发明名称
一种阻燃增强聚丙烯材料及其制备方法

摘要
本发明公开了一种阻燃增强聚丙烯材料及其制备方法，该材料主要包括如下组分和重量份数：PP树脂100，无卤阻燃剂50～75，增强改性剂15～75，抗氧剂0.2～1.0；其中，所述阻燃剂为自制复配无卤膨胀阻燃剂，由氮磷阻燃剂与聚硅氧烷按重量比1：0.1～1：0.3的比例进行物理混合而成。
本发明采用阻燃效果高的氮磷阻燃剂与阻燃协效剂有机硅复配，提高材料的LOI值，该材料成型的产品长期存放表面不起霜，可添加5％～30％的滑石粉或玻璃纤维，从而彻底解决产品长期存放表面起霜、不能添加矿物填充增加材料强度的缺点，真正意义上做到无卤、环保、强度高并且可长期使用。
本发明无卤阻燃增强聚丙烯材料的制备工艺简单，无需添加复杂设备。
1. 一种阻燃增强聚丙烯材料，其特征在于，该材料主要包括如下组分和重量份数：

PP 树脂 100
无卤阻燃剂 50—75
增强改性剂 15—75
抗氧剂 0.2—1.0

其中，所述阻燃剂为自制复配无卤膨胀阻燃剂，由氮磷阻燃剂与聚硅氧烷按重量比 1: 0.1—1: 0.3 的比例进行物理混合而成。

2. 根据权利要求 1 所述的阻燃增强聚丙烯材料，其特征在于，所述 PP 树脂为均聚 PP，所述增强改性剂为玻璃纤维或滑石粉。

3. 根据权利要求 1 所述的阻燃增强聚丙烯材料，其特征在于，所述抗氧剂为亚磷酸酯类抗氧剂和受阻酚类抗氧剂按按重量比 1: 0.3—1: 0.7 复配而成。

4. 根据权利要求 1 至 3 中任一权利要求所述的阻燃增强聚丙烯材料，其特征在于，还包括 PP 相容剂，其重量份数为 5—15。

5. 根据权利要求 4 所述的阻燃增强聚丙烯材料，其特征在于，所述的 PP 相容剂为马来酸酐接枝 PP。

6. 一种阻燃增强聚丙烯材料的制备方法，其特征在于，包括以下步骤：

601. 按份数称取 PP 树脂 100，无卤阻燃剂 50—75，增强改性剂 15—75，抗氧剂 0.2—1.0;
602. 将步骤 401 称取的成分在高速混合机中混合 3—5 分钟；

603. 将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为一区 180—190℃、二区 190—200℃、三区 190—200℃、四区 190—200℃，螺杆转速 350—400 r/min，喂料频率 20～25 Hz，熔体压力 3.0—4.0MPa，真空度 -0.03—-0.06Mpa。

7. 根据权利要求 6 所述的阻燃增强聚丙烯材料的制备方法，其特征在于，步骤 601 中还包括：5—15 份的 PP 相容剂。
一种阻燃增强聚丙烯材料及其制备方法

【技术领域】

本发明涉及高分子材料技术领域，尤其涉及一种阻燃增强聚丙烯材料及其制备方法。

【背景技术】

聚丙烯（PP）是五大通用塑料之一，密度为0.90g/cm³，是现有树脂第二轻的高分子材料（仅大于聚甲基戊烯，密度为0.85g/cm³）。因其具有性能好、比重小、易于成型加工等特点，而广泛应用于汽车工业、家用电器、电子仪表工业、纺织工业中。

然而，由于PP树脂的极限氧指数（O1值）很低，只有18，属于易燃材料，无法满足特定材料防火领域的使用要求，使其在应用于家用电器、电子仪表工业、纺织工业等领域时受到一定程度的限制。随着人们环保意识的不断增强，这就要求PP树脂利于环保阻燃，且机械强度高，以满足人们的需求。

在现有技术中，人们在生产环保阻燃PP材料时做了大量的工作。普通的阻燃PP材料主要是在聚丙烯树脂中加入卤系阻燃剂而制得。但通过研究表明，卤系阻燃剂中的五溴醚、八溴醚、九溴联苯醚、十溴二苯醚等阻燃剂会在燃烧过程中释放出一种致癌物质，故欧盟要求所有的电器电子产品均需符合RoHS指令（the Restriction of the use of certain hazardous substances in electrical and electronic equipment 电气、电子设备中限制使用某些有害物质指令），保证电子电器产品中不得含有五溴醚、八溴醚、九溴联苯醚等物质。而用于替代十溴二苯醚的阻燃剂——十溴二苯乙烷由于生产工艺的不同，始终
都含有少量的这些物质，无法达到真正环保的目的。而无卤阻燃剂是完全不含有卤素的环保阻燃剂，真正做到环保、安全、无毒，因而在未来几年将成为阻燃材料的主流，以满足人们环保安全的要求。然而，当前市场上的 PP 无卤膨胀阻燃剂存在着不能添加矿物填充以增加材料强度，制成品长期存放表面起霜等缺点，因而在应用推广中受到很大的限制。

【发明内容】

本发明要解决的技术问题是提供一种不含溴、无卤环保的阻燃增强聚丙烯材料，本发明还要提供制备该阻燃增强聚丙烯材料的方法。

本发明进一步要解决的技术问题是提供一种不含溴、无卤环保，机械性能更好的阻燃增强聚丙烯材料。

为了解决上述技术问题，本发明采用的技术方案是，一种阻燃增强聚丙烯材料，该材料主要包括如下组分和重量份数：

<table>
<thead>
<tr>
<th>组分</th>
<th>重量份数</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP 树脂</td>
<td>100</td>
</tr>
<tr>
<td>无卤阻燃剂</td>
<td>50—75</td>
</tr>
<tr>
<td>增强改性剂</td>
<td>15—75</td>
</tr>
<tr>
<td>抗氧剂</td>
<td>0.2—1.0</td>
</tr>
</tbody>
</table>

其中，所述阻燃剂为自制复配无卤膨胀阻燃剂，由氯磷阻燃剂与聚硅氧烷按重量比 1:0.1～1:0.3 的比例进行物理混合而成。

其中，所述 PP 树脂为均聚 PP，所述增强改性剂为玻璃纤维或滑石粉。所述抗氧剂为亚磷酸酯类抗氧剂和受阻酚类抗氧剂按重量比 1:0.3～1:0.7 复配而成。

以上所述的阻燃增强聚丙烯材料，最好还包括重量份数为 5—15 份的 PP 相容剂。所述的 PP 相容剂为马来酸酐接枝 PP。

本发明阻燃增强聚丙烯材料制备方法的技术方案包括以下步骤：

1. 将 PP 树脂和无卤阻燃剂按重量份数 100:50—75 混合均匀，制备出阻燃 PP 基料；
2. 将增强改性剂和抗氧剂按重量份数 15—75:0.2—1.0 混合均匀，制备出改性剂混合物；
3. 将制备好的阻燃 PP 基料和改性剂混合物按一定比例混合，进行混炼，制备出阻燃增强聚丙烯材料。
1、按份数称取 PP 树脂 100，无卤阻燃剂 50—75，增强改性剂 15—75，抗氧剂 0.2—1.0；

2、将步骤 401 称取的成分在高速混合机中混合 3—5 分钟；

3、将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为一区 180—190℃，二区 190—200℃，三区 190—200℃，四区 190—200℃，螺杆转速 350—400 r/min，喂料频率 20—25 Hz，熔体压力 3.0—4.0MPa，真空度 -0.03—-0.06MPa；

以上所述的阻燃增强聚丙烯材料的制备方法，在步骤 1 中最好还包括 5—15 份的 PP 相容剂。

本发明采用阻燃效果高的氮磷阻燃剂与阻燃协效剂有机硅复配，提高材料的 OI 值，该材料成型的产品长期存放表面不起霜、可添加 5%—30%的滑石粉或玻璃纤维，从而彻底解决产品长期存放表面起霜、不能添加矿物填充增加材料强度的缺点，真正意义上做到无卤、环保、强度高并且可长期使用。本发明使用了复合抗氧剂，使得材料的耐热氧化性能得到提高，解决材料因局部温度过高而引起的黄变现象。

本发明提出的无卤阻燃增强 PP 材料的制备工艺简单，无需添加复杂设备，且无卤环保阻燃、力学性能优异。

通过加入 PP 相容剂，还可以增强改性剂在 PP 树脂之间分散粘接效果，进一步提升材料的机械性能；

【具体实施方式】

下面通过实施例对本发明进行进一步阐述：

本发明提出的无卤阻燃增强 PP 材料，需要用到以下原材料：PP 树脂、无卤阻燃剂、增强改性剂、抗氧剂、PP 相容剂。

其中，PP 树脂为共聚 PP；无卤阻燃剂为自制复配无卤膨胀阻燃剂，具体为佛山维科德化工材料有限公司的氮磷阻燃剂 HFR-041 与上海松
亚化工有限公司的聚硅氧烷 P-2015 按质量比 1:0.1～1:0.3 的比例进行物理混合而成，增强改性剂分别为无碱玻璃纤维或 2000 目超细滑石粉；抗氧剂为亚磷酸酯类抗氧剂 168 和受阻酚类抗氧剂 1010 按 1:0.5 复配而成的自制复配型；PP 相容剂为马来酸酐接枝 PP。

实施例 1 至 6 中的原料没有 PP 相容剂，且无卤阻燃剂中的 HFR-041 与 P-2015 质量比为 1:0.1；实施例 7 至 12 中的原料全部使用本发明所给出的原料，且无卤阻燃剂中的 HFR-041 与 P-2015 质量比为 1:0.3；对比例 1 至 6 中的原料为使用传统溴系阻燃剂十溴二苯乙烷与三氧化二锑。

实施例 1

按重量份数，将 PP 树脂 100、无卤阻燃剂 50、无碱玻璃纤维 15、抗氧剂 0.2，在高速混合机中混合 3～5 分钟，高速混合机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区 180～190℃、二区 190～200℃、三区 190～200℃、四区 190～200℃，螺杆转速 350～400 r/min, 喂料频率 20～25 Hz, 溶体压力 3.0～4.0 MPa，真空度 -0.04～-0.07 MPa。

实施例 2

按重量份数，将 PP 树脂 100、无卤阻燃剂 60、无碱玻璃纤维 40、抗氧剂 0.5，在高速混合机中混合 3～5 分钟，高速混合机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区 180～190℃、二区 190～200℃、三区 190～200℃、四区 190～200℃，螺杆转速 350～400 r/min, 喂料频率 20～25 Hz, 溶体压力 3.0～4.0 MPa，真空度 -0.04～-0.07 MPa。

实施例 3

按重量份数，将 PP 树脂 100、无卤阻燃剂 75、无碱玻璃纤维 75、
抗氧剂1，在高速混合机中混合3--5分钟，高速混合机转速为800转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区180--190℃、二区190--200℃、三区190--200℃、四区190--200℃，螺杆转速350~400r/min，喂料频率20~25Hz，熔体压力3.0~4.0MPa，真空度-0.04--0.07MPa。

实施例4

按重量份数，将PP树脂100、无卤阻燃剂50、2000目滑石粉15、抗氧剂0.2，在高速混合机中混合3--5分钟，高速混合机转速为800转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区180--190℃、二区190--200℃、三区190--200℃、四区190--200℃，螺杆转速350~400r/min，喂料频率20~25Hz，熔体压力3.0~4.0MPa，真空度-0.04--0.07MPa。

实施例5

按重量份数，将PP树脂100、无卤阻燃剂60、2000目滑石粉40、抗氧剂0.5，在高速混合机中混合3--5分钟，高速混合机转速为800转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区180--190℃、二区190--200℃、三区190--200℃、四区190--200℃，螺杆转速350~400r/min，喂料频率20~25Hz，熔体压力3.0~4.0MPa，真空度-0.04--0.07MPa。

实施例6

按重量份数，将PP树脂100、无卤阻燃剂75、2000目滑石粉75、抗氧剂1，在高速混合机中混合3--5分钟，高速混合机转速为800转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区180--190℃、二区190--200℃、三区190--200℃、四区190--200℃，螺杆转速350~400r/min，喂料频率20~25Hz，
熔体压力 3.0~4.0MPa，真空度 -0.04~ -0.07MPa。

实施例 7

按重量份数，将 PP 树脂 100、无卤阻燃剂 50、无碱玻璃纤维 15、
抗氧化剂 0.2,

PP 相容剂 5，在高速混合机中混合 3~5 分钟，高速混合机转速为
800 转/分；然后将混好的原料置于平行双螺杆挤出机经熔融挤出、
造粒，其挤出工艺为：一区 180~190℃、二区 190~200℃、三区
190~200℃、四区 190~200℃，螺杆转速 350~400 r/min,喂料频率
20~25 Hz，熔体压力 3.0~4.0MPa，真空度 -0.04~ -0.07MPa。

实施例 8

按重量份数，将 PP 树脂 100、无卤阻燃剂 60、无碱玻璃纤维 40、
抗氧化剂 0.5，PP 相容剂 10，在高速混合机中混合 3~5 分钟，高速混合
机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机经熔融
挤出、造粒，其挤出工艺为：一区 180~190℃、二区 190~200℃、
三区 190~200℃、四区 190~200℃，螺杆转速 350~400 r/min,喂料频
率 20~25 Hz，熔体压力 3.0~4.0MPa，真空度 -0.04~ -0.07MPa。

实施例 9

按重量份数，将 PP 树脂 100、无卤阻燃剂 75、无碱玻璃纤维 75、
抗氧化剂 1，PP 相容剂 15，在高速混合机中混合 3~5 分钟，高速混合机
转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机经熔融
挤出、造粒，其挤出工艺为：一区 180~190℃、二区 190~200℃、三
区 190~200℃、四区 190~200℃，螺杆转速 350~400 r/min,喂料频
率 20~25 Hz，熔体压力 3.0~4.0MPa，真空度 -0.04~ -0.07MPa。

实施例 10

按重量份数，将 PP 树脂 100、无卤阻燃剂 50、2000 目滑石粉 15、
抗氧剂 0.2，PP 相容剂 5，在高速混合机中混合 3—5 分钟，高速混合机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区 180—190℃，二区 190—200℃，三区 190—200℃，四区 190—200℃，螺杆转速 350～400 r/min，喂料频率 20～25 Hz，熔体压力 3.0～4.0MPa，真空度 -0.04—-0.07MPa。

实施例 11

按重量份数，将 PP 树脂 100、无卤阻燃剂 60、2000 目滑石粉 40、抗氧剂 0.5，PP 相容剂 10，在高速混合机中混合 3—5 分钟，高速混合机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区 180—190℃，二区 190—200℃，三区 190—200℃，四区 190—200℃，螺杆转速 350～400 r/min，喂料频率 20～25 Hz，熔体压力 3.0～4.0MPa，真空度 -0.04—-0.07MPa。

实施例 12

按重量份数，将 PP 树脂 100、无卤阻燃剂 75、2000 目滑石粉 75、抗氧剂 1，PP 相容剂 15，在高速混合机中混合 3—5 分钟，高速混合机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区 180—190℃，二区 190—200℃，三区 190—200℃，四区 190—200℃，螺杆转速 350～400 r/min，喂料频率 20～25 Hz，熔体压力 3.0～4.0MPa，真空度 -0.04—-0.07MPa。

对比例 1

按重量份数，将 PP 树脂 100、阻燃剂十溴二苯乙烷 30、阻燃协效剂三氧化二锑 10、无碱玻璃纤维 15、抗氧剂 0.2，在高速混合机中混合 3—5 分钟，高速混合机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区 180—190℃，二区 190—200℃，三区 190—200℃，四区 190—200℃，螺杆转速
350~400 r/min, 喂料频率 20~25 Hz, 熔体压力 3.0~4.0 MPa, 真空度 -0.04~ -0.07 MPa。

对比例 2

按重量份数，将 PP 树脂 100、阻燃剂十溴二苯乙烷 30、阻燃协效剂三氧化二锑 10、无碱玻璃纤维 35、抗氧剂 0.5，在高速混合机中混合 3~5 分钟，高速混合机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区 180~190℃、二区 190~200℃、三区 190~200℃、四区 190~200℃，螺杆转速 350~400 r/min, 喂料频率 20~25 Hz, 熔体压力 3.0~4.0 MPa, 真空度 -0.04~ -0.07 MPa。

对比例 3

按重量份数，将 PP 树脂 100、阻燃剂十溴二苯乙烷 30、阻燃协效剂三氧化二锑 10、无碱玻璃纤维 60、抗氧剂 1.0，在高速混合机中混合 3~5 分钟，高速混合机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区 180~190℃、二区 190~200℃、三区 190~200℃、四区 190~200℃，螺杆转速 350~400 r/min, 喂料频率 20~25 Hz, 熔体压力 3.0~4.0 MPa, 真空度 -0.04~ -0.07 MPa。

对比例 4

按重量份数，将 PP 树脂 100、阻燃剂十溴二苯乙烷 30、阻燃协效剂三氧化二锑 10、2000 目滑石粉 15、抗氧剂 0.2，在高速混合机中混合 3~5 分钟，高速混合机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区 180~190℃、二区 190~200℃、三区 190~200℃、四区 190~200℃，螺杆转速 350~400 r/min, 喂料频率 20~25 Hz, 熔体压力 3.0~4.0 MPa, 真空
度 -0.04-- -0.07MPa。

对比例 5

按重量份数，将 PP 树脂 100，阻燃剂十溴二苯乙烷 30，阻燃协效剂三氧化二锑 10，2000 目滑石粉 35，抗氧剂 0.5，在高速混合机中混合 3--5 分钟，高速混合机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区 180--190 ℃、二区 190--200℃、三区 190--200℃、四区 190--200℃，螺杆转速 350~400 r/min，喂料频率 20~25 Hz，熔体压力 3.0~4.0MPa，真空度 -0.04-- -0.07MPa。

对比例 6

按重量份数，将 PP 树脂 100，阻燃剂十溴二苯乙烷 30，阻燃协效剂三氧化二锑 10，2000 目滑石粉 65，抗氧剂 1.0，在高速混合机中混合 3--5 分钟，高速混合机转速为 800 转/分；然后将混好的原料置于平行双螺杆挤出机中经熔融挤出、造粒，其挤出工艺为：一区 180--190 ℃、二区 190--200℃、三区 190--200℃、四区 190--200℃，螺杆转速 350~400 r/min，喂料频率 20~25 Hz，熔体压力 3.0~4.0MPa，真空度 -0.04-- -0.07MPa。

下面对本发明实施例中所制备材料的性能进行说明：

将按上述方法完成造粒的粒子材料事先在 80-90℃的烘箱下干燥 2 小时，然后将干燥好的粒子材料在注塑成型机上注塑出标准测试样条。

拉伸性能按 ISO 527 进行，试样尺寸为 150×10×4mm，拉伸速度为 50mm/min；弯曲性能按 ISO 178 进行，试样尺寸为 80×10×4mm，弯曲速度为 2mm/min，跨距为 50mm；简支梁缺口冲击强度按 ISO 180 进行，试样尺寸为 80×10×4mm，缺口深度为试样厚度的 1/3；热变形
温试按 ISO 75 进行，试样尺寸为 120 × 15 × 10mm，负载为 1.82MPa；
阻燃性测试按 UL-94 进行，样条为 120 × 10 × 3.2mm（1/8in）和 120 ×
10 × 1.6mm（1/16in）；溴含量用 ROHS 检测仪 X 射线荧光分析仪进行测试。

材料的综合性能通过测试所得的拉伸强度、断裂伸长率、弯曲强度、
弯曲模量、IZOD 缺口冲击强度、热变形温度以及阻燃性能的数值
进行评判。

其中，实例 1-6 的配方及各项性能测试结果见下表:

<table>
<thead>
<tr>
<th>原料名称及物性参数</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>实施例 5</th>
<th>实施例 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP 树脂</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>无卤阻燃剂</td>
<td>50</td>
<td>60</td>
<td>75</td>
<td>50</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>无碱玻璃纤维</td>
<td>15</td>
<td>40</td>
<td>75</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>2000 目滑石粉</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>15</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td>抗氧剂自制复配</td>
<td>0.2</td>
<td>0.5</td>
<td>1.0</td>
<td>0.2</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>拉伸强度（MPa）</td>
<td>30</td>
<td>35</td>
<td>38</td>
<td>20</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>断裂伸长率（%）</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>50</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>弯曲强度（MPa）</td>
<td>42</td>
<td>45</td>
<td>49</td>
<td>30</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>弯曲模量（MPa）</td>
<td>2000</td>
<td>2600</td>
<td>3000</td>
<td>1500</td>
<td>1800</td>
<td>2200</td>
</tr>
</tbody>
</table>
| IZOD 缺口冲击强

 度（KJ/M2） | 12 | 13 | 10 | 11 | 9 | 7 |
熔融指数（g/10min）	12	10	8	15	14	12
热变形温度（℃）	125	140	150	110	120	140
密度（g/cm3）	1.0	1.05	1.1	1.0	1.05	1.1
阻燃性 1/8in	V0	V0	V0	V0	V0	V0
阻燃性 1/16in	V0	V0	V0	V0	V0	V0
溴含量（ppm）	ND	ND	ND	ND	ND	ND

其中，实例 7-12 的配方及各项性能测试结果见下表:
表（二）实例 7-12 配方及性能对照表

<table>
<thead>
<tr>
<th>原料名称及物性参数</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
<th>实施例 10</th>
<th>实施例 11</th>
<th>实施例 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP 树脂</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>无卤阻燃剂</td>
<td>50</td>
<td>60</td>
<td>75</td>
<td>50</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>无碱玻璃纤维</td>
<td>15</td>
<td>40</td>
<td>75</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>2000 目滑石粉</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>15</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td>PP 相容剂</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>抗氧剂自制配方</td>
<td>0.2</td>
<td>0.5</td>
<td>1.0</td>
<td>0.2</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>拉伸强度 (MPa)</td>
<td>36</td>
<td>42</td>
<td>50</td>
<td>24</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>断裂伸长率 (%)</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>50</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>弯曲强度 (MPa)</td>
<td>48</td>
<td>52</td>
<td>60</td>
<td>34</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>弯曲模量 (MPa)</td>
<td>2500</td>
<td>3800</td>
<td>5200</td>
<td>1800</td>
<td>2100</td>
<td>2500</td>
</tr>
<tr>
<td>IZOD 缺口冲击强度 (KJ/M2)</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>熔融指数 (g/10min)</td>
<td>12</td>
<td>12</td>
<td>8</td>
<td>15</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>热变形温度 (℃)</td>
<td>130</td>
<td>145</td>
<td>155</td>
<td>115</td>
<td>125</td>
<td>145</td>
</tr>
<tr>
<td>密度 (g/cm3)</td>
<td>1.0</td>
<td>1.05</td>
<td>1.1</td>
<td>1.0</td>
<td>1.05</td>
<td>1.1</td>
</tr>
<tr>
<td>阻燃性 1/8in</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
</tr>
<tr>
<td>阻燃性 1/16in</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
</tr>
<tr>
<td>溴含量 (ppm)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

对比例 1-6 的配方及各项性能测试结果见下表:

表（三）对比例 1-6 配方及性能对照表

<table>
<thead>
<tr>
<th>原料名称及物性参数</th>
<th>对比例 1</th>
<th>对比例 2</th>
<th>对比例 3</th>
<th>对比例 4</th>
<th>对比例 5</th>
<th>对比例 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP 树脂</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>十溴二苯乙烷</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>三氧化二锑</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>无碱玻璃纤维</td>
<td>15</td>
<td>35</td>
<td>65</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>2000 目滑石粉</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>15</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>抗氧剂自制配方</td>
<td>0.2</td>
<td>0.5</td>
<td>1.0</td>
<td>0.2</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>拉伸强度 (MPa)</td>
<td>29</td>
<td>34</td>
<td>38</td>
<td>20</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>断裂伸长率 (%)</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>60</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>弯曲强度 (MPa)</td>
<td>40</td>
<td>43</td>
<td>48</td>
<td>29</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>弯曲模量 (MPa)</td>
<td>2000</td>
<td>2600</td>
<td>3000</td>
<td>1500</td>
<td>1800</td>
<td>2200</td>
</tr>
<tr>
<td>IZOD 缺口冲击强度 (KJ/M2)</td>
<td>12</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>熔融指数（g/10min）</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>15</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>热变形温度（℃）</td>
<td>125</td>
<td>140</td>
<td>150</td>
<td>110</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>密度（g/cm³）</td>
<td>1.2</td>
<td>1.25</td>
<td>1.3</td>
<td>1.2</td>
<td>1.25</td>
<td>1.3</td>
</tr>
<tr>
<td>阻燃性 1/8in</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
</tr>
<tr>
<td>阻燃性 1/16in</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
</tr>
<tr>
<td>溴含量（ppm）</td>
<td>Too High</td>
<td>Too High</td>
<td>Too High</td>
<td>Too High</td>
<td>Too High</td>
<td>Too High</td>
</tr>
</tbody>
</table>

注: 溴含量大于 40000ppm, ROHS 检测仪检测结果显示为“Too High”

从表（一）和表（二）中可以看出，材料的阻燃性都达到 V0，随着无卤阻燃剂、增强改性剂、抗氧剂的增加，拉伸强度大幅度增加；断裂伸长率大幅下降；弯曲性能大幅增加；IZOD 简支梁缺口冲击强度大幅度降低，熔融指数基本不变；热变形温度小幅度提升。

由表（一）、表（二）与表（三）比较可知，不加入 PP 相容剂，材料机械性能普遍偏低，PP 相容剂的加入大大提高了材料的机械性能，且对阻燃性无明显的影响；无碱玻璃纤维增强的效果远远超过 2000 目滑石粉增强的效果；而无论是采用无碱玻璃纤维增强，还是采用 2000 目滑石粉增强，所制成的无卤阻燃增强 PP 材料，其阻燃性能相当，加入 PP 相容剂后还会大幅提升材料的机械性能; HFR-401 与 P-2015 的比例在 1:0.1~1:0.3 的范围内变动，材料的机械性能及阻燃性能无明显变化；且材料中不含溴、密度低、无卤环保。

综上所述，本发明通过加入无卤阻燃剂而提高材料氧指数；增强改性剂提高材料的机械性能；PP 相容剂增加材料中的无卤阻燃剂、增强改性剂在 PP 树脂之间分散粘接效果，进一步提升材料的机械性能，从而制备出一种机械强度高、比重低且无卤环保阻燃的聚丙烯材料。同时，本发明还介绍了该机械强度高、比重低且无卤环保阻燃性好的 PP 材料的制备方法。