US006009464A

United States Patent [(11] Patent Number: 6,009,464
Hamilton et al. 451 Date of Patent: *Dec. 28, 1999
[54] METHOD AND APPARATUS FOR ENABLING 5,481,721 1/1996 Serlet et al.ccccveveveececnennne 395/683
APPLICATION PROGRAMS TO 5,511,197 471996 Hill et al. c.vveeevvereverecurererenaens 395/683
COMMUNICATE WITH NETWORK 5,515,508 5/1996 Pettus et al. .c.coevvererennnenne 395/200.6
5,530,852 6/1996 Meske, Ir. et al ... 395/200.03
CLIENTS AND SERVERS 5,546,584 8/1996 Lundin et al. 395/200.02
[75] Inventors: Graham Hamilton; Peter B. Kessler, 2’2;3’32; 1;/ 1996 Hamilion et al. e 395/200.09
i ,630, /1997 Gosling ... <. 395/200.47
both of Palo Alto; Jeffrey Donald S737.607 4/1998 Hamilton et al. ..covererere 395/701
Nisewanger, San Jose; Sami Shaio, 5,758,186 5/1998 Hamilton et al.oocccc.e. 395/200.33
San Francisco; Jacob Y. Levy; Steven
Robert Kleiman, both of Los Altos, all OTHER PUBLICATIONS
of Calif. author unknown, The Common Object Request Broker:
.) . . Architecture and Specification, Chapters 1, 2, published by
[73] Assignee: g/un Mclci‘.(;systems, Inc., Mountain the Object Management Group (OMG), Framington, MA,
tew, LaliL. pp. 1-1 through 2-18, Jul. 1995.
[+] Notice: This patent issued on a continued pros- James Gosling, JAVA Intermediate Bytecodes, Jan. 1995,
’ . . pp. 111-118.
ecution application filed under 37 CFR . . .
. . Betz, Mark, Interoperable objects: laying the foundation for
1.53(d), and is subject to the twenty year - . . s
- distributed object computing, Dr. Dobb’s Journal, Oct. 1994,
patent term provisions of 35 U.S.C. 1831
154(a)(2). pp- Le=2L.
Primary Examiner—Zarni Maung
[21] Appl. No.: 08/543,674 Assistant Examiner—Patrice L. Winder
. Attorney, Agent, or Firm—ITownsend and Townsend and
[22] Filed: Oct. 16, 1995 Crew LLP
Related U.S. Application Data [57] ABSTRACT
[60] Provisional application No. 60/004,057, Sep. 20, 1995. . L.
. A method for enabling an application program to commu-
[51] Int. CL® e GO6F 13/00 nicate with a network server, includes the Steps of down-
[52] US. ClL e 709/219; 709/230 loading a document from a document server to the applica-
[58] Field of Searchccccoeeenee. 395/200.02, 683, tion program, downloading code from a code server
395/680, 712, 200.06, 200.03, 200.09, 200.33, associated with the document server to the application
200.57, 200.6, 684, 200.47, 200.48, 200.49, program, the code including a network protocol handler for
701; 709/304, 203, 217, 218, 219, 300, the network server, and using the network protocol handler
205, 230 to communicate with the network server.
[56] References Cited 70 Claims, 11 Drawing Sheets
U.S. PATENT DOCUMENTS Microfiche Appendix Included
5,475,817 12/1995 Waldo et al.coeerverennee. 395/200.02 (1 Microfiche, 46 Pages)
/360
Download Document into
320 Application Program

Document Server

330
[-~

Application Program

|_~310 40

Network Server

370

Download Code into
Application Program?

380

Download Code into

Application Program

including a Network
Protocol

390

Application Program
communicates with a
Network Server using
the downloaded Network
Protocoli

U.S. Patent Dec. 28, 1999

Sheet 1 of 11

/-20

L S~ N\

6,009,464

/10

/'30
/-70 /-80 /-90
Processor RAM DD ulisxlfe
| /—700
System Bus
60
/‘ 40-\ /-5 0
r
Modem I Keyboard Mouse

FIG. 1

U.S. Patent Dec. 28, 1999 Sheet 2 of 11 6,009,464

/—120 /730
Application Program 140 Application Program 170
180
Object Reference | 145 Object
Stubs 150 Skeletons 190
ORB Code | 160 ORB Code 200
M
FIG. 2
Application Program 230
240
Object Reference
/-250
Stubs
260
= 20 . /280 |
Subcontract Marshal Buffers

Network Protocol
Handler

| |
| |
| |
| |
| |
! |
I |
| I
| |

To Network Server

FIG. 8

U.S. Patent Dec. 28, 1999 Sheet 3 of 11

6,009,464

/ 320

Document Server

/ 305 Code Server

330

Application Program (| —310

e /-340

\—» Network Server

FIG. 4

/360

Downioad Document into
Application Program

370

Download Code into
Application Program?

Yes /380

Download Code into

Application Program

including a Network
Protocol

/—390

Application Program
communicates with a
Network Server using
the downloaded Network
Protocol

FIG.5

U.S. Patent Dec. 28, 1999

471 —

480\

Sheet 4 of 11 6,009,464

//~470

Application Program

/—460

Stubs ‘//

ORB Code-
| Network Protocol
Handler

Virtua! Machine

e

| —450

L 470

//~430

Document Server
_—~440

Code Server]

420
’/,

Application Program

Object

Skeletons

ORB Code

~_

FIG. 6

U.S. Patent Dec. 28, 1999 Sheet 5 of 11 6,009,464

/—520
F I G 7 500 Document Server
530
L —~510 Code Server é
Application Program]
St
ubs) /
580
ORB Code /
670
Application Program
Virtual Machine
< Object 1

\ [540 Skeletons

Network Name

Server ORB Code
\ f 560
550-\ Object Name
Server

Application Program Application Program

Object 3 Object 2
Skeletons Skeletons
ORB Code

ORB Code

U.S. Patent

Dec. 28, 1999 Sheet 6 of 11

6,009,464

File Options Navigate Goto
Document URL: | file://localhost/export/JOE/goodbuys.htmi
< Availebili
Prev Next Chec -vallcblhty Remove Add
Available
GoodBuys MNSKI-400 Water Monoski $140
590—\
Place Order
Clear Order
(2=
N>
Product # Price Total
Bob - Jones GoodBuys SKTS-100 1 235.00 235.00
1254 Main St. GoodBuys MNSKI-400 1 140.00 140.00
Safety Harbor FL
Balance 0.00
Points 0.00 Sub Total: 375.00
Tax: 26.25
Total: 401.25
Complete

FIG. 8

U.S. Patent Dec. 28, 1999 Sheet 7 of 11 6,009,464

/7000
Application Program
/—1010
Object

1020
/_
Skeletons
-[1030
M0~ T T TN 1050 |
Subcontract Un-Marshal Buffers

1060
Network Protocol /
Handler

From Network Client

FIG. 9

U.S. Patent Dec. 28, 1999 Sheet 8 of 11 6,009,464

/ 1090

/-1110

A

Document Server

Code Server

Network Client

\‘

080~ /1075
\

Application Program

FIG. 10

/ 1130

Download Document into
Application Program

Download Code into
Application Program?

Yes /1150

1140

Protocol

Download Code into
Application Program
including a Network

/-1760

A Network Server
communicates with the
Application Program
using the downloaded

Network Protocol

FIG. 11

U.S. Patent Dec. 28, 1999 Sheet 9 of 11 6,009,464

1200
_\

Document Server

1210~

=
Code Server

1190
_\

| Application Program

1220~

1180 1230
/ | Object
%
Application Program 1260 y Skeletons Y/
"
) 1240~ ORB Code-
Object Reference Network Protocol
1247_,/A Handler
Stubs
ORB Cod 12457 Virtual Machine
ode

N~

FIG. 12

U.S. Patent Dec. 28, 1999 Sheet 10 of 11 6,009,464

/-1270
F I G 13 Document Server
1280~
/7250 Code Server
1300
Application Program \
1260~ _
Object Reference 1392011 Application Program
!
Stubs ObjeCt
ORB Code Skeletons /
ORB Code- /
1290 Network Protocol
\ Handler
__\ 1
Network Name ™ Virtual Machine
Server
1310
1305 \ A\
_\ Object Name
Server
Application Program Application Program
Object 3 Object 2
Skeletons Ske|e’(0ns
ORB Code ORB Code

U.S. Patent Dec. 28, 1999 Sheet 11 of 11 6,009,464

Netscape
File Edit View Go Bookmarks Options Directory Help

AR AR"REARERE:
Back [Forward] Home J[Re load|Images Opgn Print| Find l S%p

Netsite: [file://localhost/export/JOF stock html_ | /N
[What's New[[What’s Cool] Handbook J[Net Search JNet Directory] Newsqroup |

Symbol: SUNW

Description: Sun Microsystems, Inc.
Exchange: DAQ

Last: 62.6230

Bid: 62.5000

Ask: 62.7500

Volume: 200,000

Yearly High:62.6250

Yearly Low: 29.8750

Number of Shares: 300
Price: 62.6250
Buy or Sell: BUY
Notify when executed:
SUBMIT | 1340

22 | Document Done |

FIG. 14

6,009,464

1

METHOD AND APPARATUS FOR ENABLING
APPLICATION PROGRAMS TO
COMMUNICATE WITH NETWORK
CLIENTS AND SERVERS

CROSS-REFERENCE TO RELATED
APPLICATION

The present invention claims priority to Provisional
Patent Application Serial Number 06/004,057 filed Sep. 20,
1995, and hereby incorporates it by reference.

TRADEMARK NOTICE

Sun, Spring, Solaris, Sunsoft, SunOS, Java and HotJava
are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC
International, Inc. in the United States of America and other
countries. Products bearing SPARC trademarks are based
upon an architecture developed by Sun Microsystems, Inc.

BACKGROUND OF THE INVENTION

The present invention relates generally to distributed
object-oriented programming, and more specifically to
interoperability of distributed objects between network cli-
ents and network servers.

In the present disclosure the term “network server” refers
to an apparatus on a network that includes software objects,
and the term “network client” refers to an apparatus on a
network that refers to software objects. The term “network
server machine” refers to a host computer that includes a
network server, and the term “network client machine”
refers to a host computer that includes a network client. The
term “document server” refers to an apparatus that provides
downloadable documents, and the term “code server” refers
to an apparatus that provides downloadable code.

The CORBA

The interoperability of software objects between object-
oriented clients and servers has become a significant issue in
distributed computing systems. Typically, since different
(object-oriented) client/servers have different object
interfaces, objects produced by one client/server cannot be
used by another client/server. One present effort for stan-
dardizing an interface for objects within (object-oriented)
client/servers is known as Common Object Request Broker
Architecture (CORBA).

The CORBA specification generally provides interfaces
by which a client/server can access software objects from
another client/server and also provide access to its own
software objects to other client/servers. To enable the
accessing of such “distributed objects”, CORBA specifies an
“Interface Definition Language” (IDL) to be used by the
client/server, more particularly to be used by object request
brokers (ORBs) within each client/server. Exemplary client/
servers incorporating IDL include SunOS™ and NEO™
from Sun Microsystems, Inc. and DCE and ORBIX from
Digital Equipment Corporation.

Further information regarding CORBA can be found in
the following references: “The Common Object Request
Broker: Architecture and Specification”, Release 2.0, Pub-
lished by Object Management Group (OMG), Framingham,
Mass. July 1995. “The ESSENTIAL CORBA: System Inte-
gration Using Distributed Objects” Thomas J. Mowbray,
PhD and Ron Zahavi. Published by John Wiley and Object
Management Group. 1995.

Although IDL has provided a standardized way of defin-
ing object interfaces, CORBA did not specify an “on-the-

10

15

20

25

30

35

40

45

50

55

60

65

2

wire-protocol” for the access of objects across a network. As
a result, different vendors have implemented ORBs using
different network protocols and different data formats for
handling such network objects.

The Java™ Language

With the increasing popularity of the Internet and the
World-Wide Web, interoperability of software between com-
pletely different computers and operating systems has
become an issue. One problem with obtaining software from
the Internet is that when a user receives a document from a
document server, the user should also obtain an operating
system specific driver for the document. With conventional
network hypertext mark-up language (HTML) browsers, for
example, “helper applications” should be provided, such as
movie viewers, sound players, etc. in order to “use” the
document. A solution that was developed to overcome this
problem is the Java language, developed by Sun
Microsystems, Inc.

The Java language is an object-oriented language that can
be integrated into conventional HIML browsers and allows
a document server to provide the browser with documents as
well as executable code. The executable code is automati-
cally loaded from the document server if the HTML browser
determines that it does not have the appropriate driver
already resident on the user machine. The executable code
takes the form of application programs, “applets”, compris-
ing “bytecodes” that are machine independent. These
applets are then interpreted by operating system specific
applet interpreters (virtual machines). A current Internet/
Web browser implementation using the Java language is
HotJava™, also developed by Sun Microsystems, Inc.

Further information regarding the Java Language and the
HotJava browser can be found in the following references:
“The Java/Hotjava Programmer’s Guide” currently posted at
the following Internet site: http://java.sun.com/proGuide/
index.html, and “The Java Language Specification” Release
1.0 Alpha3, May 11, 1995 attached as Microfiche Appendix.

SUMMARY OF THE INVENTION

The present invention provides methods and apparatus for
allowing application programs to invoke objects within
network servers that have different network (on-the-wire)
protocols. In particular, the present invention allows docu-
ment servers to down-load ORBs and network protocols to
application programs, thus enabling application programs to
invoke objects within network servers.

According to a preferred embodiment, a method for
enabling an application program to communicate with a
network server, includes the steps of downloading a docu-
ment from a document server to the application program,
downloading code from a code server associated with the
document server to the application program, the code
including a network protocol handler for the network server,
and using the network protocol handler to communicate with
the network server.

According to another preferred embodiment, a distributed
computing system including a network server also includes
a document server for storing a plurality of documents, a
code server for storing a plurality of code associated with the
plurality of documents, the plurality of code including a
network protocol handler, and an application program for
loading a document from the plurality of documents, for
loading code from the plurality of code associated with the
document, and for using the network protocol handler within
the code to communicate with the network server.

The present invention also provides methods and appa-
ratus for enabling application programs to receive commu-

6,009,464

3

nications from network clients that have different network
(on-the-wire) protocols. In particular, the present invention
allows document servers to down-load ORBs and network
protocols to application programs, thus enabling network
clients to invoke objects in application programs.

According to another preferred embodiment, a method for
enabling an application program to receive communications
from a network client includes the steps of downloading a
document from a document server to the application
program, downloading code from a code server associated
with the document server to the application program, the
code including a network protocol handler for the network
client, and using the network protocol handler to receive
communications from the network client.

According to yet another preferred embodiment a distrib-
uted computing system including a network client also
includes a document server for storing a plurality of
documents, a code server for storing a plurality of code
associated with the plurality of documents, the plurality of
code including a network protocol handler, and an applica-
tion program for loading a document from the plurality of
documents, for loading code from the plurality of code
associated with the document, and for using the network
protocol handler within the code to receive communications
from the network client.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system according to a
preferred embodiment of the present invention;

FIG. 2 is a block diagram of the process of an application
program invoking a method on an object in a network server;

FIG. 3 is a more detailed block diagram of a network
client illustrated FIG. 2;

FIG. 4 is a graphic representation of a preferred embodi-
ment of the present invention;

FIG. § is a flow diagram of a preferred embodiment of the
present invention;

FIG. 6 is a more detailed graphic representation of a
preferred embodiment of the present invention;

FIG. 7 is a graphic representation of the concepts of a
network name server and an object name server;

FIG. 8 is an example of a potential end user application
incorporating the preferred embodiment of the present
invention;

FIG. 9 is a more detailed block diagram of a network
server illustrated FIG. 2;

FIG. 10 is a graphic representation of a preferred embodi-
ment of the present invention;

FIG. 11 is a flow diagram of a preferred embodiment of
the present invention;

FIG. 12 is a more detailed graphic representation of a
preferred embodiment of the present invention;

FIG. 13 is a graphic representation of the concepts of a
network name server and an object name server;

FIG. 14 is an example of a potential end user application
incorporating the preferred embodiment of the present
invention; and

Microfiche Appendix includes “The Java Language
Specification,” Release 1.0 alpha3, May 11, 1995.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 is a block diagram of a system 10 according to a
preferred embodiment of the present invention. System 10

10

15

20

25

30

35

40

45

50

55

60

65

4

includes a display monitor 20, a computer 30, a keyboard 40,
amouse 50, and a modem 60. Computer 30 includes familiar
computer components such as a processor 70, memory
storage devices such as a random access memory (RAM) 80
and a disk drive 90, and a system bus 100, interconnecting
the above components. Mouse 50 is but one example of a
graphical input device, a trackball is an example of another.
Modem 60 is but one example of a device enabling system
10 to be coupled to a network, a network interface card is
another. RAM 80, disk drive 90 are examples of tangible
media for storage of computer programs, other types of
tangible media include floppy disks, removable hard disks,
optical storage media such as CD-ROMS and bar codes, and
semiconductor memories such as flash memory and read-
only-memories (ROMS).

In a preferred embodiment, system 10 includes a SPARC-
Station™ 10 computer from Sun Microsystems, Inc., run-
ning the Solaris™ operating system and HotJava software
from Sun Microsystems, Inc.

FIG. 1 is representative of but one type of system for
embodying the present invention. It will be readily apparent
to one of ordinary skill in the art that many system types and
configurations are suitable for use in conjunction with the
present invention, such as WindowsNT® or Windows95®
from Microsoft Corporation on a IBM-PC compatible com-
puter.

FIG. 2 is a block diagram of the process of an application
program invoking a method on an object in a network server.
FIG. 2 includes a network client 120 and a network server
130. Network client 120 includes an application program
140, object reference 145, network client stubs (stubs) 150,
and ORB specific code 160. Network server 130 includes a
application program 170 including an object 180, network
server stubs (skeletons) 190, and ORB specific code 200.
Path 210 provides communication between network client
120 and network server 130.

In a typical distributed computing system, application
program 140 is an object-oriented application running under
a commercial operating system such as Solaris, and appli-
cation program 170 is also an object-oriented application
running under a commercial operating system such as
Solaris.

Network client stubs (stubs) 150 are known to application
program 140 and serve to receive requests from application
program 140. These requests typically include calling meth-
ods provided by object 180. Based upon the requests from
application program 140, stubs 150 serve to “marshal” data
appropriate to the request. Marshaling will be further
described in conjunction with FIG. 3.

In order to ensure network client 120 and network server
130 can communicate with each other, each side’s ORB
specific codes 160 and 200 are preferred to be IDL compli-
ant. Further, when network client 120 and network server
130 communicate across a network, such as path 210, each
side should ensure that ORB specific codes 160 and 200 both
can transmit data using a network protocol supported by the
other side.

In operation, when application program 140 attempts to
invoke a method of object 180, application program 140
invokes stubs 150. Stubs 150 marshal the appropriate data
for the method invocation and the ORB specific code 160
transmits the data to ORB specific code 200. As will be
described in conjunction with FIG. 3, ORB specific code
160 includes a network protocol handler specifically for
communicating with ORB specific code 200 across path
210.

6,009,464

5

Once ORB specific code 200 receives the data, network
server stubs (skeletons) 190 “un-marshal” the data, and
provide the method request to application program 170. In
response, application program 170 invokes the requested
method on object 180. Any resulting data from object 180
are transferred back to network client 120 in a process
similar to that described above.

I. Application Program as a Network Client

FIG. 3 is a more detailed block diagram of a network
client illustrated FIG. 2. FIG. 3 includes application program
230 including an object reference 240, stubs 250, and ORB
specific code 260. ORB specific code 260 includes subcon-
tracts 270, marshal buffers 280, and network protocol han-
dlers 290.

Briefly, stubs 250 are used to marshal arguments from
application program 230 into marshal buffers 280, call
subcontracts 270 to execute remote calls, and to unmarshal
any results from a network server. Subcontracts 270 call
network protocol handlers 290 which in turn format the data
in the network protocol understood by the network server.

Further information regarding typical remote procedure
calls in an object-oriented system can be found in the
following references: A. D. Birrell and B. J. Nelson, “Imple-
menting Remote Procedure Calls,” ACM Trans. on Com-
puter Systems, 2(1), February 1984; and B. J. Nelson,
“Remote Procedure Call,” Tech report CSL-81-9, Xerox
Palo Alto Rescarch Center, Palo Alto, Calif., 1981.

As illustrated in FIGS. 2 and 3, in order to communicate
from an application program to a server application, the
application program should know, a priori, quite a bit about
the server application and network server. For example, the
application program should know about they types of
objects available on the network server, the application
program should know whether the network server is IDL
compliant, and the application program should be made
aware of the appropriate network protocol of the network
server.

FIG. 4 is a graphic representation of a preferred embodi-
ment of the present invention. FIG. 4 includes a client
machine 305 including an application program 310, a docu-
ment server 320, a code server 330, and a network server
340.

In the preferred embodiment, an application program 310,
may or may not be an object-oriented application program.
For example, application program 310 may be an Internet
document browser such as Hotjava or Netscape Navigator®
from Netscape Communications, both which support the
Java language. Initially, application program 310 typically is
unaware of the network protocol necessary to communicate
with network server 340.

Application program 310 is typically couplable and
uncouplable with multiple document servers, as illustrated
by document server 320. In a preferred embodiment, docu-
ment server 320 includes code server 330, however
alternatively, document server 320 and code server 330 may
reside at different address spaces, e.g. on different physical
machines. Document server 320 typically downloads docu-
ments to application program 310, and code server 330
typically downloads code to application program 310, in
response to requests from document server 320. In the
preferred embodiment of the present invention, code server
330 downloads Java Language bytecodes which form appli-
cation programs (applets). When application program 310
executes the applets downloaded from code server 330,
application program 310 is given the information necessary
to communicate with network server 340.

FIG. § is a flow diagram of a preferred embodiment of the
present invention.

10

15

20

25

30

35

40

45

50

55

60

65

6

In the preferred embodiment, initially a document server
downloads a document to an application program, step 360.
For example, the document can be a page of text and
graphics. Typically the document will include a plurality of
actions the application program may take next, such as
downloading another document, as is well known. In the
present embodiment, one action the application program
may take is to invoke a method on an object within a
network server.

Next, typically in response to a user selection on the
displayed document, the document server may determine
that code, in the form of applets, should be downloaded to
the application program, step 370. Alternatively, this step
may be skipped entirely, and the process flow continue from
step 360 to step 380.

In step 380, code is downloaded from the code server to
the application program. As mentioned above, step 370 may
be skipped if the document server assumes that typical
application programs do not already have the code preloaded
on the client machine.

In step 390, the application program executes the down-
loaded code, and in response, the application program
communicates with a particular network server using the
appropriate network protocol for that network server.
Typically, this communication includes invoking a method
of an object resident on the network server.

Note that the application program may not have any
network protocol, or have a default network protocol that is
different from the network protocol of the network server. In
either case, the application program should receive the
appropriate network protocol for the network server from
the document server.

FIG. 6 is a more detailed graphic representation of a
preferred embodiment of the present invention. FIG. 6
includes a network client 410, a network server 420, a
document server 430, and a code server 440. Network client
410 includes an application program 450, downloaded code
460, and a virtual machine 470. Downloaded code 460
includes stubs and other ORB specific code 480, in
particular, a network protocol handler.

As illustrated, initially if application program 450 desires
to communicate with an application program on network
server 420, application program 450 is unaware of how to do
so. However, after downloaded code 460 is executed by
application program 450, application program 450 then has
the tools necessary to communicate with network server
420. In one particular embodiment, tools include stubs 471
and ORB specific code 480.

In the preferred embodiment of the present invention,
virtual machine 470 is provided to emphasize that down-
loaded code 460 comprise Java Language bytecodes. In the
preferred embodiment, downloaded code 460 is initially
written as IDL compliant ORB code, this code is then
compiled to become Java Language bytecodes. Because
Java Language bytecodes are machine independent, virtual
machines, such as virtual machine 470, are created for
different network client 410 host machines to interpret the
bytecodes.

FIG. 7 is a graphic representation of the concepts of a
network name server and an object name server. FIG. 7
includes a client machine 500 including an application
program 510, a document server 520, a code server 530, a
network name server 540, network server machines 550 and
580, an object name server 560 and a network server 570.

Network name servers such as network name server 540,
are servers that return a machine address for a network
server in response to an inputted network server name. Such

6,009,464

7

network name servers are well known in the art. Object
name servers such as object name server 530, are servers
that are resident in network server machines. Object name
servers return references to network servers in response to
an inputted object name. Such object name servers are also
well known in the art.

In operation, as described in conjunction with FIG. 4,
code server 520 downloads applets that enable application
program 510 to communicate with network server 570.
Application program 510, however may only be given the
logical name for the network server. Thus, in order to find
the network server machine within which network server
570 resides, application program 510 refers to network name
server 540 to find the network server machine address.

As illustrated in FIG. 7, once application program 510 has
located network server machine 550, application program
510 typically refers to object name server 560 to find a
reference to network server 570. It is noted that document
server 520, code server 530, and network server 570 may
reside within the same physical machine, may share the
same address space, or document server 520 may know
beforehand the network server machine address of the
network server, thus in such cases, a network name server is
not needed.

FIG. 8 is an example of a potential end user application
incorporating the preferred embodiment of the present
invention. FIG. 8 includes a display of a document on a web
browser and a plurality of buttons, such as button 590.

In FIG. 8, the application program illustrated is an Inter-
net browser, such as HotJava. The application program has
connected to a document server having the address “file://
localhost/export/JOE/goodbuys.html” and the document is
displayed to the user as shown in FIG. 8. The document
illustrates a page in an on-line catalog where a user can place
orders for goods. Unbeknownst to the application program,
the on-line ordering system is an object-oriented network
server having a particular network protocol.

When the user wishes to place an order for the item, the
user selects button 590. The application program transmits
the user’s selection of button 590 to the document server,
and in response, the document server has an associated code
server download Java Language applets to the application
program. After the applets have been downloaded, the
application program executes the applets. These applets
contain object stubs, ORB specific code including the par-
ticular network protocol of the on-line ordering system, a
network name of the on-line ordering system, etc. The
application program then connects to the on-line ordering
system, and upon connection therewith, invokes an object
within the on-line ordering system. Typically the on-line
ordering system returns an acknowledgement signal which
is passed back to the application program.

II. Application Program as a Network Server

FIG. 9 is a more detailed block diagram of a network
server illustrated FIG. 2. FIG. 9 includes application pro-
gram 1000 including an object 1010, skeletons 1020, and
ORB specific code 1030. ORB specific code 1030 includes
subcontracts 1040, marshal buffers 1050, and network pro-
tocol handlers 1060.

Network protocol handlers 1060 receive data from a
network client and uses subcontracts 1040 to place data into
marshal buffers 1050. Skeletons 1020 are then used to
unmarshal the arguments to a form that application program
1000 understands. Application program 1000 then invokes a
method on object 1010.

Further information regarding typical remote procedure
calls in an object-oriented system can also be found in the

10

15

20

25

30

35

40

45

50

55

60

65

8

references: A. D. Birrell and B. J. Nelson, “Implementing
Remote Procedure Calls,” ACM Trans. on Computer
Systems, 2(1), February 1984; and B. J. Nelson, “Remote
Procedure Call,” Tech report CSL-81-9, Xerox Palo Alto
Research Center, Palo Alto, Calif., 1981.

As illustrated in FIGS. 2 and 9, in order for an application
program to provide an object to a network client, the
application program should know, a priori, how to support
objects. For example, the application program should know
what objects are going to be accessed from the client server,
the application program should support the IDL
specification, and the application program should have a
network protocol which is known by network client.

FIG. 10 is a graphic representation of a preferred embodi-
ment of the present invention. FIG. 10 includes a network
server machine 1075 including an application program
1080, a document server 1090, a code server 1100, and a
network client 1110.

In the preferred embodiment, a application program 1080,
may or may not be an object-oriented application program.
For example, application program 1080 may be an Internet
document browser such as HotJava or Navigator, both which
support the Java language. Initially, application program
1080 typically is unaware of how to support network objects
and the network protocol necessary to receive communica-
tions from network client 1110.

Application program 1080 is typically couplable and
uncouplable with multiple document servers, as illustrated
by document server 1090. In a preferred embodiment,
document server 1090 includes code server 1100, however
alternatively, document server 1090 and code server 1100
may reside at different address spaces, e.g. on different
physical machines. Document server 1090 typically down-
loads documents to application program 1080, and code
server 1100 typically downloads code to application pro-
gram 1080, in response to requests from document server
1090. In the preferred embodiment of the present invention,
code server 1100 downloads Java Language bytecodes
which form application programs (applets), as was described
in Section I. When application program 1080 executes the
applets downloaded from code server 1100, application
program 1080 is given the information necessary to support
network objects and methods requested by network client
1110.

FIG. 11 is a flow diagram of a preferred embodiment of
the present invention.

In the preferred embodiment, initially a document server
downloads a document to an application program, step 1130.
For example, the document can be a page of text and
graphics. Typically the document will include a plurality of
actions the application program may take next, such as
downloading another document as is well known. In the
present embodiment, one action the application program
may take is to create and support a network object.

Next, typically in response to a user selection on the
displayed document, the document server may determine
that code, in the form of applets, should be downloaded to
the application program, step 1140. Alternatively, this step
may be skipped entirely, and the process flow continue from
step 1130 to step 1150.

In step 1150, code is downloaded from the code server to
the application program. As mentioned above, step 1140
may be skipped if the document server assumes that typical
application programs do not already have the code preloaded
on the server machine.

In step 1160, the application program executes the down-
loaded code, and in response, the application program is

6,009,464

9

given the ability to support a network object. Network
clients can thus communicate with the application program
and invoke methods of the object resident on the application
program.

FIG. 12 is a more detailed graphic representation of a
preferred embodiment of the present invention. FIG. 12
includes a network client 1180, a network server 1190, a
document server 1200, and a code server 1210. Network
server 1190 includes an application program 1220, down-
loaded code 1230, and a virtual machine 1245. Downloaded
code 1230 includes skeletons 1240, other ORB specific code
1247, and an object 1260.

As illustrated, initially application program 1220 cannot
receive communications from an application program on
network client 1180, since application program 1220 does
not have the tools to support an object call. However, after
downloaded code 1230 is executed by application program
1220 server application then has the tools necessary to
support an object call from network client 1180. In a
particular embodiment, tools include skeletons 1240, ORB
specific code 1247 and object 1260.

In the preferred embodiment of the present invention,
virtual machine 1240 is provided on the network server to
emphasize that downloaded code 1230 comprise Java Lan-
guage bytecodes. In the preferred embodiment, downloaded
code 1230 is initially written as IDL compliant ORB code,
this code is then compiled to become Java Language byte-
codes. Because Java Language bytecodes are machine
independent, virtual machines, such as virtual machine
1240, are created for different network server 1190 host
machines to interpret the bytecodes.

FIG. 13 is a graphic representation of the concepts of a
network name server and an object name server. FIG. 13
includes a network client 1250, a document server 1270, a
code server 1280, a network name server 1290, network
server machine 1300 and 1305, an object name server 1310,
a network server 1260, and an application program 1320.

Network name servers such as network name server 1290,
are servers that return a machine address for a network
server in response to an inputted server name. Such network
name servers are well known in the art. Object name servers
such as object name server 1310, are servers that are resident
in network server machines. Object name servers return
references to network object servers in response to an
inputted object name. Such object name servers are also well
known in the art.

In operation, as described in conjunction with FIG. 11,
code server 1280 downloads applets that enable application
program 1320 to receive communications from network
client 1250. Network client 1250, however may only be
given the logical name for the network server 1260. Thus, in
order to enable network client 1250 to find the network
server machine within which network server 1260 resides,
using the downloaded code, application program 1320 first
“publishes” the object name and the network server machine
address in network name server 1290.

As illustrated in FIG. 11, once network client 1250 has
located network server machine 1300, network client 1250

10

15

20

25

30

35

40

45

50

55

60

65

10

typically refers to object name server 1310 to find a refer-
ence to network server 1260. Again, using the downloaded
code, application program 1320 first “publishes” the object
name and provides a pointer to the network server 1260.

It is noted that document server 1270 and code server
1280 may reside within the same physical machine.

FIG. 14 is an example of a potential end user application
incorporating the preferred embodiment of the present
invention. FIG. 14 includes a display of a document on a
web browser and a plurality of buttons, such as button 1340.

In FIG. 14, the application program illustrated is an
Internet browser, such as HotJava. The application program
has connected to a document server having the address
“file:://localhost/export/JOE/stock.htm]l” and the document
is displayed to the user as shown in FIG. 14. The document
illustrates an order display page in a brokerage trading
system where the user can place orders for a stock. Unbe-
knownst to the application program, the brokerage trading
system is an object-oriented network client/server.

When the user wishes to place an order for a stock at a
certain price, the user selects button 1340. The server
application transmits the users selection of button 1340 to
the document server, and in response, the document server
has an associated code server download Java language
applets to the application program. After the applets have
been downloaded, the application program executes the
applets. These applets contain object skeletons, ORB spe-
cific code including the particular network protocol of the
brokerage trading system, etc. In response to a trade
command, for example, the application program creates an
“trade” object. The user may then exit the web browser.
Later, when the trade has executed, the brokerage trading
system calls up the user’s machine and invokes a method on
the “trade” object in the application program to notify the
user that the trade is complete.

CONCLUSION

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. Many changes or modifications are readily envi-
sioned. For example, the application programs may be
object-oriented or programmed in C++; the code that is
downloaded may be machine dependent or specific; the code
that is downloaded may only contain the network protocol
for the network server; the code that is downloaded may
only contain the network protocol for the network client; the
document server, code server, and the network server may be
located at the same address space or in the same physical
computer; the document server, code server, and the network
client may be located at the same address space or in the
same physical computer; etc.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than in a restrictive sense.
It will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

6,009,464
11 12

13/543674

APPENDIX A

The Java Language Specification

Release 1.0 Alpha3

@ Sun

A Sun Micrasystems, Inc. Business

May 11, 1995

&y

Please
Recycle

6,009,464
13 14

© 1993, 1994, 1995 Sun Microsystems, inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U S A,

Allrights reserved. This ALPHA quality release and related documentation are protected by copyright and distributed under
licenses restricting its use, copying, distribution, and decompilation. No part of this release or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc. and the University of California, respectively. Third-party font soltware in this release is protected by
copyrightand licensed from Sun’s Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

‘The release described in this manual may be protected by one or more U.S. patents, foreign patents. or pending applications.

TRADEMARKS

Sun, Sun Microsystems, Sun Microsvstems Computer Corporation, the Sun logo, the Sun Microsystems Computer
Corporation logo, WebRunner, Java, FirstPerson and the FirstPerson logo and agent are trademarks or registered trademarks
of Sun Microsystems, Inc. The "Duke” character is a trademark of Sun Microsystems, Inc. and Copyright (¢) 1992-1995 Sun
Microsystems, Inc. All Rights Reserved. UNIX®is a registered trademark in the Uniled States and other countries, exclusively
licensed through X/Open Comapny, Ltd. OPEN LOOK is a registered trademark of Novell, inc. All other product names
mentioned herein are the trademarks of their respective owners.

ANlSPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK®and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

X Window System is a trademark and product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

15

6,009,464
16

Contents

Java Language Spedification. i 1
1 Program Structure.o s 1
2 Lexical ISSUBS . . .o\ o vttt 1
21 COMIMENES ...\ttt 2
22 Identifiers.oooni s 2
23 Keywords.........ccooviiiiiiiiiii 2
24 Literalsooonni e 3
25 Operators and Miscellaneous Separators 4
3 L7 1= 4
3.1 NumericTypes ... 5
3.2 Boolean Typeso oo 6
33 N - 6
4 ClASSES . - - ettt ettt e e e e et 7
4.1 Casting Between Class Typesooooiiiiiiin.t, 8
42 Methods 9
43 OverridingMethods. oo 1
4.4 Overload Resolution., 11
4.5 L0311 o T - 12
46 Object Creation—the new Operatorves, 14
47 Static Methods, Variables, and Initializers 15
4.8 AccessSpecifiers......... i 17
49 Variable ScopingRules e 17
410 Modifiers ... o 18
5 Interfaces. 20
5.1 Interfacesas Types ..o 21
52 Methods in Interfaces.................... ... oo, 21
53 Variables in Interfacesol 21
5.4 Combining Interfaces..................ooiiiiiiiiiii 21
6 PaCKAgES . . ot e 21
6.1 Specifying a Compilation Unit’s Package..................... 2
6.2 Using Classes and Interfaces from Other Packages. 22
7 Expressions. 22
7.1 OPeratorsvuv i e 23
7.2 Castsand CoONVersions.ooviieneinnenvnnnenan... 26
May 11, 1995 Java Language Specification iii

17

6,009,464
18

SEAEIMENES & ..t ittt ettt et et e e 26
8.1 Dedarations. oo 26
8.2 EXPIessionsoiuuuiininteiiie i 26
8.3 Control Flow oo e 27
8.4 EXCEPHONS . ..o\t e e e 27
Appendix: Floating Point.ol 33
Al SpecialValues............ooviiiiiiiiiin i 33
A2 Binary FormatConversion 33
A3 Ordering........ ..ottt 34
A4 Summary of [EEE-754 Differences 34
Appendix: Java Language Grammar.................... .0 35

Java Language Specification May 11, 1995

May 111995

6,009,464
20

Java Language Specification

This document is a preliminary specification of the Java™ language. Both the
specification and the language are subject to change. When a feature that exists in
both Java and ANSI C isn’t explained fully in this specification, the feature should
be assumed to work as it does in ANSI C. Send comments on the Java Language
and spedification to java@java.Sun.COM. See also http://java.sun.com/mail html
for a list of Java-related mailing lists.

Program Structure

The source code for an Java program consists of one or more compilation ynits.
Each compilation unit can contain only the following (in addition to white space
and comments):

* a package statement (see “Packages” on page 21)

¢ import statements (see “Packages” on page 21)

¢ class declarations (see “Classes” on page 7)

¢ interface declarations (see “Interfaces” on page 20)

Although each Java compilation unit can contain multiple classes or interfaces, at
most one class or interface per compilation unit can be public (see “Classes” on
page 7).

When Java source code is compiled, the result is Java bytecode. Java bytecode
consists of machine-independent instructions that can be interpreted efficiently
by the Java runtime system. The Java runtime system operates like a virtual
machine, for information see The Java Virtual Machine Specification.

Implementation Note: In the current Java implementation, each compilation
unit is a file with a “.java” suffix.

Lexical Issues

During compilation, the characters in Java source code are reduced to a series of
tokens. The Java compiler recognizes five kinds of tokens: identifiers, keywords,
literals, operators, and miscellaneous separators. Comments and white space such
as blanks, tabs, line feeds, and are not tokens, but they often are used to separate
tokens.

Java programs are written using the Unicode character set or some character set
that is converted to Unicode before being compiled.

Java Language Specification 1

e o b -

21

21

2.2

23

6,009,464
22

2 Lexical Issues

Comments

The Java language has three styles of comments:

// text All characters from // to the end of the line are
ignored.

/* text */ All characters from /* to */ are ignored.

/** text */ These comments are treated specially when they

occur immediately before any declaration. They
should not be used any other place in the code. These
comments indicate that the enclosed text should be
included in automatically generated documentation
as a description of the declared item.

Identifiers

Identifiers must start with a letter, underscore (“_"), or dollar sign (“$");
subsequent characters can also contain digits (0-9). Java uses the Unicode
character set. For the purposes of determining what is a legal identifier the
following are considered "letters:"

* The characters "A" through "z"

* The characters "a" through "z"

¢ All Unicode characters with a character number above hex 00C0

Other characters valid after the first letter of an identifier include every character
except those in the segment of Unicode reserved for special characters.

Thus, “gar¢on” and “Mjglner” are legal identifiers, but strings containing
characters such as “{” are not.

For more information on the Unicode standard, see The Unicode Standard,
Worldwide Character Encoding, Version 1.0, Volumes 1&2. The FTP address for
Unicode, Inc. (formerly the Unicode Consortium) is unicode.org.

Keywords

The following identifiers are reserved for use as keywords. They cannot be used
in any other way.

abstract default goto? null sKlnchronized
boolean o if package this

break double implements private threadsafe
byte else import protected throw
byvalue® extends instanceof public transient
case false int return true

catch final interface short try

char finally long static void

class float native super while
const? for new switch

continue

a. Reserved but currently unused.

Java Language Specification May 11 1995

6,009,464
23 24

2 Lexical Issues

2.4 Literals

Literals are the basic representation of any integer, floating point, boolean,
character, or string value.

2.4.1 Integer Literals

Integers can be expressed in decimal (base 10), hexadecimal (base 16), or octal
(base 8) format. A decimal integer literal consists of a sequence of digits
(optionally suffixed as described below) without a leading 0 (zero). An integer can
be expressed in octal or hexadecimal rather than decimal. A leading 0 (zero) on an
integer literal means it is in octal; a leading 0x (or 0X) means hexadecimal.
Hexadecimal integers can include digits (0-9) and the letters a-f and A-F. Octal
integers can include only the digits 0-7.

Integer literals are of type int unless they are larger than 32-bits, in which case
they are of type long (see “Integer Types” on page 5). A literal can be forced to be
long by appending an L or 1 to its value.

The following are all leggl integer literals:

2, 2L 0777 0OxDeadBeef

2.4.2 Floating Point Literals

A floating point literal can have the following parts: a decimal integer, a decimal
point (“.), a fraction (another decimal number), an exponent, and a type suffix.
The exponent part is an e or E followed by an integer, which can be signed. A
floating point literal must have at least one digit, plus either a decimal point or e
(or E). Some examples of floating point literals are:

3.1415 3.1E12 .lel2 2EI12
As described in “Floating Point Types” on page 5, the Java language has two

floating point types: float {EEE 754 single precision) and double (IEEE 754
double precision). You specify the type of a floating point literal as follows:

2.0d or 2.0D double
2.0f or 2.0F or 2.0 float

2.4.3 Boolean Literals

The boolean type has two literal values: true and false. See “Boolean Types” on
page 6 for more information on boolean values.

24.4 Character Literals
A character literal is a character (or group of characters representing a single

character) enclosed in single quotes. Characters have type char and are drawn
from the Unicode character set (see “Character Types” on page 5). The following

May 11 1995 Java Language Specification 3

25

245

25

6,009,464
26

3 Tvpes

escape sequences allow for the representation of some non-graphic characters as
well as the single quote, " *" and the backslash "\", in Java code:

continuation <newline> \

new-line NL (LF) \n
horizontal tab HT \t
back space BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote * \
double quote \"
octal bit pattern Oddd \ddd
hex bit pattern Oxdd \xdd

unicode char Oxdddd \udddd

String Literals

A string literal is zero or more characters enclosed in double quotes. Each string
literal is implemented as a String object (not as an array of characters). For
example, “abc” creates an new instance of class String. The following are all legal
string literals:

" \\ the empty string
H\IW
"This is a string"”

"This is a \
two-line string"”

Operators and Miscellaneous Separators

The following characters are used in source code as operators or separators:

¢y ¢y 017 s, .=

++ o= == <= »= 1= << >>
>>> 4= o= *= /= = =
A= %= <K= >>= »»>= || &&

For more information see “Operators” on page 23.

Types

Every variable and every expression has a type. Type determines the allowable
range of values a variable can hold, allowable operations on those values, and the

Java Language Specification May 11 1995

May 11 1995

27

3.1

6,009,464
28

3 Tvpes

meanings of the operations. Built-in types are provided by the Java language.
Programmers can compose new types using the class and interface mechanisms
(see “Classes” on page 7 and “Interfaces” on page 20).

The Java language has two kinds of.types: simple and composite. Simple types
are those that cannot be broken down; they are atomic. The integer, floating point,
boolean, and character types are all simple types. Composite types are built on
simple types. The language has three kinds of composite types: arrays, classes,
and interfaces. Simple types and arrays are discussed in this section.

Numeric Types

Integer Types

Integers are similar to those in C and C++, with two exceptions: all integer types
are machine independent, and some of the traditional definitions have been
changed to reflect changes in the world since C was introduced. The four integer
types have widths of 8, 16, 32, and 64 bits and are signed.

Width Name
8 byte
16 short
32 int
64 long

A variable’s type does not directly affect its storage allocation. Type only
determines a variable’s arithmetic properties and legal range of values. If a value
is assigned to a variable that is outside the legal range of the variable, the value is
reduced modulo the range.

Floating Point Types

The float keyword denotes single precision (32 bit); double denotes double
predision (64 bit). The result of a binary operator on two float operands is a float.
If either operand is a double, the result is a double.

Floating point arithmetic and data formats are defined by IEEE 754. See

“Appendix: Floating Point” on page 33 for details on the floating point
implementation.

Character Types

The language uses the Unicode character set throughout. Consequently the char
data type is defined as a 16-bit unsigned integer.

Java Language Specification 5

29

3.2

33

6,009,464
30

3 Types

Boolean Types

The boolean type is used for variables that can be either true or false, and for
methods that return true and false values. [t's also the type that is returned by the
relational operators (e.g., ">=").

Boolean values are not numbers and cannot be converted into numbers by
casting.

Arrays

Arrays in the language are first class objects. They replace pointer arithmetic. All
objects (including arrays) are referred to by pointers that cannot be damaged by
being manipulated as numbers. Arrays are created using the new operator:

char s[] = new char[30];
The first element of an array is at index 0 (zero). Specifying dimensions in the

declarations is not allowed. Every allocation of an array must be explicit—use
new every time:

int i[] = new int[3];
The language does not support multi-dimensional arrays. Instead, programmers
can create arrays of arrays:
int i(1}[] = new int[3][4];
At least one dimension must be specified but other dimensions can be explicitly
allocated by a program at a later time. For example:

int i(][] = new int[3](];

is a legal declaration.

In addition to the C-style array declaration, where brackets follow the name of the
variable or method, Java allows brackets following the array element type. The
following two lines are equivalent:

int iarrayl[];
int[] iarray;

as are the following method declarations:

byte f£(int n)[];
byte[] £(int n);

Subscripts are checked to make sure they’re valid:

int a[] = new int[10];

a[5] = 1;

all] = af0o] + a[2];

a[-1] = 4; // Throws an ArrayIndexOutOfBoundsException
// at runtime

afl0] = 2; // Throws an ArrayIndexOutOfBoundsException

// at runtime

Array dimensions must be integer expressions:

int n;

Java Language Specification May 11 1995

6,009,464
31 32

4 Classes

float arr{] = new float[n + 1];

The length of any array can be found by using .length:
int af[l[] = new int[10]([3];

println{a.length); - // prints 10
println(a(0].length); // prints 3

3.3.1 Array Detail

Arrays are instances of subclasses of class Object. In the class hierarchy there is a
class named Array, which has one instance variable, "length”. For each primitive
type there is a corresponding subclass of Array. Similarly, for all classes a
corresponding subclass of Array implicitly exists. For example:

new Thread(n]

creates an instance of Thread []. If class A is a superclass of class B (i.e., B extends
A) then A[] is a superclass of B[] (see the diagram below).

Object

I '

int (] float(] All

B[]

Hence, you can assign an array to an Object:
Object o;

int afl] = new int[10];
o = a;

and you can cast an Object to an array:
a = (int[l)e;

Array classes cannot be explicitly subclassed.

4 Classes

Classes represent the dlassical object oriented programming model. They support
data abstraction and implementations tied to data. In Java, each new class creates

anew type.

To make a new dass, the programmer must base it on an existing class. The new

class is said to be derived from the existing class. The derived dlass is also called a
subclass of the other, which is known as a superclass. Class derivation is transitive:
if B is a subclass of A, and C is a subclass of B, then C is a subclass of A.

May 11 1995 Java Language Specification

~

33

4.1

6,009,464
34

4 Classes

The immediate superclass of a class and the interfaces (see “Interfaces” on page
20) that the class implements (if any) are indicated in the class declaration by the
keywords extends and implements, respectively:

[Doc comment] [Modifiers] class Classname
extends Superclassname] '
implements Interface{, Interface}] {

ClassBody
}

For example:

/** 2 dimensional point */
public class Point {
float x, vy;

}

/** Printable point */
class PrintablePoint extends Points implements Printable {

;.n.n.)lic void print () {

}
}

All classes are derived from a single root class: Object. Every class except Object
has exactly one immediate superclass. If a class is declared without specifying an
immediate superclass, Object is assumed. For example, the following:

class Point {

float x, y;
}

is the same as:

class Point extends Object {
float x, y;
}

The language supports only single inheritance. Through a feature known as
interfaces, it supports some features that in other languages are supported through
multiple inheritance (see “Interfaces” on page 20).

Casting Between Class Types

The language supports casting between types and because each class is a new
type, Java supports casting between class types. If B is a subclass of A, then an
instance of B can be used as an instance of A. No explicit cast is required, but an
explicit cast is legal—this is called widening. If an instance of A needs to be used as
if it were an instance of B, the programmer can write a type conversion or cast—
this is called narrowing. Casts from a class to a subclass are always checked at
runtime to make sure that the object is actually an instance of the subclass (or one
of its subclasses). Casting between sibling classes is a compile-time error. The
syntax of a class cast is:

(classname) ref

where (classname) is the object being cast to and ref is the object being cast.

Java Language Specification May 11 1995

May 11 1995

35

4.2

6,009,464
36

4 Classes

Casting affects only the reference to the object, not the object itself. However,
access to instance variables is affected by the type of the object reference. Casting
an object from one type to another may result in a different instance variable
being accessed even though the same variable name is used.

class ClassA {
String name = "ClassA";
}

class ClassB extends ClassA { // ClassB is a subclass of ClassA
String name= “ClassB”;
}

class AccessTest {
void test () {
ClassB b = new ClassB();

println(b.name); // print: ClassB
Classa a;

a = (ClassA)b;

println(a.name); // print: ClassA

Methods

Methods are the operations that can be performed on an object or class. They can
be declared in either classes or interfaces, but they can be implemented only in
classes. (All user-defined operations in the language are implemented with
methods.)

A method declaration in a class has the following form (native and abstract
methods have no method body):

[Doc comment] [Modifiers] returnType methodName (parameterList) {
[methodBody]
}

Methods:

« Have a return type unless they’re constructors, in which case they have no
return type. If a non-constructor method does not return any value, it must
have a void return type.

¢ Have a parameter list consisting of comma-separated pairs of types and
parameter names. The parameter list should be empty if the method has no
parameters.

Variables declared in methods (local variables) can’t hide other local variables or
parameters in the same method. For example, if a method is implemented with a
parameter named i, it's a compile-time error for the method to declare a local
variable named i. In the following example:
class Rectangle {
void vertex(int i, int j) {
for (int 1 = 0; 1 <= 100; i++) { // ERROR

Java Language Specification 9

6,009,464
37 38

4 Classes

the declaration of “i" in the for loop of the method body of "vertex" is a compile-
time error.

The language allows polymorphic method naming—declaring a method with a
name that has already been used in the class or its superclass—for overriding and
overloading methods. Overriding means providing a different implementation of
an inherited method. Overloading means declaring a method that has the same
name as another method, but a different parameter list.

Note: Return types are not used to distinguish methods. Within a class scope,
methods that have the same name and parameter list, i.e., the same number,
position, and types of parameters, must return the same type. It is a compile-time
error to declare such a method with a different return type.

421 Instance Variables

All variables in a class declared outside the scope of a method and not marked
static (see “Static Methods, Variables, and Initializers” on page 15) are instance
variables. (Variables declared inside the scope of a method are considered local
variables.) Instance variables can have modifiers (see “Modifiers” on page 18).

Instance variables can be of any type and can have initializers. If an instance
variable does not have an initializer, it is initialized to zero; boolean variables are
initialized to false; and objects are initialized to null. An example of an initializer
for an instance variable named j is:

class A {
int j = 23;

42.2 The this and super Variables

Inside the scope of a-non-static method, the name this represents the current
object. For example, an object may need to pass itself as an argument to another
object’s method:

class MyClass {
void aMethod(OtherClass obj) {

obj.Method (this);

}

Any time a method refers to its own instance variables or methods, an implicit
“this.” is in front of each reference:

class Foo {
int a, b, c¢;

void myPrint () {
print(a + "\n"); // a == "this.a"
}

}

The super variable is similar to the this variable. The this variable contains a
reference to the current object; its type is the class containing the currently

10 Java Language Specification May 11 1995

6,009,464
39 40

4 Classes

executing method. The super variable contains a reference which has the type of
the superclass.

423 Setting Local Variables

Methods are rigorously checked to be sure that all local variables (variables
declared inside a method) are set before they are referenced. Using a local variable
before it is initialized is a compile-time error.

43 Overriding Methods

To override a method, a subclass of the class that originally declared the method
must declare a method with the same name, return type (or a subclass), and
parameter list. When the method is invoked on an instance of the subclass, the
new method is called rather than the original method. The overridden method
can be invoked using the super variable such that:

setThermostat (...) // refers to the overriding method
super. setThermostat (...) // refers to the overridden method

44 Overload Resolution

Overloaded methods have the same name as an existing method, but differ in the
number and/or the types of arguments. Overload resolution involves
determining which overloaded method to invoke. The return type is not
considered when resolving overloaded methods. Methods may be overloaded
within the same class. The order of method declaration within a class is not
significant.

Methods may be overloaded by varying both the number and the type of
arguments. The compiler determines which matching method has the lowest type
conversion cost. Only methods with the same name and number of arguments are
considered for matching. The cost of matching a method is the maximum cost of
converting any one of its arguments. There are two types of arguments to
consider:, object types and base types.

The cost of converting among object types is the number of links in the class tree
between the actual parameter’s class and the prototype parameter’s class. Only
widening conversions are considered. (See “Casting Between Class Types” on:
page 8 for more information on object conversion.) No conversion is necessary for
argument types that match exactly, making their cost 0.

May 11 1995 Java Language Specification 11

12

e SN

41

4.5

6,009,464
42

4 Classes

The cost of converting base types is calculated from the table below. Exact
matches cost 0.

To
byte short char int long float double

byte 0 1 2 3 4 6 7

short 10 0 10 2 4 5

E char 11 10 0 1 2 4 5
8 int 12 11 11 0 1 5 4
B+ long 12 11 n 10 0 6 5
float 15 14 13 12 11 0 1
double| 16 15 14 13 12 10 0

Note: Cost >= 10 causes data loss.

Once a conversion cost is assigned to each matching method, the compiler
chooses the method which has the lowest conversion cost. If there is more than
one potential method with the same lowest cost the match is ambiguous and a
compile-time error occurs.

For example:
class A {
int method(Object o, Thread t);
int method(Thread t, Object 0);

void g(Object o, Thread t) {

method (o, t); // calls the f irst method.
method(t, ©); // calls the second method.
method(t, t); // ambiguous - compile-time error

}

Note: The names of parameters are not significant. Only the number, type, and
order are.

Constructors

Constructors are special methods provided for initialization. They are
distinguished by having the same name as their class and by not having any
return type. Constructors are automatically called upon the creation of an object.
They cannot be called explicitly through an object. If you want to be able to call
the constructor outside the package, make the constructor public (see “Access
Specifiers” on page 17 for more information).

Constructors can be overloaded by varying the number and types of parameters,
just as any other method can be overloaded.

class Foo {
int x;
float y;
Foo() |

x = 0y

y = 0.0;

Java Language Specification May 11 1995

6,009,464
43 44

+ Classes

Foo(int a) {

X = a;
y = 0.0;
+
Foo(float a) {
x = 0;
Yy = 3;
}
Foo(int a, f loat b) {
X = a;
y = b;
}
static void myFoo() {
Foo objl = new Foo(); //calls Foo();
Foo obj2 = new Foo(4); //calls Foo(int a);
Foo 0bj3 = new Foo(4.0); //calls Foo(f loat a);

Foo obj4 = new Foo(4, 4.0); //calls Foo(int a, £ loat b);

}

The instance variables of superclasses are initialized by calling either a
constructor for the immediate superclass or a constructor for the current class. If
neither is specified in the code, the superclass constructor that has no parameters
is invoked. If a constructor calls another constructor in this class or a constructor
in the immediate super class, that call must be the first thing in the constructor
body. Instance variables can’t be referenced before calling the constructor.

Invoking a constructor of the immediate superclass is done as follows:

class MyClass extends OtherClass {
MyClass (someParameters) {
/* Call immediate superclass constructor */
super (otherParameters);

}

Invoking a constructor in the current class is done as follows:

class MyClass extends OtherClass {
MyClass (someParameters) {

}
MyClass(otherParameters) {
/* Call the constructor in this class that has the
specif ied parameter list. */
this(someParameters);

b

The Foo and FooSub methods below are examples of constructors.

class Foo extends Bar {
int a;
Foo(int a}
// implicit call to Bar()
this.a = a;
}
Foo() {
X this(42); // calls Foo(42) instead of Bar()

}

class FooSub extends Foo {
int b;

May 11 1995 Java Language Specification 13

14

45

4.6

46.1

6,009,464
46

4 Classes

FooSub{(int b) {
super (13}); // calls Foo(13); without this line,
// would have called Foo ()
this.b = b;

}

If a class declares no constructors, the compiler automatically generates one of the
following form:
class MyClass extends CtherClass {

MyClass() { // automatically generated
super (};

Object Creation—the new Operator

A class is a template used to define the state and behavior of an object. An object is
an instance of a class. All instances of classes are allocated in a garbage collected
heap. Declaring a reference to an object does not allocate any storage for that
object. The programmer must explicitly allocate the storage for objects, but no
explicit deallocation is required; the garbage collector automatically reclaims the
memory when it is no longer needed.

To allocate storage for an object, use the new operator. In addition to allocating
storage, new initializes the instance variables and then calls the instance’s
constructor. The constructor is a method that initializes an object (see
“Constructors” on page 12). The following syntax allocates and initializes a new
instance of a class named ClassA:

a = new Classa();

This constructor syntax provides arguments to the constructor:

b = new ClassaA(3,2);

A third form of allocator allows the class name to be provided as a String
expression. The String is evaluated at runtime, and new returns an object of type
Object, which must be cast to the desired type.

b = new ("Class"™+"a" };

In this case, the constructor without arguments is called.

Garbage Collection

The garbage collector makes most aspects of storage management simple and
robust. Programs never need to explicitly free storage: it is done for them
automatically. The garbage collector never frees pieces of memory that are still
referenced, and it always frees pieces that are not. This makes both dangling
pointer bugs and storage leaks impossible. It also frees designers from having to
figure out which parts of a system have to be responsible for managing storage.

Finalization

The Java language includes the concept of object finalization. Java finalization is
generalization of garbage collection that allows a program to free arbitrary

Java Language Specification May 11 1995

47

4.6.3

4.7

6,009,464
48

4 Classes

resources (e.g., file descriptors or graphics contexts) owned by objects that cannot
be accessed by any Java program. Reclaiming an object's memory by garbage
collection does not guarantee that these resources will be reclaimed .

The null Reference

The keyword nullis a predefined constant that represents “no instance.” null can
be used anywhere an instance is expected and can be cast to any class type.

Static Methods, Variables, and Initializers

Variables and methods declared in a class can be declared static, which makes
them apply to the class itself, rather than to an instance of the class. In addition, a
block of code within a class definition can be declared static. Such a block of code
is called a static initializer.

Static variables can have initializers, just as instance variables can. See “Order of
Initialization” on page 16 for more information. A static variable exists only once
per class, no matter how many instances of the class exist. Both static variables
and static methods are accessed using the class name. For convenience, they can
also be accessed using an instance of the class.

class Ahem {

int 1i; // Instance variable
static int j; // Static variable
static int arr[] = new int[12];

static { // static initializer:

// initialize the array

for (int 1 0; i < arr.length; i++) {

[/}

arr[i] i;
}
}
void seti{int i) { // Instance method
this.i = i;
}
static void setj(int j) { // Static method

Ahem.j = 3;
}
static void clearThroat () {

2hem a = new Ahem();

Ahem.j = 2; // valid; static var via class

a.j = 3; // valid; static var via instance
Ahem.set j(2); // valid; static method via class
a.setj(3); // valid; static method via instance
a.i = 4; // valid; instance var via instance
Ahem.i = 5; // ERROR; instance var via class .
a.seti(4); // wvalid; instance method via instance
Ahem.seti(5); // ERROR; instance method via class

May 11 1995

1. When a user defines the vo1d finalize () method in a class definition, finalization is enabled for
objects of that class. Finalization of an object consists of the system calling the object’s finalize ()
method. Finalization normally occurs asynchronously at some time after the garbage collection
mechanism identifies an object as inaccessible. Users can invoke their finalize () method
explicitly but this doesn’t guarantee that the system will not call it again at a later time. If a finalized
object references another finalized object, the objects are finalized in the reverse order of their
creation. Java does not guarantee when or if a given finalized object will have its finalize ()
method called. Thus, finalization should not be relied on for program correctness. Rather,
finalization should be thought of as an optimization.

Java Language Specification 15

49

471

4.7.2

6,009,464
50

4 Classes

Order of Declarations

The order of declaration of classes and the methods and instance variables within
them is irrelevant. However, it is possible for cycles to exist during initialization.
For information on cycles during initialization see “Order of Initialization” on
page 16. Methods are free to make forward references to other methods and
instance variables. The following is legal:

class A {
void a() {
f.set (42);
}
B f;

¥
class B {
void set(long n) {
this.n =n; }
long n;

Order of Initialization

When a class is loaded, all of its static initialization code is executed. Static
initializers are executed at the same time that static variables are initialized. The
initializations occur in lexical order. For example, a class C is declared as follows:
class C {
static int a = 1;
static {
a++;
b=7
}
static int b = 2;
}

When class C is loaded, the following occurs in order:

* aissettol
* the static initializer is executed, settinga to 2and b to 7
e bissetto2

If any static initialization code has a reference to some other, unloaded class, that
class is loaded and its static initialization code is executed first. Each unloaded
class referenced during static initialization is loaded and initialized before the
class that referenced it. If at any time during this initialization sequence a
reference is made to an uninitialized class that is earlier in the sequence, a cycle is
created. A cycle causes a NoClassDefFoundException to be thrown.

For exampile, if ClassA is loaded, its static initialization code is executed.
However, ClassA’s static initialization code can have a reference to another
unloaded class, for example, ClassB. In that case, ClassB is loaded and its static
initialization occurs before ClassA’s. Then, ClassA’s static initializations are
executed. A cycle is created if ClassB has a reference to ClassA in its static
initialization code.

It is an compile-time error for instance or static variable initializations to have a
forward dependency. For example, the following code:

int i = j + 2;

3
int j 4;

Java Language Specification May 11 1995

6,009,464
51 52

4 Classes

results in a compile-time error.

An instance variable’s initialization can have an apparent forward dependency on
a static variable. For example in the following code fragment:

int i =3+ 2; // Instance variable
static int j = 4; // Static variable

it appears that i has a forward dependency on j. However, i is initialized to 6
and j is initialized to 4. This initialization occurs because 7 is a static variable and
is initalized before the instance variable. Thus, jis initialized to 4 before 1 is
initialized.

Static methods cannot refer to instance variables; they can only use static
variables and static methods.

4.8 Access Specifiers

Access spedifiers are modifiers that allow programmers to control access to
methods and variables. The keywords used to control access are public, private,
and protected. Methods marked as public can be accessed from anywhere by
anyone. Methods marked as private can be accessed only from within the class in
which they are declared. Since private methods are not visible outside the class,
they are effectively final and cannot be overridden (see “Final Classes, Methods,
and Variables” on page 18 for more information). Moreover, you cannot override
a non-private method and give it private access. The protected access specifier
makes a variable or method accessible to subclasses, but not to any other classes.

Public access can be applied to classes, methods, and variables. Classes, methods,
and variables marked as public can be accessed from anywhere by any other class
or method. The access of a public method cannot be changed by overriding it.

Classes, methods, and variables that do not have either private or public access
specified can be accessed only from within the package where they are declared
(see “Packages” on page 21).

49 Variable Scoping Rules

Within a package, when a class is defined as a subclass of another, declarations
made in the superclass are visible in the subclass. When a variable is referenced
inside a method definition, the following scoping rules are used:

1. The current block is searched first, and then all enclosing blocks, up to
and including the current method. This is considered the local scope.

After the local scope, the search continues in the class scope:

2. The variables of the current class are searched.

May 11 1995 Java Language Specification 17

53

4.10

4.10.1

4.10.2

4.10.3

4.10.4

6,009,464
54

4 Classes

3. If the variable is not found, variables of all superclasses are searched,
starting with the immediate superclass, and continuing up through class
Object until the variable is found. If the variable is not found, imported
classes and package names are searched. If it is not found, it is a compile-
time error. -

Multiple variables with the same name within the same class are not allowed and
result in a compile-time error.

Maodifiers

Threadsafe Variables

An instance or static variable can be marked threadsafe to indicate that the
variable will never be changed by some other thread while one thread is using it,
i.e., the variable never changes asynchronously. The purpose of marking a
variable as threadsafe is to allow the compiler to perform some optimizations that
may mask the occurrence of asynchronous changes. The primary optimization
enabled by the use of threadsafe is the caching of instance variables in registers.

Transient Variables

The transient flag is available to the interpreter and is intended to be used for
persistent objects. Variables marked transient are treated specially when
instances of the class are written out as persistent objects.

Final Classes, Methods, and Variables

The final keyword is a modifier that marks a class as never having subclasses, a
method as never being overridden, or a variable as having a constant value. It is a
compile-time error to override a final method, subclass a final class, or change the
value of a final variabie. Variables marked as final behave like constants.

Using final lets the compiler perform a variety of optimizations. One such
optimization is inline expansion of method bodies, which may be done for small,
final methods (where the meaning of small is implementation dependent).
Examples of the various final declarations are:

¢class Foo {

final int value = 3; // £ inal variable
final int foo(int a, int b) { // £ inal method
}
}
Native Methods

Methods marked as native are implemented in a platform-dependent language,
e.g., C, not Java Native methods do not have a method body, instead the
declaration is terminated with a semicolon. Constructors cannot be marked as
native. Though implemented in a platform-dependent language, native methods

Java Language Specification May 11 1995

6,009,464
55 56

4 Classes

behave exactly as non-native methods do, for example, it is possible to override
them. An example of a native method declaration is:

native long timeOfDay();

4.10.5 Abstract Methods

Abstract methods provide the means for a superclass or interface to define a
protocol that subclasses must implement. Methods marked as abstract must be
defined in a subclass of the class in which they are declared. An abstract method
does not have a method body; instead the declaration is terminated with a semi-
colon.

The following rules apply to the use of the abstract keyword:

¢ Constructors cannot be marked as abstract.
* Static methods cannot be abstract.
¢ Private methods cannot be abstract.

* Abstract methods must be defined in some subclass of the class in which
they are declared.

¢ A method that overrides a superclass method cannot be abstract.

» Classes that contains abstract methods and classes that inherit abstract
methods without overriding them are considered abstract classes.

* Itis a compile-time error to instantiate an abstract class or attempt to call an
abstract method directly.

4.10.6 Synchronized Methods and Blocks

The synchronized keyword is a modifier that marks a method or block of code as
being required to acquire a lock. The lock is necessary so that the synchronized
code does not run at the same time as other code that needs access to the same
resource. Each object has exactly one lock associated with it; each class also has
exactly one lock. Synchronized methods are reentrant.

When a synchronized method is invoked, it waits until it can acquire the lock for
the current instance (or class, if it’s a static method). After acquiring the lock, it
executes its code and then releases the lock.

Synchronized blocks of code behave similarly to synchronized methods. The
difference is that instead of using the lock for the current instance or class, they
use the lock associated with the object or class specified in the block’s
synchronized statement.

Synchronized blocks are declared as follows:
/* ...preceding code in the method... */
synchronized(<object or class name>) { //sync. block

/* code that requires synchronized access */
}

/* ...remaining code in the method... */

An example of the declaration of a synchronized method is:

class Point {
float x, y;
synchronized void scale(f loat f) {

May 11 1995 Java Language Specification 19

6,009,464
57 58

5 Interfaces

X
*
(L]
Hy Hh

}

An example of a synchronized block is:

class Rectangle {
Point topLeft;

void print () {
synchronized (tcopLeft)
println("topLeft.x
println("topLeft.y

=

" + topleft.x);
" + toplLeft.y);

5 Interfaces

An interface specifies a collection of methods without implementing their bodies.
Interfaces provide encapsulation of method protocois without restricting the
implementation to one inheritance tree. When a class implements an interface, it
generally must implement the bodies of all the methods described in the interface.
(If the implementing class is abstract—never implemented—it can leave the
implementation of some or all of the interface methods to its subclasses.)

Interfaces solve some of the same problems that multiple inheritance does
without as much overhead at runtime. However, because interfaces involve
dynamic method binding, there is a small performance penalty to using them.

Using interfaces allows several classes to share a programming interface without
having to be fully aware of each other’s implementation. The following example
shows an interface declaration (with the interface keyword) and a class that
implements the interface:

public interface Storing {
void freezeDry(Stream s);
void reconstitute(Stream s);

}
public class Image implements Storing, Painting {

void freezeDry(Stream s)
// JPEG compress image before storing

}
void reconstitute (Stream s) {
// JPEG decompress image before reading

}

Like classes, interfaces are either private (the default) or public. The scope of
public and private interfaces is the same as that of public and private classes,
respectively. Methods in an interface are always public. Variables are public,
static, and final.

20 Java Language Specification May 11 1995

May 11 1995

e — i — s 15

59

5.1

5.2

53

5.4

6,009,464
60

6 Packages

Interfaces as Types

The dedaration syntax interfaceName variableName declares a variable or
parameter to be an instance of some class that implements interfaceName.
Interfaces behave exactly as classes when used as a type. This lets the
programmer specify that an object must implement a given interface, without
having to know the exact type or inheritance of that object. Using interfaces
makes it unnecessary to force related classes to share a common abstract
superclass or to add methods to Object.

The following pseudocode illustrates the interfaceName variableName syntax:

class StorageManager {
Stream stream;

// Storing is the interface name

void pickle(Storing obj) {
obj. freezeDry (stream);
}

Methods in Interfaces
Methods in interfaces are declared as follows:

returnType methodName (parameterList);

The declaration contains no modifiers. All methods specified in an interface are
public and abstract and no other modifiers may be applied.

See “Abstract Methods” on page 19 for more information on abstract methods.

Variables in Interfaces

Variables declared in interfaces are final, public, and static. No modifiers can be
applied. Variables in interfaces must be initialized.

Combining Interfaces

Interfaces can incorporate one or more other interfaces, using the extends
keyword as follows:

interface DoesItAll extends Storing, Painting {
void doesSomethingElse();
}

Packages

Packages are groups of classes and interfaces. They are a tool for managing a large
namespace and avoiding conflicts. Every class and interface name is contained in
some package. By convention, package names consist of period-separated words,
with the first name representing the organization that developed the package.

Java Language Specification 21

61

6.1

6.2

6,009,464
62

7 Expressions

Specifying a Compilation Unit’s Package

The package that a compilation unit is in is specified by a package statement.
When this statement is present, it must be the first non-comment, non-white space
line in the compilation unit. It has the following format:

package packageName;

When a compilation unit has no package statement, the unitis placed in a default
package, which has no name.

Using Classes and Interfaces from Other Packages

The language provides a mechanism for making the definitions and
implementations of classes and interfaces available across packages. The import
keyword is used to mark classes as being imported into the current package. A
compilation unit automatically imports every class and interface in its own
package.

Code in one package can specify classes or interfaces from another package in one
of two ways:

* By prefacing each reference to the class or interface name with the name of
its package:

// prefacing with a package
acme.project.FooBar obj = new acme.project.FooBar();

¢ By importing the class or interface or the package that contains it, using an
import statement. Importing a class or interface makes the name of the class
or interface available in the current namespace. Importing a package makes
the names of all of its public classes and interfaces available. The construct:

// import all classes from acme.project
import acme.project.*;

means that every public class from acme.project is imported.

The following construct imports a single class, Employee_List, from the
acme.project package:

// import Employee_List from acme.project
import acme.project.Employee List;
Employee_List obj = new Employee List();

It is illegal to specify an ambiguous class name and doing so always generates a
compile-time error. Class names may be disambiguated through the use of a fully
qualified class name, i.e., one that includes the name of the class’s package.

Expressions

Expressions in the language are much like expressions in C.

Java Language Specification May 11 1995

May 11 1995

63

7.1

7.1.1

6,009,464
64

7 Expressions

Operators

The operators, from highest to lowest precedence, are:

10
++ -- ! ~ instanceof
LR

hw—m— > |
-y

s
Il

Operators on Integers

For operators with integer results, if any operand is long, the result type is long.
Otherwise the result type is int—never byte, short, or char. Thus, if a variable i is
declared a short or a byte, i+1 would be an int. When a result outside an
operator’s range would be produced, the result is reduced modulo the range of
the result type.

The unary integer operators are:

Operator Operation
- unary negation
~ bitwise complement
++ Increment
- Decrement

The ++ operator is used to express incrementing directly. Incrementing can also
be expressed indirectly using addition and assignment. ++lvalue means
lvalue+=1. ++lvalue also means lvalue=lvalue+1 (as long as lvalue has no side
effects). The -- operator is used to express decrementing. The ++and ~- operators
can be used as both prefix and postfix operators.

Java Language Specification 23

6,009,464
66

7 Expressions

The binary integer operators are:

Operator Operation”
+ addition
- subtraction
* multiplication
/ division
% modulus
& bitwise AND
| bitwise OR
~ bitwise XOR
<< left shift
S Asoal
>>> zero-fill right shift

a. integer op integer => integer

Integer division rounds toward zero. Division and modulus obey the identity
(a/b)*b + (atb) == a.

The only exceptions for integer arithmetic are caused by a divide or modulus by
zero, which throw the ArithmeticException. An underflow generates zero. An
overflow leads to wrap-around, i.e., adding 1 to the maximum integer wraps
around to the minimum integer.

An op= assignment operator corresponds to each of the binary operators in the
above table.

The integer relational operators <, >, <=, >=, ==, and != produce boolean results.

Operators on Boolean Values

Variables or expressions that are beolean can be combined to yield other boolean
values. The unary operator ! is boolean negation. The binary operators &, |, and *
are the logical AND, OR, and XOR operators; they force evaluation of both
operands. To avoid evaluation of right-hand operands, you can use the short-cut
evaluation operators &é& and | . You can also use == and !=. The assignment
operators also work: &=, |=, *=. The ternary conditional operator ?: works as it
doesin C.

Operators on Floating Point Values

Floating point values can be combined using the usual operators: unary -; binary
+, =, * and /; and the assignment operators +=, ==, *=, and /=. The ++ and ~-
operators also work on floating point values (they add or subtract 1.0). In
addition, % and %= work on floating point values, i.e.,

a%b

Java Language Specification May 11 1995

May 11 1995

67

715

6,009,464
68

7 Expressions

is the same as:

a - ((int)(a / b) * b)

This means that a%b is the floating point equivalent of the remainder after
division. :

Floating point expressions involving only single-precision operands are
evaluated using single-precision operations and produce single-precision results.
Floating point expressions that involve at least one double-precision operand are
evaluated using double-precision operations and produce double-precision
results.

The language has no arithmetic exceptions for floating point arithmetic.
Following the IEEE 754 floating point specification, the distinguished values Inf
and NaN are used instead. Overflow generates Inf. Underflow generates 0.
Divide by zero generates Inf.

The usual relational operators are also available and produce boolean results: >,
<, >=, <=, ==, 1=, Because of the properties of NaN, floating point values are not
fully ordered, so care must be taken in comparison. For instance, if a<b is not true,
it does not follow that a>=b. Likewise, a!=b does not imply thata>b || a<b.In
fact, there may no ordering at all.

Floating point arithmetic and data formats are defined by IEEE 754, “Standard for
Floating Point Arithmetic.” See “Appendix: Floating Point” on page 33 for details
on the language’s floating point implementation.

Operators on Arrays
The following:
<expression>[<expression>]

gets the value of an element of an array. Legal ranges for the expression are from 0
to the length of the array minus 1. The range is checked only at runtime.

Operators on Strings

Strings are implemented as String objects (see “String Literals” on page 4 for more
information). The operator + concatenates Strings, automatically converting
operands into Strings if necessary. If the operand is an object it can define a
method call toString() that returns a String in the class of the object.

// Examples of the + operator used with strings

flecat a = 1.0;

print ("The value of a is " + a + "\n");
String s = "a =" + a;

The += operator works on Strings. Note, that the left hand side (s1in the
following example) is evaluated only once.

sl += a; //sl = sl + a; // a is converted to String if necessary

Java Language Specification 25

69

7.2

8.1

8.2

26

6,009,464
70

§ Statements

Operators on Objects
The binary operator instanceof tests whether the specified object is an instance of
the specified class or one of its subclasses. For example:

if (thermostat instanceof MeasuringDevice) {
MeasuringDevice dev = (MeasuringDevice)thermostat;

}

determines whether thermostat is a MeasuringDevice object (an instance of
MeasuringDevice or one of its subclasses).

Casts and Conversions

The Java language and runtime system restrict casts and conversions to help
prevent the possibility of corrupting the system. Integers and floating point
numbers can be cast back and forth, but integers cannot be cast to arrays or
objects. Objects cannot be cast to base types. An instance can be cast to a
superclass with no penalty, but casting to a subclass generates a runtime check. If
the object being cast to a subclass is not an instance of the subclass (or one of its
subclasses), the runtime system throws a ClassCastException.

Statements

Declarations

Declarations can appear anywhere that a statement is allowed. The scope of the
declaration ends at the end of the enclosing block.

In addition, declarations are allowed at the head of for statements, as shown
below:

for (int i = 0; i < 10; i++) {

—

Items declared in this way are valid only within the scope of the for statement.
For example, the preceding code sample is equivalent to the following:
{
int i = 0;
for (; i < 10; i++) {

Expressions

Expressions are statements:
a = 3;

print (23);
foo.bar();

Java Language Specification May 11 1995

71

8.3

8.4

6,009,464
72

8§ Statements

Control Flow

The following is a summary of control flow:

if(boolean) statement

else statement

switch(el) {
case eZ2: statements
default: statements

}

break {labell;

continue [labell;

return el;

for(lell; [e2]; [e3]) statement
while(boolean) statement

do statement while(boolean);
label:statement

The language supports labeled loops and labeled breaks, for example:

outer: // the label
for (int 1 = 0; i < 10; i++) {
for {(int j= 0; 3< 10; J++) {
if (... o
break outer;

}

The use of labels in loops and breaks has the following rules:

* Any statement can have a label.

¢ If a break statement has a label it must be the label of an enclosing
statement.

¢ Ifa continue statement has a label it must be the label of an enclosing loop.

Exceptions

When an error occurs in an Java program—for example, when an argument has
an invalid value—the code that detects the error can throw an exception’. By
default, exceptions result in the thread terminating after printing an error
message. However, programs can have exception handlers that catch the exception
and recover from the error.

Some exceptions are thrown by the Java runtime system. However, any class can
define its own exceptions and cause them to occur using throw statements. A
throw statement consists of the throw keyword followed by an object. By
convention, the object should be an instance of Exception or one of its subclasses.
The throw statement causes execution to switch to the appropriate exception
handler. When a throw statement is executed, any code following it is not
executed, and no value is returned by its enclosing method. The following
example shows how to create a subclass of Exception and throw an exception.

class MyException extends Exception {

May 11 1995

1. Java exception handling closely follows the proposal in the second edition of The C++ Programming
Language, by Bjarne Stroustrup.

Java Language Specification g

28

6,009,464
74

8§ Statements

class MyClass |
void oops () {
if (/* no error cccurred */) {

} els'e' '{ /* error occurred */
throw new MyException();
}

}

To define an exception handler, the program must first surround the code that can
cause the exception with a try statement. After the try statement come one or
more catch statements—one per exception class that the program can handle at
that point. In each catch statement is exception handling code. For example:

try {
p.a = 10;
} catch (NullPocinterException e) {
println("p was null"};
} catch (Exception e) {
println("other error occurred");
} catch (Object obj) {
println("wWho threw that object?");
}

A catch statement is like a method definition with exactly one parameter and no
return type. The parameter can be either a class or an interface. When an
exception occurs, the nested try/catch statements are searched for a parameter
that matches the exception class. The parameter is said to match the exception if
it:

* is the same class as the exception; or
* isasuperclass of the exception; or

¢ if the parameter is an interface, the exception class implements the
interface.

The first try/catch statement that has a parameter that matches the exception has
its catch statement executed. After the catch statement executes, execution
resumes after the try/catch statement. It is not possible for an exception handler
to resume execution at the point that the exception occurred. For example, this
code fragment:
print ("now ");
try {
print ("is ");
throw new MyException();
print ("a ");
} catch(MyException e) {
print ("the ");
}
print ("time\n");

prints “now is the time”. As this example shows, exceptions don’t have to be used
only for error handling, but any other use is likely to result in code that’s hard to
understand.

Exception handlers can be nested, allowing exception handling to happen in more
than one place. Nested exception handling is often used when the first handler
can’t recover completely from the error, yet needs to execute some cleanup code
(as shown in the following code example). To pass exception handling up to the
next higher handler, use the throw keyword using the same object that was

Java Language Specification May 11 1995

6,009,464
75 76

8 Statements

caught. Note that the method that rethrows the exception stops executing after
the throw statement; it never returns.

try {
f.open();

} catch(Exception e) {
f.close();
throw e;

8.4.1 The finally Statement

The following example shows the use of a finally statement that is useful for
guaranteeing that some code gets executed whether or not an exception occurs.
For example, the following code example:
try {
// do something
} finally {

// clean up after it
}

is similar to:

try |
// do something

} catch{Cbject e){
// clean up after it
throw e;

}
// clean up after it

The finally statement is executed even if the try block contains a return, break,
continue, or throw statement. For example, the following code example always
results in “finally” being printed, but “after try” is printed only if a != 10.

try {

if (a2 == 10) {
return;

}
} finally {

print ("finally\n”);
}
print ("after try\n");

8.4.2 Runtime Exceptions

This section contains a list of the exceptions that the Java runtime throws when it
encounters various errors.

ArithmeticException

Attempting to divide an integer by zero or take a modulus by zero throw the
ArithmeticException—no other arithmetic operation in Java throws an exception.
For information on how Java handles other arithmetic errors see “Operators on
Integers” on page 23 and “Operators on Floating Point Values” on page 24.

For example, the following code causes an ArithmeticException to be thrown:

class Arith {
public static void main(String args([]) {
int j = 0;
=137 73

May 11 1995 Java Language Specification 29

30

s gt

6,009,464
78

8 Statements

}

NullPointerException

An attempt to access a variable or method in a null object or a element in a null
array throws a NullPointerException. For example, the accesses o.length and a[0]
in the following class declaration throws a NullPointerException at runtime.

class Null {
public static void main(String args[]) {
String © = null;
int af[] = null;
o.length();
afo] = ¢;

}

It is interesting to note that if you throw a nuil object you actually throw a
NullPointerException.

IncompatibleClassChangeException

In general the IncompatibleClassChangeException is thrown whenever one
class’s definition changes but other classes that reference the first class aren’t
recompiled. Four specific changes that throw a
IncompatibleClassChangeException at rutime are:

* A variable’s declaration is changed from static to non-static in one class but
other classes that access the changed variable aren’t recompiled.

e A variable’s declaration is changed from non-static to static in one class but
other classes that access the changed variable aren’t recompiled.

¢ A field that is declared in one class is deleted but other classes that access
the field aren’t recompiled.

* A method that is declared in one class is deleted but other classes that
access the method aren’t recompiled.

ClassCastException

A ClassCastException is thrown if an attempt is made to cast an object O into a
class C and O is neither C nor a subclass of C. For more information on casting see
“Casting Between Class Types” on page 8.

The following class declaration results in a ClassCastException at runtime:
class ClassCast {

public static veoid main(String args(]) {
Object o = new Object();

String s = (String)o; // the cast attempt
s.length();
}
NegativeArraySizeException

A NegativeArraySizeException is thrown if an array is created with a negative
size. For example, the following class definition throws a
NegativeArraySizeException at runtime:

Java Language Specification May 11 1995

6,009,464
79 80

8 Statements

class NegArray {
public static void main(String args[]) {

int a[] = new int{-11];
af0] = 0;
}
}
OutOfMemoryException

An OutOfMemoryException is thrown when the system can no longer suppy the
application with memory. The OutOfMemoryException can only occur during the
creation of an object, i.e.,, when new is called. For example, the following code
results in an OutOfMemoryException at runtime:
class Link {
int afl] = new int[1000000];
Link 1;
}
class OutOfMem {
public static void main(String args(]) {
Link root = new Link();
Link cur = root;
while(true) {
cur.l = new Link();
cur = cur.l;

¥
NoClassDefFoundException

A NoClassDefFoundException is thrown if a class is referenced but the runtime
system cannot find the referenced class.
For example, class NoClass is declared:
class NoClass {
public static void main(String args([]) {
C c = new C(Q);
}

}

When NoClass is run, if the runtime system can’t find C.class it throws the
NoClassDefFoundException.

Note: C.class must have existed at the time NoClass is compiled.
IncompatibleTypeException

An IncompatibleTypeException is thrown if an attempt is made to instantiate an
interface. For example, the following code causes an IncompatibleTypeException
to be thrown.

interface I {
}

class IncompType {

public static void main(String args[]) {
I r = (I)new("I");
}

May 11 1995 Java Language Specification 31

32

81

6,009,464
82

8 Statements

ArrayIndexOutOfBoundsException
An attempt to access an invalid element in an array throws an
ArrayIndexOutOfBoundsException. For example:

class ArrayoOut {
public static veoid main(String args(]) {

int a[] = new int[0];
al0] = 0;
}
¥
UnsatisfiedLinkException

An UnsatisfiedLinkException is thrown if a method is declared native and the
method cannot be linked to a routine in the runtime.

class NoLink {
static native void foo();

public static void main(String args[]) {
foo ();
}
}

InternalException
An InternalException should never be thrown. It's only thrown if some

consistency check in the runtime fails. Please send mail to
java@java.Sun.COM if you have a reproducible case that throws this exception.

Java Language Specification May 11 1995

May 11, 1995

RO ———

83

Al

A2

6,009,464
84

A Appendix: Floating Point

Appendix: Floating Point

This appendix discusses properties of Java floating point arithmetic: general
precision notes and special values, binary format conversion, ordering. At the end
is a section summarizing the differences between Java arithmetic and the IEEE
754 standard. For more information on the IEEE 754 standard, see “IEEE Standard
for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985.”

Operations involving only single-precision float and integer values are
performed using at least single-precision arithmetic and produce a single-
precision result. Other operations are performed in double precision and produce
a double precision result. Java floating-point arithmetic produces no exceptions.

Underflow is gradual.

Special Values

There is both a positive zero and a negative zero. The latter can be produced in a
number of special dircumstances: the total underflow of a * or / of terms of
different sign; the addition of -0 to itself or subtraction of positive zero from it; the
square root of -0. Converting -0 to a string results in a leading '-". Apart from this,
the two zeros are indistinguishable.

Calculations which would produce a value beyond the range of the arithmetic
being used deliver a signed infinite result. An infinity (Inf) has a larger
magnitude than any value with the same sign. Infinities of the same sign cannot
be distinguished. Thus, for instance (1./0.) + (1./0.) == (1./0.). Division
of a finite value by infinity yields a 0 result.

Calculations which cannot produce any meaningful numeric result deliver a
distinguished result called Not A Number (NaN). Any operation having a NaN as
an operand produces a NaN as the result. NaN is not signed and not ordered (see
“Ordering”). Division of infinity by infinity yields NaN, as does subtraction of
one infinity from another of the same sign.

Binary Format Conversion

Converting a floating-point value to an integer format results in a value with the
same sign as the argument value and having the largest magnitude less than or
equal to that of the argument. In other words, conversion rounds towards zero.
Converting infinity or any value beyond the range of the target integer type gives
a result having the same sign as the argument and the maximum magnitude of
that sign. Converting NaN results in 0.

Converting an integer to a floating format results in the closest possible value in

the target format. Ties are broken in favor of the most even value (having 0 as the
least-significant bit).

Java Language Specification 33

85

A3

A4

6,009,464
86

A Appendix: Floating Point

Ordering

The usual relational operators can be applied to floating-point values. With the
exception of NaN, all floating values are ordered, with -Inf < all finite values <
Inf.

-Inf == -Inf, +Inf == +Inf, -0. == 0. The ordering relations are transitive.
Equality and inequality are reflexive.

NaN is unordered. Thus the result of any order relation between NaN and any
other value is false and produces 0. The one exception is that “NaN !=anything”
is true.

Note that, because NaN is unordered, Java's logical inversion operator, !, does not
distribute over floating point relationals as it can over integers.

Summary of IEEE-754 Differences

Java arithmetic is a subset of the [EEE-754 standard. Here is a summary of the key
differences.

¢ Nonstop Arithmetic—The Java system will not throw exceptions, traps, or
otherwise signal the IEEE exceptional conditions: invalid operation,
division by zero, overflow, underflow, or inexact. Java has no signaling
NaN.

* Rounding—]Java rounds inexact results to the nearest representable value,
with ties going to the value with a 0 least-significant bit. This is the [EEE
default mode. But, Java rounds towards zero when converting a floating
value to an integer. Java does not provide the user-selectable rounding
modes for floating-point computations: up, down, or towards zero.

¢ Relational set—Java has no relational predicates which include the
unordered condition, except for !=. However, all cases but one can be
constructed by the programmer, using the existing relations and logical
inversion. The exception case is ordered but unequal. There is no specific
IEEE requirement here.

¢ Extended formats—Java does not support any extended formats, except
that double will serve as single-extended. Other extended formats are not a
requirement of the standard.

Java Language Specification May 11, 1995

6,009,464
87 88

B Appendix: Java Language Grammar

B Appendix: Java Language Grammar

This is a short grammar for a Java compilation unit. A Java program consists of
one or more compilation units.

The grammar has undefined terminal symbols DocComment, Identifier, Number,
String, and Character. Quoted text signifies literal terminals.

Each rule is of the form nonterminal = meta-expression ; Other meta-
notation is: | for alternation, (...) for grouping, postfix ? for 0 or 1 occurrences,
postfix + for 1 or more occurrence, and postfix * for 0 or more occurrences.

CompilationUnit =
PackageS t? ImportStat t* TypeDeclarakion*

;

PackageStatement =
‘package’ PackageName *;’

i

ImportStatement =
‘import’ PackageName *.' “** ;¢
| ‘import’ (ClassName | InterfaceName) ;’

;

TypeDeclaration =
ClassDeclaration

| InterfaceDeclaration

|

i

ClassDeclaration =
Modifier ‘class’ Identifier
(‘extends’ ClassName)?
[lements’ InterfaceName (,’ InterfaceName)*)?
“{* FieldDeclaration* 3}’

i

InterfaceDeclaration =
Modifier= ‘interface’ Identifier
(“extends’ InterfaceName (,' InterfaceName)*)?
\{* FieldDeclaration* “}’

I

FieldDeclaration =

DocComment ? MethodDeclaration
| DocComment? ConstructorDeclaration
| DocComment? VariableDeclaration
t StaticInitializer
Ry

i

MethodDeclaration =
Modifier* Type Identifier ‘(’ ParameterList?)’ (‘[’ ‘]’)*
(“{’ Stalement+ “}’ | ;'

i

ConstructorDeclaration =

Modifier~ Identifier ‘(' ParameterList?)’
N{’ " Statement* M}’
VariableDeclaration =
Modifier~ Type VariableDeclarator (*, ' VarigbleDeclarator)* *;*

;

May 16, 1995 Java Language Specification 35

36

6,009,464
90

B Appendix: Java Language Grammar

VariableDeclarator =
Identifier (‘[" ‘17)* (‘=' Varigblelnitiglizer)?

Variablelnitializer =
Expression
| ‘{' (Variablelnitializer ~(‘,’ Variablelnitializer y* *,’?)7 “}’

7

Staticinitializer =
‘static’ ‘{’ Statement* ‘}’

;

ParameterList =
Parameter (*,’ Parameter) *

i

Parameter =
TypeSpecifier Identifier ([’ ‘1°)*

i

Statement =
VariableDeclaration
| Expression *;’
| “{" Statement* “}’
| ‘if” (' Expression ‘)’ Statement (‘else’ Statement)?
| ‘while’ (‘' Expression ‘)’ Statement
i ‘do’ Statement ‘while’ ‘(' Expression)’ ;'
| “try’ Statement (‘catch’ ‘(' Parameter ‘)’ Statement)*
(“finally’ Statement)?
| ‘switch’ ‘(’ Expression ‘)’ ‘{’ Stalement ‘}’
| ‘synchronized’ ‘(’ Expression ‘) Statement
| ‘return’ Expression? *;’
| ‘throw’ Expression *;’
| ‘case’ Expression “:*
| ‘default’ ‘:’
| Identifier ‘:’ Statement
| ‘break’ Identifier? ‘;’
| ‘continue’ Identifier? %;’
R
‘

Expression =

Expression ‘+' Expression
| Expression ‘-’ Expression
| Expression ‘%’ Expression
| Expression /' Expression
| Expression ‘%’ Expression
| Expression *~‘ Expression
| Expression ‘&’ Expression
| Expression *|* Expression
| Expression ‘&&’ Expression
| Expression *}|’ Expression
| Expression ‘<<‘ Expression
| Expression *>>’ Expression
| Expression ‘>>>‘ Expression
i Expression ‘=’ Expression
| Expression ‘+=' Expression
| Expression ‘-=’ Expression
| Expression ‘*=’ Expression
| Expression /=" Expression
| Expression ‘%=’ Expression
| Expression ‘~=' Expression
| Expression ‘&=’ Expression
| Expression ‘=’ Expression
| Expression ‘<<=’ Expression
\ Expression ‘>>=' Expression
| Expression “>>>=' Expression

Java Language Specification May 16, 1995

May 16,1995

6,009,464
92

B Appendix: Java Language Grammar

i\ Expression < Expression

| Expression ‘>’ Expression

i\ Expression ‘<=’ Expression

i Expression ‘>=’ Expression

| Expression Expression

| Expression 1=’ Expression

| Expression ‘.’ Expression

| Expression ,' Expression

| Expression ‘instanceof’ (ClassName | InterfaceName)
| Expression ‘?’ Expression ‘i Expression

| Expression [’ Expression ‘]’

| 4+’ Expression

| == Expression

| Expression ‘++’

| Expression ‘==’

| ‘=" Expression

| 1" Expression
|
|
|
!
I
I
I
I
I
I
I
|
!
|
|
I
;

*~' Expression

‘(' Expression)’

‘(" Type)’ Expression
Expression * (" ArgListz)’
‘new’ ClassName * (* ArgList?*)’
‘new’ TypeSEeciﬁer (“[" Expression 17)+ ([’ ‘17)*
‘new’ ‘(’

‘true’

‘false’

‘null”

‘super’

‘this’

Identifier

Number

String

Character

xpression)’

ArgList =
Expression (*,’ Expression)*

i

Type =
TypeSpecifier ([’ “1’)*

7

TypeSPeaﬁm =
boolean’

| ‘byte’

| “chaz’

| ‘short’

| ‘int’

| ‘float’

| ‘long’

| ‘double’

| ClassName

| InterfaceName

i

! ‘private’

| ‘protected’

| ‘static’

| ‘final’

| ‘native’

| ‘synchronized’
| ‘abstract’

| ‘threadsate’

Java Language Specification

37

38

6,009,464
94

B Appendix: Java Language Grammar

‘transient’
;
PackageName =

Identifier
| PackageName ‘.’ Identifier

;

ClassName =
Identifier
| PackageName *.‘ Identifier

H

InterfaceName =
Identifier
| PackageName .’ Identifier

;

Java Language Specification

May 16, 1995

95

Index

Symbols
!, 24

-, 24

=, 24,25
%, 24

&, 24
&&, 24
&=, 24

* 24

*= 24

+, 24,25
+=, 24

-, unary, 23
~, unary, 24
/. 24

/= 24

<, 24,25
<<, 24
<=, 24,25
-=, 24
==, 24,25
>, 24,25
>=, 24,25
>>, 24
>>>, 24
A 24

A=, 24

1, 24

i=, 24
i, 24

~, 23

B

boolean, 3

boolean expressions, 27

break, 27
byte, 5

May 11, 1995

6,009,464

96

C

case, 27

casting, 8,26
catch, 28

char, 5

classes, 5,7,21,26
comments, 2
constructors, 12
continue, 27

D

declaration order, 16
default, 27

do, 27

double, 5

double precision, 3,5, 24

E

else, 27
exceptions, 27
extends, 8

F

final, 18 -

finally, 29

float, 5

floating peint, 3, 5, 24

floating point, ordering of values, 25
for, 26,27

I

if, 27
implements, 8
import, 22
instanceof, 26
int, 5
integers, 5,23
interface, 20

Java Language Specification 39

et i s

40

6,009,464
97 98

interfaces, 8,20 w
while, 27
L
length X
length of an array, 7 XOR, logical, 24
literals, 3
long, 5

M
methods, 9

(0]

object storage, 14

(See also memory management)
objects, 14
OR, logical, 24

P
package, 22
packages, 21

R
return, 27

S

short, 5

static, 15

static initializer, 15
String, 4,25
strings, 4, 6,25
super, 13

switch, 27
synchronize, 19
synchronized, 19

T

this, 10
throw, 27
transient, 18

uy, 28

u

Unicode, 1
characters, 5

Vv
void, 9

Java Language Specification

May 11,1995

6,009,464

99

What is claimed:

1. A method for enabling an application program to
communicate with a network server, the method comprising:

downloading a document from a document server to the

application program;

downloading code from a code server associated with the

document server to the application program, the code
including platform independent code implementing a
network protocol for the network server; and

using the network protocol to communicate with the

network server.

2. The method of claim 1, further comprising: invoking an
object in the network server using the code.

3. The method of claim 1, further comprising:

using a network name server to locate the network server.

4. The method of claim 1, further comprising: using an
object name server in the network server to locate an object.

5. The method of claim 1, wherein the document server
and the code server are in the same address space.

6. The method of claim 1, wherein the network server, the
document server and the code server are in the same address
space.

7. The method of claim 1, wherein the code also includes
a stub for an object within the network server.

8. The method of claim 1, wherein the code is machine
independent.

9. The method of claim 8, wherein the platform indepen-
dent code comprises bytecodes.

10. The method of claim 1, wherein the network protocol
is different from a default network protocol used by the
application program.

11. The method of claim 1, wherein the step of down-
loading code is performed if it is determined that the
application program needs to communicate with the network
server.

12. The method of claim 1, wherein the platform inde-
pendent code implementing the network protocol and the
application program are in the same address space.

13. A distributed computing system, including a network
server, comprising:

a document server for storing a plurality of documents;

a code server for storing a plurality of code associated

with the plurality of documents, the plurality of code
including platform independent code implementing a
network protocol; and

an application program for loading a document from the

plurality of documents, for loading code from the
plurality of code associated with the document, and for
using the network protocol implemented by the plat-
form independent code to communicate with the net-
work server.

14. The distributed computing system of claim 13,
wherein the code invokes an object within the network
server.

15. The distributed computing system of claim 13,
wherein the document server and the code server are in the
same address space.

16. The distributed computing system of claim 13,

wherein the network server is object-oriented and

includes an object; and

wherein the code includes a stub for an object within the

network server.

10

15

20

25

30

35

40

45

50

55

60

100

17. The distributed computing system of claim 13,
wherein the application program loads the code if it is
determined that the application program needs to commu-
nicate with the network server.

18. The distributed computing system of claim 13,
wherein the platform independent code implementing the
network protocol and the application program are in the
same address space.

19. A computer program that enables an application
program to communicate with a network server, comprising:

code that downloads a document from a document server;

code that downloads downloadable code from a code
server associated with the document server, the down-
loadable code including platform independent code
implementing a network protocol for the network
server; and

code that uses the network protocol to communicate with
the network server;

wherein the codes are stored on a tangible medium.

20. The computer program of claim 19, further compris-
ing code that invokes an object in the network server using
the downloadable code.

21. The computer program of claim 19, wherein the
downloadable code also includes a stub for an object within
the network server.

22. The computer program of claim 19, wherein the
downloadable code is machine independent.

23. The computer program of claim 19, wherein the
network protocol is different from a default network proto-
col used by the application program.

24. The computer program of claim 19, further compris-
ing code that determines whether the application program
needs to communicate with the network server.

25. An apparatus for enabling an application program to
communicate with a network server, the apparatus compris-
ing:

a machine configured to download a document from a

document server to the application program;

a machine configured to download code from a code
server associated with the document server to the
application program, the code including platform inde-
pendent code implementing a network protocol for the
network server; and

a machine configured to use the network protocol to
communicate with the network server.

26. The apparatus of claim 25, further comprising:

a machine configured to use a network name server to
locate the network server using the code.

27. The apparatus of claim 25, further comprising:

a machine configured to use an object name server in the
network server to locate an object using the code.

28. The apparatus of claim 25, wherein the code also

includes a stub for an object within the network server.

29. The apparatus of claim 25, wherein the platform
independent code comprises bytecodes.

30. A method for enabling an application program to
receive communications from a network client, the method
comprising: downloading a document from a document
server to the application program;

downloading code from a code server associated with the
document server to the application program, the code
including platform independent code implementing a
network protocol for the network client, and

6,009,464

101

using the network protocol to receive communications

from the network client.

31. The method of claim 30, further comprising:

calling an object in the application program.

32. The method of claim 20, further comprising:

publishing a network server name for the application

program in a network name server.

33. The method of claim 30, wherein the application
program includes an object; the method further comprising:
publishing the object name in an object name server.

34. The method of claim 30, wherein the document server
and the code server are in the same address space.

35. The method of claim 30, wherein the network client,
the document server and the code server are in the same
address space.

36. The method of claim 30, wherein the code also
includes a skeleton for an object to be implemented by the
application program.

37. The method of claim 30, wherein the code is machine
independent.

38. The method of claim 37, wherein the platform inde-
pendent code comprises bytecodes.

39. The method of claim 30, wherein network protocol is
different from a default network protocol used by the appli-
cation program.

40. The method of claim 30, wherein the step of down-
loading code is performed if it is determined that the
application program needs to receive communications from
the network client.

41. The method of claim 30, wherein the platform inde-
pendent code implementing the network protocol and the
application program are in the same address space.

42. A distributed computing system, including a network
client, comprising:

a document server for storing a plurality of documents;

a code server for storing a plurality of code associated

with the plurality of documents, the plurality of code
including platform independent code implementing a
network protocol; and

an application program for loading a document from the

plurality of documents, for loading code from the
plurality of code associated with the document, and for
using the network protocol implemented by the plat-
form independent code to receive communications
from the network client.

43. The distributed computing system of claim 42,
wherein the network client calls an object within the appli-
cation program.

44. The distributed computing system of claim 42,
wherein the document server and the code server are in the
same address space.

45. The distributed computing system of claim 42,

wherein the code includes a skeleton for an object within

the application program.

46. The distributed computing system of claim 42,
wherein the application program loads the code if it is
determined that the application program needs to receive
communications from the network client.

47. The distributed computing system of claim 42,
wherein the platform independent code implementing the
network protocol and the application program are in the
same address space.

5

10

15

25

30

35

40

45

50

60

102

48. A computer program that enables an application
program to receive communications from a network client,
comprising:

code that downloads a document from a document server;

code that downloads code from a code server associated
with the document server, the code including platform
independent code implementing a network protocol for
the network client; and

code that uses the network protocol to receive communi-
cations from the network client;

wherein the codes are stored on a tangible medium.

49. The computer program of claim 48, further compris-
ing code that invokes an object in the application program in
response to the communications from the network client.

50. The computer program of claim 48, wherein the code
from the code server also includes a skeleton for an object
to be implemented by the application program.

51. The computer program of claim 48, wherein the code
from the code server is machine independent.

52. The computer program of claim 48, wherein the
network protocol is different from a default network proto-
col used by the application program.

53. The computer program of claim 48, further compris-
ing code that determines whether the application program
needs to receive communications from the network client.

54. An apparatus for enabling an application program to
receive communications from a network client, the appara-
tus comprising:

a machine configured to download a document from a

document server to the application program;

a machine configured to download code from a code
server associated with the document server to the
application program, the code including platform inde-
pendent code implementing a network protocol for the
network client; and

a machine configured to use the network protocol to
receive communications from the network client.

55. The apparatus of claim 54, further comprising:

a machine configured to publish a network server name

for the application program in a network name server.

56. The apparatus of claim 54, wherein the application
program includes an object; the apparatus further compris-
ing:

a machine configured to publish the object name in an

object name server.

57. The apparatus of claim 54, wherein the code also
includes a skeleton for an object to be implemented by the
application program.

58. The apparatus of claim 54, wherein the platform
independent code comprises bytecodes.

59. A computer system for enabling an application pro-
gram to receive communications from a network client, the
computer system including:

a Processor; and

a computer readable memory comprising:
code that directs the computer system to receive data
from a document server;

6,009,464

103

code that directs the computer system to receive plat-
form independent code implementing a network pro-
tocol for the network client; and

code that directs the computer system to use the net-
work protocol handler to receive communications
from the network client.

60. A computer system of claim 59, wherein the computer
readable memory further comprises code that invokes an
object in the application program in response to the com-
munications from the network client.

61. A computer system of claim 59, wherein the computer
readable memory further comprises code that publishes a
name of an object in an object name server.

62. A computer system of claim 59, wherein the code also
includes a skeleton for an object to be implemented by the
application program.

63. A computer system of claim 59, wherein the platform
independent code comprises bytecodes.

64. A computer system of claim 59, wherein the computer
readable memory further comprises code for determining
whether the application program needs to receive commu-
nications from the network client.

65. A computer system for enabling an application pro-
gram to communicate with a network server, the computer
system including:

15

20

25

104
a processor; and
a computer readable memory comprising:
code that directs the processor to receive data from a
document server;
code that directs the processor to receive platform
independent code implementing a network protocol
for the network server; and
code that directs the processor to use the network
protocol to communicate with the network server.

66. A computer system of claim 65, wherein the computer
readable memory further comprises code that invokes an
object in the network server using the code.

67. A computer system of claim 65, wherein the computer
readable memory further comprises code that uses a network
name server to locate the network server.

68. A computer system of claim 65, wherein the code also
includes a stub for an object within the network server.

69. A computer system of claim 65, wherein the platform
independent code comprises bytecodes.

70. A computer system of claim 65, wherein the computer
readable memory further comprises code for determining
whether the application program needs to communicate with
the network server.

