实用新型名称

四氯化钛收集装置

摘要

本实用新型公开了一种将四氯化钛液体和泥浆分离收集的四氯化钛收集装置，可提高氯化工艺生产四氯化钛的收得率。该收集装置包括通过进气口(5)与氯化炉连通的冷凝收集器，冷凝收集器上设置有液出出口(6)和尾气出口(8)，冷凝收集器上还设置有泥浆出口(7)，冷凝收集器还可与尾气缓冲罐(2)连接，从而使来自氯化炉的含四氯化钛气体经冷却后，分别通过尾气出口(8)、液体出口(6)和泥浆出口(7)排放到对应的装置中。本实用新型设备简单，液体四氯化钛纯度高，有利于后续提纯、利用和处理工序，采用尾气缓冲罐(2)时可保证系统压力的稳定，可作为一般低沸点化合物的收集装置，尤其适合于氯化生产四氯化钛时作为收集装置。
【权利要求1】四氯化铁收集装置，包括通过进气口（5）与氯化炉连通的冷凝收集器，冷凝收集器上设置有液体出口（6）和尾气出口（8），其特征是：冷凝收集器上还设置有泥浆出口（7）。

【权利要求2】如权利要求1所述的四氯化铁收集装置，其特征是：冷凝收集器（1）采用外壁设置有冷却夹套（4）的冷却仓（1），液体出口（6）、泥浆出口（7）和尾气出口（8）设置在冷却仓（1）上。

【权利要求3】如权利要求2所述的四氯化铁收集装置，其特征是：冷却仓（1）底部采用锥顶朝下的锥形结构，泥浆出口（7）设置在锥形结构的锥顶部位，液体出口（6）设置在高于泥浆出口（7）的位置。

【权利要求4】如权利要求2所述的四氯化铁收集装置，其特征是：冷却仓（1）下部设置有过滤板（16），泥浆出口（7）设置在过滤板（16）的上侧，液体出口（6）设置在过滤板（16）的下侧。

【权利要求5】如权利要求2、3或4所述的四氯化铁收集装置，其特征是：进气口（5）设置在冷却仓（1）的中部或下部，进气口（6）高于液体出口（6）和泥浆出口（7）。

【权利要求6】如权利要求2、3或4所述的四氯化铁收集装置，其特征是：冷却仓（1）内设置有补充冷却装置。

【权利要求7】如权利要求6所述的四氯化铁收集装置，其特征是：所述的补充冷却装置为冷却管（12）和/或喷淋装置（11）。

【权利要求8】如权利要求1、2、3或4所述的四氯化铁收集装置，其特征是：冷凝收集器通过尾气出口（8）与尾气缓冲罐（2）连接。

【权利要求9】如权利要求8所述的四氯化铁收集装置，其特征是：尾气缓冲罐（2）上设置有次级泥浆出口（10）。

【权利要求10】如权利要求8所述的四氯化铁收集装置，其特征是：尾气缓冲罐
（2）的尾气进气口（13）设置在尾气缓冲罐（2）的底部高于次级泥浆出口（10）的位置。
说明书

四氯化钛收集装置

技术领域

本实用新型涉及一种收集装置，特别涉及一种利用含钛原料氯化工艺生产四氯化钛时的四氯化钛收集装置。

背景技术

目前，在铁原料沸腾氯化生产四氯化钛工艺中，四氯化钛生产工艺流程的氯化工序为：石油焦通过破碎，与高铁渣按一定的比例进行配料，得到混合料，再将配好的混合料加入沸腾氯化炉，氯气从氯化炉底进入炉内，在高温条件下，混合料与氯气发生反应，生成四氯化钛和其它气态杂质，这些气体经氯化炉顶部一起挥发逸出氯化炉，通过除尘、淋洗收集后而得到粗四氯化钛液体，从炉底排出的炉渣返回铁渣电炉回收处理。氯化得到的粗四氯化钛液体经精制工序提纯得到四氯化钛。在氯化工序中，四氯化钛的收集是一项关键技术，由于四氯化钛的沸点不高，约为138.4℃，工业上一般均采用冷凝的方法进行收集。现有技术中，四氯化钛的收集是通过在沸腾氯化炉上部喷淋，从而使反应生成的气体除尘降温到600℃～700℃，再通过沸腾氯化炉顶部的出口流入换热器，经冷却后成为粗四氯化钛液体，流入储存装置，以备进入后续工序，氯化过程中的尾气经尾气处理系统处理后排放。

由于从氯化炉出来的含四氯化钛气体中夹杂有粉尘等，在冷却后不仅有液态物质，也有泥浆状沉淀和少量未液化的气体，因此，目前应用普遍工业用换热器作为四氯化钛冷凝收集器的工艺，所得得到的粗四氯化钛液体的纯度不高，从而在精制提纯工序中的杂质的含量仍较高，并减损了整个生产过程的四氯化钛收得率。

实用新型内容

为了克服现有四氯化钛冷凝收集器无法分离收集，所得四氯化钛液体纯度较低的不足，本实用新型所要解决的技术问题是提供一种四氯化钛液体和泥浆分离收集的四氯化钛收集装置。

本实用新型解决其技术问题所采用的技术方案是：四氯化钛收集装置，包括通过进气口与氯化炉连通的冷凝收集器，冷凝收集器上设置有液体出口和尾气出口，冷凝收集器上还设置有泥浆出口。

本实用新型的有益效果是：设备简单，四氯化钛液体的纯度大大提高，可根据冷却后所得物质的不同物理状态采用相应的提纯措施或再利用，有利于提高整个生产过程中四氯化钛
的收得率；采用尾气缓冲罐时可保证系统压力的稳定，同时减轻尾气处理负担。

附图说明
图1是本实用新型的示意图。
图2是本实用新型的另一示意图。
图中标记为，1-冷却仓，2-尾气缓冲罐，3-连接管，4-冷却夹套，5-进气口，6-液体出口，7-泥浆出口，8-尾气出口，9-尾气排放口，10-次级泥浆出口，11-喷淋装置，12-冷却管，13-尾气进气口，14-液体储存装置，15-泥浆储存装置，16-过滤板。

具体实施方式
下面结合附图和实施例对本实用新型进一步说明。

如图1和图2所示，本实用新型的四氯化钛收集装置，包括通过进气口5与氯化炉连通的冷凝收集器，冷凝收集器上设置有液体出口6和尾气出口8，冷凝收集器上还设置有泥浆出口7。根据从氯化炉出来的含四氯化钛气体经冷却后的不同物理状态，设计多个位置不同的排放口，将冷却后的含四氯化钛物质收集到不同的装置之中，可以有效提高四氯化钛液体的纯度，并根据冷却后所得物质的不同物理状态采用相应的提纯措施或再利用，从而提高整个生产过程中四氯化钛的收得率。

为提高四氯化钛液体的液化率和便于分类收集，冷凝收集器可采用外壁设置有冷却夹套4的冷却仓1，液体出口6、泥浆出口7和尾气出口8设置在冷却仓1上。

进一步的是，如图1所示，为方便液体状和泥浆状物质的收集，冷却仓1底部采用锥顶朝下的锥形结构，泥浆出口7设置在锥形结构的锥顶部位，与泥浆储存装置15连接，使泥浆不易淤积在冷凝收集器1的底部，且含四氯化钛的泥浆状物质可被收集到泥浆储存装置15中再利用；液体出口6设置在高于泥浆出口7的位置，与液体储存装置14连接，冷却后得到的含四氯化钛液体就可通过液体出口6被收集到液体储存装置14中，且经沉淀后得到的液体中四氯化钛含量更高，便于后续工序中提纯。

所述冷却仓1也可采用在下部设置过滤板16的结构，用以分离泥浆和液体，泥浆出口7设置在过滤板16的上侧，液体出口6设置在过滤板16的下侧。所述过滤板16宜倾斜设置，并可将泥浆出口7设置在该过滤板16上侧的低点，与泥浆储存装置15连接，从而有利于泥浆的流出，液体出口6则设置在过滤板16下侧的冷却仓1底部，与液体储存装置14连接。

液体储存装置14、泥浆储存装置15则根据后续处理工序的需要，分别设置出口并与相应的处理装置连接。

因一般收集装置均将气体出口设置在装置顶部，因此，本实用新型的冷凝收集器的尾气
出口8也宜设置在冷凝收集器的顶部，如图1所示，尾气出口8设置在冷却仓1的顶部。而为了增大含四氯化钛气体的冷凝行程，进气口5设置在冷却仓1的中部或下部，进气口6高于液体出口6和泥浆出口7，以尽量减少进气阻力并保证冷凝行程为限。

为了进一步提高含四氯化钛气体的液化率，从而提高四氯化钛的收得率，冷却仓1内设置有补充冷却装置。

如图1所示，所述的补充冷却装置可采用冷却管12，所述的冷却管12可采用蛇形管的结构形式，使冷却仓1内顶部的含四氯化钛气体与冷却管12内流动的冷却液发生充分热交换而达到补充冷却的效果。所述的冷却液可采用任何熔点低于0℃的液体，如乙二醇，氯化钙饱和水溶液等。

如图2所示，所述的补充冷却装置也可采用喷淋装置11，喷淋装置11可以是一个或多个，喷淋装置11通过管路连接到液体储存装置14中，即利用已经冷却得到的含四氯化钛液体来冷却含四氯化钛气体，从而能够提高含四氯化钛气体的液化率，且不会增加精制提纯等后续工序的难度。

更进一步的是，如图1和图2所示，冷凝收集器通过尾气出口8与尾气缓冲罐2连接，相比于原尾气直接由氯化炉排出的方式，由于尾气缓冲罐2的存在，氯化炉内的压力可以更稳定，更有利于保持炉内合理、高效的反应环境。

并且，可在尾气缓冲罐2上设置次级泥浆出口10，次级泥浆出口10与泥浆储存装置15连接。在尾气缓冲罐2中，仍有部分尾气液化而形成的含四氯化钛的次级泥浆，设置次级泥浆出口10收集该次级泥浆，可进一步提高四氯化钛的收得率。

尾气缓冲罐2上一般应设置有尾气排放口9，并通过尾气排放口9与尾气处理系统连接，尾气排放口9宜设置在尾气缓冲罐2的上部。

为增加尾气的液化率，尾气缓冲罐2的尾气进气口13设置在尾气缓冲罐2的底部高于次级泥浆出口10的位置，以增加尾气冷凝行程。

利用本实用新型的四氯化钛收集装置，来自氯化炉的含四氯化钛气体经冷却后，分别通过尾气出口8、液体出口6和泥浆出口7排放到对应的装置中，即尾气通过尾气出口8进入尾气处理装置，冷却后得到的含四氯化钛液体通过液体出口6被收集到液体储存装置14中，而含四氯化钛的泥浆状物质通过泥浆出口7被收集到泥浆储存装置15中。

当冷凝收集器1与尾气缓冲罐2连接使用时，来自氯化炉的含四氯化钛气体经冷却后，分别通过尾气出口8、液体出口6和泥浆出口7排放到尾气缓冲罐2、液体储存装置14和泥浆储存装置15中，尾气缓冲罐2中的次级泥浆经次级泥浆出口10排放到泥浆储存装置15中。
本实用新型设备简单，液态四氯化钛的纯度更高，有利于简化后续工序，收集的同时能保证系统压力的稳定。

实施例1：

如图1所示，来自氯化炉温度为500℃的含四氯化钛气体进入冷却仓1后，由于冷却仓1外层的冷却夹套4作用被冷却成液体及泥浆状物质；所述冷却夹套4中以冷却水为介质，冷却水流量为200kg/h，冷却水出口温度约30℃；冷却仓1顶部设置有作为补充冷却装置的冷却管12，冷却管12内采用溶点温度低于-10℃的乙二醇循环流动冷却，乙二醇的出口温度约10℃，没有液化的含四氯化钛气体在接触到冷却仓1顶部的冷却管12后被进一步被冷却、液化；以液态形式留在冷却仓1中的四氯化钛从液体出口6进入液体储存装置，以泥浆形式留在冷却仓1中的四氯化钛从泥浆出口7进入泥浆储存装置，尾气则通过尾气出口8进入尾气缓冲罐2，进一步液化收集含四氯化钛泥浆后，剩余尾气去尾气处理系统。

实施例2：

如图2所示，来自氯化炉温度为500℃的含四氯化钛气体进入冷却仓1后，由于冷却仓1外层的冷却夹套4作用被冷却成液体及泥浆状物质；所述冷却夹套4中以冷却水为介质，冷却水流量为500kg/h，冷却水出口温度约30℃；冷却仓1顶部设置有作为补充冷却装置的喷淋装置11，喷淋装置11内喷出喷淋温度为-5℃的四氯化钛液体，流量为50kg/h，没有液化的四氯化钛气体在接触到冷却仓1顶部喷出的冷四氯化钛液体后被进一步被冷却、液化；以液态形式留在冷却仓1中的四氯化钛从液体出口6进入液体储存装置，以泥浆形式留在冷却仓1中的四氯化钛从泥浆出口7进入泥浆储存装置，尾气则通过尾气出口8进入尾气缓冲罐2，进一步液化收集含四氯化钛泥浆后，剩余尾气去尾气处理系统。