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(57) ABSTRACT

In one embodiment, a method for improving a performance
of an integrated circuit includes implementing one or more
computing devices executing a compiler program that: (i)
evaluates a target instruction set intended for execution by
an integrated circuit; (ii) identifies one or more nested loop
instructions within the target instruction set based on the
evaluation; (iii) evaluates whether a most inner loop body
within the one or more nested loop instructions comprises a
candidate inner loop body that requires a loop optimization
that mitigates an operational penalty to the integrated circuit
based on one or more executional properties of the most
inner loop instruction; and (iv) implements the loop opti-
mization that modifies the target instruction set to include
loop optimization instructions to control, at runtime, an
execution and a termination of the most inner loop body
thereby mitigating the operational penalty to the integrated
circuit.
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SYSTEMS AND METHODS FOR
OPTIMIZING NESTED LOOP
INSTRUCTIONS IN PIPELINE PROCESSING
STAGES WITHIN A MACHINE PERCEPTION
AND DENSE ALGORITHM INTEGRATED
CIRCUIT

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/957,688, filed 6 Jan. 2020, and of
the U.S. Provisional Application No. 63/050,971, filed 13
Jul. 2020, which are incorporated herein in their entireties by
this reference.

TECHNICAL FIELD

[0002] The one or more inventions described herein relate
generally to the integrated circuitry field, and more specifi-
cally to a new and useful perception and dense algorithm
processing integrated circuitry architecture in the integrated
circuitry field.

BACKGROUND

[0003] Modern applications of artificial intelligence and
generally, machine learning appear to be driving innovations
in robotics and specifically, in technologies involving
autonomous robotics and autonomous vehicles. Also, the
developments in machine perception technology have
enabled the abilities of many of the implementations in the
autonomous robotics’ and autonomous vehicles’ spaces to
perceive vision, perceive hearing, and perceive touch among
many other capabilities that allow machines to comprehend
their environments.

[0004] The underlying perception technologies applied to
these autonomous implementations include a number of
advanced and capable sensors that often allow for a rich
capture of environments surrounding the autonomous robots
and/or autonomous vehicles. However, while many of these
advanced and capable sensors may enable a robust capture
of the physical environments of many autonomous imple-
mentations, the underlying processing circuitry that may
function to process the various sensor signal data from the
sensors often lack in corresponding robust processing capa-
bilities sufficient to allow for high performance and real-
time computing of the sensor signal data.

[0005] The underlying processing circuitry often include
general purpose integrated circuits including central pro-
cessing units (CPUs) and graphic processing units (GPU). In
many applications, GPUs are implemented rather than CPUs
because GPUs are capable of executing bulky or large
amounts of computations relative to CPUs. However, the
architectures of most GPUs are not optimized for handling
many of the complex machine learning algorithms (e.g.,
neural network algorithms, etc.) used in machine perception
technology. For instance, the autonomous vehicle space
includes multiple perception processing needs that extend
beyond merely recognizing vehicles and persons. Autono-
mous vehicles have been implemented with advanced sensor
suites that provide a fusion of sensor data that enable route
or path planning for autonomous vehicles. But, modern
GPUs are not constructed for handling these additional high
computation tasks.
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[0006] At best, to enable a GPU or similar processing
circuitry to handle additional sensor processing needs
including path planning, sensor fusion, and the like, addi-
tional and/or disparate circuity may be assembled to a
traditional GPU. This fragmented and piecemeal approach
to handling the additional perception processing needs of
robotics and autonomous machines results in a number of
inefficiencies in performing computations including ineffi-
ciencies in sensor signal processing.

[0007] Accordingly, there is a need in the integrated
circuitry field for an advanced integrated circuit and pro-
cessing techniques that are capable of high performance and
real-time processing and computing of routine and advanced
sensor signals for enabling perception of robotics or any
type or kind of perceptual machine.

[0008] The inventors of the inventions described in the
present application have designed an integrated circuit archi-
tecture and one or more processing techniques that allow for
enhanced sensor data processing capabilities and have fur-
ther discovered related methods for implementing the inte-
grated circuit architecture for several purposes including for
enabling perception of robotics and various machines.

SUMMARY OF THE INVENTION(S)

[0009] In one embodiment, a method for improving a
performance of an integrated circuit includes implementing
one or more computing devices executing a compiler pro-
gram that: (i) evaluates a target instruction set intended for
execution by an integrated circuit; (ii) identifies one or more
nested loop bodies within the target instruction set based on
the evaluation; (iii) evaluates whether a most inner loop
body within the one or more nested loop bodies comprises
a candidate inner loop body that requires a loop optimization
that mitigates an operational penalty to the integrated circuit
based on one or more executional properties of the most
inner loop body; and (iv) implements the loop optimization
that modifies the target instruction set to include loop
optimization instructions to control, at runtime, an execution
and a termination of the most inner loop body thereby
mitigating the operational penalty to the integrated circuit.
[0010] In one embodiment, each iteration of the most
inner loop body is executed by an array processing core of
an integrated circuit array of the integrated circuit that
includes a plurality of array processing cores; and the loop
optimization causes a distinct processing circuit external to
the integrated circuit array to (a) control a start of the
execution of each iteration by the array processing core and
(b) control a termination of an execution of the most inner
loop body by the array processing core.

[0011] In one embodiment, if the most inner loop body
within the loop body of the nested loop bodies is associated
with an instruction for backwards branching, automatically
setting the most inner loop body as the candidate inner loop
for the loop optimization.

[0012] In one embodiment, the evaluation further
includes: (i) identifying a code size of the candidate inner
loop, (ii) identifying whether the code size of the candidate
inner loop satisfies or does not exceed an instruction size
threshold, wherein the instruction size threshold relates to a
maximum possible code size of a potential candidate for
loop optimization, and wherein automatically setting the
most inner loop body as the candidate inner loop for the loop
optimization when the code size of the candidate inner loop
satisfies or does not exceed the instruction size threshold.
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[0013] In one embodiment, the evaluation further
includes: (i) inspecting a structure of the candidate inner
loop; (ii) identifying whether loop bounds of the candidate
inner loop is discoverable based on the inspection; and (iii)
if the loop bounds of the candidate inner loop are discov-
erable, deriving a starting condition and a deriving termi-
nating condition of the candidate inner loop, wherein a
combination of the starting condition and the terminating
condition define the loop bounds of the candidate inner loop.
[0014] In one embodiment, the loop optimization instruc-
tions comprise an implicit branch instruction that controls a
looping operation of the candidate inner loop.

[0015] In one embodiment, the implicit branch instruction
comprises a multi-part branch instruction that is instruction-
ally tethered to a loop body of the candidate inner loop for
controlling a looping back operation of the candidate inner
loop without a need for executing explicit backward branch-
ing instructions within the loop body of the candidate inner
loop.

[0016] In one embodiment, the implicit branch instruction
comprises a multi-position branch instruction having (a) a
first part comprising a first instruction that is positioned
ahead of the loop body of the candidate inner loop and (b)
a second part comprising one or more bits of instruction that
are positioned within the loop body of the candidate inner
loop.

[0017] In one embodiment, a first part of the multi-part
branch instruction comprises an antecedent instruction that
is codified at a position ahead of the loop body of the
candidate inner loop.

[0018] In one embodiment, the antecedent instruction
comprises loop bounds of the candidate inner loop, wherein
the loop bounds include a starting condition and a terminat-
ing condition of the candidate inner loop.

[0019] In one embodiment, the antecedent instructions
includes a code location target that identifies a starting
instruction of the loop body of the candidate inner loop.
[0020] In one embodiment, a second part of the multi-part
branch instruction comprises a suffixation bit that includes a
single bit of instruction appended to a terminal instruction of
the loop body of the candidate inner loop or that is arranged
in a position within the loop body of the candidate inner
loop.

[0021] In one embodiment, the single bit of instruction
identifies a terminal instruction of the loop body of the
candidate inner loop that, when executed, causes a reversion
to a code location target of the antecedent instructions that
identifies a starting instruction of the loop body of the
candidate inner loop.

[0022] In one embodiment, an execution of the single bit
of instruction causes an increment or a decrement to a
dedicated loop counter for the candidate inner loop.

[0023] In one embodiment, executing, at runtime, the
antecedent instructions includes storing the loop bounds in
a memory distinct from a memory storing the loop body of
the candidate inner loop, clearing and initializing a dedi-
cated loop counter for the candidate inner loop.

[0024] In one embodiment, a system for improving a
performance of an integrated circuit includes one or more
computing devices executing a compiler program that: (i)
evaluates a target instruction set intended for execution by
an integrated circuit; (ii) identifies one or more nested loop
instructions within the target instruction set based on the
evaluation; (iii) evaluates whether a most inner loop body
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within the one or more nested loop instructions comprises a
candidate inner loop body that requires a loop optimization
that mitigates an operational penalty to the integrated circuit
based on one or more executional properties of the most
inner loop instruction; and (iv) implements the loop opti-
mization that modifies the target instruction set to include
loop optimization instructions to control, at runtime, an
execution and a termination of the most inner loop body
thereby mitigating the operational penalty to the integrated
circuit.

[0025] In one embodiment, the loop optimization instruc-
tions comprise a multi-part implicit branch instruction that is
instructionally tethered to a loop body of the candidate inner
loop for controlling a looping back operation of the candi-
date inner loop; the multi-part implicit branch including: (a)
a first part that is codified at a position ahead of the loop
body of the candidate inner loop and that causes a storing of
loop bounds of the candidate inner loop, and (b) a second
part that includes a single bit of instruction arranged within
the loop body of the candidate inner loop that identifies a
terminal instruction of the loop body of the candidate inner
loop and that, when executed, causes a reversion to a storage
location of the loop bounds and/or a code location target of
the antecedent instructions that identifies a starting instruc-
tion of the loop body of the candidate inner loop.

[0026] In one embodiment, a method for improving an
operational performance of an integrated circuit includes
controlling an execution of a looping operation of a target
nested loop within a subject set of instructions, wherein the
controlling includes: (i) executing, by a distinct processing
circuit, a first part of an implicit branch instruction for the
target nested loop, wherein the executing the first part
includes: (i-a) storing loop bounds of the target nested loop
in a memory distinct from a memory storing the loop body
of the target nested loop, (i-b) clearing and initializing a
dedicated loop counter for the target nested loop, (i-c)
storing a code location target of a starting instruction of the
loop body of the candidate inner loop, wherein the dedicated
loop counter for the target nested loop is incremented or
decremented according to each executed iteration of the
target nested loop; (ii) executing, by the distinct processing
circuit, a second part of the implicit branch instruction,
wherein the second part includes a single bit instruction
arranged within the loop body of the candidate inner loop,
wherein the executing the second part includes: (ii-a) causes
a reversion to a storage location of the loop bounds, and
(ii-b) an increment or a decrement of the dedicated loop
counter for the target nested loop; wherein controlling the
execution includes: continuing the execution or terminating
the execution of the loop body of the target nest loop by an
array processing circuit of an integrated circuit array based
on whether a value of the dedicated loop counter satisfies a
terminating condition defined in the loop bounds.

BRIEF DESCRIPTION OF THE FIGURES

[0027] FIG. 1 illustrates a schematic of a system 100 in
accordance with one or more embodiments of the present
application;

[0028] FIG. 2 illustrates a method 200 for implementing a
predicate stack in accordance with one or more embodi-
ments of the present application;

[0029] FIG. 3 illustrates a schematic that examples loop
optimization at compile time in accordance with one or more
embodiments of the present application; and
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[0030] FIGS. 4A-4B illustrate schematics that example an
execution of a loop optimized with implicit branch instruc-
tions in accordance with one or more embodiments of the
present application.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0031] The following description of preferred embodi-
ments of the present application are not intended to limit the
inventions to these preferred embodiments, but rather to
enable any person skilled in the art of to make and use these
inventions.

[0032]

[0033] In an integrated circuit configured with pipeline
processing stages, a backwards branching instruction may
cause stalls in the execution of one or more instruction sets
thereby increasing a number clock cycles required for pro-
cessing the instruction set and reducing a performance of the
integrated circuit. Backwards branching instructions may
typically be found in loop instructions and the like in which
an execution of a new iteration of the loop may require that
the integrated circuit jump from a terminal instruction of a
loop body of the loop back to a branch for executing a new
iteration of the loop instructions. Additionally, for certain
instruction types such as tight nested loops, stalls may be
extremely expensive when the nest loop is really small (e.g.,
a small number of instructions below a code size threshold
or the like). To avoid the stalls, in some integrated circuits,
branch predictors may be implemented that make predic-
tions on whether a branch will or will not be taken or
executed. In pipeline processing stages, a branch predictor
may reduce stalls, however, branch predictors are often
complex and expensive, in terms of computational resources
(e.g., power, chip area, etc.), to deploy.

[0034] One alternative for reducing a stall penalty result-
ing from backwards branching includes unrolling the code
or instruction set, which may reduce a stall penalty by half
while simultaneously enlarging the code size. However, in
many embedded systems, available memory for storing
instructions or code is limited and thus, unrolling the code
set may reduce a stall penalty to improve a performance of
an integrated circuit, but unrolling also grows the size of the
code by double with each unrolling. In such cases, an
embedded system may not have sufficient memory to store
the increased code size and/or have sufficient available
memory to properly executed large code, at runtime.

[0035] One or more embodiments of the present applica-
tion, however, provide systems and techniques for optimiz-
ing instruction sets that include backwards branching
instructions that may typically produce a stall in execution.
In one preferred embodiment of the present application, an
instruction set may be optimized to include an implicit
branching instruction that abstracts the processing task from
a processing circuit executing a nested loop or the like and
allows a distinct processing entity (e.g., an IMD (instruction
memory dispatcher)) other than an array core of the inte-
grated circuit array to handle the start of iterations of the
nested loop and the termination of the nested loop by
implementing a setup instruction with a branch target having
starting and terminating conditions together with a loopback
bit or a reserved bit reverts the distinct processing entity to
the branch target for either restarting the loop or terminating
the loop, as described in more detail below.

1. Overview
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[0036] It shall also be recognized that the one or more
embodiments of the present application may be imple-
mented in any suitable processing environment including,
but not limited to, within one or more IMDs and/or any
suitable processing circuit.

[0037] The mesh architecture defined by the plurality of
processing elements in the array core preferably enable
in-memory computing and data movement, as described in
U.S. Pat. No. 10,365,860, U.S. patent application Ser. No.
16/292,537, U.S. Provisional Application Nos. 62/649,551
and 62/649,551, which are all incorporated herein in their
entireties by this reference and further, enable a core-level
predication.

[0038] II. A System Architecture of a Dense Algorithm
and/or Perception Processing Circuit (Unit)

[0039] As shown in FIG. 1, the integrated circuit 100
(dense algorithm and/or perception processing unit) for
performing perception processing includes a plurality of
array cores 110, a plurality of border cores 120, a dispatcher
(main controller) 130, a first plurality of periphery control-
lers 140, a second plurality of periphery controllers 150, and
main memory 160. The integrated circuit 100 may addition-
ally include a first periphery load store 145, a second
periphery load store 155, a first periphery memory 147, a
second periphery memory 157, a first plurality of dual FIFOs
149, and a second plurality of dual FIFOs 159, as described
in U.S. Pat. Nos. 10,365,860, 10,691,464, and U.S. patent
application Ser. No. 16/292,537, which are all incorporated
herein in their entireties by this reference.

[0040] The integrated circuit 100 preferably functions to
enable real-time and high computing efficiency of percep-
tion data and/or sensor data. A general configuration of the
integrated circuit 100 includes a plurality of array core 110
defining central signal and data processing nodes each
having large register files that may eliminate or significantly
reduce clock cycles needed by an array core 110 for pulling
and pushing data for processing from memory. The instruc-
tions (i.e., computation/execution and data movement
instructions) generating capabilities of the integrated circuit
100 (e.g., via the dispatcher 130 and/or a compiler module
175) functions to enable a continuity and flow of data
throughout the integrated circuit 100 and namely, within the
plurality of array cores 110 and border cores 120.

[0041] An array core 110 preferably functions as a data or
signal processing node (e.g., a small microprocessor) or
processing circuit and preferably, includes a register file 112
having a large data storage capacity (e.g., 1024 kb, etc.) and
an arithmetic logic unit (ALU) 118 or any suitable digital
electronic circuit that performs arithmetic and bitwise opera-
tions on integer binary numbers. In a preferred embodiment,
the register file 112 of an array core 110 may be the only
memory element that the processing circuits of an array core
110 may have direct access to. An array core 110 may have
indirect access to memory outside of the array core and/or
the integrated circuit array 105 (i.e., core mesh) defined by
the plurality of border cores 120 and the plurality of array
cores 110.

[0042] The register file 112 of an array core 110 may be
any suitable memory element or device, but preferably
comprises one or more static random-access memories
(SRAMs). The register file 112 may include a large number
of registers, such as 1024 registers, that enables the storage
of a sufficiently large data set for processing by the array
core 110. Accordingly, a technical benefit achieved by an
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arrangement of the large register file 112 within each array
core 110 is that the large register file 112 reduces a need by
an array core 110 to fetch and load data into its register file
112 for processing. As a result, a number of clock cycles
required by the array core 112 to push data into and pull data
out of memory is significantly reduced or eliminated alto-
gether. That is, the large register file 112 increases the
efficiencies of computations performed by an array core 110
because most, if not all, of the data that the array core 110
is scheduled to process is located immediately next to the
processing circuitry (e.g., one or more MACs, ALU, etc.) of
the array core 110. For instance, when implementing image
processing by the integrated circuit 100 or related system
using a neural network algorithm(s) or application(s) (e.g.,
convolutional neural network algorithms or the like), the
large register file 112 of an array core may function to enable
a storage of all the image data required for processing an
entire image. Accordingly, most or if not, all layer data of a
neural network implementation (or similar compute-inten-
sive application) may be stored locally in the large register
file 112 of an array core 110 with the exception of weights
or coefficients of the neural network algorithm(s), in some
embodiments. Accordingly, this allows for optimal utiliza-
tion of the computing and/or processing elements (e.g., the
one or more MACs and ALU) of an array core 110 by
enabling an array core 110 to constantly churn data of the
register file 112 and further, limiting the fetching and loading
of data from an off-array core data source (e.g., main
memory, periphery memory, etc.).

[0043] By comparison, to traverse a register file in a
traditional system implemented by a GPU or the like, it is
typically required that memory addresses be issued for
fetching data from memory. However, in a preferred
embodiment that implements the large register file 112, the
(raw) input data within the register file 112 may be auto-
matically incremented from the register file 112 and data
from neighboring core(s) (e.g., array cores and/or border
cores) are continuously sourced to the register file 112 to
enable a continuous flow to the computing elements of the
array core 110 without an express need to make a request (or
issuing memory addresses) by the array core 110.

[0044] While in some embodiments of the present appli-
cation, a predetermined data flow scheduled may mitigate or
altogether, eliminate requests for data by components within
the integrated circuit array 105, in a variant of these embodi-
ments traditional random memory access may be achieved
by components of the integrated circuit array 105. That is, if
an array core 110 or a border core 120 recognizes a need for
a random piece of data for processing, the array core 110
and/or the border 120 may make a specific request for data
from any of the memory elements within the memory
hierarchy of the integrated circuit 100.

[0045] An array core 110 may, additionally or alterna-
tively, include a plurality of multiplier (multiply) accumu-
lators (MACs) 114 or any suitable logic devices or digital
circuits that may be capable of performing multiply and
summation functions. In a preferred embodiment, each array
core 110 includes four (4) MACs and each MAC 114 may
be arranged at or near a specific side of a rectangular shaped
array core 110. While, in a preferred embodiment each of the
plurality of MACs 114 of an array core 110 may be arranged
near or at the respective sides of the array core 110, it shall
be known that the plurality of MACs 114 may be arranged
within (or possibly augmented to a periphery of an array
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core) the array core 110 in any suitable arrangement, pattern,
position, and the like including at the respective corners of
an array core 110. In a preferred embodiment, the arrange-
ment of the plurality of MACs 114 along the sides of an
array core 110 enables efficient inflow or capture of input
data received from one or more of the direct neighboring
cores (i.e., an adjacent neighboring core) and the computa-
tion thereof by the array core 110 of the integrated circuit
100.

[0046] Accordingly, each of the plurality of MACs 114
positioned within an array core 110 may function to have
direct communication capabilities with neighboring cores
(e.g., array cores, border cores, etc.) within the integrated
circuit 100. The plurality of MACs 114 may additionally
function to execute computations using data (e.g., operands)
sourced from the large register file 112 of an array core 110.
However, the plurality of MACs 114 preferably function to
source data for executing computations from one or more of
their respective neighboring core(s) and/or a weights or
coeflicients (constants) bus 116 that functions to transfer
coefficient or weight inputs of one or more algorithms
(including machine learning algorithms) from one or more
memory elements (e.g., main memory 160 or the like) or one
or more input sources.

[0047] The weights bus 116 may be operably placed in
electrical communication with at least one or more of
periphery controllers 140, 150 at a first input terminal and
additionally, operably connected with one or more of the
plurality of array core 110. In this way, the weight bus 116
may function to collect weights and coefficients data input
from the one or more periphery controllers 140, 150 and
transmit the weights and coeflicients data input directly to
one or more of the plurality of array cores 110. Accordingly,
in some embodiments, multiple array cores 110 may be fed
weights and/or coefficients data input via the weights bus
116 in parallel to thereby improve the speed of computation
of the array cores 110.

[0048] Each array core 110 preferably functions to bi-
directionally communicate with its direct neighbors. That is,
in some embodiments, a respective array core 110 may be
configured as a processing node having a rectangular shape
and arranged such that each side of the processing node may
be capable of interacting with another node (e.g., another
processing node, a data storage/movement node, etc.) that is
positioned next to one of the four sides or each of the faces
of the array core 110. The ability of an array core 110 to
bi-directionally communicate with a neighboring core along
each of its sides enables the array core 110 to pull in data
from any of its neighbors as well as push (processed or raw)
data to any of its neighbors. This enables a mesh commu-
nication architecture that allows for efficient movement of
data throughout the collection of array and border cores 110,
120 of the integrated circuit 100.

[0049] Each of'the plurality of border cores 120 preferably
includes a register file 122. The register file 122 may be
configured similar to the register file 112 of an array core 110
in that the register file 122 may function to store large
datasets. Preferably, each border core 120 includes a sim-
plified architecture when compared to an array core 110.
Accordingly, a border core 120 in some embodiments may
not include execution capabilities and therefore, may not
include multiplier-accumulators and/or an arithmetic logic
unit as provided in many of the array cores 110.



US 2021/0208889 Al

[0050] Inatraditional integrated circuit (e.g., a GPU or the
like), when input image data (or any other suitable sensor
data) received for processing compute-intensive application
(e.g., neural network algorithm) within such a circuit, it may
be necessary to issue padding requests to areas within the
circuit which do not include image values (e.g., pixel values)
based on the input image data. That is, during image
processing or the like, the traditional integrated circuit may
function to perform image processing from a memory ele-
ment that does not contain any image data value. In such
instances, the traditional integrated circuit may function to
request that a padding value, such as zero, be added to the
memory element to avoid subsequent image processing
efforts at the memory element without an image data value.
A consequence of this typical image data processing by the
traditional integrated circuit results in a number of clock
cycles spent identifying the blank memory element and
adding a computable value to the memory element for image
processing or the like by the traditional integrated circuit.
[0051] In a preferred implementation of the integrated
circuit 100, one or more of the plurality of border cores 120
may function to automatically set to a default value when no
input data (e.g., input sensor data) is received. For instance,
input image data from a sensor (or another circuit layer) may
have a total image data size that does not occupy all border
core cells of the integrated circuit array 105. In such
instance, upon receipt of the input image data, the one or
more border cores 120 (i.e., border core cells) without input
image data may be automatically set to a default value, such
as zero or a non-zero constant value.

[0052] In some embodiments, the predetermined input
data flow schedule generated by the dispatcher and sent to
one or more of the plurality of border cores may include
instructions to set to a default or a predetermined constant
value. Additionally, or alternatively, the one or more border
cores 120 may be automatically set to a default or a
predetermined value when it is detected that no input sensor
data or the like is received with a predetermined input data
flow to the integrated circuit array 105. Additionally, or
alternatively, in one variation, the one or more border cores
120 may be automatically set to reflect values of one or more
other border cores having input sensor data when it is
detected that no input sensor data or the like is received with
a predetermined input data flow to the integrated circuit
array 105.

[0053] Accordingly, a technical benefit achieved accord-
ing to the implementation of one or more of the plurality of
border cores 120 as automatic padding elements, may
include increasing efficiencies in computation by one or
more of the plurality of array cores 110 by minimizing work
requests to regions of interest (or surrounding areas) of input
sensor data where automatic padding values have been set.
Thereby, reducing clock cycles used by the plurality of array
core 110 in performing computations on an input dataset.
[0054] In a preferred implementation of the integrated
circuit 100, the progression of data into the plurality of array
cores 110 and the plurality of border cores 120 for process-
ing is preferably based on a predetermined data flow sched-
ule generated at the dispatcher 130. The predetermined data
flow schedule enables input data from one or more sources
(e.g., sensors, other NN layers, an upstream device, etc.) to
be loaded into the border cores 120 and array cores 110
without requiring an explicit request for the input data from
the border cores 120 and/or array cores 110. That is, the
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predetermined data flow schedule enables an automatic flow
of raw data from memory elements (e.g., main memory 160)
of the integrated circuit 100 to the plurality of border cores
120 and the plurality of array cores 110 having capacity to
accept data for processing. For instance, in the case that an
array core 110 functions to process a first subset of data of
a data load stored in its register file 112, once the results of
the processing of the first subset of data is completed and
sent out from the array core 110, the predetermined data flow
schedule may function to enable an automatic flow of raw
data into the array core 110 that adds to the data load at the
register file 112 and replaces the first subset of data that was
previously processed by the array core 110. Accordingly, in
such instance, no explicit request for additional raw data for
processing is required from the array core 110. Rather, the
integrated circuit 100 implementing the dispatcher 130 may
function to recognize that once the array core 110 has
processed some amount of data sourced from its register file
112 (or elsewhere) that the array core 110 may have addi-
tional capacity to accept additional data for processing.

[0055] In a preferred embodiment, the integrated circuit
100 may be in operable communication with an instructions
generator 170 that functions to generate computation, execu-
tion, and data movement instructions, as shown by way of
example in FIG. 3A. The instructions generator 170 may be
arranged off-chip relative to the components and circuitry of
the integrated 100. However, in alternative embodiments,
the instructions generator 170 may be cooperatively inte-
grated within the integrated circuit 100 as a distinct or
integrated component of the dispatcher 130.

[0056] Preferably, the instructions generator 170 may be
implemented using one or more general purpose computers
(e.g., a Mac computer, Linux computer, or any suitable
hardware computer) or general purpose computer process-
ing (GPCP) units 171 that function to operate a compiler
module 175 that is specifically configured to generate mul-
tiple and/or disparate types of instructions. The compiler
module 175 may be implemented using any suitable com-
piler software (e.g., a GNU Compiler Collection (GCC), a
Clang compiler, and/or any suitable open source compiler or
other compiler). The compiler module 175 may function to
generate at least computation instructions and execution
instructions as well as data movement instructions. In a
preferred embodiment, at compile time, the compiler mod-
ule 175 may be executed by the one or more GPCP units 171
to generate the two or more sets of instructions computation/
execution instructions and data movement instructions
sequentially or in parallel. In some embodiments, the com-
piler module 175 may function to synthesize multiple sets of
disparate instructions into a single composition instruction
set that may be loaded into memory (e.g., instructions buffer,
an external DDR, SPI flash memory, or the like) from which
the dispatcher may fetch the single composition instruction
set from and execute.

[0057] In a first variation, however, once the compiler
module 175 generates the multiple disparate sets of instruc-
tions, such as computation instructions and data movement
instructions, the instructions generator 170 may function to
load the instructions sets into a memory (e.g., memory 160
or off-chip memory associated with the generator 170). In
such embodiments, the dispatcher 130 may function to fetch
the multiple sets of disparate instructions generated by the
instructions generator 170 from memory and synthesize the
multiple sets of disparate instructions into a single compo-
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sition instruction set that the dispatcher may execute and/or
load within the integrated circuit 100.

[0058] In a second variation, the dispatcher 130 may be
configured with compiling functionality to generate the
single composition instruction set. In such variation, the
dispatcher 130 may include processing circuitry (e.g.,
microprocessor or the like) that function to create instruc-
tions that include scheduled computations or executions to
be performed by various circuits and/or components (e.g.,
array core computations) of the integrated circuit 100 and
further, create instructions that enable a control a flow of
input data through the integrated circuit 100. In some
embodiments, the dispatcher 130 may function to execute
part of the instructions and load another part of the instruc-
tions into the integrated circuit array 105. In general, the
dispatcher 130 may function as a primary controller of the
integrated circuit 100 that controls and manages access to a
flow (movement) of data from memory to the one or more
other storage and/or processing circuits of the integrated
circuit 100 (and vice versa). Additionally, the dispatcher 130
may schedule control execution operations of the various
sub-controllers (e.g., periphery controllers, etc.) and the
plurality of array cores 110.

[0059] In some embodiments, the processing circuitry of
the dispatcher 130 includes disparate circuity including a
compute instruction generator circuit 132 and a data move-
ment instructions generator circuit 134 (e.g., address gen-
eration unit or address computation unit) that may indepen-
dently generate computation/execution instructions and data
transfers/movements schedules or instructions, respectively.
Accordingly, this configuration enables the dispatcher 130 to
perform data address calculation and generation of compu-
tation/execution instructions in parallel. The dispatcher 130
may function to synthesize the output from both the com-
puter instructions generator circuit 132 and the data move-
ment instructions generator circuit 134 into a single instruc-
tions composition that combines the disparate outputs.
[0060] The single instructions composition generated by
the instructions generator 170 and/or the dispatcher 130 may
be provided to the one or more downstream components and
integrated circuit array 105 and allow for computation or
processing instructions and data transfer/movement instruc-
tions to be performed simultaneously by these various
circuits or components of the integrated circuit 100. With
respect to the integrated circuit array 105, the data move-
ment component of the single instructions composition may
be performed by one or more of periphery controllers 140,
150 and compute instructions by one or more of the plurality
of array cores 110. Accordingly, in such embodiment, the
periphery controllers 140, 150 may function to decode the
data movement component of the instructions and if
involved, may perform operations to read from or write to
the dual FIFOs 149, 159 and move that data from the dual
FIFOs 149, 159 onto a data bus to the integrated circuit (or
vice versa). It shall be understood that the read or write
operations performed by periphery controllers 140, 150 may
performed sequentially or simultaneously (i.e., writing to
and reading from dual FIFOs at the same time).

[0061] It shall be noted that while the compute instructions
generator circuit 132 and the data movement instructions
generator circuit 134 are preferably separate or independent
circuits, in some embodiments the compute instructions
generator circuit 132 and the data movement instructions
generator circuit 134 may be implemented by a single circuit
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or a single module that functions to perform both compute
instructions generation and data movement instruction gen-
eration.

[0062] In operation, the dispatcher 130 may function to
generate and schedule memory addresses to be loaded into
one or more the periphery load store 145 and the periphery
load store 155. The periphery load stores 145, 155 preferably
include specialized execution units that function to execute
all load and store instructions from the dispatcher 130 and
may generally function to load or fetch data from memory
or storing the data back to memory from the integrated array
core. The first periphery load store 145 preferably commu-
nicably and operably interfaces with both the first plurality
of dual FIFOs 149 and the first periphery memory 147. The
first and the second periphery memory 147, 157 preferably
comprise on-chip static random-access memory.

[0063] In configuration, the first periphery load store 145
may be arranged between the first plurality of dual FIFOs
149 and the first periphery memory 147 such that the first
periphery load store 145 is positioned immediately next to or
behind the first plurality of dual FIFOs 149. Similarly, the
second periphery load store 155 preferably communicably
and operably interfaces with both the second plurality of
dual FIFOs 159 and the second periphery memory 157.
Accordingly, the second periphery load store 155 may be
arranged between the second plurality of dual FIFOs 159
and the second periphery memory 157 such that the second
periphery load store 155 is positioned immediately next to or
behind the second plurality of dual FIFOs 159.

[0064] In response to memory addressing instructions
issued by the dispatcher 130 to one or more of the first and
the second periphery load stores 145, 155, the first and the
second periphery load stores 145, 155 may function to
execute the instructions to fetch data from one of the first
periphery memory 147 and the second periphery memory
157 and move the fetched data into one or more of the first
and second plurality of dual FIFOs 149, 159. Additionally,
or alternatively, the dual FIFOs 149, 159 may function to
read data from a data bus and move the read data to one or
more of the respective dual FIFOs or read data from one or
more of the dual FIFOs and move the read data to a data bus.
Similarly, memory addressing instructions may cause one or
more of the first and the second periphery load stores 145,
155 to move data collected from one or more of the plurality
of dual FIFOs 149, 159 into one of the first and second
periphery memory 147, 157.

[0065] Each of the first plurality of dual FIFOs 149 and
each of the second plurality of dual FIFOs 159 preferably
comprises at least two memory elements (not shown). Pref-
erably, the first plurality of dual FIFOs 149 may be arranged
along a first side of the integrated circuit array 105 with each
of the first plurality of dual FIFOs 149 being aligned with a
row of the integrated circuit array 105. Similarly, the second
plurality of dual FIFOs 159 may be arranged along a second
side of the integrated circuit array 105 with each of the
second plurality of dual FIFOs 159 being aligned with a
column of the integrated circuit array 105. This arrangement
preferably enables each border 120 along the first side of the
integrated circuit array 105 to communicably and operably
interface with at least one of the first periphery controllers
145 and each border 120 along the second side of the
integrated circuit array 105 to communicably and operably
interface with at least one of the second periphery control-
lers 155.
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[0066] While itis illustrated in at least FIG. 1 that there are
a first and second plurality of dual FIFOs, first and second
periphery controllers, first and second periphery memories,
and first and second load stores, it shall be noted that these
structures may be arranged to surround an entire periphery
of the integrated circuit array 105 such that, for instance,
these components are arranged along all (four) sides of the
integrated circuit array 105.

[0067] The dual FIFOs 149, 159 preferably function to
react to specific instructions for data from their respective
side. That is, the dual FIFOs 149, 159 may be configured to
identify data movement instructions from the dispatcher 130
that is specific to either the first plurality of dual FIFOs 149
along the first side or the second plurality of dual FIFOs
along the second side of the integrated circuit array 105.
[0068] According to a first implementation, each of the
dual FIFOs may use first of the two memory elements to
push data into the integrated circuit array 105 and second of
the two memory elements to pull data from the integrated
circuit array 105. Thus, each dual FIFO 149, 159 may have
a first memory element dedicated for moving data inward
into the integrated circuit array 105 and a second memory
element dedicated for moving data outward from the inte-
grated circuit array 105.

[0069] According to a second implementation, the dual
FIFOs may be operated in a stack (second) mode in which
each respective dual FIFO functions to provide data into the
integrated circuit array 105 in a predetermined sequence or
order and collect the data from the integrated circuit array
105 in the same predetermined sequence or order.

[0070] Additionally, the integrated circuit 100 preferably
includes main memory 160 comprising a single unified
memory. The main memory 160 preferably functions to
store data originating from one or more sensors, system-
derived or generated data, data from one or more integrated
circuit layers, data from one or more upstream devices or
components, and the like. Preferably, the main memory 160
comprises on-chip static random-access memory or the like.
[0071] Additionally, or alternatively, main memory 160
may include multiple levels of on-die (on-chip) memory. In
such embodiments, the main memory 160 may include
multiple memory (e.g., SRAM) elements that may be in
electrical communication with each other and function as a
single unified memory that is arranged on a same die as the
integrated circuit array 105.

[0072] Additionally, or alternatively, main memory 160
may include multiple levels of off-die (off-chip) memory
(not shown). In such embodiments, the main memory 160
may include multiple memory (e.g., DDR SRAM, high
bandwidth memory (HBM), etc.) elements that may be in
electrical communication with each other and function as a
single unified memory that is arranged on a separate die than
the integrated circuit array.

[0073] It shall be noted that in some embodiments, the
integrated circuit 100 includes main memory 160 compris-
ing memory arranged on-die and off-die. In such embodi-
ments, the on-diec and the off-die memory of the main
memory 160 may function as a single unified memory
accessible to the on-die components of the integrated circuit
100.

[0074] Each of the first periphery memory 147 and the
second periphery memory 157 may port into the main
memory 160. Between the first periphery memory 147 and
the main memory 160 may be arranged a load store unit that
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enables the first periphery memory 147 to fetch data from
the main memory 160. Similarly, between the second
periphery memory 157 and the main memory 160 may be
arranged a second load store unit that enables the second
periphery memory 157 to fetch data from the main memory
160.

[0075] It shall be noted that the data transfers along the
memory hierarchy of the integrated circuit 100 occurring
between dual FIFOs 149, 159 and the load stores 145, 155,
between the load stores 145, 155 and the periphery memory
147, 157, and the periphery memory 147, 157 and the main
memory 160 may preferably be implemented as presched-
uled or predetermined direct memory access (DMA) trans-
fers that enable the memory elements and load stores to
independently access and transfer data within the memory
hierarchy without direct invention of the dispatcher 130 or
some main processing circuit. Additionally, the data trans-
fers within the memory hierarchy of the integrated circuit
100 may be implemented as 2D DMA transfers having two
counts and two strides thereby allowing for efficient data
access and data reshaping during transfers. In a preferred
embodiment, the DMA data transfers may be triggered by a
status or operation of one or more of the plurality of array
cores 110. For instance, if an array core is completing or has
completed a processing of first set of data, the completion or
near-completion may trigger the DMA transfers to enable
additional data to enter the integrated circuit array 105 for
processing.

[0076] III. Method for Optimizing Loop Instructions in a
Pipelined Processing Stage

[0077] As shown by way of example in FIG. 2, a method
200 for optimizing nested loop instructions includes identi-
fying a candidate inner loop S210, implementing a loop
optimization S220, executing a multi-part implicit branch
instruction S230, and executing a reserved bit S240.
[0078] The method 200 preferably functions to optimize
loop instructions sets by implementing one or more tech-
niques that simultaneously improves performance of an
integrated circuit executing inner loop instructions while
minimizing a code size of the inner loop instructions.
[0079] 2.10 Candidate Loop Identification

[0080] S210, which includes identifying a candidate loop
based on an evaluation of one or more target segments of
nested loop instructions of an instruction set with a reduced
performance, may function to evaluate a target instruction
set to identify one or more instruction segments having
attributes that, during execution, reduce an operational per-
formance of an integrated circuit. In a preferred embodi-
ment, S210 may function to perform the evaluation of a
target instruction set at compile time. That is, S210 may
function to implement a compiler program, code optimiza-
tion program, and/or the like that may function to perform
a static evaluation of the target instruction set for target code
segments with a reduced performance.

[0081] S210 may preferably function to evaluate one or
more segments of the target instruction set that include
nested loops. In one or more embodiments, S210 may
function to implement the compiler to find or identify the
most nested or most inner loop for each or any set of loop
instructions of the target instruction set. That is, S210 may
function to identify a most inner loop within a loop body as
a target for evaluation. Accordingly, the most inner loop of
a given loop body preferably relates to a (nest) loop instruc-
tion having the deepest depth. In some embodiments, in
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which a counter may be implemented for enumerating a
depth of given loop instruction whereby the most outer loop
may be zero or one and for each depth within the most outer
loop, the counter increments whereby the largest number of
the counter corresponds to the most inner nested loop of a
given loop body (i.e., the most outer loop; counter=0 or 1).
It shall be noted that a decrementing counter may addition-
ally or alternatively be implemented in which the most outer
loop corresponds to the highest count of a given counter and
the most inner loop of a loop body of the most outer loop
corresponds to a lowest count value (e.g., count=0 or 1).

[0082] In one or more embodiments, if an identified most
inner loop of a loop body includes one or more instructions
within a body of the most inner loop for backwards branch-
ing, S210 may function to identify or automatically select
the most inner loop as a candidate or a target for loop
optimization. The loop optimization, as described in more
detail below, preferably reduces a penalty or a stall in an
operational performance of an integrated circuit due to an
increased number of clock cycles required for executing
instructions for backwards branching or the like.

[0083] Additionally, or alternatively, S210 may function
to evaluate in or more attributes of a target inner loop
including, at least, a structure of the target inner loop to
identify whether an instruction size or code size of the target
inner loop is at or below a instructions size threshold. In one
or more embodiments, the instructions size threshold pref-
erably relates to a maximum code size that a target inner
loop may have for loop optimization. While it may be
preferred that a code size of a target inner loop does not
exceed the instruction size threshold, it shall be noted that
loop optimization may be performed on any target inner loop
having any code size. It has been discovered that the
technical benefit of the loop optimization described herein
may have greater efficacy in target inner loops having a tight
or a small code size (e.g., 1-3 lines of code or the like)
relative to target inner loops have a code size that is not tight
or small (e.g., a code size exceeding the instruction size
threshold).

[0084] Additionally, or alternatively, S210 may function
to identity a target inner loop as a suitable candidate for loop
optimization if the bounds of the loop are known or may be
discoverable with ease (i.e., within a reasonable amount of
computing time below a discoverability threshold (e.g., a
maximum time or period for discovery)). In such embodi-
ments, the bounds of the loop (also referred herein as “loop
bounds”) preferably relate to a combination of a starting
condition and an ending condition for a given (inner) loop.
Accordingly, in one or more embodiments, S210 may func-
tion to determine, identify, or confirm that loop bounds for
a target inner loop are known when a starting condition and
a termination condition for the target inner loop are known
(i.e., starting condition and/or terminating condition for the
loop are stated within the loop body) or readily discoverable
(e.g., via inspection of an inspection of a structure of the
code of the inner loop, the start or the termination instruction
may be derived). In one example in which may include a
loop variable, S210 may function to consider or determine
that the loop bounds are known if a start or a termination
condition of a target inner loop may be derived using
mathematics below a complexity threshold (e.g., simple
arithmetic: addition, subtraction, or the like).
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[0085] 2.20 Candidate Loop OptimizationlImplicit Branch
Instruction
[0086] S220, which includes implementing candidate loop

optimization, may function to optimize a candidate inner
loop of an instruction set by modifying the instruction set to
include an implicit branch instruction for at least controlling
a looping operation of the candidate inner loop, as shown by
way of example in FIG. 3. In a preferred embodiment, an
implicit branch instruction as referred to herein preferably
relates to a multi-part branch instruction that is instruction-
ally tethered to a loop body of an inner loop for controlling
a looping back operation of the inner loop without the need
for explicit backward branching instructions within the loop
body of the inner loop. In one or more embodiments,
controlling the looping operations of the inner loop may
include starting and/or restarting an execution of a loop body
of the inner loop for up to N-1 times and terminating an
execution of the loop body upon a satisfaction of a prede-
termined condition or a dynamic condition.

[0087] Accordingly, at compile time, S220 may preferably
function to implement a compiler to optimize the instruction
set containing the candidate inner loop to simultaneously
maintain an operational performance of an integrated circuit
executing the instruction set while minimizing a code size of
the instruction set. That is, the loop optimization, as
described in S220 may function to abstract from the loop
body or eliminate a requirement for explicit backwards
branching instruction within the loop body of a candidate
inner loop. In this way, code optimizations, such as unrolling
a code set for reducing operational penalties (e.g., stalls,
wasted clock cycles, etc.) but correspondingly enlarging the
code set, may not be required thereby minimizing the
instruction set of a candidate inner loop and preserving
memory used for storing the instruction set.

[0088] 2.22 Antecedent Instructions for Loop Body Con-
trollDefining the Multi-Part Implicit Branch Instructions for
Loop Optimization

[0089] In one or more embodiments, S220 includes S222,
which includes setting and/or defining one or more parts of
the multi-part implicit branch instruction within the instruc-
tion set containing a loop body of a candidate inner loop. In
such embodiments, the multi-part implicit branch instruc-
tions (i.e., loop optimization) for optimizing the candidate
inner loop includes at least two parts, which may be imple-
mented as a modification of the instruction set by the
compiler in any order, but for illustrative purposes a first part
and a second part of the loop optimization are described.
[0090] Inone or more embodiments, a first part of the loop
optimization of a candidate inner loop may include aug-
menting the instruction set that includes the candidate inner
loop with an antecedent instruction, which may sometimes
be referred to herein as a “setup instruction”. S222 may
preferably add the first part of the loop optimization includ-
ing the antecedent instructions in advance of and outside of
the loop body of the candidate inner loop. That is, the
antecedent instructions may be codified and/or arranged at a
position within the target instruction set before the loop body
instructions of the candidate inner loop. In this way, the
antecedent/setup instruction(s) may be executed or seen by
a processing entity before the instructions defining the loop
body of the candidate inner loop.

[0091] In a preferred implementation, S222 may function
to add the setup instructions immediately prior to the
instructions defining a loop body of the candidate inner loop.
That is, in such embodiment, the setup instructions may be
added adjacent to an outside of or externally to the loop body
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of the candidate inner loop without intermediate instructions
between the setup instructions and the loop body of the
candidate inner loop.

[0092] In a variant implementation, non-loop body
instructions may be arranged between setup instructions for
a candidate inner loop and a loop body of the candidate inner
loop. In such implementation, S222 may function to addi-
tionally specify the target of the setup instructions while
accounting for the non-loop body instructions.

[0093] Additionally, or alternatively, S222 may function
to define the setup instructions to include loop bounds (i.e.,
a start and end condition) of a candidate inner loop. That is,
S222 may function to construct the additional setup instruc-
tions to include a start or an initiating condition that starts an
execution of the loop body of the candidate inner loop
together with a terminating or an ending condition that stops
an execution of the loop body of the candidate inner loop.

[0094] While it may be preferably that the terminating
condition of a candidate inner loop be a known value, in
some embodiments, S222 may function to dynamically
compute or dynamical derive a terminating condition for a
given candidate inner loop and include the derived termi-
nating condition as the terminal bound for stopping an
execution of the loop body of the candidate inner loop.

[0095] Preferably, S222 may function to store the loop
bounds in one or more registers. In one embodiment, S222
may function to store a start condition of a given loop
bounds in a first register, as an immediate or the like (i.e., a
value known at compile time that is encoded into a target
instruction set) and a termination condition of the given loop
bounds in a second register of second immediate. Addition-
ally, or alternatively, S222 may function to define the setup
instructions or antecedent instructions to include a branch
target instruction or value identifying a relative location of
the executable code for starting the candidate inner loop.

[0096] 2.24 Suffixation of Reserved Loop Back Bit

[0097] In one or more embodiments, a second part of the
multi-part implicit branch instructions for optimizing a
candidate inner loop may include a suffixation of a single bit
of instruction to a terminal instruction (i.e., last line instruc-
tion) of the loop body of the candidate inner loop an
arrangement of the single bit of instruction within the loop
body of the candidate inner loop. In some embodiments, the
single bit of instruction may be referred to herein as a
“suffixation bit,” “reserved bit,” “tailing bit,” “sideband
loopback bit” or simply a “loopback bit”. Accordingly, in a
preferred embodiment, S220 includes S224, which may
function to identify a terminal or last instruction within a
loop body of a candidate inner loop and affix a reserved bit
to the terminal instruction or within the loop body of the
candidate inner loop that causes an integrated circuit execut-
ing the reserved bit to revert to or loop back to the branch
target specified in the setup instructions, as defined in S222.
In one or more embodiments, the reserved bit may be added
along a same line of code as the terminal instruction of the
loop body of a candidate inner loop and distinctly affixed to
the most terminal character of the terminal instruction of the
loop body.

[0098] Additionally, or alternatively, an execution of the
reserved bit and a consequent reversion to a branch target
may function to increment or decrement a counter associated
with the iterations of the subject inner loop, as discussed in
more detail below.
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[0099] While, in one or more embodiments, a reserved bit
may be added to a tail end of a terminal instruction of a loop
body of a candidate inner loop, the reserved bit may not
function to supplant, subjugate, or otherwise, modify an
effective operation due to an execution of the terminal
instruction of the loop body having the reserved bit and may
additionally, or alternatively, be added at any position or
location within the loop body of the candidate inner loop.
Rather, in one or more embodiments, the reserved bit may
be added with a unique code structure recognized by a
distinct processing entity (e.g., dispatcher 130, IMD (i.e.,
dispatcher), or the like) for processing and/or executing the
reserved bit distinctly from the terminal instruction. That is,
a first processing entity, such as a processing core (e.g., array
core 110), may function to execute an entirety of the loop
body including the terminal instruction while a second
distinct processing entity (e.g., an IMD) may function to
execute instructions of the reserved bit independently of the
terminal instruction.

[0100] In one or more embodiments, a structure of the
reserved bit may include a unique or distinct instruction
from a structure of the terminal instruction in which a start
of the reserved bit instruction may be designated with a
special character, such as a dot or period. In such embodi-
ments, the special character of the reserved bit may be
followed with additional characters (e.g., “.Ib” or the like)
recognized by a processing entity as pointing to or reverting
back to setup instructions for the loop body of the inner loop
candidate. It shall be recognized that while any suitable
special character may be used to designate or otherwise,
indicate a start of the reserved bit instruction, in one or more
embodiments, S224 may not use a special character or the
like for designating the reserved bit.

[0101] 2.30 Execution of Multi-Part Implicit Branch
Instruction
[0102] At runtime, S230, which includes executing a

multi-part implicit branch instruction for a given loop body,
may function to identify and execute each part of the
multi-part implicit branch instruction for a loop body of an
inner loop. In a preferred embodiment, S230 may first
function to execute the setup instructions component of the
multi-part implicit branch instruction to make ready the
operational constraints for looping back and terminating a
looping back of a subject inner loop. Preferably, S230 may
function to implement a distinct processing entity (e.g., an
IMD) for executing the multi-part implicit branch instruc-
tion from a typical array processing core or from a process-
ing entity that executes the loop body of the inner loop.
[0103] 2.32 Execution of the Setup Instruction(s)

[0104] In a preferred embodiment, executing the multi-
part implicit branch instruction may include first executing
a setup instruction or an antecedent instruction for a given
loop body of an inner loop. In this preferred embodiment,
S230 includes S232, may function to implement a distinct
processing entity (e.g., a dispatcher, IMD, or the like) to
store each component of the loop bounds of the loop body
of the inner loop. That is, S232 may function to configure or
setup branch target and copy and store each of the starting
condition for the inner loop that starts an execution of the
inner loop and the terminating condition that terminates an
execution of the inner loop in one or more of registers and
immediates (i.e., the branch target), as shown by way of
example in FIG. 4A. Preferably, in the copying and storing,
S232 may function to copy a location or otherwise notate the
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location of the first instruction of the loop body, per se, into
a first distinct register or immediate and further, copy a
location or an address of the code for the terminating
condition into a second distinct register or immediate.
[0105] Additionally, or alternatively, in executing the
multi-part implicit branch instruction, S232 may function to
store a computed absolute target, i.e., program counter+
relative target specified in the setup instructions.

[0106] 2.34 Dedicated Loop Counter Initialization &
Tracking
[0107] Additionally, or alternatively, S230 includes S234,

may function to implement a dedicated loop counter that
preferably tracks each iteration of a subject inner loop. In
one or more embodiment, contemporaneous with an execu-
tion of setup instructions for a subject inner loop, S234 may
function to clear and initialize a loop counter to a starting
value. In such embodiments, the setup instructions prefer-
ably includes a location of one or more of the dedicated loop
counter and a starting condition for the subject inner loop. In
one or more embodiments, S234 may function to initialize
the loop counter to a value associated with the starting
condition (e.g., 0.500, or the like). It shall be noted that the
starting condition may be incremented or decremented and
may be any suitable value.

[0108] S234 may additionally, or alternatively, use a dis-
tinct processing entity (e.g., an IMD) for tracking a state of
the loop counter through each iteration of the subject inner
loop. Thus, in parallel with an execution of a loop body of
subject inner loop by a processing entity (e.g., a processing
array core), S234 may function to separately track the state
of the loop counter, such that, in one or more embodiments,
when the dedicated loop counter achieves or satisfies a
termination condition (e.g., a loop counter value), an execu-
tion of the loop body of the subject inner loop may be
terminated.

[0109] 2.40 Sideband Loopback Bit Execution

[0110] S240, which includes executing the reserved bit,
may function to execute the reserved bit of a loop body of
a subject inner loop and correspondingly, terminate an
execution of the inner loop or execute another iteration of
the subject inner loop. In particular, after execution of an
iteration of a subject inner loop, S240, implemented by a
distinct processing entity or the like, may function to read
the reserved bit affixed to the most terminal instruction of a
loop body of the subject inner loop, as shown by way of
example in FIG. 4B. As mentioned above, S240 may func-
tion to implement a distinct processing entity, such as an
IMD, to read and execute the reserved bit.

[0111] In a preferred embodiment, executing the reserved
bit may cause the distinct processing entity to assess and/or
change a value of a loop counter that tracks the iterations of
the subject inner loop together with performing an evalua-
tion of the termination condition against a value of the loop
counter for fully terminating any further iterations, looping,
or executions of the loop body of the subject inner loop.
[0112] Accordingly, in one or more embodiments, S240
implementing the distinct processing entity may function to
first increment or decrement the loop counter to a new value.
In some embodiments, the reserved bit may function to point
the distinct processing entity to the setup instructions or
setup branch target associated with the loop body of the
subject inner loop, which may direct the distinct processing
entity to a location or an address of the stored copy of the
terminating condition for the subject inner loop and poten-
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tially, a storage location of a state of the dedicated loop
counter for the subject inner loop. In one variant implemen-
tation, an execution of the reserved bit by the distinct
processing entity may function to point the distinct process-
ing entity directly to the location or the address of the stored
copy of the terminating condition. Once the new value of the
loop counter is established by incrementing or decrementing
the loop counter, S240 may contemporaneously check or
evaluate the new value of the loop counter against the
terminating condition to determine whether the terminating
condition is satisfied or not satisfied.

[0113] In the circumstance that S240 identifies that the
terminating condition of the subject inner loop is not satis-
fied, S240 may function to cause a jump or execute a branch
to an address or a location of the first instruction or starting
instruction of the loop body of the subject inner loop and
execute a new iteration of the subject inner loop. Alterna-
tively, if S240 identifies that the terminating condition of the
subject inner loop is satisfied, S240 may function to cause a
termination of an execution of the subject inner loop and, in
some embodiments, proceed with processing another
instruction other than the loop body of the subject inner
loop.

[0114] It shall be noted that while the process flow and/or
one or more embodiments herein describe an optimization of
inner loop instructions, as described in S210 and S220,
being implemented together with an execution of the multi-
part implicit branch instructions, in one or more embodi-
ments, the optimization of the inner loop instructions and the
execution of the multi-part implicit branch instruction may
be implemented independently of each other. In particular,
since it may be contemplated herein that the loop optimi-
zation may be performed at compile time and the execution
of the multi-part implicit branch instruction may be per-
formed at runtime, a distinct method for implemented each
technique is contemplated by the various embodiments
described herein.

[0115] The systems and methods of the preferred embodi-
ment and variations thereof can be embodied and/or imple-
mented at least in part as a machine configured to receive a
computer-readable medium storing computer-readable
instructions. The instructions are preferably executed by
computer-executable components preferably integrated with
the system and one or more portions of the processor and/or
the controller. The computer-readable medium can be stored
on any suitable computer-readable media such as RAMs,
ROMs, flash memory, EEPROMs, optical devices (CD or
DVD), hard drives, floppy drives, or any suitable device.
The computer-executable component is preferably a general
or application specific processor, but any suitable dedicated
hardware or hardware/firmware combination device can
alternatively or additionally execute the instructions.
[0116] Although omitted for conciseness, the preferred
embodiments include every combination and permutation of
the implementations of the systems and methods described
herein.

[0117] As a person skilled in the art will recognize from
the previous detailed description and from the figures and
claims, modifications and changes can be made to the
preferred embodiments of the invention without departing
from the scope of this invention defined in the following
claims.

1. A method for improving a performance of an integrated
circuit, the method comprising:
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implementing one or more computing devices executing

a compiler program that:

(1) evaluates a target instruction set intended for execu-
tion by an integrated circuit;

(i1) identifies one or more nested loop instructions
within the target instruction set based on the evalu-
ation;

(iii) evaluates whether a most inner loop body within
the one or more nested loop instructions comprises a
candidate inner loop body that requires a loop opti-
mization that mitigates an operational penalty to the
integrated circuit based on one or more executional
properties of the most inner loop instruction, wherein
if the most inner loop body within the loop body of
the nested loop instructions includes an instruction
for backwards branching, automatically setting the
most inner loop body as the candidate inner loop for
the loop optimization; and

(iv) implements the loop optimization that modifies the
target instruction set to include loop optimization
instructions to control, at runtime, an execution and
a termination of the most inner loop body thereby
mitigating the operational penalty to the integrated
circuit.

2. The method according to claim 1, wherein:

each iteration of the most inner loop body is executed by
an array processing core of an integrated circuit array
of' the integrated circuit that includes a plurality of array
processing cores; and

the loop optimization causes a distinct processing circuit

external to the integrated circuit array to (a) control a

start of the execution of each iteration by the array

processing core and (b) control a termination of an
execution of the most inner loop body by the array
processing core.

3. (canceled)

4. The method according to claim 1, wherein

the evaluation further includes:

(1) identifying a code size of the candidate inner loop,

(ii) identifying whether the code size of the candidate
inner loop satisfies or does not exceed an instruction
size threshold, wherein the instruction size threshold
relates to a maximum possible code size of a poten-
tial candidate for loop optimization, and wherein
automatically setting the most inner loop body as the
candidate inner loop for the loop optimization when
the code size of the candidate inner loop satisfies or
does not exceed the instruction size threshold.

5. The method according to claim 1, wherein
the evaluation further includes:

(1) inspecting a structure of the candidate inner loop;

(i) identifying whether loop bounds of the candidate
inner loop is discoverable based on the inspection;
and

(iii) if the loop bounds of the candidate inner loop are
discoverable, deriving a starting condition and a
deriving terminating condition of the candidate inner
loop, wherein a combination of the starting condition
and the terminating condition define the loop bounds
of the candidate inner loop.

6. The method according to claim 1, wherein

the loop optimization instructions comprise an implicit
branch instruction that controls a looping operation of
the candidate inner loop.
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7. The method according to claim 6, wherein

the implicit branch instruction comprises a multi-part
branch instruction that is instructionally tethered to a
loop body of the candidate inner loop for controlling a
looping back operation of the candidate inner loop
without a need for executing explicit backward branch-
ing instructions within the loop body of the candidate
inner loop.

8. The method according to claim 7, wherein

a first part of the multi-part branch instruction comprises
an antecedent instruction that is codified at a position
ahead of the loop body of the candidate inner loop.

9. The method according to claim 8, wherein

the antecedent instruction identifies loop bounds of the
candidate inner loop, wherein the loop bounds include
a starting condition and a terminating condition of the
candidate inner loop.

10. The method according to claim 7, wherein

a second part of the multi-part branch instruction com-
prises a suffixation bit that includes a single bit of
instruction arranged within the loop body of the can-
didate inner loop.

11. The method according to claim 10, wherein

the single bit of instruction identifies a terminal instruc-
tion of the loop body of the candidate inner loop that,
when executed, causes a reversion to a code location
target of the antecedent instructions that identifies a
starting instruction of the loop body of the candidate
inner loop.

12. The method according to claim 10, wherein

an execution of the single bit of instruction causes an
increment or a decrement to a dedicated loop counter
for the candidate inner loop.

13. The method according to claim 9, wherein

executing, at runtime, the antecedent instructions includes
storing the loop bounds in a memory distinct from a
memory storing the loop body of the candidate inner
loop, clearing and initializing a dedicated loop counter
for the candidate inner loop.

14. The method according to claim 9, wherein

the antecedent instructions identifies a code location tar-
get that identifies a starting instruction of the loop body
of the candidate inner loop.

15. The method according to claim 6, wherein

the implicit branch instruction comprises a multi-position
branch instruction having (a) a first part comprising a
first instruction that is positioned ahead of the loop
body of the candidate inner loop and (b) a second part
comprising one or more bits of instruction that are
positioned at an end of a terminal instruction of the loop
body of the candidate inner loop.

16. A system for improving a performance of an inte-

grated circuit, the system comprising:

one or more computing devices executing a compiler
program that:

(1) evaluates a target instruction set intended for execu-
tion by an integrated circuit;

(i1) identifies one or more nested loop instructions
within the target instruction set based on the evalu-
ation;

(iii) evaluates whether a most inner loop body within
the one or more nested loop instructions comprises a
candidate inner loop body that requires a loop opti-
mization that mitigates an operational penalty to the
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integrated circuit based on one or more executional
properties of the most inner loop instruction; and
(iv) implements the loop optimization that modifies the
target instruction set to include loop optimization
instructions to control, at runtime, an execution and
a termination of the most inner loop body thereby
mitigating the operational penalty to the integrated
circuit,
wherein:
the loop optimization instructions comprise a multi-
part implicit branch instruction that is instructionally
tethered to a loop body of the candidate inner loop
for controlling a looping back operation of the can-
didate inner loop, and
the multi-part implicit branch including:
(a) a first part that is codified at a position ahead of the
loop body of the candidate inner loop and that causes
a storing of loop bounds of the candidate inner loop,
and
(b) a second part that includes a single bit of instruction
codified within the loop body of the candidate inner
loop that identifies a terminal instruction of the loop
body of the candidate inner loop and that, when
executed, causes a reversion to a storage location of
the loop bounds.
17. (canceled)
18. A method for improving an operational performance
of an integrated circuit, the method comprising:
controlling an execution of a looping operation of a target
nested loop within a subject set of instructions, wherein
the controlling includes:
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(1) executing, by a distinct processing circuit, a first part
of an implicit branch instruction for the target nested
loop, wherein the executing the first part includes:
(i-a) storing loop bounds of the target nested loop in

a memory distinct from a memory storing the loop
body of the target nested loop,

(i-b) clearing and initializing a dedicated loop coun-
ter for the target nested loop, wherein the dedi-
cated loop counter for the target nested loop is
incremented or decremented according to each
executed iteration of the target nested loop, and

(i-c) storing a code location target of a starting
instruction of the loop body of the candidate inner
loop in the memory storing the loop body of the
target nested loop;

(i1) executing, by the distinct processing circuit, a
second part of the implicit branch instruction,
wherein the second part includes a single bit instruc-
tion positioned within the loop body, wherein the
executing the second part includes:

(ii-a) causes a reversion to a storage location of the
loop bounds, and

(ii-b) an increment or a decrement of the dedicated
loop counter for the target nested loop;

wherein controlling the execution includes:

continuing the execution or terminating the execution
of the loop body of the target nest loop by an array
processing circuit of an integrated circuit array based
on whether a value of the dedicated loop counter
satisfies a terminating condition defined in the loop
bounds.



