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SYSTEMS AND METHODS FOR 
OPTIMIZING NESTED LOOP 

INSTRUCTIONS IN PIPELINE PROCESSING 
STAGES WITHIN A MACHINE PERCEPTION 
AND DENSE ALGORITHM INTEGRATED 

CIRCUIT 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application claims the benefit of U.S. Provi 
sional Application No. 62 / 957,688 , filed 6 Jan. 2020 , and of 
the U.S. Provisional Application No. 63 / 050,971 , filed 13 
Jul . 2020 , which are incorporated herein in their entireties by 
this reference . 

[ 0006 ] At best , to enable a GPU or similar processing 
circuitry to handle additional sensor processing needs 
including path planning , sensor fusion , and the like , addi 
tional and / or disparate circuity may be assembled to a 
traditional GPU . This fragmented and piecemeal approach 
to handling the additional perception processing needs of 
robotics and autonomous machines results in a number of 
inefficiencies in performing computations including ineffi 
ciencies in sensor signal processing . 
[ 0007 ] Accordingly , there is a need in the integrated 
circuitry field for an advanced integrated circuit and pro 
cessing techniques that are capable of high performance and 
real - time processing and computing of routine and advanced 
sensor signals for enabling perception of robotics or any 
type or kind of perceptual machine . 
[ 0008 ] The inventors of the inventions described in the 
present application have designed an integrated circuit archi 
tecture and one or more processing techniques that allow for 
enhanced sensor data processing capabilities and have fur 
ther discovered related methods for implementing the inte 
grated circuit architecture for several purposes including for 
enabling perception of robotics and various machines . 

TECHNICAL FIELD 

[ 0002 ] The one or more inventions described herein relate 
generally to the integrated circuitry field , and more specifi 
cally to a new and useful perception and dense algorithm 
processing integrated circuitry architecture in the integrated 
circuitry field . 

SUMMARY OF THE INVENTION ( S ) BACKGROUND 

[ 0003 ] Modern applications of artificial intelligence and 
generally , machine learning appear to be driving innovations 
in robotics and specifically , in technologies involving 
autonomous robotics and autonomous vehicles . Also , the 
developments in machine perception technology have 
enabled the abilities of many of the implementations in the 
autonomous robotics ' and autonomous vehicles ' spaces to 
perceive vision , perceive hearing , and perceive touch among 
many other capabilities that allow machines to comprehend 
their environments . 
[ 0004 ] The underlying perception technologies applied to 
these autonomous implementations include a number of 
advanced and capable sensors that often allow for a rich 
capture of environments surrounding the autonomous robots 
and / or autonomous vehicles . However , while many of these 
advanced and capable sensors may enable a robust capture 
of the physical environments of many autonomous imple 
mentations , the underlying processing circuitry that may 
function to process the various sensor signal data from the 
sensors often lack in corresponding robust processing capa 
bilities sufficient to allow for high performance and real 
time computing of the sensor signal data . 
[ 0005 ] The underlying processing circuitry often include 
general purpose integrated circuits including central pro 
cessing units ( CPUs ) and graphic processing units ( GPU ) . In 
many applications , GPUs are implemented rather than CPUs 
because GPUs are capable of executing bulky or large 
amounts of computations relative to CPUs . However , the 
architectures of most GPUs are not optimized for handling 
many of the complex machine learning algorithms ( e.g. , 
neural network algorithms , etc. ) used in machine perception 
technology . For instance , the autonomous vehicle space 
includes multiple perception processing needs that extend 
beyond merely recognizing vehicles and persons . Autono 
mous vehicles have been implemented with advanced sensor 
suites that provide a fusion of sensor data that enable route 
or path planning for autonomous vehicles . But , modern 
GPUs are not constructed for handling these additional high 
computation tasks . 

[ 0009 ] In one embodiment , a method for improving a 
performance of an integrated circuit includes implementing 
one or more computing devices executing a compiler pro 
gram that : ( i ) evaluates a target instruction set intended for 
execution by an integrated circuit ; ( ii ) identifies one or more 
nested loop bodies within the target instruction set based on 
the evaluation ; ( iii ) evaluates whether a most inner loop 
body within the one or more nested loop bodies comprises 
a candidate inner loop body that requires a loop optimization 
that mitigates an operational penalty to the integrated circuit 
based on one or more executional properties of the most 
inner loop body ; and ( iv ) implements the loop optimization 
that modifies the target instruction set to include loop 
optimization instructions to control , at runtime , an execution 
and a termination of the most inner loop body thereby 
mitigating the operational penalty to the integrated circuit . 
[ 0010 ] In one embodiment , each iteration of the most 
inner loop body is executed by an array processing core of 
an integrated circuit array of the integrated circuit that 
includes a plurality of array processing cores ; and the loop 
optimization causes a distinct processing circuit external to 
the integrated circuit array to ( a ) control a start of the 
execution of each iteration by the array processing core and 
( b ) control a termination of an execution of the most inner 
loop body by the array processing core . 
[ 0011 ] In one embodiment , if the most inner loop body 
within the loop body of the nested loop bodies is associated 
with an instruction for backwards branching , automatically 
setting the most inner loop body as the candidate inner loop 
for the loop optimization . 
[ 0012 ] In embodiment , the evaluation further 
includes : ( i ) identifying a code size of the candidate inner 
loop , ( ii ) identifying whether the code size of the candidate 
inner loop satisfies or does not exceed an instruction size 
threshold , wherein the instruction size threshold relates to a 
maximum possible code size of a potential candidate for 
loop optimization , and wherein automatically setting the 
most inner loop body as the candidate inner loop for the loop 
optimization when the code size of the candidate inner loop 
satisfies or does not exceed the instruction size threshold . 

one 
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one [ 0013 ] In embodiment , the evaluation further 
includes : ( i ) inspecting a structure of the candidate inner 
loop ; ( ii ) identifying whether loop bounds of the candidate 
inner loop is discoverable based on the inspection ; and ( iii ) 
if the loop bounds of the candidate inner loop are discov 
erable , deriving a starting condition and a deriving termi 
nating condition of the candidate inner loop , wherein a 
combination of the starting condition and the terminating 
condition define the loop bounds of the candidate inner loop . 
[ 0014 ] In one embodiment , the loop optimization instruc 
tions comprise an implicit branch instruction that controls a 
looping operation of the candidate inner loop . 
[ 0015 ] In one embodiment , the implicit branch instruction 
comprises a multi - part branch instruction that is instruction 
ally tethered to a loop body of the candidate inner loop for 
controlling a looping back operation of the candidate inner 
loop without a need for executing explicit backward branch 
ing instructions within the loop body of the candidate inner 
loop . 
[ 0016 ] In one embodiment , the implicit branch instruction 
comprises a multi - position branch instruction having ( a ) a 
first part comprising a first instruction that is positioned 
ahead of the loop body of the candidate inner loop and ( b ) 
a second part comprising one or more bits of instruction that 
are positioned within the loop body of the candidate inner 
loop . 
[ 0017 ] In one embodiment , a first part of the multi - part 
branch instruction comprises an antecedent instruction that 
is codified at a position ahead of the loop body of the 
candidate inner loop . 
[ 0018 ] In one embodiment , the antecedent instruction 
comprises loop bounds of the candidate inner loop , wherein 
the loop bounds include a starting condition and a terminat 
ing condition of the candidate inner loop . 
[ 0019 ] In one embodiment , the antecedent instructions 
includes a code location target that identifies a starting 
instruction of the loop body of the candidate inner loop . 
[ 0020 ] In one embodiment , a second part of the multi - part 
branch instruction comprises a suffixation bit that includes a 
single bit of instruction appended to a terminal instruction of 
the loop body of the candidate inner loop or that is arranged 
in a position within the loop body of the candidate inner 
loop . 
[ 0021 ] In one embodiment , the single bit of instruction 
identifies a terminal instruction of the loop body of the 
candidate inner loop that , when executed , causes a reversion 
to a code location target of the antecedent instructions that 
identifies a starting instruction of the loop body of the 
candidate inner loop . 
[ 0022 ] In one embodiment , an execution of the single bit 
of instruction causes an increment or a decrement to a 
dedicated loop counter for the candidate inner loop . 
[ 0023 ] In one embodiment , executing , at runtime , the 
antecedent instructions includes storing the loop bounds in 
a memory distinct from a memory storing the loop body of 
the candidate inner loop , clearing and initializing a dedi 
cated loop counter for the candidate inner loop . 
[ 0024 ] In one embodiment , a system for improving a 
performance of an integrated circuit includes one or more 
computing devices executing a compiler program that : ( i ) 
evaluates a target instruction set intended for execution by 
an integrated circuit ; ( ii ) identifies one or more nested loop 
instructions within the target instruction set based on the 
evaluation ; ( iii ) evaluates whether a most inner loop body 

within the one or more nested loop instructions comprises a 
candidate inner loop body that requires a loop optimization 
that mitigates an operational penalty to the integrated circuit 
based on one or more executional properties of the most 
inner loop instruction ; and ( iv ) implements the loop opti 
mization that modifies the target instruction set to include 
loop optimization instructions to control , at runtime , an 
execution and a termination of the most inner loop body 
thereby mitigating the operational penalty to the integrated 
circuit . 
[ 0025 ] In one embodiment , the loop optimization instruc 
tions comprise a multi - part implicit branch instruction that is 
instructionally tethered to a loop body of the candidate inner 
loop for controlling a looping back operation of the candi 
date inner loop ; the multi - part implicit branch including : ( a ) 
a first part that is codified at a position ahead of the loop 
body of the candidate inner loop and that causes a storing of 
loop bounds of the candidate inner loop , and ( b ) a second 
part that includes a single bit of instruction arranged within 
the loop body of the candidate inner loop that identifies a 
terminal instruction of the loop body of the candidate inner 
loop and that , when executed , causes a reversion to a storage 
location of the loop bounds and / or a code location target of 
the antecedent instructions that identifies a starting instruc 
tion of the loop body of the candidate inner loop . 
[ 0026 ] In one embodiment , a method for improving an 
operational performance of an integrated circuit includes 
controlling an execution of a looping operation of a target 
nested loop within a subject set of instructions , wherein the 
controlling includes : ( i ) executing , by a distinct processing 
circuit , a first part of an implicit branch instruction for the 
target nested loop , wherein the executing the first part 
includes : ( i - a ) storing loop bounds of the target nested loop 
in a memory distinct from a memory storing the loop body 
of the target nested loop , ( i - b ) clearing and initializing a 
dedicated loop counter for the target nested loop , ( i - c ) 
storing a code location target of a starting instruction of the 
loop body of the candidate inner loop , wherein the dedicated 
loop counter for the target nested loop is incremented or 
decremented according to each executed iteration of the 
target nested loop ; ( ii ) executing , by the distinct processing 
circuit , a second part of the implicit branch instruction , 
wherein the second part includes a single bit instruction 
arranged within the loop body of the candidate inner loop , 
wherein the executing the second part includes : ( ii - a ) causes 
a reversion to a storage location of the loop bounds , and 
( ii - b ) an increment or a decrement of the dedicated loop 
counter for the target nested loop ; wherein controlling the 
execution includes : continuing the execution or terminating 
the execution of the loop body of the target nest loop by an 
array processing circuit of an integrated circuit array based 
on whether a value of the dedicated loop counter satisfies a 
terminating condition defined in the loop bounds . 

BRIEF DESCRIPTION OF THE FIGURES 
[ 0027 ] FIG . 1 illustrates a schematic of a system 100 in 
accordance with one or more embodiments of the present 
application ; 
[ 0028 ] FIG . 2 illustrates a method 200 for implementing a 
predicate stack in accordance with one or more embodi 
ments of the present application ; 
[ 0029 ] FIG . 3 illustrates a schematic that examples loop 
optimization at compile time in accordance with one or more 
embodiments of the present application ; and 
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[ 0030 ] FIGS . 4A - 4B illustrate schematics that example an 
execution of a loop optimized with implicit branch instruc 
tions in accordance with one or more embodiments of the 
present application . 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

[ 0031 ] The following description of preferred embodi 
ments of the present application are not intended to limit the 
inventions to these preferred embodir but rather 
enable any person skilled in the art of to make and use these 
inventions . 
[ 0032 ] I. Overview 
[ 0033 ] In an integrated circuit configured with pipeline 
processing stages , a backwards branching instruction may 
cause stalls in the execution of one or more instruction sets 
thereby increasing a number clock cycles required for pro 
cessing the instruction set and reducing a performance of the 
integrated circuit . Backwards branching instructions may 
typically be found in loop instructions and the like in which 
an execution of a new iteration of the loop may require that 
the integrated circuit jump from a terminal instruction of a 
loop body of the loop back to a branch for executing a new 
iteration of the loop instructions . Additionally , for certain 
instruction types such as tight nested loops , stalls may be 
extremely expensive when the nest loop is really small ( e.g. , 
a small number of instructions below a code size threshold 
or the like ) . To avoid the stalls , in some integrated circuits , 
branch predictors may be implemented that make predic 
tions on whether a branch will or will not be taken or 
executed . In pipeline processing stages , a branch predictor 
may reduce stalls , however , branch predictors are often 
complex and expensive , in terms of computational resources 
( e.g. , power , chip area , etc. ) , to deploy . 
[ 0034 ] One alternative for reducing a stall penalty result 
ing from backwards branching includes unrolling the code 
or instruction set , which may reduce a stall penalty by half 
while simultaneously enlarging the code size . However , in 
many embedded systems , available memory for storing 
instructions or code is limited and thus , unrolling the code 
set may reduce a stall penalty to improve a performance of 
an integrated circuit , but unrolling also grows the size of the 
code by double with each unrolling . In such cases , an 
embedded system may not have sufficient memory to store 
the increased code size and / or have sufficient available 
memory to properly executed large code , at runtime . 
[ 0035 ] One or more embodiments of the present applica 
tion , however , provide systems and techniques for optimiz 
ing instruction sets that include backwards branching 
instructions that may typically produce a stall in execution . 
In one preferred embodiment of the present application , an 
instruction set may be optimized to include an implicit 
branching instruction that abstracts the processing task from 
a processing circuit executing a nested loop or the like and 
allows a distinct processing entity ( e.g. , an IMD ( instruction 
memory dispatcher ) ) other than an array core of the inte 
grated circuit array to handle the start of iterations of the 
nested loop and the termination of the nested loop by 
implementing a setup instruction with a branch target having 
starting and terminating conditions together with a loopback 
bit or a reserved bit reverts the distinct processing entity to 
the branch target for either restarting the loop or terminating 
the loop , as described in more detail below . 

[ 0036 ] It shall also be recognized that the one or more 
embodiments of the present application may be imple 
mented in any suitable processing environment including , 
but not limited to , within one or more IMDs and / or any 
suitable processing circuit . 
[ 0037 ] The mesh architecture defined by the plurality of 
processing elements in the array core preferably enable 
in - memory computing and data movement , as described in 
U.S. Pat . No. 10,365,860 , U.S. patent application Ser . No. 
16 / 292,537 , U.S. Provisional Application Nos . 62 / 649,551 
and 62 / 649,551 , which are all incorporated herein in their 
entireties by this reference and further , enable a core - level 
predication . 
[ 0038 ] II . A System Architecture of a Dense Algorithm 
and / or Perception Processing Circuit ( Unit ) 
[ 0039 ] As shown in FIG . 1 , the integrated circuit 100 
( dense algorithm and / or perception processing unit ) for 
performing perception processing includes a plurality of 
array cores 110 , a plurality of border cores 120 , a dispatcher 
( main controller ) 130 , a first plurality of periphery control 
lers 140 , a second plurality of periphery controllers 150 , and 
main memory 160. The integrated circuit 100 may addition 
ally include a first periphery load store 145 , a second 
periphery load store 155 , a first periphery memory 147 , a 
second periphery memory 157 , a first plurality of dual FIFOs 
149 , and a second plurality of dual FIFOs 159 , as described 
in U.S. Pat . Nos . 10,365,860 , 10,691,464 , and U.S. patent 
application Ser . No. 16 / 292,537 , which are all incorporated 
herein in their entireties by this reference . 
[ 0040 ] The integrated circuit 100 preferably functions to 
enable real - time and high computing efficiency of percep 
tion data and / or sensor data . A general configuration of the 
integrated circuit 100 includes a plurality of array core 110 
defining central signal and data processing nodes each 
having large register files that may eliminate or significantly 
reduce clock cycles needed by an array core 110 for pulling 
and pushing data for processing from memory . The instruc 
tions ( i.e. , computation / execution and data movement 
instructions ) generating capabilities of the integrated circuit 
100 ( e.g. , via the dispatcher 130 and / or a compiler module 
175 ) functions to enable a continuity and flow of data 
throughout the integrated circuit 100 and namely , within the 
plurality of array cores 110 and border cores 120 . 
[ 0041 ] An array core 110 preferably functions as a data or 
signal processing node ( e.g. , a small microprocessor ) or 
processing circuit and preferably , includes a register file 112 
having a large data storage capacity ( e.g. , 1024 kb , etc. ) and 
an arithmetic logic unit ( ALU ) 118 or any suitable digital 
electronic circuit that performs arithmetic and bitwise opera 
tions on integer binary numbers . In a preferred embodiment , 
the register file 112 of an array core 110 may be the only 
memory element that the processing circuits of an array core 
110 may have direct access to . An array core 110 may have 
indirect access to memory outside of the array core and / or 
the integrated circuit array 105 ( i.e. , core mesh ) defined by 
the plurality of border cores 120 and the plurality of array 
cores 110 . 
[ 0042 ] The register file 112 of an array core 110 may be 
any suitable memory element or device , but preferably 
comprises one or more static random - access memories 
( SRAMs ) . The register file 112 may include a large number 
of registers , such as 1024 registers , that enables the storage 
of a sufficiently large data set for processing by the array 
core 110. Accordingly , a technical benefit achieved by an 
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arrangement of the large register file 112 within each array 
core 110 is that the large register file 112 reduces a need by 
an array core 110 to fetch and load data into its register file 
112 for processing . As a result , a number of clock cycles 
required by the array core 112 to push data into and pull data 
out of memory is significantly reduced or eliminated alto 
gether . That is , the large register file 112 increases the 
efficiencies of computations performed by an array core 110 
because most , if not all , of the data that the array core 110 
is scheduled to process is located immediately next to the 
processing circuitry ( e.g. , one or more MACS , ALU , etc. ) of 
the array core 110. For instance , when implementing image 
processing by the integrated circuit 100 or related system 
using a neural network algorithm ( s ) or application ( s ) ( e.g. , 
convolutional neural network algorithms or the like ) , the 
large register file 112 of an array core may function to enable 
a storage of all the image data required for processing an 
entire image . Accordingly , most or if not , all layer data of a 
neural network implementation ( or similar compute - inten 
sive application ) may be stored locally in the large register 
file 112 of an array core 110 with the exception of weights 
or coefficients of the neural network algorithm ( s ) , in some 
embodiments . Accordingly , this allows for optimal utiliza 
tion of the computing and / or processing elements ( e.g. , the 
one or more MACs and ALU ) of an array core 110 by 
enabling an array core 110 to constantly churn data of the 
register file 112 and further , limiting the fetching and loading 
of data from an off - array core data source ( e.g. , main 
memory , periphery memory , etc. ) . 
[ 0043 ] By comparison , to traverse a register file in a 
traditional system implemented by a GPU or the like , it is 
typically required that memory addresses be issued for 
fetching data from memory . However , in a preferred 
embodiment that implements the large register file 112 , the 
( raw ) input data within the register file 112 may be auto 
matically incremented from the register file 112 and data 
from neighboring core ( s ) ( e.g. , array cores and / or border 
cores ) are continuously sourced to the register file 112 to 
enable a continuous flow to the computing elements of the 
array core 110 without an express need to make a request ( or 
issuing memory addresses ) by the array core 110 . 
[ 0044 ] While in some embodiments of the present appli 
cation , a predetermined data flow scheduled may mitigate or 
altogether , eliminate requests for data by components within 
the integrated circuit array 105 , in a variant of these embodi 
ments traditional random memory access may be achieved 
by components of the integrated circuit array 105. That is , if 
an array core 110 or a border core 120 recognizes a need for 
a random piece of data for processing , the array core 110 
and / or the border 120 may make a specific request for data 
from any of the memory elements within the memory 
hierarchy of the integrated circuit 100 . 
[ 0045 ] An array core 110 may , additionally or alterna 
tively , include a plurality of multiplier ( multiply ) accumu 
lators ( MACs ) 114 or any suitable logic devices or digital 
circuits that may be capable of performing multiply and 
summation functions . In a preferred embodiment , each array 
core 110 includes four ( 4 ) MACs and each MAC 114 may 
be arranged at or near a specific side of a rectangular shaped 
array core 110. While , in a preferred embodiment each of the 
plurality of MACs 114 of an array core 110 may be arranged 
near or at the respective sides of the array core 110 , it shall 
be known that the plurality of MACs 114 may be arranged 
within ( or possibly augmented to a periphery of an array 

core ) the array core 110 in any suitable arrangement , pattern , 
position , and the like including at the respective corners of 
an array core 110. In a preferred embodiment , the arrange 
ment of the plurality of MACs 114 along the sides of an 
array core 110 enables efficient inflow or capture of input 
data received from one or more of the direct neighboring 
cores ( i.e. , an adjacent neighboring core ) and the computa 
tion thereof by the array core 110 of the integrated circuit 
100 . 

[ 0046 ] Accordingly , each of the plurality of MACs 114 
positioned within an array core 110 may function to have 
direct communication capabilities with neighboring cores 
( e.g. , array cores , border cores , etc. ) within the integrated 
circuit 100. The plurality of MACs 114 may additionally 
function to execute computations using data ( e.g. , operands ) 
sourced from the large register file 112 of an array core 110 . 
However , the plurality of MACs 114 preferably function to 
source data for executing computations from one or more of 
their respective neighboring core ( s ) and / or a weights or 
coefficients ( constants ) bus 116 that functions to transfer 
coefficient or weight inputs of one or more algorithms 
( including machine learning algorithms ) from one or more 
memory elements ( e.g. , main memory 160 or the like ) or one 
or more input sources . 
[ 0047 ] The weights bus 116 may be operably placed in 
electrical communication with at least one or more of 
periphery controllers 140 , 150 at a first input terminal and 
additionally , operably connected with one or more of the 
plurality of array core 110. In this way , the weight bus 116 
may function to collect weights and coefficients data input 
from the one or more periphery controllers 140 , 150 and 
transmit the weights and coefficients data input directly to 
one or more of the plurality of array cores 110. Accordingly , 
in some embodiments , multiple array cores 110 may be fed 
weights and / or coefficients data input via the weights bus 
116 in parallel to thereby improve the speed of computation 
of the array cores 110 . 
[ 0048 ] Each array core 110 preferably functions to bi 
directionally communicate with its direct neighbors . That is , 
in some embodiments , a respective array core 110 may be configured as a processing node having a rectangular shape 
and arranged such that each side of the processing node may 
be capable of interacting with another node ( e.g. , another 
processing node , a data storage / movement node , etc. ) that is 
positioned next to one of the four sides or each of the faces 
of the array core 110. The ability of an array core 110 to 
bi - directionally communicate with a neighboring core along 
each of its sides enables the array core 110 to pull in data 
from any of its neighbors as well as push ( processed or raw ) 
data to any of its neighbors . This enables a mesh commu 
nication architecture that allows for efficient movement of 
data throughout the collection of array and border cores 110 , 
120 of the integrated circuit 100 . 
[ 0049 ] Each of the plurality of border cores 120 preferably 
includes a register file 122. The register file 122 may be 
configured similar to the register file 112 of an array core 110 
in that the register file 122 may function to store large 
datasets . Preferably , each border core 120 includes a sim 
plified architecture when compared to an array core 110 . 
Accordingly , a border core 120 in some embodiments may 
not include execution capabilities and therefore , may not 
include multiplier - accumulators and / or an arithmetic logic 
unit as provided in many of the array cores 110 . 
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[ 0050 ] In a traditional integrated circuit ( e.g. , a GPU or the 
like ) , when input image data ( or any other suitable sensor 
data ) received for processing compute - intensive application 
( e.g. , neural network algorithm ) within such a circuit , it may 
be necessary to issue padding requests to areas within the 
circuit which do not include image values ( e.g. , pixel values ) 
based on the input image data . That is , during image 
processing or the like , the traditional integrated circuit may 
function to perform image processing from a memory ele 
ment that does not contain any image data value . In such 
instances , the traditional integrated circuit may function to 
request that a padding value , such as zero , be added to the 
memory element to avoid subsequent image processing 
efforts at the memory element without an image data value . 
A consequence of this typical image data processing by the 
traditional integrated circuit results in a number of clock 
cycles spent identifying the blank memory element and 
adding a computable value to the memory element for image 
processing or the like by the traditional integrated circuit . 
[ 0051 ] In a preferred implementation of the integrated 
circuit 100 , one or more of the plurality of border cores 120 
may function to automatically set to a default value when no 
input data ( e.g. , input sensor data ) is received . For instance , 
input image data from a sensor ( or another circuit layer ) may 
have a total image data size that does not occupy all border 
core cells of the integrated circuit array 105. In such 
instance , upon receipt of the input image data , the one or 
more border cores 120 ( i.e. , border core cells ) without input 
image data may be automatically set to a default value , such 
as zero or a non - zero constant value . 
[ 0052 ] In some embodiments , the predetermined input 
data flow schedule generated by the dispatcher and sent to 
one or more of the plurality of border cores may include 
instructions to set to a default or a predetermined constant 
value . Additionally , or alternatively , the one or more border 
cores 120 may be automatically set to a default or a 
predetermined value when it is detected that no input sensor 
data or the like is received with a predetermined input data 
flow to the integrated circuit array 105. Additionally , or 
alternatively , in one variation , the one or more border cores 
120 may be automatically set to reflect values of one or more 
other border cores having input sensor data when it is 
detected that no input sensor data or the like is received with 
a predetermined input data flow to the integrated circuit 

predetermined data flow schedule enables an automatic flow 
of raw data from memory elements ( e.g. , main memory 160 ) 
of the integrated circuit 100 to the plurality of border cores 
120 and the plurality of array cores 110 having capacity to 
accept data for processing . For instance , in the case that an 
array core 110 functions to process a first subset of data of 
a data load stored in its register file 112 , once the results of 
the processing of the first subset of data is completed and 
sent out from the array core 110 , the predetermined data flow 
schedule may function to enable an automatic flow of raw 
data into the array core 110 that adds to the data load at the 
register file 112 and replaces the first subset of data that was 
previously processed by the array core 110. Accordingly , in 
such instance , no explicit request for additional raw data for 
processing is required from the array core 110. Rather , the 
integrated circuit 100 implementing the dispatcher 130 may 
function to recognize that once the array core 110 has 
processed some amount of data sourced from its register file 
112 ( or elsewhere ) that the array core 110 may have addi 
tional capacity to accept additional data for processing . 
[ 0055 ] In a preferred embodiment , the integrated circuit 
100 may be in operable communication with an instructions 
generator 170 that functions to generate computation , execu 
tion , and data movement instructions , as shown by way of 
example in FIG . 3A . The instructions generator 170 may be 
arranged off - chip relative to the components and circuitry of 
the integrated 100. However , in alternative embodiments , 
the instructions generator 170 may be cooperatively inte 
grated within the integrated circuit 100 as a distinct or 
integrated component of the dispatcher 130 . 
[ 0056 ] Preferably , the instructions generator 170 may be 
implemented using one or more general purpose computers 
( e.g. , a Mac computer , Linux computer , or any suitable 
hardware computer ) or general purpose computer process 
ing ( GPCP ) units 171 that function to operate a compiler 
module 175 that is specifically configured to generate mul 
tiple and / or disparate types of instructions . The compiler 
module 175 may be implemented using any suitable com 
piler software ( e.g. , a GNU Compiler Collection ( GCC ) , a 
Clang compiler , and / or any suitable open source compiler or 
other compiler ) . The compiler module 175 may function to 
generate at least computation instructions and execution 
instructions as well as data movement instructions . In a 
preferred embodiment , at compile time , the compiler mod 
ule 175 may be executed by the one or more GPCP units 171 
to generate the two or more sets of instructions computation / 
execution instructions and data movement instructions 
sequentially or in parallel . In some embodiments , the com 
piler module 175 may function to synthesize multiple sets of 
disparate instructions into a single composition instruction 
set that may be loaded into memory ( e.g. , instructions buffer , 
an external DDR , SPI flash memory , or the like ) from which 
the dispatcher may fetch the single composition instruction 
set from and execute . 
[ 0057 ] In a first variation , however , once the compiler 
module 175 generates the multiple disparate sets of instruc 
tions , such as computation instructions and data movement 
instructions , the instructions generator 170 may function to 
load the instructions sets into a memory ( e.g. , memory 160 
or off - chip memory associated with the generator 170 ) . In 
such embodiments , the dispatcher 130 may function to fetch 
the multiple sets of disparate instructions generated by the 
instructions generator 170 from memory and synthesize the 
multiple sets of disparate instructions into a single compo 

array 105 . 
[ 0053 ] Accordingly , a technical benefit achieved accord 
ing to the implementation of one or more of the plurality of 
border cores 120 as automatic padding elements , may 
include increasing efficiencies in computation by one or 
more of the plurality of array cores 110 by minimizing work 
requests to regions of interest ( or surrounding areas ) of input 
sensor data where automatic padding values have been set . 
Thereby , reducing clock cycles used by the plurality of array 
core 110 in performing computations on an input dataset . 
[ 0054 ] In a preferred implementation of the integrated 
circuit 100 , the progression of data into the plurality of array 
cores 110 and the plurality of border cores 120 for process 
ing is preferably based on a predetermined data flow sched 
ule generated at the dispatcher 130. The predetermined data 
flow schedule enables input data from one or more sources 
( e.g. , sensors , other NN layers , an upstream device , etc. ) to 
be loaded into the border cores 120 and array cores 110 
without requiring an explicit request for the input data from 
the border cores 120 and / or array cores 110. That is , the 
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sition instruction set that the dispatcher may execute and / or 
load within the integrated circuit 100 . 
[ 0058 ] In a second variation , the dispatcher 130 may be 
configured with compiling functionality to generate the 
single composition instruction set . In such variation , the 
dispatcher 130 may include processing circuitry ( e.g. , 
microprocessor or the like ) that function to create instruc 
tions that include scheduled computations or executions to 
be performed by various circuits and / or components ( e.g. , 
array core computations ) of the integrated circuit 100 and 
further , create instructions that enable a control a flow of 
input data through the integrated circuit 100. In some 
embodiments , the dispatcher 130 may function to execute 
part of the instructions and load another part of the instruc 
tions into the integrated circuit array 105. In general , the 
dispatcher 130 may function as a primary controller of the 
integrated circuit 100 that controls and manages access to a 
flow ( movement ) of data from memory to the one or more 
other storage and / or processing circuits of the integrated 
circuit 100 ( and vice versa ) . Additionally , the dispatcher 130 
may schedule control execution operations of the various 
sub - controllers ( e.g. , periphery controllers , etc. ) and the 
plurality of array cores 110 . 
[ 0059 ] In some embodiments , the processing circuitry of 
the dispatcher 130 includes disparate circuity including a 
compute instruction generator circuit 132 and a data move 
ment instructions generator circuit 134 ( e.g. , address gen 
eration unit or address computation unit ) that may indepen 
dently generate computation / execution instructions and data 
transfers / movements schedules or instructions , respectively . 
Accordingly , this configuration enables the dispatcher 130 to 
perform data address calculation and generation of compu 
tation / execution instructions in parallel . The dispatcher 130 
may function to synthesize the output from both the com 
puter instructions generator circuit 132 and the data move 
ment instructions generator circuit 134 into a single instruc 
tions composition that combines the disparate outputs . 
[ 0060 ] The single instructions composition generated by 
the instructions generator 170 and / or the dispatcher 130 may 
be provided to the one or more downstream components and 
integrated circuit array 105 and allow for computation or 
processing instructions and data transfer / movement instruc 
tions to be performed simultaneously by these various 
circuits or components of the integrated circuit 100. With 
respect to the integrated circuit array 105 , the data move 
ment component of the single instructions composition may 
be performed by one or more of periphery controllers 140 , 
150 and compute instructions by one or more of the plurality 
of array cores 110. Accordingly , in such embodiment , the 
periphery controllers 140 , 150 may function decode the 
data movement component of the instructions and if 
involved , may perform operations to read from or write to 
the dual FIFOs 149 , 159 and move that data from the dual 
FIFOs 149 , 159 onto a data bus to the integrated circuit ( or 
vice versa ) . It shall be understood that the read or write 
operations performed by periphery controllers 140 , 150 may 
performed sequentially or simultaneously ( i.e. , writing to 
and reading from dual FIFOs at the same time ) . 
[ 0061 ] It shall be noted that while the compute instructions 
generator circuit 132 and the data movement instructions 
generator circuit 134 are preferably separate or independent 
circuits , in some embodiments the compute instructions 
generator circuit 132 and the data movement instructions 
generator circuit 134 may be implemented by a single circuit 

or a single module that functions to perform both compute 
instructions generation and data movement instruction gen 
eration . 
[ 0062 ] In operation , the dispatcher 130 may function to 
generate and schedule memory addresses to be loaded into 
one or more the periphery load store 145 and the periphery 
load store 155. The periphery load stores 145 , 155 preferably 
include specialized execution units that function to execute 
all load and store instructions from the dispatcher 130 and 
may generally function to load or fetch data from memory 
or storing the data back to memory from the integrated array 
core . The first periphery load store 145 preferably commu 
nicably and operably interfaces with both the first plurality 
of dual FIFOs 149 and the first periphery memory 147. The 
first and the second periphery memory 147 , 157 preferably 
comprise on - chip static random - access memory . 
[ 0063 ] In configuration , the first periphery load store 145 
may be arranged between the first plurality of dual FIFOs 
149 and the first periphery memory 147 such that the first 
periphery load store 145 is positioned immediately next to or 
behind the first plurality of dual FIFOs 149. Similarly , the 
second periphery load store 155 preferably communicably 
and operably interfaces with both the second plurality of 
dual FIFOs 159 and the second periphery memory 157 . 
Accordingly , the second periphery load store 155 may be 
arranged between the second plurality of dual FIFOs 159 
and the second periphery memory 157 such that the second 
periphery load store 155 is positioned immediately next to or 
behind the second plurality of dual FIFOs 159 . 
[ 0064 ] In response to memory addressing instructions 
issued by the dispatcher 130 to one or more of the first and 
the second periphery load stores 145 , 155 , the first and the 
second periphery load stores 145 , 155 may function to 
execute the instructions to fetch data from one of the first 
periphery memory 147 and the second periphery memory 
157 and move the fetched data into one or more of the first 
and second plurality of dual FIFOs 149 , 159. Additionally , 
or alternatively , the dual FIFOs 149 , 159 may function to 
read data from a data bus and move the read data to one or 
more of the respective dual FIFOs or read data from one or 
more of the dual FIFOs and move the read data to a data bus . 
Similarly , memory addressing instructions may cause one or 
more of the first and the second periphery load stores 145 , 
155 to move data collected from one or more of the plurality 
of dual FIFOs 149 , 159 into one of the first and second 
periphery memory 147 , 157 . 
[ 0065 ] Each of the first plurality of dual FIFOs 149 and 
each of the second plurality of dual FIFOs 159 preferably 
comprises at least two memory elements ( not shown ) . Pref 
erably , the first plurality of dual FIFOs 149 may be arranged 
along a first side of the integrated circuit array 105 with each 
of the first plurality of dual FIFOs 149 being aligned with a 
row of the integrated circuit array 105. Similarly , the second 
plurality of dual FIFOs 159 may be arranged along a second 
side of the integrated circuit array 105 with each of the 
second plurality of dual FIFOs 159 being aligned with a 
column of the integrated circuit array 105. This arrangement 
preferably enables each border 120 along the first side of the 
integrated circuit array 105 to communicably and operably 
interface with at least one of the first periphery controllers 
145 and each border 120 along the second side of the 
integrated circuit array 105 to communicably and operably 
interface with at least one of the second periphery control 
lers 155 . 
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[ 0066 ] While it is illustrated in at least FIG . 1 that there are 
a first and second plurality of dual FIFOs , first and second 
periphery controllers , first and second periphery memories , 
and first and second load stores , it shall be noted that these 
structures may be arranged to surround an entire periphery 
of the integrated circuit array 105 such that , for instance , 
these components are arranged along all ( four ) sides of the 
integrated circuit array 105 . 
[ 0067 ] The dual FIFOs 149 , 159 preferably function to 
react to specific instructions for data from their respective 
side . That is , the dual FIFOs 149 , 159 may be configured to 
identify data movement instructions from the dispatcher 130 
that is specific to either the first plurality of dual FIFOs 149 
along the first side or the second plurality of dual FIFOs 
along the second side of the integrated circuit array 105 . 
[ 0068 ] According to a first implementation , each of the 
dual FIFOs may use first of the two memory elements to 
push data into the integrated circuit array 105 and second of 
the two memory elements to pull data from the integrated 
circuit array 105. Thus , each dual FIFO 149 , 159 may have 
a first memory element dedicated for moving data inward 
into the integrated circuit array 105 and a second memory 
element dedicated for moving data outward from the inte 
grated circuit array 105 . 
[ 0069 ] According to a second implementation , the dual 
FIFOs may be operated in a stack ( second ) mode in which 
each respective dual FIFO functions to provide data into the 
integrated circuit array 105 in a predetermined sequence or 
order and collect the data from the integrated circuit array 
105 in the same predetermined sequence or order . 
[ 0070 ] Additionally , the integrated circuit 100 preferably 
includes main memory 160 comprising a single unified 
memory . The main memory 160 preferably functions to 
store data originating from one or more sensors , system 
derived or generated data , data from one or more integrated 
circuit layers , data from one or more upstream devices or 
components , and the like . Preferably , the main memory 160 
comprises on - chip static random - access memory or the like . 
[ 0071 ] Additionally , or alternatively , main memory 160 
may include multiple levels of on - die ( on - chip ) memory . In 
such embodiments , the main memory 160 may include 
multiple memory ( e.g. , SRAM ) elements that may be in 
electrical communication with each other and function as a 
single unified memory that is arranged on a same die as the 
integrated circuit array 105 . 
[ 0072 ] Additionally , or alternatively , main memory 160 
may include multiple levels of off - die ( off - chip ) memory 
( not shown ) . In such embodiments , the main memory 160 
may include multiple memory ( e.g. , DDR SRAM , high 
bandwidth memory ( etc. ) elements that may be in 
electrical communication with each other and function as a 
single unified memory that is arranged on a separate die than 
the integrated circuit array . 
[ 0073 ] It shall be noted that in some embodiments , the 
integrated circuit 100 includes main memory 160 compris 
ing memory arranged on - die and off - die . In such embodi 
ments , the on - die and the off - die memory of the main 
memory 160 may function as a single unified memory 
accessible to the on - die components of the integrated circuit 
100 . 
[ 0074 ] Each of the first periphery memory 147 and the 
second periphery memory 157 may port into the main 
memory 160. Between the first periphery memory 147 and 
the main memory 160 may be arranged a load store unit that 

enables the first periphery memory 147 to fetch data from 
the main memory 160. Similarly , between the second 
periphery memory 157 and the main memory 160 may be 
arranged a second load store unit that enables the second 
periphery memory 157 to fetch data from the main memory 
160 . 
[ 0075 ] It shall be noted that the data transfers along the 
memory hierarchy of the integrated circuit 100 occurring 
between dual FIFOs 149 , 159 and the load stores 145 , 155 , 
between the load stores 145 , 155 and the periphery memory 
147 , 157 , and the periphery memory 147 , 157 and the main 
memory 160 may preferably be implemented as presched 
uled or predetermined direct memory access ( DMA ) trans 
fers that enable the memory elements and load stores to 
independently access and transfer data within the memory 
hierarchy without direct invention of the dispatcher 130 or 
some main processing circuit . Additionally , the data trans 
fers within the memory hierarchy of the integrated circuit 
100 may be implemented as 2D DMA transfers having two 
counts and two strides thereby allowing for efficient data 
access and data reshaping during transfers . In a preferred 
embodiment , the DMA data transfers may be triggered by a 
status or operation of one or more of the plurality of array 
cores 110. For instance , if an array core is completing or has 
completed a processing of first set of data , the completion or 
near - completion may trigger the DMA transfers to enable 
additional data to enter the integrated circuit array 105 for 
processing 
[ 0076 ] III . Method for Optimizing Loop Instructions in a 
Pipelined Processing Stage 
[ 0077 ] As shown by way of example in FIG . 2 , a method 
200 for optimizing nested loop instructions includes identi 
fying a candidate inner loop S210 , implementing a loop 
optimization S220 , executing a multi - part implicit branch 
instruction S230 , and executing a reserved bit S240 . 
[ 0078 ] The method 200 preferably functions to optimize 
loop instructions sets by implementing one or more tech 
niques that simultaneously improves performance of an 
integrated circuit executing inner loop instructions while 
minimizing a code size of the inner loop instructions . 
[ 0079 ] 2.10 Candidate Loop Identification 
[ 0080 ] S210 , which includes identifying a candidate loop 
based on an evaluation of one or more target segments of 
nested loop instructions of an instruction set with a reduced 
performance , may function to evaluate a target instruction 
set to identify one or more instruction segments having 
attributes that , during execution , reduce an operational per 
formance of an integrated circuit . In a preferred embodi 
ment , S210 may function to perform the evaluation of a 
target instruction set at compile time . That is , S210 may 
function to implement a compiler program , code optimiza 
tion program , and / or the like that may function to perform 
a static evaluation of the target instruction set for target code 
segments with a reduced performance . 
[ 0081 ] S210 may preferably function to evaluate one or 
more segments of the target instruction set that include 
nested loops . In one or more embodiments , S210 may 
function to implement the compiler to find or identify the 
most nested or most inner loop for each or any set of loop 
instructions of the target instruction set . That is , S210 may 
function to identify a most inner loop within a loop body as 
a target for evaluation . Accordingly , the most inner loop of 
a given loop body preferably relates to a ( nest ) loop instruc 
tion having the deepest depth . In some embodiments , in 
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which a counter may be implemented for enumerating a 
depth of given loop instruction whereby the most outer loop 
may be zero or one and for each depth within the most outer 
loop , the counter increments whereby the largest number of 
the counter corresponds to the most inner nested loop of a 
given loop body ( i.e. , the most outer loop ; counter = 0 or 1 ) . 
It shall be noted that a decrementing counter may addition 
ally or alternatively be implemented in which the most outer 
loop corresponds to the highest count of a given counter and 
the most inner loop of a loop body of the most outer loop 
corresponds to a lowest count value ( e.g. , count = 0 or 1 ) . 
[ 0082 ] In one or more embodiments , if an identified most 
inner loop of a loop body includes one or more instructions 
within a body of the most inner loop for backwards branch 
ing , S210 may function to identify or automatically select 
the most inner loop as a candidate or a target for loop 
optimization . The loop optimization , as described in more 
detail below , preferably reduces a penalty or a stall in an 
operational performance of an integrated circuit due to an 
increased number of clock cycles required for executing 
instructions for backwards branching or the like . 
[ 0083 ] Additionally , or alternatively , S210 may function 
to evaluate in or more attributes of a target inner loop 
including , at least , a structure of the target inner loop to 
identify whether an instruction size or code size of the target 
inner loop is at or below a instructions size threshold . In one 
or more embodiments , the instructions size threshold pref 
erably relates to a maximum code size that a target inner 
loop may have for loop optimization . While it may be 
preferred that a code size of a target inner loop does not 
exceed the instruction size threshold , it shall be noted that 
loop optimization may be performed on any target inner loop 
having any code size . It has been discovered that the 
technical benefit of the loop optimization described herein 
may have greater efficacy in target inner loops having a tight 
or a small code size ( e.g. , 1-3 lines of code or the like ) 
relative to target inner loops have a code size that is not tight 
or small ( e.g. , a code size exceeding the instruction size 
threshold ) . 
[ 0084 ] Additionally , or alternatively , S210 may function 
to identify a target inner loop as a suitable candidate for loop 
optimization if the bounds of the loop are known or may be 
discoverable with ease ( i.e. , within a reasonable amount of 
computing time below a discoverability threshold ( e.g. , a 
maximum time or period for discovery ) ) . In such embodi 
ments , the bounds of the loop ( also referred herein as “ loop 
bounds ” ) preferably relate to a combination of a starting 
condition and an ending condition for a given ( inner ) loop . 
Accordingly , in one or more embodiments , S210 may func 
tion to determine , identify , or confirm that loop bounds for 
a target inner loop are known when a starting condition and 
a termination condition for the target inner loop are known 
( i.e. , starting condition and / or terminating condition for the 
loop are stated within the loop body ) or readily discoverable 
( e.g. , via inspection of an inspection of a structure of the 
code of the inner loop , the start or the termination instruction 
may be derived ) . In one example in which may include a 
loop variable , S210 may function to consider or determine 
that the loop bounds are known if a start or a termination 
condition of a target inner loop may be derived using 
mathematics below a complexity threshold ( e.g. , simple 
arithmetic : addition , subtraction , or the like ) . 

[ 0085 ] 2.20 Candidate Loop Optimization Implicit Branch 
Instruction 
[ 008 ] S220 , which includes implementing candidate loop 
optimization , may function to optimize a candidate inner 
loop of an instruction set by modifying the instruction set to 
include an implicit branch instruction for at least controlling 
a looping operation of the candidate inner loop , as shown by 
way of example in FIG . 3. In a preferred embodiment , an 
implicit branch instruction as referred to herein preferably 
relates to a multi - part branch instruction that is instruction 
ally tethered to a loop body of an inner loop for controlling 
a looping back operation of the inner loop without the need 
for explicit backward branching instructions within the loop 
body of the inner loop . In one or more embodiments , 
controlling the looping operations of the inner loop may 
include starting and / or restarting an execution of a loop body 
of the inner loop for up to N - 1 times and terminating an 
execution of the loop body upon a satisfaction of a prede 
termined condition or a dynamic condition . 
[ 0087 ] Accordingly , at compile time , S220 may preferably 
function to implement a compiler to optimize the instruction 
set containing the candidate inner loop to simultaneously 
maintain an operational performance of an integrated circuit 
executing the instruction set while minimizing a code size of 
the instruction set . That is , the loop optimization , as 
described in S220 may function to abstract from the loop 
body or eliminate a requirement for explicit backwards 
branching instruction within the loop body of a candidate 
inner loop . In this way , code optimizations , such as unrolling 
a code set for reducing operational penalties ( e.g. , stalls , 
wasted clock cycles , etc. ) but correspondingly enlarging the 
code set , may not be required thereby minimizing the 
instruction set of a candidate inner loop and preserving 
memory used for storing the instruction set . 
[ 0088 ] 2.22 Antecedent Instructions for Loop Body Con 
trol Defining the Multi - Part Implicit Branch Instructions for 
Loop Optimization 
[ 0089 ] In one or more embodiments , S220 includes S222 , 
which includes setting and / or defining one or more parts of 
the multi - part implicit branch instruction within the instruc 
tion set containing a loop body of a candidate inner loop . In 
such embodiments , the multi - part implicit branch instruc 
tions ( i.e. , loop optimization ) for optimizing the candidate 
inner loop includes at least two parts , which may be imple 
mented as a modification of the instruction set by the 
compiler in any order , but for illustrative purposes a first part 
and a second part of the loop optimization are described . 
[ 0090 ] In one or more embodiments , a first part of the loop 
optimization of a candidate inner loop may include aug 
menting the instruction set that includes the candidate inner 
loop with an antecedent instruction , which may sometimes 
be referred to herein as a " setup instruction ” . S222 may 
preferably add the first part of the loop optimization includ 
ing the antecedent instructions in advance of and outside of 
the loop body of the candidate inner loop . That is , the 
antecedent instructions may be codified and / or arranged at a 
position within the target instruction set before the loop body 
instructions of the candidate inner loop . In this way , the 
antecedent / setup instruction ( s ) may be executed or seen by 
a processing entity before the instructions defining the loop 
body of the candidate inner loop . 
[ 0091 ] In a preferred implementation , S222 may function 
to add the setup instructions immediately prior to the 
instructions defining a loop body of the candidate inner loop . 
That is , in such embodiment , the setup instructions may be 
added adjacent to an outside of or externally to the loop body 
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of the candidate inner loop without intermediate instructions 
between the setup instructions and the loop body of the 
candidate inner loop . 
[ 0092 ] In a variant implementation , non - loop body 
instructions may be arranged between setup instructions for 
a candidate inner loop and a loop body of the candidate inner 
loop . In such implementation , S222 may function to addi 
tionally specify the target of the setup instructions while 
accounting for the non - loop body instructions . 
[ 0093 ] Additionally , or alternatively , S222 may function 
to define the setup instructions to include loop bounds ( i.e. , 
a start and end condition ) of a candidate inner loop . That is , 
S222 may function to construct the additional setup instruc 
tions to include a start or an initiating condition that starts an 
execution of the loop body of the candidate inner loop 
together with a terminating or an ending condition that stops 
an execution of the loop body of the candidate inner loop . 
[ 0094 ] While it may be preferably that the terminating 
condition of a candidate inner loop be a known value , in 
some embodiments , S222 may function to dynamically 
compute or dynamical derive a terminating condition for a 
given candidate inner loop and include the derived termi 
nating condition as the terminal bound for stopping an 
execution of the loop body of the candidate inner loop . 
[ 0095 ] Preferably , S222 may function to store the loop 
bounds in one or more registers . In one embodiment , S222 
may function to store a start condition of a given loop 
bounds in a first register , as an immediate or the like ( i.e. , a 
value known at compile time that is encoded into a target 
instruction set ) and a termination condition of the given loop 
bounds in a second register of second immediate . Addition 
ally , or alternatively , S222 may function to define the setup 
instructions or antecedent instructions to include a branch 
target instruction or value identifying a relative location of 
the executable code for starting the candidate inner loop . 
[ 0096 ] 2.24 Suffixation of Reserved Loop Back Bit 
[ 0097 ] In one or more embodiments , a second part of the 
multi - part implicit branch instructions for optimizing a 
candidate inner loop may include a suffixation of a single bit 
of instruction to a terminal instruction ( i.e. , last line instruc 
tion ) of the loop body of the candidate inner loop an 
arrangement of the single bit of instruction within the loop 
body of the candidate inner loop . In some embodiments , the 
single bit of instruction may be referred to herein as a 
“ suffixation bit , ” “ reserved bit , ” “ tailing bit , " " sideband 
loopback bit " or simply a " loopback bit ” . Accordingly , in a 
preferred embodiment , S220 includes S224 , which may 
function to identify a terminal or last instruction within a 
loop body of a candidate inner loop and affix a reserved bit 
to the terminal instruction or within the loop body of the 
candidate inner loop that causes an integrated circuit execut 
ing the reserved bit to revert to or loop back to the branch 
target specified in the setup instructions , as defined in S222 . 
In one or more embodiments , the reserved bit may be added 
along a same line of code as the terminal instruction of the 
loop body of a candidate inner loop and distinctly affixed to 
the most terminal character of the terminal instruction of the 
loop body . 
[ 0098 ] Additionally , or alternatively , an execution of the 
reserved bit and a consequent reversion to a branch target 
may function to increment or decrement a counter associated 
with the iterations of the subject inner loop , as discussed in 
more detail below . 

[ 0099 ] While , in one or more embodiments , a reserved bit 
may be added to a tail end of a terminal instruction of a loop 
body of a candidate inner loop , the reserved bit may not 
function to supplant , subjugate , or otherwise , modify an 
effective operation due to an execution of the terminal 
instruction of the loop body having the reserved bit and may 
additionally , or alternatively , be added at any position or 
location within the loop body of the candidate inner loop . 
Rather , in one or more embodiments , the reserved bit may 
be added with a unique code structure recognized by a 
distinct processing entity ( e.g. , dispatcher 130 , IMD ( i.e. , 
dispatcher ) , or the like ) for processing and / or executing the 
reserved bit distinctly from the terminal instruction . That is , 
a first processing entity , such as a processing core ( e.g. , array 
core 110 ) , may function to execute an entirety of the loop 
body including the terminal instruction while a second 
distinct processing entity ( e.g. , an IMD ) may function to 
execute instructions of the reserved bit independently of the 
terminal instruction . 
[ 0100 ] In one or more embodiments , a structure of the 
reserved bit may include a unique or distinct instruction 
from a structure of the terminal instruction in which a start 
of the reserved bit instruction may be designated with a 
special character , such as a dot or period . In such embodi 
ments , the special character of the reserved bit may be 
followed with additional characters ( e.g. , " .1b ” or the like ) 
recognized by a processing entity as pointing to or reverting 
back to setup instructions for the loop body of the inner loop 
candidate . It shall be recognized that while any suitable 
special character may be used to designate or otherwise , 
indicate a start of the reserved bit instruction , in one or more 
embodiments , S224 may not use a special character or the 
like for designating the reserved bit . 
[ 0101 ] 2.30 Execution of Multi - Part Implicit Branch 
Instruction 
[ 0102 ] At runtime , S230 , which includes executing a 
multi - part implicit branch instruction for a given loop body , 
may function to identify and execute each part of the 
multi - part implicit branch instruction for a loop body of an 
inner loop . In a preferred embodiment , S230 may first 
function to execute the setup instructions component of the 
multi - part implicit branch instruction to make ready the 
operational constraints for looping back and terminating a 
looping back of a subject inner loop . Preferably , S230 may 
function to implement a distinct processing entity ( e.g. , an 
IMD ) for executing the multi - part implicit branch instruc 
tion from a typical array processing core or from a process 
ing entity that executes the loop body of the inner loop . 
[ 0103 ] 2.32 Execution of the Setup Instruction ( s ) 
[ 0104 ] In a preferred embodiment , executing the multi 
part implicit branch instruction may include first executing 
a setup instruction or an antecedent instruction for a given 
loop body of an inner loop . In this preferred embodiment , 
S230 includes S232 , may function to implement a distinct 
processing entity ( e.g. , a dispatcher , IMD , or the like ) to 
store each component of the loop bounds of the loop body 
of the inner loop . That is , S232 may function to configure or 
setup branch target and copy and store each of the starting 
condition for the inner loop that starts an execution of the 
inner loop and the terminating condition that terminates an 
execution of the inner loop in one or more of registers and 
immediates ( i.e. , the branch target ) , as shown by way of 
example in FIG . 4A . Preferably , in the copying and storing , 
S232 may function to copy a location or otherwise notate the 
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location of the first instruction of the loop body , per se , into 
a first distinct register or immediate and further , copy a 
location or an address of the code for the terminating 
condition into a second distinct register or immediate . 
[ 0105 ] Additionally , or alternatively , in executing the 
multi - part implicit branch instruction , S232 may function to 
store a computed absolute target , i.e. , program counter + 
relative target specified in the setup instructions . 
[ 0106 ] 2.34 Dedicated Loop Counter Initialization & 
Tracking 
[ 0107 ] Additionally , or alternatively , S230 includes $ 234 , 
may function to implement a dedicated loop counter that 
preferably tracks each iteration of a subject inner loop . In 
one or more embodiment , contemporaneous with an execu 
tion of setup instructions for a subject inner loop , S234 may 
function to clear and initialize a loop counter to a starting 
value . In such embodiments , the setup instructions prefer 
ably includes a location of one or more of the dedicated loop 
counter and a starting condition for the subject inner loop . In 
one or more embodiments , S234 may function to initialize 
the loop counter to a value associated with the starting 
condition ( e.g. , 0.500 , or the like ) . It shall be noted that the 
starting condition may be incremented or decremented and 
may be any suitable value . 
[ 0108 ] S234 may additionally , or alternatively , use a dis 
tinct processing entity ( e.g. , an IMD ) for tracking a state of 
the loop counter through each iteration of the subject inner 
loop . Thus , in parallel with an execution of a loop body of 
subject inner loop by a processing entity ( e.g. , a processing 
array core ) , S234 may function to separately track the state 
of the loop counter , such that , in one or more embodiments , 
when the dedicated loop counter achieves or satisfies a 
termination condition ( e.g. , a loop counter value ) , an execu 
tion of the loop body of the subject inner loop may be 
terminated . 
[ 0109 ] 2.40 Sideband Loopback Bit Execution 
[ 0110 ] S240 , which includes executing the reserved bit , 
may function to execute the reserved bit of a loop body of 
a subject inner loop and correspondingly , terminate an 
execution of the inner loop or execute another iteration of 
the subject inner loop . In particular , after execution of an 
iteration of a subject inner loop , S240 , implemented by a 
distinct processing entity or the like , may function to read 
the reserved bit affixed to the most terminal instruction of a 
loop body of the subject inner loop , as shown by way of 
example in FIG . 4B . As mentioned above , S240 may func 
tion to implement a distinct processing entity , such as an 
IMD , to read and execute the reserved bit . 
[ 0111 ] In a preferred embodiment , executing the reserved 
bit may cause the distinct processing entity to assess and / or 
change a value of a loop counter that tracks the iterations of 
the subject inner loop together with performing an evalua 
tion of the termination condition against a value of the loop 
counter for fully terminating any further iterations , looping , 
or executions of the loop body of the subject inner loop . 
[ 0112 ] Accordingly , in one or more embodiments , S240 
implementing the distinct processing entity may function to 
first increment or decrement the loop counter to a new value . 
In some embodiments , the reserved bit may function to point 
the distinct processing entity to the setup instructions or 
setup branch target associated with the loop body of the 
subject inner loop , which may direct the distinct processing 
entity to a location or an address of the stored copy of the 
terminating condition for the subject inner loop and poten 

tially , a storage location of a state of the dedicated loop 
counter for the subject inner loop . In one variant implemen 
tation , an execution of the reserved bit by the distinct 
processing entity may function to point the distinct process 
ing entity directly to the location or the address of the stored 
copy of the terminating condition . Once the new value of the 
loop counter is established by incrementing or decrementing 
the loop counter , S240 may contemporaneously check or 
evaluate the new value of the loop counter against the 
terminating condition to determine whether the terminating 
condition is satisfied or not satisfied . 
[ 0113 ] In the circumstance that S240 identifies that the 
terminating condition of the subject inner loop is not satis 
fied , S240 may function to cause a jump or execute a branch 
to an address or a location of the first instruction or starting 
instruction of the loop body of the subject inner loop and 
execute a new iteration of the subject inner loop . Alterna 
tively , if S240 identifies that the terminating condition of the 
subject inner loop is satisfied , S240 may function to cause a 
termination of an execution of the subject inner loop and , in 
some embodiments , proceed with processing another 
instruction other than the loop body of the subject inner 
loop . 
[ 0114 ] It shall be noted that while the process flow and / or 
one or more embodiments herein describe an optimization of 
inner loop instructions , as described in S210 and S220 , 
being implemented together with an execution of the multi 
part implicit branch instructions , in one or more embodi 
ments , the optimization of the inner loop instructions and the 
execution of the multi - part implicit branch instruction may 
be implemented independently of each other . In particular , 
since it may be contemplated herein that the loop optimi 
zation may be performed at compile time and the execution 
of the multi - part implicit branch instruction may be per 
formed at runtime , a distinct method for implemented each 
technique is contemplated by the various embodiments 
described herein . 
[ 0115 ] The systems and methods of the preferred embodi 
ment and variations thereof can be embodied and / or imple 
mented at least in part as a machine configured to receive a 
computer - readable medium storing computer - readable 
instructions . The instructions are preferably executed by 
computer - executable components preferably integrated with 
the system and one or more portions of the processor and / or 
the controller . The computer - readable medium can be stored 
on any suitable computer - readable media such as RAMS , 
ROMs , flash memory , EEPROMs , optical devices ( CD or 
DVD ) , hard drives , floppy drives , or any suitable device . 
The computer - executable component is preferably a general 
or application specific processor , but any suitable dedicated 
hardware or hardware / firmware combination device can 
alternatively or additionally execute the instructions . 
[ 0116 ] Although omitted for conciseness , the preferred 
embodiments include every combination and permutation of 
the implementations of the systems and methods described 
herein . 
[ 0117 ] As a person skilled in the art will recognize from 
the previous detailed description and from the figures and 
claims , modifications and changes can be made to the 
preferred embodiments of the invention without departing 
from the scope of this invention defined in the following 
claims . 

1. A method for improving a performance of an integrated 
circuit , the method comprising : 
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implementing one or more computing devices executing 
a compiler program that : 
( i ) evaluates a target instruction set intended for execu 

tion by an integrated circuit ; 
( ii ) identifies one or more nested loop instructions 

within the target instruction set based on the evalu 
ation ; 

( iii ) evaluates whether a most inner loop body within 
the one or more nested loop instructions comprises a 
candidate inner loop body that requires a loop opti 
mization that mitigates an operational penalty to the 
integrated circuit based on one or more executional 
properties of the most inner loop instruction , wherein 
if the most inner loop body within the loop body of 
the nested loop instructions includes an instruction 
for backwards branching , automatically setting the 
most inner loop body as the candidate inner loop for 
the loop optimization ; and 

( iv ) implements the loop optimization that modifies the 
target instruction set to include loop optimization 
instructions to control , at runtime , an execution and 
a termination of the most inner loop body thereby 
mitigating the operational penalty to the integrated 
circuit . 

2. The method according to claim 1 , wherein : 
each iteration of the most inner loop body is executed by 

an array processing core of an integrated circuit array 
of the integrated circuit that includes a plurality of array 
processing cores ; and 

the loop optimization causes a distinct processing circuit 
external to the integrated circuit array to ( a ) control a 
start of the execution of each iteration by the array 
processing core and ( b ) control a termination of an 
execution of the most inner loop body by the array 
processing core . 

3. ( canceled ) 
4. The method according to claim 1 , wherein 
the evaluation further includes : 

( i ) identifying a code size of the candidate inner loop , 
( ii ) identifying whether the code size of the candidate 

inner loop satisfies or does not exceed an instruction 
size threshold , wherein the instruction size threshold 
relates to a maximum possible code size of a poten 
tial candidate for loop optimization , and wherein 
automatically setting the most inner loop body as the 
candidate inner loop for the loop optimization when 
the code size of the candidate inner loop satisfies or 
does not exceed the instruction size threshold . 

5. The method according to claim 1 , wherein 
the evaluation further includes : 

( i ) inspecting a structure of the candidate inner loop ; 
( ii ) identifying whether loop bounds of the candidate 

inner loop is discoverable based on the inspection ; 
and 

( iii ) if the loop bounds of the candidate inner loop are 
discoverable , deriving a starting condition and a 
deriving terminating condition of the candidate inner 
loop , wherein a combination of the starting condition 
and the terminating condition define the loop bounds 
of the candidate inner loop . 

6. The method according to claim 1 , wherein 
the loop optimization instructions comprise an implicit 

branch instruction that controls a looping operation of 
the candidate inner loop . 

7. The method according to claim 6 , wherein 
the implicit branch instruction comprises a multi - part 

branch instruction that is instructionally tethered to a 
loop body of the candidate inner loop for controlling a 
looping back operation of the candidate inner loop 
without a need for executing explicit backward branch 
ing instructions within the loop body of the candidate 
inner loop . 

8. The method according to claim 7 , wherein 
a first part of the multi - part branch instruction comprises 

an antecedent instruction that is codified at a position 
ahead of the loop body of the candidate inner loop . 

9. The method according to claim 8 , wherein 
the antecedent instruction identifies loop bounds of the 

candidate inner loop , wherein the loop bounds include 
a starting condition and a terminating condition of the 
candidate inner loop . 

10. The method according to claim 7 , wherein 
a second part of the multi - part branch instruction com 

prises a suffixation bit that includes a single bit of 
instruction arranged within the loop body of the can 
didate inner loop . 

11. The method according to claim 10 , wherein 
the single bit of instruction identifies a terminal instruc 

tion of the loop body of the candidate inner loop that , 
when executed , causes a reversion to a code location 
target of the antecedent instructions that identifies a 
starting instruction of the loop body of the candidate 
inner loop . 

12. The method according to claim 10 , wherein 
an execution of the single bit of instruction causes an 

increment or a decrement to a dedicated loop counter 
for the candidate inner loop . 

13. The method according to claim 9 , wherein 
executing , at runtime , the antecedent instructions includes 

storing the loop bounds in a memory distinct from a 
memory storing the loop body of the candidate inner 
loop , clearing and initializing a dedicated loop counter 
for the candidate inner loop . 

14. The method according to claim 9 , wherein 
the antecedent instructions identifies a code location tar 

get that identifies a starting instruction of the loop body 
of the candidate inner loop . 

15. The method according to claim 6 , wherein 
the implicit branch instruction comprises a multi - position 

branch instruction having ( a ) a first part comprising a 
first instruction that is positioned ahead of the loop 
body of the candidate inner loop and ( b ) a second part 
comprising one or more bits of instruction that are 
positioned at an end of a terminal instruction of the loop 
body of the candidate inner loop . 

16. A system for improving a performance of an inte 
grated circuit , the system comprising : 

one or more computing devices executing a compiler 
program that : 
( i ) evaluates a target instruction set intended for execu 

tion by an integrated circuit ; 
( ii ) identifies one or more nested loop instructions 

within the target instruction set based on the evalu 
ation ; 

( iii ) evaluates whether a most inner loop body within 
the one or more nested loop instructions comprises a 
candidate inner loop body that requires a loop opti 
mization that mitigates an operational penalty to the 
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integrated circuit based on one or more executional 
properties of the most inner loop instruction ; and 

( iv ) implements the loop optimization that modifies the 
target instruction set to include loop optimization 
instructions to control , at runtime , an execution and 
a termination of the most inner loop body thereby 
mitigating the operational penalty to the integrated 
circuit , 

wherein : 
the loop optimization instructions comprise a multi 

part implicit branch instruction that is instructionally 
tethered to a loop body of the candidate inner loop 
for controlling a looping back operation of the can 
didate inner loop , and 

the multi - part implicit branch including : 
( a ) a first part that is codified at a position ahead of the 

loop body of the candidate inner loop and that causes 
a storing of loop bounds of the candidate inner loop , 
and 

( b ) a second part that includes a single bit of instruction 
codified within the loop body of the candidate inner 
loop that identifies a terminal instruction of the loop 
body of the candidate inner loop and that , when 
executed , causes a reversion to a storage location of 
the loop bounds . 

17. ( canceled ) 
18. A method for improving an operational performance 

of an integrated circuit , the method comprising : 
controlling an execution of a looping operation of a target 

nested loop within a subject set of instructions , wherein 
the controlling includes : 

( i ) executing , by a distinct processing circuit , a first part 
of an implicit branch instruction for the target nested 
loop , wherein the executing the first part includes : 
( i - a ) storing loop bounds of the target nested loop in 

a memory distinct from a memory storing the loop 
body of the target nested loop , 

( i - b ) clearing and initializing a dedicated loop coun 
ter for the target nested loop , wherein the dedi 
cated loop counter for the target nested loop is 
incremented or decremented according to each 
executed iteration of the target nested loop , and 

( i - c ) storing a code location target of a starting 
instruction of the loop body of the candidate inner 
loop in the memory storing the loop body of the 
target nested loop ; 

( ii ) executing , by the distinct processing circuit , a 
second part of the implicit branch instruction , 
wherein the second part includes a single bit instruc 
tion positioned within the loop body , wherein the 
executing the second part includes : 
( ii - a ) causes a reversion to a storage location of the 

loop bounds , and 
( ii - b ) an increment or a decrement of the dedicated 

loop counter for the target nested loop ; 
wherein controlling the execution includes : 

continuing the execution or terminating the execution 
of the loop body of the target nest loop by an array 
processing circuit of an integrated circuit array based 
on whether a value of the dedicated loop counter 
satisfies a terminating condition defined in the loop 
bounds . 


