发明名称
定向耦合器

摘要
本发明提供一种能降低中心频率、提高主线路与副线路的电磁耦合度、还能降低高度、且能容易地设计各端子的阻抗的定向耦合器。在层叠体块件(1)内，在层的层叠方向上依次形成第一主线路(2A)、第一副线路(3A)、第二副线路(3B)、第二主线路(2B)。并且，将第一主线路(2A)、第一副线路(3A)、第二副线路(3B)、第二主线路(2B)分别划分为至少两个以上的分割线圈导体(2a、2d、2e、2f、2g、2h、2i、2j、2k、2m、2n、2o、2p、2q、2r、2s、2t、2u、2v、2w、2x、2y、2z、2aa、2ab、2ac、2ad、2ae、2af、2ag、2ah、2ai、2aj、2ak、2al、2am、2an、2ao、2ap、2aq、2ar、2as、2at、2au、2av、2aw、2ax、2ay、2az、2ba、2bb、2bc、2bd、2be、2bf、2bg、2bh、2bi、2bj、2bk、2bl、2bm、2bn、2bo、2bp、2bq、2br、2bs、2bt、2bu、2bv、2bw、2bx、2by、2bz)。而使得在第一副线路(3A)与第二副线路(3B)之间设置两个以上的分割接地导体(6b、6c)。
1. 一种定向耦合器，该定向耦合器包括：
 层叠体块件，该层叠体块件通过将多个电介质层进行层叠而成；
 第1端子、第2端子、第3端子、第4端子，该第1端子、第2端子、第3端子、第4端子
 形成在所述层叠体块件的表面上；
 主线路，该主线路形成在所述层叠体块件内，并由连接在所述第1端子与第2端子之间的
 线圈导体所构成；以及
 副线路，该副线路形成在所述层叠体块件内，并由连接在所述第3端子与第4端子之间，且与
 所述主线路进行耦合的线圈导体所构成。
 所述主线路在所述层叠体块件内的不同的层上划分为第一主线路和第二主线路这样
 两个线圈导体，
 所述副线路在所述层叠体块件内的不同的层上划分为第一副线路和第二副线路这样
 两个线圈导体，
 对于所述第一主线路、第二主线路、第一副线路、第二副线路，在所述层叠体块件内，在
 层的层叠方向上，以第一主线路、第一副线路、第二副线路、第二主线路的顺序形成，或者以
 第一副线路、第一主线路、第二主线路、第二副线路的顺序形成，
 所述第一主线路与第一副线路进行耦合而构成第一耦合部，
 所述第二主线路与第二副线路进行耦合而构成第二耦合部，
 所述第一耦合部与第二耦合部之间的层上形成有接地导体，
 所述第一主线路、第二主线路、第一副线路、第二副线路在各自形成的层上分别进一步
 划分为至少两个以上的分割线圈导体，
 所述接地导体划分为至少两个以上的分割接地导体而成。
2. 如权利要求1所述的定向耦合器，其特征在于，
 所述第一主线路、第二主线路、第一副线路、第二副线路在各自形成的层上分别划分为
 两个螺旋状的分割线圈导体，该两个分割线圈导体基本上以点对称的方式进行配置。
3. 如权利要求1或2所述的定向耦合器，其特征在于，
 所述划分成两个以上的分割接地导体分别形成在不同的层上。
4. 如权利要求1或2所述的定向耦合器，其特征在于，
 所述划分成两个以上的分割接地导体形成在同一层上。
5. 如权利要求4所述的定向耦合器，其特征在于，
 所述划分成两个以上的分割接地导体相互连接。
6. 如权利要求1至5的任一项所述的定向耦合器，其特征在于，
 从所述层叠体块件的电介质层的层叠方向观察时，所述划分成两个以上的分割接地导
 体以相对于所述划分为两个以上的分割线圈导体至少部分重叠的方式形成。
定向耦合器

技术领域
[0001] 本发明涉及定向耦合器，更详细而言，涉及能够降低定向耦合器的工作频率、提高主线路与副线路的电磁耦合度、还能降低高度、且能容易地设计各端子的阻抗的定向耦合器。

背景技术
[0002]作为现有的定向耦合器，例如，已知有专利文献 1（日本专利特开平 8-237012 号公报）中揭示的定向耦合器。该定向耦合器包括将形成有线圈导体或接地导体的多个电介质层进行层叠而成的层叠体块件。在层叠体块件的内部设有两根线圈导体，其中一个线圈导体构成主线路，另一个线圈导体构成副线路。而且，主线路与副线路相互进行电磁耦合。此外，接地导体从层叠方向夹着线圈导体。
[0003]在由以上结构所构成的定向耦合器中，若对主线路从一端输入信号，而从副线路的另一端输出具有与输入信号的功率成正比的功率的信号。
[0004]在这样的定向耦合器中，有时希望降低其工作频率。在这样的情况下，可以考虑延长主线路及副线路的线圈导体的线长的方法，但根据该方法，为了形成主线路及副线路，需要增加电介质层的面积，存在定向耦合器大型化的问题。
[0005]因此，在专利文献 2（日本专利特开 2003-69317 号公报）所揭示的又一现有定向耦合器中，采用了在层叠体块件的内部将主线路及副线路双方分别划分在不同的层中，从而延长线圈导体的线长的方法。
[0006]图 6 表示专利文献 2 中揭示的定向耦合器 400。另外，图 6 是定向耦合器 400 的分解立体图。
[0007]定向耦合器 400 包括将多个电介质 101a～101g 进行层叠而成的层叠体块件 101。
[0008]而且，形成在电介质 101c 的表面上的线圈导体 102a、贯通电介质 101d 而形成的通孔导体 102b、贯通电介质 101e 而形成的通孔导体 102c、贯通电介质 101f 而形成的通孔导体 102d、形成在电介质 101f 的表面上的线圈导体 102e 依次进行连接而构成主线路。在层叠体块件 101 内，主线路被划分为由线圈导体 102a 所构成的第一主线路、以及由线圈导体 102e 所构成的第二主线路。
[0009]同样，形成在电介质 101b 的表面上的线圈导体 103a、贯通电介质 101c 而形成的通孔导体 103b、贯通电介质 101d 而形成的通孔导体 103c、贯通电介质 101e 而形成的通孔导体 103d、形成在电介质 101e 的表面上的线圈导体 103e 依次进行连接而构成副线路。在层叠体块件 101 内，副线路被划分为由线圈导体 103a 所构成的第一副线路、以及由线圈导体 103e 所构成的第二副线路。
[0010]而且，第一主线路（线圈导体）102a 与第一副线路（线圈导体）103a 进行电磁耦合而构成第一耦合部 104，第二主线路（线圈导体）102e 与第二副线路（线圈导体）103e 进行电磁耦合而构成第二耦合部 105。
[0011]此外，在电介质 101a 的表面上形成有接地导体 106a，在电介质 101d 的表面上形成有接地导体 106b，在电介质 101g 的表面上形成有接地导体 106c。接地导体 106a、106b、
106c 分别起到屏蔽的作用,尤其是接地导体 106b,其用于防止第一耦合部 104 与第二耦合部 105 之间产生不需要的信号泄漏。另外,在接地导体 106b 中,为了使通孔导体 102b 及通孔导体 103c 通过,在中央部分设有导体非形成部。

[0012] 由上述结构所构成的现有的定向耦合器 400 在层叠体块件 100 的内部将主动线路及副线路双方分别划分在不同的层中,能够在不减小元件的面方向的尺寸的情况下,延长线圈导体的线长。

[0013] 现有技术文献

[0014] 专利文献

[0015] 专利文献 1:日本专利特开平 8-237012 号公报

[0016] 专利文献 2:日本专利特开 2003-69317 号公报

发明内容

[0017] 发明要解决的技术问题

[0018] 然而,上述现有的定向耦合器 400 中,为了防止第一耦合部 104 和第二耦合部 105 的耦合,在电介质 101d 的大致整个表面上设有接地导体 106b,因此,存在以下问题。

[0019] 即,在电介质 101d 的表面的大小整个面上设有接地导体 106b,第一主线路 102a 及第二副线路 103e 均与接地导体 106b 相对,因此,存在很难使从第一主线路 102a 导出的输出端的阻抗特性、以及从第二副线路 103e 导出的耦合端的阻抗特性分别进行优化的问题。

[0020] 例如,在降低从第一主线路 102a 导出的输出端以及从第二副线路 103e 导出的耦合端的阻抗率值的情况下,需要增加电介质 101d 的厚度,增加接地导体 106b 与第一主线路 102a 之间的距离,还要增加导体 101e 的厚度,增加接地导体 106b 与第二副线路 103e 之间的距离,在此情况下,存在层叠体块件 101 的高度尺寸增大的问题。

[0021] 解决技术问题所采用的技术方案

[0022] 本发明是为了解决上述现有技术所存在的问题而完成的。作为其手段,本发明的定向耦合器具有以下的结构,即,包括:层叠体块件,该层叠体块件通过将多个电介质的层进行层叠而成;第 1 端子、第 2 端子、第 3 端子、第 4 端子,该第 1 端子、第 2 端子、第 3 端子、第 4 端子形成在层叠体块件的表面上;主线路,该主线路形成在层叠体块件内,并由连接在第 1 端子与第 2 端子之间的线圈导体所构成;以及副线路,该副线路形成在层叠体块件内,并由连接在第 3 端子与第 4 端子之间,且与主线路进行耦合的线圈导体所构成,主线路在层叠体块件内的不同的层上划分为第一主线路和第二主线路这样两个线圈导体,副线路在层叠体块件内的不同的层上划分为第一副线路和第二副线路这样两个线圈导体,对于第一主线路、第二主线路、第一副线路、第二副线路,在层叠体块件内,在层的层叠方向上,以第一主线路、第一副线路、第二副线路、第二主线路的顺序形成,或者以第一副线路、第二主线路、第二主线路、第二副线路的顺序形成,第一主线路与第一副线路进行耦合而构成第一耦合部,第二主线路与第二副线路进行耦合而构成第二耦合部,在第一耦合部与第二耦合部之间的层上形成有接地导体,第一主线路,第二主线路,第一副线路、第二副线路在各自形成的层上分别进一步划分为至少两个以上的分割线圈导体,接地导体划分为至少两个以上的分割接地导体而成。

[0023] 由上述结构所构成的本发明的定向耦合器能使端子的阻抗的设计变得容易,还能
降低定向耦合器的高度。
[0024] 另外，第一主线路、第二主线路、第一副线路、第二副线路也可以在各自形成的层上分别划分为两个螺旋状的分割线圈导体，该两个分割线圈导体基本上以点对称的方式进行配置。在此情况下，由于分割线圈导体呈螺旋状，因此，在相同的单位面积的情况下，能进一步延长主线路及副线路的各线圈导体的线长。此外，由于两个分割线圈导体以同样的形状基本上以对称地形成，因此，能更加容易地设计主线路及副线路的各阻抗。
[0025] 此外，划分为两个以上的分割接地导体也可以分别形成在不同的层上。在此情况下，能自由地设计各个分割接地导体与在层叠方向上相邻的分割线圈导体之间的距离，因此，能更容易地设计从这些分割线圈导体导出的端子的阻抗。
[0026] 此外，划分为两个以上的分割接地导体也可以形成在同一层上。在此情况下，能进一步减少构成层叠体块件的电介质的层的层数，降低定向耦合器的高度。
[0027] 此外，划分为两个以上的分割接地导体也可以相互连接。在此情况下，能使分割接地导体的电位更加稳定。
[0028] 此外，从层叠体块件的电介质层的层叠方向观察时，划分为两个以上的分割接地导体也可以以相对于划分为两个以上的分割线圈导体至少部分重叠的方式形成。在此情况下，这些分割接地导体对这些分割线圈导体的阻抗产生的影响更大，因此，能更容易地设计从这些分割线圈导体导出的端子的阻抗。
[0029] 发明的效果
[0030] 由上述结构所构成的本发明的定向耦合器能延长主线路及副线路的线路长度，降低中心频率，能提高主线路与副线路的电磁耦合度。
[0031] 此外，第一主线路、第二主线路、第一副线路、第二副线路在各自形成的层上分别划分为至少两个以上的分割线圈导体，且在第一耦合器与第二耦合器之间的层上所形成的接地导体不是在该层的大致整个面上进行设置，而是划分为至少两个以上的分割接地导体，因此，通过调节分割接地导体的大小，或者通过调节分割接地导体与在层叠方向上相邻的分割线圈导体之间的距离，从而能更加容易地设计从这些分割线圈导体导出的端子的阻抗。
[0032] 此外，通过调节分割接地导体的形状和大小，能减小该分割接地导体对在层叠方向上相邻的分割线圈导体的特性产生的影响，因此，能减小分割接地导体与分割线圈导体的距离，降低层叠体块件的高度，从而降低定向耦合器的高度。

附图说明
[0033] 图 1 是表示本发明的实施方式 1 的定向耦合器 100 的分解立体图。
[0034] 图 2 是表示本发明的实施方式 1 的定向耦合器 100 的立体图。
[0035] 图 3 是本发明的实施方式 1 的定向耦合器 100 的等效电路图。
[0036] 图 4 是表示本发明的实施方式 2 的定向耦合器 200 的分解立体图。
[0037] 图 5 是表示本发明的实施方式 3 的定向耦合器 300 的分解立体图。
[0038] 图 6 是表示现有的定向耦合器 400 的分解立体图。

具体实施方式
[0039] 以下，与附图一起对用于实施本发明的方式进行说明。
[0040] [实施方式 1]
[0041] 图1～图3表示本发明的实施方式1的定向耦合器100。其中，图1是分解立体图，图2是立体图，图3是等效电路图。
[0042] 首先，如图1所示，本发明的实施方式1的定向耦合器100包括将多个电介质la～lm进行层叠而成的层叠体块件1。
[0043] 而且，形成在电介质1b的表面上的连接线圈导体2a、贯通电介质1c而形成的通孔导体2b、形成在电介质1c的表面上的分割线圈导体2c、形成在电介质1c的表面上的分割线圈导体2d、贯通电介质1c而形成的通孔导体2e、形成在电介质1b的表面上的连接线圈导体2f、贯通电介质1c而形成的通孔导体2g、贯通电介质1d而形成的通孔导体2h、贯通电介质1e而形成的通孔导体2i、贯通电介质1f而形成的通孔导体2j、贯通电介质1g而形成的通孔导体2k、贯通电介质1h而形成的通孔导体2l、通过电介质1i而形成的通孔导体2m、贯通电介质1j而形成的通孔导体2n、贯通电介质1k而形成的通孔导体2o、形成在电介质1k的表面上的连接线圈导体2p、贯通电介质1k而形成的通孔导体2q、形成在电介质2的表面上的分割线圈导体2r、形成在电介质1j的表面上的分割线圈导体2s、贯通电介质1k而形成的通孔导体2t、形成在电介质1k的表面上的连接线圈导体2u依次进行连接而构成主线路。
[0044] 在层叠体1内，主线路划分为第一主线路2a和第二主线路2b而形成，其中，该第一主线路2a形成在电介质1c的表面上且由分割线圈导体2c和分割线圈导体2d，所构成，该第二主线路2b形成在电介质1j的表面上且由分割线圈导体2r和分割线圈导体2s，所构成。
[0045] 另外，构成第一主线路2a的分割线圈导体2c和分割线圈导体2d基本上为相同的形状，且以点对称的方式形成。此外，构成第二主线路2b的分割线圈导体2r和分割线圈导体2s基本上为相同的形状，且以点对称的方式形成。
[0046] 同样，形成在电介质1e的表面上的连接线圈导体3a、贯通电介质1e而形成的通孔导体3b、形成在电介质1d的表面上的分割线圈导体3c、形成在电介质1d的表面上的分割线圈导体3d、贯通电介质1e而形成的通孔导体3e、形成在电介质1e的表面上的连接线圈导体3f、贯通电介质1f而形成的通孔导体3g、贯通电介质1g而形成的通孔导体3h、贯通电介质1h而形成的通孔导体3i、形成在电介质1h的表面上的连接线圈导体3j、贯通电介质1i而形成的通孔导体3k、形成在电介质1i的表面上的分割线圈导体3l、形成在电介质1i的表面上的分割线圈导体3m、贯通电介质1i而形成的通孔导体3n、形成在电介质1h的表面上的连接线圈导体3o依次进行连接而构成副线路。
[0047] 在层叠体1内，副线路划分为第一副线路3a和第二副线路3b而形成，其中，该第一副线路3a形成在电介质1d的表面上且由分割线圈导体3c和分割线圈导体3d，所构成，该第二副线路3b形成在电介质1i的表面上且由分割线圈导体3l和分割线圈导体3m，所构成。
[0048] 另外，构成第一副线路3a的分割线圈导体3c和分割线圈导体3d基本上为相同的形状，且以点对称的方式形成。此外，构成第二副线路3b的分割线圈导体3l和分割线圈导体3m基本上为相同的形状，且以点对称的方式形成。
而且，第一主线路 2A 与第一副线路 3A 进行电磁耦合而构成第一耦合部 4，第二主线路 2B 与第二副线路 3B 进行电磁耦合而构成第二耦合部 5。

此外，各电介质 1a 的表面上，在其大致整个面上形成有接地导体 6a，在电介质 1f 的表面上，偏向其一侧（图 1 中的左侧）形成有分割接地导体 6b，在电介质 1g 的表面上，偏向其一侧（图 1 中的右侧）形成有分割接地导体 6c，在电介质 11 的表面上，在其大致整个面上形成有接地导体 6d。

接地导体 6a、分割接地导体 6b、分割接地导体 6c、接地导体 6d 分别起到屏蔽的作用。

尤其是在分割接地导体 6b、分割接地导体 6c 能防止第一耦合部 4 与第二耦合部 5 进行耦合。

此外，由于分割接地导体 6b 主要对连接线圈导体 3f、分割线圈导体 3d 的阻抗特性产生影响，因此，通过改变分割接地导体 6b 的形状和大小，改变分割接地导体 6b 与连接线圈导体 3f 及分割线圈导体 3d 的距离，从而容易地设计从第一副线路 3A 导出的耦合端的阻抗特性。同样，由于分割接地导体 6c 主要对连接线圈导体 3j、分割线圈导体 3l 的阻抗特性产生影响，因此，通过改变分割接地导体 6c 的形状和大小，改变分割接地导体 6c 与连接线圈导体 3j 及分割线圈导体 3l 的距离，从而容易地设计从第二副线路 3B 导出的终止端（a terminating end）的阻抗特性。

另外，根据本发明中，能将第一耦合部 4 与第二耦合部 5 之间的接地导体划分为分割接地导体 6b 和分割接地导体 6c 这样两个以上的原因在于将各线路进行了划分的缘故，在于本实施方式中将第一主线路 2A 划分为分割线圈导体 2c 和分割线圈导体 2d，将第一副线路 3A 划分为分割线圈导体 3c 和分割线圈导体 3d，将第二副线路 3B 划分为分割线圈导体 3l 和分割线圈导体 3m，将第二主线路 2B 划分为分割线圈导体 2r 和分割线圈导体 2s 的缘故。

图 2 所示，在层叠体块件 1 的表面上形成有所需的端子 7a～7h，并与层叠体块件 1 的内部的规定的布线相连接。输入端子 7a 与形成在电介质 1b 的表面上的连接线圈导体 2a 相连接。输出端子 7b 与形成在电介质 1k 的表面上的连接线圈导体 2u 相连接。耦合端子 7c 与形成在电介质 1e 的表面上的连接线圈导体 3a 相连接。终止端子 7d 与形成在电介质 1h 的表面上的连接线圈导体 3o 相连接。接地端子 7e 与接地导体 6a、分割接地导体 6c、接地导体 6d 相连接。接地端子 7f 与接地导体 6a、分割接地导体 6b、接地导体 6d 相连接。虚设端子 7g 及 7h 未进行任何连接。

图 3 表示本实施方式的定向耦合器 100 的等效电路图。在定向耦合器 100 中，主线路在输入端子 7a 与输出端子 7b 之间划分为第一主线路 2A 和第二主线路 2B 而形成。第一主线路 2A 进一步划分为分割线圈导体 2c 和分割线圈导体 2d，第二主线路 2B 进一步划分为分割线圈导体 2r 和分割线圈导体 2s。同样，副线路在耦合端子 7c 与终止端子 7d 之间划分第一副线路 3A 和第二副线路 3B 而形成。第一副线路 3A 进一步划分为分割线圈导体 3c 和分割线圈导体 3d，第二副线路 3B 进一步划分为分割线圈导体 3l 和分割线圈导体 3m。而且，第一主线路 2A 与第一副线路 3A 进行耦合而形成第一耦合部 4，第二主线路 2B 与第二副线路 3B 进行耦合而形成第二耦合部 5。

若对本实施方式的定向耦合器 100 的输入端子 7a 输入信号，则从耦合端子 7c 输入
出具有与所输入的信号的功率成正比的功率的信号。

0059 由以上结构所构成的本发明的实施方式 1 的定向耦合器 100 例如由以下的方法制
造而成。

0060 首先，为了形成电介质 1a～1m，例如，准备以 BaO-A1203 为主要成分的陶瓷生片。

0061 接下来，在规定的陶瓷生片上设置用于形成通孔导体 2b、2e、2g、2h、2i、2j、2k、2l、
2m、2n、2o、2p、2q、2r、3b、3e、3g、3h、3i、3k、3n 的孔，并对该孔的内部填充导电性糊料。

0062 此外，在规定的陶瓷生片的表面上以规定的图案形状涂布导电性糊料，以形成连
接线圈导体 2a、2f、2p、2u、3a、3f、3j、3o、分割线圈导体 2c、2d、2r、2s、3c、3d、3l、3m、接地
导体 6a、6d、分割接地导体 6b、6c。

0063 对于填充到通孔导体用的孔中的导电性糊料，以及涂布在陶瓷生片的表面上的导
电性糊料，例如能使用以铜为主要成分的材料。另外，也可以在对陶瓷生片的表面涂布导电
性糊料的同时对通孔导体用的孔填充导电性糊料。

0064 接下来，将陶瓷生片按照规定的顺序进行层叠，并进行加压，然后以规定的外形
(profile) 进行烧成，从而形成层叠体件 1。

0065 最后，将以铜为主要成分的导电性糊料在层叠体件 1 的表面上涂布成规定的图
案形状，并在规定的温度下进行烧结，形成输入端子 7a、输出端子 7b、耦合端子 7c、终止端
子 7d、接地端子 7e、7f、虚设端子 7g、7h，从而完成本发明的实施方式 1 的定向耦合器 100。

0066 以上，对本发明的实施方式 1 的定向耦合器 100 的结构及其制造方法的一个示例
进行了说明。然而，本发明并不限于该内容，可按照发明的宗旨进行各种变更。

0067 例如，本实施方式中，对于第一主线路 2A、第二主线路 2B、第一副线路 3A、第二副
线路 3B，在层叠体件 1 内，在层的层叠方向上，按照第一主线路 2A、第二主线路 2B、第二副
线路 3A、第一主线路 2A、第二主线路 2B、第二副线路 3B 的顺序进行层叠。此外，也可以不以该顺序进行层叠。而在按照第一副
线路 3A、第一主线路 2A、第二主线路 2B、第二副线路 3B 的顺序进行层叠。

0068 此外，分割接地导体 6b、6c 的形状和大小是任意的，能适当地进行变更。此外，以
电介质 1f、1g、1h 为代表的各电介质的厚度是任意的，能适当地进行变更。

0069 另外，本实施方式中，分割接地导体 6b 和 6c 形成在不同的电介质的表面上。即
分割接地导体 6b 形成在电介质 1f 的表面上，分割接地导体 6c 形成在电介质 1g 的表面上。
然而，也可以将分割接地导体 6b 和 6c 形成在同一个电介质的表面上。在此情况下，分割
接地导体 6b 与连接线圈导体 3f、分割线圈导体 3d 之间的距离和分割接地电极 6c 与连接线圈
导体 3a、分割线圈导体 3c 之间的距离相等。同样，分割接地导体 6b 与连接线圈导体 3o、分
割线圈导体 3m 之间的距离和分割接地电极 6c 与连接线圈导体 3j、分割线圈导体 3l 之间的
距离相等。在此情况下，通过使分割接地导体 6b 的形状、大小与分割接地导体 6c 的形状、大
小不同，从而使分割接地导体 6b 对连接线圈导体 3f、分割线圈导体 3d 的影响程度与分割
接地电极 6c 对连接线圈导体 3a、分割线圈导体 3c 的影响程度不同，同样，使分割接地导体 6b
对连接线圈导体 3o、分割线圈导体 3m 的影响程度与分割接地电极 6c 对连接线圈导体 3j、分
割线圈导体 3l 的影响程度不同，能对从副线路导出的耦合端及终止端的阻抗特性进行设计。另
外，从分割接地导体 6b、分割接地电极 6c 到构成第一副线路 3A 的连接线圈导体
3f、分割线圈导体 3d、分割线圈导体 3c、连接线圈导体 3a、连接线圈导体 3a 为止的距离与到构成第二副线路
3B 的连接线圈导体 3j，分割线圈导体 3l，分割线圈导体 3m，连接线圈导体 3o 为止的距离可以通过夹置的电介质的厚度不同而不同。而且，该距离不同也能作为设计阻抗特性时的因素。

[0070] [实施方式 2]
[0071] 图 4 表示本发明的实施方式 2 的定向耦合器 200。图 1 所示的实施方式 1 的定向耦合器 100 中，划分为两个电介质，在电介质 1f 上形成分割接地导体 6b，在电介质 1g 上形成分割接地导体 6c，而在定向耦合器 200 中，在一片电介质上形成两个分割接地导体。即在定向耦合器 200 中，在电介质 11f 上形成有两个分割接地导体 16b 和分割接地导体 16b，以取代电介质 1f 和电介质 1g。此外，在电介质 11f 中还形成有通孔导体 12j 和通孔导体 13g。

[0072] 在定向耦合器 200 中，在电介质 1a～1e、电介质 11f、电介质 1h～1m 依次层叠，从而形成层叠体块件 11。其它结构与图 1 所示的实施方式 1 的定向耦合器 100 相同。

[0073] 在定向耦合器 200 中，在一片电介质 11f 上形成分割接地导体 16b 和分割接地导体 16c 这两者，能够省略一片电介质，因此，能进一步降低定向耦合器的高度。

[0074] [实施方式 3]
[0075] 图 4 表示本发明的实施方式 3 的定向耦合器 300。图 4 所示的实施方式 2 的定向耦合器 200 中，在电介质 11f 上分开形成有电介质，并且分割接地导体 16b 和分割接地导体 16b，而在定向耦合器 300 中，在电介质 300 中，利用连接接地导体将两个分割接地导体相互连接。即定向耦合器 300 中，不电介质 11f 上，而在电介质 21f 上形成两个分割接地导体 26b 和分割接地导体 26c，还利用连接接地导体 36 将两者相互连接。此外，在电介质 21f 中还形成有通孔导体 22j 和通孔导体 23g。

[0076] 在定向耦合器 300 中，在电介质 1a～1e、电介质 21f、电介质 1h～1m 依次层叠，从而形成层叠体块件 21。其它结构与图 4 所示的实施方式 2 的定向耦合器 200 相同。

[0077] 在定向耦合器 300 中，利用连接接地导体 36 将分割接地导体 26b 与分割接地导体 26c 进行连接，因此，能使接地电位更加稳定，并能使从第一副线路 3A 导出的耦合端子 7e 的阻抗特性、以及从第二副线路 3B 导出的终止端子 7d 的阻抗特性更加稳定。

[0078] 标号说明
[0079] 1、21、31：层叠体块件
[0080] 1a～1m、11f、21f：电介质
[0081] 1A：第一主线路
[0082] 2B：第二主线路
[0083] 3A：第一副线路
[0084] 3B：第二副线路
[0085] 2a、2f、2p、2u、3a、3f、3j、3o：连接线圈导体
[0086] 2b、2e、2g、2h、2i、2j、2k、2l、2m、2o、2q、2t、3b、3e、3g、3h、3i、3k、3n、12j、22j、13g、23g：通孔导体
[0087] 2c、2d、2r、2s、3c、3d、31、3m：分割线圈导体
[0088] 4：第一耦合器
[0089] 5：第二耦合器
[0090] 6：第三耦合器
[0091] 7：第四耦合器
[0092] 6a, 6d：接地导体
[0093] 6b, 6c, 16b, 16c, 26b, 26c：分割接地导体
[0094] 36：连接接地导体
[0095] 7a：输入端子
[0096] 7b：输出端子
[0097] 7c：耦合端子
[0098] 7d：终止端子
[0099] 7e, 7f：接地端子
[0100] 7g, 7h：虚设端子