The invention relates to a multilayer body (1, 1', 2, 3, 4, 5) with an optically active first system of layers (10), whereby the first system of layers (10) is an optically variable element (OVD) with a structural layer, inside of which a diffraction grating is shaped, and the
optical activity of the first system of layers (10) can be influenced by an electrically controllable second system of layers (20, 20', 40, 50, 60).
Abstract

A multilayer body (1) having an optically active first layer system (10) is described, in which case the first layer system (10) is an optically variable device (OVD), and the optical effect of the first layer system (10) can be influenced by an electrically controllable second layer system (20).

(Figure 1a)
Activatable optical layer

The invention relates to a multilayer body having an optically active layer system.

Optically active layer systems are used, for example, for decorative or informative purposes, or in order to provide security documents with optical security features which on the one hand make it harder to forge them using modern color copiers and other reproduction systems, and on the other hand can easily and clearly be identified by lay persons.

For this purpose, it is known for security threads to be incorporated as security elements in valuable documents, with the arrangement being designed such that the thread is exposed in places on the surface, so that the optical security features which are incorporated in the thread, for example holograms or partial demetalizations, can be checked by the viewer.

Furthermore, EP 1 134 694 A1 discloses an electronic circuit composed of organic semiconductor material being printed on a sheet or a strip of paper, and being connected via a conductor track to a metal strip of a treasury bill. The electronic circuit is in this case not based on electronic components formed from conventional semiconductor materials but on organic field-effect transistors using polymer semiconductor technology. The metal strip is in this case used as an antenna via which it is possible to communicate between the semiconductor circuit and an appropriate evaluation circuit. The electronic circuit can therefore be used to identify forgeries while also allowing the document to be located.
The invention is now based on the object of specifying a multilayer body having a better visual appearance.

The object of the invention is achieved by a multilayer body having an optically active first layer system, with the first layer system being an optically variable device (OVD) and in which case the optical effect of the first layer system can be influenced by an electrically controllable second layer system.

A multilayer body such as this can be designed to be thin and flexible, thus resulting in particular advantages for its use and its production. For example, the multilayer body may be produced at low cost as a film body using a roll-to-roll process, and is therefore suitable for mass production.

The multilayer body according to the invention can be used not only as a novel security element for valuable documents, security documents and for goods protection, but also for decorative purposes or product advertising. Furthermore, the multilayer body can be used in displays, in RFID tags and as a status indication in electrical appliances.

Despite the fact that the multilayer body may be thin, it may be in the form of a large-area film body, for example applied to packages, windows or building surfaces.

Further advantageous refinements are specified in the dependent claims.

The second layer system is advantageously arranged above the first layer system.

In addition, the optical characteristic of the second layer system, in particular its optical density and/or
its light scattering and/or its color, may be controllable.

In one advantageous refinement, the second layer system has an upper and a lower electrode layer, between which one or more layers is or are arranged. The layers are preferably layers whose optical characteristics can be varied by application of a voltage between the electrode layers.

The upper electrode layer and/or the lower electrode layer may be composed of polyethylene dioxythiophene (PEDOT)/PSS or PANI.

It is also possible to provide for the upper electrode layer and/or the lower electrode layer to be an ITO (indium tin oxide) layer. Layers such as these are transparent, conductive layers.

The upper electrode may also be composed of a very thin translucent metal layer. The metal layer may have a thickness of 0.5 to 30 nanometers, typically a thickness of 5 nanometers and may be composed of gold, silver, chromium, copper or aluminum.

In a further refinement, the second layer system has a layer which is arranged between the upper and the lower electrode layer and has a multiplicity of liquid-crystal bubbles with a diameter of 0.1 μm to 40 μm, which are bonded in a polymer matrix. By way of example, the polymer matrix may be composed of monomers with a layer thickness of 5 μm to 40 μm, polymerized by way of example by UV radiation. By way of example, this may be the product PN 393 from the Nematel Company. The liquid-crystal bubbles have liquid crystals aligned randomly, in an unorganized form. They therefore scatter incident light so that layers arranged under the layer cannot be perceived or cannot be imaged
sharply. The liquid crystals are aligned in an electrical field which is formed between the upper and the lower electrode layer when the electrode layers are connected to the poles of an electrical voltage source.

The voltage source may be either a DC voltage source or an AC voltage source. It is also possible to use electrochemical voltage sources, electrical tuned circuits, which are located in an electromagnetic field and whose signal is processed using an electronic circuit to an appropriate signal frequency, for example 100 Hz, or to use solar cells as the voltage source for the multilayer body according to the invention.

In a further advantageous refinement, the second layer system has a liquid-crystal-layer, which is arranged between the upper electrode layer and the lower electrode layer and at least one polarizer layer. For example, two polarizer layers can be provided, with their polarization planes crossed over at 90°. It is also possible for the liquid-crystal-layer to have cholesteric liquid crystals. The liquid crystals rotate the polarization direction of the light through 90°. This results in the polarized light being able to pass through the lower polarization layer. The second layer system therefore appears transparent, and provides a free view of the first layer system. When an electrical field is formed between the two electrode layers, the second layer system appears dark and blocks the view of the first layer system arranged underneath it.

In addition, it is possible to provide for the second layer system to have an electrolyte layer which is arranged between the upper and the lower electrode layer, and for the upper electrode layer to be an electrochromic layer, for example composed of an electrically conductive organic material such as
PEDOT/PSS, or polyaniline (PANI). A redox reaction, which can be controlled by the current direction in the electrolyte layer, makes it possible to change the color of an electrochromic layer composed of PEDOT/PSS from pale blue to dark blue. If the electrochromic layer is composed of PANI, the color can be changed from greeny blue to bluey. The electrolyte layer may also contain metal ions, with the current direction in the electrolyte layer determining whether metal ions are transported from the electrolyte layer into the electrochromic electrode layer, or are moved away from it. If, for example, the metal ions are tungsten ions, the electrochromic electrode layer can be varied from dark blue to colorless.

Other electrochromic systems exist, for example those which react to a change in pH value. These can likewise be used.

If the first layer system has an upper electrically conductive layer, for example a metallic reflective layer, it is possible for the electrically conductive layer to form the lower electrode layer of the second layer system.

In a further advantageous refinement, the second layer system has a thermochromic layer and an electrical resistance layer.

It is also possible for at least one layer of the first layer system to form the electrical resistance layer of the second layer system.

The second layer system may be designed to have areas which reproduce image and/or alphanumeric information. The areas may, for example, be in the form of letters which form an inscription which can be seen by electrical actuation of the second layer system. It may
also be a barcode which can be seen only when the multilayer body is placed in an electrical field in a reader. A feature such as this cannot be forged by conventional reproduction processes. For example, in an application such as this, it is possible for the second layer system to have no electrode layers. In consequence, the second layer system can advantageously not be perceived during normal use of the object to which the multilayer body according to the invention has been applied.

It is also possible for the optical effect of the second layer system to be reversibly controllable.

In a further advantageous refinement, the optical change in the second layer system caused by an electrical voltage remains after the electrical voltage is disconnected. For this purpose, the liquid crystals may be ferroelectric liquid crystals. Ferroelectric liquid crystals allow the effect of the electrical field to be stored for a relatively long time, for example over weeks, and they can be reset by an electrical pulse. By way of example, this makes it possible to use a multilayer body with ferroelectric liquid crystals as a data memory for a due date. The due date may be visible once a notice period has elapsed, because the ferroelectric liquid crystals return to their initial position, and the second structure layer is transparent again. It is advantageously possible for a multilayer body such as this not to have any electrodes, so that the electrical field which is required to align the ferroelectric liquid crystals can be formed only in apparatuses intended for this purpose.

In this case the expression an electrically controllable layer system means any layer system in which at least one parameter of its optical effect is
changed by application of an electrical voltage. This is a change in the material characteristic which is governed by an electrical variable.

The invention provides for the first layer system to have a replication layer and an optical isolation layer or a reflective layer and for a diffractive relief structure to be formed in the replication layer which, in particular, forms a diffraction grating and/or a hologram or Kinegram® or Trustseal® or comparable system.

Furthermore, the first layer system may be a thin-film layer system in order to produce color-shift effects, which are dependent on the viewing angle, by means of interference. Layers which produce color changes have a thickness $d = \lambda/4$ or $d = \lambda/2$, where λ is the wavelength of the incident light.

It is also possible to form the thin-film layer system from a sequence of high-diffractive-index and low-diffractive-index layers. Layers such as these are also referred to as HRI (high refractive index) layers and LRI (low refractive index) layers, respectively. The greater the number of layers that are chosen, the more sharply the wavelength of the color change effect can be set. In this case, it is particularly advantageous for a thin-film layer system such as this to be formed from two to ten layers (even-number variants) or three to nine layers (odd-number variants).

The first layer system may also be a layer system which has a cholesteric liquid-crystal-layer and an absorption layer. A layer system such as this has a color shift effect which is dependent on the viewing
angle, in a similar manner to that of a thin-film layer system.

Systems are also feasible which require only one electrode plane. By way of example, this may be a heating element for a thermochromic layer or a layer system as described above with cholesteric liquid crystals which can be actuated in that plane. The layer arranged under the liquid crystals may have projections at a distance from one another and with a width of about 20 μm and a height of 20 μm to 100 μm, arranged at a distance of less than 100 μm. An OVD as described above may be formed between the projections and optically appears as an entity, because of the small dimensions of the projections. The electrodes which are formed on the projections form areas in the form of strips, which are connected alternately and switchably to the poles of a voltage source. The electrical field formed between the areas therefore runs within the liquid-crystal layer, and not at right angles to the liquid-crystal layer.

It is also possible for the projections to be arranged like a chequerboard and/or for the first and/or the second layer system to be appropriately structured, and for the connecting lines to be in the form of a matrix so that each electrode area can be actuated in rows and columns.

It is also possible to actuate the liquid crystals located between an upper electrode layer and a lower electrode layer (which is structured like a chequerboard) at specific points. It is therefore possible for liquid crystals which are arranged over actuated areas of the lower electrode layer to be aligned in the electrical field, and for liquid crystals which are arranged over unactuated areas of the lower electrode layer to retain the unorganized
alignment. The actuated or the unactuated areas may in this way form a pattern, for example representing an image, a logo or one or more alphanumeric characters. The areas which are electrically isolated from one another may be actuated alternately, so that the sub-areas successively change their optical appearance.

In a further refinement, the multilayer body has drive electronics, which are preferably organic drive electronics.

It is also possible for the multilayer body to have one or more sensors and/or RFID circuits and/or displays and/or switches and/or voltage sources.

The two embodiments mentioned above provide a rough outline of the field of application of the multilayer body according to the invention, although this does not restrict further applications.

It is also possible for the multilayer body to be designed to be flexible and/or to have a flexible, transparent carrier film. A flexible multilayer body can advantageously also be applied to curved surfaces. It has particularly good resistance to bending loads, such as those which can occur on thin carrier substrates, for example packages, treasury bills or documents.

In particular, flexible multilayer bodies can be produced at low cost as mass-produced items on installations which are intended for a roll-to-roll process. In this case, additional assemblies, such as RFID tags, solar cells, batteries, storage devices, integrated circuits, film switches and sensors can easily be integrated in the multilayer body.
The invention will be explained in the following text using, by way of example, a number of exemplary embodiments and with the assistance of the attached drawings, in which:

Figures 1a and 1b show a first exemplary embodiment of a multilayer body according to the invention in the form of a schematic section illustration;

Figures 2a and 2b show a second exemplary embodiment of a multilayer body according to the invention in the form of a schematic section illustration;

Figures 3a and 3b show a third exemplary embodiment of a multilayer body according to the invention in the form of a schematic section illustration;

Figures 4a and 4b show a fourth exemplary embodiment of a multilayer body according to the invention in the form of a schematic section illustration;

Figures 5a and 5b show a fifth exemplary embodiment of a multilayer body according to the invention in the form of a schematic section illustration;

Figures 6a to 7b show one application example of a multilayer body according to the invention.

Figures 1a and 1b show a schematic section illustration of a multilayer body 1 with an optically variable layer system 10 and a controllable layer system 20.

The layer system 10 is an optically variable device (OVD) with a structure layer 12 in which a diffraction grating 12b is formed. The structure layer 12 may, for example, be formed from a thermoplastic replication varnish with a layer thickness of a few μm, in which the diffraction grating 12b has been impressed.
with the aid of a heated replication roller. The structure layer 12 is covered with a metallic reflective layer 14 which, for example, is composed of aluminum, silver, chromium, copper or gold.

The controllable layer system 20 has a carrier layer 22 which is arranged on the metallic layer 14. The carrier layer 22 is a polymer matrix in which a multiplicity of liquid-crystal bubbles 22f are embedded. The liquid-crystal bubbles have a diameter of 0.1 μm to 15 μm. The polymer matrix is composed of PN393, which can be applied with a layer thickness from 5 μm to 40 μm. The layer thickness is preferably 10 μm.

A transparent protective layer 26 is arranged on the carrier layer 22 and has an electrode layer 24 on its lower face. In this exemplary embodiment, the layers 26 and 24 are transparent, conductively coated Orgakon™ film from Agfa, with the electrode layer 24 being a transparent conductive polymer. This is PEDOT/PSS, which may have a layer thickness from 50 nanometers to 500 nanometers. The layer thickness is preferably 200 nanometers. The electrode layer 24 may also be a transparent metallic layer.

An electrical field, in which the liquid crystals contained in the liquid-crystal bubbles 22f can be aligned, can be formed by application of an electrical voltage between the electrode layer 24 and the metallic reflective layer 14. In Figures 1a and 1b, the liquid crystals are symbolized by short lines. In this exemplary embodiment, the metallic reflective layer 14 is therefore at the same time an electrode layer for the electrically controllable layer system 20. It is therefore a multiple-function layer.

The electrical voltage for controlling the layer system 20 is produced by an electrical voltage source 30 which
is electrically conductively connected to the layers 14 and 24 by means of connecting lines 34 and 34' and a switch 32. The connecting lines 34, 34', which are illustrated symbolically in Figures 1a and 1b, may be conductor tracks which are formed by continuing the electrically conductive layers 14 and 24. However, there may also be metallic conductor tracks which make electrical contact with the layers 14 and 24 and, for example, are vapor-deposited.

Figure 1a shows the multilayer body 1 with the switch 32 open. The liquid crystals arranged in the liquid-crystal bubbles 22f assume an unorganized random position, so that light striking the multilayer body 1 is reflected diffusely, as a result of which the first layer system 10 cannot be seen, or can be seen only insignificantly, and cannot produce an optical effect.

Figure 1b now shows the multilayer body 1 with the switch 32 closed. An electrical field is now formed between the layers 14 and 24, with its field lines aligned at right angles to the surface of the layers 14 and 24, so that the liquid crystals arranged in the liquid-crystal bubbles 22f now assume an organized position, aligned parallel to the electrical field lines. Because of their small diameter of a few nanometers, light which is incident on the multilayer body 1 can now virtually entirely strike the surface of the structure layer 12 covered with the reflective layer 14, so that the first layer system 10 can develop its optical effect, as an OVD.

The polarity of the electrical voltage source 30 is irrelevant to the principle of operation of the alignment of the liquid crystals with the electrical field lines, on which the exemplary embodiment illustrated in Figures 1a and 1b is based. The electrical voltage source 30 may therefore be either
a DC voltage source or an AC voltage source. The voltage emitted from the voltage source 30 is essentially of importance to the formation of the electrical field that is suitable for alignment of the liquid crystals. A voltage of approximately 20 V is provided in the exemplary embodiment illustrated in Figures 1a and 1b.

In the exemplary embodiment illustrated in Figures 1a and 1b, the voltage source 30 can be switched on and off by means of the switch 32. However, it is also possible to dispense with the switch 32 and for the voltage source 30 to be in the form of a tuned circuit in which an external electromagnetic field induces an AC voltage which, if required, is also converted to a DC voltage by means of a rectifier. This DC voltage can be converted back to an AC voltage in the particularly advantageous frequency range around 100 Hz by means of suitable electronics, for example a ring oscillator. A capacitor may also be provided which, when driven with DC voltage, also produces this DC voltage for a certain time after the electromagnetic field has been switched off. If, for example, the multilayer body forms a so-called RFID tag, that is to say a circuit arrangement for radio-frequency-assisted identification of objects, the elements mentioned above may be components of an RFID tag such as this. The RFID tag may advantageously be an organic film circuit.

Figures 2a and 2b now show a multilayer body 1' which does not have a second electrode layer (see the electrode layer 24 in Figures 1a and 1b). In fact, the structure layer 12 now has a relief structure which has projections with a width of about 20 µm and a height of 20 µm to 100 µm, which are arranged at a distance of less than 100 µm. The diffraction gratings 12b are formed in the structure layer between the projections, and are also illustrated in Figures 1a and 1b. The
metallic reflective layer 14 now forms areas which are arranged on the projections, are in the form of strips and are alternately connected to the connecting lines 34 and 34', so that the areas of the reflective layer 14 which are in the form of strips are alternately connected to the positive pole or negative pole of the voltage source 30 when the switch 32 is closed (see Figure 2b). The electrical field formed between the areas therefore runs within the carrier layer 22 and not, as in the case of the first exemplary embodiment illustrated in Figures 1a and 1b, at right angles to the carrier layer 22. However, the liquid crystals that are located in the liquid-crystal bubbles 22f are aligned analogously to Figure 1b in the electrical field when the switch 32 is closed, as illustrated in Figure 2b.

It is also possible to arrange the projections like a chequerboard in the structure layer 12 and for the connecting lines to be in the form of a matrix so that each area of the reflective layer 14 can be actuated in rows and columns. A further exemplary embodiment, which is not illustrated, can additionally provide an electrode layer 24, as illustrated in Figures 1a and 1b, so that, with the aid of the reflective layer 14 which is structured like a chequerboard, the liquid crystals which are arranged above actuated areas of the reflective layer 14 are aligned in the electrical field, and the liquid crystals which are arranged above unactuated areas of the reflective layer 14 retain the unorganized alignment. The actuated areas or the unactuated areas may in this way form a pattern, for example representing a logo or one or more alphanumeric characters.

Figures 3a and 3b now show a multilayer body 2 which differs from the multilayer body 1 illustrated in Figures 1a and 1b only by the formation of the
controllable layer system. A controllable layer system 40 has a liquid-crystal-layer 42 in which liquid crystals 42f are embedded and make it possible to rotate the polarization plane of polarized light.

The upper face of the liquid-crystal-layer 42 is covered by an upper polarizer layer 46o, and the lower face of the liquid-crystal-layer is covered by a lower polarizer layer 46u. The polarization directions of the polarizer layers 46o and 46u are crossed over at 90°. Incident light is therefore polarized before it enters the liquid-crystal-layer. The liquid crystals now rotate the polarization plane of the polarized light through 90°. In consequence, the polarized light can pass through the lower polarization layer 46u, and is reflected on the reflective layer 14 of the layer system 10. The reflected light is now once again rotated by the liquid crystals 42f which are arranged in stacks, and emerges from the upper polarizer layer 46o. The layer system 40 therefore appears to be transparent, and provides a free view of the layer system 10, which is in the form of OVD.

The transparent protective layer 26 is arranged on the upper polarization layer 46o, and has the electrode layer 24 on its lower face. As already stated above, the layers 26 and 24 are, for example, composed of a transparent, conductively coated Orgakon™ film. The electrode layer 24 is connected to the voltage source 30 via the connecting line 34' and the switch 32. The other pole of the voltage source 30 is connected to the metallic layer 14 by the connecting line 34. This allows an electrical field to be formed between the layers 14 and 24 by closing the switch 32, thus moving the liquid crystals 42f to a position such that the light which has been polarized by the upper polarization layer 46o can no longer pass through the lower polarization layer 46u. This state of the
multilayer body 2 is illustrated in Figure 2b, in which it is no longer possible to observe the optical effect formed by the layer system 10.

5 It is also possible to provide for the upper polarization layer 46o and the lower polarization layer 46u to be arranged with the same polarization direction, so that the electrically controllable layer system 20 appears to be opaque when the voltage is switched off, and appears to be transparent when the voltage is switched on.

Furthermore, ferroelectric liquid crystals may be provided for the liquid-crystal-layer 42f. Ferroelectric liquid crystals have the characteristic of storing electrical fields so that the switching state of a liquid-crystal-layer formed by ferroelectric liquid crystals is also maintained for a relatively long time after the voltage has been switched off. This liquid-crystal-layer can be reset by a switching pulse.

Figures 4a and 4b now show a multilayer body 3 in which an electrically controllable layer system 50 is arranged on the optically variable layer system 10, is formed from an electrolyte layer 52 and makes contact with two electrode layers. As in the exemplary embodiments described above, the lower electrode layer is formed by the reflective layer 14 in the layer system 10. An upper electrode layer 54 is formed from an electrochromic material, for example from PEDOT/PSS. The upper electrode layer 54 is covered by the protective layer 26. The two electrode layers 14 and 54 are connected to the voltage source 30 by means of the connecting lines 34 and 34', which are connected to a switch 32u. In the third exemplary embodiment illustrated in Figures 3a and 3b, the voltage source 30 is a DC voltage source, whose polarity governs the optical state of the electrochromic electrode layer 54.
In this case, an electric current whose current direction is governed by the position of the switch 32u flows through the electrolyte layer 52 and which current, in the illustrated exemplary embodiment, transports metal ions from the electrolyte layer 52 into the electrochromic electrode layer 54, or removes them from it. If, for example, these are tungsten ions, the electrochromic electrode layer 54 may be changed from dark blue to colorless. As described further above, other embodiments are possible which are based on redox reactions, governed by the current direction, or on the change in the pH value of the electrolyte layer.

The switch 32u is a two-pole changeover switch, by means of which the current direction of the electric current flowing through the electrolyte layer 52 can be reversed. This allows the electrochromic electrode layer 54 to be changed from a first, colored, opaque state to a colorless, transparent state.

Figures 5a and 5b show a multilayer body 4 in which an electrically controllable layer system 60 is arranged on the optically variable layer system 10 and has a thermochromic layer 62. The thermochromic layer 62 in the illustrated exemplary embodiment is composed of TCX B-31 from the Coates Screen Company with a layer thickness of about 20 μm. The layer thickness may be between 0.5 and 100 μm. the thermochromic layer 62 is covered by the protective layer 26.

The metallic reflective layer 14 of the layer system 10 is connected to the voltage source 30 by means of the electrical connecting lines 34, 34' and the switch 32, and at the same time forms an electrical resistance layer for heating the thermochromic layer 62. As in the case of the previous exemplary embodiments, the reflective layer 14 is therefore a layer which can be
functionally associated with both layer systems of the multilayer body. However, it is also possible to provide a separate resistance layer, particularly when the reflective layer 14 cannot be adequately electrically loaded. In a situation such as this, the resistance layer is transparent and, for example, is composed of ITO (indium tin oxide) or some other conductive material. By way of example, PEDOT/PSS or PANI may also be used for transparent resistance layers. The resistance layer may also be arranged under the structure layer 12 and, in this case, need not be transparent.

As can be seen in Figure 5a, the thermochromic layer 62 is not transparent when the switch 32 is open. If the switch 32 is now closed, as illustrated in Figure 5b, the reflective layer 14 is heated by the start of the current flow and, in consequence, the thermochromic layer 62 arranged on the reflective layer 14 is also heated and in this way becomes transparent. The optical effect formed by the optically variable layer system 10 can now be seen.

Figures 6a to 7b now show one exemplary embodiment of the multilayer body according to the invention.

Figure 6a shows a schematic section illustration of a multilayer body 5 designed in the same way as the multilayer body 1 illustrated in Figures 1a and 1b. In this case, some of the layers from Figures 1a and 1b are in each case combined.

A layer 52 with liquid-crystal bubbles bonded in a polymer matrix is provided with an upper electrode layer 54 and is arranged on an OVD layer system 56, which is illustrated in Figures 1a and 1b and is formed from a replication layer and a metallic reflective layer. The reflective layer facing the OVD layer system
at the same time forms the lower electrode layer for the layer 52.

Figures 6b now shows a schematic plan view of the multilayer body 5, whose electrode layers are connected to a voltage source 58 by means of connecting lines 581 and a switch 58s. The OVD layer system 56 has an inscription 56s, which cannot be seen significantly, or cannot be seen at all, because of the layer 52, which is opaque when no voltage is applied.

Figures 7a and 7b show the multilayer body 5 whose electrode layers are now connected to the voltage source 58, because the switch 58s is closed. The layer 52 is therefore a clear layer, so that the inscription 56s, which is arranged on the OVD layer system 56, can now clearly be read. Furthermore, the optical effect can now be seen and, for example, may be a color change which results when the multilayer body 5 is tilted. It is also possible for the inscription 56s to exhibit an optical effect that is dependent on the viewing angle, for example apparently changing its position.

The multilayer body according to the invention may have further layers, for example an adhesive layer, which is applied to the rear face of the optically variable layer system, or layers which form functional elements such as voltage sources, sensors or electronic circuits. The layers may preferably be formed from polymers, in particular also to form electronic circuits. However, the expression "organic" circuits should expressly also be understood as covering circuits and circuit arrangements which also have inorganic layers as well as organic layers, or only inorganic layers.
The multilayer body according to the invention is also distinguished in that it can be formed to be thin and flexible, thus resulting in particular advantages for its application and its production. For example, the multilayer body may be produced as a film body using a roll-to-roll process at low cost, and is therefore suitable for mass production.

The multilayer body according to the invention may also have an inflexible carrier material, for example composed of glass or ceramic, without departing from the scope of the invention.

Furthermore, the multilayer body according to the invention may also be designed to irreversibly change its optical characteristics. For example, it is possible for the change to be caused by a brief overvoltage, and for the multilayer body to permanently signal that an overload has occurred. An effect such as this may be initiated, for example in the case of electrochromic layers, by an irreversible chemical process in the electrolyte layer.
New Claims

1. A multilayer body having an optically active first layer system, characterized in that the first layer system (10) is an optically variable device (OVD), and in that the optical effect of the first layer system (10) can be influenced by an electrically controllable second layer system (20), in that the second layer system (20, 40, 50, 60) is arranged above the first layer system (10), and in that the first layer system (10) has a metallic reflective layer (14) which forms a lower electrode layer of the second layer system (20, 40, 50).

2. The multilayer body as claimed in claim 1, characterized in that the optical characteristics, in particular the optical density and/or the light scatter and/or the color, of the second layer system (20, 40, 50, 60) can be controllable electrically.

3. The multilayer body as claimed in claim 1 or 2, characterized in that the second layer system (20, 40, 50) has an upper electrode layer (24, 54) and the lower electrode layer (14), between which one or more layers is or are arranged.

4. The multilayer body as claimed in claim 3, characterized in that the upper electrode layer (24, 54) and/or the lower electrode layer (14) are/is composed of polyethylene dioxythiopene (PEDOT)/PSS or PANI.

5. The multilayer body as claimed in claim 3, characterized
in that the upper electrode layer (24, 54) and/or the lower electrode layer (14) are/is an ITO (indium tin oxide) layer.

6. The multilayer body as claimed in claim 3, characterized in that the upper electrode layer (24, 54) and/or the lower electrode layer (14) are/is a metallic layer composed, for example, of gold, silver, chromium or copper with a layer thickness of less than 10 nanometers.

7. The multilayer body as claimed in one of claims 3 to 6, characterized in that the second layer system (20, 40, 50) has a layer (22) which has a multiplicity of liquid-crystal bubbles (22f) which are bonded in a polymer matrix which is arranged between the upper electrode layer (24) and the lower electrode layer (14).

8. The multilayer body as claimed in one of claims 3 to 6, characterized in that the second layer system (20, 40, 50) has a liquid-crystal-layer (42), which is arranged between the upper electrode layer (24) and the lower electrode layer (14) and at least one polarizer layer (46o, 46u).

9. The multilayer body as claimed in one of claims 3 to 6, characterized in that the second layer system (20, 40, 50) has an electrolyte layer (52) which is arranged between the upper electrode layer (54) and the lower electrode layer (14), and in that the upper electrode layer (54) is an electrochromic layer, for example composed of an
electrically conductive organic material such as PEDOT/PSS, or in that the electrolyte layer is an electrochromic layer.

10. The multilayer body as claimed in one of the preceding claims, characterized in that the second layer system (60) has a thermochromic layer (62) and an electrical resistance layer, which is arranged above or below the thermochromic layer (62).

11. The multilayer body as claimed in claim 10, characterized in that at least one layer of the first layer system (10) forms the electrical resistance layer of the second layer system (60).

12. The multilayer body as claimed in claim 10, characterized in that the electrical resistance layer is arranged under the first layer system (10).

13. The multilayer body as claimed in one of the preceding claims, characterized in that the second layer system (20, 40, 50) has one electrode layer, which is in the form of a partial electrode layer, for example with electrode areas arranged in the form of strips or a matrix.

14. The multilayer body as claimed in one of the preceding claims, characterized in that the first layer system (10) has areas which reproduce image and/or alphanumeric information.
15. The multilayer body as claimed in one of the preceding claims, characterized in that the optical effect of the second layer system (20, 40, 50, 60) is reversibly controllable.

16. The multilayer body as claimed in one of claims 1 to 14, characterized in that the optical effect of the second layer system (20, 40, 50, 60) is irreversibly controllable.

17. The multilayer body as claimed in one of the preceding claims, characterized in that the optical effect of the second layer system (20, 40, 50, 60) can be controlled in a bistable form.

18. The multilayer body as claimed in one of the preceding claims, characterized in that the first layer system (10) has a replication layer (12) and an optical isolation layer or a reflective layer (14) and a diffractive relief structure (12b) is formed in the replication layer (12) and, in particular, forms a diffraction grating and/or a hologram or Kinegram* or Trustseal*.

19. The multilayer body as claimed in one of the preceding claims, characterized in that the first layer system (10) is a thin-film layer system for producing color effects by means of interference.
20. The multilayer body as claimed in one of the preceding claims, characterized in that the first layer system (10) has a cholesteric liquid-crystal-layer and an absorption layer.

21. The multilayer body as claimed in one of the preceding claims, characterized in that the multilayer body (1, 2, 3, 4, 5) has organic and/or inorganic drive electronics.

22. The multilayer body as claimed in one of the preceding claims, characterized in that the multilayer body (1, 2, 3, 4, 5) has one or more sensors and/or RFID circuits and/or displays and/or switches and/or voltage sources.

23. The multilayer body as claimed in one of the preceding claims, characterized in that the multilayer body (1, 2, 3, 4, 5) is designed to be flexible and/or it has a flexible carrier film.
Fig. 5a

Fig. 5b