WO 02/19272 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 March 2002 (07.03.2002)

(10) International Publication Number

WO 02/19272 Al

(51) International Patent Classification”: GO06T 13/00

(21) International Application Number: PCT/US01/27173
(22) International Filing Date: 31 August 2001 (31.08.2001)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/230,054
60/296,707

1 September 2000 (01.09.2000)
7 June 2001 (07.06.2001)

Us
Us

(71) Applicant (for all designated States except US): TO-
GETHERSOFT CORPORATION [US/US]; Suite 500,
900 Main Campus Drive, Raleigh, NC 27606 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): CHARISIUS, Diet-
rich [DE/DE]; Gablenbergerweg 26, 70186 Stuttgart (DE).

74

81

(L)

COAD, Peter [US/US]; 1720 Leigh Drive, Raleigh, NC
27603 (US).

Agents: SAITO, Marina N,, et al.; Post Office Box
061080, Wacker Drive Station, Sears Tower, Chicago, IL
60606-1080 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

[Continued on next page]

(54) Title: METHODS AND SYSTEMS FOR ANIMATING A WORKFLOW AND A PROJECT PLAN

(57) Abstract: Methods and systems consistent with the present invention al-

(Begin

302

Create or Retrieve Workflow V
T

304

Display Workflow kf
306

| Create Plan from Workflow ‘L
L
1
308
Display Plan
! 310

| Activate Plan

|
‘ ‘ 312
|
|
!

plan (310).

I
‘ Manage Execution of Activated Plan ‘/

|
— 314
© Modify Display of Plan as | /

f | Each Task is Executed ‘

| w |

! 316
//\/
N Execution of ™.

-

~.Plan Complete?
.
\//
iy
4 End)
\ J

low a user to animate different versions of a plan or workflow. Each version
reflects an instance in an edit history, i.e., reflects the changes made to the plan
or workflow. Additionally, methods and systems consistent with the present
invention allow a user to view the various plans created from a given workflow
(306) over time. Finally, methods and systems consistent with the present in-
vention may be used to review the steps performed during the activation of a

WO 02/19272

A1 IRV OO O

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i)) for the fol-
lowing designations AE, AG, AL, AM, AT, AU, AZ, BA, BB,
BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,
DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ,
PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR,
TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii)) for all designations

Published:

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 02/19272 PCT/US01/27173

METHODS AND SYSTEMS FOR ANIMATING A WORKFLOW AND A PROJECT
PLAN

Cross-Reference To Related Applications
This application claims the benefit of the filing date of U.S. Provisional Application No.

60/230,054, entitled “Development Tool for Modeling Workflow,” filed on September 1, 2000,
and U.S. Provisional Application No. 60/296,707, entitled “Improved Development Tool For
Modeling Workflow,” filed on June 7, 2001, both of which are incorporated herein by reference.
The following identified U.S. patent applications are also relied upon and are
incorporated by reference in this application: -

U.S. Patent Application No. , entitled “Methods and Systems for

Integrating Process Modeling and Project Planning,” bearing attorney docket no. TS1000, and
filed on the same date herewith; ‘

U.S. Patent Application No. , entitled “Methods and Systems for

Improving a Workflow Based on Data Mined from Plans Created from the Workflow,” bearing
attorney docket no. TS1001, and filed on the same date herewith; and A
U.S. Patent Application No. , entitled “Methods and Systems for

Optimizing Resource Allocation Based on Data Mined from Plans Created from a Workflow,”

bearing attorney docket no. TS1006, and filed on the same date herewith.

Field Of The Invention

The present invention relates to a method and system for integrating a business process
or workflow with a project plan. More particularly, the invention relates to a method and system
for creating and activating a project plan, and animating the activation of the project plan. The
method and system may also track changes made to the workflow or project plan, and animate
the corresponding changes to the workflow or project plan. Additionally, the invention relates
to a method and system for creating different project plans from one workflow, and animating

the creation of the different project plans.

Backeground Of The Invention

To become more efficient and competitive, businesses and industries have striven to
capture and streamline the business processes or workflows they use to operate and manage their

respective enterprises. In general, a workflow is a model of a process. More specifically, a

-1-

’

10

15

20

25

30

WO 02/19272 PCT/US01/27173

workflow can be viewed as a structured set of activities designed to produce a specific output for
a particular customer (internal or external to an enterprise) or market. Although conventional
software tools define the steps performed by the workflow, conventional tools do not schedule
the resources (e.g., the people, equipment, or software technologies) responsible for completing
each activity. Conventional tools also do not prepare a timeline identifying the beginning or end
of each activity. Thus, conventional tools do not prepare a schedule for completing the
workflow.

Businesses and industries also use other conventional software tools, such as Microsoft
Project™, to build and manage a project plan for their respective enterprises. A plan represents
an instance of the workflow. More specifically, a plan can be viewed as a working schedule for
a project to produce a product or artifact, such as a computer, bicycle, or software build, for the
respective enterprise. These other conventional software tools typically display the working
schedule in the form of an interactive Gantt chart, i.e., a chart to which the user can make
updates. A Gantt chart is the linear, time-based representation of a project schedule, usually laid
out on a horizontal plane where the times/dates increase to the right. These Gantt charts show
the temporal relationships between the different tasks in a project, where the tasks are arranged
along the vertical axis. Gantt charts are typically used to lay out an initial plan/timeline for the
project, and then to track the actual progress of a project from start to finish. The modern
software-based Gantt chart also identifies the resource(s) responsible for completing each task of
the plan, the dependencies between the tasks, and, once the project has begun, the status of each
task.

The conventional tools that support the building and managing of a project plan,
however, do not provide direct links between projects and the workflows or business processes
that the enterprise has defined and seeks to implement to gain business advantage and
economies of efficiencies. Likewise, the conventional tools that enterprises use to define and
manage workflows are not linked to project plans. Because both workflows and project plans do
not exist on the same tool, workflows and project plans cannot be integrated or synchronized to
keep the workflows and project plans “in step” with each other. Thus, there is a need in the art

for a tool that avoids the limitations of these conventional software tools.

Summary Of The Invention
Methods and systems consistent with the present invention provide a workflow modeling

and project planning integration tool that overcomes the limitations of conventional tools.
-2-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

Contrary to conventional tools that do not allow a user to integrate a business process or
workflow with a project plan, the integration tool, in accordance with methods and systems
consistent with the present invention, allows a user to model a business process or workflow, to
create and activate or start a project plan based on the workflow, to manage the execution of the
activated plan, and to track the progress of the activated project plan. In addition, the tool may
include a Web-based “Distributed Authoring and Versioning” server that operates as a virtual
file system to allow more than one user to view the same workflow or project plan, to provide
persistent storage, to monitor the progress of an activated project plan, to simultaneously create
plans from the same workflow, and to have essentially unlimited access to the power of the tool
through the ubiquity of the Internet. “Versioning is a term well-known in the art for capturing
the state of an entity at given points in time.

Methods and systems consistent with the present invention allow a user to animate
different versions of a plan or workflow. Each version reflects an instance in an edit history, i.e.,
reflects the changes made to the plan or workflow. Additionally, methods and systems
consistent with the present invention allow a user to view the various plans created from a given
workflow over time. Methods and systems consistent with the present invention also allow a
user to review the steps performed during the activation of a plan. The user may adjust the rate
at which the animation is displayed. The animation may also be viewed in reverse order.

In accordance with methods consistent with the present invention, a method is provided
in a data processing system. The data processing system comprises versions of a plan, and each
version reflects an instance in an edit history. The method comprises the steps of storing
indications of the versions of the plan, and displaying the versions of the plan in a sequential
manner to simulate animation of the edit history.

In accordance with methods consistent with the present invention, a method is provided
in a data processing system. The data processing system comprises versions of a workflow, and
each version reflects an instance in an edit history. The method comprises the steps of storing
indications of the versions of the workflow, and displaying the versions of the workflow in a
sequential manner to simulate animation of the edit history.

In accordance with articles of manufacture consistent with the present invention, a
computer-readable medium is provided. The computer-readable medium contains instructions
for controlling a data processing system to perform a method. The method comprises the steps
of retrieving edits to a plan, and determining whether to display in a forward mode. When it is

determined to display in the forward mode, the method further comprises the steps of removing

-3-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

the edits from the plan, displaying the plan, and for each of the edits, applying the edit to the
plan, and displaying the plan. When it is determined not to display in the forward mode, the
method further comprises the steps of displaying the plan, and for each of the edits, removing
the edit from the plan, and displaying the plan.

In accordance with articles of manufacture consistent with the present invention, a
computer-readable medium is provided. The computer-readable medium contains instructions
for controlling a data processing system to perform a method. The method comprises the steps
of retrieving edits to a workflow, and determining whether to display in a forward mode. When
it is determined to display in the forward mode, the method further comprises the steps of
removing the edits from the workflow, displaying the workflow, and for each of the edits,
applying the edit to the workflow, and displaying the workflow. When it is determined not to
display in the forward mode, the method further comprises the steps of displaying the workflow,
and for each of the edits, removing the edit from the workflow, and displaying the workflow.

In accordance with articles of manufacture consistent with the present invention, a
computer-readable medium is provided. The computer-readable medium contains instructions
for controlling a data processing system to perform a method. The method comprises the steps
of retrieving a plurality of plans generated from a workflow, and displaying each of the plans in
a sequential manner to simulate the generation of the plans from the workflow.

In accordance with articles of manufacture consistent with the present invention, a
computer-readable medium is provided. The computer-readable medium contains instructions
for controlling a data processing system to perform a method. The data processing system
comprises a plan and the plan comprises a plurality of tasks. The method comprises the steps of
displaying a graphical representation of the plan, wherein the graphical representation has
portions that correspond to the tasks, retrieving edits to the plan, wherein each of the edits
modifies a state of one of the plurality of tasks, and for each of the edits, applying the edit to the
corresponding task of the plan, and displaying the portion of the graphical representation that
corresponds to the edited task in a visually distinctive manner.

Other systems, methods, features and advantages of the present invention will be or will
become apparent to one with skill in the art upon examination of the following figures and
detailed description. It is intended that all such additional systems, methods, features, and
advantages be included within this description, be within the scope of the invention, and be

protected by the accompanying claims.

10

15

20

25

30

WO 02/19272 PCT/US01/27173

Brief Description Of The Drawings
The accompanying drawings, which are incorporated in and constitute a part of this

specification, illustrate an implementation of the present invention and, together with the
description, serve to explain the advantages and principles of the invention. In the drawings:

Fig. 1 depicts a data processing system suitable for practicing methods and systems
consistent with the present invention;

Fig. 2 depicts an architectural overview of the workflow modeling and project planning
integration tool used to perform methods and systems consistent with the present invention;

Fig. 3 depicts a flow diagram illustrating the high-level process performed by the tool of
Fig. 2 in accordance with methods and systems consistent with the present invention;

Fig. 4 depicts an exemplary document workflow modeled by an enterprise affiliate using
the tool of Fig. 2;

Fig. 5 depicts an exemplary task workflow modeled by an enterprise affiliate using the
tool of Fig 2;

Fig. 6 depicts another exemplary workflow modeled by an enterprise affiliate using the
tool of Fig 2;

Fig. 7 depicts a timeline of the task created from the workflow of Fig. 4;

Fig. 8 depicts a timeline of the task created from the workflow of Fig. 5;

Fig. 9 depicts a timeline of the task created from the workflow of Fig. 6;

Figs. 10-12 depict the execution of the plan depicted in Fig. 7;

Figs. 13-16 depict the execution of the plan depicted in Fig. 8;

Figs. 17-21 depict the execution of the plan depicted in Fig. 9 following the default path;

Figs. 22-27 depict the execution of the plan depicted in Fig. 9 following the non-default
path;

Figs. 28A-C depict a flow diagram illustrating the creation or retrieval of a workflow by
the tool of Fig. 2;

Fig. 29 depicts an exemplary user interface of the tool of Fig. 2 used to begin creating or
retrieving a workflow;

Fig. 30 depicts an exemplary user interface of the tool of Fig. 2 used to enter the name of
a new workflow group;

Fig. 31 depicts an exemplary user interface of the tool of Fig. 2 used to begin creating a

new workflow;

10

15

20

25

30

WO 02/19272 PCT/US01/27173

Fig. 32 depicts an exemplary user interface of the tool of Fig. 2 used to enter the name of
a new workflow;

Fig. 33A-C depict an exemplary workflow definition file produced by the tool of Fig. 2
for the workflow depicted in Fig. 6;

Fig. 34 depicts an exemplary user interface of the tool of Fig. 2 used to manage a
workflow;

Fig. 35 depicts an exemplary user interface of the tool of Fig. 2 used to add a new role to
a workflow;

Fig. 36 depicts an exemplary user interface of the tool of Fig. 2 used to select an artifact
type;

Fig. 37 depicts an exemplary user interface of the tool of Fig. 2 used to enter condition
properties for a document-oriented artifact;

Fig. 38 depicts an exemplary user interface of the tool of Fig. 2 used to enter condition
properties for a script-oriented artifact;

Fig. 39 depicts an exemplary user interface of a script editor for the tool of Fig. 2;

Fig. 40 depicts an exemplary user interface of the tool of Fig. 2 used to modify the
propetties of a workflow activity;

Figs. 41A and B depict a flow diagram illustrating the creation of a plan from a
workflow;

Fig. 42 depicts an exemplary user interface of the tool of Fig. 2 used to create a new plan
group;

Fig. 43 depicts an exemplary user interface of the tool of Fig. 2 displaying the available
plan groups;

Fig. 44 depicts an exemplary user interface of the tool of Fig. 2 used to enter a plan
name; :

Fig. 45 depicts an exemplary user interface of the tool of Fig. 2 used to enter the working
schedule;

Fig. 46 depicts an exemplary user interface of the tool of Fig. 2 used to enter the
scheduled start and end times for the plan;

Fig. 47 depicts an exemplary workflow definition file produced by the tool of Fig. 2 for
the workflow of Fig. 5 is created;

Fig. 48 depicts an exemplary plan definition file created from the workflow definition
file of Fig. 47,

-6-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

Fig. 49 depicts an exemplary user interface of the tool of Fig. 2 used to assign users to a
plan;

Fig. 50 depicts an exemplary user interface of the tool of Fig. 2 used to edit the
properties of a plan;

Fig. 51 depicts a timeline of the task created from the workflow of Fig. 5;

Fig. 52 depicts an exemplary timeline of the tool of Fig. 2 used to activate a plan;

Fig. 53 depicts a flow diagram illustrating the addition of a resource by the tool of Fig. 2;

Fig. 54 depicts an exemplary user interface of the tool of Fig. 2 used to add a resource;

Fig. 55 depicts an exemplary user interface of the tool of Fig. 2 used to receive LDAP
access information; '

Fig. 56 depicts an exemplary resource file created by the tool of Fig. 2;

Fig. 57 depicts a flow diagram illustrating the management of an activated plan;

Fig. 58 depicts a timeline of the task created from the workflow of Fig. 5;

Fig. 59 depicts an exemplary plan definition file created from the workflow of Fig. 5;

Figs. 60, 62, 64 and 66 depict the actual timeline showing the execution of the plan
depicted in Fig. 58;

Figs. 61, 63, and 65 depict the properties of the executing tasks of Figs. 62, 64, and 66;

Fig. 67 depicts a flow diagram illustrating the modifications to the plan definition and
task definition during the activation of a plan;

Figs. 68, 70, 72, 75, and 77 depict the activation of the first task of an exemplary plan
created using the tool of Fig. 2;

Figs. 69, 71, 73, 74, 76, and 78 depict the task definition file for the first task of Figs. 68,
70, and 72;

Fig. 79 depicts a flow diagram illustrating the steps performed by the tool depicted in
Fig. 2 to edit a plan;

Figs 80A and B depict a flow diagram illustrating the steps performed by the tool
depicted in Fig. 2 to sequentially displaying the versions of the plan definition file;

Fig. 81 depicts a flow diagram illustrating the steps performed by the tool depicted in
Fig. 2 to edit a workflow;

Fig. 82 depicts an exemplary workflow created using the tool of Fig. 2;

Figs. 83-87 depict activity definition files corresponding to the activities depicted in Fig.
82;

Fig. 88 depicts the workflow of Fig. 82 with a revision;

-7-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

Figs. 89 and 90 depict activity definition files corresponding to the modified activities
for the workflow depicted in Fig. 88;

Fig. 91 depicts a flow diagram illustrating the steps performed by the tool depicted in
Fig. 2 to create different plans from one workflow; and

Figs. 92A and B depict a flow diagram illustrating the steps performed by the tool
depicted in Fig. 2 to sequentially display the versions of the plan definition file.

Detailed Description Of The Invention
Methods and systems consistent with the present invention provide an integrated

workflow modeling and project planning integration tool that improves the efficiency and
reduces the operating cost of an enterprise or business conglomerate. Contrary to conventional
tools that do not allow a user to integrate a workflow and a project plan, the integration tool
allows a user to model a business process or workflow, to create and activate a project plan
based on the workflow, and to track the progress of the activated project plan. The tool also
allows the workflow to be reused to create more than one project plan based on the workflow.
The tool simultaneously manages the execution of the plans. Moreover, the integration tool may
include a virtual file system server, such as a Web-based “Distributed Authoring and
Versioning” (WebDAYV) server that operates as a virtual file system for computers on a network.
With the WebDAV server, more than one user on different computer systems may view the
same workflow or project plan, monitor the progress of an activated project plan, or

simultaneously create and activate different plans from the same workflow.

System Overview

While methods and systems consistent with the present invention may apply to any
enterprise in any industry, they will be further described below with reference to the software
industry to provide clarity, consistency, and to demonstrate the invention as applied to one of the
more difficult process industries. More particularly, methods and systems consistent with the
present invention will be described with reference to a software development business process
that is applicable to the software industry.

Fig. 1 depicts a data processing system 100 suitable for practicing methods and systems
consistent with the present invention. Data processing system 100 includes a group of
computers 102a, 104, and 106 that are connected via a network 108. Network 108 may be any

known physical or wireless network capable of supporting a data transmission between two
-8-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

computer systems, such as a Local Area Network (LAN), a Wide Area Network (WAN), the
Internet, or leased phone lines.

As further explained herein, computer 102a may actually be one of multiple computers
(i.e., computers 102a and 102n) used by affiliates of an enterprise or business conglomerate to
communicate with one another via network 108. The enterprise affiliates may be employees,
managers, administrators, suppliers, customers, other computer applications, other computer
systems, or other users within the enterprise who may need to create, view, or receive
information regarding an activated project plan in accordance with methods and systems
consistent with the present invention.

Each computer 102a, 104, and 106 includes a memory (110, 112, and 114, respectively),
a secondary storage device (116, 118, and 120, respectively), an I/O device (122, 124, and 126,
respectively), and a processor (128, 130, and 132, respectively). Memory 110 in computer 102a
includes a Client Interface 134 to a Web-based ‘Distributed Authoring and Versioning”
(WebDAYV) server 140 in memory 112. Client Interface 134 has Process and Plan modules 136
that collectively allow an enterprise affiliate to create a reusable workflow and to create and
activate a project plan based on the reusable workflow.

Memory 110 in computer 102a also includes a target processor interpreter, such as a
Java™ Virtual Machine 138. To permit the Client Interface 134 to run on most any computer,
the Client Interface 134 may be developed using the Java™ Programming Language. Thus,
Client Interface 134 may include Java™ bytecodes. The Java™ Virtual Machine 138 interprets
the Java™ bytecodes of the Client Interface 134 so that the Client Interface 134 may execute on
computer 102a.

The WebDAYV server 140 in memory 112 of computer 104 operates as a virtual file
system for computers 102a, 102n, and 106 on the network 108. To operate as a virtual file
system, WebDAYV Server 140 communicates on the network 108 using the WebDAV protocol,
and stores files on WebDAYV storage 142. In one implementation, WebDAV storage 142 may
be a known database, such as Oracle, DB2, MS Structured Query Language (SQL) storage, or
any Java Database Connectivity (JDBC)-compliant database. In this implementation, WebDAV
Server 140 includes a database management system (DBMS) or a JDBC interface to control
access to the WebDAYV storage 142.

In accordance with methods and systems consistent with the present invention, two
separate enterprise affiliates using their respective Client Interfaces 134 on their respective

computers 102a and 102n may independently request and view the same workflow or plan

-9-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

stored on WebDAV Storage 142. In addition, the Client Interface 134 allows any enterprise
affiliate to create, delete, move, and copy workflows, project plans, and associated
roles/resource lists on WebDAYV server 140. Furthermore, properties of a process, a plan, or a
task of a plan may be added, located, or changed on WebDAV Storage 142 by Client Interface
134 ysing known methods of the WebDAYV protocol.

The WebDAV protocol is a set of known extensions to the standard HyperText Transfer
protocol (HTTP) that allows enterprise affiliates using client computers 102a and 102n to
collaboratively store, edit, and manage files remotely on a Web Server, such as WebDAV Server
140 using network 108. As known to one skilled in the art, HTTP defines how messages sent to
or from a Web server on the Internet are formatted and transmitted. HTTP also defines what
actions a Web server or Web browser of a computer on the Internet should take in response to
various commands submitted as part of an HTTP message.

The WebDAYV protocol defines a WebDAV resource to be a collection (e.g., a directory
or folder on WebDAV Storage 142) or a collection member (e.g., a file or Web page on
WebDAV Storage 142). Each WebDAYV resource has a content file and properties associated
with the content file. The properties include the creation date, the author, and the access rights
for the WebDAYV resource. The WebDAV protocol specifies the methods to create, delete,
move, and copy a WebDAV resource. It also specifies the methods to add, find, or change a
property of a WebDAV resource. The WebDAV protocol and the HTTP extensions that
comprise the WebDAV protocol are more clearly described in the following reference, which is
incorporated herein by reference: HTTP Extensions For Distributed Authoring -- WebDAYV,
RFC 2518, Standards Track, Proposed Standard, February 1999, available at
http://andrew2.andrew.cmu.edu/rfc/rfc2518.html.

Memory 114 in computer 106 includes a Tool Server 144. The Tool Server 144 includes
a WebDAV proxy 146 and Management Modules 148. WebDAV proxy 146 mediates
communication between the Client Interface 134 and the WebDAV server 140. The messages
or requests directed to the WebDAYV server 140 from the Client Interface 134 are initially sent to
the WebDAV proxy 146, as discussed in detail below. The WebDAYV proxy 146 passes these
messages and requests to the Management Modules 148. Each of the Management Modules 148
is configured to inform the WebDAV proxy 146 when a message or request has been serviced.
If none of the Management Modules 148 services the message or request, then the WebDAV
proxy 146 sends the message or request to the WebDAV Server 140 via the network 108. If, on

the other hand, the Management Modules 148 are able to service the message or request, the

-10-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

message or request is not sent to the WebDAV Server 140. The types of messages or requests
serviced by the Management Modules 148 include activating a project plan, notifying various
enterprise affiliates assigned to each task of the plan, and managing the execution of the plan to
the enterprise affiliates.

In another implementation, memory 114 in computer 106 includes 2 WebDAV servlet
(not shown), which is an application designed to perform as a WebDAV Engine in lieu of
WebDAV Server 140. The WebDAV servlet may be started by and executed within the Tool
Server 144. In this implementation, WebDAV servlet is persistent. Thus, once WebDAV
servlet is started, it stays in memory and can fulfill multiple requests. WebDAV servlet is
configured to control access to WebDAV Storage 142, which may be included in secondary
storage 120 in computer 106.

Memory 114 in computer 106 also includes a target processor interpreter, such as a
Java™ Virtual Machine 150. As with the Client Interface 134 on computer 102a, the Tool
Server 144 includes Java™ bytecodes that the Java Virtual Machine 150 interprets so that the
Tool Server 144 may execute on computer 106.

In another implementation, the data processing system 100 may operate in a local host
configuration rather than across the network 108. In this implementation, the memory 110 of
computer 102a may include the Tool Server 144 and the WebDAYV Server 140. In addition, the
secondary storage device 116 may include the WebDAV Storage 142.

Although aspects of the present invention are described as being stored in memory, one
skilled in the art will appreciate that these aspects can also be stored on or read from other types
of computer-readable media, such as secondary storage devices, like hard disks, floppy disks, or
CD-ROM,; a carrier wave from a network, such as Internet; or other forms of RAM or ROM.

Fig. 2 depicts a functional architectural overview of the workflow modeling and project
planning integration tool 200 used to integrate workflow modeling and project planning. As
shown in Fig. 2, the tool 200 includes the Client Interface 134 as well as the Tool Server 144.
Although part of the same tool 200, the Client Interface 134 and the Tool Server 144 may be
located on different computer systems, as discussed above.

The Client Interface 134 includes a Virtual File System (“VFS”) Interface 202 that is
configured to allow the Client Interface 134 to connect to the secondary storage device 116 for
local file access or to connect to the WebDAV Storage 142 via the WebDAV proxy 146 for
virtual file access. To allow the WebDAV proxy 146 to mediate communication between the
Client Interface 134 and the WebDAYV Storage 142, the VFS Interface 202 is configured to send

-11-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

the virtual file access requests from the Client Interface 134 to a Uniform Resource Locator
(URL) or network address for the WebDAV proxy 146. For example, the URL for the

- WebDAYV proxy 146 may be “http://www.ToolServer.com/WebDAVproxy.” A URL typically

consists of an access protocol (e.g., Atfp), a domain name (e.g., www.ToolServer.com), and,
optionally, the path to a file or resource residing on that server (e.g., WebDAVproxy). If the Tool
Server 144, where the WebDAYV proxy 146 is located, has an IP address of 192.168.5.1 and an
assigned port address of 8088, then the URL for the WebDAV proxy translates to
“http://192.168.5.1:8088/WebDAVproxy.”

As discussed above, the VFS Interface 202 initially sends the requests that the Client
Interface 134 directs to the WebDAV Storage 142 to the WebDAV proxy 146. The WebDAV
proxy 146 sends these requests to the Management Modules 148. After the Management
Modules 148 review these requests, the WebDAV proxy 146 sends the request to the WebDAV
server 140 if the Management Modules 148 do not respond to the requests from the Client
Interface 134. If the request is to be sent to the WebDAV server 140, the Tool Server 144
directs the request to a URL or network address for the WebDAYV server 140.

The Client Interface 134 also includes a module loader 204 to load the Process and Plan
modules 136. As one skilled in the art will appreciate, Client Interface 134 may be developed so
that the functionality provided by Process and Plan modules 136 is not loaded by a known
module loader 204, but integrally incorporated within the element corresponding to the Client
Interface 134. The Process and Plan modules 136 produce the requests to store or modify the
various client files on the WebDAV storage 142. As further described below, the various types
of client files include a condition model, a user profile, a resource profile, a workflow definition
file, and a plan definition file. Each of these files has properties defined in accordance with the
WebDAV protocol. The various types of client files follow a schema or document type
definition that is known to the Tool Server 144 so that the Tool Server 144 can identify the type
of client file sent by the Client Interface 134 and intercepted by the WebDAV Proxy 146. In
addition, each type of client file has a unique identifier, such as a URL network address, which
the Tool Server 144 may use to locate the associated client file for processing. The various
types of client files are discussed in context with the general description of the Process and Plan
modules 136 and also further discussed with the implementation details of creating a workflow
and a project plan from the workflow. Although XML files are used to represent the client files
used with methods and systems consistent with the present invention, one skilled in the art will

recognize that any file type can be used to represent the client files.

-12-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

The Process and Plan Modules 136 include a Resource Manager Module 206, an
Activity /O Condition Designer Module 208, a Process Designer Module 210, a Project Plan
Manager Module 212, and a Task Tracker Module 214. The Resource Manager Module 206
allows an enterprise affiliate with system administrative privileges or permissions, such as a
project manager, to create, modify, and store a user profile for an enterprise affiliate. The user
profile identifies the access control rights that are associated with the enterprise affiliate, such as
whether the enterprise affiliate may create or edit or delete a project plan based on a workflow or
whether the enterprise affiliate is limited to viewing an existing workflow or plan. When the
Client Interface 134 sends a request to the WebDAV Server 140 to store the user profile, the
Client Interface 134 may specify that the user profile be stored with a unique identifier so that
the Tool Server 144 may later locate the user profile for further processing. For example, the
Client Interface 134 may request that the unique identifier be a location or URL where the user
profile is to be stored on the WebDAV Storage 142. If the unique identifier is stored as a
property of the user profile on the WebDAV storage 142, the Client Interface 134 sends a
request to the WebDAYV Server 140 to set the value of the property.

The Resource Manager Module 206 also allows an enterprise affiliate to create, modify,
and store the role profiles that may be assigned to an activity of a workflow that is modeled
using the tool 200. The role profile identifies a group of resources that may be assigned to
complete a task created from the activity. The role profile is a type of client file that the Client
Interface 134 may store on WebDAV storage 142 with a unique identifier (e.g., @ URL for the
role profile) to locate the role profile at a later time. A role profile may include a Rolename that
represents a “capability” or “skill set” for the role. For example, using methods and systems
consistent with the present invention, an enterprise affiliate may identify one of the following
Rolenames to the Resource Manager Module 206 so that the associated role profiles are later
available to assign when defining a software development process: Manager, Analyst, Software
Architect, Software Developer, Tester, Hardware Architect, and Editor.

In addition to the above, the Resource Manager Module 206 further allows an enterprise
affiliate to create, modify, and store the resource profiles (e.g., the person, equipment, or
systems, such as a development facility) that may be assigned to a task of a plan created from a
workflow. The resource profile includes a resource ID and a unique identifier for the role
profile so that the Client Interface 134 may communicate to the Tool Server 144 that the
identified resource has skills or capabilities corresponding to the role profile. For example,

when the resource is a person, the Tool Server 144 may recognize that the person can play a

-13-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

given role (e.g., Analyst) in a specific activity (e.g., Requirements Analyéis) in a workflow (e.g.,
Software Development Process) based on the skills or capabilities required by the role assigned
to the activity to be performed.

The Activity I/O Condition Designer Module 208 allows an enterprise affiliate, such as a
manager, to define a condition model, i.e., an input condition or an output condition, for an
activity of a workflow. The Activity I/O Condition Designer Module 208 stores the condition
model with a unique identifier so that the Tool Server 144 may later locate the condition model
for processing, such as when a task of a plan is created from the activity of the workflow, as
explained below.

As discussed above, there are two types of workflows: a document workflow and a task
workflow. Similarly, there are two types of conditions: a document-type condition and a logic-
type condition. The Activity I/O Condition Designer Module 208 allows the enterprise affiliate
to create a condition model based on one of these two condition types. The Activity I/O
Condition Designer Module 208 also allows the enterprise affiliate to assign a document-type
condition model or a logic-type condition model to an activity when creating the activity in a
workflow. Each document-type and logic-type condition model has properties defined by the
enterprise affiliate that created the respective condition model using the Activity /O Condition
Designer Module 208.

The properties of the document-type condition model include a location property (e.g., a
URL) identifying the location of the document or artifact being monitored. Thus, when
executing a task based on an activity, the Client Interface 134 uses the location property to
notify the resource responsible for the task where to find the document or artifact so that the
resource may complete its task.

Another property of the document-type condition model is a state property that indicates
the allowable states of the document or artifact. For example, the document may have the states
“DRAFT” and “APPROVED.” When creating the workflow, the enterprise affiliate assigns one
of these allowable states as a condition for entry into or exit from the activity (or the task created
from the activity). When the task is activated, the Workflow Engine 222 evaluates whether the
state property of the document condition satisfies the input or output condition of the activated
task before starting or closing the task.

When creating a logic-type condition model, Activity I/O Condition Designer Module
208 allows the enterprise affiliate to define the properties shown in Table 1.

-14 -

WO 02/19272
TABLE 1
Property Description

Name The name used to identify the condition.

Description | A description of the condition.

When to This section identifies when and/or how

Check often the condition should be checked.

e Abs. Time | The condition is checked when this
absolute time (calendar time) arrives.

¢ Period Integer expression in Javascript that
defines the periodicity of condition check,
where a “1” means once a minute. (If
absolute time is also specified, then the
condition should be checked when the
absolute time arrives and periodically
thereafter.)

¢ URL The condition is checked after URL

Change undergoes a property or content change.

o Task The condition is checked when the task

Change that is specified during plan creation
changes its state (e.g., starts, finishes).

e Any The condition is checked when any HTTP

Request request is detected.

Script The script to run when the condition is
met. The script must return “true” or
“false” (a Boolean). Script is an
extensible method for users to enter in ad
hoc logic.

PCT/US01/27173

When a plan is created from a workflow, the Client Interface 134 uses the logic-type
condition model to generate a logic-type condition for entry/exit and the script (e.g., logic
element) to be performed to determine if the condition is met. For example, the enterprise
affiliate may indicate to the Activity I/O Condition Designer Module 208 that the condition is to
check if the task is complete and that the logic to be performed is to check the status property of
the task. In this case, the user or resource assigned to this task must notify the Client Interface
134 that the task is complete. In another example, the enterprise affiliate may indicate to the

Activity /O Condition Designer Module 208 that the condition is to check if the task is

-15 -

10

15

20

25

30

WO 02/19272 PCT/US01/27173

complete and that the logic to be performed is to check for the existence of a file in a specific
directory folder on WebDAYV Storage 142 in order to determine if the task is complete. In this
case, the user or resource assigned to this task must create or move a file into the specific
directory folder to indicate that the task is complete.

The Process Designer Module 210 allows an enterprise affiliate to create, modify, and
store a workflow. When the enterprise affiliate indicates to Process Designer Module 210 that
the modeled process is to be saved, Process Designer Module 210 produces a workflow
definition file based on the modeled workflow object. Client Interface 134 then sends as the
workflow definition file as a client file to WebDAV Server 140 to be stored on WebDAV
Storage 142. Each workflow definition file produced by Process Designer Module 210 includes
a unique identifier (e.g., a URL for the workflow definition file) so that Tool Server 144 may
later locate the workflow definition file corresponding to the modeled workflow for further
processing.

Project Plan Manager Module 212 allows an enterprise affiliate to create and activate a
project plan from a workflow definition file. In general, upon request to create a project plan,
Project Plan Manager Module 212 sends a query message to the WebDAV Server 140 for the
workflow definition files contained in WebDAV Storage 142. As further described below,
Project Plan Manager Module 212 receives the workflow definition files, allows the enterprise
affiliate to select one of the workflow definition files to create a project plan, and then produces
a plan definition file based on the selected workflow definition file. When instructed to save the
plan by the enterprise affiliate, Project Plan Manager Module 212 sends the plan definition file
as a client file to WebDAV Server 140 to be stored on WebDAV Storage 142. Each plan
definition file produced by Process Designer Module 210 includes a unique identifier (e.g., a
URL for the plan definition file) so that Tool Server 144 may later locate the workflow
definition file corresponding to the modeled workflow for further processing.

The Task Tracker Module 214 allows an enterprise affiliate to view the tasks of an
activated project plan that are assigned to a specific resource, to activate or start a task of the
project plan (e.g., indicate actual start time to Client Interface 134), to open or check-out a
document artifact needed to accomplish the task, to close or check-in the document artifact after
accomplishing the task, and to indicate that the task is completed.

The Tool Server 144 includes a module loader 216 to load the Management Modules
148. Similar to the Client Interface 134, the Tool Server 144 may be developed so that the
functionality provided by Management Modules 148 is not loaded by a known module loader

-16 -

10

15

20

25

30

WO 02/19272 PCT/US01/27173

216, but integrally incorporated within the element corresponding to the Tool Server 144.
Management Modules 148 include a User Authorization Module 218, a Resource/Role
Management Module 220, and a Workflow Engine 222. The Workflow Engine 222 includes a
Project Plan Management Module 224 and a Project Task Management Module 226.

When the Client Interface 134 requests access to a client file on the WebDAV Storage
142, the User Authorization Module 218 verifies that that the enterprise affiliate making the
request has a user profile on the WebDAV Storage 142 with the proper authorization or
permission to access the requested client file. The User Authorization Module 218 may be
connected to a Light Directory Access Protocol (LDAP) Import Module 228, which follows a
known LDAP protocol to allow the User Authorization Module 218 to obtain existing user
profiles from another computer on network 108. As known to those skilled in the art, an LDAP
protocol is based on “entries,” where an entry is a collection of attributes that have a
“distinguished name” (DN). According to the LDAP protocol, directory entries are arranged in
a hierarchical tree-like structure that reflects political, geographic, and/or organizational
boundaries. For example, entries representing countries may appear at the top of the tree. The
entries below the countries may represent states or national organizations. Below the states or
national organizations may be entries representing people (e.g., user profiles), organizational
units, printers, documents, or any other accessible entity. Each level in the hierarchical tree-like
structure for the directory entries may be identified by a known standardized keyword, such as
“CN” for the common name of the entry (e.g., user profile), “L” for locality name, “ST” for state
or province name, “O” for organization name, “OU” for organizational unit name, and “C” for
country name. The LDAP Import Module 228 uses a DN to refer to the entry unambiguously
via a concatenation of the hierarchical tree-like structure. After user profiles are retrieved by the
User Authorization Module 218 via the LDAP import module 228, the user profiles may then be
stored on the WebDAYV Storage 142 by a request from the Client Interface 134.

The Resource/Role Management Module 220 reviews requests from an enterprise
affiliate to assign a resource to a plan (e.g., to assign a user to a task of the plan). The
Resource/Role Management Module 220 may check the resource profile corresponding to the
assigned resource on the WebDAYV Storage 142 to verify that the resource is not overloaded.
For example, the Resource/Role Management Module 220 determines whether a resource is
already assigned to another task in another plan during the same time frame, thus preventing it
from being able to complete one of the tasks to which it is assigned. The Resource/Role
Management Module 220 may also be connected to the LDAP Import Module 228 to allow the

-17-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

Resource/Role Management Module 220 to obtain existing resource profiles from another
computer on network 108. The resource profiles may also be stored on WebDAV Storage 142
by a request from Client Interface 134.

The Workflow Engine 222 reviews requests to activate, deactivate, or update a plan. For
example, a request to update a plan occurs if the enterprise affiliate who is an owner of a task
indicates in its request that the task is complete. The Workflow Engine 222 also manages the

execution of the activated plans.

High-Level Process
Fig. 3 depicts a flow diagram illustrating the high-level process performed by the

workflow modeling and project planning integration tool in accordance with methods and
systems consistent with the present invention. Initially, the tool creates or retrieves a workflow
(step 302). The tool then displays the workflow (step 304). The workflow comprises a set of
activities that represents the steps to be performed as part of a plan executed from the workflow.
Each activity has an activity description and at least one role responsible for the activity. The
activity description indicates what step is to be performed by the role.

There are two types of workflows: a document workflow and a task workflow. In a
document workflow, the state of one document (or, more generally, any item or artifact) is
monitored by the activities of the workflow. Thus, a document workflow cannot usually have
parallel activities, which would require the parallel activities to monitor the states of more than
one artifact or would require the parallel activities to monitor different states of the same artifact
simultaneously. The document is in one state at a time. Fig. 4 depicts an exemplary document
workflow 400. As shown, the workflow 400 includes a start element 402, an end element 404,
and two activities, “Step 1” 406 and “Step 2” 408. Because “Step 1” 406 occurs directly before
“Step 2” 408‘, “Step 1”7 406 is the “predecessor activity” to “Step 2” 408. Similarly, “Step 2”
408 is the “successor activity” to “Step 1” 406. The workflow 400 is used to monitor the state
of Artifact 410. In particular, in “Step 1” 406, the state of Artifact 410 is “State 1” 412, in “Step
2” 408, the state of Artifact 410 is “State 2” 414, and at the end 404 of the workflow, the state of
Artifact 410 is “Complete” 416.

A task workflow, on the other hand, typically has no limitations regarding the number of
artifacts that may be monitored or modified by each activity of the workflow to achieve or
contribute to the business process goal, such as an auditing process that determines if multiple
accounts are balanced properly. Fig. 5 depicts an exemplary task workflow 500. The task

-18-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

workflow 500 includes a start element 502, an end element 504, two serial actiyjties 506 and
508 and two parallel activities 510 and 512. The workflow also includes two synch bars 514
and 516, which are used to connect the ends of paralle] activities. Contrary to the document
workflow, the task workflow allows for parallel activities.

Another exemplary workflow 600 is depicted in Fig. 6. The workflow 600 includes a
start element 602 and an end element 604. The first activity of the workflow 600 is “Get Parts”
606, which is followed by a logic activity, “L. or Rt Handed?” 608. Logic activities have two
successor activities: a “default aétivity” and a “non-default activity.” As the name implies, the
workflow generally follows the path of the default activity unless a condition is met in the logic
activity, as discussed in detail below. In Fig. 6, the default activity is “Right” 610. The non- |
default activity is “Left” 612, which is followed by another activity “Left Special” 614. The
default path is represented as a solid connector 616 while the non-default path is represented as a
dotted connector 618. One skilled in the art, however, will recognize that any visible difference
in the connectors, e.g., a change in type, color, shading, labeling, etc., may be used to represent
both the default path as well as the non-default path. Both the default activity 610 and the non-
default activities 612 and 614 are followed by another activity, “Complete Assembly” 620. In
addition, though we show only two paths (616 & 618) out of the decision block 608, there could
be any number of exit paths (not shown).

Returning to Fig. 3, the next step performed by the tool is to create a plan from the
workflow (step 306). Each activity in the default path of the workflow generally corresponds to
a task in the plan. The task identifies the scheduled start and stop times for the task. The tool
then displays the plan (step 308). For example, the plan created from the workflow 400 depicted
in Fig. 4 is shown in Fig. 7. The plan 700 includes two tasks 702 and 704 that correspond to the
two activities 406 and 408 from the workflow 400. The first task 702 is scheduled to begin at 9
a.m. 706 on August 1, 2001 (not shown), and end at 6 p.m. 708 on the same day. The second
task 704 is scheduled to begin at 9 a.m. 710 on August 2, 2001 (712) and end at 5 p.m. 714 on
the same day.

The plan 800 created from the workflow 500 depicted in Fig. 5 is shown in Fig. 8. The
plan 800 includes two serial tasks 802 and 804 that correspond to the two serial activities 506
and 508 from the workflow 500. The plan 800 also includes two parallel tasks 806 and 808 that
correspond to the two parallel activities 510 and 512 from the workflow 500. As shown in Fig.
8, “Serial 1” task 802 is scheduled to begin at 9 a.m. 810 on August 1, 2001 (812) and end at
5:30 p.m. 814 on the same day. The parallel tasks 806 and 808 are scheduled to start at the

-19-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

completion of the “Serial 1” task 802, and are scheduled to end at 6 p.m. 816 on August 2, 2001
(818). The “Serial 2” task 804 is scheduled to begin upon completion of the parallel tasks 806
and 808 and is scheduled to end at 6 p.m. 820 on August 3, 2001 (822).

The plan 900 created from the workflow 600 depicted in Fig. 6 is shown in Fig. 9. The
plan 900 includes a task 902 corresponding to the activity “Get Parts” 606, followed by a task
904 corresponding to the activity “L or Rt Handed?” 608. The following task 906 corresponds
to the activity “Right” 610. The final task 908 corresponds to the activity “Complete Assembly”
620. The plan 900 depicts the default path, and does not include any of the tasks corresponding
to the non-default path. Although the start and end times are not depicted in the plan 900 shown
in Fig. 9, each task has a scheduled start and stop time. In addition, the tool 200 requires that an
enterprise affiliate assign a resource to each task, as described below.

Returning to the high-level process of Fig. 3, the tool then activates the plan (step 310).
Next, the tool manages the execution of the activated plan (step 312). The tool also modifies the
display of the plan as each task is executed (step 314). The tool then determines whether the
execution of the plan is complete (step 316). If the execution of the plan is complete, processing
ends. Otherwise, processing continues to step 312.

For the exemplary plan 700 depicted in Fig. 7, upon activation, the first task 702 begins
execution. The tool depicts the executing task 1002 by darkening the outer borders of the block
representing the task 1002, as depicted in the plan 1000 shown in Fig. 10. After completion of
the task, the tool depicts the executed task 1102 as a darkened block in the plan 1100, as shown
in Fig. 11. At this point, the second task 1104 begins execution, as indicated by the darkened
outer borders of the task 1104. Finally, after both tasks 1102 and 1104 of the plan 1100 have
been executed, both tasks 1202 and 1204 are depicted as darkened blocks in the plan 1200, as
shown in Fig. 12. In this embodiment, the tool represents an executing task with darkened
!)orders and represents an executed task as a darkened block. One skilled in the art, however,
will recognize that any visible change in the blocks representing the tasks, e.g., a change in
shape, color, shading, labeling, etc., may be used to represent the tasks in their various states.
For example, in another implementation, color may be used to indicate active tasks; for example
a gray rectangle may be used behind the task to indicate an actual activity since the actual dates
may not coincide with the dates of the planned task. Thus, the representation of the tasks used
in the methods, systems, and articles of manufacture consistent with the present invention are

not limited to those used in the present embodiment.

-20-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

The activation and execution of the tasks of the plan 800 depicted in F1g 8 are shown in
Figs. 13-16. Fig. 13 depicts the state of the plan 1300 while the “Serial 1” task 1302 is
executing. Fig. 14 depicts the state of the plan 1400 after execution of the “Serial 1” task 1402,
while the “Parallel 17 and the “Parallel 2” tasks 1404 and 1406 are executing. Fig. 15 depicts
the state of the plan 1500 after execution of the “Serial 1” task 1502 and the “Parallel 1” and the
“Parallel 2” tasks 1504 and 1506, while the “Serial 2” task 1508 is executing. Finally, Fig. 16
depicts the state of the plan 1600 after execution of the tasks 1602, 1604, 1606, and 1608.

As discussed above, Fig. 9 represents a plan 900 created from a workflow 600 having a
logic block 608. The activation and execution of the tasks of the plan 900 following the default
path are shown in Figs. 17-21, while the activation and execution of the tasks of the plan 900
following the non-default path are shown in Figs. 22-27.

Fig. 17 depicts the state of the plan 1700 while the “Get Parts” task 1702 is executing.
Fig. 18 depicts the state of the plan 1800 after the execution of the “Get Parts” task 1802, while
the “L Or Rt Handed?” logic task 1804 is executing. The logic task may pop up a dialog (not
shown) to prompt the resource assigned to this task to provide an answer for this “left or right-
handed” question. In addition, the tool allows the question to be “answered” by running a logic
script. This script may examine properties of an indicated artifact or it may execute a separate
program on a separate system to compute the answer. Upon selection of the default path, the
plan 1900 shown in Fig. 19 depicts both the “Get Parts” task 1902 and the “L Or Rt Handed?”
logic task 1904 in executed states, while the “Right” task 1906 is depicted in an executing state.
After the execution of the “Right” task 1906 is complete, the state of the plan 2000 is depicted in
Fig. 20 with the “Get Parts” task 2002, the “L Or Rt Handed?” logic task 2004, and the “Right”
task 2006 in executed states and with the “Complete Assembly” task 2008 in an executing state.
Finally, upon completion of the “Complete Assembly” task 2008, the state of the plan 2100 after
execution of the tasks 2102, 2104, 2106, and 2108 is complete is depicted in Fig. 21.

Alternatively, if the non-default path is to be chosen, the execution of the plan is initially
the same as when the default path is chosen. Thus, as depicted in Fig. 22, the plan 2200 begins
with the execution of the “Get Parts” task 2202. After completion of the “Get Parts” task 2202,
the plan 2300 shown in Fig. 23 depicts the “Get Parts” task 2302 in an executed state while the
“I, Or Rt Handed?” task 2304 is shown in an executing state. At this point, the resource
assigned to choose the default or the non-default path chooses the non-default path, thus
completing the execution of the “L Or Rt Handed?” task 2404, as indicated in Fig. 24. Upon
selection of the non-default path, the tool 200 modifies the plan 2400 to correspond to the non-

-21-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

default path of the corresponding workflow. The plan 2400 depicts the tasks included in the
non-default path. Thus, the plan 2400 includes the “Left” and “Left Special” tasks 2406 and
2408 rather than the “Right” task 2306, which is depicted in Fig. 23 before the non-default path
was chosen. As shown in Fig. 24, the “Left” task 2406 is executing. Fig. 25 depicts the plan
2500 after the “Get Parts” task 2502, the “L Or Rt Handed?” logic task 2504, and the “Left” task
2506 have been executed, while the “Left Special” task 2508 is executing. Continuing with the
execution of the plan, Fig. 26 depicts the state of the plan 2600 after the “Get Parts” task 2602,
the “L Or Rt Handed?” logic task 2604, the “Lefi” task 2606, and the “Left Special” task 2608
are done executing, while the “Complete Assembly” task 2610 is executing. Finally, Fig. 27
depicts the state of the plan 2700 after completion of the tasks 2702, 2704, 2706, 2708, and
2710.

Retrieving Or Creating A Workflow
Figs. 28A-C depict a flow diagram illustrating an exemplary process for retrieving or

creating a workflow, i.e., step 302 in Fig. 3. Initially, the tool 200 determines whether to use an
existing process or workflow group (step 2802). A workflow group is a collection of workflows
(e.g., a directory or folder containing the collection of workflows) created by the Client Interface
134 on WebDAYV Storage 142. Each workflow group is created by the Client Interface 134 on
WebDAYV Storage 142 with the “workflow group” property as explained further below. When
creating a workflow, the Client Interface 134 allows the enterprise affiliate to store the workflow
within an identified workflow group so that any enterprise affiliate using the Client Interface
134 is able to easily identify related workflows using a hierarchical relationship. For example,
software-related workflows may be stored within the same workflow group so that an enterprise
affiliate is able to quickly locate a desired workflow in order to create a corresponding plan
using the Client Interface 134. One skilled in the art will appreciate that Client Interface 134
may store a workflow on WebDAV Storage 142 without associating the workflow with a
workflow group.

The tool 200 receives user input from an enterprise affiliate with system administrative
privileges or permissions, such as a process designer or a project manager, to determine whether
to retrieve an existing workflow group or to create a new workflow group. If the tool 200
determines that it will use an existing workflow group, the tool 200 receives an identification of
the workflow group from the enterprise affiliate (step 2804). In one implementation, the Client
Interface 134 may retrieve the identifications for the workflow groups on the WebDAV Storage

-22-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

142 by requesting that the folders or directories on WebDAV Storage 142 having a “workflow”
property be returned by the WebDAV Server 140. The Client Interface may use any known
method in accordance with WebDAV protocol to request that the WebDAV Server 140 return
any directory or folder on WebDAV Storage 142 that corresponds to a workflow group. The
tool 200 may then display the available workflow groups to allow the enterprise affiliate to
select one of the available workflow groups. For example, as shown on the user interface 2900
depicted in Fig. 29, the tool 200 may display a hierarchical view 2902 of an identified workflow
group 2904 stored on the root directory 2906 of WebDAV Storage 142. Alternatively, the
enterprise affiliate may enter the identification of the desired workflow group to the tool 200 for
retrieval. Using the identification, the tool 200 then retrieves the workflow group (step 2806).

If the tool 200 determines that a new workflow group will be created, the tool 200
receives the name of the workflow group from the enterprise affiliate (step 2808). For example,
the enterprise affiliate may request a new workflow group by clicking on “Process Designer”
button 2908 of the user interface 2900 depicted in Fig. 29. The enterprise affiliate may,
alternatively, use any known data input technique, such as an icon or keyboard input, to indicate
the request to the tool 200. Upon selecting the “Process Designer” button 2908, the tool 200
displays an exemplary user interface 3000 depicted in Fig. 30 for receiving a new workflow
group identification 3002 via keyboard input from an enterprise affiliate using computer 102a or
102n.

After receiving the new workflow group identification, the tool 200 creates a new
workflow group in storage (step 2810). For example, the tool 200 may create the workflow
group on WebDAYV Storage 142. To generate a new workflow group on WebDAYV Storage 142,
the Client Interface 134 sends the WebDAV Server 140 a request to create a new collection or
folder on WebDAV Storage 142 with the same identification as the new workflow group
identification 3002. In accordance with WebDAV protocol, the Client Interface 134 receives a
response from the WebDAV Server 140 confirming that the new workflow group folder was
created on WebDAV Storage 142. As previously discussed, when a new collection or folder is
created using the WebDAV protocol, the WebDAV properties (e.g., “date of creation,”
“property name” and “lockdiscovery” properties) are created and stored in association with the
new directory by the WebDAV Server 140. Thus, when generating the new workflow group,
the Client Interface 134 also sets the “property name” of the new workflow group to be
“workflow group” so that the Client Interface may subsequently use known WebDAYV methods,

-23-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

such as “PropFind,” to retrieve the identification of each workflow group on WebDAV Storage
142.

After retrieving an existing workflow group or creating a new workflow group, the tool
200 determines whether to use an existing workflow (step 2812). The tool 200 receives user
input from an enterprise affiliate with appropriate privileges or permissions to determine
whether to retrieve an existing workflow or to create a new workflow. If the tool 200
determines that it will use an existing workflow, the tool 200 receives an identification of the
workflow from the enterprise affiliate (step 2814). In one implementation, the Client Interface
134 may retrieve the identifications for the workflows in the selected workflow group and
display the available workflows to allow the enterprise affiliate to select one of the available
workflows. Alternatively, the enterprise affiliate may enter the identification of the desired
workflow to the tool 200 for retrieval. Using the identification, the tool 200 then retrieves the
workflow (step 2816).

If the tool 200 determines that a new workflow will be created, the tool 200 receives the
name of the workflow from the enterprise affiliate (step 2818). For example, the enterprise
affiliate may request a new workflow by clicking on the desired workflow group 3102 and
selecting the “New Process” option 3104 from a pull-down menu 3106 on the user interface
3100 depicted in Fig. 31. The enterprise affiliate may, alternatively, use any known data input
technique, such as an icon or keyboard input, to indicate the request to the tool 200. Upon
selecting the “New Process” option 3104, the tool 200 may display the exemplary dialog box
3200 depicted in Fig. 32 to the enterprise affiliate. The enterprise affiliate may then enter the
name of a new workflow 3202. After receiving the name for the workflow, the tool 200 creates
the workflow in storage (step 2820). |

Figs. 33A-C depict an exemplary workflow definition file 3300 that is produced by the
tool 200 when the workflow 600 depicted in Fig. 6 is created. The name 3302 of the workflow,
“Logic Branch Project,” is identified in the workflow definition file 3300. Also, as shown in the
definition file 3300, the workflow 600 does not have a workflow group 3304. The element 3306
in the workflow definition file 3300 represents the “Get Parts” activity 606. Similarly, the
element 3308 (Fig. 33C) represents the “L or Rt Handed?” logic activity 608, the element 3310
represents the “Right” activity 610, the element 3312 represents the “Left” activity 612, the
element 3314 represents the “Left Special” activity 614, and the element 3316 represents the
“Complete Assembly” activity 620. The start element 602 is represented by the element 3318,
and the end element 604 is represented by the element 3320.

=24 -

10

15

20

25

30

WO 02/19272 PCT/US01/27173

The next step performed by the tool 200 is to receive an indication of the type of activity
to be created for the workflow (step 2822 in Fig. 28B). As discussed above, the activity may be
a standard activity or a logic activity. For example, the workflow 3402 depicted in the user
interface 3400 of Fig. 34 includes five standard activities 3404, 3406, 3408, 3410, and 3412.
The workflow 3402 also includes one logic activity 3414. The selection of the type of activity
may be made by clicking on the icon for a standard activity 3416 or the icon for the logic
activity 3418. Alternatively, any known data input technique, such as a pull-down menu or
keyboard input, may be used to select the type of activity.

After receiving an indication of the type of activity, the tool 200 receives the name of the
activity (step 2824). The names of the activities depicted in the workflow 3402 are included
with the activity. Thus, the name of activity 3404 is “Assignment,” the name of activity 3406 is
“Analysis,” etc.

Returning to the example workflow 600 depicted in Fig. 6, the name of the first activity
606 is “Get Parts,” which is identified by the element 3322 in the workflow definition file 3300
of Fig. 33. Similarly, the name of the logic activity 608 is “L or Rt Handed?,” which is
identified by the element 3324. The name of the activity 610 is “Right,” as identified by the
element 3326. The name of the activity 612 is “Left,” as identified by the element 3328. The
name of the activity 614 is “Left Special,” as identified by the element 3330. Finally, the name
of the activity 620 is “Complete Activity,” as identified by the element 3332.

After receiving a name for the activity, the tool 200 receives an indication of the role
responsible for the activity (step 2826). As discussed above, the Client Interface (via Resource
Manager Module 206) allows an enterprise affiliate to identify a role or role profile that may be
assigned to an activity of the workflow. A role profile includes a Rolename that represents a
“capability” or “skill set,” which is needed to perform a task of a plan created from the
workflow, where the task corresponds to the activity of the workflow. For example, Fig. 35
depicts a user interface 3500 displayed by the Client Interface to receive a role profile. In the
implementation shown in Fig. 35, the Client Interface receives a Rolename 3502 (e.g., “Project
Manager”) for the role profile via the enterprise affiliate clicking on an “Add” button 3504 and
then entering Rolename 3502 in a dialog box 3506 that is displayed by the Client Interface. In
another implementation, the Client Interface may also receive as additional entries (not shown)
to dialog box 3506 a skill and an associated skill level for Rolename 3502 as part of this role
profile. For example, the enterprise affiliate may indicate to the Client Interface via the

additional entries to dialog box 3506 that the Rolename 3502 of “Project Manager” be
-25-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

associated with a skill entitled “Object-oriented software programming” and with a skill strength
of “7” on a scale of 10. Assuming an enterprise affiliate is developing a workflow for producing
a software development tool, the enterprise affiliate may assign to activities in the workflow the
“Project Manager” role profile with this skill and skill level. Thus, when a plan is created from
this workflow, a resource having the appropriate skill and skill level will automatically be
assigned by the Client Interface to tasks corresponding to the activities with the “Project
Manager” role assignment.

The tool 200 stores the role profiles in association with the selected workflow activity on
WebDAV Storage 142. The tool 200 saves significant costs in developing multiple workflows
by allowing the enterprise affiliate to store the role profiles in association with the selected
workflow activity on WebDAV Storage 142 so that the role profiles may be available for the
enterprise affiliate to assign to an activity of another workflow that is also related to the selected
workflow activity. In one implementation, the Client Interface stores the role profiles in a single
role definition file (not shown) on WebDAYV Storage 142. In another implementation, the Client
Interface stores the role profiles in separate files (not shown) on WebDAV Storage 142. Each
separate file has a name that is the same as the received Rolename 3502. In this implementation,
using known WebDAV protocol, the Client Interface defines an associated WebDAV property
having a common name, such as “role profile,” so that the Client Interface may later retrieve the
role profiles stored on WebDAYV storage.

The role profiles may also be stored with the workflow definition file. As shown in the
workflow definition file 3300 depicted in Fig. 33, the role profile 3334 for the “Get Parts”
activity 606 indicates that the role responsible for the activity is “Assembler” 3336. Similarly,
the role profile 3338 for the “L or Rt Handed?” activity 608 indicates that the role responsible
for the activity is “Assembler” 3340. The role profile 3342 for the “Right” activity 610 indicates
that the role responsible for the activity is “Assembler” 3344. The role profile 3346 for the
“Left” activity 612 indicates that the role responsible for the activity is “Assembler” 3348. The
role profile 3350 for the “Left Special” activity 614 indicates that the role responsible for the
activity is “Assembler” 3352. Finally, the role profile 3354 for the “Complete Assembly”
activity 620 indicates that the role responsible for the activity is “Assembler” 3356.

The next step performed by the tool 200 is to determine whether the activity has any
predecessor activities (step 2828). If the activity does have a predecessor activity, the tool 200
receives an indication of the predecessor activities from the workflow definition file (step 2830).

After checking for any predecessor activities and/or receiving the predecessor activities, the tool

-26 -

10

15

20

25

30

WO 02/19272 PCT/US01/27173

200 determines whether the activity has any successor activities (step 2832). If the. activity has a
successor activity, the tool 200 receives an indication of the successor activities from the
workflow definition file (step 2834). In the user interface 3400 of Fig. 34, the “Path” icon 3420
is used to comnect the predecessor activity to the successor activity. For example, in the
workflow 3402, a path 3422 was drawn from the “Assignment” activity 3404 to the “Analysis”
activity 3406. Thus, the “Assignment” activity 3404 is the predecessor activity to the
“Analysis” activity 3406, and the “Analysis” activity 3406 is the successor activity to the
“Assignment” activity 3404. Alternatively, a “Vertical Fork/Join” icon 3424 or a “Horizontal
Fork/Join” activity may be used to connect more than one predecessor activities to a successor
activity, or to connect a predecessor activity to more than one successor activities.

In the workflow 600 depicted in Fig. 6, the activity ID 3358 of the “Get Parts” activity
606 is “10.” The predecessor 3360 to the “Get Parts” activity 606 has an ID of “11” 3362,
which corresponds to the start element 602. The successor 3364 to the “Get Parts™ activity 606
has an ID of “1522” 3366, which corresponds to the “L or Rt Handed?” logic activity 608. The
predecessor 3368 to the “L or Rt Handed?” logic activity 608 has an ID of “10” 3358, which
corresponds to the “Get Parts” activity 606. Because the “L or Rt Handed?” activity 608 is a
logic activity, it has both a default successor and a non-default successor. Thus, the workflow
definition file 3300 identifies two paths out of the “L or Rt Handed?” logic activity 608, one
path 3370 has an ID of “1525” 3372, which corresponds to the “Right” activity 610, and the
other path 3374 has an ID of “1523” 3376, which corresponds to the “Left” activity 612. The
element representing the “L or Rt Handed? logic activity 608 also identifies that the default path
3378 has an ID of “1525” 3372, which corresponds to the “Right” activity 610. The predecessor
3380 to the “Right” activity 610 and the predecessor 3382 to the “Left” activity 612 have an ID
of “1522” 3366, which corresponds to the “L or Rt Handed?” logic activity 608. The remaining
predecessor and successors follow this convention.

After checking for any successor activities and/or receiving the successor activities, the
tool 200 determines whether the activity has any on-entry scripts (step 2836). An on-entry script
is a step to be performed by the tool 200 upon entry into the activity. For example, the on-entry |
script may send an email notifying an interested user about the activity being started. The on-
entry script may also send a dialog box to an enterprise affiliate to obtain data in real-time, or
send a request to a separate device to gather input, e.g., by sending a message to a computer to
receive data files. Other éxamples of on-entry scripts include checking stock levels and issuing

reorder commands, if necessary, or paging the user assigned to perform the activity. If the

-27-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

activity has an on-entry script, the tool 200 receives an indication of the on-entry scripts (step
2838). After checking for any on-entry scripts and/or receiving the on-entry scripts, the tool 200
determines whether the activity has any on-exit scripts (step 2840 in Fig. 28C). An on-exit
script is a step to be performed by the tool 200 upon exiting the activity. For example, the on-
exit script may send an email notifying an interested user about the end of an activity. Other
examples of on-exit scripts include sending a message to another device to have the other device
perform enterprise application integration, notifying a downstream consumer about the activity
so that the consumer knows what is coming, and placing an activity on a user’s personal
calendar. If the activity has an on-exit script, the tool 200 receives an indication of the on-exit
scripts (step 2842). For example, the “Complete Assembly” activity 620 depicted in Fig. 6
includes both an on-entry script 3384 as well as an on-exit script 3386. Upon entering the task
created from the “Complete Assembly” activity, the tool 200 sends an email to the owner
indicating that the “Debugging period started” 3388. Prior to exiting the task created from the
“Complete Assembly” activity, the tool 200 sends an email to the owner indicating that the
“Debugging finished” 3390.

After checking for any on-exit scripts and/or receiving the on-exit scripts, the tool 200
determines whether the activity has any input (i.e., begin or starting) conditions (step 2844). If
the activity has an input condition, the tool 200 receives an indication of the input conditions
(step 2846). Example input conditions are to expect an artifact required for the task to have a
specific status. After checking for any input conditions and/or receiving the input conditions,
the tool 200 determines whether the activity has any output (i.e., exit or ending) conditions (step
2848). An example exit condition could be to automatically check the quality of an artifact
generated by the task. If the artifact meets quality standards, the task completion occurs;
otherwise, the task completion is rejected and the user is informed that more quality is required.
If the activity has an output condition, the tool 200 receives an indication of the output
conditions (step 2850). The output condition 3391 for the “Get Parts” activity 606 has an ID of
“1527” 3392 (Fig. 33B), and is a document-type condition, as indicated by the “linkablel”
identity 3393 in the element 3394 representing the condition 3391. In general, based on the
condition 3391, the tool 200 (in particular, the Workflow Engine 222) monitors the state of an
artifact for an activated “Get Parts” task created from the “Get Parts” activity 606 until the state
of the artifact is the “INITIAL?” state 3395 before the tool 200 continues with the next task in the
plan. Similarly, the output condition 3396 for the “Right” activity 610 has an ID of “1533”
3397. The output condition 3396 for the “Right” activity 610 is also a document-type condition,

.98 -

10

15

20

25

30

WO 02/19272 PCT/US01/27173

as indicated by the “linkablel” identity 3398. This condition 3396 signals the tool 200 to
monitor the state of an artifact until it is in the “RIGHT” state 3399.

Fig. 36 depicts an exemplary user interface 3600 displayed by the Client Interface 134 to
include either a document-oriented 3602 or a script (or logic)-oriented 3604 condition. As
shown in Fig. 36, the Client Interface 134 may receive the request to add a condition to the
activity via a pull-down menu selection 3606. The enterprise affiliate may, however, use any
known data input technique to request that a condition be added to an activity, such as an icon or
keyboard input, to indicate the request to the Client Interface 134. If the enterprise affiliate
selects a document-oriented condition, the enterprise affiliate may be presented with the user
interface 3700 depicted in Fig. 37 to identify the properties of the condition to the Client
Interface 134. The condition properties 3702 include condition-name property 3704 for the
document-type condition model. In the example shown in Fig. 37, the Client Interface 134
receives the condition-name property 3704 via a keyboard input by the enterprise affiliate. The
Client Interface 134 uses the condition-name property 3704 to distinguish the condition model to
be created from other condition models stored on WebDAYV Storage 142. The Client Interface
134 may store the document-type condition model file on WebDAV Storage 142 having the
same name as the condition-name property 3704. In another implementation, the Client
Interface 134 may store the condition-name property 3704 as a WebDAYV property stored in
association with the document-type condition model file on WebDAV Storage 142.

The Client Interface 134 also receives a link-parameter property 3706 as one of
Condition properties 3702 for the document-type condition model to be created by the Client
Interface. As shown in Fig. 37, the enterprise affiliate may identify link-parameter property
3706 to the Client Interface via keyboard input. Link-parameter property 3706 may be used by
an enterprise affiliate in an activity-related script that is identified to the Client Interface during
the creation of a workflow as described below. Thus, when executing the activity-related script
in a task of a plan created from the workflow, the Workflow Engine 222 in Fig. 2 is able to
locate the corresponding document condition so that the corresponding input or output condition
may be evaluated by the Workflow Engine 222.

The Client Interface 134 may also receive a description property 3708 as one of
Condition properties 3702 for the document-type condition model to be created by the Client
Interface. When creating a workflow as described below, the Client Interface may display

description property 3708 in association with condition-name property 3704 to allow an

-29-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

enterprise affiliate to effectively choose whether the document-type condition model should be
assigned to an activity of the workflow.

The Client Interface may also receive one or more triggering-event properties 3710 for
the document-type condition model. In the example shown in Fig. 37, the Client Interface may
receive the triggering-event properties as one of the condition properties 3702 for the document-
type condition model to be created by the Client Interface. Triggering-event properties 3710
indicate to the Workflow Engine 222 when to check the state property of a document condition
as an entry or exit condition of an activated task. Triggering-event properties 3710 may include
a “Write into document” event 3712, a “Change property of document” event 3714, a “Put
document into repository” event 3716, a “copy or move into document” event 3718, and a
“delete document” event 3720.

Next, the Client Interface 134 receives document state properties 3722 as one of the
Condition properties 3702 for the document-type condition model to be created by the Client
Interface. Document state properties 3722 identify possible values for a state property of a
document condition that is created using the document-type condition model. As further
explained herein, an enterprise affiliate who has been identified as the responsible owner of an
activated task may change the state property of a document condition (e.g., from “DRAFT” to
“APPROVED”) using the Client Interface, which sends a request to WebDAV Server 140 in
Fig. 2 to set the state property of the document condition as indicated by the enterprise affiliate.
Workflow Engine 222 in Fig. 2 may then check the state property of the document condition on
WebDAYV Storage 142 when triggering-events 3710 occur.

The Client Interface also receives a location property 3724 as one of Condition
properties 3702 identified by the enterprise affiliate for the document-type condition model.
Location property 3724 is a unique identifier or URL for a document template that the Client
Interface uses to create the document condition that is then stored by the Client Interface on
WebDAYV Storage 142. Location property 3724 may be a location on secondary storage device
116 of computer 102a or a location on WebDAV Storage 142. As described in greater detail
below, the document condition is created by the Client Interface 134 when a plan is instantiated
or created from a workflow having an activity with an entry or exit condition created using the
document-type condition model. Finally, the Client Interface receives application property 3726
as one of Condition properties 3702 identified by the enterprise affiliate for the document-type
condition model. Application property 3726 is a unique identifier or URL for an application,

such as Microsoft Word, that the Client Interface may run to create an instant of the document

-30-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

template that may be found at the location specified by location property 3724. The Client
Interface uses the instant of the document template to create and store the document condition
on WebDAYV Storage 142.

Fig. 38 depicts an exemplary user interface 3800 displayed by the Client Interface 134 to
receive the condition properties 3802 for a logic-type condition model that is to be created by the
Client Interface 134. The condition properties 3802 include a condition-name property 3804 for
the document-type condition model. In the example shown in Fig. 38, the Client Interface 134
receives the condition-name property 3804 via a keyboard input by the enterprise affiliate. The
Client Interface 134 uses the condition-name property 3804 to distinguish the logic-type
condition model to be created from other condition models stored on WebDAYV Storage 142. As
described below, the Client Interface 134 stores a logic-type condition model file on WebDAV
Storage 142 that has the same name as condition-name property 3804. In another
implementation, the Client Interface 134 may also store condition-name property 3804 as a
WebDAYV property stored in association with the logic-type condition model file on WebDAV
Storage 142.

In the example shown in Fig. 38, the Client Interface 134 may receive a description
property 3806 as one of the Condition properties 3802 for the logic-type condition model to be
created by the Client Interface 134. When creating a workflow as described below, the Client
Interface 134 may display the description property 3806 in association with the condition-name
property 3804 to allow an enterprise affiliate to effectively choose whether the logic-type
condition model should be assigned to an activity of the workflow.

The Client Interface 134 may also receive one or more triggering-event properties 3808
for the logic-type condition model as one of the condition properties 3802 for the logic-type
condition model to be created by the Client Interface 134. Triggering-event properties 3808
indicate to the Workflow Engine 222 when to check an entry or exit condition of an activated
task. Triggering-event properties 3808 include: an “Absolute time” event 3810, a “Period”
event 3812, a “URL change” event 3814, a “Task change” event 3816, and “any http request”
event 3818. “Absolute time” event 3810 identifies a trigger for a specific data and time from the
start time of the activated task. ‘“Period” event 3812 identifies a trigger for a specific unit of
time, such as once every minute. “URL change” event 3814 identifies a trigger when the
contents of the directory or folder located at the URL changes. “Task change” event 3816
identifies a trigger for any time the activated task definition file or associated property changes.

For example, when an enterprise affiliate that is responsible for the task uses the Client Interface

-31-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

134 to identify that the task is complete, the Client Interface 134 in response sends a request to
the WebDAYV Server 140 to set the status propérty of the activated task to “FINISHED.” As
part of the processing for managing an activated plan as described below, the Workflow Engine
222 will receive this request before the WebDAV Server 140 and interpret the request as an
example of a “Task change” event 3816. Similarly, “Any http request” event 3818 indicates to
the Workflow Engine 222 to check the entry or exit condition of the activated task when any
request is received from the Client Interface 134 that pertains to the activated task. For example,
the Client Interface 134 may send a request to the WebDAYV Server 140 to retrieve the activated
task file so that a status of the activated task can be viewed by an enterprise affiliate. Workflow
Engine 222 will receive this request before the WebDAYV Server 140 and interpret the request as
an example of an “Any http request” event 3818.

The Client Interface 134 may also receive a script 3820 as one of the condition properties
3802 for the logic-type condition model to be created by the Client Interface 134. Script 3820 is
executed by the Workflow Engine 222 when a triggering-event occurs that corresponds to one of
the triggering-event properties 3808 selected by the enterprise user using the Client Interface
134. As shown in Fig. 38, Script 3820 may include a script parameter 3822, a script value 3824
for script parameter 3822, and script content 3826 that may use the script parameter 3822
initialized to the script value 3824. The enterprise affiliate may provide the script content 3826
to the Client Interface 134 via a Script Editor User Interface 3900 in Fig. 39. Script Editor User
Interface 3900 is displayed by the Client Interface 134 when the enterprise affiliate actuates
button 3828 on user interface 3800 shown in Fig. 38. Script content 3820 may contain any
known application program interface (API) script method that would be recognizable by the
target processor interpreter on computer 106, such as Java™ Virtual Machine 150 in Fig. 1.

After checking for any output conditions and/or receiving the output conditions, the tool
200 determines whether there are any more activities to add to the workflow (step 2852). If
there are more activities, the process continues at step 2822 for the next activity. If there are no
more activities to add to the workflow, the tool 200 receives an indication of the starting point
for the workflow (step 2854). Next, the tool 200 receives an indication of the ending point for
the workflow (step 2856) before the process ends.

Fig. 40 depicts an exemplary user interface 4000 displayed by the Client Interface 134 to
receive the properties of an activity of a workflow. As depicted, the name 4002 of the activity
(e.g., “Specs Development”), the duration 4004 of the activity (e.g., 1 unit) and the role 4006

responsible for the activity may be entered by the enterprise affiliate responsible for creating or

-32-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

modifying the workflow. In addition, the enterprise affiliate may enter an on-eﬁtry script 4008
as well as an on-exit script 4010. If the activity represents an entire other workflow, the
properties of the activity also include the location 4012 of the sub-process defining the
workflow. This allows an enterprise to save significant resources by providing a mechanism for
reusing workflows within other workflows. Thus, workflows may be modularly built from
constituent workflows. For example, the defect tracking workflow depicted in Fig. 34 can be

used inside many “outer” or “higher-level” processes for software development.

Creating A Plan From A Workflow
Figs. 41A-B depict a flow diagram illustrating the process of creating a plan from a

workflow, i.e., step 306 in Fig. 3. At this point, the enterprise affiliate has already selected the
workflow that will be used to create the plan. Initially, the tool 200 receives an indication of the
plan name (step 4102). In selecting the plan name, the Client Interface 134 allows the enterprise
affiliate to store the project plan within an identified project plan group so that any enterprise
affiliate using the Client Interface 134 is able to easily identify related project plans. A process
plan group is a collection of project plans (e.g., a directory or folder containing the collection of
project plans) created by the Client Interface 134 on WebDAV Storage 142. For example, the
software-related project plans may be stored within the same project plan group so that an
enterprise affiliate is able to quickly locate a desired project plan in order to create a
corresponding plan using the Client Interface 134. One skilled in the art will appreciate that
Client Interface 134 may store a project plan on WebDAYV Storage 142 without associating the
project plan with a project plan group. Fig. 42 depicts an exemplary user interface 4200 used to

 receive a project plan group.

In the implementation shown in Fig. 42, the Client Interface 134 receives a dialog box
4202 to enter the name of a new project plan group 4204 (e.g., “Software Projects™) after
clicking on a “Create Group” button 4206. Alternatively, if the enterprise affiliate decides to
select an existing project plan group, the tool 200 provides the enterprise affiliate with a list
4300 of available project groups from which the enterprise affiliate may choose, as depicted in
Fig. 43. The tool 200 then provides the enterprise affiliate with a dialog box 4400 to enter the
name 4402 of the project, as shown in Fig. 44.

The next step performed by the tool 200 is to receive an indication of the working hours
(step 4104). Fig. 45 depicts an exemplary timetable 4500 which the enterprise affiliate may use
to identify the timetable defining a workday. As shown, the enterprise affiliate may select a

-33-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

timetable template 4502 with predefined working hours. The Standard Timetaﬁle 4504 includes
five Working Days 4506 (Monday through Friday) and Working Hours 4508 from § a.m. (4510)
through 12 p.m. (4512) and from 1 p.m. (4514) until 5 p-m. (4516). Alternatively, the enterprise
affiliate may select a 24 Hour Timetable 4518 or an Intensive Timetable 4520, i.e., more than
the Standard Timetable 4504, but less than the 24 Hour Timetable 4518. The tool 200 also
receives an indication of the start date and time for the project plan (step 4106). An exemplary
dialog box 4600 may be used to select the start date and time 4602 and end date and time 4604.

The tool 200 then retrieves an activity from the workflow (step 4108). The tool 200 sets
the start time of the task equal to the start date and time of the project plan (step 4110). Next,
the tool 200 sets the end time of the task based on the start time of the task, the duration of the
activity from which the task is based, and on the working hours (step 4112 in Fig. 41B). The
tool 200 then receives an indication of the resource assigned to the task (step 4114).

For example, Fig. 47 depicts an exemplary workflow definition file 4700 that is
produced by the tool 200 when the workflow 500 depicted in Fig. 5 is created. Fig. 48 depicts
an exemplary project plan definition file 4800 created from the workflow definition file 4700.
The element 4702 in the workflow definition file 4700 represents the “Serial 1” activity 506. As
shown, the “Serial 1” activity 506 has a duration 4704 of 9 hours. If the working hours are
determined based on the “24 Hour Timetable” 4818 and the start date and time for the project
plan is 9 a.m. on August 1, 2001, the start time 4804 for the “Serial 1” task 4802 is 9 a.m. on
August 1, 2001. The end time 4806 of the task 4802 occurs 9 hours later, ie., at 6 p.m. on
Avgust 1, 2001.

Fig. 49 depicts an exemplary user interface 4900 displayed by the Client Interface 134 to
assign users or resources to the project and to assign these users specific roles related to the roles
required by the project. The tool 200 displays a list of available users or resources 4902 (on the
left), a list of the assigned users (central), and a list of the roles 4904 (on the right) in a given
workflow. In this embodiment, the enterprise affiliate is allowed to selectively add or remove
available resources to the project by highlighting the resource and selecting either the “Add”
button 4906 or the “Remove” button 4908, respectively. Alternatively, the enterprise affiliate
may add or remove the resources to the project by selecting the “Add all” button 4910 or the
“Remove all” 4912 button, respectively. For each resource, the user can selectively indicate
(checkboxes) which roles the user should play. Thus, the enterprise affiliate may identify to the

tool 200 resources that are capable of performing the role when assigned to a task in the plan.

-34-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

As discussed below, the tool 200 may automatically assign a resource to a role of a task in the
plan based on the identified, capable resources for the role.

The properties of an activity may be modified using the exemplary user interface 5000
depicted in Fig. 50. The user interface 5000 displays the name 5002 of the activity, the duration
5004 assigned to the corresponding activity, the start date and time 5006 for the activity, the end
date and time 5008 for the activity, the responsible role 5010 assigned to the corresponding
activity, the responsible resource or user 5012 assigned to the task, the owners 5014 of the task,
the priority 5016 of the task, the on-entry script 5018 of the task, and the on-exit script 5020 of
the task. The responsible resource 5012 of the task is the resource with the authority to notify
the tool 200 when the task is complete. The owner(s) 5014 of the task, on the other hand, are
notified when the task is started or completed, but do not have the authority to modify the tool
200 when the task is complete.

The next step performed by the tool 200 is to determine whether there are any more
activities in the workflow (step 4116). If there are no more activities, the process ends. If there
are more activities, the tool 200 retrieves the next activity (step 4118). The tool 200 then sets
the start time of the task equal to the end time of the predecessor task (step 4120). The process
then continues at step 4112.

The next activities that are retrieved by the tool 200 are “Parallel 1” 510 and “Paralle] 2”
512. Element 4706 and element 4708 in the workflow definition file 4700 represent these
activities 510 and 512. The durations 4710 and 4712 of both of these activities is 24 hours. The
start time 4812 and 4814 of these tasks 4808 and 4810 is equal to the end time 4806 of the
predecessor task, i.e., 6 p.m. on August 1, 2001. Because the duration 4710 and 4712 of the
activities 510 and 512 is 24 hours, the end times 4816 and 4818 of these tasks 4808 and 4810
occur 24 hours later, i.e., at 6 p.m. on August 2, 2001. The next activity retrieved by the tool
200 is “Serial 2” 508. The element 4714 in the workflow definition file 4700 represents this
activity. The duration 4716 of the “Serial 2” activity 508 is 24 hours. The start time 4822 of the
task 4820 created from the “Serial 2” activity 508 is the end time 4816 and 4818 of the
predecessor task, i.e., 6 p.m. on August 2, 2001. Because the duration 4716 of the “Serial 1”
activity is 24 hours, the end time 4824 of the task 4820 is 6 p.m. on August 3, 2001. The project
plan is displayed in the Gantt chart 5100 depicted in Fig. 51. As shown, the “Serial 1” task 5102
is scheduled to execute from 9 a.m. 5104 on August 1, 2001 (5106) through 6 p.m. 5108 on the
same day. The “Parallel 1” task 5110 and the “Parallel 2” task 5112 are scheduled to execute
from 6 p.m. 5108 on August 1, 2001 (5106) through 6 p.m. 5114 on August 2, 2001 (5116).

-35-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

Finally, the “Serial 1” task 5118 is scheduled to execute from 6 p.m. 5114 on August 2, 2001
(5116) through 6 p.m. 5120 on August 3, 2001 (5122). Note that an enterprise affiliate using the
Client Interface 134 on the computer 102a may create a plan from the workflow 600 at the same
time that a second enterprise affiliate using the Client Interface 134 on computer 102n creates a
second plan from the workflow 600.

After the project plan is created from the workflow, the plan may be activated. As
depicted in Fig. 52, the enterprise affiliate may activate the project by selecting the “Activate
Project” option 5202 from the pull-down menu 5200. The enterprise affiliate may, however, use
any known data input technique, such as an icon or keyboard input, to indicate the request to
Client Interface 134.

In one implementation, the Client Interface 134 then sends an activate request to the
WebDAV server 140 to change the status of the plan definition file to “Active.” As discussed
further below, the Workflow Engine 222 may intercept this request and process the request in
preparation for managing the execution of the activated plan. Once the plan is created and
stored on WebDAV storage 142, any enterprise affiliate with appropriate privileges (e.g., project
manager that “owns” the plan) may activate the plan using the Client Interface 134 from any

computer 102a and 102n.

Adding A Resource
Fig. 53 depicts a flow diagram illustrating an exemplary process performed by the Client

Interface 134 to add a new resource to the list of available resources. The Client Interface 134
may later assign the resource to a plan in accordance with methods and systems consistent with
the present invention. Initially, the Client Interface 134 receives a request to add a new resource
(step 5302). As shown in Fig. 54, the Client Interface 134 may receive the request to add a new
resource viaa pull-down menu selection 5402 and 5404 that is chosen by an enterprise affiliate.
The enterprise affiliate may, however, use any known data input technique, such as an icon or
keyboard input, to indicate the request to the Client Interface 134.

Next, the Client Interface 134 determines whether the request is to import the resource
information (step 5304). In the implementation shown in Fig. 54, an enterprise affiliate requests
that the Client Interface 134 import a resource profile containing the resource information by
choosing the pull-down menu selection 5404. Alternatively, the enterprise affiliate may request
that the Client Interface 134 create the resource profile from resource information that the
enterprise affiliate provides to the Client Interface 134. Thus, if the request is not to import the

-36-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

resource information, the Client Interface 134 receives the resource information from the
enterprise affiliate (step 5306). As shown in Fig. 54, the .Client Interface 134 may receive
resource information 5404 for an enterprise affiliate (e.g., a user or person) that may later be
assigned to a plan by the Client Interface 134 in accordance with processes described in greater
detail below. The Resource Information 5404 may include a login name 5408, a resource name
5410 that the Client Interface 134 is to use when assigning the resource to a task of a plan, and
an e-mail address 5412 that the Client Interface 134 or the Workflow Engine 222 may use to
notify the resource of an assignment or another event.

The Client Interface 134 may also receive other resource information (not shown) for
other types of resources (e.g., equipment, facilities, computer systems, or other known entities)
that may be assigned to any task of a plan. The other resource information may include: a
resource name that the Client Interface 134 is to use when assigning the resource to a task of a
plan; a resource owner name that identifies a manager or other enterprise affiliate who is
responsible for the named resource; and an e-mail address for the named resource owner, which
the Client Interface 134 or the Workflow Engine 222 may notify when the named resource is
assigned to a task or for another associated event.

Resource information 5404 may also include one or more skill identifiers thé.t indicate
one or more capabilities that a task of a plan may require for the task to be completed. Skill
identifiers may include any foreseeable skill for the named resource, including a user,
equipment, facilities, computer systems, or other known entities that may be assigned to any task
of a plan. For example, when the named resource is an enterprise affiliate, the skill identifiers
that may be identified for the enterprise affiliate may include: “Java programming,”
“architecture,” or “carpentry.” When the named resource is equipment, the skill identifiers may
include “punch-press,” “printing,” or “Windows NT Operating System.” Or, when the resource
is another system, skills may involve the ability to execute specific functions (much like
distributed or web services, “credit card validation,” “shop for best air freight shipper prices”).
Resource information 5404 may also include a skill strength (not shown) for each skill identifier.
The skill strength may be used by the tool to differentiate one resource from another resource
when matching a resource to a role of a task in a plan.

Resource information 5404 may also include an availability timetable (not shown) that
indicates to the Client Interface 134 the calendar days, the hours in a weekday, and the hours in a
weekend day that the named resource is available to work. Resource information 5404 may also

include an assignment timetable (not shown) that has assigned calendar days. The assigned

-37-

10

15

20

25

30

WO 02/19272 PCT/US01/27173

calendar days indicate to the Client Interface 134 which calendar days the named resource has
been assigned to one or more tasks. In addition, the assignment timetable may include unique
identifiers or URLs for the one or more tasks to which the named resource has been assigned.
Thus, the Client Interface 134 or the Workflow Engine 222 may access the one or more tasks
that the named resource has been assigned when performing processing for resource leveling of
a plan in accordance with methods and systems consistent with the present invention.

If the request is to import the resource information, the Client Interface 134 receives
access information for a “Lightweight Directory Access Protocol (LDAP)” resource directory
entry (e.g., a resource profile) on the network 108 of Fig. 1 (step 5308). Fig. 55 depicts an
exemplary user interface 5500 showing access information 5502 received by the Client Interface
134. Access information 5502 includes an LDAP Server 5504 (e.g., “Frodo”) on the network
108, an LDAP Port 5506 for the Client Interface 134 to communicate with the LDAP Server
5504, and a resource distinguished name (DN) 5508 identifying the location on LDAP Server
5504 where the resource profile may be found. The access information 5502 may be default
access information that the Client Interface 134 retrieves from a configuration file (not shown)
on the computer 102a, or it may be access information entered by an enterprise affiliate. In the
implementation illustrated in Fig. 55, the access information 5502 may also include: a security
distinguished name (DN) 5510, a password 5512, and a login alias 5514. Security DN 5510
identifies to the Client Interface 134 where a security profile for the enterprise affiliate is
located. The Client Interface 134 uses the password 5512 and the login alias 5514 to access the
resource information on the LDAP Server 5504 in accordance with privileges identified in the
security profile.

Having received the access information for the LDAP directory entry on network 108,
the Client Interface 134 retrieves the resource information using the LDAP access information
(step 5310). The resource information that the Client Interface 134 retrieves includes resource
profiles for a user, equipment, facilities, computer systems, or other known entities that may be
assigned to any task of a plan.

After the resource information is received from the enterprise affiliate or is retrieved
using LDAP access information, the Client Interface 134 stores the resource information in
resource profiles on the WebDAV Storage 142 (step 5312).

Fig. 56 depicts an exemplary resource file 5600 that the Client Interface 134 may use to
store resource profiles 5602, 5604, 5606, and 5608 on WebDAYV Storage 142. As shown in Fig.

56, the resource profile 5600 includes a unique identifier or URL 5612 where the resource

-38 -

10

15

20

25

30

WO 02/19272 PCT/US01/27173

profile 5600 is to be stored on the WebDAV Storage 142. Each resource proﬁle 5602, 5604,
5606, and 5608 may be stored separately by the Client Interface 134 on WebDAV Storage 142.
In the implementation shown in Fig. 56, the resource profile 5602 includes resource information
5610 that corresponds to an enterprise affiliate that may be assigned to a task of a plan. In
another implementation, the resource information 5610 may be added as properties rather than
as the content of the resource profile 5602 on WebDAV Storage 142. This implementation may
be advantageous as the Client Interface 134 or the Workflow Engine 222 may use a known
WebDAV method to retrieve resource profiles from the WebDAV Storage 142 that have the
same property. For example, the WebDAV “PropFind” method may be used by the Client
Interface 134 or the Workflow Engine 222 to retrieve the resource profiles having a skill
identifier of “Java Programming” so that an available resource having this skill can be assigned

to a task in accordance with processes described below.

Managing A Plan
Fig. 57 depicts a flow diagram illustrating an exemplary process performed by the

Workflow Engine 222 to manage the execution of an activated plan. The Workflow Engine 222
may execute the process in Fig. 57 for each activated plan stored on WebDAV Storage 142.
Thus, the tool manages the execution of multiple plans simultaneously.

Initially, the tool 200 waits until the current time and date are later than the start time and
date (step 5702) of the plan. Alternatively, a plan may not require a start time and date for each
plan. Rather, the start time and date may be incorporated as an input condition for each task. At
this point, the tool 200 selects the current next task (or tasks in the event of parallel tasks) from
the activated project plan created from a workflow (step 5704). Note that the Workflow Engine
222 may retrieve the plan from WebDAYV storage. Next, the tool 200 determines whether there
is an input condition (step 5706). If there is an input condition, the tool 200 waits to see if the
triggering event (described above) is met before it checks to see if the input condition is met
(step 5708). If the input condition required monitoring of certain items on a periodic basis, the
Workflow Engine 222 will add this event to its “Event Monitoring” log. After the input
condition is met or if there is no input condition, the tool 200 stores the actual start time (step
5710). The next step performed by the tool 200 is to determine whether there is an on-entry
script to execute, such as a message to send to the resource (step 5712 in Fig. 57B). If there is
an on-entry script, the tool 200 performs the on-entry script (step 5714). After performing the
on-entry script or if there is no on-entry script, the tool 200 determines whether there is an

-39.

10

15

20

25

30

WO 02/19272 PCT/US01/27173

output condition (step 5716). If there is an output condition, the tool 200 waits to see if the
triggering event (described above) is met before it checks to see if the output condition is met
(step 5718). After the output condition is met or if there is no output condition, the tool 200
determines whether there is an on-exit script (step 5720). If there is an on-exit script, the tool
200 performs the on-exit script (step 5722). After performing the on-exit script or if there is no
on-exit script, the tool 200 stores the actual end time (step 5724). Then the tool 200 determines
whether there are any more tasks in the project plan (step 5726). If there are no more tasks, the
process ends. Otherwise, the process returns to step 5704 and selects the next task.

The plan 5800 created from the workflow 500 depicted in Fig. 5 is shown in Fig. 58. As
shown in Fig. 58, “Serial 1” task 5802 is scheduled to begin at 9 a.m. 5804 on August 1, 2001
(5806) and end at 6 p.m. 5808 on the same day. The parallel tasks 5810 and 5812 are scheduled
to start at the completion of the “Serial 1” task 5808, and are scheduled to end at 6 p.m. 5814 on
August 2, 2001 (5816). The “Serial 2” task 5818 is scheduled to begin upon completion of the
parallel tasks 5814 and is scheduled to end at 6 p.m. 5820 on August 3, 2001 (5822). Fig. 59
depicts an exemplary project plan definition file 5900 corresponding to the plan 5800 of Fig. 58.

Upon activation, the “Serial 1” task 6002 begins execution, as depicted by the task 6004
in the Gantt chart 6000 of Fig. 60. Contrary to the plan, however, the “Serial 1” taék ends earlier
than planned. As depicted in Fig. 61, the actual properties 6100 of the “Serial 1” task 6102
include the actual-start-date 6104 (i.e., year-2001 month-8 day-1 hour-9) and actual-finish-date
6106 (i.e., year-2001 month-8 day-1 hour-14, i.e., 2 p.m.). The actual execution 6204 of the
“Serial 1” task 6202 is shown in the Gantt chart 6200 of Fig. 62.

Because the “Serial 17 task 6202 ended earlier than planned, both the “Parallel 1” task
6206 and the “Parallel 2” task 6208 begin execution at 2 p.m. 6210 rather than waiting until their
scheduled start time of 6 p.m. The earlier execution 6212 and 6214 of these tasks 6206 and
6208 is also depicted in the Gantt chart 6200. As depicted in Fig. 63, the actual properties 6300
of the “Parallel 1” task 6302 and the ‘“Parallel 2” task 6304 include the actual-start-date 6306
(i.e., year-2001 month-8 day-1 hour-14) and actual-finish-date 6308 (i.e., year-2001 month-8
day-2 hour-0). The actual execution 6406 and 6408 of the “Parallel 1” task 6402 and the
“Parallel 2” task 6404 is shown in the Gantt chart 6400 of Fig. 64. The Gantt chart 6400 also
visually indicates that the start time 6410 for the tasks 6402 and 6404 was 2 p.m. on August 1,
2001, while the end time 6412 for the tasks 6402 and 6404 was 12 a.m. on August 2, 2001.

Finally, the execution of the “Serial 2” task 6414 begins at 12 a.m. on August 2, 2001
(6412). As depicted in Fig. 65, the actual properties 6500 of the “Serial 2” task 6502 includes

-40 -

10

15

20

25

30

WO 02/19272 ' PCT/US01/27173

the actual-start-date 6504 (i.e., year-2001 month-8 day-2 hour-0) and actual-finish-date 6506
(i.e., year-2001 month-8 day-2 hour-12). The actual execution 6604 of the “Serial 1” task 6602,
the actual execution 6608 of the “Parallel 1” task 6606, the actual execution 6612 of the
“Parallel 2” task 6610, and the actual execution 6616 of the “Serial 2” task 6614, are shown in
the Gantt chart 6600 of Fig. 66.

Animation Of Workflows And Project Plans
Methods and systems consistent with the present invention allow a user to animate the

edits to a plan or workflow. Thus, an enterprise affiliate may view the changes made to a plan
or workflow over time, or may view the various plans created from a given workflow over time.
An enterprise affiliate may also use the tool 200 to review the steps performed during the
activation of a plan.

Fig. 67 depicts a flow diagram illustrating an exemplary process for storing the edits to a
plan definition file and the corresponding task definition files during the activation of the plan.
Initially, the tool 200 retrieves a plan selected by an enterprise affiliate (step 6702). Next, the
tool 200 activates the plan (step 6704). The next step performed by the tool 200 in activating the
plan is to select a task from the plan (step 6706). Then, the tool 200 activates the task (step
6708). Thus, in the plan depicted in Fig. 68, upon activation, the tool 200 selects the first task
6802. The block 6804 represents the task 6802, as defined by duration and start time, on the
timeline 6800 or Gantt Chart. Fig. 69 illustrates the task definition file 6900 corresponding to
the task 6802 of Fig. 68. As shown in the task definition file 6900 of Fig. 69, prior to activation,
the state of the task is “unexecuted” 6902. After activating the task 6802, the tool 200 darkens
of the outer borders of the block 7004 representing the task 7002, as depicted in the timeline
7000 of Fig. 70. The activation of the task is reflected in the task definition file (step 6710). As
shown in the task definition file 7100 depicted in Fig. 71, the state of the task is changed to
“executing” 7102 after the task is activated. Alternatively, the state of the task may be changed
to “active” rather than “executing.” The tool 200 then saves the edits to the task definition file
(step 6712). The tool 200 also includes a link to the task definition file in the plan definition
file, and saves the plan definition file (step 6714).

The next step performed by the tool 200 is to wait until the execution of the task is
complete (step 6716). The tool 200 depicts a completed task 7202 on the timeline 7200 in
Fig. 72 as a darkened block 7204. After the execution of the task is complete, the tool 200 edits
the task definition file to reflect the completed task (step 6718). As shown in the task definition

-41 -

10

15

20

25

30

WO 02/19272 PCT/US01/27173

file 7300 of Fig. 73, the state of the task is changed to “executed” 7302. Afcef editing the task
definition file, the tool 200 saves the edits to the task definition file (step 6720). The tool 200
also includes a link to the task definition file in the plan’definition file, and saves the plan
definition file (step 6722). Next, the tool 200 determines whether there are any more tasks (step
6724). If there are no more tasks, the process ends. Otherwise, if there are more tasks, the
process continues at step 6704.

Returning to the timeline 7200 in Fig. 72, the tool 200 selects the next task 7206 from the
plan, which is depicted as block 7208. The task definition file 7400 of Fig. 74 represents the
second task 7206, which indicates that the state of the task is “unexecuted” 7402. After
activating the second task, the tool 200 darkens of the outer borders of the block 7508
representing the task 7506, as depicted in the timeline 7500 of Fig. 75. The activation of the
task is reflected in the task definition file 7600 depicted in Fig. 76. In particular, the state of the
task is changed to “executing” 7602 after the task is activated. The tool 200 then saves the edits
to the task definition file 7600, includes a link to the task definition file 7600 in the plan
definition file, and saves the plan definition file. The tool 200 then waits until the execution of
the task is complete, and depicts the completed task 7706 on the timeline 7700 in Fig. 77 as a
darkened block 7708. After the execution of the task is complete, the tool 200 edits the task
definition file 7800 of Fig. 78 to reflect the completed task, i.e., the state of the task is changed
to “executed” 7802. After editing the task definition file 7800, the tool 200 saves the edits to the
task definition file 7800, includes a link to the task definition file 7800 in the plan definition file,
and saves the plan definition file. In the example above, the tool represents an executing task
with darkened borders and represents an executed task as a darkened block. One skilled in the
art, however, will recognize that any visible change in the blocks representing the tasks, e.g., a
change in shape, color, shading, etc., may be used to represent the tasks in their various states.
Thus, the representation of the tasks used in the\’ methods, systems, and articles of manufacture
consistent with the present invention are not limited to those used in the present embodiment.

In another implementation, the tool 200 allows a user to store the modifications made to
a plan, and allows the user to view the changes made to a plan over time. Fig. 79 depicts a flow
diagram illustrating an exemplary process for storing the edits to a plan. Initially, the tool 200
retrieves a plan selected by a user (step 7902). The user makes modifications to a task in the
plan, which are reflected in the task definition file by the tool 200 (step 7904). Next, the tool
200 saves the edits to the task definition file (step 7906). The tool 200 also includes a link to the
task definition file in the plan definition file and saves the plan definition file (step 7908). The

-42 -

10

15

20

25

30

WO 02/19272 PCT/US01/27173

next step performed by the tool 200 is to determine whether there are any mdrg_ changes to be
made to the plan (step 7910). If there are no more changes to be made, the procéss ends.
Otherwise, if there are more changes, the process continues at step 7904. The modifications to
the tasks may include changing the resource assigned to the task or changing the start time of the
task. The modifications to the tasks may be made before the activation of the plan.
Alternatively, modifications may be made to the tasks during the execution of the plan as long as
the task that is being modified has not yet become active.

In general, the storage of the complete version history of a workflow or a plan allows
methods and systems consistent with the present invention to sequentially step through the

versions, display the workflow or plan, and provide “video cassette recorder”-like navigation

- (e.g., pause/resume, play, férward, reverse, go to start, go to end) through the versions of the

workflow or plan. Forward implies going from an earlier version, forward in time, through
newer versions. Going backwards implies starting from, for example, the current version and
tracing back through the earlier versions; for example, to the initial version.

All available versions of a plan may be retrieved, and the user may choose the range of
versions desired. The system may be set up to retrieve all versions by default. The system may
also use a VCR-like mechanism to receive the indication of how the user wishes to step through
the versions. The system may then receives an indication from the user as to how to view the
animation (e.g., play forward from the beginning). When it is determined to display in the
forward mode, the method may retrieve the earliest version in the selected range and displaying
the plan. At a user-selectable rate (e.g., display one version every 5 seconds), the system may
retrieve the next version, apply the edits to the plan, and display the plan. The portions of the
plan may be visually distinctive as a function of frequency of change. For example, areas of the
plan that do not change from version to version may remain in a visually non-distinctive color.
Those areas that undergo the most change may be visually distinct (e.g., red or bolded or tagged
with a number indicating changes). Those areas that are “removed” may also be visually distinct
(e.g., grayed out, or faint or tagged with a small “removed” symbol).

Figs. 80A and B depict the process performed by the tool 200 to animate the changes to
the plan. Initially, the tool 200 retrieves the edits to the plan definition file (step 8002). In one
implementation, each edit may be stored in a separate file with a link to the plan definition file.
In another implementation, all edits may be stored in a single file with a link to the plan
definition file. In yet another implementation, all edits may be stored with the plan definition

file. The tool 200 also retrieves edits to the task definition files (step 8004). Similar to the edits
-43 -

10

15

20

25

30

WO 02/19272 PCT/US01/27173

to the plan definition file, each edit may be stored in a separate file with a link to the task
definition file. Alternatively, all of the edits may be stored in a single file with a link to the task
definition file, or all of the edits may be stored with the task definition file. Then, the user sets
the rate of the display (step 8006). Next, the tool 200 sets the time period equal to the reciprocal
of the rate (step 8008). The time period indicates the amount of time the tool 200 pauses
between the different displays of the animation. Thus, if the rate is 1/sec, the tool pauses 1 sec.
between each of the different displays of the animation. The enterprise affiliate may choose to
display the animation in the forward or reverse direction. Thus, the tool 200 determines whether
the user chose to display the animation in the forward mode (step 8010). If the tool 200
determines that the animation will be displayed in the forward mode, the tool 200 removes the
edits to the plan definition file (step 8012). The tool 200 also removes the edits to the task
definition files (step 8014). Next, the tool 200 displays the plan (step 8016). The tool 200 then
pauses for the time period (step 8018). After waiting the time period, the tool 200 selects the
first edit (step 8020). The next step performed by the tool 200 is to apply the edit (step 8022).
The tool 200 then displays the edited plan (step 8024). The tool 200 also determines whether
the enterprise affiliate has decided to adjust the rate of the display (step 8026). If the tool 200
receives a request from the user to adjust the rate of the display, the tool 200 resets the time
period to the reciprocal of the new rate (step 8028). Then, the tool 200 determines whether there
are any more edits (step 8030). If there are no more edits, the process ends. Otherwise, if there
are additional edits, the process continues at step 8018.

If the enterprise affiliate chose not to display the animation in the forward mode, the next
step performed by the tool 200 is to display the plan (step 8032 in Fig. 80B). Next, the tool 200
pauses for the time period (step 8034). The tool 200 then selects an edit (step 8036). After
selecting the edit, the tool 200 removes the edit (step 8038). The tool 200 then displays the
edited plan (step 8040). The next step performed by the tool 200 is to determine whether the
enterprise affiliate has requested an adjustment in the rate of display (step 8042). If the tool 200
determines that the enterprise affiliate requested an adjustment to the rate, the tool 200 resets the
time period to the reciprocal of the new rate (step 8044). The tool 200 then determines whether
there are any more edits (step 8046). If there are no more edits, the process ends. Otherwise, if
there are additional edits, the process continues at step 8034.

Similar to the plan discussed above, methods and systems consistent with the present
invention may be used to animate changes to a workflow. Fig. 81 depicts a flow diagram

illustrating an exemplary process for storing indications of edits to a workflow. Initially, the

-44 -

10

15

20

25

30

WO 02/19272 PCT/US01/27173

tool 200 retrieves a workflow (step 8102). For example, an enterprise affiliate inay choose the
workflow 8200 depicted in Fig. 82. The workflow includes a start element 8202 and an end
element 8204. The workflow depicted also includes “Get Parts™ activity 8206 followed by “L or
Rt Handed?” logic activity 8208. The activity definition file 8300 representing “Get Parts”
activity 8206 is depicted in Fig. 83. The default path, represented by a solid line out of the
decision block or logic activity 8208, leads to a “Right” activity 8214, which is followed by a
“Complete Assembly” activity 8216. The activity definition file 8400 representing “Right”
activity 8214 is depicted in Fig. 84, and the activity definition file 8500 representing “Complete
Assembly” activity 8216 is depicted in Fig. 85. The non-default path, represented by a dashed
line out of the decision block or logic activity 8208, leads to a “Left” activity 8210, followed by
a “Left Special” activity 8212, and the “Complete Assembly” activity 8216. The activity
definition file 8600 representing “Left” activity 8210 is depicted in Fig. 86, and the activity
definition file 8700 representing “Left Special” activity 8212 is depicted in Fig. 87. In response
to a modification made to the workflow, the tool 200 edits an activity in the workflow (step
8104). Thus, if the “Left Special” activity 8212 of workflow of Fig. 82 were removed, the
resulting workflow 8800 is depicted in Fig. 88. Because the “Left Special” activity 8212 was
between the “Left” activity 8210 and the “Complete Assembly” activity 8216, the activity

“definition files corresponding to these activities will be edited. The activity definition file

corresponding to the revised “Left” activity 8810 is depicted in Fig. 89, and the activity
definition file corresponding to the “Complete Assembly” activity 8814 is depicted in Fig. 90.
The two activity definition files corresponding to the “Left” activity before and after the removal
of the “Left Special” activity 8212 are depicted in Figs. 86 and 89, respectively. In particular,
the successor from the “Left” activity is changed from id 1524 (8602) to id 1526 (8902), which
corresponds to a change in successor from the “Left Special” activity 8702 to the “Complete
Assembly” activity 8502. Similarly, modification to the activity definition file for the
“Complete Assembly” activity indicates that the predecessor activity changed from the “Left
Special” activity 8504 in Fig. 85 to the “Left” activity 9002 in Fig. 90.

The next step performed by the tool 200 is to save the edits to the activity definition file
(step 8106). The tool 200 also saves the edits to the workflow definition file (step 8108). The
tool 200 then determines whether there are any more changes made to the workflow (step 8110).
If there are no more changes, the process ends. Otherwise, the process continues at step 8104.

In another implementation, the tool 200 allows a user to store the different plans created

from one workflow. Fig. 91 depicts a flow diagram illustrating an exemplary process for storing

-45 -

10

15

20

25

30

WO 02/19272 PCT/US01/27173

the different plans. Initially, the tool 200 creates a plan from the workflow (step 9102). The
tool 200 then stores the plan definition file (step 9104). The tool 200 creates a link from the
workflow definition file to the plan definition file and stores the edited workflow definition file
(step 9106). Next, the tool 200 creates a different plan from the workflow (step 9108). After
creating the different plan, the tool 200 stores the different plan definition file (step 9110). The
next step performed by the tool 200 is to include a link to the different plan definition file with
the workflow definition file and store the edited workflow definition file (step 9112). The tool
200 then determines whether to create more plans (step 9114). If the tool 200 determines that no
additional plans will be created, the process ends. Otherwise, the process continues at step 9108.

Figs. 92A and B depict the process performed by the tool 200 to animate the changes to
the workflow. Initially, the tool 200 retrieves the edits to the workflow definition file (step
9202). In one implementation, each edit may be stored in a separate file with a link to the
workflow definition file. In another implementation, all edits may be stored in a single file with
a link to the workflow definition file. In yet another implementation, all edits may be stored
with the workflow definition file. The tool 200 also retrieves edits to the activity definition files
(step 9204). Similar to the edits to the workflow definition file, each edit may be stored in a
separate file with a link to the activity definition file. Alternatively, all of the edits may be
stored in a single file with a link to the activity definition file, or all of the edits may be stored
with the activity definition file. Then, the user sets the rate of the display (step 9206). Next, the
tool 200 sets the time period equal to the reciprocal of the rate (step 9208). The time period
indicates the amount of time the tool 200 pauses between the different displays of the animation.
Thus, if the rate is 1/sec, the tool pauses 1 sec. between each of the different displays of the
animation. Similar to the above implementation, the enterprise affiliate may choose to display
the animation in the forward or reverse direction. Thus, the tool 200 determines whether the
user chose to display the animation in the forward mode (step 9210). If the tool 200 determines
that the animation will be displayed in the forward mode, the tool 200 removes the edits to the
workflow definition file (step 9212). The tool 200 also removes the edits to the activity
definition files (step 9214). Next, the tool 200 displays the workflow (step 9216). The tool 200
then pauses for the time period (step 9218). After waiting the time period, the tool 200 selects
the first edit (step 9220). The next step performed by the tool 200 is to apply the edit (step
9222). The tool 200 then displays the edited workflow (step 9224). The tool 200 also
determines whether the enterprise affiliate has decided to adjust the rate of the display (step
9226). If the tool 200 receives a request from the enterprise affiliate to adjust the rate, the tool

- 46 -

10

15

WO 02/19272 PCT/US01/27173

200 resets the time period to the reciprocal of the new rate (step 9228). Then, the tool 200
determines whether there are any more edits (step 9230). If there are no more edits, the process
ends. Otherwise, if there are additional edits, the process continues at step 9218.

If the enterprise affiliate chose not to display the animation in the forward mode, the next
step performed by the tool 200 is to display the plan (step 9232 in Fig. 92B). Next, the tool 200
pauses for the time period (step 9234). The tool 200 then selects an edit (step 9236). After
selecting the edit, the tool 200 removes the edit (step 9238). The tool 200 then displays the
edited workflow (step 9240). The next step performed by the tool 200 is to determine whether
the enterprise affiliate has requested an adjustment in the rate of display (step 9242). If the tool
200 determines that the enterprise affiliate requested an adjustment in the rate, the tool 200
resets the time period to the reciprocal of the new rate (step 9244). The tool 200 then determines
whether there are any more edits (step 9246). If there are no more edits, the process ends.
Otherwise, if there are additional edits, the process continues at step 9234.

While various embodiments of the present invention have been described, it will be
apparent to those of skill in the art that many more embodiments and implementations are
possible that are within the scope of this invention. Accordingly, the present invention is not to

be restricted except in light of the attached claims and their equivalents.

_47 -

10

15

20

25

WO 02/19272 ' PCT/US01/27173
CLAIMS

What is claimed is:

1. A method in a data processing system, comprising the steps of:
retrieving edits to a plan;
receiving an indication of a rate of display;
setting a time period equal to a reciprocal of the rate;
determining whether to display in a forward mode;
when it is determined to display in the forward mode,
removing the edits from the plan;
displaying the plan; and
for each of the edits,
applying the edit to the plan;
displaying the plan;
pausing for the time period;
determining whether to adjust the rate of the display; and
when it is determined that the rate of the display will be adjusted,
receiving an indication of a new rate of display; and
setting the time period equal to a reciprocal of the new rate; and
when it is determined not to display in the forward mode,
displaying the plan; and
for each of the edits,
removing the edit from the plan;
displaying the plan;
pausing for the time period;
determining whether to adjust the rate of the display; and
when it is determined that the rate of the display will be adjusted,
receiving an indication of the new rate of display; and

setting the time period equal to the reciprocal of the new rate.

-48 -

10

15

20

25

30

WO 02/19272

PCT/US01/27173

2. A method in a data processing system, comprising the steps of:

retrieving edits to a workflow;

receiving an indication of a rate of display;

setting a time period equal to a reciprocal of the rate;

determining whether to display in a forward mode;

when it is determined to display in the forward mode,

removing the edits from the workflow;

displaying the workflow; and
for each of the edits,

applying the edit to the workflow;

displaying the workflow;

pausing for the time period;

determining whether to adjust the rate of the display; and

when it is determined that the rate of the display will be adjusted,

receiving an indication of a new rate of display; and

setting the time period equal to a reciprocal of the new rate; and

when it is determined not to display in the forward mode,

displaying the workflow; and
for each of the edits,

removing the edit from the workflow;

displaying the workflow;

pausing for the time period;

determining whether to adjust the rate of the display; and

when it is determined that the rate of the display will be adjusted,

3. A method in a data processing system having versions of a plan, each reflecting,

receiving an indication of the new rate of display; and

setting the time period equal to the reciprocal of the new rate.

an instance in an edit history, the method comprising the steps of:

storing indications of the versions of the plan; and

displaying the versions of the plan in a sequential manner to simulate animation of the

edit history.

- 49 -

WO 02/19272 PCT/US01/27173
4, The method of claim 3, wherein the step of storing indications of the versions of
the plan comprises the steps of: |
storing versions of a task of the plan; and

creating a link from the plan to the versions of the task.

5 5. The method of claim 3, wherein the versions of the plan reflect an activation of
the plan.
6. The method of claim 5, wherein the plan comprises a plurality of tasks, and the

indications of the versions of the plan comprise the states of the tasks.

7. The method of claim 6, wherein the state comprises an unexecuted state.
10 8. The method of claim 6, wherein the state comprises an executing state.
9. The method of claim 6, wherein the state comprises an executed state.

10. The method of claim 3, wherein the indications of versions of the plan reflect a

modification to the plan.

11. The method of claim 3, wherein the versions of the plan are displayed in reverse

15 order.

12. The method of claim 3, wherein the display comprises a Gantt chart.

13. A method in a data processing system having versions of a workflow, each
reflecting an instance in an edit history, the method comprising the steps of:
storing indications of the versions of the workflow; and
20 displaying the versions of the workflow in a sequential manner to simulate animation of

the edit history.

-50-

10

15

20

25

WO 02/19272 PCT/US01/27173
14. The method of claim 13, wherein the step of stoﬁng indications of the versions of
the workflow comprises the steps of:
storing versions of an activity of the workflow; and

creating a link from the workflow to the versions of the activity.

15. The method of claim 13 wherein the indications of versions of the workflow

reflect a modification to the workflow.

16. The method of claim 13 wherein the versions of the workflow are displayed in

reverse order.
17. The method of claim 13 wherein the display comprises a flow diagram.

18. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the method comprising the steps of:
retrieving edits to a plan;
determining whether to display in a forward mode;
when it is determined to display in the forward mode,
removing the edits from the plan;
displaying the plan; and
for each of the edits,
applying the edit to the plan; and
displaying the plan; and
when it is determined not to display in the forward mode,
displaying the plan; and
for each of the edits,
removing the edit from the plan; and

displaying the plan.

19. The computer-readable medium of claim 18 wherein the plan comprises a

plurality of tasks and the edits to the plan reflect a state of each task in the plan.

-51-

10

15

20

25

WO 02/19272 ~ PCT/US01/27173
20. The computer-readable medium of claim 19 wherein the state comprises an

unexecuted state.

21. The computer-readable medium of claim 19 wherein the state comprises an

executing state.

22. The computer-readable medium of claim 19 wherein the state comprises an

executed state.

23. The computer-readable medium of claim 18 wherein the edits to the plan reflect a

modification to the plan.

24. The computer-readable medium of claim 18 wherein the plan is displayed in a

Gantt chart.

25. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the method comprising the steps of:
retrieving edits to a workflow;
determining whether to display in a forward mode;
when it is determined to display in the forward mode,
removing the edits from the workflow;
displaying the workflow; and
for each of the edits,
applying the edit to the workflow; and
displaying the workflow; and
when it is determined not to display in the forward mode,
displaying the workflow; and
for each of the edits,
removing the edit from the workflow; and

displaying the workflow.

-52-

WO 02/19272 ~ PCT/US01/27173

26. The computer-readable medium of claim 25 wherein the edits to the workflow

reflect a modification to the workflow.

27. The computer-readable medium of claim 25 wherein the workflow is displayed in

a flow diagram.

5 28. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the method comprising the steps of:
retrieving a plurality of plans generated from a workflow; and
displaying each of the plans in a sequential manner to simulate the generation of the

plans from the workflow.

10 29. The computer-readable medium of claim 28, further comprising the steps of:
} receiving an indication of a rate of display;
setting a time period equal to a reciprocal of the rate; and

pausing for the time period before displaying each of the plans.

30. The computer-readable medium of claim 28, wherein the plans are displayed in

15 reverse order.

31. The computer-readable medium of claim 28 wherein the display comprises a

Gantt chart.

-53-

WO 02/19272 PCT/US01/27173

32. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system comprising a plan and the
plan comprising a plurality of tasks, the method comprising the steps of:

displaying a graphical representation of the plan, wherein the graphical representation

5 has portions that correspond to the tasks;

retrieving edits to the plan, wherein each of the edits modifies a state of one of the

plurality of tasks; and

for each of the edits,

applying the edit to the corresponding task of the plan; and
10 displaying the portion of the graphical representation that corresponds to the

edited task in a visually distinctive manner.

33. The computer-readable medium of claim 32, wherein the state comprises an

unexecuted state.

34. The computer-readable medium of claim 32, wherein the state comprises an

15 executing state.

35. The computer-readable medium of claim 32, wherein the state comprises an

executed state.

36. The computer-readable medium of claim 32, wherein the graphical display

comprises a Gantt chart.

20 37. The computer-readable medium of claim 32, wherein the method further
comprises the steps of:
receiving an indication of a rate of display;
setting a time period equal to a reciprocal of the rate; and
pausing for the time period before applying the edit to the corresponding task of the plan
25 for each of the edits.

-54 .

10

15

20

25

WO 02/19272 ‘ PCT/US01/27173

38. A data processing system comprising:

a secondary storage device further comprising a workflow;

a memory device further comprising a program that retrieves the workflow from the
secondary storage device, that creates versions of the workflow, wherein each
version reflects an instance in an edit history, that stores the versions of the
workflow on the secondary storage device, and that displays the versions of the
workflow in a sequential manner to simulate animation of the edit history; and

a processor for running the program.

39. The data processing system of claim 38, wherein the program displays the

versions of the workflow in reverse order.

40. The data processing system of claim 38, wherein the program displays the

versions of the workflow as flow diagrams.

41, A data processing system comprising:

a secondary storage device further comprising a plan;

a memory device further comprising a program that retrieves the plan from the secondary
storage device, that creates versions of the plan, wherein each version reflects an
instance in an edit history, that stores the versions of the plan on the secondary
storage device, and that displays the versions of the plan in a sequential manner
to simulate animation of the edit history; and

a processor for running the program.

42, The data processing system of claim 41, wherein the program displays the

versions of the plan in reverse order.

43. The data processing system of claim 41, wherein the program displays the

versions of the plan as Gantt charts.

-55-

WO 02/19272 . PCT/US0127173
44. - A system having versions of a plan, each reflecting an instance in an edit history,
the system comprising:
means for storing indications of the versions of the plan; and
means for displaying the versions of the plan in a sequential manner to simulate

animation of the edit history.

-56-

‘WO002/19272 PCT/US01/27173
1/59
102n\)
100 102a\ ‘
\ Data Processing Computer
110 N
116 N
Memory
Secondary
11 Storage
13£ Client Interface Device
P&P Modules
JAVA
Virtual Machine
138- 136
I/Q Processor
Device
122 =" \ 128
108
104
106 ~N N
114 Data Processing Computer Data Processing Computer
Memory 118
Tool 120 112 ~ 3
Server 146 -
i Memory Secondary
A WebDAV Secondary Storage
144 Proxy Storage WebDAV DeViCe
Device / il Server
Management | 140 WebDAV
Storage
Modules e
JAVA 148 142
Virtual Machine 132
\150 4
/O Vo Processor
: Processor Device .
Device 126 ~
A 124 130

WO 02/19272

PCT/US01/27173
FIG. 2 258 116
- -
134 200 [
N S .| Storage| -
204_‘ Client Interface | VFS |,
Module Loader
s e —
€s0 Process
Manager P’r\czject Plan Designer
Module anager
Module Moduf
1\36< /214 2'6 }‘_(WF2
Task Tracker Module
Task Manager View Activity 1/O
Condition
- — 208 | Designer
Module
N
108
__ L_Y
A
108
: Tt 144
WebDAV /_146 L
Tool Proxy
Server | (serviet) 016
WebDAV ‘28\., | DAP Module |~
SERVER]mport Loader 292
User Workflow Engine
Authorization
M 8/ ! Mggi?elo Project Plan
Management
Resource/Role Module 224 > 148
_—+ Management)
220 Module Project Task
Management
Module 226
_/
200

[]

WO 02/19272 PCT/US01/27173

3/59

FIG. 3

Begin)

Y

Create or Retrieve Workflow /

302

i 304
Display Workflow /

306

A\ 4
Create Plan from Workflow /

308

Display Plan

y 310
Activate Plan /

L 312

Manage Execution of Activated Plan /

Y 314

Modify Display of Plan as /
Each Task is Executed

316

N Execution of
Plan Complete?

WO 02/19272] PCT/US01/27173

4/59
402 400
R Artifact)
Imac
step ! o " (State 1)
412~
= Artifact
ITac
Step2 f-——--- > >41O
Pe (State 2)
414~
__________ N Artifact
(Complete)
404 iy
416~
502

' 500
506 /

514
/

FIG. 5

512

516

WO 02/19272 PCT/US01/27173

5/59
600
‘/602 /
606
Get Parts
608
L or Rt
anded?
618
' 616
./
612
614 P10
Right
v 620

< Complete Assemb@J

604
N

WO 02/19272 PCT/US01/27173

6/59

Project Managerj’fﬁbﬁ]eétﬁ%}”nﬁj:éé: o

< l tlame
E x & Serial Project |
| =stni
- , == Gtep 2
704
812 810 ,814 818 ,816 ,822 820
Mame ag 1, 200 / | g 2, 2001 (| Sug 3, 2004 (
: , 5, E I PO IR NN PO -
i%a Serial And Parallel g
:::gerial 1 ' (806 ;’800
=3 Parallel 1 :
=gerial 2 4@]
= Parallel 2 (. (
808 804

900

e Logic Branch Project

== et Farts

£al Or Rt Handed? ;

=Right o

enComplete Assembly ‘ - -]

906 908

WO 02/19272 PCT/US01/27173

7/59

‘Project Manager

24

N s g 2,200

ST i PBL L1
& f %= Serial Project

b c=stept

| eastep2

Project Manager { Project Gre .
o~ N rg .o -

{ Al 22001
7 050

- Pame - :
O IS 8

{

[N

P
=

% Serial Project

1102 1104

‘Froject Marager | Project Groukf.'g“[

3

© (aug 2, 2000
T 08,

. Mame

1202

WO 02/19272

e I‘Jame

ru Senal .ﬂ.nd Parallel
' eaGerial 1)
2 Parallel 1
== Serial 2
e pParallel 2

l-lame -

"}u Serlal .ﬂmi Parallel
e Gerial 1

i e=mParallel

| = Gerial 2

wz Parallel 2

l MName

T Serlal And Parallel
3 Senal 1
== Parallel 1
w2 Gerial 2
| sParallel 2

" = Parallel 1 “
i = 8erial 2
i z—'lF'arallelz

PCT/US01/27173
8/59
FIG. 13
tag 41,2001 . N.].ﬂug 3,200
rr’:‘(!l WIIIII'%I'&XI‘ 1 llﬁl[l||l2lll
T
& 1300
= |
=3
. i
1302
FlG. 14
. lm 2001 Al Zro0ot:. . &g 3, 20005 . 1400
gine AN R ;;,9&,.,3.2,.“??;
| |
é?.
1402 (~1406
g1, 2001 | Aug 2, 2001 } Auig 3, 2001
§f> xn‘?'z'ul%fz._HlIea;;gf?‘.llil?lgzllll]?xsu:lu 08 1
e
#
1502 1506 1508
FIG. 16
1600
1, 21:101 ““|.f'-\l.lg“2,2l301) ’ |Allg 3|2|:|cl1::~" B, e

WO 02/19272 PCT/US01/27173

FIG.17 1700

7o Logic Branch Project
== Get Parts

=L Or Rt Handed? b
eaRight) _ | ﬁ

= Cqmpleta Assenthly

1800

e Logic Branch Project
=1 Get Parts
@al O Rt Handed?
== Right

- = CompleteAssembly

1900

%= Logic Branch Project
= Get Parts 4
=L Or Rt Handed?
== Right R,

== Complete Agsermbly < Ul

2000

% Laogic Branch Project
=1 Get Parts o
&3l Or Rt Handed? i

‘vh':ﬁléight‘w T e e

== Complete Assembly -

%= Logic Branch Project

L Get Parte o et et e
¢l OrRtHanded?
== Right

. = Complets Asgembly-

WO 02/19272

% Logic Branch Project

Lo p=bo
e= Right = Eﬁ

9o Logic Branch Project

e Logic Branch
= Get Parts
2al Or RtHanded?
3 Left ‘
| =oLefiSpectal |
= Gomplste Assambly

== Complete Assernbly. .~]

PCT/US01/27173

10/59

FIG. 22 2200

== Get Parts

=a Complete Assermbly Do — m—

2300

FIG. 23

esCetPats
@=L Or Rt Handed?
== Right

1=
& 0 2306

i+

b

2400

WO 02/19272

Se Logic Branch
=3 Get Parts
2L Or Rt Handed?
== Left
e] eft Special
== Cormplete Assembly

9o Logic Branch
e=GetPats
22 0Or Rt Handed?
==Y
=3 eft Special
=3 Cornplete Assembly

= Logic Branch
A"’——”{_GetF'aﬂs ’

enLOrptbandeds

=left
= LeﬂSpeciaI 4

t":'Con‘mi'eteAsserhiﬁlyv o

11/59

FIG. 25

R e

PCT/US01/27173

2500

ol e —
1 2502
ﬂfﬁégg:::25o4
&

i W ™ 2506
‘ PRl 508

FIG. 26

w0 e

e 2604

b 2606
L 2608

;§?600

2700

WO 02/19272

FIG. 28A

Y

2804

Receive Identification

of Workflow Group

2806, _|

/

Retrieve
Workflow Group

12/59

Use
Existing
Workflow
Group?

Y

2814

\

Receive |dentification
of Workflow

2816

4

Retrieve
Workflow

Use
Existing
Workflow?

Create Workflow j

in storage

PCT/US01/27173
2802
N
Y
Receive Name of /2808
Workflow Group
; 2810
Create Workflow | /
Group in storage
2812
' 2818
Receive Name |/
of Workflow
. 2820

WO 02/19272) PCT/US01/27173
v AT Abar B e s il £ TE VAPLO | PRTZRSE LR PR o
13/59
2822
Receive Indication of | /
Type of Activity
Y
Receive Name |/ 2824
of Activity
/
Receive Indication of Role | / 2826
Responsible for Activity
2828
Any
Predecessor Y ¢ 2830
Receive Indication of
Predecessor Activities
|
2832

Successor Y 2834

Activities?

l

Receive Indication of
Successor Activities

|

2838

!

Receive Indication
of On Entry Scripts

|

1 sed!

WO 02/19272

PCT/US01/27173

14/59

FIG. 28C

Y

2842
Receive Indication
of On Exit Scripts

Any Input

2846

Conditions?

A

Receive Input
Conditions

|

2848

Any Output

Y

Conditions?

2850

Y

Receive Output
Conditions

Any More

Activities?

Receive Indication of
Starting Point for Workflow

Y

Receive Indication of
End Point for Workflow

End

WO 02/19272 PCT/US01/27173

15/59

/2900 FIG. 29

R e '

[l Releass ‘
] 0p
T . 2006 (207

Process Designer

2908

Task T racker

hlornertun pail

el

-

3002

WO 02/19272

PCT/US01/27173
16/59
o . 3100
BF bt ocalhost 8080~ greE T e
3102 3 [Release | e unpe E ;
[‘_‘] Release Origin F‘g
" Mews Process Group 3104
3106 - Mgt Proces E
Delete %
~— Refrezh “
Folders Structure Designer...
/3200)
L] | 3‘3 3202

] name for ne:. F'rucam.)

v Slmple Parallel

; Can::el SR 5

WO 02/19272 PCT/US01/27173

17/59

FIG. 33A

3300

Z

3304
<?xml version="1m9«choding ="UTF-8" ?>
. <process group=""nameg"Logic Branch Project">
3358 <descr|pt10n /> 3302 3336

o ame~"AssembIer" /> 5/
. <activity id="10" name="Get Parts" responsiblerole="Assembler">

<description /> *\ 3322

<defduration units="units" value="1" />

<predecessors_id id="11" /3360 3334

<successors_id id="1522" /> 3364

<out_aritfacts id="1527" /> — 3301 3348
</activity> 3370 (

(115 bler">

. <activity id="1523" names"Left" responsiblerole="Assem

3306

<description /> k

<defduration units="units" value="1" /> 3346

<predecessors_id id="1522" />_____

<successors_id id="1524" /> 3382

<out_aritfacts id="1529" /> 3352
</activity> [

{ <activity id="1524" name="Left Special" responsiblerole="Assembler">

3312

<description />

<defduration units="units" va:?ue—"i" /> \
<predecessors_jd id="1523" /> 3350
<successors_id id="1526" /> 3344

<out_aritfacts id="1531" />
</activity> 3372
b

« <activity id="1525" namez"Right" responsiblerole="Assem

3314

ler''>

<description /> 3326 K
<defduration units="units" value="1" />
<predecessors_jd id="1522" />____ 33803342
<successors_id id="1526" />

<out_aritfacts id="1533" I’ 3305 3356

3310

</activity> (
. <activity id="1526" name="Complete Assembly" responsiblerole="Assembler">

<description /> 3332
<defduration units="units" value="1" /> 3354
~ <onEntry>
_ <I[CDATA[- 3388
3384 sendMail(getOwnerEmail(), "Debugging period started”,
"All the SCR files should be placed into the '%SCR_FOLDER%' folder");
11>
</onEntry>
3316 .. <OnExit>
f - <I[CDATA[~ 3390
inish

3386\ sendMail(getOwnerEmail(), "Debugging finished. No more SCRs found", "");
11>

</onExit>

<predecessors_id id="1524" />

<predecessors_id id="1525" />

<successors_id id="12" />

<out_aritfacts id="1535" />
</activity>

WO 02/19272 7 PCT/US01/27173

3394

18/59

FIG. 33B

/3392 /—3393

- <artifact id="1527" identity="linkable1" name="Document is INITIAL">

<description>The condition becomes true when the %Document®% artifact gets the
INITIAL state. To make this condition valid you should define the %Document%
parameter and optionally define the document template and the application to
open the document.</description>
<type>linkable</type>
<link link="%Document%" />
<state>INITIAL</state>
<event id="1528" /> 3395
</artifact>
<artifact id="1529" identity="linkable1" name="Document is LEFT">
<description>The condition becomes true when the %Document% artifact gets the
LEFT state. To make this condition valid you should define the %Document%
parameter and optionally define the document template and the application to
open the document.</description>
<type>linkable</type>
<link link="%Document®%" />

<state>LEFT</state>
<event id="1530" />
</artifact>

<artifact id="1531" identity="linkable1" name="Document is LEFT SPECIAL">
<description>The condition becomes true when the %Document% artifact gets the
LEFT SPECIAL state. To make this condition valid you should define the
9% Document% parameter and optionally define the document template and the
application to open the document.</description>
<type>linkable</type>
<link link="%Document%" />
<state>LEFT SPECIAL</state>
<event id="1532" />
</artifact> _—3397 /‘ 3398 _
<artifact id=<"1533" identity="linkablel" name="Document is RIGHT" >
<description>The condition becomes true when the %Document% artifact gets the
RIGHT state. To make this condition valid you should define the %Document%
parameter and optionally define the document template and the application to
open the document.</description>
<type>linkable</type>
<link link="%Document%" />

<state>RIGHT</state>
<event id="1534" /> 3399
</artifact>

<artifact id="1535" identity="linkablel1" name="Document is APPROVED">
<description>The condition becomes true when the %Document% artifact gets the
APPROVED state. To make this condition valid you should define the
%Document% parameter and optionally define the document template and the
application to open the document.</description>
<type>linkable</type>
<link link="%Document%" />
<state>APPROVED</state>
<event id="1536" />
</artifact>

WO 02/19272 PCT/US01/27173

19/59

FIG. 33C

3366 3340
- <logic id="1522" name="L or Rt Handed?" responsiblerole="AsseGbler”>

<description />
- <script> 3324 3338
- <I[CDATA[
approved()
11>
3308 </script>
<predecessors_id id="10" />—— 3368
<other_path_id id="1525" />———3370
<other_path_id id="1523" />——-3374
<defpath_id id="1525" />———— 3378
</logic>
<syncbar id="11">—— 3362
<description />

H

3318 <startBar>T</startBar>
<successors_id id="10" />
</syncbar>

. <syncbar id="12">
<description />
3320 <endBar>T</endBar>
<predecessors_id id="1526" />
</syncbar>
. <event id="1528" name="??Event_name">
<description>??Event_desc</description>
<type>REQUEST-GUARD</type>
<request>PROPPATCH</request>
</event>
. <event id="1530" name="??Event_name">
<description>??Event_desc</description>
<type>REQUEST-GUARD</type>
<request>PROPPATCH</request>
</event>
- <event id="1532" name="??Event_name">
<description>??Event_desc</description>
<type>REQUEST-GUARD</type>
<request>PROPPATCH</request>
</event>
. <event id="1534" name="??Event_name">
<description>??Event_desc</description>
<type>REQUEST-GUARD</type>
<request>PROPPATCH</request>
</event>
. <event id="1536" name="??Event_name">
<description>??Event_desc</description>
<type>REQUEST-GUARD</type>
<request>PROPPATCH</request>
</event>
</process>

WO 02/19272

1

URle Edt View Process

e EE]

weiag

&

Frocess Desuner |

Taak Trsicker

T Momeetum bl

" Report

L
jk
i

Sadminiztrative

vl

[+ Process Designer

Hitp:itocalhost: 8080Avehdsy
i| 3 Release
{1 & Release Original

'aa, Build Release 34 1 6____

Code Development
B 5CR
% Spece Development

. '%, Test Software Developmert Frag
| & Samples

&, simplet 341 8’

'% Sitnpshz Paraliel
3420
3424

20/59

PCT/US01/27173

o)

vale e

WO 02/19272 PCT/US01/27173

21/59

Input role name . .

Project Manager]

3502 i

oK. || Cancel | -

B | e |

3504

WO 02/19272 PCT/US01/27173

22/59

“Choose aﬂifa&tt'}pe

3602

) {gmocument nrlun’r .

3606<

3604

v Specify the name, ik paramster and description for r:ondﬁ?on, -

Conelitiors name istnry Carl— 3704 ‘

Link parameter %C TORY_CARD 3706 i E
r:ﬂs pﬂm ‘iThe .,tory I8 us@mrﬂtem hy 2omeane in Buumess V
3708

v‘ Speify whento‘-:ﬁ&f;l{'thézbonditiqn.

D Wit into document
3710

i Put docutment irrtorepo rinrv- —// SRR

 Specify possible states of ducument

Statps

DRAFT
3722< |aprroveD

L upemfy URL fur template dacument and apphcaﬁa 1t

T:mphte r,!oc Lim:ni

. A;aplxﬁatign tcr £

3702

WO 02/19272 PCT/US01/27173

23/59

v Specify the name and description for condition.

Cancition name 3804
, DB”C&‘XN Tea’m if the par@ wmp\e’tmn iz 100%
3806

W SPF'DIf'v,-‘ J!."I"lun m chech hF concirtlon :

[+ “haulutptlme_/’/ 381 O
3808 1 [} Perind — 381 2

E:I riy bty reguest

120 Url change ! V 381 4 -
Sl walues for these rtemﬁ
¥ Define seript pafﬁf‘f‘l&,’fg‘"@ and Gaﬁéﬁt" 3822 -

MName ! | U nays L Abd

Soript »;dnterﬂ getPercent!==1 U[J;l

WO 02/19272 PCT/US01/27173

24/59

FIG. 39 /3900

function checking)

var meg ="
var SCRFolder = new URL{"%SCR_FOLDERS");
it ISCRFolder existal) || ISCRF older iaFolder()) return falss,
var directoryList = SCRFolder getChildren();
1 for (i=0; i < directoryListlength ; i++)
R
1 var nextFile = directoryList(i];
if [nextFile checkProperty(™workflow", "status", ™)

{ .

nesdFile setProperty(Mworkfloe®, “status”, Minwvork™y,
var processReference = getURL() .getProperty("FROPERTIES", "ProcessReference');

genersteiznReguest(open”, processReference, "SCR", nexdFile path),
zendbsil(getOwnerEmail), "Mesy SCR generated: " + nestFile.url, ™

} I ENDIF
} I ENDFOR
return getPercent(y == 100;

4012

i
- checking();
Inzert function Ok - Cancal
v
R - Yalue
' name . iSpecs Development 4002
“duaion- i
oo [yl - 4004
farstion formet ,1) R
responsible role “Project Wanager ._1;1 4006
onEntry script Ei 4008
onExt script sendMai(getOwnerEmail(), setProject . S 4010
subprocess URL “?ocgzafsg‘i}mupi{ &pe‘.c';s_De*x'éInpmer‘fmm\

WO 02/19272 PCT/US01/27173

25/59

FIG. 41A

(Begin)

/

4102
Receive Indication /
of Plan Name

i 4104

Receive indication
of Working Hours

Y 4106

Receive Indication of /

Start Date and Time

Y

Retrieve |/

Activity

4108

* 4110
Start Time of Task= |/

Start Date and Time

Y

o

WO 02/19272 PCT/US01/27173

26/59

FIG. 41B

EA—

A

4112
Set End Time of Task Based on Start | /

Time, Duration, and Working Hours

Y

Receive Indication of | /
Resource Assigned to Task

4114

4116
Any More N
Activities?
Y 4118
. L/
Retrieve
Activity *
End

Y

Start Time of Task = End ’/4120

Time of Predecessor Task

WO 02/19272 PCT/US01/27173

27159

B Hitp: pocsih oSt 8080NTERASY
'%, ProjectGroupt
'%, ProjectGroup2

4202

r:. Pravious i

i ‘(.»éancetlh oy -

FIG. 43

v Spécliy.a project grougfar speweprolect

© ¢ {3 hitp:Mocalhost: 3080Meebday
- % ProjectGravpd
&, ProjectGroup?
%, Software Projects:

FIG. 44

¥ Sperify the name ofithe naw project for the.qroup Software Prejs_éls'

Project name: ~1HelInWorld &pp T

4402

WO 02/19272 PCT/US01/27173

28/59

FIG. 45

v Spécify imetshle for projéct \ v

~elact Tirrﬁf%ﬁzrﬁplai: é/ 4520

i# Standard Timetsble . 1) Intenaive Timetabl .

,{}245014@/4518 . o -
10 4% gty a5 A

Syiorking Dsys -~ 2y Yborking Hours ™

4502

Bunday -

honday - ’
o Tuesday.
4506 ¢ | wednesday
A Thursday

: Frid&? -
o etindsy

FIG. 46 f4600 |

v Specliy stert anadinish ostes of the project .
> i —4602

Start date pmmdddivy ‘~I?)2'f2001 9aM /';ﬁlﬁ
« o S— 4604
Firish dete’ (rmidicliyy), . (8102001 5P W

[EditVork Calendr... |

WO 02/19272 PCT/US01/27173

29/59

FIG. 47
4700

s

<?xml version="1.0" encoding="UTF-8" ?>
- <process group="" name="Serial & Parallel">
<description />
<role name="Worker" />
- <activity id="10" name="Serial 1" responsiblerole="Worker">
<description />
<defduration units="hours" value="9" />———— 4704
<predecessors_id id="11" />
<successors_id id="1522" />
</activity>
- <activity id="1523" name="Parallel 1" responsiblerole="Worker">
<description />
<defduration units="hours" value="24" />———— 4710
<predecessors_id id="1522" />
<successors_id id="1525" />
</activity>

{
- <activity id="1524" name="Parallel 2" responsiblerole="Worker">
<description />

4702

4706

it

<defduration units="hours" value="24" />———— 4712
<predecessors_id id="1522" />
<successors_id id="1525" />
< /activity>
<activity id="1526" name="Serial 2" responsiblerole="Worker">
<description />
<defduration units="hours" value="24" /[>—— 4716
<predecessors_id id="1525" />
<successors_id id="12" />
</activity>
- <synchar id="11">
<description />
<startBar>T</startBar>
<successors_id id="10" />
</syncbar>
<syncbar id="12">
<description />
<endBar>T</endBar>
<predecessors_id id="1526" />
</syncbar>
<syncbar id="1522" name="SyncBarH1">
<description />
<predecessors_id id="10" />
<successors_id id="1523" />
<successors_id id="1524" />
</syncbar>
<syncbar id="1525" name="SyncBarH2">
<description />
<predecessors_id id="1523" />
<predecessors_id id="1524" />
<successors_id id="1526" />
</syncbar>
</process>

4708

it

4714

it

2

WO 02/19272 PCT/US01/27173

30/59

FIG. 48 4800

<?xm} version="1.0" encoding="UTF-8" 7> ;
- <A:plan name="Serial_And_Parallel" userid="JK" xmins:A="wsorkflow">
~ <A:description>
- <I[CDATA[
No Description
11>
</A:description>
- <A:task activityID="10" caption="Serial 1"

link="Sample_Project_Plans/Serial_And_Parallel/Task_2.xml" name="Task_2"
owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Processil.xml"
type="general" userid="JK">

<A:start>2001 8 1 9</A:start>———4804

<A:finish>2001 8 1 18</A:finish> 4806

<A:supertask name="Task_1" />

<A:user>JK</A:user>

<A:successor name="Task_3" />

<A:successor name="Task_4" />

</A:task>
-~ <A:task activityID="1523" caption="Parallel 1"

link="Sample_Project_Plans/Serial_And_Parallel/Task_3.xml" name="Task_3"
owner="Worker"

processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Processl.xml"
<A:start>2001 8 1 18</A:start>———4812

4802

type="general" userid="JK">
4808 <A:finish>2001 8 2 18</A:finish>——/4816
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:predecessor name="Task_2" />
<A:successor name="Task_5" />
</A:task>
-~ <A:task activityID="1524" caption="Parallel 2"
link="Sample_Project_Plans/Serial_And_Parallel/Task_4.xml" name="Task_4"
owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Process1.xml"
type="general" userid="JK">
<A:start>2001 8 1 18</A:start>——— 4814
<A:finish>2001 8 2 18</A: fmlsh>———481 8
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:predecessor name="Task_2" />
<A:successor name="Task_5" />
</A:task>

. <A:task activityID="1526" caption="Serial 2"
link="Sample_Project_Plans/Serial_And_Parallel/Task_5.xml" name="Task_5"
owner="Worker"

4822
4820

4810

type="general" userid="JK">
<A:start>2001 8 2 18</A:start>
<A:finish>2001 8 3 18</A:finish>
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:predecessor name="Task_3" />
<A:predecessor name="Task_4" />
</A:task>
- <A:task activityID="NONE" caption="Serial And Parallel"
link="Sample_Project_Plans/Serial_And_Parallel/Task_1.xml" name="Tasl_1"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Processi.xml"
type="general" userid="JK">
<A:start>2001 8 1 8</A:start>
<A:finish>2001 8 3 18</A:finish>
<A:user>JK</A:user>
<A:subtask name="Task_2" />

processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Process1.xml"
4824

WO 02/19272

Al uzere

" Mame

4902<

Jon Kern

pmmy H.air e e i e

31/59

. Assigned usets

PCT/US01/27173

| e 44912

 [PoinyHair .

49004

Ok ; } " Cancel .

N

FIG. 50

5000
&

" Hame

name
doreion _
start‘ dete “
ﬁnish ﬂate

priority:

responsible role
responsible user -

awners .

onriry serlpt)

onExit sc;ript :

17

5002
5004

lsmr2001 5PM

5006
5008

81012001 4FM

5010

iProject Manf—ager " - !

ey v 8 e
iRk Hait PHL

5012
5014

 [Hormal

5016

sendiail{getOwnerEmail-

i

5018

ot

5020

WO 02/19272 PCT/US01/27173

32/59

FIG. 51

5114 5100

0 5104 16
/51 /51/ 5122512?5
g1, 200 // ?f-ugz 200 4Auga.@1 /
7 ot BBl

Mlenme

—\7'}(

9o Serial And Parallel
5102— o serial
5110— =Parallel1

5118 = Serial2
5112— ==Parallel 2

a0 &

FLG. 52 0

5202

927 valdate Pro
L W#ﬁ{% ject
‘Repository...

%A init Proje

Froperties..,
Farameters...

Felders Structure:Designer
Assign Users for Project

 Export Prdjet;l..u .
o V]mpor{ P‘r’o]e“ét

Create Bese) Pmc.ess
Create Process Revisian for TasP *

WO 02/19272

FIG. 53

33/59

PCT/US01/27173

Receive Request to
Add New Resource

5302

mport Resource

y

Receive LDAP
Access Information

Y

Retrieve Resource
Information using LDAP
Access Information

Information?

5308

5310

4

5306 K Receive Resource
Information from
Enterprise Affiliate

y

Store Resource
Information

5312

End

WO 02/19272 PCT/US01/27173

34/59

FIG. 54

File Miew ©
[Adn

e M L
TR L. Wiew propettes
' @ o External s'fnchronizatiqn':‘. - ,
| oed Es.lbe Developer
Builderbergy

“““ Jon

name
A emgilv @tpgn‘sthavicwnﬁ.cpm J k
- 5410

“Momentum Mail 1t

mtest
nhair) A
: qaman; S

Mexlvoy

Afminiztratve

.

5406

WO 02/19272 PCT/US01/27173

35/59

FIG. 55

fhewes|

[Lnap Se'r'var-y—'55‘04 : ifrodcn
5506 e
“‘}ou LOLAL LISERS, DL-amazDgDﬂ DC=com Il

5502 ‘mepoﬁ'

Peaple DM______

r“ uea paaaword REI L T, g R
| “»‘ecurrt m!—5510] I
Paewxmd___m 5512 ! N . _ , |

5514 h@wn"fj E—

Logm glis

) ;E'-.dd J{ " Remove JE . S’a&seﬁ : H - Close V H S?HDNDF{IIE

WO 02/19272 PCT/US01/27173

36/59

FIG. 56 5600

<?xml version="1.0" encoding="UTF-8" ?>
- <Users>

<user> 5610
<id>PH</id>
<name>Pointy Hair</name>~/
5602 <email>ph@company.com</email > 5612
<password>ZGV364==</password> .
url= “Software_Projects/Hello-World_App/Users_1.xml
</user>
- <user>
<id>MQ</id>
<name>Mister Quality</name>
<email>mq@company.com</email>
<password>ZGV636==</password>
url= “Software_Projects/Hello-World_App/Users_1.xml”
</user>

5604{
- <user>
<id>MB</id>
<name>Mister Build</name>
<email>mb@company.com</email>
<password>ZGV835==</password>
url= “Software_Projects/Hello-World_App/Users_1.xml"
</user>
- <user>
<id>MT</id>
<name>Mister Tee</name>
<email>mt@company.com</email>
<password>ZGV470==</password>
url= “Software_Projects/Hello-World_App/Users_1.xml”
</user>
</users>

5606

5608

WO 02/19272

37/59

FIG. 57A

Current Time
& Date > Start
Time & Date?

Y

A

5704

Select |
Task

s There
an Input
Condition?

5708

[nput
Condition

Mey

A

Store Actual|
Start Time

5710

Yy -

X

PCT/US01/27173

WO 02/19272 PCT/US01/27173

38/59

FIG. 57B

5720

Is There an On-

it Script?
5712 Exit Scrip

Is There an On-

Entry Script?
Perform On-Exit
Script
Perform On-Entry
Script
\
5724
Store Actual|
Y End Time

5716
Is The}< \
an Output

Condition?

Y

5718

Output
Condition
Met?

WO 02/19272 PCT/US01/27173

39/59
FIG. 58

5800

7

5806 5808 5816 5814 5822 95820

5804
Mame N ng'(// :kll&u-g&

|

0p; 2,200
EOUOPIR T | RN ST
Jo Serial And Parallel L
9802 - =senat ¥
5810 —+ =Paralelt | =
5818 ———— ==8erial2 % AAAAA
5812 ——- =Fanalel2] |

WO 02/19272 PCT/US01/27173

40/59

5900

FIG. 59

<?xml version="1.0" encoding="UTF-8" ?>
- <A:plan name="Serial_And_Parallel" userid="JK" xmins:A="workflow">
~ <A:description>
- <I[CDATA[
No Description
11>
</A:description>
- <A:task activityID="10" caption="Serial 1"
link="Sample_Project_Plans/Serial_And_Parallel/Task_2.xml" name="Task_2"
owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Processl.xml"
type="general" userid="JK">
<A:start>2001 8 1 8</A:start>
<A:finish>2001 8 1 18</A:finish>
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:successor name="Task_3" />
<A:successor name="Task_4" />
</A:task>
- <A:task activityID="1523" caption="Parallel 1"
link="Sample_Project_Plans/Serial_And_Parallel/Task_3.xml" name="Task_3"
owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Processi.xml"
type="general" userid="JK">
<A:start>2001 8 1 18</A:start>
<A:finish>2001 8 2 18</A:finish>
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:predecessor name="Task_2" />
<A:successor name="Task_5" />
</A:task>
- <A:task activityID="1524" caption="Parallel 2"
link="Sample_Project_Plans/Serial_And_Parallel/Task_4.xml" name="Task_4"
owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Processl.xml"
type="general" userid="JK">
<A:start>2001 8 1 18</A:start>
<A:finish>2001 8 2 18</A:finish>
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:predecessor name="Task_2" />
<A:successor hame="Task_5" />
</A:task>
- <A:task activityID="1526" caption="Serial 2"
link="Sample_Project_Plans/Serial_And_Parallel/Task_5.xml" name="Task_5"
owner="Worker"
processURL="http://localhost:8080/webdav/ProcessGroup2/Processl.xmi"
type="general" userid="JK">
<A:start>2001 8 2 18</A:start>
<A:finish>2001 8 3 18</A:finish>
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:predecessor name="Task_3" />
<A:predecessor name="Task_4" />
</A:task>
- <A:task activityID="NONE" caption="Serial And Parallel"
link="Sample_Project_Plans/Serial_And_Parallel/Task_1.xml" name="Task_1"
processURL="http:// localhost:8080/webdav/ProcessGroup2/Processl.xml!"
type="general" userid="JK">
<A:start>2001 8 1 8</A:start>
<A:finish>2001 8 3 18</A:finish>
<A:user>JK</A:user>
<A:subtask name="Task_2" />

WO 02/19272 PCT/US01/27173

41/59
FIG. 60 6000
| C o Neme 91,2001 ‘L lﬂugz'. 2001, . leugd oot

i

6002 |3 Serial And Parallel (not st

o= Serial 1) B ’% i
=]
=

b

DE

Lkl

? I
ll]%lll%lﬁl” EH!H

= Patrallel i
= Serial; A
e Parallgl 2

¢

6004

6100

FIG.61 =

<?xml version="1.0" encoding="UTF-8" ?>
- <A:FilePropertyMap xmins:A="adrenalin:">
<A:factstart xmins:A="workflow”>2001 8 1 9</A:factstart>
<A:factfinish xmins:A="workflow”>2001 8 1 14</A:factfinish>
<A:ProjectTask xmins:A="Serjal 1" />
</A:FilePropertyMap> k
6102

6104

6106

FIG 62 6210 6200
l ’) S “Hig1,2001 / .
‘ v AW owmld] |

|£‘~u92,20m R "-\ugu o

6202 Serial And Parallel (nut st ! :
loﬂ
6206\\ &= Serial 1
5 oz Parallel 1
6208 | eoSerial 2
S| esParallel 2

6300

FIG. 63 f
6306

<?xml version="1.0" encoding="UTF-8" ?>
- <A:FilePropertyMap xmins:A="adrenalin:">
<A:factstart xmins:A="workflow”>2001 8 1 14</A:factstart>
<A:factfinish xmins:A="workflow"”>2001 Sjk/A :factfinish>

<A:ProjectTask xmins:A="Parallel 1" /
<A:ProjectTask xmins:A="Parallel 2" />
</A:FilePropertyMap> 6308
6302

6304

FIG 64 6410/ 6412 K64OO

g1, EUU‘I #ug;.’ 200

2. Serial And Parallel (not st 5

63%2 Cossenat |
k "—‘!Paralleli o

6404& &= Serial 2

— ==Parallel 2

WO 02/19272 PCT/US01/27173

42/59

6500

FIG.65 <

<?xml version="1.0" encoding="UTF-8" ?> 6504

- <A:FilePropertyMap xmins:A="adrenalin:"> [‘
<A:factstart xmins:A="workfiow”>2001 8 2 0</A:factstart>

<A:factfinish xmins:A="workflow”>2001 8 2 12</A:factfinish>

<A:ProjectTask xmins:A="Serial 2" />
</A:FilePropertyMap> K 6506

6502

FIG. 66 N /-6600V

g1, 2001 L UPRANg2, 20

[

6602

e e S b e g—[\j s KD‘B) m}?:,ll I l l’l?.lg.,u
i 9= Serial And Parallel e g
6606 — 3 Gerial 1 ’%’"_
6614¥,— == Parallel 1 =
\\f— w3 Serjal 2 ;] e
6610 : &
k—) —

o ZParallel2

WO 02/19272 PCT/US01/27173

43/59

FIG. 67

6714
(Begin) : -/

Save Edits to Plan

! 6702 Definition File
Retrieve
Plan
6704 ! 6716
Y
Activate Plan N .)
omplete”
6706
\ /
Select Task /671 8
6708 Edit Task
Y -/ Definition File
Activate Task
6710 ' /6720
Y :
Edit Task Save Edits to Task

Definition File

Definition File

6722

Y 6712 Y
Save Edits to Task J Save Edits to Plan '/
Definition File Definition File

WO 02/19272 PCT/US01/27173

44/59

Pro;:gt !vianager fﬁr

- rAug 2, ?.Dﬁil,

Name\ o

:—.,i Serlal iject iE*
| =stept R ——
6802/ o=z T —
\
6804

FIG. 69

6900

- <A:task activityID="10" caption="Step 1"

link="Sample_Project_Plans/Serial_Project/Task_2.xml" name="Task_2"

owner="Worker"

processURL="http://localhost:8080/webdav/ProcessGroup2/Process2.xml"

type="general" userid="JK">
<A:start>2001 8 1 9</A:start>
<A:finish>2001 8 1 18</A:finish>
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:successor name="Task_3" />
<state>UNEXECUTED</state>
</A:task>

6902

WO 02/19272 PCT/US01/27173

45/59

‘Project Manager |Project Groups: |

[Buga, 2000 L0

e Bt 7000

e Mams

wz Bte 1
| =Sep2

FIG. 71

7100

- <A:task activityID="10" caption="Step 1"
link="Sample_Project_Plans/Serial_Project/Task_2.xml" name="Task_2"
owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Process2.xml"
type="general" userid="JK">

<A:start>2001 8 1 9</A:start>

<A:finish>2001 8 1 18</A:finish>

<A:supertask name="Task_1" />

<A:user>JK</A:user>

<A:successor name="Task_3" />

<state>EXECUTING </state>
</A:task>

7102

WO 02/19272) PCT/US01/27173

46/59

Project Manager |Frojéct

|5

Mame . ; i : rAUQE. 2001
H

[i BB

t = Step 1 f
120207 ez =] T e
06— - j
7208

!
H
t

= | % Serial Project inot started

FIG. 73

- <A:task activityID="10" caption="Step 1"
link="Sample_Project_Plans/Serial_Project/Task_2.xml" name="Task_2"
owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Process2.xml"
type="general" userid="JK">

<A:start>2001 8 1 9</A:start>

<A:finish>2001 8 1 18</A:finish>

<A:supertask name="Task_1" />

<A:user>JK</A:user>

<A:successor name="Task_3" />

<state>EXECUTED</state>
</A:task>

7300

7302

FIG. 74 7400
z

- <A:task activityID="1527" caption="Step 2"
link="Sample_Project_Plans/Serial_Project/Task_3.xml" name="Task_3"
owner="Worker"
processURL="http://localhost:8080/webdav/ProcessGroup2/Process2.xml"
type="general" userid="IK">

<A:start>2001 8 2 9</A:start>

<A:finish>2001 8 2 17 </A:finish>

<A:supertask name="Task_1" />

<A:user>JK</A:user>

<A:predecessor name="Task_2" />

<state>UNEXECUTED</state>
</A:task>

7402

WO 02/19272 PCT/US01/27173

47159

FIG. 75

Project tansger ngh:ﬁé#’gl Grougs |

it 3]

[Aug 2, 2001

LIRRE |1§= z'x ' 1,| T L0§t . s]‘H 7500

Mame

i ,‘ﬁu Seriaﬁ?roj_gct
/ 3 Step 1
7502 /,_ == Step 2
7506

7508

FIG. 76 7600
z

- <A:task activityID="1527" caption="Step 2"
link="Sample_Project_Plans/Serial_Project/Task_3.xml" name="Task_3"
owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Process2.xml"
type="general" userid="JK">

<A:start>2001 8 2 9</A:start>

<A:finish>2001 8 2 17</A:finish>

<A:supertask name="Task_1" />

<A:user>JK</A:user>

<A:predecessor name="Task_2" />

<state>EXECUTING</state>
</A:task>

7602

WO 02/19272 PCT/US01/27173

48/59

FIG. 77

‘Project Managsr fProiectGmupsz

: Hame z (Aug 2, 2001

.»f[hﬂfl[r]i?illllﬂl‘lc":Gi\l'lVV!(Uesl 1
£ %= Serial Project ’ :
/’— = Step 1
7702 /mstep 2
7706

7700

7708

FlG. 78 7800
5

- <A:task activitylD="1527" caption="Step 2"
link="Sample_Project_Plans/Serial_Project/Task_3.xml" name="Task_3"
owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Process2.xml"
type="general" userid="JK">

<A:start>2001 8 2 9</A:start>

<A:finish>2001 8 2 17 </A:finish>

<A:supertask name="Task_1" />

<A:user>JK</A:user>

<A:predecessor name="Task_2" />

<state>EXECUTED</state>
</A:task>

7802

WO 02/19272 PCT/US01/27173

49/59

FIG. 79
(Begii/)

Y J

Retrieve Plan

7902

, /7904

Edit Task in Plan

7906

Y
Save Edits to Task /
Definition File

7908

; /

Save Edits to Plan

Definition File

WO 02/19272 PCT/US01/27173

50/59

FIG. 80A

{ Begin)
8018

8002 | /)

K Pause for Time
Retrieve Edits to Period

Plan Definition File

8020
8004 v v _/
- Retrieve Edits to Task Select Edit
Definition Files
8006 ’ | /8022
Set Rate of Display Apply Edit
8008 / y 8024
& Time Period = Dispiay Edited Pl /
1/ Rate isplay Edited Plan

Display in
Forward
Mode?

Rate of
Display?

4
Time Period /

=1/ Rate

8012 Remove Edits to
k Plan Definition File

8014 8030

Y
k Remove Edits to Y More Edits? v

Task Definition Files /

N

8016

4

\4
Display Plan (End >
L

WO 02/19272 PCT/US01/27173

51/59

8032

Display Plan
| /8034

Pause for Time
Period
8036
Select Edit

' J8038

Remove Edit
' /8040

Display Edited Plan

Rate of

Display? 8044

4
Time Period /
=1/ Rate

WO 02/19272 PCT/US01/27173

52/59

FIG. 81

{ Begin)
8102

' _/

Retrieve Workflow

8104

\ A
Edit Activity J
in Workflow

8106

Y
Save Edits to -/
Activity Definition
File

8108

Y
Save Edits to /
Workflow Definition

File

WO 02/19272 PCT/US01/27173

53/59

FIG. 82

8200
8212
8214
Left Special Right
v v 8216
CComplete Assembly)-/

8204

ord

WO 02/19272 PCT/US01/27173

54/59

ww— FIG. 83

- . 8300
- <activity 1d="10" name="Get Parts" responsiblerole="Assembler">
<description />
<defduration units="units" value="1" />
<predecessors_id id="11" />
<successors_id id="1522" />
<out_aritfacts id="1527" />
</activity> 8304
FIG. 84
8400
e
- <activity id="1525" name="Right" responsiblerole="Assembler"> ?
<description />
<defduration units="units" value="1" />
<predecessors_id id="1522" />
<successors_id id="1526" />
<out_aritfacts id="1533" />
</activity>
8500

wwz— FIG. 85

- <activity id="1526" name="Complete Assembly" responsiblerole="Assembler">
<description />
<defduration units="units" value="1" />
<predecessors_id id="1524" />
<predecessors_id id="1525" />
<successors_id id="12" />
<out_aritfacts id="1535" /> 8504

FIG. 86 ;8600

- <activity id="1523" name="Left" responsiblerole="Assembler">
<description />
<defduration units="units" value="1" />
<predecessors_id id="1522" />
<successors_id id="1524" />
<out_aritfacts id="1529" />
</activity>

8602

oz FIG.87 Pa

- <activity id="1524" name="Left Special" responsiblerole="Assembler">
<description />
<defduration units="units" value="1" />
<predecessors_id id="1523" />
<successors_id id="1526" />
<out_aritfacts id="1531" />
< /activity>

WO 02/19272

55/59

FIG. 88

8814

v v
(Complete Assembly)-/

8804

PCT/US01/27173

8800

WO 02/19272 PCT/US01/27173

56/59

8900
FIG. 89
- <activity id="1523" name="Left" responsiblerole="Assembler">
<description />
<defduration units="units" value="1" />
<predecessors_id id="1522" />
<successors_id id="1526" />
<out_aritfacts id="1529" />
</activity>
8902
9000

FIG. 90

- <activity id="1526" name="Complete Assembly" responsiblerole="Assembler">
<description />
<defduration units="units" value="1" />
<predecessors_id id="1523" />
<predecessors_id id="1525" />
<successors_id id="12" />
<out_aritfacts id="1535" /> 9002

</activity>

WO 02/19272

FIG. 91

57/59

(Begin)

Y

_/

Create Plan
From Workflow

y
Store Plan J
Definition File

Y

Store Edits to Workflow /

Definition File

A

Create Different
Plan From Workflow

Y

Store Different Plan
Definition File

Store Edits to Workflow /

Definition File

PCT/US01/27173

9102

9104

9106

9108

/

9110

/

9112

WO 02/19272

FIG. 92A

9202 L
Retrieve Edits to
Workflow Definition
Files
9204 v
\ Retrieve Edits to
Activity Definition
File
9206
\ Y
Set Rate of Display
9208
k Time Period =
1/ Rate
9210

Begin)

Display in
Forward
Mode? -~

Remove Edits to
Workflow Definition
File

Y

Remove Edits to
Activity Definition
Files

Y

Display Workflow

PCT/US01/27173
58/59
‘ /921 8
Pause for Time
Period
I /9220
Select Edit
9222
Y /
Apply Edit
\ /9224
Display Edited
Workflow

Rate of

DiSpW

Y

Time Period
=1/ Rate

Y

9230
More Edits?

N

Y
{ End)

WO 02/19272

FIG. 92B

PCT/US01/27173

59/59

/9232
Display Workflow

! 0234

Pause for Time /

Period

0236

A /

Select Edit
Y J9238
Remove Edit
| /9240
Display Edited
Workflow
Rate-of
Display? /9244
Time Period
=1/ Rate
|
9246

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/27173

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GOGT 13/00
USCL 345/473, 419,440, 619; 705/5, 7, 11

B. FIELDS SEARCHED

According to International Patent Classification (IPC) or to both national classification and JPC

U.S. : 345/473, 419,440, 619; 705/5, 7, 11

Minimum documentation searched (classification system followed by classification symbols) N

Documentation searched other than minimmm documentation to the extent that such documents are included in the fields searched

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

10, lines 36-67; column 23, line 58-column, 24, line 59.

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
AP US 6,240,395 B1 . (KUMASHIRO) 29 May 2001 (29.05.01), colmn 21, lines 49-61; 1-44
column 4, lines 41-52; column 21, line 11-column 22, line 24; column39, lines 32-48;
column 10, lines 38-47; column 26, lines 44-58; column 12, lines 9-25; column 33, lines
29-43; column 21, line 62-column 22, line 13,
y US 5,930,512 A (BODEN et al) 27 July 1999 (27.07.99), column 10, lines 30-34; column 1-44

Further documents are listed in the contimuation of Box C.

L]

See patent family annex.

* Special categories of cited documents:
“A” document defining the general state of the art which is not considered to
be of particular relevance

“E” earlier application or patent published on or after the international filing
date

“L" document which may throw doubts on priority claim(s) or which is cited
to establish the publication date of another citation or other special reason
(as specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the intemational filing date but later than the

priority date clai

“T" later document published after the intemational filing date or
priority date and not in conflict with the application but cited to
understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive

step when the document is taken alone

“y” document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is

combined with one or more other such documents, such
combination being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search
10 Janmary 2002 (10.01.2002)

Date (éu?§'ling of the international search report
JAN 2002

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Mark Zimmerman

Authorized officer

Telephone No. (703) 305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US01/27173

Continuation of B. FIELDS SEARCHED Item 3:
EAST and WEST
Search term: rate, display, workflow, edit, adjust

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

