Pro Gly Thr
485 490 495

Ala Leu Lys Val Ser Cys Phe Asn Val Arg Phe Cys Leu Lys Ala Asp
500 505 510

Gly Lys Gly Val Leu Pro Arg Lys Leu Asn Phe Gln Val Glu Leu Leu
515 520 525

Leu Asp Lys Leu Lys Gln Lys Gly Ala Ile Arg Arg Ala Leu Phe Leu
530 535 540

Tyr Ser Arg Ser Pro Ser His Ser Lys Asn Met Thr Ile Ser Arg Gly
545 550 555 560

Gly Leu Met Gln Cys Glu Glu Leu Ile Ala Tyr Leu Arg Asp Glu Ser
565 570 575

Glu Phe Arg Asp Lys Leu Thr Pro Ile Thr Ile Phe Met Glu Tyr Arg
580 585 590

Leu Asp Tyr Arg Thr Ala Ala Asp Thr Thr Gly Leu Gln Pro Ile Leu
595 600 605

Asn Gln Phe Thr Pro Ala Asn Ile Ser Arg Gln Ala His Ile Leu Leu
610 615 620

Asp Cys Gly Glu Asp Asn Val Cys Lys Pro Lys Leu Glu Val Ser Val
625 630 635 640

Asp Ser Asp Gln Lys Ile Tyr Ile Gly Asp Asp Asn Pro Leu Thr
645 650 655

Leu Ile Val Lys Ala Gln Asn Gln Gly Glu Gly Ala Tyr Glu Ala Glu
660 665 670

Leu Ile Val Ser Ile Pro Leu Gln Ala Asp Phe Ile Gly Val Val Arg
675 680 685

Asn Asn Glu Ala Leu Ala Arg Leu Ser Cys Ala Phe Lys Thr Glu Asn
690 695 700

Gln Thr Arg Gln Val Val Cys Asp Leu Gly Asn Pro Met Lys Ala Gly
705 710 715 720

Thr Gln Leu Leu Ala Gly Leu Arg Phe Ser Val His Gln Gln Ser Glu
725 730 735

Met Asp Thr Ser Val Lys Phe Asp Leu Gln Ile Gln Ser Ser Asn Leu
740 745 750

Phe Asp Lys Val Ser Pro Val Val Ser His Lys Val Asp Leu Ala Val
755 760 765

Leu Ala Ala Val Glu Ile Arg Gly Val Ser Ser Pro Asp His Val Phe
770 775 780

Leu Pro Ile Pro Asn Trp Glu His Lys Glu Asn Pro Glu Thr Glu Glu
785 790 795 800

Asp Val Gly Pro Val Val Gln His Ile Tyr Glu Leu Arg Asn Asn Gly
805 810 815

Pro Ser Ser Phe Ser Lys Ala Met Leu His Leu Gln Trp Pro Tyr Lys
820 825 830

Tyr Asn Asn Asn Thr Leu Leu Tyr Ile Leu His Tyr Asp Ile Asp Gly
835 840 845

Pro Met Asn Cys Thr Ser Asp Met Glu Ile Asn Pro Leu Arg Ile Lys
850 855 860

Ile Ser Ser Leu Gln Thr Thr Glu Lys Asn Asp Thr Val Ala Gly Gln
865 870 875 880

Gly Glu Arg Asp His Leu Ile Thr Lys Arg Asp Leu Ala Leu Ser Glu
885 890 895

Gly Asp Ile His Thr Leu Gly Cys Gly Val Ala Gln Cys Leu Lys Ile
900 905 910

Val Cys Gln Val Gly Arg Leu Asp Arg Gly Lys Ser Ala Ile Leu Tyr
915 920 925

Val Lys Ser Leu Leu Trp Thr Glu Thr Phe Met Asn Lys Glu Asn Gln
930 935 940

Asn His Ser Tyr Ser Leu Lys Ser Ser Ala Ser Phe Asn Val Ile Glu
945 950 955 960

Phe Pro Tyr Lys Asn Leu Pro Ile Glu Asp Ile Thr Asn Ser Thr Leu
965 970 975

Val Thr Thr Asn Val Thr Trp Gly Ile Gln Pro Ala Pro Met Pro Val
980 985 990

Pro Val Trp Val Ile Ile Leu Ala Val Leu Ala Gly Leu Leu Leu
995 1000 1005

Ala Val Leu Val Phe Val Met Tyr Arg Met Gly Phe Phe Lys Arg
1010 1015 1020

Val Arg Pro Pro Gln Glu Glu Gln Glu Arg Glu Gln Leu Gln Pro
1025 1030 1035

His Glu Asn Gly Glu Gly Asn Ser Glu Thr
1040 1045

<210> 13

<211> 788

<212> PRT

<213> Homo sapiens

<400> 13

Met Gly Ile Glu Leu Leu Cys Leu Phe Phe Leu Phe Leu Gly Arg Asn
1 5 10 15

Asp His Val Gln Gly Gly Cys Ala Leu Gly Gly Ala Glu Thr Cys Glu
20 25 30

Asp Cys Leu Leu Ile Gly Pro Gln Cys Ala Trp Cys Ala Gln Glu Asn
35 40 45

Phe Thr His Pro Ser Gly Val Gly Glu Arg Cys Asp Thr Pro Ala Asn
50 55 60

Leu Leu Ala Lys Gly Cys Gln Leu Asn Phe Ile Glu Asn Pro Val Ser
65 70 75 80

Gln Val Glu Ile Leu Lys Asn Lys Pro Leu Ser Val Gly Arg Gln Lys
85 90 95

Asn Ser Ser Asp Ile Val Gln Ile Ala Pro Gln Ser Leu Ile Leu Lys
100 105 110

Leu Arg Pro Gly Gly Ala Gln Thr Leu Gln Val His Val Arg Gln Thr
115 120 125

Glu Asp Tyr Pro Val Asp Leu Tyr Tyr Leu Met Asp Leu Ser Ala Ser
130 135 140

Met Asp Asp Asp Leu Asn Thr Ile Lys Glu Leu Gly Ser Arg Leu Ser
145 150 155 160

Lys Glu Met Ser Lys Leu Thr Ser Asn Phe Arg Leu Gly Phe Gly Ser
165 170 175

Phe Val Glu Lys Pro Val Ser Pro Phe Val Lys Thr Thr Pro Glu Glu
180 185 190

Ile Ala Asn Pro Cys Ser Ser Ile Pro Tyr Phe Cys Leu Pro Thr Phe
195 200 205

Gly Phe Lys His Ile Leu Pro Leu Thr Asn Asp Ala Glu Arg Phe Asn
210 215 220

Glu Ile Val Lys Asn Gln Lys Ile Ser Ala Asn Ile Asp Thr Pro Glu
225 230 235 240

Gly Gly Phe Asp Ala Ile Met Gln Ala Ala Val Cys Lys Glu Lys Ile
245 250 255

Gly Trp Arg Asn Asp Ser Leu His Leu Leu Val Phe Val Ser Asp Ala
260 265 270

Asp Ser His Phe Gly Met Asp Ser Lys Leu Ala Gly Ile Val Ile Pro
275 280 285

Asn Asp Gly Leu Cys His Leu Asp Ser Lys Asn Glu Tyr Ser Met Ser
290 295 300

Thr Val Leu Glu Tyr Pro Thr Ile Gly Gln Leu Ile Asp Lys Leu Val
305 310 315 320

Gln Asn Asn Val Leu Leu Ile Phe Ala Val Thr Gln Glu Gln Val His
325 330 335

Leu Tyr Glu Asn Tyr Ala Lys Leu Ile Pro Gly Ala Thr Val Gly Leu
340 345 350

Leu Gln Lys Asp Ser Gly Asn Ile Leu Gln Leu Ile Ile Ser Ala Tyr
355 360 365

Glu Glu Leu Arg Ser Glu Val Glu Leu Glu Val Leu Gly Asp Thr Glu
370 375 380

Gly Leu Asn Leu Ser Phe Thr Ala Ile Cys Asn Asn Gly Thr Leu Phe
385 390 395 400

Gln His Gln Lys Lys Cys Ser His Met Lys Val Gly Asp Thr Ala Ser
405 410 415

Phe Ser Val Thr Val Asn Ile Pro His Cys Glu Arg Arg Ser Arg His
420 425 430

Ile Ile Ile Lys Pro Val Gly Leu Gly Asp Ala Leu Glu Leu Leu Val
435 440 445

Ser Pro Glu Cys Asn Cys Asp Cys Gln Lys Glu Val Glu Val Asn Ser
450 455 460

Ser Lys Cys His His Gly Asn Gly Ser Phe Gln Cys Gly Val Cys Ala
465 470 475 480

Cys His Pro Gly His Met Gly Pro Arg Cys Glu Cys Gly Glu Asp Met
485 490 495

Leu Ser Thr Asp Ser Cys Lys Glu Ala Pro Asp His Pro Ser Cys Ser
500 505 510

Gly Arg Gly Asp Cys Tyr Cys Gly Gln Cys Ile Cys His Leu Ser Pro
515 520 525

Tyr Gly Asn Ile Tyr Gly Pro Tyr Cys Gln Cys Asp Asn Phe Ser Cys
530 535 540

Val Arg His Lys Gly Leu Leu Cys Gly Asn Gly Asp Cys Asp Cys
545 550 555 560

Gly Glu Cys Val Cys Arg Ser Gly Trp Thr Gly Glu Tyr Cys Asn Cys
565 570 575

Thr Thr Ser Thr Asp Ser Cys Val Ser Glu Asp Gly Val Leu Cys Ser
580 585 590

Gly Arg Gly Asp Cys Val Cys Gly Lys Cys Val Cys Thr Asn Pro Gly
595 600 605

Ala Ser Gly Pro Thr Cys Glu Arg Cys Pro Thr Cys Gly Asp Pro Cys
610 615 620

Asn Ser Lys Arg Ser Cys Ile Glu Cys His Leu Ser Ala Ala Gly Gln
625 630 635 640

Ala Arg Glu Glu Cys Val Asp Lys Cys Lys Leu Ala Gly Ala Thr Ile
645 650 655

Ser Glu Glu Glu Asp Phe Ser Lys Asp Gly Ser Val Ser Cys Ser Leu
660 665 670

Gln Gly Glu Asn Glu Cys Leu Ile Thr Phe Leu Ile Thr Thr Asp Asn
675 680 685

Glu Gly Lys Thr Ile Ile His Ser Ile Asn Glu Lys Asp Cys Pro Lys
690 695 700

Pro Pro Asn Ile Pro Met Ile Met Leu Gly Val Ser Leu Ala Ile Leu
705 710 715 720

Leu Ile Gly Val Val Leu Leu Cys Ile Trp Lys Leu Leu Val Ser Phe
725 730 735

His Asp Arg Lys Glu Val Ala Lys Phe Glu Ala Glu Arg Ser Lys Ala
740 745 750

Lys Trp Gln Thr Gly Thr Asn Pro Leu Tyr Arg Gly Ser Thr Ser Thr
755 760 765

Phe Lys Asn Val Thr Tyr Lys His Arg Glu Lys Gln Lys Val Asp Leu
770 775 780

Ser Thr Asp Cys
785