
US006009464A 

United States Patent (19) 11 Patent Number: 6,009,464 
Hamilton et al. (45) Date of Patent: *Dec. 28, 1999 

54 METHOD AND APPARATUS FOR ENABLING 5,481,721 1/1996 Serlet et al. ............................ 395/683 
APPLICATION PROGRAMS TO 5,511,197 4/1996 Hill et al. ................................ 395/683 
COMMUNICATE WITH NETWORK 5,515,508 5/1996 Pettus et al. ......................... 395/2006 

5,530,852 6/1996 Meske, Jr. et al. . ... 395/200.03 
CLIENTS AND SERVERS 5,546,584 8/1996 Lundin et al. ..................... 395/200.02 

75 Inventors: Graham Hamilton; Peter B. Kessler, 5. lyg sign et al. .................. 2: 
both of Palo Alto, Jeffrey Donald 630,066 5/ osling ............ ... 395/200. 
9 s y Donald 5,737,607 4/1998 Hamilton et al. ....................... 395/701 

Nisewanger, San Jose; Sami Shaio, 5,758,186 5/1998 Hamilton et al. .................. 395/200.33 
San Francisco; Jacob Y. Levy; Steven 
Robert Kleiman, both of Los Altos, all OTHER PUBLICATIONS 
of Calif. author unknown, The Common Object Request Broker: 

Architecture and Specification, Chapters 1, 2, published by 
73 ASSignee: St. Mystems, Inc., Mountain the Object Management Group (OMG), Framington, MA, 

1eW, UallI. pp. 1-1 through 2-18, Jul. 1995. 
* Notice: This patent issued on a continued pros- James Gosling, JAVA Intermediate Bytecodes, Jan. 1995, 

ecution application filed under 37 CFR pp. 111-118. 
1.53(d), and is subject to the twenty year Betz, Mark, Interoperable objects: laying the foundation for 
patent term provision of 35 s C distributed object computing, Dr. Dobb's Journal, Oct. 1994, 
154(a)(2). pp. 18-31. 

Primary Examiner Zarni Maung 
21 Appl. No.: 08/543,674 ASSistant Examiner Patrice L. Winder 

Attorney, Agent, or Firm-Townsend and Townsend and y, Ag 
22 Filed: Oct. 16, 1995 Crew LLP 

Related U.S. Application Data 57 ABSTRACT 
60 Provisional application No. 60/004,057, Sep. 20, 1995. 6 A method for enabling an application program to commu 
51 Int. Cl. ...................................................... G06F 13/00 nicate with a network Server, includes the Steps of down 
52 U.S. Cl. ............................................. 709/219; 709/230 loading a document from a document Server to the applica 
58 Field of Search ............................... 395/200.02, 683, tion program, downloading code from a code Server 

395/680, 712, 200.06, 200.03, 200.09, 200.33, associated with the document server to the application 
200.57, 2006, 684, 200.47, 200.48, 200.49, program, the code including a network protocol handler for 

701; 709/304, 203, 217, 218, 219, 300, the network Server, and using the network protocol handler 
205, 230 to communicate with the network Server. 

56) References Cited 70 Claims, 11 Drawing Sheets 

U.S. PATENT DOCUMENTS Microfiche Appendix Included 
5,475,817 12/1995 Waldo et al. ...................... 395/200.02 (1 Microfiche, 46 Pages) 

320 

Document Server 

Application Program L 

Network Server 

360 

Download Document into 
Application Program 

370 

330 Download Code into 
Application Program? 

Download Code into 
Application Program 
including a Network 

Protocol 

Application Program 
communicates with a 
Network Server using 
the downloaded Network 

Protocol 

  

    

  

  

  

  

  



U.S. Patent Dec. 28, 1999 Sheet 1 of 11 6,009,464 

FIC. 1 

  



U.S. Patent Dec. 28, 1999 Sheet 2 of 11 6,009,464 

f20 130 

Application Program 170 

180 
Object 

Skeletons 190 

ORB Code 200 

FIC. 2 210 

Application Program 230 
240 

Object Reference 

---------- 280 

Subcontroct 

Network Protocol 
Hander 

To Network Server 

FIC. 3 

    

    

      

  

  

  

  

  



U.S. Patent 

Application Program s 

Dec. 28, 1999 Sheet 3 of 11 

320 

Document Server 

Network Server 

FIG. 4 

360 

Down odd Document into 
Application Program 

Download Code into 
Application Program? 

370 

Download Code into 
Application Program 
including a Network 

Protocol 

Application Program 
communicates with a 
Network Server using 
the downloaded Network 

Protocol 

FIC. 6 

6,009,464 

330   

    

  

  

  

    

  

    

    

  

  

    

  

  



U.S. Patent Dec. 28, 1999 Sheet 4 of 11 6,009,464 

430 

Document Server 

440 

420 / 
Application Program 

Skeletons 

ORB Code 

ORB Code 
Network Protocol 

Handler 

Virtud Mochine 

FIC, 6 

  

  

  

  

  

  

  

  

  

  



U.S. Patent Dec. 28, 1999 Sheet 5 of 11 6,009,464 

520 

FIC. 7 

Application Program 

Document Server 

530 

Stubs 

ORB Code 

Virtuo Mochine 

Application Program 

Skeletons 

ORB Code 

5 

Object Name 
Server 

Application Program 

Skeletons 

ORB Code 

Network Name 
Server 

Application Program 

Skeletons 

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

    

    

  

    

  

  

  



U.S. Patent Dec. 28, 1999 Sheet 6 of 11 6,009,464 

File Options Navigate Goto 

Donent R.URL: file://localhost/export/JOE/goodbuys.html 

Available 

GoodBuys MNSKI-400 Water Monoski $140 

690 

Place Order 

Cleor Order 

Product # Price Total 
Bob Jones GoodBuys SKTS-100 1 235.00 235.00 
1234 Molin St. GoodBuys MNSKI-400 1 140.00 140.00 
Safety Harbor FL Dm------m-P 

Balance OOO 

Points 0.00 Sub Toto: 375.00 
Tox: 26.25 

Toto: 4.01.25 

Complete 

FIG. 8 

  



U.S. Patent Dec. 28, 1999 Sheet 7 of 11 6,009,464 

1000 

Application Program 
f010 

Object 

f020 

Skeletons 

Un-Marsho Buffers Subcontract 

1060 
Network Protocol 

Handler 

s 

From Network Cient 

FIG. 9 

  

    

  

  

  

  



U.S. Patent 

Network Cient 

Dec. 28, 1999 Sheet 8 of 11 

1090 

Document Server 1100 

FIG. 10 

1130 

Download Document into 
Application Program 

Download Code into 
Application Program? 

1140 

Download Code into 
Application Program 
including a Network 

Protocol 

A Network Server 
communicates with the 
Application Program 
using the downloaded 
Network Protocol 

FIC. 11 

Application Program 

6,009,464 

  

    

  

  

  

    

    

  

    

  

  

  

    

  

  



U.S. Patent Dec. 28, 1999 Sheet 9 of 11 6,009,464 

1200 

Document Server 

f190 

Application Program 

Object 
Skeletons 

1210 

1220 

1180 1230 

Application Program 

Object Reference 

ORB Code 

ORB Code 
Network Protocol 

FIG. 12 

    

  

  

  



U.S. Patent Dec. 28, 1999 Sheet 10 of 11 6,009,464 

1270 

FIC. 13 Document Server 

1280 

1250 / 

Application Program 

Object Reference Application Program 

Object 

Skeletons 

ORB Code 
Network Protocol 

Handler 
1290 

Network Name Virtuo Mochine 
Server 

Object Name 
Server 

Application Program Application Program 

Object 2 

Skeletons 

ORB Code 

Skeletons 

ORB Code 

    

  

  

  

    

  

  

      

  

  

    

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  



U.S. Patent Dec. 28, 1999 Sheet 11 of 11 6,009,464 

File Edit Wew Go Bookmarks Options Director 

Whot's New What's COO. Handbook Net SearchNet Director 

Symbol: SUNW 
Description: Sun Microsystems, Inc. 
Exchange: NASDAQ 
Lost: 62.6250 
Bid: 62.5000 
Ask: 62.7500 
Volume: 200,000 
Yearly High:62.6250 
Yearly Low; 29.8750 

Number of Shares: 500 

Price: 

Buy or Sell: 
Notify when executed: 

SUBMIT 1340 

DOCUMent DOne 

FIG. 14 

  

  

  

  

    

      

      

  

  

    

  

    

  

    



6,009,464 
1 

METHOD AND APPARATUS FOR ENABLING 
APPLICATION PROGRAMS TO 

COMMUNICATE WITH NETWORK 
CLIENTS AND SERVERS 

CROSS-REFERENCE TO RELATED 
APPLICATION 

The present invention claims priority to Provisional 
Patent Application Serial Number 06/004,057 filed Sep. 20, 
1995, and hereby incorporates it by reference. 

TRADEMARK NOTICE 

Sun, Spring, Solaris, Sunsoft, SunOS, Java and HotJava 
are trade marks or registered trade marks of Sun 
Microsystems, Inc. in the United States and other countries. 
All SPARC trademarks are used under license and are 
trade marks or registered trade marks of SPARC 
International, Inc. in the United States of America and other 
countries. Products bearing SPARC trademarks are based 
upon an architecture developed by Sun MicroSystems, Inc. 

BACKGROUND OF THE INVENTION 

The present invention relates generally to distributed 
object-oriented programming, and more Specifically to 
interoperability of distributed objects between network cli 
ents and network Servers. 

In the present disclosure the term “network server” refers 
to an apparatus on a network that includes Software objects, 
and the term “network client” refers to an apparatus on a 
network that refers to software objects. The term “network 
Server machine” refers to a host computer that includes a 
network server, and the term “network client machine' 
refers to a host computer that includes a network client. The 
term "document Server” refers to an apparatus that provides 
downloadable documents, and the term “code server” refers 
to an apparatus that provides downloadable code. 
The CORBA 

The interoperability of software objects between object 
oriented clients and Servers has become a significant issue in 
distributed computing Systems. Typically, Since different 
(object-oriented) client/servers have different object 
interfaces, objects produced by one client/server cannot be 
used by another client/server. One present effort for stan 
dardizing an interface for objects within (object-oriented) 
client/servers is known as Common Object Request Broker 
Architecture (CORBA). 

The CORBA specification generally provides interfaces 
by which a client/server can acceSS Software objects from 
another client/server and also provide access to its own 
Software objects to other client/servers. To enable the 
accessing of such “distributed objects”, CORBA specifies an 
“Interface Definition Language” (IDL) to be used by the 
client/server, more particularly to be used by object request 
brokers (ORBs) within each client/server. Exemplary client/ 
servers incorporating IDL include SunOSTM and NEOTM 
from Sun Microsystems, Inc. and DCE and ORBIX from 
Digital Equipment Corporation. 

Further information regarding CORBA can be found in 
the following references: “The Common Object Request 
Broker: Architecture and Specification”, Release 2.0, Pub 
lished by Object Management Group (OMG), Framingham, 
Mass. July 1995. “The ESSENTIAL CORBA: System Inte 
gration Using Distributed Objects' Thomas J. Mowbray, 
PhD and Ron Zahavi. Published by John Wiley and Object 
Management Group. 1995. 

Although IDL has provided a standardized way of defin 
ing object interfaces, CORBA did not specify an “on-the 

15 

25 

35 

40 

45 

50 

55 

60 

65 

2 
wire-protocol for the access of objects acroSS a network. AS 
a result, different vendors have implemented ORBs using 
different network protocols and different data formats for 
handling Such network objects. 
The Java T.M Language 
With the increasing popularity of the Internet and the 

World-WideWeb, interoperability of software between com 
pletely different computers and operating Systems has 
become an issue. One problem with obtaining Software from 
the Internet is that when a user receives a document from a 
document Server, the user Should also obtain an operating 
system specific driver for the document. With conventional 
network hypertext mark-up language (HTML) browsers, for 
example, "helper applications' should be provided, Such as 
movie viewers, Sound players, etc. in order to “use' the 
document. A Solution that was developed to overcome this 
problem is the Java language, developed by Sun 
MicroSystems, Inc. 
The Java language is an object-oriented language that can 

be integrated into conventional HTML browsers and allows 
a document Server to provide the browser with documents as 
well as executable code. The executable code is automati 
cally loaded from the document server if the HTML browser 
determines that it does not have the appropriate driver 
already resident on the user machine. The executable code 
takes the form of application programs, “applets”, compris 
ing "bytecodes' that are machine independent. These 
applets are then interpreted by operating System specific 
applet interpreters (virtual machines). A current Internet/ 
Web browser implementation using the Java language is 
HotJava TM, also developed by Sun Microsystems, Inc. 

Further information regarding the Java Language and the 
HotJava browser can be found in the following references: 
“The Java/Hotjava Programmer's Guide” currently posted at 
the following Internet Site: http://java. Sun.com/proGuide/ 
index.html, and “The Java Language Specification” Release 
1.0 Alpha3, May 11, 1995 attached as Microfiche Appendix. 

SUMMARY OF THE INVENTION 

The present invention provides methods and apparatus for 
allowing application programs to invoke objects within 
network servers that have different network (on-the-wire) 
protocols. In particular, the present invention allows docu 
ment servers to down-load ORBs and network protocols to 
application programs, thus enabling application programs to 
invoke objects within network servers. 

According to a preferred embodiment, a method for 
enabling an application program to communicate with a 
network Server, includes the Steps of downloading a docu 
ment from a document Server to the application program, 
downloading code from a code Server associated with the 
document Server to the application program, the code 
including a network protocol handler for the network Server, 
and using the network protocol handler to communicate with 
the network server. 

According to another preferred embodiment, a distributed 
computing System including a network Server also includes 
a document Server for Storing a plurality of documents, a 
code Server for Storing a plurality of code associated with the 
plurality of documents, the plurality of code including a 
network protocol handler, and an application program for 
loading a document from the plurality of documents, for 
loading code from the plurality of code associated with the 
document, and for using the network protocol handler within 
the code to communicate with the network Server. 
The present invention also provides methods and appa 

ratus for enabling application programs to receive commu 



6,009,464 
3 

nications from network clients that have different network 
(on-the-wire) protocols. In particular, the present invention 
allows document servers to down-load ORBS and network 
protocols to application programs, thus enabling network 
clients to invoke objects in application programs. 

According to another preferred embodiment, a method for 
enabling an application program to receive communications 
from a network client includes the Steps of downloading a 
document from a document Server to the application 
program, downloading code from a code Server associated 
with the document Server to the application program, the 
code including a network protocol handler for the network 
client, and using the network protocol handler to receive 
communications from the network client. 

According to yet another preferred embodiment a distrib 
uted computing System including a network client also 
includes a document Server for Storing a plurality of 
documents, a code Server for Storing a plurality of code 
asSociated with the plurality of documents, the plurality of 
code including a network protocol handler, and an applica 
tion program for loading a document from the plurality of 
documents, for loading code from the plurality of code 
asSociated with the document, and for using the network 
protocol handler within the code to receive communications 
from the network client. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of a System according to a 
preferred embodiment of the present invention; 

FIG. 2 is a block diagram of the process of an application 
program invoking a method on an object in a network Server; 

FIG. 3 is a more detailed block diagram of a network 
client illustrated FIG. 2; 

FIG. 4 is a graphic representation of a preferred embodi 
ment of the present invention; 

FIG. 5 is a flow diagram of a preferred embodiment of the 
present invention; 

FIG. 6 is a more detailed graphic representation of a 
preferred embodiment of the present invention; 

FIG. 7 is a graphic representation of the concepts of a 
network name Server and an object name Server; 

FIG. 8 is an example of a potential end user application 
incorporating the preferred embodiment of the present 
invention; 

FIG. 9 is a more detailed block diagram of a network 
server illustrated FIG. 2; 

FIG. 10 is a graphic representation of a preferred embodi 
ment of the present invention; 

FIG. 11 is a flow diagram of a preferred embodiment of 
the present invention; 

FIG. 12 is a more detailed graphic representation of a 
preferred embodiment of the present invention; 

FIG. 13 is a graphic representation of the concepts of a 
network name Server and an object name Server; 

FIG. 14 is an example of a potential end user application 
incorporating the preferred embodiment of the present 
invention; and 

Microfiche Appendix includes “The Java Language 
Specification,” Release 1.0 alpha3, May 11, 1995. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

FIG. 1 is a block diagram of a system 10 according to a 
preferred embodiment of the present invention. System 10 

15 

25 

35 

40 

45 

50 

55 

60 

65 

4 
includes a display monitor 20, a computer 30, a keyboard 40, 
a mouse 50, and a modem 60. Computer 30 includes familiar 
computer components Such as a processor 70, memory 
storage devices such as a random access memory (RAM) 80 
and a disk drive 90, and a system bus 100, interconnecting 
the above components. Mouse 50 is but one example of a 
graphical input device, a trackball is an example of another. 
Modem 60 is but one example of a device enabling system 
10 to be coupled to a network, a network interface card is 
another. RAM 80, disk drive 90 are examples of tangible 
media for Storage of computer programs, other types of 
tangible media include floppy disks, removable hard disks, 
optical storage media such as CD-ROMS and bar codes, and 
Semiconductor memories Such as flash memory and read 
only-memories (ROMS). 

In a preferred embodiment, system 10 includes a SPARC 
StationTM 10 computer from Sun Microsystems, Inc., run 
ning the SolarisTM operating system and HotJava software 
from Sun Microsystems, Inc. 

FIG. 1 is representative of but one type of system for 
embodying the present invention. It will be readily apparent 
to one of ordinary skill in the art that many System types and 
configurations are Suitable for use in conjunction with the 
present invention, such as WindowsNT(F) or Windows95(R) 
from Microsoft Corporation on a IBM-PC compatible com 
puter. 

FIG. 2 is a block diagram of the process of an application 
program invoking a method on an object in a network Server. 
FIG. 2 includes a network client 120 and a network server 
130. Network client 120 includes an application program 
140, object reference 145, network client stubs (stubs) 150, 
and ORB specific code 160. Network server 130 includes a 
application program 170 including an object 180, network 
server stubs (skeletons) 190, and ORB specific code 200. 
Path 210 provides communication between network client 
120 and network server 130. 

In a typical distributed computing System, application 
program 140 is an object-oriented application running under 
a commercial operating System Such as Solaris, and appli 
cation program 170 is also an object-oriented application 
running under a commercial operating System Such as 
Solaris. 

Network client stubs (stubs) 150 are known to application 
program 140 and Serve to receive requests from application 
program 140. These requests typically include calling meth 
ods provided by object 180. Based upon the requests from 
application program 140, stubs 150 serve to “marshal' data 
appropriate to the request. Marshaling will be further 
described in conjunction with FIG. 3. 

In order to ensure network client 120 and network server 
130 can communicate with each other, each side's ORB 
specific codes 160 and 200 are preferred to be IDL compli 
ant. Further, when network client 120 and network server 
130 communicate acroSS a network, Such as path 210, each 
side should ensure that ORB specific codes 160 and 200 both 
can transmit data using a network protocol Supported by the 
other Side. 

In operation, when application program 140 attempts to 
invoke a method of object 180, application program 140 
invokes stubs 150. Stubs 150 marshal the appropriate data 
for the method invocation and the ORB specific code 160 
transmits the data to ORB specific code 200. As will be 
described in conjunction with FIG. 3, ORB specific code 
160 includes a network protocol handler specifically for 
communicating with ORB specific code 200 across path 
210. 



6,009,464 
S 

Once ORB specific code 200 receives the data, network 
server stubs (skeletons) 190 “un-marshal” the data, and 
provide the method request to application program 170. In 
response, application program 170 invokes the requested 
method on object 180. Any resulting data from object 180 
are transferred back to network client 120 in a process 
similar to that described above. 
I. Application Program as a Network Client 

FIG. 3 is a more detailed block diagram of a network 
client illustrated FIG. 2. FIG.3 includes application program 
230 including an object reference 240, stubs 250, and ORB 
specific code 260. ORB specific code 260 includes Subcon 
tracts 270, marshal buffers 280, and network protocol han 
dlerS 290. 

Briefly, stubs 250 are used to marshal arguments from 
application program 230 into marshal buffers 280, call 
Subcontracts 270 to execute remote calls, and to unmarshal 
any results from a network server. Subcontracts 270 call 
network protocol handlers 290 which in turn format the data 
in the network protocol understood by the network server. 

Further information regarding typical remote procedure 
calls in an object-oriented System can be found in the 
following references: A. D. Birrell and B.J. Nelson, “Imple 
menting Remote Procedure Calls,” ACM Trans. on Com 
puter Systems, 2(1), February 1984; and B. J. Nelson, 
“Remote Procedure Call.” Tech report CSL-81-9, Xerox 
Palo Alto Research Center, Palo Alto, Calif., 1981. 
As illustrated in FIGS. 2 and 3, in order to communicate 

from an application program to a Server application, the 
application program should know, a priori, quite a bit about 
the Server application and network Server. For example, the 
application program should know about they types of 
objects available on the network Server, the application 
program should know whether the network Server is IDL 
compliant, and the application program should be made 
aware of the appropriate network protocol of the network 
SCWC. 

FIG. 4 is a graphic representation of a preferred embodi 
ment of the present invention. FIG. 4 includes a client 
machine 305 including an application program 310, a docu 
ment server 320, a code server 330, and a network server 
340. 

In the preferred embodiment, an application program 310, 
may or may not be an object-oriented application program. 
For example, application program 310 may be an Internet 
document browser such as Hotjava or Netscape Navigator(R) 
from Netscape Communications, both which Support the 
Java language. Initially, application program 310 typically is 
unaware of the network protocol necessary to communicate 
with network server 340. 

Application program 310 is typically couplable and 
uncouplable with multiple document Servers, as illustrated 
by document server 320. In a preferred embodiment, docu 
ment server 320 includes code server 330, however 
alternatively, document server 320 and code server 330 may 
reside at different address Spaces, e.g. on different physical 
machines. Document server 320 typically downloads docu 
ments to application program 310, and code server 330 
typically downloads code to application program 310, in 
response to requests from document server 320. In the 
preferred embodiment of the present invention, code Server 
330 downloads Java Language bytecodes which form appli 
cation programs (applets). When application program 310 
executes the applets downloaded from code server 330, 
application program 310 is given the information necessary 
to communicate with network server 340. 

FIG. 5 is a flow diagram of a preferred embodiment of the 
present invention. 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

6 
In the preferred embodiment, initially a document Server 

downloads a document to an application program, Step 360. 
For example, the document can be a page of text and 
graphics. Typically the document will include a plurality of 
actions the application program may take next, Such as 
downloading another document, as is well known. In the 
present embodiment, one action the application program 
may take is to invoke a method on an object within a 
network Server. 

Next, typically in response to a user Selection on the 
displayed document, the document Server may determine 
that code, in the form of applets, should be downloaded to 
the application program, Step 370. Alternatively, this Step 
may be skipped entirely, and the proceSS flow continue from 
step 360 to step 380. 

In step 380, code is downloaded from the code server to 
the application program. AS mentioned above, Step 370 may 
be skipped if the document Server assumes that typical 
application programs do not already have the code preloaded 
on the client machine. 

In Step 390, the application program executes the down 
loaded code, and in response, the application program 
communicates with a particular network Server using the 
appropriate network protocol for that network Server. 
Typically, this communication includes invoking a method 
of an object resident on the network Server. 

Note that the application program may not have any 
network protocol, or have a default network protocol that is 
different from the network protocol of the network server. In 
either case, the application program should receive the 
appropriate network protocol for the network Server from 
the document Server. 

FIG. 6 is a more detailed graphic representation of a 
preferred embodiment of the present invention. FIG. 6 
includes a network client 410, a network server 420, a 
document server 430, and a code server 440. Network client 
410 includes an application program 450, downloaded code 
460, and a virtual machine 470. Downloaded code 460 
includes stubs and other ORB specific code 480, in 
particular, a network protocol handler. 
As illustrated, initially if application program 450 desires 

to communicate with an application program on network 
server 420, application program 450 is unaware of how to do 
so. However, after downloaded code 460 is executed by 
application program 450, application program 450 then has 
the tools necessary to communicate with network Server 
420. In one particular embodiment, tools include stubs 471 
and ORB specific code 480. 

In the preferred embodiment of the present invention, 
virtual machine 470 is provided to emphasize that down 
loaded code 460 comprise Java Language bytecodes. In the 
preferred embodiment, downloaded code 460 is initially 
written as IDL compliant ORB code, this code is then 
compiled to become Java Language bytecodes. Because 
Java Language bytecodes are machine independent, Virtual 
machines, Such as virtual machine 470, are created for 
different network client 410 host machines to interpret the 
bytecodes. 

FIG. 7 is a graphic representation of the concepts of a 
network name server and an object name server. FIG. 7 
includes a client machine 500 including an application 
program 510, a document server 520, a code server 530, a 
network name server 540, network server machines 550 and 
580, an object name server 560 and a network server 570. 
Network name servers such as network name server 540, 

are Servers that return a machine address for a network 
Server in response to an inputted network Server name. Such 



6,009,464 
7 

network name servers are well known in the art. Object 
name servers such as object name server 530, are servers 
that are resident in network Server machines. Object name 
Servers return references to network Servers in response to 
an inputted object name. Such object name Servers are also 
well known in the art. 

In operation, as described in conjunction with FIG. 4, 
code server 520 downloads applets that enable application 
program 510 to communicate with network server 570. 
Application program 510, however may only be given the 
logical name for the network Server. Thus, in order to find 
the network server machine within which network server 
570 resides, application program 510 refers to network name 
server 540 to find the network server machine address. 
As illustrated in FIG. 7, once application program 510 has 

located network Server machine 550, application program 
510 typically refers to object name server 560 to find a 
reference to network server 570. It is noted that document 
server 520, code server 530, and network server 570 may 
reside within the same physical machine, may share the 
Same address Space, or document Server 520 may know 
beforehand the network server machine address of the 
network Server, thus in Such cases, a network name Server is 
not needed. 

FIG. 8 is an example of a potential end user application 
incorporating the preferred embodiment of the present 
invention. FIG. 8 includes a display of a document on a web 
browser and a plurality of buttons, such as button 590. 

In FIG. 8, the application program illustrated is an Inter 
net browser, Such as HotJava. The application program has 
connected to a document Server having the address “file:// 
localhost/export/JOE/goodbuys.html and the document is 
displayed to the user as shown in FIG. 8. The document 
illustrates a page in an on-line catalog where a user can place 
orders for goods. Unbeknownst to the application program, 
the on-line ordering System is an object-oriented network 
Server having a particular network protocol. 
When the user wishes to place an order for the item, the 

user selects button 590. The application program transmits 
the user's selection of button 590 to the document server, 
and in response, the document Server has an associated code 
Server download Java Language applets to the application 
program. After the applets have been downloaded, the 
application program executes the applets. These applets 
contain object stubs, ORB Specific code including the par 
ticular network protocol of the on-line ordering System, a 
network name of the on-line ordering System, etc. The 
application program then connects to the on-line ordering 
System, and upon connection therewith, invokes an object 
within the on-line ordering System. Typically the on-line 
ordering System returns an acknowledgement signal which 
is passed back to the application program. 
II. Application Program as a Network Server 

FIG. 9 is a more detailed block diagram of a network 
server illustrated FIG. 2. FIG. 9 includes application pro 
gram 1000 including an object 1010, skeletons 1020, and 
ORB specific code 1030. ORB specific code 1030 includes 
Subcontracts 1040, marshal buffers 1050, and network pro 
tocol handlers 1060. 

Network protocol handlers 1060 receive data from a 
network client and uses subcontracts 1040 to place data into 
marshal buffers 1050. Skeletons 1020 are then used to 
unmarshal the arguments to a form that application program 
1000 understands. Application program 1000 then invokes a 
method on object 1010. 

Further information regarding typical remote procedure 
calls in an object-oriented System can also be found in the 

15 

25 

35 

40 

45 

50 

55 

60 

65 

8 
references: A. D. Birrell and B. J. Nelson, “Implementing 
Remote Procedure Calls,” ACM Trans. on Computer 
Systems, 201), February 1984; and B. J. Nelson, “Remote 
Procedure Call,” Tech report CSL-81-9, Xerox Palo Alto 
Research Center, Palo Alto, Calif., 1981. 
As illustrated in FIGS. 2 and 9, in order for an application 

program to provide an object to a network client, the 
application program Should know, a priori, how to Support 
objects. For example, the application program should know 
what objects are going to be accessed from the client Server, 
the application program should Support the IDL 
Specification, and the application program should have a 
network protocol which is known by network client. 

FIG. 10 is a graphic representation of a preferred embodi 
ment of the present invention. FIG. 10 includes a network 
Server machine 1075 including an application program 
1080, a document server 1090, a code server 1100, and a 
network client 1110. 

In the preferred embodiment, a application program 1080, 
may or may not be an object-oriented application program. 
For example, application program 1080 may be an Internet 
document browser such as HotJava or Navigator, both which 
Support the Java language. Initially, application program 
1080 typically is unaware of how to support network objects 
and the network protocol necessary to receive communica 
tions from network client 1110. 

Application program 1080 is typically couplable and 
uncouplable with multiple document Servers, as illustrated 
by document server 1090. In a preferred embodiment, 
document server 1090 includes code server 1100, however 
alternatively, document server 1090 and code server 1100 
may reside at different address Spaces, e.g. on different 
physical machines. Document server 1090 typically down 
loads documents to application program 1080, and code 
server 1100 typically downloads code to application pro 
gram 1080, in response to requests from document server 
1090. In the preferred embodiment of the present invention, 
code server 1100 downloads Java Language bytecodes 
which form application programs (applets), as was described 
in Section I. When application program 1080 executes the 
applets downloaded from code server 1100, application 
program 1080 is given the information necessary to Support 
network objects and methods requested by network client 
1110. 

FIG. 11 is a flow diagram of a preferred embodiment of 
the present invention. 

In the preferred embodiment, initially a document Server 
downloads a document to an application program, Step 1130. 
For example, the document can be a page of text and 
graphics. Typically the document will include a plurality of 
actions the application program may take next, Such as 
downloading another document as is well known. In the 
present embodiment, one action the application program 
may take is to create and Support a network object. 

Next, typically in response to a user Selection on the 
displayed document, the document Server may determine 
that code, in the form of applets, should be downloaded to 
the application program, Step 1140. Alternatively, this Step 
may be skipped entirely, and the proceSS flow continue from 
step 1130 to step 1150. 

In step 1150, code is downloaded from the code server to 
the application program. AS mentioned above, Step 1140 
may be skipped if the document Server assumes that typical 
application programs do not already have the code preloaded 
on the Server machine. 

In Step 1160, the application program executes the down 
loaded code, and in response, the application program is 



6,009,464 

given the ability to Support a network object. Network 
clients can thus communicate with the application program 
and invoke methods of the object resident on the application 
program. 

FIG. 12 is a more detailed graphic representation of a 
preferred embodiment of the present invention. FIG. 12 
includes a network client 1180, a network server 1190, a 
document server 1200, and a code server 1210. Network 
server 1190 includes an application program 1220, down 
loaded code 1230, and a virtual machine 1245. Downloaded 
code 1230 includes skeletons 1240, other ORB specific code 
1247, and an object 1260. 

AS illustrated, initially application program 1220 cannot 
receive communications from an application program on 
network client 1180, since application program 1220 does 
not have the tools to Support an object call. However, after 
downloaded code 1230 is executed by application program 
1220 Server application then has the tools necessary to 
support an object call from network client 1180. In a 
particular embodiment, tools include skeletons 1240, ORB 
specific code 1247 and object 1260. 

In the preferred embodiment of the present invention, 
virtual machine 1240 is provided on the network server to 
emphasize that downloaded code 1230 comprise Java Lan 
guage bytecodes. In the preferred embodiment, downloaded 
code 1230 is initially written as IDL compliant ORB code, 
this code is then compiled to become Java Language byte 
codes. Because Java Language bytecodes are machine 
independent, Virtual machines, such as virtual machine 
1240, are created for different network server 1190 host 
machines to interpret the bytecodes. 

FIG. 13 is a graphic representation of the concepts of a 
network name server and an object name server. FIG. 13 
includes a network client 1250, a document server 1270, a 
code server 1280, a network name server 1290, network 
server machine 1300 and 1305, an object name server 1310, 
a network server 1260, and an application program 1320. 

Network name servers such as network name server 1290, 
are Servers that return a machine address for a network 
Server in response to an inputted Server name. Such network 
name Servers are well known in the art. Object name Servers 
such as object name server 1310, are servers that are resident 
in network Server machines. Object name Servers return 
references to network object Servers in response to an 
inputted object name. Such object name Servers are also well 
known in the art. 

In operation, as described in conjunction with FIG. 11, 
code server 1280 downloads applets that enable application 
program 1320 to receive communications from network 
client 1250. Network client 1250, however may only be 
given the logical name for the network server 1260. Thus, in 
order to enable network client 1250 to find the network 
server machine within which network server 1260 resides, 
using the downloaded code, application program 1320 first 
“publishes” the object name and the network server machine 
address in network name server 1290. 

As illustrated in FIG. 11, once network client 1250 has 
located network server machine 1300, network client 1250 

15 

25 

35 

40 

45 

50 

55 

60 

65 

10 
typically refers to object name server 1310 to find a refer 
ence to network Server 1260. Again, using the downloaded 
code, application program 1320 first “publishes” the object 
name and provides a pointer to the network server 1260. 

It is noted that document server 1270 and code server 
1280 may reside within the same physical machine. 

FIG. 14 is an example of a potential end user application 
incorporating the preferred embodiment of the present 
invention. FIG. 14 includes a display of a document on a 
web browser and a plurality of buttons, such as button 1340. 

In FIG. 14, the application program illustrated is an 
Internet browser, Such as HotJava. The application program 
has connected to a document Server having the address 
“file:://localhost/export/JOE/stock.html” and the document 
is displayed to the user as shown in FIG. 14. The document 
illustrates an order display page in a brokerage trading 
System where the user can place orders for a Stock. Unbe 
knownst to the application program, the brokerage trading 
System is an object-oriented network client/server. 

When the user wishes to place an order for a Stock at a 
certain price, the user selects button 1340. The server 
application transmits the users selection of button 1340 to 
the document Server, and in response, the document Server 
has an associated code Server download Java language 
applets to the application program. After the applets have 
been downloaded, the application program executes the 
applets. These applets contain object skeletons, ORB Spe 
cific code including the particular network protocol of the 
brokerage trading System, etc. In response to a trade 
command, for example, the application program creates an 
“trade' object. The user may then exit the web browser. 
Later, when the trade has executed, the brokerage trading 
System calls up the user's machine and invokes a method on 
the “trade' object in the application program to notify the 
user that the trade is complete. 

CONCLUSION 

In the foregoing Specification, the invention has been 
described with reference to specific exemplary embodiments 
thereof. Many changes or modifications are readily envi 
Sioned. For example, the application programs may be 
object-oriented or programmed in C++, the code that is 
downloaded may be machine dependent or Specific; the code 
that is downloaded may only contain the network protocol 
for the network server; the code that is downloaded may 
only contain the network protocol for the network client; the 
document Server, code Server, and the network Server may be 
located at the same address Space or in the Same physical 
computer, the document Server, code Server, and the network 
client may be located at the same address Space or in the 
Same physical computer, etc. 

The Specification and drawings are, accordingly, to be 
regarded in an illustrative rather than in a restrictive Sense. 
It will, however, be evident that various modifications and 
changes may be made thereunto without departing from the 
broader Spirit and Scope of the invention as Set forth in the 
claims. 



6,009,464 
11 12 

APPENDIX A 

ass, 08/543674 

The Java Language Specification 
Release 10 Alpha3 

{d Sun 
Sun Microcystos ComputerCorporation 

A Sun Microsystems, Inc. Business 

May 11, 1995 

  



Please 
Recycle 

6,009,464 
13 14 

(c) 1993, 1994, 1995 Sun Microsystems, inc. 
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. 

All rights reserved. This ALPHA quality release and related documentation are protected by copyright and distributed under 
licenses restricting its use, copying, distribution, and decompilation. No part of this release or related documentation may be 
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. 
Portions of this product may be derived from the UNIX and Berkeley 4.3BSD systems, licensed from UNIX System 
Laboratories, Inc. and the University of California, respectively. Third-party font software in this release is protected by 
copyright and licensed from Sun's Font Suppliers. 
RESTRICTED RIGHTSLEGENID: Use, duplication, or disclosure by the United States Government is subject to the restrictions 
set forth in DFARS252.227-7013 (C)(1)(ii) and FAR 52.227-19. 

The release described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. 
TRADEMARKS 
Sun, Sun Microsystems. Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer 
Corporation logo, WebRunner, Java, First Person and the FirstPerson logo and agent are trademarks or registered trademarks 
of Sun Microsystems, Inc. The "Duke" character is a trademark of Sun Microsystems, Inc. and Copyright (c) 1992-1995 Sun 
Microsystems, Inc. All Rights Reserved. UNIX is a registered trademark in the United States and other countries, exclusively 
licensed through X/Open Comapny, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. All other product names 
mentioned herein are the trademarks of their respective owners. 

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International, 
Inc. SPARCstation, SPARCserver, SPARCengine, SPARC works, and SPARCompiler are licensed exclusively to Sun 
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun MicroSystems, Inc. 
he OPEN LOOK and Sun'? M Craphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. 

Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user 
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, 
which license also covers Sun's licensees who inplement OPEN LOOK GUIs and otherwise comply with Sun's written license 
agreements. 

X Window System is a trademark and product of the Massachusetts Institute of Technology. 
THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARICULAR PURPOSE, OR NON-INFRINGEMENT, 

IHIS PUBLICATION COULD INCLUDETECHNICAL INACCURACIESORTYPOGRAPHICAL ERRORS, CHANGES ARE 
PERIOICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE ENCORPORATED IN NEW 
EDTIONS OF THE PUBLICATION SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENSANDA ORCHANGESIN 
TIE PRODUCT (SANDA OR THE PROGRAMCS) DESCRIBED INTIES PUBLICATION AT ANY TEME. 



May 11, 1995 

marraxam- -aw:essy.----. - 

15 
6,009,464 

16 

Contents 

Java Language Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 
1 Program Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 
2 Lexical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

2.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
2.2 Identifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
2.3 Keywords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
2.4 Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 
2.5 Operators and Miscellaneous Separators . . . . . . . . . . . . . . . . . . . . . . 4. 

3. Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 
3.1 Numeric Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
3.2 Boolean Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
3.3 Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

4. Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
4.1 Casting Between Class Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
4.3. Overriding Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
4.4 Overload Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
4.5 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
46 Object Creation-the new Operator . . . . . . . . . . . . . . . . . . . . . . . . . 14 
4.7 Static Methods, Variables, and Initializers . . . . . . . . . . . . . . . . . . . . 15 
4.8 Access Specifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
49 Variable Scoping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
4.10 Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

5 Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
5.1 Interfaces as Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
5.2 Methods in Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
5.3 Variables in Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
5.4 Combining Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

6 Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
6.1 Specifying a Compilation Unit's Package. . . . . . . . . . . . . . . . . . . . . 22 
6.2 Using Classes and Interfaces from Other Packages............. 22 

7 Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
7. Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
7.2 Casts and Conversions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

ava Language Specification iii 



17 

8 

A 

B 

6,009,464 
18 

Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
8.1 Declarations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
8.2 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
8.3 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
8.4 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Appendix: Floating Point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
A.1 Special Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
A.2 Binary Format Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
A3 Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
A.4 Summary of IEEE-754 Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
Appendix: Java Language Grammar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Java Language Specification May 11, 1995 



May 11 1995 

19 
6,009,464 

20 

Java Language Specification 
This document is a preliminary specification of the Java.language. Both the 
specification and the language are subject to change. When a feature that exists in 
both Java and ANSI Cisn't explained fully in this specification, the feature should 
be assumed to work as it does in ANSI C. Send comments on the Java Language 
and specification to java?ejava. Sun.COM. See also http://java.sun.com/mail.html 
for a list of Java-related mailing lists. 

Program Structure 
The source code for an Java program consists of one or more compilation units. 
Each compilation unit can contain only the following (in addition to white space 
and comments): 

• a package statement (see "Packages" on page 21) 
o import statements (see "Packages" on page 21) 
o class declarations (see "Classes" on page 7) 
o interface declarations (see "Interfaces" on page 20) 

Although each Java compilation unit can contain multiple classes or interfaces, at 
most one class or interface per compilation unit can be public (see "Classes" on 
page 7). 

When Java source code is compiled, the result is Java bytecode. Java bytecode 
consists of machine-independent instructions that can be interpreted efficiently 
by the Java runtime system. The Java runtime system operates like a virtual 
machine, for information see The Java Virtual Machine Specification. 

Implementation Note: In the current Java implementation, each compilation 
unit is a file with a "java" suffix. 

Lexical Issues 

During compilation, the characters in Java source code are reduced to a series of 
tokens. The Java compiler recognizes five kinds of tokens: identifiers, keywords, 
literals, operators, and miscellaneous separators. Comments and white space such 
as blanks, tabs, line feeds, and are not tokens, but they often are used to separate 
tokens. 

Java programs are written using the Unicode character set or some characterset 
that is converted to Unicode before being compiled. 

Java Language Specification 



alwaxx-axe-... --AXaxes -- X. X. X. 

21 

2.1 

2.2 

2.3 

w"... - - 

6,009,464 
22 

2 Lexical Issues 

Comments 

The Java language has three styles of comments: 

A text All characters from Il to the end of the line are 
ignored. 

A k text * A All characters from f* to *? are ignored. 

A * * text */ These comments are treated specially when they 
occur immediately before any declaration. They 
should not be used any other place in the code. These 
comments indicate that the enclosed text should be 
included in automatically generated documentation 
as a description of the declared item. 

Identifiers 

Identifiers must start with a letter, underscore (" "), or dollar sign ("s"); 
subsequent characters can also contain digits (0-9). Java uses the Unicode 
characterset. For the purposes of determining what is a legal identifier the 
following are considered "letters:" 

o The characters"A" through "2" 
o The characters "a" through "z" 
O All Unicode characters with a character number above hex OOCO 

Other characters valid after the first letter of an identifier include every character 
except those in the segment of Unicode reserved for special characters. 

Thus, 'gargon' and "Mjolner" are legal identifiers, but strings containing 
characters such as 'I' are not. 

For more information on the Unicodestandard, see The Unicode Standard, 
Worldwide Character Encoding, Version 1.0, Volumes 1&2. The FTP address for 
Unicode, Inc. (formerly the Unicode Consortium) is unicode.org. 

Keywords 

The following identifiers are reserved for use as keywords. They cannot be used 
in any other way. 
abstract default goto null Yathronized boolean do f package this 
break double implements private threadsafe 
byte else import protected throw 
by value extends instanceof public transient 
CS false int ret te 
catch final interface short try 
char finally long static void 
class float rative super while 
const for W switch 
continue 

a. Reserved but currently unused, 

Java Language Specification May 11 1995 



May 11 1995 

23 

2.4 

2.4. 

2.4.2 

24.3 

2.4.4 

6,009,464 
24 

2 Lexical Issues 

Literals 

Literals are the basic representation of any integer, floating point, boolean, 
character, or string value. 

Integer Literals 

Integers can be expressed in decimal (base 10), hexadecimal (base 16), or octal 
(base 8) format. A decimal integer literal consists of a sequence of digits 
(optionally suffixed as described below) without a leading 0 (zero). An integer can 
be expressed in octal or hexadecimal rather than decimal. A leading 0 (zero) on an 
integer literal means it is in octal; a leading 0x (or 0X) means hexadecimal. 
Hexadecimal integers can include digits (0-9) and the letters a-f and A-F. Octal 
integers can include only the digits 0-7. 

Integer literals are of type int unless they are larger than 32-bits, in which case 
they are of type long (see "Integer Types" on page 5). A literal can be forced to be 
long by appending an L or l to its value. 

The following are all legal integer literals: 
2, 2L 0777 OxDeadBeef 

Floating Point Literals 

A floating point literal can have the following parts: a decimal integer, a decimal 
point (".."), a fraction (another decimal number), an exponent, and a type suffix. 
The exponent partis an e or E followed by an integer, which can be signed. A 
floating point literal must have at least one digit, plus either a decimal point or e 
(or E). Some examples of floating point literals are: 

3.1415 3.1E2 ... le12 2E12 

As described in "Floating Point Types" on page 5, the Java language has two 
floating point types: float (IEEE 754 single precision) and double (IEEE 754 
double precision). You specify the type of a floating point literal as follows: 

2. Odi or 2. OD double 
2. Of or 2.0F or 2.0 float 

Boolean Literals 

The boolean type has two literal values: true and false. See "Boolean Types" on 
page 6 for more information on boolean values. 

Character Literals 

A character literal is a character (or group of characters representing a single 
character) enclosed in single quotes. Characters have type charand are drawn 
from the Unicode characterset (see "Character Types" on page 5). The following 

Java Language Specification 3 



Xawercaneerew X.uwsawsawaxas ---x -a-...-aae. 

25 

2.45 

2.5 

6,009,464 
26 

3 ypes 

escape sequences allow for the representation of some non-graphic characters as 
well as the single quote, " " and the backslash "\", in Java Code: 

continuation <newline \ 
new-line NL (LF) wn 

horizontal tab HT Wt 

back space BS Vb 
carriage return CR Vr 

form feed FF Vf 

backslash V WV 
single quote V 
double quote " \" 

octal bit pattern Oddd Vddd 
hex bit pattern Oxdd Vxdd 
unicode char 0xdddd Vudddd 

String Literals 

A string literal is zero or more characters enclosed in double quotes. Each string 
literal is implemented as a String object (not as an array of characters). For 
example, "abc' creates an new instance of class String. The following are all legal 
string literals: 

"" VW the eIlpty string 

"This is a string" 
"This is a w 

two-line string" 

Operators and Miscellaneous Separators 

The following characters are used in source code as operators or separators: 

( . ) { } ; ? : , . = 

For more information see "Operators" on page 23. 

Types 

Every variable and every expression has a type. Type determines the allowable 
range of values a variable can hold, allowable operations on those values, and the 

ava Language Specification May 11 1995 



May 11 1995 

27 

3. 

3.1. 

3.1.2 

3.1.3 

6,009,464 
28 

3 Types 

meanings of the operations. Built-in types are provided by the Java language. 
Programmers can compose new types using the class and interface mechanisms 
(see 'Classes' on page 7 and "Interfaces" on page 20). 

The Java language has two kinds of types: simple and composite. Simple types 
are those that cannot be broken down; they are atomic. The integer, floating point, 
boolean, and character types are all simple types. Composite types are built on 
simple types. The language has three kinds of composite types: arrays, classes, 
and interfaces. Simple types and arrays are discussed in this section. 

Numeric Types 

Integer Types 

Integers are similar to those in Cand C++, with two exceptions: all integer types 
are machine independent, and some of the traditional definitions have been 
changed to reflect changes in the world since C was introduced. The four integer 
types have widths of 8, 16, 32, and 64 bits and are signed. 

Width Name 

8 byte 
16 short 

32 int 

64 long 

A variable's type does not directly affect its storage allocation. Type only 
determines a variable's arithmetic properties and legal range of values. If a value 
is assigned to a variable that is outside the legal range of the variable, the value is 
reduced modulo the range. 

Floating Point Types 

The float keyword denotes single precision (32bit); double denotes double 
precision (64bit). The result of a binary operator on two float operands is a float. 
If either operand is a double, the result is a double. 

Floating point arithmetic and data formats are defined by IEEE 754. See 
"Appendix: Floating Point" on page 33 for details on the floating point 
implementation. 

Character Types 

The language uses the Unicode character set throughout. Consequently the char 
data type is defined as a 16-bit unsigned integer. 

Java Language Specification s 



29 

3.2 

3.3 

6,009,464 
30 

3 ypes 

Boolean Types 

The boolean type is used for variables that can be either true or false, and for 
methods that return true and false values. It's also the type that is returned by the 
relational operators (e.g., ">="). 

Boolean values are not numbers and cannot be converted into numbers by 
Casting. 

Arrays 

Arrays in the language are first class objects. They replace pointer arithmetic. All 
objects (including arrays) are referred to by pointers that cannot be damaged by 
being manipulated as numbers. Arrays are created using the new operator: 

chair s = new char (30); 

The first element of an array is at index 0 (zero). Specifying dimensions in the 
declarations is not allowed. Every allocation of an array must be explicit-use 
new every time: 

int i new int3); 

The language does not support multi-dimensional arrays. Instead, programmers 
can create arrays of arrays: 

int i) = new int 34); 

At least one dimension must be specified but other dimensions can be explicitly 
allocated by a program at a later time. For example: 

int i) = new int3); 

is a legal declaration. 

In addition to the C-style array declaration, wherebrackets follow the name of the 
variable or method, Java allows brackets following the array element type. The 
following two lines are equivalent 

int iarray 
int iarray; 

as are the following method declarations: 
byte f ( int in ); 
byte f ( int in ); 

Subscripts are checked to make sure they're valid: 
int a = new int10); 
a5) = 1; 
a1 = a 0) + a 2; 
a- = 4; // Throws an ArrayIndexOut OfBoundsException 

AA at runtime 
a (0) = 2; A / Throws an ArrayIndexOutOfFoundsException 

f / at runtime 

Array dimensions must be integer expressions: 
int n; 

Java Language Specification May 11 1995 



May 11 1995 

6,009,464 
31 32 

4 Classes 

float arr = new float n + 1}; 

The length of any array can be found by using.length: 
int a) = new int103; 
println (a.length); - // prints 10 
println (a (Ol. length); // prints 3 

3.3.1 Array Detail 

Arrays are instances of subclasses of class Object. In the class hierarchy there is a 
class named Array, which has one instance variable, "length". For each primitive 
type there is a corresponding subclass of Array. Similarly, for all classes a 
corresponding subclass of Array implicitly exists. For example: 

new Threadin 

creates an instance of Thread (). If class A is a superclass of class B (i.e., B extends 
A) then A () is a superclass of BJ (see the diagram below). 

Object 

A 

Hence, you can assign an array to an Object: 
Object of 
int a) = new int10); 
O - a 

and you can cast an Object to an array: 
a = (int) of 

Array classes cannot be explicitly subclassed. 

4 Classes 

Classes represent the classical object oriented programming model. They support 
data abstraction and implementations tied to data. In Java, each new class creates 
a new type. 

To make a new class, the programmer must base it on an existing class. The new 
class is said to be derived from the existing class. The derived class is also called a 
subclass of the other, which is known as a superclass. Class derivation is transitive: 
if B is a subclass of A, and C is a subclass of B, then C is a subclass of A. 

Java Language Specification 7 



33 

4. 

6,009,464 
34 

4 Classes 

The immediate superclass of a class and the interfaces (see "Interfaces" on page 
20) that the class implements (if any) are indicated in the class declaration by the 
keywords extends and implements, respectively: 

(Doc comment Modifiers class Class name 
extends Superclassnamel 
implements Interfacet, Interface}} { 

ClassBody 

For example: 
A** 2 dimensional point */ 
public class Point 

float x, y, 

A * * Printable point */ 
class Printable?oint extends Points implements Printaole { 

public void print () { 

} 

All classes are derived from a single root class: Object. Every class except Object 
has exactly one immediate superclass. If a class is declared without specifying an 
immediate superclass, Object is assumed. For example, the following: 

class Point { 
float x, y; 

} 

is the same as: 

class Point extends Object { 
float x, y; 

} 

The language supports only single inheritance. Through a feature known as 
interfaces, it supports some features that in other languages are supported through 
multiple inheritance (see "Interfaces" on page 20). 

Casting Between Class Types 

The language supports casting between types and because each class is a new 
type, Java supports casting between class types. If B is a subclass of A, then an 
instance of B can be used as an instance of A. No explicit castis required, but an 
explicit cast is legal-this is called widening. If an instance of A needs to be used as 
if it were an instance of B, the programmer can write a type conversion or cast 
this is called narrowing. Casts from a class to a subclass are always checked at 
runtime to make sure that the object is actually an instance of the subclass (or one 
of its subclasses). Casting between sibling classes is a compile-time error. The 
syntax of a class castis: 

(class name) ref 

where (classname) is the object being cast to and ref is the object being cast. 

Java Language Specification May 11 1995 



6,009,464 
35 36 

4. Classes 

Casting affects only the reference to the object, not the object itself. However, 
access to instance variables is affected by the type of the object reference. Casting 
an object from one type to another may result in a different instance variable 
being accessed even though the same variable name is used. 

class Class:A { 
String name as "Class A"; 

class ClassB extends Class A { // ClassB is a Subclass of Class A 
String name= ClassB"; 

class Access Test 
woid test () 

ClassB b = new ClassB (); 
println (b. name); f / print: ClassB 

Class a 
a = (Classia); 
println (a.. name); A/ print : Class A 

4.2 Methods 

Methods are the operations that can be performed on an object or class. They can 
be declared in either classes or interfaces, but they can be implemented only in 
classes. (All user-defined operations in the language are implemented with 
methods.) 

A method declaration in a class has the following form (native and abstract 
methods have no method body): 

IDoc Comment Modifiers returnType methodName (parameterList ) { 
ImethodBodyl 

i 

Methods: 

o Have a return type unless they're constructors, in which case they have no 
return type. If a non-constructor method does not return any value, it must 
have a void return type. 

o Have a parameter list consisting of comma-separated pairs of types and 
parameter names. The parameter list should be empty if the method has no 
parameters. 

Variables declared in methods (local variables) can't hide other local variables or 
parameters in the same method. For example, if a method is implemented with a 
parameter named i, it's a compile-time error for the method to declare a local 
variable named i. In the following example: 

class Rectangle { 
void vertex (int i, int ) { 

for (int i = 0; i K= 100; i++) { // ERROR 

May 11 1995 Java Language Specification 9 



6,009,464 
37 38 

3. Classes 

the declaration of "i" in the for loop of the method body of "vertex" is a compile 
time error. 

The language allows polymorphic method naming-declaring a method with a 
name that has already been used in the class or its superclass-for overriding and 
overloading methods. Overriding means providing a different implementation of 
an inherited method. Overloading means declaring a method that has the same 
name as another method, but a different parameter list. 

Note: Return types are not used to distinguish methods. Within a class scope, 
methods that have the same name and parameter list, i.e., the same number, 
position, and types of parameters, must return the same type. It is a compile-time 
error to declare such a method with a different return type. 

4.2.1. Instance Variables 

All variables in a class declared outside the scope of a method and not marked 
static (see "Static Methods, Variables, and Initializers" on page 15) are instance 
variables. (Variables declared inside the scope of a method are considered local 
variables.) Instance variables can have modifiers (see "Modifiers" on page 18). 

Instance variables can be of any type and can have initializers. If an instance 
variable does not have an initializer, it is initialized to zero; boolean variables are 
initialized to false; and objects are initialized to null. An example of an initializer 
for an instance variable named jis: 

class A { 
int = 23; 

4.2.2 The this and super Variables 

Inside the scope of a non-static method, the name this represents the current 
object. For example, an object may need to pass itself as an argument to another 
object's method: 

class MyClass { 
void aMethod (OtherClass obi) { 

Ö55. Method (this); 

Any time a method refers to its own instance variables or methods, an implicit 
'this.' is in front of each reference: 

class Foo { 
int a, b, C; 

void myPrint () { 
print (a + "wn"); A/ a == "this...a" 

The super variable is similar to the this variable. The this variable contains a 
reference to the current object; its type is the class containing the currently 

10 Java Language Specification May 11 1995 



6,009,464 
39 40 

4 Classes 

executing method. The super variable contains a reference which has the type of 
the superclass. 

4.2.3 Setting Local Variables 

Methods are rigorously checked to be sure that all local variables (variables 
declared inside a method) are set before they are referenced. Using a local variable 
before it is initialized is a compile-time error. 

4.3 Overriding Methods 

To override a method, a subclass of the class that originally declared the method 
must declare a method with the same name, return type (or a subclass), and 
parameter list. When the method is invoked on an instance of the subclass, the 
new method is called rather than the original method. The overridden method 
can be invoked using the super variable such that: 

setThermostat (. . . ) AA refers to the overriding method 
super. setTherinostat (. . . ) AA refers to the overridden method 

4.4 Overload Resolution 

Overloaded methods have the same name as an existing method, but differ in the 
number and/or the types of arguments. Overload resolution involves 
determining which overloaded method to invoke. The return type is not 
considered when resolving overloaded methods. Methods may be overloaded 
within the same class. The order of method declaration within a class is not 
significant. 

Methods may be overloaded by varying both the number and the type of 
arguments. The compiler determines which matching method has the lowest type 
conversion cost. Only methods with the same name and number of arguments are 
considered for matching. The cost of matching a method is the maximum cost of 
converting any one of its arguments. There are two types of arguments to 
consider, object types and base types. 

The cost of converting among object types is the number of links in the class tree 
between the actual parameter's class and the prototype parameter's class. Only 
widening conversions are considered. (See "Casting Between Class Types" on 
page 8 for more information on object conversion.) No conversion is necessary for 
argument types that match exactly, making their cost 0. 

May 11 1995 Java Language Specification 11 



2 

41 

4.5 

6,009,464 
42 

4. Classes 

The cost of converting base types is calculated from the table below. Exact 
matches cost 0. 

TO 
byte short char int long float double 

byte 
short 

char 

int 

long 
float 

double 

Note: Cost >= 10 causes data loss. 

Once a conversion cost is assigned to each matching method, the compiler 
chooses the method which has the lowest conversion cost. If there is more than 
one potential method with the same lowest cost the match is ambiguous and a 
compile-time error occurs. 

For example: 
class A 

int Icethod (Object c, Thread t); 
int method (Thread t, Object o); 

void g (Object o, Thread t) { 
method (o, t); f / calls the first method. 
method (t. O); f / callis the second method. 
method (t, t); A f ambiguous - compile-time error 

Note: The names of parameters are not significant. Only the number, type, and 
order are. 

Constructors 

Constructors are special methods provided for initialization. They are 
distinguished by having the same name as their class and by not having any 
return type. Constructors are automatically called upon the creation of an object. 
They cannot be called explicitly through an object. If you want to be able to call 
the constructor outside the package, make the constructor public (see "Access 
Specifiers" on page 17 for more information). 

Constructors can be overloaded by varying the number and types of parameters, 
just as any other method can be overloaded. 

class Foo { 
int x; 
float y; 
Foo () { 

X a 

Java Language Specification May 11 1995 

  



May 11 1995 

43 
6,009,464 

44 

- Classes 

Foo (int a) 
x = a 
y = 0.0; 

Foo (float a) { 
x = 0; 
y = a 

Foo (int a float ) { 
x = a 
y = b, 

static void myFoo () { 
Foo obj1 = new Foo (); f/callis Foo (); 
Foo obj2 = new Foo (4); AA calls Foo (int a); 
Foo obj3 = new Foo (4.0); AA calls Foo (f loat a); 
Foo obj4 = new Foo (4, 4.0); // calls Foo (int a, f loat b); 

The instance variables of superclasses are initialized by calling either a 
constructor for the immediate superclass or a constructor for the current class. If 
neither is specified in the code, the superclass constructor that has no parameters 
is invoked. If a constructor calls another constructor in this class or a constructor 
in the immediate super class, that call must be the first thing in the constructor 
body. Instance variables can't be referenced before calling the constructor. 

Invoking a constructor of the immediate superclass is done as follows: 
class MyClass extends OtherClass 

MyClass ( some Parameters) { 
A Call in mediate superclass constructor */ 
Super ( otherParameters); 

Invoking a constructor in the current class is done as follows: 
class MyClass extends OtherClass { 

MyClass (some Parameters) { 

MyClass ( otherParameters) { 
f* Call the constructor in this class that has the 

specified parateter list. * A 
this (someParameters); 

The Foo and FooSub methods below are examples of constructors. 
class Foo extends Bar 

int a 
Foo (int a) { 

f / implicit call to Bar () 
this a a 

} 
Foo () { 

this (42); f / calls Foo (42) instead of Bar () 

class FooSub extends Foo { 
int of 

Java Language Specification 13 



14 

45 

4.6 

4.6.1 

4.6.2 

6,009,464 
46 

4. Casses 

Foosub (int b) { 
Super (13) ; f / callis Foo (13); without this line, 

A ? would have called Foo () 
this. b = b, 

If a class declares no constructors, the compiler automatically generates one of the 
following form: 

class MyClass extends CtherClass { 
MyClass () { f / automatically generated 

super () ; 

Object Creation-the new Operator 

A class is a template used to define the state and behavior of an object. An object is 
an instance of a class. All instances of classes are allocated in a garbage collected 
heap. Declaring a reference to an object does not allocate any storage for that 
object. The programmer must explicitly allocate the storage for objects, but no 
explicit deallocation is required; the garbage collector automatically reclaims the 
memory when it is no longer needed. 

To allocate storage for an object, use the new operator. In addition to allocating 
storage, new initializes the instance variables and then calls the instance's 
constructor. The constructor is a method that initializes an object (see 
"Constructors" on page 12). The following syntax allocates and initializes a new 
instance of a class named Class A: 

a new Class A (); 

This constructor syntax provides arguments to the constructor: 
b = new Class A (3,2); 

A third form of allocator allows the class name to be provided as a String 
expression. The String is evaluated at runtime, and new returns an object of type 
Object, which must be cast to the desired type. 

b = new ( "Class"+"A" ); 

In this case, the constructor without arguments is called. 

Garbage Collection 

The garbage collector makes most aspects of storage management simple and 
robust. Programs never need to explicitly free storage: it is done for them 
automatically. The garbage collector never frees pieces of memory that are still 
referenced, and it always frees pieces that are not. This makes both dangling 
pointer bugs and storage leaks impossible. It also frees designers from having to 
figure out which parts of a system have to be responsible for managing storage. 

Finalization 

The Java language includes the concept of object finalization. Java finalization is 
generalization of garbage collection that allows a program to free arbitrary 

Java Language Specification May 11 1995 



47 

46.3 

4.7 

6,009,464 
48 

4 Classes 

resources (e.g., file descriptors or graphics Contexts) owned by objects that cannot 
be accessed by any Java program. Reclaiming an object's memory by garbage 
collection does not guarantee that these resources will be reclaimed. 

The null Reference 

The keyword nullis a predefined constant that represents "no instance." null can 
be used anywhere an instance is expected and can be cast to any class type. 

Static Methods, Variables, and Initializers 

Variables and methods declared in a class can be declared static, which makes 
them apply to the class itself, rather than to an instance of the class. In addition, a 
block of code within a class definition can be declared static. Such a block of code 
is called a static initializer, 

Static variables can have initializers, just as instance variables can. See "Order of 
Initialization" on page 16 for more information. A static variable exists only once 
per class, no matter how many instances of the class exist. Both static variables 
and static methods are accessed using the class name. For convenience, they can 
also be accessed using an instance of the class. 

class Ahem { 
int. i. f f Instance variable 
static int A f Static variable 
static int arr = new int12); 
static f f static initializer: 

AA initialize the array 
for (int i O; i < arr. length; i++) { 

arri i; 
} 

void seti (int i) { Af Instance method 
this. i = i ; 

static void set (int ) { f / Static method 
Ahem. 3; 

} 
static void clearThroat () { 

Aher a = new Ahern (); 
Ahem. J = 2; f / valid; static var via class 
a. i - 3; f / valid; static war via instance 
Ahem. set (2) f/ valid; static method via class 
a set (3); f / valid; static method via instance 
a. i - 4; A/ valid; instance war via instance 
Ahea. i = 5. A/ ERROR; instance war via class 
a. Seti (4) A / valid; instance method via instance 
Ahern. Seti (5); A ERROR; instance method via class 

May 11 1995 

1. When a user defines the vold finalize () method in a class definition, finalization is enabled for 
objects of that class. Finalization of an object consists of the system calling the object's finalize () 
method. Finalization normally occurs asynchronously at some time after the garbage collection 
mechanism identifies an object as inaccessible. Users can invoke their finalize () method 
explicitly but this doesn't guarantee that the system will not call it again at a later time. If a finalized 
object references another finalized object, the objects are finalized in the reverse order of their 
creation. Java does not guarantee when or if a given finalized object will have its finalize () 
method called. Thus, finalization should not be relied on for program correctness. Rather, 
finalization should be thought of as an optimization. 

Java Language Specification 15 



16 

49 

4.7.1 

4.7.2 

6,009,464 
SO 

4 Casses 

Order of Declarations 

The order of declaration of classes and the methods and instance variables within 
them is irrelevant. However, it is possible for cycles to exist during initialization. 
For information on cycles during initialization see "Order of Initialization' on 
page 16. Methods are free to make forward references to other methods and 
instance variables. The following is legal: 

class A { 
void a () 

f. set (42); 
} 
B f; 

class B { 
void set (long n) { 

this. n = n : 
long n; 

Order of Initialization 

When a class is loaded, all of its static initialization code is executed. Static 
initializers are executed at the same time that static variables are initialized. The 
initializations occur in lexical order. For example, a class C is declared as follows: 

class C { 
static int a = 1; 
static 

a++; 
b = 7; 

} 
static int. b 

When class C is loaded, the following occurs in order: 
a is set to 1 

o the static initializer is executed, setting a to 2 and b to 7 
0 b is set to 2 

If any static initialization code has a reference to some other, unloaded class, that 
class is loaded and its static initialization code is executed first. Each unloaded 
class referenced during static initialization is loaded and initialized before the 
class that referenced it. If at any time during this initialization sequence a 
reference is made to an uninitialized class that is earlier in the sequence, a cycle is 
created. A cycle causes a NoClassDefFoundException to be thrown. 

For example, if Class A is loaded, its static initialization code is executed. 
However, ClassA's static initialization code can have a reference to another 
unloaded class, for example, ClassB. In that case, ClassB is loaded and its static 
initialization occurs before Class A's. Then, ClassA's static initializations are 
executed. A cycle is created if ClassB has a reference to ClassA in its static 
initialization code. 

It is an Compile-time error for instance or static variable initializations to have a 
forward dependency. For example, the following code: 

int i 
int 4; 

Java Language Specification May 11 1995 

  



May 11 1995 

S1 

4.8 

4.9 

6,009,464 
52 

4 Classes 

results in a compile-time error. 

An instance variable's initialization can have an apparent forward dependency on 
a static variable. For example in the following code fragment: 

int i = i + 2; A / Instance variable 
static int j = 4; f / Static variable 

it appears that i has a forward dependency on J. However, i is initialized to 6 
and j is initialized to 4. This initialization occurs because j is a static variable and 
is initalized before the instance variable. Thus, j is initialized to 4 before i is 
initialized. 

Static methods cannot refer to instance variables, they can only use static 
variables and static methods. 

Access Specifiers 

Access specifiers are modifiers that allow programmers to control access to 
methods and variables. The keywords used to control access are public, private, 
and protected. Methods marked as public can be accessed from anywhereby 
anyone. Methods marked as private can be accessed only from within the class in 
which they are declared. Since private methods are not visible outside the class, 
they are effectively final and cannot be overridden (see "Final Classes, Methods, 
and Variables" on page 18 for more information). Moreover, you cannot override 
a non-private method and give it private access. The protected access specifier 
makes a variable or method accessible to subclasses, but not to any other classes. 

Public access can be applied to classes, methods, and variables. Classes, methods, 
and variables marked as public can be accessed from anywhereby any other class 
or method. The access of a public method cannot be changed by overriding it. 

Classes, methods, and variables that do not have either private or public access 
specified can be accessed only from within the package where they are declared 
(see "Packages" on page 21). 

Variable Scoping Rules 

Within a package, when a class is defined as a subclass of another, declarations 
made in the superclass are visible in the subclass. When a variable is referenced 
inside a method definition, the following scoping rules are used: 

1. The current block is searched first, and then all enclosing blocks, up to 
and including the current method. This is considered the local scope. 

After the local scope, the search continues in the class scope: 
2. The variables of the current class are searched. 

Java Language Specification 17 



8 

--alala-i-...-a-w- - -wax-xxxxi 

S3 

4.0 

4.10.1 

4.10.2 

4.10.3 

4.10.4 

%.-w --wr: k" - ...-a--wr-wav-x-. ... v.- ...w......W. x-w... -- - - w w------...--...-...-........ .xx. 

6,009,464 
S4 

a Classes 

3. If the variable is not found, variables of all superclasses are searched, 
starting with the immediate superclass, and continuing up through class 
Object until the variable is found. If the variable is not found, imported 
classes and package names are searched. If it is not found, it is a compile 
time error. 

Multiple variables with the same name within the same class are not allowed and 
result in a compile-time error. 

Modifiers 

Threadsafe Variables 

An instance or static variable can be marked threadsafe to indicate that the 
variable will never be changed by some other thread while one thread is using it, 
i.e., the variable never changes asynchronously. The purpose of marking a 
variable as threadsafe is to allow the compiler to perform some optimizations that 
may mask the occurrence of asynchronous changes. The primary optimization 
enabled by the use of threadsafe is the caching of instance variables in registers. 

Transient Variables 

The transient flag is available to the interpreter and is intended to be used for 
persistent objects. Variables marked transient are treated specially when 
instances of the class are written out as persistent objects. 

Final Classes, Methods, and Variables 

The final keyword is a modifier that marks a class as never having subclasses, a 
method as never being overridden, or a variable as having a constant value. It is a 
compile-time error to override a final method, subclass a final class, or change the 
value of a final variable. Variables marked as final behave like constants. 

Using final lets the compiler perform a variety of optimizations. One such 
optimization is inline expansion of method bodies, which may be done for small, 
final methods (where the meaning of small is implementation dependent). 

Examples of the various final declarations are: 
class Foo { 

final int value = 3; Af final variable 
final int foc (int a? into) { f/ final method 

} 

Native Methods 

Methods marked as native are implemented in a platform-dependent language, 
e.g., C, not Java Native methods do not have a method body, instead the 
declaration is terminated with a semicolon. Constructors cannot be marked as 
native. Though implemented in a platform-dependent language, native methods 

Java Language Specification May 11 1995 



May 11 1995 

SS 

4.10.5 

4.0.6 

6,009,464 
S6 

4 Classes 

behave exactly as non-native methods do, for example, it is possible to override 
them. An example of a native method declaration is: 

native long timeOfDay (); 

Abstract Methods 

Abstract methods provide the means for a superclass or interface to define a 
protocol that subclasses must implement. Methods marked as abstract must be 
defined in a subclass of the class in which they are declared. An abstract method 
does not have a method body; instead the declaration is terminated with a semi 
colon. 

The following rules apply to the use of the abstract keyword: 
o Constructors cannot be marked as abstract. 
o Static methods cannot be abstract. 
o Private methods cannot be abstract. 
e Abstract methods must be defined in some subclass of the class in which 

they are declared. 
o A method that overrides a superclass method cannot be abstract. 
a Classes that contains abstract methods and classes that inheritabstract 

methods without overriding them are considered abstract classes. 
e It is a compile-time error to instantiate an abstract class or attempt to call an 

abstract method directly. 

Synchronized Methods and Blocks 

The synchronized keyword is a modifier that marks a method or block of code as 
being required to acquire a lock. The lock is necessary so that the synchronized 
code does not run at the same time as other code that needs access to the same 
resource. Each object has exactly one lock associated with it; each class also has 
exactly one lock. Synchronized methods are reentrant. 

When a synchronized method is invoked, it waits until it can acquire the lock for 
the current instance (or class, if it's a static method). After acquiring the lock, it 
executes its code and then releases the lock. 

Synchronized blocks of code behave similarly to synchronized methods. The 
difference is that instead of using the lock for the current instance or class, they 
use the lock associated with the object or class specified in the block's 
synchronized statement. 

Synchronized blocks are declared as follows: 
/* . . . preceding code in the method. . . / 
synchronized ( Kobject or class name>) { AA sync. block 

M* code that requires synchronized access */ 
} 
M* ... remaining code in the method. . . */ 

An example of the declaration of a synchronized method is: 
Class Point { 

float x, y, 
synchronized void scale (float f) { 

Java Language Specification 19 



20 

57 
6,009,464 

58 

5 Interfaces 

k 

An example of a synchronized block is: 
class Rectangle { 

Point topLeft; 

void print () { 
synchronized (topLeft) { 

println("topLeft. x 
println("topLeft.y 

" + topLeft.x); 
" + topLeft. y); 

Interfaces 
An interface specifies a collection of methods without implementing their bodies. 
Interfaces provide encapsulation of method protocols without restricting the 
implementation to one inheritance tree. When a class implements an interface, it 
generally must implement the bodies of all the methods described in the interface. 
(If the implementing class is abstract-never implemented-it can leave the 
implementation of some or all of the interface methods to its subclasses.) 

Interfaces solve some of the same problems that multiple inheritance does 
without as much overhead at runtime. However, because interfaces involve 
dynamic method binding there is a small performance penalty to using them. 

Using interfaces allows several classes to share a programming interface without 
having to be fully aware of each other's implementation. The following example 
shows an interface declaration (with the interface keyword) and a class that 
implements the interface: 

public interface Storing 
void freezedry (Strean s); 
void reconstitute (Stream s); 

} 
public class Image implements Storing, Painting { 

void freezepry (Stream s) { 
// JPEG compress image before storing 

void reconstitute (Stream s) { 
// JPEG decompress image before reading 

Like classes, interfaces are either private (the default) or public. The scope of 
public and private interfaces is the same as that of public and private classes, 
respectively. Methods in an interface are always public. Variables are public, 
static, and final. 

Java Language Specification May 11 1995 



59 

5.1 

5.2 

5.3 

5.4 

May 11 1995 

6,009,464 
60 

6 Packages 

Interfaces as Types 

The declaration syntax interfaceName variableName declares a variable or 
parameter to be an instance of some class that implements interfaceName. 
Interfaces behave exactly as classes when used as a type. This lets the 
programmer specify that an object must implement a given interface, without 
having to know the exact type or inheritance of that object. Using interfaces 
makes it unnecessary to force related classes to share a common abstract 
superclass or to add methods to Object. 

The following pseudocode illustrates the interfaceName variableName syntax: 
Class StorageManager { 

Stream stream; 

77 Storing is the interface name 
void pickle (Storing obj) 

obj. freezery (stream) ; 
} 

Methods in Interfaces 

Methods in interfaces are declared as follows: 

returnType method.Name (parameterList); 

The declaration contains no modifiers. All methods specified in an interface are 
public and abstract and no other modifiers may be applied. 

See "Abstract Methods" on page 19 for more information on abstract methods. 

Variables in Interfaces 

Variables declared in interfaces are final, public, and static. No modifiers can be 
applied. Variables in interfaces must be initialized. 

Combining interfaces 

Interfaces can incorporate one or more other interfaces, using the extends 
keyword as follows: 

interface Does Itall extends Storing, Painting { 
void does SomethingElse (); 

Packages 

Packages are groups of classes and interfaces. They area tool for managing a large 
namespace and avoiding conflicts. Every class and interface name is contained in 
Some package. By convention, package names consist of period-separated words, 
with the first name representing the organization that developed the package. 

Java Language Specification 21 

^r-markewarxa -saw-was-i:sw. ... ww. ---. ... : x . . .xx...x... -....w-. . . . . 



61 

6.1 

6.2 

6,009,464 
62 

7 Expressions 

Specifying a Compilation Unit's Package 

The package that a compilation unit is in is specified by a package statement. 
When this statementis present, it must be the first non-comment, non-whitespace 
line in the compilation unit. It has the following format: 
package packageName; 

When a compilation unit has no package statement, the unit is placed in a default 
package, which has no name. 

Using Classes and Interfaces from Other Packages 

The language provides a mechanism for making the definitions and 
implementations of classes and interfaces available across packages. The import 
keyword is used to mark classes as being imported into the current package. A 
compilation unit automatically imports every class and interface in its own 
package. 

Code in one package can specify classes or interfaces from another package in one 
of two ways: 

o By prefacing each reference to the class or interface name with the name of 
its package: 

f / prefacing with a package 
acme..project. FooBar obj = new acme..project. FooBar (); 

o By importing the class or interface or the package that contains it, using an 
import statement. Importing a class or interface makes the name of the class 
or interface available in the current namespace. Importing a package makes 
the names of all of its public classes and interfaces available. The construct: 

A/ import all classes from acIne.project 
import acme..project. *; 

means that every public class from acme..project is imported. 
The following construct imports a single class, Employee List, from the 
acme..project package: 

// import Employee List from acme..project 
import acme..project. Employee List; 
Employee List obj = new Employee List(); 

It is illegal to specify an ambiguous class name and doing so always generates a 
compile-time error. Class names may be disambiguated through the use of a fully 
qualified class name, i.e., one that includes the name of the class's package. 

Expressions 

Expressions in the language are much like expressions in C. 

Java Language Specification May 11 1995 



May 11 1995 

63 

7.1 

7.1. 

6,009,464 
64 

7 Expressions 

Operators 

The operators, from highest to lowest precedence, are: 
() 

- - - - - - instanceof 
sk 
-- - 
& x >>> 
x x <= x : 

& 
M 

SS 

: 
- Op= 

Operators on Integers 

For operators with integer results, if any operand is long, the result type is long 
Otherwise the result type is int-never byte, short, or char. Thus, if a variable i is 
declared a short or a byte, i+1 would be an int. When a result outside an 
operator's range would be produced, the result is reduced modulo the range of 
the result type. 

The unary integer operators are: 

Operator Operation 
--- unary negation 

- bitwise complement 

---- Increment 

Decrement 

The ++ operator is used to express incrementing directly, Incrementing can also 
be expressed indirectly using addition and assignment. ++lvalue means 
lvalue---1, ++lvalue also means livialue=lvalue-1 (as long as lvalue has no side 
effects). The -- operator is used to express decrementing. The ++ and -- operators 
can be used as both prefix and postfix operators. 

Java Language Specification 23 



24 

65 

7.1.2 

7.13 

6,009,464 
66 

7 Expressions 

The binary integer operators are: 

Operator Operation 
-- addition 

- subtraction 

x- multiplication 

? division 
3. modulus 

& bitwise ANO 

bitwise OR 
M bitwise XOR 

{< left shift 

grains 
>>> zero-fill right shift 

a. integer op integer => integer 

Integer division rounds toward zero. Division and modulus obey the identity 
(a/b) *b + (ab) = a. 

The only exceptions for integer arithmetic are caused by a divide or modulus by 
zero, which throw the ArithmeticException. An underflow generates zero. An 
overflow leads to wrap-around, i.e., adding 1 to the maximum integer wraps 
around to the minimum integer. 

An op= assignment operator corresponds to each of the binary operators in the 
above table. 

The integer relational operators <, >, <=, D=, ==, and = produce boolean results. 

Operators on Boolean Values 

Variables or expressions that are boolean can be combined to yield other boolean 
values. The unary operator is boolean negation. The binary operators &, i, and 
are the logical AND, OR, and XOR operators; they force evaluation of both 
operands. To avoid evaluation of right-hand operands, you can use the short-cut 
evaluation operators &&. and l. You can also use == and =. The assignment 
operators also work: &c=, =, =. The ternary conditional operator?: works as it 
does in C. 

Operators on Floating Point Walues 

Floating point values can be combined using the usual operators: unary -; binary 
+,-, *, and l; and the assignment operators +=, -=, *=, and f=. The ++ and -- 
operators also work on floating point values (they add or subtract 1.0). In 
addition, % and %= work on floating point values, i.e., 

a b 

Java Language Specification May 11 1995 



May 11 1995 

67 

7.14 

7.15 

6,009,464 
68 

7 Expressions 

is the same as: 

a - ( (int) (a / b) * b) 

This means that a%b is the floating point equivalent of the remainder after 
division. 

Floating point expressions involving only single-precision operands are 
evaluated using single-precision operations and produce single-precision results. 
Floating point expressions that involve at least one double-precision operand are 
evaluated using double-precision operations and produce double-precision 
results. 

The language has no arithmetic exceptions for floating point arithmetic. 
Following the IEEE 754 floating point specification, the distinguished values Inf 
and NaN are used instead. Overflow generates Inf. Underflow generates 0. 
Divide by zero generates Inf. 

The usual relational operators are also available and produce boolean results: >, 
<, >=, <= ==, =. Because of the properties of NaN, floating point values are not 
fully ordered, so care must be taken in comparison. For instance, if agb is not true, 
it does not follow that a>=b. Likewise, a!=b does not imply that axb agb. In 
fact, there may no ordering at all. 

Floating point arithmetic and data formats are defined by IEEE 754, "Standard for 
Floating Point Arithmetic." See "Appendix: Floating Point" on page 33 for details 
on the language's floating point implementation. 

Operators on Arrays 

The following: 
Kexpression) {expressions 

gets the value of an element of an array. Legal ranges for the expression are from 0 
to the length of the array minus 1. The range is checked only at runtime. 

Operators on Strings 

Strings are implemented as String objects (see "String Literals" on page 4 for more 
information). The operator + concatenates Strings, automatically converting 
operands into Strings if necessary. If the operand is an object it can define a 
method call toString () that returns a String in the class of the object. 

A Examples of the + operator used with strings 
float a = 1.0; 
print ("The value of a is " -- a + "\n"); 
String s = "a s " + a; 

The += operator works on Strings. Note, that the left hand side (s1 in the 
following example) is evaluated only once. 

s1 += a vAs1 = s.1 + a w/ a is converted to String if necessary 

Java Language Specification 25 

  



26 

69 

7.1.6 

7.2 

8.1 

8.2 

6,009,464 
70 

8 Statements 

Operators on Objects 

The binary operator instanceof tests whether the specified object is an instance of 
the specified class or one of its subclasses. For example: 

if (thermostat instanceof Measuringdevice) { 
MeasuringDevice dev = (MeasuringDevice) thernostat; 

determines whether thermostat is a MeasuringDevice object (an instance of 
MeasuringDevice or one of its subclasses). 

Casts and Conversions 

The Java language and runtime system restrict casts and conversions to help 
prevent the possibility of corrupting the system. Integers and floating point 
numbers can be cast back and forth, but integers cannot be cast to arrays or 
objects. Objects cannot be cast to base types. An instance can be cast to a 
superclass with no penalty, but casting to a subclass generates a runtime check. If 
the object being cast to a subclass is not an instance of the subclass (or one of its 
subclasses), the runtime system throws a ClassCastException. 

Statements 

Declarations 

Declarations can appear anywhere that a statement is allowed. The scope of the 
declaration ends at the end of the enclosing block. 

In addition, declarations are allowed at the head of for statements, as shown 
below: 

for (int i = 0; i < 10; i-) { 

} 

Items declared in this way are valid only within the scope of the for statement. 
For example, the preceding code sample is equivalent to the following: 

int i = 0; 
for (; i. K. 10; i+) { 

Expressions 

Expressions are statements: 
a = 3; 
print (23); 
foo. bar (); 

Java Language Specification May 1 1995 

  



6,009,464 
71 72 

8 Statements 

8.3 Control Flow 

The following is a summary of Control flow: 
if (coolean) statement 
else statement 
switch (el) { 

case e2: statements 
default: statements 

break labell; 
continue label; 
return ei; 
for (e1, e2; e3) statement 
while (boolean) statement 
do statement while (boolean); 
label: statement 

The language supports labeled loops and labeled breaks, for example: 
diter: AA the label 

for (int i s 0; i < 10; i----) { 
for (int = 0; < 10; J++) { 

if (. . . ) 
break outer; 

if (. . . ) { 

} 

The use of labels in loops and breaks has the following rules: 
o Any statement can have a label. 
o If a break statement has a label it must be the label of an enclosing 

Stateet. 

• If a continue statement has a label it must be the label of an enclosing loop. 

8.4 Exceptions 

When an error occurs in an Java program-for example, when an argument has 
an invalid value-the code that detects the error can throw an exception. By 
default, exceptions result in the thread terminating after printing an error 
message. However, programs can have exception handlers that catch the exception 
and recover from the error. 

Some exceptions are thrown by the Java runtime system. However, any class can 
define its own exceptions and cause them to occur using throw statements. A 
throw statement consists of the throw keyword followed by an object. By 
convention, the object should be an instance of Exception or one of its subclasses. 
The throw statement causes execution to switch to the appropriate exception 
handler. When a throw statement is executed, any code following it is not 
executed, and no value is returned by its enclosing method. The following 
example shows how to create a subclass of Exception and throw an exception. 

class MyException extends Exception { 

1. Java exception handling closely follows the proposal in the second edition of The C++ Programming 
Language, by Bjarne Stroustrup. 

May 11 1995 Java Language Specification 27 



28 

73 
6,009,464 

74 

8 Statements 

class MyClass { 
void oops () { 

if ( /* no error occurred */) { 

else A* error occurred A 
throw new My Exception (); 

To define an exception handler, the program must first surround the code that can 
cause the exception with a try statement. After the try statement come one or 
more catch statements-one per exception class that the program can handle at 
that point. In each catch statement is exception handling code. For example: 

try { 
p. a = 10; 

} catch (NullPointerException e) { 
println("p was null."); 

} catch (Exception e) { 
println("other error occurred"); 

} catch (Object ob) { 
println("Who threw that object?"); 

A catch statement is like a method definition with exactly one parameter and no 
return type. The parameter can be either a class or an interface. When an 
exception occurs, the nested tryficatch statements are searched for a parameter 
that matches the exception class. The parameter is said to match the exception if 
it: 

o is the same class as the exception; or 
is a superclass of the exception; or 

0 if the parameter is an interface, the exception class implements the 
interface. 

The first tryficatch statement that has a parameter that matches the exception has 
its catch statement executed. After the catch statement executes, execution 
resumes after the try/catch statement. It is not possible for an exception handler 
to resume execution at the point that the exception occurred. For example, this 
code fragment: 

print ("now "); 
try { 

print ("is "); 
throw new Myxception (); 
print ("a "); 

} catch (MyException e) { 
print ("the "); 

print ("timevn"); 

prints "now is the time". As this example shows, exceptions don't have to be used 
only for error handling, but any other use is likely to result in code that's hard to 
understand. 

Exception handlers can be nested, allowing exception handling to happen in more 
than one place. Nested exception handling is often used when the first handler 
Can't recover Completely from the error, yet needs to execute some cleanup code 
(as shown in the following code example). To pass exception handling up to the 
next higher handler, use the throw keyword using the same object that was 

Java Language Specification May 11 1995 



6,009,464 
75 76 

8 Statements 

caught. Note that the method that rethrows the exception stops executing after 
the throw statement; it never returns. 

try { 
f. open (); 

} catch (Exception e) { 
f. close () ; 
throw e 

8.4.1 The finally Statement 

The following example shows the use of a finally statement that is useful for 
guaranteeing that some code gets executed whether or not an exception occurs. 
For example, the following code example: 

try { 
A/ do something 

finally { 
A/ clean up after it 

is similar to: 

try { 
A/ do something 

} catch (Object e) { 
A/ clean up after it 
throw e, 

M/ clean up after it 

The finally statement is executed even if the try block contains a return, break, 
continue, or throw statement. For example, the following code example always 
results in "finally" being printed, but "after try" is printed only if a l= 10. 

try { 
if (a == 10) 

return; 

finally 
print ("finallyvn"); 

print ("after tryvn"); 

84.2 Runtime Exceptions 

This section contains a list of the exceptions that the Java runtime throws when it 
encounters various errors. 

Arithmeticexception 

Attempting to divide an integer by zero or take a modulus by zero throw the 
ArithmeticException-no other arithmetic operation in Java throws an exception. 
For information on how Java handles other arithmetic errors see "Operators on 
Integers" on page 23 and "Operators on Floating Point Values" on page 24. 

For example, the following code causes an ArithmeticException to be thrown: 
class Arith { 

public static void main (String args() { 
int j = 0; 
= f ; 

May 11 1995 ava Language Specification 29 



30 

--wasawwassas: .acrosses wouxw. . 

77 
6,009,464 

78 

8 Statements 

Null PointerException 

An attempt to access a variable or method in a null object or a element in a null 
array throws a NullPointerException. For example, the accesses olength and at Ol 
in the following class declaration throws a NullPointerException at runtime. 

class Null 
public static void main (String args ()) { 

String O is null; 
int a = null; 
O. length (); 
a0 = 0; 

It is interesting to note that if you throw a null object you actually throw a 
NullPointerException. 

IncompatibleClassChangeexception 

In general the IncompatibleClassChangeException is thrown whenever one 
class's definition changes but other classes that reference the first class aren't 
recompiled. Four specific changes that throw a 
IncompatibleClassChangeException at rutime are: 

o A variable's declaration is changed from static to non-static in one class but 
other classes that access the changed variable aren't recompiled. 

a A variable's declaration is changed from non-static to static in one class but 
other classes that access the changed variable aren't recompiled. 

0. A field that is declared in one class is deleted but other classes that access 
the field aren't recompiled. 

o A method that is declared in one class is deleted but other classes that 
access the method aren't recompiled. 

ClassCastException 

A ClassCastException is thrown if an attempt is made to cast an object O into a 
class C and Ois neither C nor a subclass of C. For more information on casting see 
"Casting Between Class Types" on page 8. 

The following class declaration results in a ClassCastException at run time: 
class ClassCast 

public static void main (String args) { 
Object o = new Object (); 
String s = (String) of wf the cast attempt 
s.length (); 

} 

NegativeArraySizeBxception 

A NegativeArraySizeException is thrown if an array is created with a negative 
size. For example, the following class definition throws a 
NegativeArraySizeException at runtime: 

Java Language Specification May 11 1995 



May 11 1995 

79 
6,009,464 

80 

8 Statements 

class NegArray 
public static void main (String args()) { 

int a = new int-l; 
a0 = 0; 

} 

OutOfMemoryException 

An OutOfMemoryException is thrown when the system can no longer suppy the 
application with memory. The OutOfMemoryException can only occur during the 
creation of an object, i.e., when new is called. For example, the following code 
results in an OutOfMemoryException at runtime: 

class Link 
int a 
Link l; 

new int (1000000); 

class OutOfMerl 
public static void main (String args ()) { 

Link root = new Link (); 
Link Cur = root; 
while (true) { 

Cur. = new Link (); 
cur is cur.l., 

} 

NoClassDeffoundException 

A NoClassDeffoundException is thrown if a class is referenced but the runtime 
system cannot find the referenced class. 

For example, class NoClass is declared: 
class NoClass 

public static void main (String args() { 
C c = new C (); 

When NoClass is run, if the runtime system can't find C.class it throws the 
NoClassDefFoundException. 

Note: C-class must have existed at the time NoClass is compiled. 

IncompatibleTypeFxception 

An IncompatibleTypeException is thrown if an attempt is made to instantiate an 
interface. For example, the following code causes an IncompatibleTypeException 
to be thrown. 

interface I { 
} 

class IncompType { 
public static void main (String args() { 

r = (I) new ("I"); 

Java Language Specification 3. 

  



32 

81 
6,009,464 

82 

8 Statements 

ArrayIndexOutOf BoundsException 

An attempt to access an invalid element in an array throws an 
ArrayIndexOutOfBoundsException. For example: 

class ArrayOut 
public static void main (String args() { 

int a = new int. O); 
a 0) = 0; 

UnsatisfiedLinkException 

An UnsatisfiedLinkException is thrown if a method is declared native and the 
method cannot be linked to a routine in the runtime. 

class NoLink 
static native void foo (); 

public static void main (String args()) { 
fod () ; 

} 

InternalException 

An InternalException should never be thrown. It's only thrown if some 
consistency check in the runtime fails. Please send mail to 
javaejavaSun.COM if you have a reproducible case that throws this exception. 

Java Language Specification May 11 1995 



May 11, 1995 

ww.amrwww.x.--wasawwariya, , , W. w... :w. (aw. 

83 

A 

A.1 

A.2 

6,009,464 
84 

A Appendix: Floating Point 

Appendir: Floating Point 
This appendix discusses properties of Java floating point arithmetic: general 
precision notes and special values, binary format conversion, ordering. At the end 
is a section summarizing the differences between Java arithmetic and the IEEE 
754 standard. For more information on the IEEE 754 standard, see "IEEE Standard 
for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985." 

Operations involving only single-precision float and integer values are 
performed using at least single-precision arithmetic and produce a single 
precision result. Other operations are performed in double precision and produce 
a double precision result. Java floating-point arithmetic produces no exceptions. 

Underflow is gradual. 

Special Values 

There is both a positive zero and a negative zero. The latter can be produced in a 
number of special circumstances: the total underflow of a * or / of terms of 
different sign; the addition of -0 to itself or subtraction of positive zero from it; the 
square root of -0. Converting-0 to a string results in a leading '-'. Apart from this, 
the two zeros are indistinguishable. 

Calculations which would produce a value beyond the range of the arithmetic 
being used deliver a signed infinite result. An infinity (Inf) has a larger 
magnitude than any value with the same sign. Infinities of the same sign cannot 
be distinguished. Thus, for instance (1./O.) + (1./O.) = (i./O.). Division 
of a finite value by infinity yields a 0 result. 

Calculations which cannot produce any meaningful numeric result deliver a 
distinguished result called Not A Number (NaN). Any operation having a NaNas 
an operand produces a NaN as the result. NaN is not signed and not ordered (see 
"Ordering"). Division of infinity by infinity yields NaN, as does subtraction of 
one infinity from another of the same sign. 

Binary Format Conversion 

Converting a floating-point value to an integer format results in a value with the 
same sign as the argument value and having the largest magnitude less than or 
equal to that of the argument. In other words, conversion rounds towards zero. 
Converting infinity or any value beyond the range of the target integer type gives 
a result having the same sign as the argument and the maximum magnitude of 
that sign. Converting NaN results in 0. 

Converting an integer to a floating format results in the closest possible value in 
the target format. Ties are broken in favor of the most even value (having 0 as the 
least-significant bit). 

Java Language Specification 33 



85 

A.3 

A.4 

6,009,464 
86 

A Appendix: Floating Point 

Ordering 

The usual relational operators can be applied to floating-point values. With the 
exception of NaN, all floating values are ordered, with-Inf < all finite values < 
Inf. 

-Inf == -Inf, +Inf == +Inf, -0. == 0. The ordering relations are transitive. 
Equality and inequality are reflexive. 

NaN is unordered. Thus the result of any order relation between NaN and any 
other value is false and produces 0. The one exception is that "NaN = anything" 
is true. 

Note that, because NaN is unordered, Java's logical inversion operator, , does not 
distribute over floating point relationals as it can over integers. 

Summary of IEEE-754 Differences 

Java arithmetic is a subset of the IEEE-754 standard. Here is a summary of the key 
differences. 

• Nonstop Arithmetic-The Java system will not throw exceptions, traps, or 
otherwise signal the IEEE exceptional conditions; invalid operation, 
division by zero, overflow, underflow, or inexact. Java has no signaling 
NaN. 

o Rounding-Java rounds inexact results to the nearest representable value, 
with ties going to the value with a 0 least-significant bit. This is the IEEE 
default mode. But, Java rounds towards zero when converting a floating 
value to an integer. Java does not provide the user-selectable rounding 
modes for floating-point computations: up, down, or towards zero. 

o Relational set-Java has no relational predicates which include the 
unordered condition, except for =. However, all cases but one can be 
constructed by the programmer, using the existing relations and logical 
inversion. The exception case is ordered but unequal. There is no specific 
IEEE requirement here. 

• Extended formats-Java does not support any extended formats, except 
that double will serve assingle-extended. Other extended formats are not a 
requirement of the standard. 

Java Language Specification May 11, 1995 



May 16, 1995 

87 
6,009,464 

88 

B Appendix: Java Language Grammar 

Appendir: Java Language Grammar 
This is a short grammar for a Java compilation unit. A Java program consists of 
one or more compilation units. 

The grammar has undefined terminal symbols DocComment, Identifier, Number, 
String, and Character. Quoted text signifies literal terminals. 

Each rule is of the form nonterminal = neta-expression ; Other meta 
notation is: for alternation, (...) for grouping, postfix 2 for 0 or 1 occurrences, 
postfix + for 1 or more occurrence, and postfix * for 0 or more occurrences. 

Compilationunit = 
PackageStatement? ImportStatement * TypePeclaration * 

PackageStatement = 
package' PackageName ; 

ImportStatement = 
import’ PackageName '.' ' ' ' '; ' 

| import' ( ClassName | InterfaceName ) ; 
r 

TypeDeclaration = 
ClassDeclaration 

| InterfaceDeclaration 
W 

ClassDeclaration = 
Modifier" class Identifier 
( extends' ClassName) 2 
( 'implements' InterfaceName ( , ' InterfaceName) *) 2 

FieldDeclaration * b. ' 

InterfaceDeclaration = 
Modifier" interface Identifier 
(extends' InterfaceName ( , ' InterfaceName) *) 2 

( ' FieldDeclaration* } 
W 

Field Declaration = 
DocComment? MethodDeclaration 

| DocComment? Constructor Declaration 
DocComment? VariableDeclaration 
staticinitializer 

MethodDeclaration = 
Modifier Type Identifier ( ParameterList? ) ( ' ' ' ' ) * 
( ' ' Statement * r ) '; ' ) 

ConstructorDeclaration = 
Modifier" Identifier (' ParameterList? ) ' 
' ' Statement * r * 

VariableDeclaration = 
Modifier Type VariableDeclarator ( , VariableDeclarator) x ; 

Java Language Specification 35 



89 
6,009,464 

90 

BAppendix: Java Language Grammar 

VariableDeclarator = 
Identifier ( ' ' ' ' ) * ( =' Variableinitializer) 2 

Variableinitializer = 
Expression 

“ ( Variableinitializer ( , VariableInitializer ) " ', " ? ) ? ' ' 
r 

Staticinitializer = 
v static" ' " Statement * } 

ParameterList = 
Parameter ( , ' Parameter) * 

Parameter = 
Typespecifier Identifier ( ' ' ' ' ) * 

Statementt = 
VariableDeclaration 
Expression ; 

Statement * } 
if (' Expression ) Statement ( else Statement) a 
while' ' (' Expression ) Statement 
'do' Statement while' ' ( Expression ) ; 
try' Statement ( 'catch' ' ( Parameter ')' Statement) * 

( finally' Statement) 
switch' ( Expression ')', Statement" } 
synchronized ' ' (' Expression ')' Statement 
return Expression? '; ' 
throw’ Expression ; 
case' Expression : 
default : 

Identifier : Statement 
break' Identifier? ; 
continue Identifier? ; 

Expression = 
Expression '+' Expression 
Expression '-' Expression 
Expression Expression 
Expression / Expression 
Expression 4' Expression 
Expression Expression 
Expression 's' Expression 
Expression Expression 
Expression GG' Expression 
Expression Expression 
Expression << Expression 
Expression >>' Expression 
Expression XXX Expression 
Expression =' Expression 
Expression +=' Expression 
Expression -=' Expression 
Expression = Expression 
Expression /=' Expression 
Expression =' Expression 

| Expression M=' Expression 
Expression G=' Expression 
Expression =' Expression 
Expression K<=' Expression 
Expression XX=' Expression 
Expression >>>=' Expression 

Java Language Specification May 16, 1995 



May 16, 1995 

91 
6,009,464 

BAppendix: Java Language Grammar 

Expression 
Expression 
Expression 
Expression 
Expression 
Expression 
Expression 
Expression 
Expression 
Expression 
Expression 

< Expression 
> Expression 
<= Expression 
>=' Expression 

Expression 
= Expression 

. Expression 
, Expression 
instanceof 
?' Expression : Expression 

Expression '' 
++’ Expression 
- Expression 

Expression 
Expression 

--- 

- Expression 
Expression 

- Express ion 
( Expression ) 
( Type ) Expression 

Expression ( Arglist? ) 
'new' ClassName ( Argilist? ) 
'new' Typespecific, ( I Expression ) + ( I' 
'new' ' (' 
true' 
false 
null 
super 
this 

xpression ')' 

Identifier 
Number 
String 
Character 

ArgList = 

Type 

Type 

Expression ( , Expression ) * 

Typespecifier ( ' ' ' ' ) * 

Specifier 
poolean 
byte' 

Y car 
short 
Yat 
YEloat 
'long 
double 

ClassName 
InterfaceName 

Modifier = public' 
private’ 
protected 
static 
final 
native 
synchronized' 
abstract 
threadsafe 

Java Language Specification 

92 

(ClassName | InterfaceName ) 

' ' ) * 

37 

  



38 

6,009,464 

BAppendix: Java Language Grammar 

transient 

PackageName = 
Identifier 

| PackageName . Identifier 

ClassName = 
Identifier 

| PackageName '.' Identifier 

interfaceName = 
Identifier 

| PackageName '.' Identifier 

Java Language Specification 

94 

May 16, 1995 



6,009,464 
95 96 

Index 

Symbols C 
, 24 case, 27 
-, 24 casting, 8, 26 
= 24, 25 catch, 28 
%, 24 char, 5 
& 24 classes, 5, 7, 21, 26 
&&, 24 comments, 2 
&c=, 24 constructors, 12 
*, 24 continue, 27 
*=, 24 
+, 24, 25 D 
+=, 24 declaration order, 16 
-, unary, 23 default, 27 
-, unary, 24 do, 27 
A, 24 double, 5 
A=, 24 double precision, 3, 5, 24 
< 24, 25 
<<, 24 
<= 24, 25 E 
-=, 24 else, 27 
==, 24, 25 exceptions, 27 
>, 24, 25 extends, 8 
>= 24, 25 
>>, 24 F 
>>>, 24 final, 18 
^, 24 finally, 29 
^ = 24 float, 5 

, 24 floating point, 3, 5, 24 
is, 24 floating point, ordering of values, 25 

, 24 for, 26, 27 
-, 23 

I 
B if, 27 
boolean, 3 implements, 8 
boolean expressions, 27 import, 22 
break, 27 instanceof, 26 
byte, 5 int, 5 

integers, 5, 23 
interface, 20 

May 11, 1995 Java Language Specification 39 



WM-1-xxx-aa-... -samaw-emix. ...x 

40 

97 

interfaces, 8, 20 

L 
length 

length of an array, 7 
literals, 3 
long, 5 

M 
methods, 9 

O 
object storage, 14 

(See also memory management) 
objects, 14 
OR, logical, 24 

P 
package, 22 
packages, 21 

return, 27 

S 
short, 5 
static, 15 
static initializer, 15 
String, 4, 25 
strings, 4, 6, 25 
super, 13 
switch, 27 
synchronize, 19 
synchronized, 19 

this, 0 
throw, 27 
transient, 18 
try, 28 

U 
Unicode, 1 

characters, 5 

woid, 9 

6,009,464 

W 
while, 27 

98 

XOR, logical, 24 

Java Language Specification May 11, 1995 



6,009,464 
99 

What is claimed: 
1. A method for enabling an application program to 

communicate with a network Server, the method comprising: 
downloading a document from a document Server to the 

application program; 
downloading code from a code Server associated with the 
document Server to the application program, the code 
including platform independent code implementing a 
network protocol for the network Server; and 

using the network protocol to communicate with the 
network Server. 

2. The method of claim 1, further comprising: invoking an 
object in the network Server using the code. 

3. The method of claim 1, further comprising: 
using a network name Server to locate the network Server. 
4. The method of claim 1, further comprising: using an 

object name Server in the network Server to locate an object. 
5. The method of claim 1, wherein the document server 

and the code Server are in the same address Space. 
6. The method of claim 1, wherein the network server, the 

document Server and the code Server are in the same address 
Space. 

7. The method of claim 1, wherein the code also includes 
a stub for an object within the network server. 

8. The method of claim 1, wherein the code is machine 
independent. 

9. The method of claim 8, wherein the platform indepen 
dent code comprises bytecodes. 

10. The method of claim 1, wherein the network protocol 
is different from a default network protocol used by the 
application program. 

11. The method of claim 1, wherein the step of down 
loading code is performed if it is determined that the 
application program needs to communicate with the network 
SCWC. 

12. The method of claim 1, wherein the platform inde 
pendent code implementing the network protocol and the 
application program are in the same address Space. 

13. A distributed computing System, including a network 
Server, comprising: 

a document Server for Storing a plurality of documents, 
a code Server for Storing a plurality of code associated 

with the plurality of documents, the plurality of code 
including platform independent code implementing a 
network protocol; and 

an application program for loading a document from the 
plurality of documents, for loading code from the 
plurality of code associated with the document, and for 
using the network protocol implemented by the plat 
form independent code to communicate with the net 
work server. 

14. The distributed computing system of claim 13, 
wherein the code invokes an object within the network 
SCWC. 

15. The distributed computing system of claim 13, 
wherein the document Server and the code Server are in the 
Same address Space. 

16. The distributed computing system of claim 13, 
wherein the network Server is object-oriented and 

includes an object, and 
wherein the code includes a stub for an object within the 

network Server. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

100 
17. The distributed computing system of claim 13, 

wherein the application program loads the code if it is 
determined that the application program needs to commu 
nicate with the network server. 

18. The distributed computing system of claim 13, 
wherein the platform independent code implementing the 
network protocol and the application program are in the 
Same address Space. 

19. A computer program that enables an application 
program to communicate with a network Server, comprising: 

code that downloads a document from a document Server; 
code that downloads downloadable code from a code 

Server associated with the document Server, the down 
loadable code including platform independent code 
implementing a network protocol for the network 
Server; and 

code that uses the network protocol to communicate with 
the network server; 

wherein the codes are Stored on a tangible medium. 
20. The computer program of claim 19, further compris 

ing code that invokes an object in the network Server using 
the downloadable code. 

21. The computer program of claim 19, wherein the 
downloadable code also includes a stub for an object within 
the network server. 

22. The computer program of claim 19, wherein the 
downloadable code is machine independent. 

23. The computer program of claim 19, wherein the 
network protocol is different from a default network proto 
col used by the application program. 

24. The computer program of claim 19, further compris 
ing code that determines whether the application program 
needs to communicate with the network Server. 

25. An apparatus for enabling an application program to 
communicate with a network Server, the apparatus compris 
ing: 

a machine configured to download a document from a 
document Server to the application program; 

a machine configured to download code from a code 
Server associated with the document Server to the 
application program, the code including platform inde 
pendent code implementing a network protocol for the 
network Server; and 

a machine configured to use the network protocol to 
communicate with the network Server. 

26. The apparatus of claim 25, further comprising: 
a machine configured to use a network name Server to 

locate the network Server using the code. 
27. The apparatus of claim 25, further comprising: 
a machine configured to use an object name Server in the 

network Server to locate an object using the code. 
28. The apparatus of claim 25, wherein the code also 

includes a stub for an object within the network server. 
29. The apparatus of claim 25, wherein the platform 

independent code comprises bytecodes. 
30. A method for enabling an application program to 

receive communications from a network client, the method 
comprising: downloading a document from a document 
Server to the application program; 

downloading code from a code Server associated with the 
document Server to the application program, the code 
including platform independent code implementing a 
network protocol for the network client, and 



6,009,464 
101 

using the network protocol to receive communications 
from the network client. 

31. The method of claim 30, further comprising: 
calling an object in the application program. 
32. The method of claim 20, further comprising: 
publishing a network Server name for the application 

program in a network name Server. 
33. The method of claim 30, wherein the application 

program includes an object; the method further comprising: 
publishing the object name in an object name Server. 
34. The method of claim 30, wherein the document server 

and the code Server are in the same address Space. 
35. The method of claim 30, wherein the network client, 

the document Server and the code Server are in the same 
address Space. 

36. The method of claim 30, wherein the code also 
includes a skeleton for an object to be implemented by the 
application program. 

37. The method of claim 30, wherein the code is machine 
independent. 

38. The method of claim 37, wherein the platform inde 
pendent code comprises bytecodes. 

39. The method of claim 30, wherein network protocol is 
different from a default network protocol used by the appli 
cation program. 

40. The method of claim 30, wherein the step of down 
loading code is performed if it is determined that the 
application program needs to receive communications from 
the network client. 

41. The method of claim 30, wherein the platform inde 
pendent code implementing the network protocol and the 
application program are in the same address Space. 

42. A distributed computing System, including a network 
client, comprising: 

a document Server for Storing a plurality of documents, 
a code Server for Storing a plurality of code associated 

with the plurality of documents, the plurality of code 
including platform independent code implementing a 
network protocol; and 

an application program for loading a document from the 
plurality of documents, for loading code from the 
plurality of code associated with the document, and for 
using the network protocol implemented by the plat 
form independent code to receive communications 
from the network client. 

43. The distributed computing system of claim 42, 
wherein the network client calls an object within the appli 
cation program. 

44. The distributed computing system of claim 42, 
wherein the document Server and the code Server are in the 
Same address Space. 

45. The distributed computing system of claim 42, 
wherein the code includes a skeleton for an object within 

the application program. 
46. The distributed computing system of claim 42, 

wherein the application program loads the code if it is 
determined that the application program needs to receive 
communications from the network client. 

47. The distributed computing system of claim 42, 
wherein the platform independent code implementing the 
network protocol and the application program are in the 
Same address Space. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

102 
48. A computer program that enables an application 

program to receive communications from a network client, 
comprising: 

code that downloads a document from a document Server; 
code that downloads code from a code Server associated 

with the document Server, the code including platform 
independent code implementing a network protocol for 
the network client, and 

code that uses the network protocol to receive communi 
cations from the network client; 

wherein the codes are Stored on a tangible medium. 
49. The computer program of claim 48, further compris 

ing code that invokes an object in the application program in 
response to the communications from the network client. 

50. The computer program of claim 48, wherein the code 
from the code Server also includes a skeleton for an object 
to be implemented by the application program. 

51. The computer program of claim 48, wherein the code 
from the code Server is machine independent. 

52. The computer program of claim 48, wherein the 
network protocol is different from a default network proto 
col used by the application program. 

53. The computer program of claim 48, further compris 
ing code that determines whether the application program 
needs to receive communications from the network client. 

54. An apparatus for enabling an application program to 
receive communications from a network client, the appara 
tus comprising: 

a machine configured to download a document from a 
document Server to the application program; 

a machine configured to download code from a code 
Server associated with the document Server to the 
application program, the code including platform inde 
pendent code implementing a network protocol for the 
network client; and 

a machine configured to use the network protocol to 
receive communications from the network client. 

55. The apparatus of claim 54, further comprising: 
a machine configured to publish a network Server name 

for the application program in a network name Server. 
56. The apparatus of claim 54, wherein the application 

program includes an object; the apparatus further compris 
ing: 

a machine configured to publish the object name in an 
object name Server. 

57. The apparatus of claim 54, wherein the code also 
includes a skeleton for an object to be implemented by the 
application program. 

58. The apparatus of claim 54, wherein the platform 
independent code comprises bytecodes. 

59. A computer System for enabling an application pro 
gram to receive communications from a network client, the 
computer System including: 

a proceSSOr, and 

a computer readable memory comprising: 
code that directs the computer System to receive data 

from a document Server; 



6,009,464 
103 

code that directs the computer System to receive plat 
form independent code implementing a network pro 
tocol for the network client; and 

code that directs the computer System to use the net 
work protocol handler to receive communications 
from the network client. 

60. A computer system of claim 59, wherein the computer 
readable memory further comprises code that invokes an 
object in the application program in response to the com 
munications from the network client. 

61. A computer system of claim 59, wherein the computer 
readable memory further comprises code that publishes a 
name of an object in an object name Server. 

62. A computer system of claim 59, wherein the code also 
includes a skeleton for an object to be implemented by the 
application program. 

63. A computer system of claim 59, wherein the platform 
independent code comprises bytecodes. 

64. A computer system of claim 59, wherein the computer 
readable memory further comprises code for determining 
whether the application program needs to receive commu 
nications from the network client. 

65. A computer System for enabling an application pro 
gram to communicate with a network Server, the computer 
System including: 

1O 

15 

25 

104 
a proceSSOr, and 

a computer readable memory comprising: 
code that directs the processor to receive data from a 

document Server; 
code that directs the processor to receive platform 

independent code implementing a network protocol 
for the network server; and 

code that directs the processor to use the network 
protocol to communicate with the network Server. 

66. A computer system of claim 65, wherein the computer 
readable memory further comprises code that invokes an 
object in the network Server using the code. 

67. A computer system of claim 65, wherein the computer 
readable memory further comprises code that uses a network 
name Server to locate the network Server. 

68. A computer system of claim 65, wherein the code also 
includes a stub for an object within the network server. 

69. A computer system of claim 65, wherein the platform 
independent code comprises bytecodes. 

70. A computer system of claim 65, wherein the computer 
readable memory further comprises code for determining 
whether the application program needs to communicate with 
the network server. 


