(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2014/040869 A1

(43) International Publication Date 20 March 2014 (20.03.2014)

(51) International Patent Classification: C11D 3/00 (2006.01)

C11D 3/20 (2006.01)

C11D 3/37 (2006.01) C11D 3/04 (2006.01) C11D 1/62 (2006.01)

(21) International Application Number:

PCT/EP2013/068047

(22) International Filing Date:

2 September 2013 (02.09.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

12183994.8 12 September 2012 (12.09.2012)

EP

- (71) Applicant (for all designated States except AE, AG, AU, BB, BH, BN, BW, BZ, CA, CY, EG, GB, GD, GH, GM, IE, IL, IN, KE, KN, LC, LK, LS, MT, MW, MY, NA, NG, NZ, OM, PG, QA, RW, SA, SC, SD, SG, SL, SZ, TT, TZ, UG, US, VC, ZA, ZM, ZW): UNILEVER N.V. [NL/NL]; Weena 455, NL-3013 AL Rotterdam (NL).
- (71) Applicant (for AE, AG, AU, BB, BH, BN, BW, BZ, CA, CY, EG, GB, GD, GH, GM, IE, IL, IN, KE, KN, LC, LK, LS, MT, MW, MY, NA, NG, NZ, OM, PG, QA, RW, SC, SD, SG, SL, SZ, TT, TZ, UG, VC, ZA, ZM, ZW only): UNI-LEVER PLC [GB/GB]; a company registered in England and Wales under company no. 41424 of Unilever House, 100 Victoria Embankment, London Greater London EC4Y 0DY (GB).
- (71) Applicant (for US only): CONOPCO, INC., D/B/A UNI-LEVER [US/US]; 800 Sylvan Avenue, AG West, S. Wing, Englewood Cliffs, New Jersey 07632 (US).
- Inventors: DAS, Somnath; Hindustan Unilever Limited, Research Centre, 64 Main Road, Whitefield, Bangalore 560 066 (IN). PANCHANATHAN, Anandh; Hindustan Unilever Ltd, Research Centre, 64 Main Road, Whitefield, Bangalore 560 066 (IN). PRAMANIK, Amitava; Hindustan Unilever Ltd, Research Centre, 64 Main Road, Whitefield, Bangalore 560 066 (IN). SARKAR, Deboleena;

Hindustan Unilever Ltd, Research Centre 64, Main Road, Whitefield, Bangalore 560 066 (IN).

- (74) Agent: KAN, Jacob, H; Unilever Patent Group, Olivier van Noortlaan 120, NL-3133 AT Vlaardingen (NL).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: HARD SURFACE TREATMENT COMPOSITION

(57) Abstract: The present invention is in the field of hard surface treatment compositions; and in particular relates to hard surface treatment compositions to render a substrate hydrophobic and also repellent to aqueous stains and soils, as well as giving good cleaning on tough soils and stains. It is therefore an object of the present invention to provide easier cleaning upon the subsequent wash; also knows as a next time cleaning benefit. It has been found that a composition comprising a solvent, a carboxylic polymer, a metal ion and a cationic surfactant and having a pH of between 2 and 6, provides both stain repellence as well as good primary and secondary cleaning.

1

HARD SURFACE TREATMENT COMPOSITION

Field of the invention

5

20

25

30

35

The present invention is in the field of hard surface treatment compositions; and in particular relates to hard surface treatment compositions to render a substrate hydrophobic and also repellent to aqueous stains and soils, as well as giving good cleaning on tough soils and stains.

Background of the invention

Water droplets have a tendency to stick to surfaces. These water droplets are usually a mixture of water and fine particulate matter in the form of dust or dirt. The particulate matter is either present on the surface before being wetted or is already in a mixture with water when the droplets come in contact with the surface. When the water droplets settle on a surface and eventually dry up, they leave spots or streaks on the surface giving a stain-like appearance. Such an appearance on surfaces is not appreciated by present day consumers.

Without wishing to be bound by a theory, it is believed that the behaviour of a liquid droplet on a surface depends on the adhesive forces between the surface and the liquid. If the adhesive forces are attractive, the liquid droplet is pulled towards the surface and remains on the surface. It is therefore thought that by making said surfaces hydrophobic, water droplets can be repelled by the surface, minimizing the contact of the water droplets with the surface and causing water droplets to bead and cover less of the surface when the surface is horizontal and even roll off inclined and vertical surfaces, and thus preventing surfaces from water damage and deposition of stains and soils.

Metal soap based compositions have been proposed in the past for imparting hydrophobicity to surfaces. Our co-pending application IN-2963/MUM/2011 describes hard surface cleaning compositions. It particularly relates to a method and composition for cleaning of a surface and imparting repellence of soils. It relates to the object of providing a stable surface cleaning composition which can make the surface hydrophobic and oleophobic as well as provide superior cleaning; and proposes a composition comprising fluoro silane with a solvent and a polyvalent metal salt was found to render both hydrophobicity and oleophobicity making the surface less

2

susceptible to soiling, by both aqueous and oily stains and also provides better cleaning. However, the composition described therein is an opaque composition due to the presence of metal complexes, and the use of which is also less preferred as is it not perceived as being eco-friendly. Thus, there is an unfulfilled need for a hydrophobic composition which is transparent and devoid of metals.

5

10

15

30

35

US 2004/0077517 and US 2004/0171515 disclose laundry (wash, rinse or care) composition comprising a cationically modified polymer and metal ions and cationic surfactants. They further disclose that the formulation may be applied onto both soft and hard surfaces. They further disclose the use of solvents including low molecular weight alcohols and glycols. What remains to be desired is a composition that imparts improved hydrophobicity to a surface. US 2004/0077517 and US 2004/0171515 do not disclose the use of glycol ethers in the compositions. The present inventors have shown that inclusion of glycol ethers enhance the repellence to water in addition to cleaning. This is thought to be caused by orientation of surfactants and polymers in such a way that after water evaporation, the hydrophilic components form a core and the hydrophobic parts get exposed to the environment to give the desired water and aqueous soil repellence property.

20 IN-1293/MUM/2011 describes a hard surface cleaning composition comprising polyaluminium-chloride (PAC), soap of C8-C18 fatty acid, a surfactant selected from nonionic surfactants or quaternary ammonium cationic surfactants, poly vinyl alcohol(PVA) and a quaternary silicon oil. However, metal soaps formed therein contribute to the opaqueness of the composition, thereby leaving a need for transparent hydrophobic 25 compositions.

Hard surface cleaning compositions comprising carboxylic polymers are disclosed in WO97/24425 (The Procter & Gamble Company). These compositions provide improved cleaning and especially improved gloss on a surface, thought to be caused by the combination of a carboxylic polymer, surfactant and a divalent ion. However, improved results on the subsequent cleaning remain to be desired.

Currently known compositions providing a next time cleaning benefit are not performing well on cleaning; they do not provide good stain removal, and leave water streaks and/or spots after wetting a treated surface upon drying.

3

It is therefore an object of the present invention to provide easier cleaning upon the subsequent wash; also knows as a next time cleaning benefit.

It is a further object of the invention to provide a composition for tough stain removal.

5

It is a further object of the invention to provide a composition that provides both good primary and good secondary cleaning.

Surprisingly it has been found that a composition comprising a solvent, a carboxylic polymer, a metal ion and a cationic surfactant and having a pH of between 2 and 6, provides both stain repellence as well as good primary and secondary cleaning.

Summary of the invention

Accordingly, the present invention provides a hard surface cleaning composition comprising 0.2-6% by weight of a block or alternate copolymer having moieties A and B, wherein A= polystyrene, polyethylene, polypropylene, polyisobutylene, and B= Water soluble alkali metal salt (sodium/ potassium) of the following acids: acrylic acid, C2-7 dicarboxylic acids; 0.2-8% by weight of a water miscible glycol ether solvent of the formula: R1 – O – R2OH; wherein, R1 is a substituted or unsubstituted C2 – C4 alkyl group or a substituted or unsubstituted aryl group, preferably phenyl; and R2 is a substituted or unsubstituted C2-C4 alkylene group; 0.01-0.5% by weight of a water soluble metal ion selected from: trivalent and tetravalent metal; and/or bivalent transition metal; and 0.002-0.08% by weight of a cationic surfactant; wherein the pH is from 2 to 6.

25

30

15

20

In a second aspect, the invention further provides for a method for cleaning a hard surface comprising the steps in sequence of: (a) treating a surface with the composition according to anyone of the preceding claims; (b) leaving the surface for soils or stains to deposit; and (c) cleaning the surface with the compositions according to any one of the preceding claims.

For the avoidance of doubt, by primary cleaning is meant that the composition itself, upon first use on a surface provides cleaning efficacy. By secondary cleaning is meant that after first applying the composition to a surface, then leaving it to dry and leaving it

4

for dirt to deposit, cleaning efficacy is obtained while applying the composition for a second or subsequent time.

These and other aspects, features and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims. For the avoidance of doubt, any feature of one aspect of the present invention may be utilised in any other aspect of the invention. The word "comprising" is intended to mean "including" but not necessarily "consisting of" or "composed of." In other words, the listed steps or options need not be exhaustive. It is noted that the examples given in the description below are intended to clarify the invention and are not intended to limit the invention to those examples per se. Similarly, all percentages are weight/weight percentages unless otherwise indicated. Except in the operating and comparative examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts of material or conditions of reaction, physical properties of materials and/or use are to be understood as modified by the word "about". Numerical ranges expressed in the format "from x to y" are understood to include x and y. When for a specific feature multiple preferred ranges are described in the format "from x to y", it is understood that all ranges combining the different endpoints are also contemplated.

20

25

30

35

5

10

15

Detailed description of the invention

Thus, the invention provides a hard surface treatment composition comprising a block or alternate copolymer having moieties A and B, wherein A= polystyrene, polyethylene, polypropylene, polyisobutylene, and B= Water soluble alkali metal salt (sodium/potassium) of the following acids: acrylic acid, C2-7 dicarboxylic acids; a water miscible glycol ether; a siloxane; a metal salt and a cationic surfactant, wherein the pH is from 2 to 6, preferably from 3 to 5.

Without wishing to be bound by a theory, it is thought that the composition leaves a deposition of a complex on the hard surface that is treated with the composition.

It is further thought that the polymer-metal complex that forms in the current composition provides a more hydrophobic layer that is better and more homogeneously deposited onto the surface than the hydrophobic layers that have been disclosed in the art. The deposition is only achieved in the pH range of the invention.

This imparts hydrophobicity to the surface and makes it water repellent. Hydrophobicity is measured by the contact angle of a water droplet on a treated surface. A contact angle above 90° is acceptable, above 100° is preferred.

5 Polymer

It is thought that a small amount of the, when deposited onto a hard surface, reduces the surface energy of the surface and provides a hydrophobic layer on said surface, thereby preventing the water spilt on a surface to spread and result in stains.

The polymer is typically a block or alternate copolymer having moieties A and B, wherein:

A = polystyrene, polyethylene, polypropylene, polyisobutylene, and
B = Water soluble alkali metal salt (sodium/ potassium) of the following acids: acrylic acid, C2-7 dicarboxylic acids;

15

20

25

35

In a preferred embodiment, the copolymer may be a styrene/maleic copolymers, selected from block or alternate copolymer having, wherein A is selected from polystyrene; and B is maleic acid, forming the preferred polymers including poly(styrene-alt-maleic acid)sodium salt, poly(styrene-co-maleic acid) sodium salt, and poly (styrene-alt-maleic anhydride). Block copolymers consist of two or more block sequences, at least one of which is not a homopolymer or uniformly random copolymer sequence. In case of random copolymers the composition changes continuously along the polymer chain and with conversion, without giving rise to a detectable block structure (JOURNAL OF APPLIED POLYMER SCIENCE VOL. 11, PP. 1581-1591 (1967))

Other preferred polymers of this type include poly(styrene-co-acrylic acid) sodium salt and polystyrene-block-poly (acrylic acid)sodium salt.

The most preferred copolymers of the present invention are poly(styrene-alt-maleic acid) and poly (styrene-alt-maleic anhydride).

The polymer is present in the composition a concentration of from 0.2 to 6% by weight of the composition, preferably at least 0.3%, more preferably at least 0.5% by weight, but typically not more than 5%, more preferably not more than 3%, still more preferably not more than 2% by weight.

The polymer composition concentrations beyond the scope of the invention deteriorate hydrophobicity.

Glycol ether

15

20

- The composition comprises a water miscible glycol ether to improve the hydrophobicity or water repellency imparted by the composition, and to also enhance the cleaning properties of the composition. It is thought that these properties are imparted to the composition due to the HLB of the glycol ether.
- 10 Water miscible glycol ethers used in the present invention are of the formula $R_1 O R_2OH$

wherein, R_1 is a substituted or unsubstituted $C_2 - C_4$ alkyl group, aryl group (preferably phenyl), or alkylaryl group; and R_2 is a substituted or unsubstituted C_2 - C_4 alkylene group.

Non-limiting examples of the water miscible glycol ethers include ethylene glycol monophenyl ether (2- phenoxyethanol), ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monobenzyl ether, propylene glycol propyl ether. The most preferred water miscible glycol ethers are ethylene glycol monophenyl ether (2- phenoxyethanol) and propylene glycol propyl ether, especially propylene glycol n-propyl ether.

When added to the composition, water miscible glycol ether may be present in the composition in a concentration of 0.003 – 5%, preferably between 0.005% - 4%, more preferably at least 0.2 %, but preferably not more than 2% by weight of the total composition. The best cleaning results are obtained at a concentration of between 0.2 and 5% by weight.

30 By water miscible, it is meant that at least 5% of the glycol ether is soluble in or miscible with water.

Metal ion

The composition further comprises a metal ion. It is thought that the metal ion of the salt aids in the deposition of a complex on the surface and imparts additional

7

hydrophobicity. This is thought to be due to the metal polymer complex formation, which deposits on the surface of the substrate. It also aids the deposition of the optional siloxane onto the surface. It is further thought that a higher positive charge on the metal ion also helps in deposition on negatively charged surfaces like glass or ceramics.

The metal ion is selected from water soluble trivalent and tetravalent metal ions; and/or bi valent transition metal ions. Any combination of two or more of the metal or transition metal ions is also included in the purview of the present invention. The metal ions include: bivalent Zn(II), trivalent Al(III), Ti(III), Fe(III), Tetravalent Ti(IV). The commercially most viable are Zn(II), Al(III) and Fe(III).

The most preferred metal ions are aluminium (Al^{3+}) and Zinc (Zn^{2+}) , of which aluminium (Al^{3+}) is the most preferred.

15

10

5

The metal ion is typically added to the composition in the form of a salt; preferred salts are halides, nitrate, sulphate and acetate for the metal ions indicated. The preferred salts are Aluminum chloride, polyaluminum chloride, aluminium nitrate, zinc nitrate, zinc chloride, zinc sulphate and zinc acetate.

20

25

The metal ion is present in the composition in a concentration of between 0.01 and 0.5% by weight. The metal ion is preferably present in a concentration of at least 0.02% or even at least 0.05% by weight of the composition, but typically not more than 0.45% or even not more than 0.4% by weight of the composition. The best hydrophobicity results are obtained at a concentration of between 0.05 and 0.25% by weight.

Cationic surfactants

The composition comprises a cationic surfactant. The most preferred cationic surfactants are quaternary ammonium cationic surfactants.

30

35

The quaternary ammonium surfactants are preferably halides of Benzalkonium, Cetyl-trimethyl-ammonium, Tetradecyl-trimethyl-ammonium, Dodecyl-trimethyl-ammonium, Stearyl-trimethyl-ammonium, Octadecyl-trimethyl-ammonium, Dodecylpyridinium, Cetylpyridinium, Tetrabutyl-ammonium, Tetraheptyl-ammonium, 1,3-Decyl-2-methyl-imidazolium, 1-Hexadecyl-3-methyl-imidazolium, Didecyl-dimethyl-ammonium, Didecyl-

dimethyl-ammonium. The most preferred cationic surfactant are Cetyl-trimethyl-ammonium halides.

From a safety perspective, chlorides and iodides are the most preferred, bromide and fluorides are equally contemplated in the context of the invention.

The cationic surfactant is present in the composition in a concentration of between 0.002 and 0.07% by weight. The cationic surfactant is preferably present in a concentration of at least 0.01% or even at least 0.02% by weight of the composition, but typically not more than 0.06% by weight of the composition. The best hydrophobicity results are obtained at a concentration of between 0.02 and 0.06% by weight

<u>Siloxane</u>

The composition according to the invention may further comprise a siloxane of the formula $-[SiHX-O]_n$, wherein X = H or CH₃ and n >=5.

When the siloxane is present in the composition a further increase in hydrophobicity or water repellency is achieved.

20

35

10

Siloxanes that are preferred in the present invention are preferably of the following classes: a) siloxanes with reactive hydrogen b) non reactive siloxanes of high molecular weight and c) non reactive siloxanes of low molecular weight.

- 25 a) Siloxanes with reactive hydrogen
 - Non-limiting examples of siloxanes with reactive hydrogen preferably include poly(methylhydrosiloxane), poly(ethylhydrosiloxane), poly(propylhydrosiloxane) or hexyldihydrosiloxane. These siloxanes preferably have a molecular mass of between 1700 and 3200 u. The most preferred siloxane in this class is
- 30 poly(methylhydrosiloxane) (PMHS)
 - b) Non reactive siloxanes of high molecular weight
 Non-limiting examples of non reactive siloxanes of high molecular weight preferably
 include polydimethyl siloxane having a molecular mass of between 800 and 14000 u.
 Above 14000 u, the kinematic viscosity becomes too high (typically more than 4000 cSt

9

(centistokes; Stokes (St) being cm²/s), while it becomes too low below 800 u, typically less than 50 cSt. The most preferred siloxane in this class is polydimethyl siloxane, preferably having an approximate molecular weight of between 6000 u and 13650 u.

5 c) Non reactive siloxanes of low molecular weight
Non-limiting examples of non reactive siloxanes of low molecular weight preferably
include low viscosity cyclomethicones, including hexamethylcyclotrisiloxanes,
octamethylcyclotetrasiloxanes or decamethylcyclopentasiloxanes. The most preferred
siloxane in this class is cyclopentasiloxane.

10

15

The most preferred siloxanes are polymethylhydrosiloxane (PMHS), polydimethylsiloxane (PDMS) and cyclopentasiloxane; and mixtures thereof.

When siloxane is present in the composition, it may be present in the composition in a concentration of between 0.1 and 10% by weight, preferably not less than 0.5% by weight, but preferably not more than 8% or even not more than 5% by weight of the total composition. The best hydrophobicity results are obtained at a concentration of between 0.5 and 5% by weight.

20 Optional ingredients

In a preferred embodiment, the composition according to the invention further comprises an acid stabile abrasive material; both natural acid stabile abrasives and synthetic materials are considered in the purview of the present invention.

25 Common cleaner and aesthetic additives such as perfumes, fluorescers and optical brighteners, antimicrobial agents (antibacterial agents such as essential oils, eugenol, cationic amino surfactants), fluoropolymers and/or fluorosurfacatnts, viscosity modifiers such as gum resins, polysaccharides, fatty alcohols, polyols (such as polyvinyl alcohol, glycerol) essential oils etc may also be included.

30

<u>Method</u>

The invention further provides for a method for cleaning a hard surface comprising the steps in sequence of: (a) treating a surface with the composition according to anyone of the preceding claims; (b) leaving the surface for soils or stains to deposit; and (c)

10

cleaning the surface with the compositions according to any one of the preceding claims.

Ideally surface is not rinsed between steps (a) and (b).

5

10

15

25

Product format

The composition may be packaged in the form of any commercially available bottle for storing the liquid or in the form of a kit comprising the concentrated liquid along with instructions for it use.

The bottle containing the liquid can be of different sizes and shapes to accommodate different volumes of the liquid; preferably between 0.25 and 2 L, more preferably between 0.25 and 1.5 L or even between 0.25 and 1 L. The bottle is preferably provided with a dispenser, which enables the consumer an easier mode of dispersion of the liquid. Spray or pump-dispensers may be used. However, a trigger spray dispenser is the most preferred.

Examples

20 The invention will now be illustrated by means of the following non-limiting examples.

Ingredients used:

- 1. Block copolymer:
 - a. Poly (styrene-alt-maleic acid) sodium salt solution 13 wt. % in H_2O (ex Sigma Aldrich, Product number 662631);
 - b. polyethylene –co-acrylic acid sodium salt (ex Sigma Aldrich).
- 2. Glycol ether solvent:
 - a. Propylene Glycol n-Propyl Ether (Dowanol PnP, Sigma Aldrich);
 - b. 2 phenoxyethanol (Sigma Aldrich)
- 30 3. Siloxane (OPTIONAL INGREDIENT)
 - a. PMHS : Poly(methylhydrosiloxane)-average M_n 1,700-3,200 (ex Sigma Aldrich)
 - b. PDMS-cyclopentasiloxane : Polydimethyl siloxane cyclopentasiloxane (ex Dow Corning, DC 245 fluid)
- c. PDMS-350 cSt : Polydimethyl siloxane polymer fluid with viscosity 350 cSt (ex Dow Corning, DC 200)

11

4. Metal salt: Polyaluminum chloride (Arya PAC ex Grasim)

5. Cationic Surfactant:

a. Cetyltrimethylammonium bromide (ex Sigma Aldrich);

6. Other surfactants:

a. Anionic: Sodium dodecyl sulphate (ex Sigma Aldrich)

b. Non-ionic: $C_{12}EO_{<7>}$ (ex BASF)

Treatment procedure:

5

10

0.25 ml of the treatment solution was spread uniformly on a 2.5 cm X 12 cm clean glass microscopic slide. The solution was left on the glass substrate for 1 minute and wiped with a tissue paper till completely dry. The dried treated slide was used for checking water repellency.

Primary cleaning of glass substrate:

Farrell (extra virgin olive oil, commercially available ex: Jindal; Batch No. L11370263) was used to stain the glass surface. 0.1 ml of olive oil was smeared uniformly on a 2.5 cm x 12 cm clean glass microscopic slide. The stained glass slide was heated in an air oven at 95°C for 48 hours. The aged glass surface was treated with treatment formulation (treatment procedure discussed above). The gloss was measured on the glass substrate using a gloss meter (Sheen Instruments Ltd UK, cat No. 4174) at a detector angle set at 60° against a black background (R=0, G=0, B=0). Higher gloss measurement value is an indication of higher cleaning. A good glossy surface typically has a gloss value of 110 or above by this measurement protocol.

25 Secondary cleaning of glass substrate:

To measure the secondary cleaning benefit imparted by the treatment formulation on the treated substrate, 0.1 ml of olive oil was smeared uniformly on a 2.5 cm X 12 cm clean glass microscopic slide. The glass surface was treated with treatment formulation (treatment procedure discussed above). The gloss was measured on the glass substrate using a gloss meter (Sheen Instruments Ltd UK, cat No. 4174) at a detector angle set at 60° against a black background (R=0, G=0, B=0). Higher gloss measurement value is an indication of higher cleaning. A good glossy surface typically has a gloss value of 110 or above by this measurement protocol.

30

<u>Test for water repellence:</u>

5

20

The contact angle of the sessile droplet was measured using a Kruss goniometer by placing a 10 microlitre of distilled water droplet on the glass slide. The angle was analyzed by the image J software using the Drop snake plug-in. Higher contact angle is an indication of higher hydrophobicity imparted by a treatment formulation on a substrate. A contact angle of 93° and above is considered hydrophobic by this measurement protocol.

The present invention gives the benefit of rendering a hard surface (like glass) to
10 provide both superior primary and secondary cleaning (as reflected by gloss values of
110 and above at 60° angle) and is also hydrophobic (water contact angle of 93° and
above) when treated with the composition mentioned in the claim.

Example 1a: Effect of ingredients:

The hydrophobicity of compositions with all individual components of the invention (Example compositions 1 and 2), is compared with compositions lacking one or more of the essential components (Comparative example compositions A-I).

The following compositions were compared. In all examples the pH is 4.

	Polymer	PMHS	Dowanol	Metal	Metal	Surfactant	type
	(%w/w)	(optional)	PnP ¹⁾	ion	ion	(%w/w)	
		(%w/w)	(%w/w)	(%w/w)			
Α	1.5	2	2	0.1	Al	0	
В	1.5	0	0	0.1	Al	0	
С	1.5	0	2	0.1	Al	0	
1	1.5	2	2	0.1	Al	0.02	СТАВ
2	1.5	0	2	0.1	Al	0.02	СТАВ
D	1.5	0	0	0.1	Al	0.02	СТАВ
E	0	0	2	0		0	
F	0	2	0	0		0	
G	1.5	0	0	0		0	
Н	0	0	0	0.1	Al	0	
Ι	0	0	0	0		0.02	СТАВ

¹⁾ Dowanol PnP is propylene glycol n-propyl ether

The results on hydrophobicity (contact angle, CA) and primary as well as secondary cleaning are given in the table below.

	Contact angle	Gloss at 60°	Gloss at 60°
	(°)	primary cleaning	secondary cleaning
Α	94	129	96
В	84	106	115
С	89	112	97
1	101	131	118
2	97	127	119
D	89	121	93
E	45	90	97
F	78	109	82
G	48	128	132
Н	37	103	119
I	32	126	100

The table above shows that good hydrophobicity (> 90° contact angle) is obtained with a formulation according to the invention. Incorporation of siloxane (PMHS) as an optional ingredient further boosts the contact angle. Removal of any of the ingredients affects hydrophobicity. Comparative example A, without the cationic surfactant, also shows good hydrophobicity, but the secondary cleaning performance is inadequate.

Example 1b: Effect of ingredients:

10

15

The hydrophobicity of compositions with all individual components of the invention in a higher concentration (Example compositions 1A and 2A), is compared with compositions lacking one or more of the essential components (Comparative example compositions AA-II).

The following compositions were compared. In all examples the pH is 4.

ſ		Polymer	PMHS	Dowanol	Metal	Metal	Surfactant	type
		(%w/w)	(optional)	PnP ¹⁾	ion	ion	(%w/w)	
			(%w/w)	(%w/w)	(%w/w)			
Ī	AA	6	8	8	0.5	Al	0	

ВВ	6	0	0	0.5	Al	0	
CC	6	8	8	0.5	Al	0	
1A	6	8	8	0.5	Al	0.10	СТАВ
2A	6	0	8	0.5	Al	0.10	СТАВ
DD	6	0	0	0.5	Al	0.10	СТАВ
EE	0	0	8	0		0	
FF	0	8	0	0		0	
GG	6	0	0	0		0	
НН	0	0	0	0.5	Al	0	
П	0	0	0	0		0.10	СТАВ

¹⁾ Dowanol PnP is propylene glycol n-propyl ether

The results on hydrophobicity (contact angle, CA) and primary as well as secondary cleaning are given in the table below.

	Contact angle	Gloss at 60°	Gloss at 60°
	(°)	primary cleaning	secondary
			cleaning
AA	100	134	96
BB	96	104	115
CC	97	116	97
1A	104	139	127
2A	98	131	129
DD	86	124	84
EE	38	92	96
FF	66	111	89
GG	54	125	136
НН	29	109	115
II	30	129	112

The table above shows that good hydrophobicity (> 90° contact angle) is obtained with a formulation according to the invention. Incorporation of siloxane (PMHS) as an

optional ingredient further boosts the contact angle. Removal of any of the ingredients affects hydrophobicity. Comparative example AA, without the cationic surfactant, also shows good hydrophobicity, but the secondary cleaning performance is inadequate.

5 <u>Example 2: Effect of different types of surfactants</u>

In this example the effect of different types of surfactants are compared. Example 3 comprises cationic surfactant, while comparative examples J and K comprise anionic surfactant and nonionic surfactant respectively.

10 All compositions had a pH of 4.

15

20

	Polymer	PMHS	dowanol	Al ³⁺ ion	surfactant	type of	CA
	(%w/w)	(%w/w)	PnP	(%w/w)	(%w/w)	surf	(°)
			(%w/w)				
J	1.5	2	2	0.1	0.02	SDS	65
K	1.5	2	2	0.1	0.02	EO	69
3	1.5	2	2	0.1	0.02	СТАВ	102

From the table above it can be concluded that hydrophobicity is provided when the formulation includes cationic surfactants, whereas anionic and non ionic surfactants do not provide adequate hydrophobicity.

Example 3: Effect of different metal ions.

In this example different metal ions are compared; Aluminium and zinc (example compositions 4, 5 and 6) according to the invention and are compared with comparative example compositions L and M, with calcium and magnesium respectively. The pH in all compositions was 4 and the surfactant was CTAB.

	Polymer	PMHS	dowanol	metal	Metal	surfactant	CA
	(%w/w)	(%w/w)	PnP	ion 1)	ion	(%w/w)	(°)
			(%w/w)	(%w/w)			
4	1.5	2	2	0.1	Al	0.02	110
5	1.5	0	2	0.1	Al	0.02	105
6	1.5	2	2	0.25	Zn	0.02	98
L	1.5	2	2	0.15	Ca	0.02	68
М	1.5	2	2	0.1	Mg	0.02	71

16

1) Weight% adjusted to equal molar concentration.

Trivalent metal ions (Al) and bivalent transition metal ion (Zn)-containing formulations provide hydrophobic effect on substrate while those containing non transitional bivalent metal ions do not provide hydrophobicity.

Example 4: Effect of surfactants concentration

5

In this example the effect of the surfactant concentration is demonstrated.

10 Examples 7-10 are within the claimed range, while examples N and O are outside. All compositions had a pH of 4, and the metal ion was Al³⁺ and the surfactant was CTAB.

	polymer	PMHS	dowanol PnP	metal ion	surfactant	CA
	(%w/w)	(%w/w)	(%w/w)	(%w/w)	(%w/w)	(°)
7	0.3	1	0.4	0.02	0.004	92
8	0.3	1	0.4	0.02	0.02	95
9	0.3	1	0.4	0.02	0.04	99
10	0.3	1	0.4	0.02	0.06	95
N	0.3	1	0.4	0.02	0.08	89
0	0.3	1	0.4	0.02	0.1	87

From the table we can conclude that examples 7-10, according to the invention perform better than the examples outside the claimed range (N and O).

Example 5: Effect of siloxanes

In this example the effect of the different siloxanes is shown.

20 Examples 7-10 are within the claimed range, while examples N and O are outside. All compositions had a pH of 4, and the metal ion was Al³⁺ and the surfactant was CTAB at a concentration of 0.02%w.

	polymer	siloxane	dowanol PnP	metal ion		CA
	(%w/w)	(%w/w)	(%w/w)	(%w/w)	Siloxane type	(°)
11	1.5	5	2	0.1	PMHS	112
12	1.5	4	2	0.1	PMHS	111

13	1.5	2	2	0.1	PMHS	109
14	1.5	1	2	0.1	PMHS	108
15	1.5	0.5	2	0.1	PMHS	105
16	1.5	5	2	0.1	Dc200-350cst	105
17	1.5	4	2	0.1	Dc200-350cst	101
18	1.5	2	2	0.1	Dc200-350cst	102
19	1.5	1	2	0.1	Dc200-350cst	101
20	1.5	0.5	2	0.1	Dc200-350cst	101
21	1.5	5	2	0.1	DC245	99
22	1.5	4	2	0.1	DC245	99
23	1.5	2	2	0.1	DC245	98
24	1.5	1	2	0.1	DC245	97
25	1.5	0.5	2	0.1	DC245	100

It can be concluded that different siloxanes from all preferred classes can further improve the contact angle when added to the formulation. Of the different siloxanes tried in the experiment, PMHS (reactive siloxanes) performs best.

Example 6: Effect of the solvent concentration.

5

10

15

Different solvents were compared. Propylene glycol n-propyl ether (dowanol PnP) and 2-phenoxy ethanol (both according to the invention) are compared with comparative solvents (ethanol and iso-propanol (IPA))

In all examples the base composition was as given in the table below. All compositions had a pH of 4, and the metal ion was Al³⁺ at a concentration of 0.1%w, the polymer was present in a concentration of 1.5%w and the surfactant was CTAB at a concentration of

0.02%w. The solvent percentage is varied.

	Solvent	Dowanol PnP	phenoxy ethanol	Ethanol	Iso-propanol
	(%w/w)	CA (°)	CA (°)	CA (°)	CA (°)
26	5	108	104	87	86
27	4	106	105	88	85
28	3	106	105	86	86
29	2	105	105	87	84
30	1	100	100	85	85

31	0.5	101	99	86	86
32	0.25	99	99	86	88
33	0.2	96	95	-	-
34	0.15	89	88	-	-
35	0.1	85	85	85	83
36	0.05	88	85	88	81
37	0	87	86	84	82

From the above table it can be concluded that from 0.2 % by weight of 2 phenoxy ethanol and propylene glycol n-propyl ether (dowanol PnP) show good hydrophobicity, whilst alcohols (ethanol and IPA) do not show that effect.

Example 7: Effect of the solvent concentration on the primary and secondary cleaning efficacy

In this example the solvent concentration was varied.

5

15

In all compositions the metal ion was Al³⁺ at a concentration of 0.1% by weight and the surfactant was CTAB at a concentration of 0.02% by weight, and the pH was 4.

	polymer (%w/w)	dowanol PnP (%w/w)	CA (°)	Gloss @ 60° primary cleaning	Gloss @ 60° secondary cleaning
PP	1.5	10	72	146	121
38A	1.5	8	93	133	122
38B	1.5	6	104	135	124
38	1.5	5	108	139	122
39	1.5	3	106	134	121
40	1.5	1	100	132	121
41	1.5	0.25	99	127	119
Р	1.5	0.15	89	122	112
Q	1.5	0.05	88	119	105
R	1.5	0	87	121	93

The primary and secondary cleaning along with high contact angle is best achieved for solvent concentration above 0.2 wt %but less than 10 wt %.

Example 8: Effect of the metal ion concentration.

In this example the metal ion concentration was varied.

All compositions had a pH of 4, and the metal ion was Al³⁺ and the surfactant was 5 CTAB at a concentration of 0.02%w.

	polymer	PMHS	dowanol PnP	metal ion	CA
	(%w/w)	(%w/w)	(%w/w)	(%w/w)	(°)
S	1.5	2	2	0.003	84
Т	1.5	2	2	0.006	89
42	1.5	2	2	0.01	95
43	1.5	2	2	0.02	103
44	1.5	2	2	0.05	105
45	1.5	2	2	0.1	108
46	1.5	2	2	0.15	109
47	1.5	2	2	0.2	108

From the above table it can be concluded that for metal ion concentration above 0.01% by weight the hydrophobicity reaches an acceptable level.

Example 9: Effect of the pH.

10

In this example the pH was varied.

In all compositions the metal ion was Al³⁺ at a concentration of 0.1% by weight and the surfactant was CTAB at a concentration of 0.02% by weight.

	polymer	PMHS	dowanol PnP	рН	CA
	(%w/w)	(%w/w)	(%w/w)		(°)
48	1.5	2	2	2	102
49	1.5	2	2	4	108
50	1.5	2	2	5	103
51	1.5	2	2	6	100
U	1.5	2	2	7	81
V	1.5	2	2	8	77

20

The table above shows that the formulation according to the invention imparts hydrophobicity onto a surface in a pH range of 2-6.

Claims

- 1 A hard surface cleaning composition comprising:
 - a 0.2-6% by weight of a block or alternate copolymer having moieties A and B, wherein
 - i A= polystyrene, polyethylene, polypropylene, polyisobutylene, and
 - ii B= Water soluble alkali metal salt (sodium/ potassium) of the following acids: acrylic acid, C2-7 dicarboxylic acids;
 - b 0.2-8% by weight of a water miscible glycol ether solvent of the formula:

R1 - O - R2OH; wherein,

R1 is a substituted or unsubstituted C2 – C4 alkyl group or a substituted or unsubstituted aryl group, preferably phenyl; and R2 is a substituted or unsubstituted C2- C4 alkylene group;

- c 0.01-0.5% by weight of a water soluble metal ion selected from:
 - i trivalent and tetravalent metal; and/or
 - ii bivalent transition metal; and
- d 0.002-0.08% by weight of a cationic surfactant; wherein the pH is from 2 to 6.
- A composition according to claim 1, further comprising 0.1-10% by weight of a siloxane of the formula –[SiHX-O]_n–, wherein X = H or CH₃; And n >=5
- A composition according to claim 2, wherein the siloxane is selected from polymethylhydrosiloxane (PMHS), polydimethylsiloxane (PDMS) or cyclopentasiloxane; and mixtures thereof.
- 4 A composition according to anyone of claims 2 or 3, wherein the siloxane is present in a concentration of 0.5 to 5% by weight of the composition.
- A composition according to any one of the preceding claims, further comprising 1-10% by weight of an acid stable abrasive.

- A composition according to any one of the preceding claims, wherein the water miscible glycol ethers is selected from ethylene glycol monophenyl ether (2-phenoxyethanol) and propylene glycol propyl ether.
- A composition according to any one of the preceding claims, wherein the metal ion is selected from aluminium (Al³⁺) and Zinc (Zn²⁺).
- A composition according to any one of the preceding claims, wherein the metal salt is present in a concentration of between 0.1 and 1% by weight of the composition.
- A composition according to any one of the preceding claims, wherein the copolymer is selected from poly(styrene-alt-maleic acid) and poly (styrene-alt-maleic anhydride).
- A composition according to any one of the preceding claims, wherein the glycol ether solvent is present in a concentration of between 0.2 and 5% by weight of the composition.
- A composition according to any one of the preceding claims, wherein the copolymer is present in a concentration of between 0.2 and 2% by weight of the composition.
- A composition according to any one of the preceding claims, wherein the cationic surfactant is present in a concentration of between 0.02 and 0.06% by weight of the composition.
- 13 A method for cleaning a hard surface comprising the steps in sequence of:
 - a Treating a surface with the composition according to anyone of the preceding claims;
 - b Leaving the surface for soils or stains to deposit; and
 - c Cleaning the surface with the compositions according to any one of the preceding claims.

International application No PCT/EP2013/068047

A. CLASSIFICATION OF SUBJECT MATTER INV. C11D3/00 C11D3/37

C11D3/04

C11D3/20

C11D1/62

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category	onation of document, with indication, where appropriate, of the relevant passages	Helevant to claim No.
Α	WO 94/26858 A1 (UNILEVER PLC [GB]; UNILEVER NV [NL]; SHARPLES MARTIN [GB]) 24 November 1994 (1994-11-24) claims	1-12
Α	WO 2010/069731 A1 (UNILEVER NV [NL]; UNILEVER PLC [GB]; UNILEVER HINDUSTAN [IN]; DAS SOMN) 24 June 2010 (2010-06-24) claims	1-12
Α	WO 98/40452 A1 (UNILEVER PLC [GB]; UNILEVER NV [NL]; DAS JULIE ROSALYN [GB]; RABONE KE) 17 September 1998 (1998-09-17) claim 1	1-12
Α	US 6 034 046 A (BLANVALET CLAUDE [BE] ET AL) 7 March 2000 (2000-03-07) claim; example 1C	1-12

•	-									

See patent family annex.

- Special categories of cited documents :
- "A" document defining the general state of the art which is not considered to be of particular relevance

X Further documents are listed in the continuation of Box C.

- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other
- document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report 19 December 2013 07/01/2014 Name and mailing address of the ISA/ Authorized officer European Patent Office, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Loiselet-Taisne, S

3

International application No
PCT/EP2013/068047

C(Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
А	US 5 191 002 A (DAVIS JOHN B [US]) 2 March 1993 (1993-03-02) claim 1; table 1	1-12
E	2 March 1993 (1993-03-02) claim 1; table 1 W0 2013/160092 A1 (UNILEVER NV [NL]; UNILEVER PLC [GB]; CONOPCO INC DBA UNILEVER [US]) 31 October 2013 (2013-10-31) examples 79-86, 100-103	1-4,6,9-13

Information on patent family members

International application No
PCT/EP2013/068047

_			-			,	013/00804/
	atent document d in search report		Publication date		Patent family member(s)		Publication date
WO	9426858	A1	24-11-1994	AU BR CZ DE EP ES HU JP KR PL SW ZA	698794 6648394 9406406 2161324 9503024 69401815 69401815 0699226 2098939 217990 181393 2750001 H08510276 100221768 311696 140195 442567 9426858 9403260	A A A A A A A A A A A A A A A A A A A	05-11-1998 12-12-1994 19-12-1995 24-11-1994 13-03-1996 03-04-1997 12-06-1997 06-03-1996 01-05-1997 28-05-2000 06-06-1998 13-05-1998 29-10-1996 15-09-1999 04-03-1996 06-03-1996 23-06-2001 24-11-1994 13-11-1995
WO	2010069731	A1	24-06-2010	AR AU CA CN EP US WO	074746 2009328377 2745594 102257112 2358854 2011232522 2010069731	A1 A1 A A1 A1	09-02-2011 24-06-2010 24-06-2010 23-11-2011 24-08-2011 29-09-2011 24-06-2010
wo	9840452	A1	17-09-1998	AU AU BR CA CN DE EP ES HU IN JP MY PL TR WO ZA	734919 6728098 9808003 2280877 1250470 69816603 69816603 0971997 2202825 0001503 22433 190010 2001514693 120141 335609 9902201 9840452 9801574	A A A D1 T2 A1 T3 A2 A A1 A A1 T2 A1	28-06-2001 29-09-1998 08-03-2000 17-09-1998 12-04-2000 28-08-2003 09-06-2004 19-01-2000 01-04-2004 28-09-2000 14-10-1999 31-05-2003 11-09-2001 30-09-2005 08-05-2000 22-05-2000 17-09-1998 25-08-1999
	6034046	A	07-03-2000	AR AU AU BR CA DE DK EP ES NZ	023158 338804 765811 3918200 0009303 2366959 60030544 1165730 1165730 2272270 513668	T B2 A A A1 T2 T3 A1 T3	04-09-2002 15-09-2006 02-10-2003 16-10-2000 18-12-2001 05-10-2000 03-05-2007 08-01-2007 02-01-2002 01-05-2007 30-01-2004

Information on patent family members

International application No
PCT/EP2013/068047

Patent document cited in search report		Publication date		Patent family member(s)	Publication date		
	•		PT US WO	1165730 E 6034046 A 0058430 A1	31-01-2007 07-03-2000 05-10-2000		
US 5191002	Α	02-03-1993	NONE				
WO 2013160092	A1	31-10-2013	NONE				