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TITLE OF INVENTION
Patent Application by
Dr. Mahmoud A. Makhlouf
for

GEOMETRIC DISPLAY TOOLS AND METHODS FOR
THE VISUAL SPECIFICATION, DESIGN AUTOMATION, AND CONTROL
OF ADAPTIVE REAL SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application does not claim the benefit of prior patent applications.
Relevant prior art is referenced in the section “Background of the Invention”.

BACKGROUND OF THE INVENTION

This invention relates to open development and run time environments of
computer based systems, integrated system architectures, adaptive fuzzy systems,
fractal geometry, and formal geometric computer languages.

In recent years, real time systems used in the services, process control,
manufacturing, and military industries have grown into complex software-intensive
systems composed of aggregates of physical processes, hardware processors,
communication networks, software systems, human operators, and users. The

following factors contribute to the inherent complexity of a complex system (Athans
1987, Varaiya 1993):

. Distributed processing: A complex system requires a wide variety of
physical communication interconnections. Distribution of its application
functions is dictated by geographical distribution of user locations, economy
of design, or high levels of processing loads.

. Distributed databases: A complex system has many distributed databases
which require stringent control algorithms for data integrity, transaction
correctness, transaction atomicity, reconfiguration, and concurrency.

. Real-time constraints: A complex system has real-time constraints which
cannot be exceeded without causing severe system malfunctions. The
vulnerability of real-time systems imposes adaptability requirements on their
design and run time operation where system functions may be dedicated to a
processor or allowed to migrate among different processors. This entails
trade-off analysis of software complexity, reliability, and dynamic load
balancing.

. Large number of sensors: A complex system may be monitoring thousands
or millions of distributed sensors with distributed functions for fail-soft
operation, self-diagnosis, self-simulation, and self-correction. The time
evolution of these sensors is subject to input/output timing and
synchronization problems within the physical processes and their
environment.



WO 00/65488 PCT/US00/10992

. Large number of variables: A complex system is a strongly interacting
multivariable system where a change in one input variable produces a
change in many other variables. Input variables are almost always statistical
and time vanant.

. Malicious and accidental interruptions: A complex system may be subjected
to criminal activities, jamming of communication lines, or the partial
destruction of any of their elements. Significant loss of human life,
destruction of equipment, and loss of valuable information may result from
malfunction of the sensor instrumentation, the processor hardware, or
software.

. Human-machine interactions: A complex system performance depends on
the interaction between humans and machines performing together.
Determination of the proper boundaries separating machines from human
functions in a hazardous system environment does not remain static during
the system life cycle.

Since the functional performance and reliability of complex systems depends
strongly on their software design, major intellectual and financial investment has been
directed to the development of tools including object-oriented methods, open
programming environments, and life cycle development processes. Effective
application of these tools to develop and sustain complex systems is limited by the
lack of display methods and tools for the geometric specification and design
automation of software systems. In the software world, it is generally acknowledged
that the difficult part of building software intensive systems is in the requirements
specification, design and testing of the conceptual construct underlying the system,
and not in the labor of coding it and testing the fidelity of the generated code (Brooks
1987). This conceptual construct is the set of interlocking concepts: data sets, static
and dynamic relationships among data items, algorithms, and invocation of system
functions. Major causes of these difficulties are:

» Invisibility and unvisualizability problems of software. These problems
arise because it is currently perceived that software is not inherently
embedded in space and as such has no ready geometric representation in the
way that land has maps, a three dimensional physical object has an
elevation, plan and side view projections, or a mechanical part has a scale
drawing. The unvisuability of the software impedes the process of design
within one mind and severely hinders communication among minds.

. Complexity problems of software. These problems arise because of the very
large number of software elements, states assumed by these elements and the
nonlinear interaction between these elements. Technical complexity gives
rise to communication problems among team members, which lead to
product flaws, cost overruns, and schedule delays.

. Changeability problems of software. These problems arise because the
software product is embedded in a cultural matrix of applications, users,
laws, etc. These may change continually and their changes force change
upon the software product.

. Conformity problems of software. These problems arise because of the
many arbitrary human institutions and systems to which the software
interfaces must conform.
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The above problems are not resolved by traditional structured design tools or
state of the art object oriented tools (Champeaux 1992, Desmond 1999). Both sets of
tools fail to provide the necessary mechanisms for the specification, design
automation, and test of the conceptual construct of real systems. When functional
decomposition and structured design tools are employed several graphs are used to
represent data and program hierarchical structures, data flow, control flow, and
system state transition. When object oniented tools are employed several graphs, such
as Class, Use case, Sequence, Collaboration, and State diagrams, are used to represent
object inheritance, object relationships, flow of data, flow of control, patterns of
dependency, time sequence, and data base structure. The current generation of both
structured design and object oriented design tools suffers from a number of
disadvantages:

*  They do not provide mechanisms for the visual integration of the different
types of graphs used to specify object inheritance, object relationships, flow
of data, flow of control, patterns of dependency, time sequence, and data
base structure. Each of these graphs has different syntax and semantics. For
any real system of a significant size, the lack of visual integration
mechanisms hinders human assimilation, inspection and analysis of the
logical construct underlying multipie views of a specified system.

. Syntax and semantics of their graphs do not capture critical aspects of the
system operational constructs such as system performance constraints,
system security constraints, system reliability constraints, and system fault
tolerant constraints.

. Syntax and semantics of their graphs do not capture critical aspects of the
system static and dynamic configuration constructs such as the geographical
allocation of system resources to system nodes, and scheduling of system
resources to meet evolving operational system requirements.

»  Their graphs do not provide visual geometric enforcement of system design
semantics such as the spatial containment of system layered structure or 1ts
component objects within the geometric region of their container object.

. Their tools fail to provide an integrated geometric specification of the
system logical construct. Their tools are not able to enact and adapt the
system design to meet changing operational requirements.

The current generation of open programming environments and object
oriented object design tools fails to create adaptive systems engineering tools. They
fail to resolve invisibility, unvisualizability, complexity, changeability, resource
constraints, dynamic scheduling, and spatial semantic problems of software intensive
systems. Without a capability to create and capture unambiguous integrated
geometric specifications of software intensive systems, current state of the art tools
are not enabled with design automation methods. These methods would be used to
synthesize, assess and enact planned software intensive products before significant
development, integration and test cost are incurred.
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BRIEF SUMMARY OF THE INVENTION

This invention provides new, physics-like computational models, called M
computational models, which are used to capture and integrate the static and dynamic
architecture of a real system. An M model is specified using a formal geometric
language called the M Language. Design automation of an M model is carried out
using a set of tools called Adaptive Model Reference (AMR) tools. These tools
automate the integration of system components into operational systems that can be
adapted during run time to meet end users’ functional and system performance
requirements. Several objects and advantages of the present invention are:

*  To provide a formal geometric language called the “M Language” supported
by automated tools. This language provides syntactically valid visual
sentences, and provides semantic and mathematical interpretation of these
sentences. The M language provides generalized icons for annotating
system objects, and associates a geometric region with each object. These
regions are geometrically arranged to specify geometric plan and elevation
projections of the static and dynamic structure of a real system. The M
language is diagram-based, and is generalized icon-based where the icon of
each region provides the dual representation of a physical part (the pictorial
image) and a logical part (the meaning).

*  To provide expert rules and tools used to construct M models. These models
are geometric, bipartite, directed, token based models specified using the M
language. M models capture in a single geometric graph type the
information now typically specified by a set of graph types such as tree
graphs, inheritance graphs, state transition graphs, data flow graphs, control
flow graphs, and Petri Net graphs.

. To provide expert rules and tools used to construct a static architecture of a
real system called the “M static architecture”. This architecture provides an
integrated geometric specification of object classification, association, and
composition relationships between the component objects of a real system.

. To provide expert rules and tools used to construct a dynamic architecture of
a real system called the “M dynamic architecture”. This architecture
provides a geometric specification of the constrained behavior of a real
system. An M dynamic architecture is specified using a new type of
networks called “Adaptive Loop Information Nets” (ALI_Nets). Each
ALI_Net specifies behavior and functional performance goals of a semantic
system partition which is observable, controllable, and configurable.

*  To provide expert rules and tools used to construct an integrated architecture
of areal system, called an “M Integrated Architecture”. This architecture
integrates into a single geometric graph the operational requirements
architecture, which specifies performance constrained interactions between
external system objects, and the design control architecture which specifies
performance constrained interactions between internal system objects.

*  To provide expert rules and tools used to bind component objects of a real
system into an integrated architecture that can be controlled and adapted to
evolving users requirements. The term control is used to mean all aspects of
decision making that are applied to adapt a system during its development to
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compensate for requirement changes and design errors, and during run time
operation to compensate for unanticipated operational system conditions.

*  To provide expert rules and tools used to construct an adaptive multi-level
design control scheme which monitors, controls and adapts the behavior of
the multi-layer integrated architecture of a real system. This scheme is
composed of a set of concurrent control processes which are supervised by a
set of adaptive supervisory control processes. Lower levels of the adaptive
scheme regulate physical resources of a real system. Higher levels control
and adapt distributed information processing functions.

*  To provide expert rules and tools used to specify a group of one or more
design control architectures for each operational requirements architecture
and specify a group of one or more implementation architectures for each
design control architecture.

*  To provide expert rules and tools used to evaluate static structure metrics
and dynamic structure metrics of the integrated architecture of a real system.
Static structure metrics include fractal dimension, entropy coupling, and
deadlock metrics. Dynamic structure metrics include load, service time,
response time, and utilization level metrics.

. To provide expert rules and tools used to evaluate cost, value, and
performance sensitivity of current and proposed business operations of a real
system.

BRIEF DESCRIPTION OF THE DRAWINGS

The file of this patent contains at least one drawing executed in color. Copies of this
patent with color drawing(s) will be provided by the Patent Office upon request and
payment of the necessary fee.

Figure 1: Adaptive Model Reference Procedures

Figure 2: M Cellular Display

Figure 3: Geometric Encapsulation of Object Resources

Figure 4: Geometric Composition of an Object Region

Figure 5: Geometric Composition of a Resource Region

Figure 6: Folded and Unfolded Object Regions with an Internal Shared Resource

Region

Figure 7: Folded and Unfolded Object Regions with an Internal Private Resource

Region

Figure 8: Folded and Unfolded Resource Region

Figure 9: Folded and Unfolded Public Interface Region of an Object

Figure 10: Isomorphic Projections of an Unfolded Region

Figure 11: Folding and Unfolding Rules of the Real Numbers Set

Figure 12: Geometric Composition of an M Atomic Connection

Figure 13: Geometnic Projections of a Multi-layer Stack of Objects

Figure 14: Encapsulation of a Resource Region

Figure 15: Geometric Projection Rules of Multiple Stacks of Layered Objects

Figure 16: Features Table of Various Object Oriented Design Methods

Figure 17: Static Models used by Object Oriented Design Methods

Figure 18: Dynamic Models used by Object Oriented Analysis Methods

Figure 19: The Not-integrated Set of Dynamic and Static Models used by Object
Oriented Design Methods

Figure 20: Geometric Representation Rules of Hierarchical Data Structures



WO 00/65488 PCT/US00/10992

Figure 21:
Figure 22:

Figure 23:
Figure 24:
Figure 25:
Figure 26:

Figure 27:

Figure 28:

Figure 29:
Figure 30:

Figure 31:

Figure 32:

Figure 33:
Figure 34:

Figure 35:

Figure 36:

Figure 37:
Figure 38:
Figure 39:
Figure 40:

Figure 41:

Figure 42:
Figure 43:

Figure 44:

Figure 45:
Figure 46:
Figure 47:
Figure 48:

Figure 49:

Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:

Figure 55:

Figure 56:

Figure 57:

Figure 58:
Figure 59:

Figure 60:

Figure 61:
Figure 62:
Figure 63:
Figure 64:

Figure 65:

Figure 66:

Figure 67:

Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:

Geometric Representation Rules of Hierarchical Function Structures
Geometric Representation Rules of State Transition Graphs
Geometric Representation Rules of Data Flow Graphs

Geometric Representation of Mode B Data Flow Graphs
Geometric Representation of Petri Net Token Based Graphs
Folded Geometric Representation of an M Model

Geometric Representation of Logic Primitives

A Program Fragment Represented Using Geometric Primitives
Plan Projection of AMR Construction Procedures and Tools

Plan Projection of AMR Procedures and Tools

Plan Projection of AMR Knowledge Controller

Elevation Projection of AMR Tool-Supported Procedures

Plan Projection of a Real System

Elevation Projection of a Real System

Elevation Projection of an M Iterative Map of a Real System

Plan Projection of an M Iterative Map of a Real System
Time-Space Evolution Grid

Operational Model of AMR Architecture Specification & Analysis Tools

AMR Architecture Specification Procedure

Lower Level Composition of AMR Architecture Specification Procedures
Geometric Representation of Object Association Models
Geometric Interface of Object Association Models

Types of Object Constraints

Geometric Representation of an Object Classification Model
Geometric Representation of a Multiple Inheritance Model

Fractal Representation of a “Part_Of”” Relationship

Fractal Representation of a “Has_A” Object Relationship

Fractal Representation of a “Knows_A” Object Relationship
Fractal Representation of a Multiple Object Attribution Relationship
Plan Projection of an Integrated Static Object Model

Fractal Composition of a System

Fractal Composition of Object Attributes

Attribute Sets of an Object

Orthogonal Projection of an Object

Object/Loop State Graphs

Geometric Representation of a Fuzzy Object

Multi-value Logic Representation

Orthogonal Projection of Aggregated Objects

Dynamic Architecture Model

ALI_Net Loop Composition

Plan Projection of an ALI_Net Composition Model

Plan Projection of an Aggregated Set of ALI_Nets

Open / Closed Designation of a Set of Object Loops

Cascade Aggregation Structures of a Set of Object Loops
Elevation Projection of Cascade Aggregation Structures of a Set of Object

Loops
Parallel Aggregation Structures of a Set of Object_Loops
Elevation Projection of Parallel Aggregation Structures of a Set of
Object_Loops

Multi-layer ALI_Net Composition of an Integrated Architecture
Elevation Projection of a Layered Object Loop

Fractal Representation of a Corba and a COM Object

Fractal Representation of an Interface Message Set

An Example of Two Connected Loops

An M Compound Connection

Basic Two Sided Communication Construct
Loop_Fork_Communication Construct

Loop_Branch_Communication Construct



WO 00/65488 PCT/US00/10992

Figure 77: Loop_Join_Communication Construct

Figure 78: Elevation Projection of the Connected Two Loop Example

Figure 79: High Level Plan Projection of the Connected Two Loop System Example

Figure 80: Lower Level Plan Projection of the Connected Two Loop System Example

Figure 81: “Message/Data/objects” Wiring Diagram, The Two Loop System Example

Figure 82: Multi Level Winng Diagrams of Container and Contained Objects

Figure 83: Layered Composition of an ALI_Net Dynamic Graph

Figure 84: An ALI_Net Business Tracking Graph

Figure 85: An Aggregated ALI_Net Business Tracking Graph

Figure 86: Categories of Cognitive Models

Figure 87: Fuzzy Linguistic Models

Figure 88: The Two Design Space Models

Figure 89: Elevation Projection of the Object Loops of an Integrated Architecture

Figure 90: Geometric Representation of an Information Access Loop

Figure 91: ALI_Net Components of an Integrated Architecture

Figure 92: Layered structure of Nettronic, Infotronic and Mechatronic Container

Objects

Figure 93: Elevation Projection of Nettronic, Infotronic and Mechatronic Object

Stacks

Figure 94: Plan Projection of Nettronic, Infotronic and Mechatronic Object Stacks

Figure 95: Cellular Projections of a Set of Infotronic and Mechatronic Objects

Figure 96: Plan Projection of an Infotronic Object

Figure 97: Elevation Projection of a Two Node Architecture

Figure 98: Geometric Projection of a Cellular System Architecture

Figure 99: Multi-Dimensional Folding of an Object Region

Figure 100: Mapping of Virtual State Space Grid to Physical Space Grid

Figure 101: Euclidean Physical Space Grid

Figure 102: Operational Model of AMR Planning, Scheduling and Control Tools

Figure 103: AMR Planning Procedure

Figure 104: Geographical Configuration of System Objects

Figure 105: Specification of Geographical Constraints

Figure 106: Mechatronic Object Navigation Mechanisms

Figure 107: Cellular Allocation of Mechatronic and Infotronic Objects

Figure 108: Communication Connections

Figure 109: Human & Physical Objects Scheduling Procedure

Figure 110: Operational Model of the AMR Automated System Control Scheme

Figure 111: Plan Projection of the AMR Control Scheme of an Automated System

Figure 112: Two Layers Elevation Projection of the AMR Control Scheme of an
Automated System

Figure 113: Three Layers Elevation Projection of the AMR Control Scheme of an
Automated System

- Figure 114: Dynamic Relationship Constraints Interface

Figure 115: AMR_Loop_Process Data Structures

Figure 116: AMR Message Header Format

Figure 117: ALI_Net Message Header Format

Figure 118: Plan Projection of an AMR Concurrent Application Control Process

Figure 119: Subloops of a Concurrent Application Control Process

Figure 120: High Level Control Loops Binding Supervisory and Concurrent

Application Control Processes

Figure 121: High Level Elevation Projection of an AMR Supervisory Control Process

Figure 122: Compound Connections of Concurrent Application Control Processes

Figure 123: High Level Plan Projection of a Concurrent AMR Supervisory Control
Process

Figure 124: Subloops of a Concurrent AMR Supervisory Control Process

Figure 125: AMR Overload Monitor

Figure 126: Loop Cycle Window Measurements

Figure 127: Internal structure of AMR Learning Controller



WO 00/65488 PCT/US00/10992

Figure 128:
Figure 129:
Figure 130:
Figure 131:
Figure 132:

Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:

Figure 138:
of

Figure 139:
Figure 140:
Loops
Figure 141:
Loops
Figure 142:

Figure 143:

Elevation Projection of Model Estimation and State Prediction Procedure
(The Impulse Response Ladder)

Elevation Projection of Model Estimation and State Prediction Procedure
(The General Auto Regressive Ladder)

Elevation Projection of Model Estimation and State Prediction Procedure
(The PreWhitening Ladder)

Elevation Projection of Model Estimation and State Prediction Procedure
(The Optimum Dead Time Impulse Response Ladder)

Elevation Projection of Model Estimation and State Prediction Procedure

(The Time Shifted, Compact Form Ladder)

AMR Performance Controller

Lower Level Composition of the AMR Performance Controller

Lower Level Composition of the AMR Fuzzy Control Engine

Fuzzy Performance Control Membership Functions

Control Rules of Loop_Response_Time (LRT) Measurements of Critical
Loops

Control Rules of Predicted Loop_Response_Time (LRT) Measurements
Critical Loops '

Control Rules of Loop_Load (LL) Measurements of Critical Loops

Control Rules of Predicted Loop_Load (LL) Measurements of Critical

Control Rules of Loop_Service_Time (LST) Measurements of Critical
Control Rules of Predicted Loop_Service_Time (LST) Measurements of

Cntical Loops
Control Rules of Loop_Resource_Utilization_Level (LRUL)

Measurements of Critical Loops

Figure 144:

Figure 145:
Figure 146:
Figure 147:
Figure 148:
Figure 149:
Figure 150:
Figure 151:
Figure 152:
Figure 153:
Figure 154:
Figure 155:
Figure 156:
Figure 157:
Figure 158:
Figure 159:
Figure 160:
Figure 161:
Figure 162:
Figure 163:
Figure 164:
Figure 165:
Figure 166:
Figure 167:
Figure 168:
Figure 169:
Figure 170:
Figure 171:
Figure 172:
Figure 173:

Control Rules of Predicted Loop_Resource_Utilization_Level (LRUL)
Measurements of Critical Loops

Business Management ALI_Nets

Lower Level Composition of Business Management ALI_Nets

Value Cost Trade-off Analysis

AMR Value Cost Analysis

AMR Parallel Simulation Engine

Three Basic Categories of Work Break-Down Structures

Work Break-Down Structure Relationships

A Set of ALI_Net Dynamic Graphs

A Set of Business Control Graphs

Overview of the Pull Down Menus of AMR Tools

Architecture Categories Rules

Category Specification Rules

Project Region

Project Instances Data Base

Project ALI_Net Specification

ALI_Net Type Specification

Object Region

Object Type Specification

Object Instances Data Base

Storage Region

Storage Type Specification

Storage Instances Data Base

Pipe Region

Pipe Type Specification

Pipe Instances Data Base

Loop Region

Loop Type Specification

Loop Instances Data Base

Model Manipulation



WO 00/65488

Figure 174
Figure 175
Figure 176
Figure 177
Figure 178
Figure 179
Figure 180
Figure 181
Figure 182
Figure 183

: Containment Relationship Constraints

: Association Relationship Graph

: Association Constraints Specification

: Loop Relationship Constraints

: Architecture View Types

: Region View Types

: Structural Analysis Reports

: Dynamic Analysis Reports

: Real System Planning

: Specify Geographical Constraint of Infotronic & Organizational Objects

Figure 184: Plan Projection of a Node Configuration Example

Figure 185
Figure 186
Figure 187
Figure 188
Figure 189
Figure 190
Figure 191
Figure 192
Figure 193
Figure 194:
Figure 195:
Figure 196:
Figure 197:
Figure 198:
Figure 199:
Figure 200:
Figure 201:
Figure 202:
Figure 203:
Figure 204:
Figure 205:
Figure 206:
Figure 207:
Figure 208:
Figure 209:
Kit

Figure 210:

Knowledge

Figure 211:
Figure 212:
Figure 213:

: Specify Geographical Constraint of Mechatronic Objects

: Plan Routing & Connectivity of Mechatronic Objects

: AMR Supervisory Control

: AMR Monitoring_Views Controller

: AMR Learning Controller

. AMR Performance Controller

: AMR Configuration Controller

: AMR Security Controller

: AMR Reliability Controller

Equipment Scheduling

Personnel Scheduling

ALI_Net Scheduling

Real System Identification

AMR Project Management

Plan Projection of the AMR Tools Kit

Plan Projection of an AMR Knowledge Controller

Plan Projection of the Tool Kit M Schemas

Plan Projection of Inter-connections Between M Schemas

Isomorphic Plan Projection of Inter-connections Between M Schemas

Elevation Projection of a Multi_Level Architecture

Elevation Projection of a Set of Multi_Level Schemas

Components of a Multi_Level Schema

Unfolded Projection of a Set of AMR Knowledge Controllers

Plan Projection of a Homogeneous Set of AMR Tools

Plan Projection of the Partially Distributed Knowledge Controller Tools

Elevation Projection of the Operational Model of an AMR CDE
Controller

Operational Model of an AMR COE Configuration and Installation

Multi_Level Integration of UML Models

Heterogeneous Tools Schema Relationships

10

PCT/US00/10992



WO 00/65488 PCT/US00/10992

DETAILED DESCRIPTION OF THE INVENTION

In this invention a tools-supported formal geometric visual language called the

M Language is specified where:

Formal language means that the language not only specifies syntactically
valid visual sentences, but also provides semantic and mathematical
interpretation of these sentences. This interpretation is used to analyze,
verify, validate, control, and adapt the run time behavior of the developed
system.

Geometric language means that the language not only provides generalized
icons for annotating system objects, but also associates a geometric region
with each object. These regions are geometrically arranged to specify the
spatial elevation and plan projections of 1) static system structure constraints
such as containment, association and connection relationships of the system
components, 2) dynamic system structure constraints such as performance,
reliability, and security constraints of the interconnected system
components, and 3) the implications of static and dynamic system
constraints on the system data flow, control flow, and state transition
relationships.

Visual language means that the language is not only diagram-based, but is
also generalized icon-based. By generalized icon, we mean that the icon of
each region provides the dual representation of a physical part (the pictornal
image) and a logical part (the meaning).

The M language is used to specify a new class of systems engineering tools

called Adaptive Model-Reference (AMR) tools. These tools are specified using the
following four sets of procedures as shown in figure 1:

AMR Architecture Specification and Analysis Procedures. These
procedures provide rules used by system architects and designers to
construct, adapt, and verify the blue prints of the integrated system design
using the geometric language of this invention as shown in procedures 1-5,
and 9-10.

AMR Development and Manufacturing Procedures. These procedures are
used by developers of information objects and fabricators of physical objects
to create objects specified in the blue prints of the system architecture
design.

AMR Planning, Scheduling, and Enactment Procedures. These procedures
provide rules used by business managers and system operators to plan
business operations, schedule resources, enact, control and sustain the run
time behavior of systems specified using the geometric language of this
invention as shown in procedures 5, 7, 8, 9, and 10.

AMR Business Management Procedures. These procedures provide rules
used by project managers to construct, adapt, and verify the blue prints of
the business missions performed by real system operations as shown in
procedure 6.

Procedure 1: Tessellation Rules of an M Cellular Display

Geometric models of this invention are constructed using a cellular display

called the M cellular display. This display is virtual, tessellated, and wraparound. It
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1s virtual and tessellated using equilateral triangle tiles such that there are no gaps and
no tiles overlap as shown in figure 2. The wraparound requirement implies that the
display is tiled such that when a point is guided off the left side of the display, it
appears at the same height on the right side. Similarly when a point moves off the top
of the display area, it reappears at the corresponding position on the bottom. The
virtual cellular requirements imply that the display 1s partitioned into cells where each
cell is composed of two adjacent triangular display tiles as shown in figure 2, and
each cell represents a unique segment in the system spatial state grid. A set of one or
more triangular display tiles are used, in the following procedures, to construct
primitives of the formal geometric visual language of this invention.

Procedure 2: Geometric Production Rules of Object Regions

Geometric representation of systems is carried out using the following five
steps procedure:

First, the symbol A is used to define the geometric region of an abstract or a
real system, its named mechatronic or infotronic component objects, or the named
transformation functions performed by the component objects. A real system is
defined as a set of one or more physical processes, such as sensors, energy
transformation, material and information transfer equipment; data processors and their
associated software; and human operators and system users. The system region A,
specifies the boundaries of a geometric area which contains the set of geometric
regions of all of it’s component objects. It follows that the system geometric root
region A is a container of a set of object regions A where system component objects
reside. An object, whose region consists of a single tile, is called a visually atomic
object if it’s internal structure is not visually specified. An object which is not
visually atomic is called a visually compound object.

Second, as shown in figure (3-c), an object region A, of each visually
specified object, is composed using four special types of geometric regions called
atomic regions. These regions are called an operation region; an attribute or a
resource region; a referential attribute region; and a public interface region where, as
shown in figure 3:

. An operation region A is an active geometric region used to specify the set
of object operations called methods or member functions required to access
object variables. The set of operations performed by an object defines the
operational interface or message protocol of the object.

. An attribute or a resource region V is a passive geometric region used to
specify the set of attribute types (or variables), attribute values of a place,
such as computer memory, where these attributes reside, or physical
resources, such as an operational facility or a hardware processor, required
to house and execute object functions.

. A referential attribute region V is a passive geometric region used to specify
the set of referential attributes which specify linking, embedding, and
containment relationships with other objects.

. A public interface region V is a passive geometric region used to export the
named object message protocol. In other words define the list of the named
object operations, their signature and type of attributes provided by the
container object and its contained objects.

A loop connections duct, a tube ®2 used to house, represent, the set of loop
connections supported by an object.
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Third, each object region is composed of a set of one or more method regions
as shown in figure 4. In this figure each composition pattern resides within the
minimum containing rectangle allocated to the root object region, called the initiator
object region. Furthermore, if all methods share the same set of object attributes then
all method regions are adjacent to a single object resource region as shown in figure
4. Similarly, each resource region can be decomposed into a set of one or more
resource regions as shown in figure 5. In this figure each composition pattern resides
within the minimum containing rectangle allocated to the root resource region,
sometimes called the initiator resource region. To create planar displays of
connections between various method regions, method regions may be folded or
unfolded. By applying the tessellated wraparound requirements of the virtual display
area, as specified in procedure 2, isomorphic geometric representations of
folded/unfolded method regions are constructed as specified in figures 6 and 7.
Similarly figure 8 illustrates the folding/unfolding rules of the resource regions of an
object and figure 9 illustrates the folding/unfolding rules of the resource regions of the
public interface of an object. The unfolded patterns of figures 6 to 9 can be equally
represented by the unfolded pattern shown in figure 10. Application of these rules to
the folding and unfolding of the real numbers set is shown in figure 11.-

Fourth, various geometric regions are connected to form an atomic connection
which is bipartite, directed, and token based as shown in figure 12. These
connections are constructed using the Edge symbol =». The bipartite requirement
disallows the connection between two regions of the same type i.e. only a A region
can only be connected to a V region and vice versa. Two basic types of atomic
connections are defined. The first type of connection, called staged connection as
shown in figure (12-a), is normally used to specify the flow of material or energy
resources consumed or generated by system physical objects where the outputs of the
producer object are deposited into a shared storage resource region where they are
subsequently used by the consumer object. The second type of connection, called
pipe connection as shown in figure (12-b), is used to specify the communication
between a set of collaborating objects. Pipe connections are established using public
interfaces of producer objects. These connections are used to represent push and pull
communication models as shown in procedure 5.2.1. As shown in figure (12-c), an
equivalent Petri Net can be created for figures (12-a) and (12-b). Figure (12-c) lacks
an explicit representation of different communication semantics captured in figures
(12-a), (12-b), and (73). See procedure 5.2.1 for further details.

Fifth, two types of geometric projections, called plan projection and elevation
projection, are constructed for a multilayered stack of objects as follows:

. The elevation projection is constructed by assigning, for each layered object,
figure (13-a), an object region A and an interface region V as shown in
figure (13-b).

J Each object region is recursively contained within the geometric region of
the higher level container object as shown in figure (13-c). Forasetof n
layered objects, this process is repeated n times.

. The resource region of each object, including abstract data types, may be
encapsulated as shown in figure 14. This process can be recursively applied
until each resource region represents passive data structures, i.e. not abstract
data structures which are not encapsulated by an object.

The above procedure can be applied to construct container objects containing
a set of co-centric regions where the order of region containment is the same as the
order of layering of system objects. This implies that the most inner object region
represents the lowest layered object. Plan projections generated by this procedure
provide an intrinsic means for preserving the integrity of the designed system layered
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structure where objects cannot be connected to objects belonging to non-adjacent
layers. As shown in figure 15, geometric projections of multiple stacks of layered
objects can be constructed by the above procedure. Figures 13 and 14 provide visual
representation of containment relationship constraints between layered objects. Other
types of constraints such as association and value constraints are further incorporated
in the system visual specification as shown in figures 43 and 114

Procedure 3: Geometric Production Rules of an M Model

System specifications are usually developed using traditional functional
decomposition and structured design methods or state of the art object oriented
methods listed in figure 16. These methods provide procedures for the specification
of a system’s underlying static and dynamic models as shown in figures 17, 18 and
19. At least four types of graphs are used by structured design and object oriented
methods. The first type, called a tree graph, is used to specify the hierarchical
function and data structures of the designed system. The second type, called a state
transition graph, is used to specify various system states (operating modes) and state
transitions triggered by internal and external events handled by the system. For each
of the system modes, the third type, called a data and a control flow graph, is used to
specify the input/output data and control flow relationships between the system
transformation functions. The fourth type, a Petri Net graph, has a syntax which
enables system designers to capture, in the same graph, both state and data flow
system specifications. In this invention information provided by the above four types
of graphs are captured into a single geometric graph, called an M model, using the
following seven step procedure:

First, a resource region V is allocated to each child vertex, at each level, of the
hierarchical data structure tree graph. As shown in figure (20-a) example, an optional
generalized icon may be associated with the geometric region. Child regions, at each
level, are aggregated into a parent compound data structure resource region. These
rules generate the folded geometric representation of the hierarchical data structure
graph as shown in figure (20-b).

Second, a function region A is allocated to each child vertex, at each level, of
the hierarchical function structure tree graph. As shown in figure (21-a) example, an
optional generalized icon may be associated with the geometric region. Child
regions, at each level, are aggregated into a parent compound function region. These
rules generate the folded geometric representation of the hierarchical function graph
as shown in figure (21-b).

Third, a resource region V is allocated to each event ¢, in the state transition
graph and a function region A is allocated to each action. As shown in figure (22-a)
an optional generalized icon may be associated with the different types of geometric
regions. These rules generate the unfolded geometric representation of the state
transition graph as shown in figure (22-b).

Fourth, a resource region V is allocated to each data flow D; in the data flow
graph and a function region A is allocated to each function F. This rule, in
conjunction with procedure 2 rules, are applied to the data flow graph associated with
cach system mode. As shown in figures (23-a) and (24-a) an optional generalized
icon may be associated with the different types of geometric regions. These rules
generate the unfolded geometric representation of the data flow graphs of each system
mode as shown in figure (23-b) and (24-b).

Fifth, the data flow graphs of each system mode can be combined in a single
token based Petri Net graph as shown in figure (25-a). This figure assimilates
information provided in figures (23-a) and (24-a). Similarly figures (23-b) and (24-b)
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can be assimilated to generate figure (25-b). This figure provides an unfolded
geometric representation of data flow information for both system modes.

Sixth, procedure 2 rules are used to generate a single integrated geometric
graph as shown in figure 26. This graph integrates the folded geometric
representation of all information provided in figures (20-25). Figure 26 provides
visual integrated view of static and dynamic system structures.

Seventh, processing logic of each function, or object method can be specified
using the set of logic primitives shown in figure 27. Each generalized icon of these
primitives has the trio representation of a physical part (the pictorial image), a logical
part (the meaning) and a process part (the computation). Figure (28-b) illustrates how
figure 27 primitives can be used to generate geometric representation of the program
fragment shown in figure (28-a).

Procedure 2 and 3 rules are used to develop the geometric plan and elevation
projections shown in figures (29 - 32) respectively. Figure 29 provides a plan
projection of the set of AMR procedures and tools presented in this invention. Plan
projection of these procedures and tools is shown in figure 30. These tools are
supported by two knowledge controllers whose plan projections are shown in figure
31. Plan projections of figures (29 - 31) are complemented with the elevation
projection shown in figure 32. These projections illustrate how the “tools-supported”
procedures of this invention can be used by project managers, system architects,
designers, developers, fabricators and operators to manage, specify, analyze, and
create adaptive computer based systems as shown in the following procedures.

Procedure 4: Geometric Production Rules of an M Iterative Map

This procedure provides the framework used for the geometric specification of
the internal design structure of a real system and its dynamic interaction with its
external environment as follows:

First, the plan and elevation projections of a real system and its outer
environment are outlined as shown in figures 33 and 34. In these projections:

. An External System region A, named XS, is defined. This region contains
all automated systems, physical processes, and organizations that are not
included within the boundary of a real system under investigation. As
shown in procedure 5.2.2, the XS region to construct the external design
control model, called the operational requirements architecture model of a
real system as described in procedure 5. This model specifies and controls
the behavior of business operational activities performed by external human
objects. These activities provide a framework for specifying the desired
functional and behavioral specification of the operational requirements of a
distributed real system RS under investigation. Objects contained within the
external system region are called external system objects. The muiti-layered
plan and elevation projections of these objects can be generated using
procedure 2 rules.

. A Real System region A, named RS, is defined. This region contains all
objects, within the stated system boundary, that function to satisfy the
desired system behavior. This region is used to construct an internal system
design control model, called the design control architecture model as
described in procedure 5. This model is used to specify and control the
behavior of activities performed by various real system objects. Objects
contained within the internal system region are called internal system
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objects. The multi-layered plan and elevation projections of these objects
can be generated using procedure 2

. The resource regions, named XSS and SS, contain all the state variables, and
resources, of the XS and S regions respectively.

. All interactions between external and internal system communicating objects
are specified using pipe connections of the type shown in figure 12-b. These
connections are established using the pull and push public interfaces of both
external and internal system objects.

Second, an integrated system evolution model is specified using an iterative
system map called the M iterative map as shown in figures 35 and 36. By an
integrated model, we mean that the model can be applied to represent the evolution of
both the container and contained system objects at all levels of system aggregation
and abstraction. System evolution is defined as both spatial and time evolution of
systems. Spatial evolution means that, at each point of time t, a system has a
geometric design structure which records the evolutionary processes used to create the
observed physical state and information state structure at time t. Time evolution
means that evolution of the system state, its static and dynamic design structure

during development, maintenance and run time operations. As shown in figures 35
and 36:

. Spatial evolution of the system at the event time k is captured by the kth
element of the “Spatial Evolution Array” SEA (k) = [ XS (t,), S (t,.) ]
where:

S (tkl) ={F (t‘k«l)! G (tkl) |

In the above equation, the system operations F and G specify mapping
of system inputs into outputs where ss(t,,,) = F (ss(t, ), i(t,)) and o (t,,,) =
G(ss(t,,,)). In this formulai(t) and o (t,,,) specify the values of the system
input and output variables at event times t, and t,,, respectively.

. Time evolution of the system at the event time k is captured by the sequence
of all elements of the “Time Evolution Array” TEA (i) where 1 =0, k and
TEA (i) = [ XS (1), X85 (t), 0 (1), S (t,), 58 (1), i(t)].
For most systems of practical importance, the set of system operations F and
G, are specified using a mixture of discrete event and discrete time dynamical system
models. For many application systems these operations are usually time variant,
nonlinear and distributed which gives rise to complex system behavior. Adding to
these complexities, these systems are often subject to a sequence of events that
contains surprises and unpredictabilities such as variations in system loads and
equipment aging. These events result in unexpected failures, not to mention hidden
system design and software implementation errors. All these factors combined lead to
failure to control the system design, it’s development, and it’s run time behavior. To
help management of system complexities, the core subject of this invention is to
provide system designers and users with analysis, display, design control, and run
time tools that enable the design of systems that can be adapted to meet their desired
system requirements (see procedures 5, 6 and 7).

Third, to untangle spatial and time system complexities, the space-time grid
shown in figure 37 is used to specify the design control architecture of a real system
as shown in figures 38, 39 and 40 where:

. The spatial and time evolution of the system design structure is specified
using a sequence of time indexed instances of the system model where each
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element in this sequence is a snapshot of the system state space structure at a
specified time instant.

. The spatial “state space” projection of each element in the sequence is
specified using the following three types of models as shown in figures 39
and 40:

-- A minimum static architecture model. This is an M model which
provides an integrated geometric representation of classification,
association and aggregation relationships between system objects. A
minimum static architecture model is created using procedure 5.1.

--  Anintegrated architecture model. This is an M model which is used
to partition a system dynamic architecture into a minimal set of
independent, observable, controllable subsystems called Adaptive
Loop Information Nets (ALI_Nets). An integrated architecture
model is created using procedure 5.2.

-~ An AMR design control scheme. This scheme is used to adapt
behavior of a real system ALI_Nets to meet desired behavior as
specified in the operational requirements architecture model. The
real system AMR design control scheme is created using procedure
5.3.

Fourth, the sequence of time indexed M models, shown in figures (35-37), are
used to specify the time evolution of the system during all phases of the system life
cycle. Two types of time dependent changes are captured by the system time
projection: system structure changes and changes in the values of system state
variables specified by the system design structures. The time projection of the latter
type of changes is specified using the ALI_Net state graphs described in procedure
5.1.2. Information captured by these diagrams is used in procedure 5.3.3.2 to control
the system run time behavior.

Procedure 5: Control Oriented Production Rules of Adaptive Integrated
Architectures

Control oriented design of adaptive integrated architectures is carried out
using procedures 5.1 to 5.3.

Procedure 5.1: Geometric Specification of a Minimum Static Architecture

This procedure consists of two methods. The first method, described in
procedure 5.1.1, is used to construct M models of the static semantic primitives of
objects. These primitives are aggregated to specify an integrated static architecture
model. The second method, described in procedure 5.1.2, uses the aforementioned
model to specify the minimum static architecture model.

Procedure 5.1.1: Geometric Specification of a Static Architecture
System designers use object classification, association, and composition
models to specify the system static type structure. Geometric representation of these

models is carried out using the following five step procedure:

First, a A geometric region is allocated for each object type depicted on the
object relationship model by a rectangle as shown in figure (41-a).
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Second, a V geometric region is allocated for each set of one or more
directional object type relationships (role or associations). Each relationship is
depicted on the object relationship diagram example by the symbol ® as shown in
figure (41-b).

Third, for each association object, which contains references to the identifiers
of each of the objects participating in the relationship, an association object region
A 1s embedded within the V relationship region as shown in figure (41-c).

Fourth, an optional generalized icon is associated with each geometric region.
This icon is used to associate the geometric region with the original graph type
semantics as shown in figure (41-c).

Eifth, three types of attribute sets are specified for each object namely:
application function invocation attributes, object’s attribute value constraints and
object’s association constraints. Each attribute set is encapsulated by a set of object
methods. It follows that the public interface of each object can be partitioned into
three sub-regions called the application function interface, the attribute value
constraints interface, and the association relationship constraints interface. These
regions are used to invoke object methods responsible for the specification and
enforcement of system constraints, see figure (42 a-c). As shown in figure (43-a),
three types of object attribute value constraints are defined: range constraints which
are statements used to speci{y the lower and upper bound of the values of object
variables, enumeration constraints which define the enumerated list of allowed values
and their number, and relationship constraints which define the correct relationship
between two or more object attributes. As shown in figure (43-b), three types of
object association relationship constraints are defined: participation constraints which
define the number of times an object instance of an object class can participate in a
connected relationship, co-occurrence constraints which define the number of
instances of different objects that can exist together in a relationship, and cardinality
constraints which define the maximum number of instances of an object class.

The above procedure is used to develop the geometric representation for two
special categories of object association models as follows:

The first category of models are object classification models based on the
semantic pnmitives “Kind_Of” or “Is_A” object relationships. These relationships
are used to specify class inheritance relationships. Geometric representation of these
models is carried out using the following procedure:

First, for each branch of the inheritance tree graph, a A geometric region is
assigned to each method of the derived class shown in figure (44-a).

Second, the region of each inherited method is embedded within a dashed

V geometric resource region. Subsequently this dashed resource region is embedded
within the derived class regions as shown in figure (44-b). The use of a dashed line
indicates that the method region is visually atomic and not partitioned into lower level
methods.

Third, for each method a dashed Vinherited attributes region is embedded in
the derived class resources region.

Fourth, the geometric representation of the multiple inheritance models,
depicted in figure (44-a), is generated as shown in the example in figure 45.

The second category of models are hierarchical models based on the semantic
primitives “Part_Of”, “Has_A”, and Knows_A” object relationships. These
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relationships are used to specify the aggregation and composition of objects using a
set of component objects.

. Given a “Part_Of” relationship, a geometric representation is developed as
follows:

- First, for each branch of the “Part_Of” relationship tree, a
A geometric region, defined by a single triangular display tile, is
allocated to each lowest level leaf of each tree branch shown in
figure (46-a).

- Second, the lower level object component regions are aggregated to
form the geometric region of the higher level aggregated object as
shown in figure (46-b). The compound object region is defined by
the smallest equilateral containing triangle of its component regions.

As shown in figure (46-b), the above process may be reversed to
decompose each compound object region into its component object regions.

o Given a “Has_A” or a “Knows_A” attribution or association class
relationship such as the relationships “O, Has_A O, and “O, Knows_A 0,”,
a geometric representation is developed as follows:

-~ First, for each component object, a geometric region is allocated.
This region may consist of a single display tile for visually atomic
objects and multiple display tiles for visually compound objects as
specified in procedure 2.

-~ Second, the component object regions are dragged to be totally
embedded within the internal attributes region of the container object
as shown in figures (47 and 48). Since “Has_A” and “Knows_A”
represent attribution types of class relationships between containers
and component objects, their regions are geometrically contained
within the attributes region of the container object. To demonstrate
that component objects in “Knows_A" relationships have different
life cycles from their containers, geometric projection of component
objects are displayed with dashed lines as shown in figure 48.

- Third, when multiple attribution relationships of different types are
specified, their container plan projection is generated as shown in
figure 49.

Object association, classification and composition geometric primitives,
shown in figures (41 - 49), are combined to enable the specification of an integrated
static architecture of real system objects as shown in figure 50. The static architecture
provides the necessary foundation for specifying the dynamic system design control
scheme as shown in procedures 5.2 and 5.3.

Next, when system component objects are aggregated using “Part_Of”
relationships, then the overall system is specified by a geometric fractal pattern as
shown in figure 51. In this pattern, if the structure of the system at different levels of
composition is self-similar, then when a portion of the geometric fractal is magnified
it looks exactly like the higher level of system representation. Many systems cannot
be represented by pure self-similar structures. Instead these systems can be
represented by self-affine fractal structures. Self-affine structures are made of
shrunken but distorted copies of the higher level structures. The fractal pattern
representation of systems is a logical result of the bipartite containment constraints of
each object region as specified in procedures 2 and 4. A similar pattern evolves when
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the same procedure is applied to specify the geometric structure of compound
resource regions as shown in figure 52.

Finally various manipulations of the geometric displays specified in this
invention are efficiently specified, stored and generated on computer display

equipment using affine transformation with the following parameters R, S, Theta, Phi,
E, F, Prob where:

. R, S are scaling parameters along x and y coordinates
. Theta, Phi are rotation parameters relative to x and y coordinates
. E, F are translation parameters in the x and y directions
. Prob is the probability of selecting an iterated function rule
Procedure 5.1.2: Geometric Specification of a Minimum Static Architecture

By a minimum static architecture model, we mean the composition of system
objects using a minimal orthogonal set of Object Attributes Basis O(A_B) and a
minimal orthogonal set of Object Function Basis O(F_B). The two sets are used to
construct minimum object association, classification and composition geometric
relationship models as follows:

First, three types of attribute sets are defined for each object namely: intrinsic
attributes, referential attributes and object control attributes as shown in figure (53).
Each set region can be further partitioned to specify sub-resource regions allocated to
each attribute, some times called variables as shown in figure (54). If O(A) is the set
of all object attributes, then O(A) can be partitioned into two subsets namely
Primary_Attributes O(P_A) set and Derived_A ttributes O(D_A) set such that:

. If (a,, a,, a;, ...., a,)) are elements of the Primary Attributes set O(P_A) and,

. If (g, 8 85 vevvenene g, ) are elements of the Derived_Attributes Generation
rules set G(D_A), and,

. Ifa, =g(a,a,a,..,a), then

a

1

EO0(D_A)

Consequently, the tuple [O(P_A), G(D_A)] defines for each object k, an
orthogonal Attributes Basis O(A_B). This basis is a minimal attributes generator such
that if an element is excluded from it, then the generated set of attributes will be a
proper set of O(A). By applying the above rules, the minimum state of each object is
defined by the set of values assumed by the orthogonal set of all object attributes
O(P_A) at some instant of time t. These attributes specify the object state space
vector O(S, t) where:

oS,y = [(a,, ay, &, ..., ), t]

As shown in figure 54, a unique axis is associated with each object attribute
(variable). This construction creates a planner representation of n dimensional space
models. Since each of these vanables resides in a resource region of the object
model, it follows that associated with each axis there is a unique resource region.

Second, the object state O(S, t) at a given instant of time t,_ can be specified by
a directed polygon graph, called an Object State or Loop State graph, as shown in
figure 55. This graph depicts the values of the state variables of an object or a loop, at
any given instance of time t, by connecting the temporal values of object state
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variables displayed on the attributes axis sets as shown in figures (55-a, b). Each of
these axes may be scaled to display the values of numerical and/or linguistic
variables. Temporal evolution of object state is represented using the time indexed
object state graphs shown in figure (55-b). Each of these graphs displays the lower
and upper alarm limits and out of control limits for each system loop as shown in
figure (55-c). The state of each ALI_Net ata given instant of ime is specified by a
directed polygon graph, called an ALI_Net state graph. This graph specifies the
directed interconnection between two main sets of variables (resource regions)
namely input/output state variables observed by external systems and internal state
variables. Loop state graphs may be aggregated to display the aggregated behavior of
a set of ALI_Net loops. Overlay of the current and desired state graphs specifying
desired and current performance states provides an effective visualization of any
deviations of object behavior. This deviation can be automatically detected to initiate
necessary notifications and corrective action as shown in procedure 7.5.

Third, object attributes may be specified as crisp variables, such as input
numerical information from sensor measurements and output numerical information
to device actuators, or fuzzy variables such as input/output linguistic information
meaningful to humans. When fuzzy logic is used, the two types of infs ormation are
combined into a common frame work where a given object attribute value may belong
to one or more sets of linguistic variables as shown in figure (56-a, b). The degree of
membership in each of these sets is determined using member functions. The values
of each of these functions are real numbers in the interval [0. 1]. By way of example
figure (57-2) illustrates three member functions used to map numerical values of a
crisp variable, say temperature measurements, onto three linguistic variable, say Cool
designated by the blue color, Warm designated by the black color, and Hot designated
by the red color. This mapping calculates for each numerical value, its degree of
membership in various member functions as shown in figure (57-b).

Fourth, Object functions are classified based on their role and how they were
generated. Generation-based classification partitions object functions into an
Inherited Functions O(Ih_F) set and an Intrinsic Functions O(In_F) set. Role based
classification partitions object functions into two sets:

. Control_Functions O(C_F) set. Each element of this set can:

-~ Invoke its functions based on attribute values set by other functions
within the object or by object invocations.

- Invoke other objects.

-~ Edit shared system attributes.

-~ Schedule the sharing of resources among system elements.

. Application_Processing_Functions O(A_P_F) set. Each element of this set
can:

-- Perform an iterative application processing function. These
functions are usually domain specific.

- Calculate object attribute values. These attributes may be used by a
control module or by other application process modules.

Fifth, the set of all object functions O(F) is partitioned into two subsets
namely Primary_Functions O(P_F) set and Denived_Functions O(D_F) set such that:

. If (f,, f,, £, ...., f)) are elements of the Primary Function set O(P_F) and,

. I (g, s & woreenene g, ) are elements of the Derived_Functions Generation
rules set G(D_F), and
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. Iff, =, f,...,1[), then

f

-l

€ O(D_F)

Consequently, the tuple [O(P_F), G(D_F)] defines for each object k, an Object
Function_Basis O(F_B). This basis is a minimal function generator where, if an
element can be excluded from it, then the generated set of functions will be a proper
set of O(F).

Sixth, a minimum set of static object relationship models is defined such that:

« If(0,,0,,0;, ... 0O, ) are the elements of the system Static Object Basis
where O, =[O, (A_B), O, (F_B)] and,

» If(G,,G,, G,) are the elements of the three set of rules used to generate the
set of classification and aggregated association and composition objects and,

. Ifo,,,=G/(0,,0,,0,, ...... 0O, ), wherel =1, 3, then

O €0

n+l

where O is the set of all static object basis.

The above formulation implies that since component objects are aggregated to
construct multi-level geometric fractal patterns of the type shown in figure 51, it
follows that the orthogonal attributes basis of an aggregated object is the union of the
attributes basis of all of its component objects as shown in figure 58. In this figure we
illustrate, by way of example, the orthogonal representation of an aggregated three

object system. In this figure, the aggregated object attributes set specifies shared
~ application function attributes, referential attributes and control attributes.

Procedure 5.2: Geometric Specification of an Integrated Architecture

This procedure consists of two methods. The first method, described in
procedure 5.2.1, enables the specification of a minimum dynamic architecture
structure using ALI_Nets. These nets are used, in the second method described in
procedure 5.2.2, to specify an integrated architecture model of a real system.

Procedure 5.2.1: Geometric Specification of a Minimum Dynamic
Architecture

Software designers use a variety of diagrams, e.g. diagrams mandated by the
Universal Modeling Language (UML), to capture the time ordered execution of object
oriented systems. These models include:

. Use Case diagrams to specify or characterize the behavior of a whole
application system together with one or more external actors that interact
with the system.

. Message Trace or Sequence diagrams to illustrate the interactions among a
set of objects in temporal order, which is used to understand timing issues.

. Object Message or Collaboration diagrams to illustrate the objects and links

that exist just before an operation begins and also the objects and links
created (and possibly destroyed) during the operation.
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. State diagrams to describe the temporal evolution of an object of a given
class in response to interactions with other objects inside or outside the
system.

Currently information captured by these models is used to gain insight into the
emerging dynamic behavior of the designed software system. This understanding has
to be further integrated, in the system designer’s mind, with other information derived
from static architecture models such as class inheritance graphs, object association
and object containment graphs. Each of these models provides a single representation
of a particular aspect of the system structure, called single view, such as the
classification structure view and the state transition view. To convey the semantic
meaning of the evolving system design, each of these views is augmented with
additional information expressed using natural language text. This approach of
modeling software intensive systems gives rise to four major, related difficulties:

. Requirements representation difficulties: Requirements not explicitly
captured by existing design and analysis methods include: real-time
constraints, performance constraints; contextual constraints like the
necessity to coexist with existing systems; resource constraints of target
system; reliability constraints; integrity constraints; security constraints; and
safety constraints. Without an integrated architecture model which captures
and integrates how the system design will not violate these constraints, it is
impossible to design adaptive systems which can meet their desired
operational requirements.

. Comprehension difficulties: It is not easy for system and software
specifiers, designers, and implementers to integrate information provided by
the many visually disconnected design views, each of which uses different
syntax and different symbols to convey the semantic meaning of the
evolving system design. Without an integrated architecture model which
captures the aggregated semantics of the evolving system, it is very hard to
verify that the meaning of the evolving system conceptual and
implementation design structure can satisfy end users’ requirements.

. System analysis difficulties: Without an integrated architecture model that
enables formal mathematical analysis of the evolving system “state space
and temporal” design complexities, it is impossible to make any assertions
about system correctness, lack of deadlocks, boundness, safety, etc.

. Control of changes difficulties: Without an integrated architecture model
that can be used to plan, predict, implement and control changes to the
system, it is not only very hard to understand the side effects and the
behavioral implications of making changes to the system but also it is
practically impossible to adapt system structure or its parameters, during it’s
run time operation, to meet desired system behavior requirements.

To resolve the above difficulties, a new class of design control models called
Adaptive Loop Information (ALI) Nets are defined in this invention. These nets are
the fundamental structuring mechanism used to:

. Integrate information provided by various dynamic and static object models,
called views, into an integrated system graph that may be hierarchically
organized. Each of the traditional system design views, used by structured
design or object oriented tools, is specified as a separate geometric,
blueprint, overlay. The geometric aggregation of these overlays defines the
integrated system graph in a manner similar to that shown in figure 26. This
process is carried out such that the geometry of system objects and their
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relationships, for each of the system views, maintains an invariant
relationship to their spatial relationship on their parent integrated graph.

. Create a dynamic architecture model which consists of an external system
design control model and an internal system design control model as shown
in figure 59. The latter model is composed of a set of proper subsystems
called ALI_Nets. Each ALI_Net can be independently configured, tested,
modified, maintained and controlled to meet changing system requirements
where:

-~ Each ALI_Net must satisfy the following conditions:

. Goal seeking Condition: Each ALI_Net has explicit user (outer
directed) goals clearly delineated in the system operational
architecture model, and implied design (inner directed) goals.
The two sets of goals should be clearly linked in the integrated
architecture model. Furthermore, the architecture of each
ALI_Net should contain the three essential elements of control,
application processing functions, and information feedback.

. Motion Condition: Each ALI_Net is dynamic where, through
execution (motion), component objects of the ALI_Net become
interrelated and can interact.

. Control Condition: System dynamics are controlled using a set
of one or more, interacting ALI_Nets loops. Each ALI_Netis
specified using three types of object loops: Application
Processing loops, Control loops, and Diagnostic loops as
shown in figures 60, 61 and 62. Application processing loops
are triggered by event types generated by external systems
including system users. Processing of these events will result
in generating desired application system outputs. Each
application processing loop specifies the sequence of
information flows and state transitions required to generate
application system products under normal operating conditions.
Diagnostic loops recognize fault events, analyze these events to
identify causes of malfunctions and necessary corrective action.
Control loops monitor operational performance of application
processing loops and diagnostic loop results to adapt system
structure, its configuration and the scheduling of its resources
to achieve desired operational objectives of the real system.
Two basic categories of subsystem control loops are defined.
The first category is called physical object control loops.
These loops are the traditional automatic control loops used in
the process control, sensors, and manufacturing industres to
regulate the behavior of the subsystem physical objects
(physical devices). The second category is called information
object control loops. These loops are used to monitor and
adapt the dynamic behavior of the subsystem information
processing objects to changes caused by the system operational
environment. Specification, design, and run time enactment of
information subsystem loops is a principal objective of this
invention.

. Cycle Time Condition: Each object loop component of an
ALI_Net 1s viable during an identifiable period of time, called
the loop cycle time, as shown in figure 35. Viable implies that
during the loop cycle time, loop operations can be performed
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without the need for exchanging information with the system
outer environment.

. Stability Condition: Each ALI_Net has a structure for
patterned behavior such that it demonstrates stability and
continuity. Stability means that the system attains steady state
in its environmental field and internally. But, a steady state
does not mean static.

Aggregate information usually documented with use case, message trace and
object message diagrams into system structures called Application
Processing loops. These loops are specified in a manner that can be used to
satisfy the proper subsystem conditions and, as such, enable the design of
the necessary diagnostics and control loops required to adapt system
behavior.

Define the essential information required to control the run time behavior of
each proper subsystem. In a control-oriented model of systems,
specification of the desired behavioral requirements of the system provides
the essential information required to regulate the system behavior and is also
used for the on-line identification of the system design by tracing the code
execution of an operational system as shown in procedure 7.

Specify, for each user type, an observation process used to monitor system
aspects which are significant to the particular user type. Information
exchange during the observation process provides the means by which the
observer develops a better comprehension of the system. Varnous
observation model types are further aggregated into a minimum observable
and controllable model supported by a minimum static object model as
shown in procedure 5.3.

Correlate all information associated with a named proper system across all
phases of the system life cycle including requirements, design,
implementation, and maintenance phases. In other words, at each phase of
the life cycle, each ALI_Net associated with each proper subsystem provides
a mechanism for capturing evolving design details of the static/dynamic
relationships of the proper subsystem components. It follows that at each
phase of the life cycle the components of each proper subsystem and their
static/dynamic relationships, can be readily identified, visualized, tracked,
and isolated from other proper subsystems.

The following procedure uses the above definition to specify the ALI_Net

design control scheme of a multi-layered distributed application systems:

First, for each two sets of “cyclic input and output” interactions between the

system internal and external objects, see figure 62, a directed graph called an
object_loop is specified where:

An object_loop specifies the interconnection between a set of one or more
“loop terminal input” resource regions, and a set of one or more “loop
terminal output” resource regions. These sets include the set of persistent
internal system resources. These resources are maintained by the ALI_Net
control modules to ensure the reliable fault tolerant operation of the
specified subsystem. Input and output edges connecting loop body with its
terminal resource regions are called external loop edges. All other loop
edges are called internal loop edges. These edges are used to specify
required connection between internal systems.
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. Cyclic input set implies that the set of all loop terminal inputs, specifying the
external information required to perform loop functions, are input to the
subsystem once at the beginning of a complete cycle. Two subsets of loop
terminal inputs are specified: the first subset is the subset of inputs provided
by external system objects and the second subset is retrieved from the
system internal persistent data base.

. Cyclic output set implies that a complete cycle of the system produces
internal interactions and any element of the set of loop terminal outputs can
be expressed as constants at the end of the loop cycle. Two subsets of loop
terminal outputs are specified: the first subset is the subset of outputs
transmitted to external system objects and the second subset is stored in the
system internal persistent data base.

By satisfying the above conditions it follows that all occurrences within the
boundaries of an automated subsystem are internal interactions with no
external interactions, with its outer environment (both human operators and
automated external systems), during one complete loop cycle. -

As shown in figure 62, a set of coupled object loops are aggregated to form an
ALI_Net. ALI_Nets are subsequently aggregated to compose the System Design
Control Scheme. Aggregation operations are carried out using the cascade and
parallel aggregation structures shown in figures (64-67).

Second, each object_loop may be specified as a closed or an open loop; an
object loop that begins and ends with the same region is called a closed loop; a loop
which does not satisfy the closed loop condition is called an open loop, see figure 63.
Furthermore, loop category is designated as an Application Processing loop, a Fault
Diagnostic loop or a Control loop. An Application Processing loop or a Fault
Diagnostic loop is determined by the presence or absence of control actions required
to regulate the quality of system services provided by the system. As shown in
figures (63-a, b), Lx and L _( are closed control loops because system operators and

automated system control actions are dependent on measurements of system outputs.
Although L is a closed loop, it is not a control loop because the control action
necessary to maintain the quality of the processing loop products/service is not
dependent on loop Lk outputs. Closed process loops provide the basic structure for
the sequential nesting of a set of two or more object_loops (subsystem fragments) into
subsystem_loops. On the other hand, L; is an open control loop, figure (63-¢),

because system operators and internal system control actions are independent of
system output values.

Third, aggregate object_loops into one of the following three structures:

. Cascade loop aggregation structures: These structures are used to specify
the sequential nesting, loop chaining, of a set of two or more loops such that
the terminal inputs of each loop, excluding the first loop, are set by external
systems using values of the terminal outputs of the preceding loop as shown
in figures (64 and 65).

. Parallel loop aggregation structures: These structures are used to specify a
concurrent set of upstream subsystem loops, loop decomposition, triggered
by a set of cyclic terminal inputs, with a down stream set of subsystem
loops. The terminal inputs of the down stream fragments are set by external
systems using the combined values of the terminal outputs of the upstream
fragments as shown in figures (66 and 67).
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types are further aggregated into a minimum observable and controllable model
supported by a minimum static object model as shown in procedure 5.3.

Correlate all information associated with a named proper system across all
phases of the system life cycle including requirements, design, implementation,
and maintenance phases. In other words, at each phase of the life cycle, each
ALI_Net associated with each proper subsystem provides a mechanism for
capturing evolving design details of the static/dynamic relationships of the
proper subsystem components. It follows that at each phase of the life cycle the
components of each proper subsystem and their static/dynamic relationships,
can be readily identified, visualized, tracked, and isolated from other proper
subsystems.

The following procedure uses the above definition to specify the ALI_Net design

control scheme of a multi-layered distributed application systems:

First, for each two sets of “cyclic input and output” interactions between the

system internal and external objects, see figure 62, a directed graph called an object_loop
is specified where:

An object_loop specifies the interconnection between a set of one or more “loop
terminal input” resource regions, and a set of one or more “loop terminal
output” resource regions. These sets include the set of persistent internal system
resources. These resources are maintained by the ALI_Net control modules to
ensure the reliable fault tolerant operation of the specified subsystem. Input and
output edges connecting loop body with its terminal resource regions are called
external loop edges. All other loop edges are called internal loop edges. These
edges are used to specify required connection between internal systems.

Cyclic input set implies that the set of all loop terminal inputs, specifying the
external information required to perform loop functions, are input to the
subsystem once at the beginning of a complete cycle. Two subsets of loop
terminal inputs are specified: the first subset is the subset of inputs provided by
external system objects and the second subset is retrieved from the system
internal persistent data base.

Cyclic output set implies that a complete cycle of the system produces internal
interactions and any element of the set of loop terminal outputs can be
expressed as constants at the end of the loop cycle. Two subsets of loop
terminal outputs are specified: the first subset is the subset of outputs
transmitted to external system objects and the second subset is stored in the
system internal persistent data base.

By satisfying the above conditions it follows that all occurrences within the
boundaries of an automated subsystem are internal interactions with no external
interactions, with its outer environment (both human operators and automated
external systems), during one complete loop cycle.

As shown in figure 62, a set of coupled object loops are aggregated to form an

ALI_Net. ALI_Nets are subsequently aggregated to compose the System Design Control
Scheme. Aggregation operations are carried out using the cascade and parallel
aggregation structures shown in figures (64-67).
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Second, each object_loop may be specified as a closed or an open loop; an object
loop that begins and ends with the same region is called a closed loop; a loop which does
not satisfv the closed loop condition is called an open loop, see figure 63. Furthermore,
loop category is designated as an Application Processing loop, a Fault Diagnostic loop or
a Control loop. An Application Processing loop or a Fault Diagnostic loop is determined
by the presence or absence of control actions required to regulate the quality of system
services provided by the system. As shown in figures (63-a, b), Lk and Lk_( are closed
control loops because system operators and automated system control actions are
dependent on measurements of system outputs. Although Lk is a closed loop, it 1s not a
control loop because the control action necessary to maintain the quality of the
processing loop products/service is not dependent on loop Lk outputs. Closed process

loops provide the basic structure for the sequential nesting of a set of two or more
object_loops (subsystem fragments) into subsystem_loops. On the other hand, Lj is an
open control loop, figure (63-c), because system operators and internal system control
actions are independent of system output values.

Third, aggregate object_loops into one of the following three structures:

. Cascade loop aggregation structures: These structures are used to specify the
sequential nesting, loop chaining, of a set of two or more loops such that the
terminal inputs of each loop, excluding the first loop, are set by external systems
using values of the terminal outputs of the preceding loop as shown in figures
(64 and 65).

. Parallel loop aggregation structures: These structures are used to specify a
concurrent set of upstream subsystem loops, loop decomposition, triggered by a
set of cyclic terminal inputs, with a down stream set of subsystem loops. The
terminal inputs of the down stream fragments are set by external systems using
the combined values of the terminal outputs of the upstream fragments as shown
in figures (66 and 67).

. Mixed loop aggregation structures: These structures are used to specify the
sequential nesting of a set of two or more loops where the internal structure of
each of these loops may have a parallel aggregation structure.

Fourth, for each of the above loop aggregation structures, identify the type of
coupling and interaction between the component objects of a named set of object loops.
Four types of coupling may be identified:

. Object Occurrence Coupling when the same object instance is invoked (i.¢.
shared) by multiple loops.

. Message Coupling when the same event, or message instance is used to invoke
objects of more than one loop.

. Object Attributes Coupling when global variables, used in some object oriented
programming languages, are shared among the object instances of more than
one loop.

. Physical objects coupling when information system objects of more than one
loop share physical system objects such as memory processors.
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Fifth, each set of coupled object_loops is aggregated into an ALI_Net structure.
By coupled loops, we mean object loops whose components satisfy one or more of the
above coupling conditions. The set of regions shared between the component loops of an
ALI_Net specifies behavioral dependencies between the coupled set of object loops.

Sixth, compose each object loop L, as an ordered set of multilayer component
loops where L; designates the jth layer component of the loop L, as shown in figures 68
and 69. Each layered component loop is triggered when the services of an object
belonging to the designated layer are invoked. The annotation of various sub-loops of the
multi-layered distributed application systems is optionally displayed using the following
convention:

<ALI_Net_Edge_Identifier> ::= < ALI_Net _Identifier>
{<Object_Loop_ldentifier_List>}
<Object_Loop_Identifier_List> ::= <Object_Loop_Identifier>
<Layer_Identifier> <Edge_Identifier_List>
<Edge_Identifier_List> ::= <Edge_Identifier> { , <Edge_Identifier_List>}

<Edge_ldentifier> is defined using loop communication constructs as shown in
figures (73 - 77). As shown in these figures, object_loops may fork or branch only at an
object or a method region A . If the loop fork condition is an AND then all output edges
are annotated with the identical loop Id name as the input edges of the loop. On the other
hand if the loop branching condition is an OR then the loop ID name of each possible
output edge is augmented with an additional unique sub-loop id name.

Seventh, specify each layered component loop by an ordered set of pipe
connections between system objects allocated to the designated layer as shown in figure
69. Each of these system objects may be implemented using run time system
environments such as Microsoft’s COM objects or Object Management Group’s CORBA
objects. As shown in figure (70-a, b), each COM or SOM object is represented by a
geometric region within which the component objects are embedded as shown in figure
(70-c). An object public interface region contains a list of methods (e.g. vtable pointers)
supported by the interface as shown in figure 71. In accordance with the CORBA or
ActiveX rules, all interactions between the component objects of a loop occur only by
invoking object operations, and objects execution only affect system resources allocated
to the object. Two types of object interaction structures are defined:

. Operation chaining structure occurs when an operation on one object triggers
the invocation of an operation on another object. This chained operation may in
turn cause another operation to be invoked (see loop L of figure 72).

. Operation decomposition structure occurs when an operation on one object
triggers multiple operations on other objects. The result is a hierarchical
processing tree with the owner object performing the initial operation at the root
of the tree; each subordinate operation must be completed before its superior
operation can finish, and coordination among subordinate operations may be
required (see loop L; of figure 72).

Eighth, bind system object components into object loop structures using a
compound connection where the fractal structure of the pipe region is partitioned into one
object region called the communication binding region and three resource regions called
send request, receive request and message specification resource regions as shown in
figure 73. Allowed interactions are specified by an object message protocol as specified
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in its message interface shown in figure (71-a). A message protocol specifies the syntax
and semantic of object operations supported by the message interface. Behavior of the
communication binding objects is a result of the supported loop communication
semantics where the interactions between loop objects engaged in a pipe connection are
regulated using:

Synchronous mode with the invoked object operation returns Result or Error.
Asynchronous mode with the invoked object operation returns Resuit or Error.
Synchronous mode with the invoked object operation returns Error (if any).
Asynchronous mode without return from the invoked object operation.

As shown in figure 73, asynchronous communication is represented by a directed
edge from the invoking object to the object containing the invoked object operation

where the sequenced symbols W are used to specify communication and execution order.
On the other hand synchronous communications are represented by a bi-directed edge
which represents the synchronous return condition of Result or Error (if any).
Asynchronous and synchronous pipe connections are specified using the following four
basic communication constructs. These constructs provide visual geometric
representation of loop communication semantics as follows:

. Basic_Communication construct shown in figure (74-d) provides an aggregated
geometric representation of the two basic interactions of the connected objects
with the communication binding object.

. Loop_Fork_Communication construct shown in figure (75-d): For a named
loop, the Loop_Fork construct generates two or more concurrent computations
as specified in the signature of the send request. As shown in figure (75-d),
edges specifying the trigger of the two forked computations Ogq and Oy are
annotated with the identical loop annotation to the input edge to the Op
computation.

. Loop_Branch_Communication construct shown in figure (76-d): For a named
loop, the Loop_Branch construct triggers only one of two or more concurrent
computations. Selection of which computation to trigger is specified in the
signature of the receive request. As shown in figure (76-d), the annotation of

each output edge is concatenated with a sequential index number specifying the
subloop name.

. Loop_Join_Communication construct shown in figure (77-d): For a named
loop, the Loop_Join construct is used to specify the combine of two or more
upstream computations performed by concurrent system objects into one
concurrent down stream computation. As shown in figure (77-d), the Od

computation will halt until all input edges with the same loop annotation are
enabled. This implies that the O4 will not perform any loop Lj functions until

both Mk and Mg conditions are enabled. On the other hand the Ly functions
will be immediately triggered by the enabling of the Mk condition.

Ninth, a multi-layer specification of system loops is generated by manual or
automatic tools as shown in figures (78 -82) where:

. The elevation and plan projections of the two object loops system of figure 72
example are shown in figures (78 - 80).
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. The loop wiring diagram of the two object loops system of figure 72 is shown in
figure 81. In this diagram, the sequence of loop connections is specified at the
message invocation connection points and the list of component objects are
monotonically sorted by their layered id.

. A complete specification of system interconnection loops is carried out using
the container objects interconnection diagram of figure 82 where the intra
connections of the contained objects are specified using the lower level
contained objects wiring diagrams

Tenth, the multi-layered loops of each ALI_Net, shown in figure 69, can be
rearranged to display the isomorphic ALI_Net dynamic graph shown in figure 83. This
new type of graphs enable the visualization and analysis of the subsystem dynamics
specified by an ALI_Net. As shown in figure 83 loop harmonics at each layer are
computed by the superposition of the harmonics of its component loops at the lower
layer.

Eleventh, define for each ALI_Net the set of metrics used to measure the
operational effectiveness of the proper subsystem represented by the ALI_Net, predict the
impact of resources allocation or design changes on quality of service provided by the
proper subsystem and its financial results. As shown in figure 84, four major categories
of metrics are used:

. Quality of Service / Customer Profile Metrics. These metrics measure customer
satisfaction relative to competitors, customer retention, market share gain,
customer complaints, etc. Products/services quality metrics measure
compliance to industry standards, creation of innovative products, etc.

J Financial Metrics. These metrics evaluate the cost/profit of delivering products
or services created by the proper subsystem. Financial metrics include unit cost
of each resource type.

. Resource Utilization Metrics. These metrics include human resources metrics
which measure human labor requirements and skills; equipment resources,
computer hardware and software resources.

. Operational Metrics. These metrics include process cycle time, idle time, wait
time, throughput rates, work in progress, inventory levels, defect rate, error
rates, resources levels. These metrics evaluate the efficiency of transforming
process inputs (raw materials) into physical products. Other operational metrics
include information metrics which evaluate the value of information generated
by the proper subsystem.

The above metrics are used to construct an ALI_Net Business Tracking Graph as
shown in figure 85. In this figure there is an overall system desired operating region and
a set of ALI_Net actual performance regions. Each of the latter regions specifies the
contribution of the specified net to the overall performance of a real system. For each
type of variable, deviations of measured variables from desired system behavior can
trigger automated run time system control actions of the AMR control schemes as shown
in procedure 5.3 or system operator control actions. The latter type of control is
facilitated by the business tracking control graphs. As shown in procedure 6, these
graphs provide system operators and business managers with visual criteria for
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identifying and correlating the causes of both technical and /or financial performance
problems.

Twelfth, use ALI_Nets to specify a minimum observable semantic model of the
dynamic architecture of a real system where:

. By a semantic model, we mean that the system model is specified and
constructed such that: see figure 86

-~ All ALI_Net model functions and input/output signals, represented by
ALI_Net messages, have a meaning. This implies that the meaning of
each aggregated message and each function should correlate in some
sense with that which is within the cognitive models of the human
sender and receiver.

-- By meaning, we mean that the ALI_Net operational requirements
architecture model, should be consistent, i1.e. match, the cognitive model
of a class of human system users. By cognitive model; we mean an
image of a segment of the real world which is of interest to the observer
where all remaining segments are called the environment. This model
consists of a set of assertions, that must be related to the real world
where each assertion consists of a subject related to the matter of the
statement, and a predicate which positively qualifies the subject.

. By an observable model, we mean that a system is observed by one or more
external user types. External users include all automated systems and human
users that are not included within the system boundary. These users reside in
the External System region named XS as shown in figure 34. Associated with
each user object type, there exists a set of ALI_Net loops, each of which
specifies a dynamic relation between an n-array of system objects ( O,,......., O;)
and the user object type. As shown in figure 87, each ALI_Net defines the
observation process used to observe certain aspects of the system under
investigation. During the observation process, the ALI_Net loop terminal
input/output regions provides the means by which the observer develops a better
comprehension of the system. As shown in figure 87, comprehension is
developed using the external user’s own semantic framework, as defined by his
or her conceptual model, which acts as a substratum space for the information
contents of the ALI_Net message flow between the system and a given user
object type.

. Since an ALI_Net is defined only with respect to a given user type, called an
observer, who observes that part of the whole system which he/she wants to
investigate and/or manipulate, then each part of a system may be observed by
one or more user types. It follows that multiple ALI_Nets may be associated
with the same dynamic segment of a given system. Each of these nets must be
tailored to match the human conceptual model of a given user type as shown in
figure 86.

The above definitions are used to specify minimum observable “semantic” object
systems using a minimal set of loops, called System ALI_Net Basis S(A_B) and System
Object_Loop Basis S(OL_B) such that: see figure 838

. If(L,L,, L, .....L,) are the elements of S(A_B) and,
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If (8, 855 Bas vveerens g, ) are the elements of the set of rules used to generate the
set of aggregated ALI_Net loops. Each set of these aggregated loops, L(u,) is
required to observe information which matches the conceptual model semantics
of the user type u, and,

If L(u, n+1) =g, (L, L, Ls, ceeeeee L), then
L(u,, n+1) €L

where L is the set of all ALI_Net loops required to observe the system under
investigation

Similarly each ALI_Net is generated using elements of the S(OL_B) basis.

Procedure 5.2.2:  Geometric Specification of an Integrated Architecture

Since at the highest level of aggregation ALI_Nets specify system behavior, it

follows that these nets provide an interpretive framework used to:

Elaborate system operational requirements architecture, design control
architecture, and implementation architecture shown in figure (89-a)

Ensure that an evolving system design, with increasing levels of design and
implementation details, complies with the intended operational requirement
goals of a given ALI_Net. At various phases of the systems life cycle, an
ALI_Net provides an invariant structure to evolving system design and
implementation details.

Generate an integrated architecture of a real system using the following four
step procedure:

First, use procedures 5.3 and 7 to specify and edit the semantics of each ALI_Net

loop in a manner that matches the conceptual model of the system end users. The
operational requirements model generated by this activity specifies the system
operational requirements architecture. This architecture consists of the set of ALI_Nets,
each of which specifies the highest level of system behavior required to realize business
missions. Required system behavior is defined by the dynamic relationship constraints of
each ALI_Net as shown in figure 114

Second, use procédures 5.3 and 7 to create the inner design specification of the

system operational requirements architecture as shown in figure (89-b). The set of design
control loops, required to realize the operational requirements of each ALI_Net, specifies
the system design control architecture. Each design control loop is an object loop which:

specifies, the programming language independent, interconnection of internal
system objects

complies with ALI_Nets loop semantics and satisfies its dynamic relationship
constraints

encapsulates an information access loop as shown in the next step
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Third, the semantics of each ALI_Net loop, and its component object loops, is
specified to match the conceptual model of a loop user type. Each conceptual model
consists of a set of assertions. Each assertion consists of a subject and a predicate. Taken
together, the “subject/predicate” provides a description of the data attributes of an object
as it appears in reality. Relationships between these data entity types are captured by
object relationship models, semantic network models or entity relationship models.
Access to different types of information referenced by these models is specified using a
special type of loops called Information Access Loops (IAL), see figure 90. These loops
provide a visual specification of the query processing of data base systems as follows:

«  Aninformation access loop consists of two loop segments called “Forward and
Backward” loop segments. The forward segment is specified by a sequence of
one or more functions (representing a connected set of entity relationships).
The backward segment is specified by a sequence of one or more functions,
each of which is an inverse of the forward loop functions.

. The data base can be viewed as a set of stored functions where one function is
defined for each entity attribute. Given an entity identifier as a parameter, each
function returns the value of the appropriate attribute. Given a data base, with
entity types E1, E2, E3......, En, a relationship between Ej and E2 specifies a
function which returns an entity occurrence of type E2 when given the attribute
value of an entity occurrence of type EJ.

Geometric representation of information access loops are constructed according to
the following rules as shown in figure (90-c):

. Entity types (data types), which are depicted, on the object relationship models,
semantic network models or entity relationship models, by a rectangle, are
represented by the geometric region symbol V. These regions can be
hierarchically decomposed, into component regions representing lower level
subtypes, using the construction rules of procedure 2.

. Entity or object type relationships (or associations) depicted on the relationship
diagrams by the symbol < are represented by the geometric region symbols A .

. An information access loop is specified by an ordered set of edges connecting a
setof A geometric regions. These loops specify the relationship between an n-
ary relationship describing the association among n set of entities.

The information access loops of an entity relationship model can be further
encapsulated into an object relationship model as shown in procedure 3.

Fourth, generate design implementation loops code by binding design control
loops to a programming language and a given object class library. Each design
implementation loop is an object loop. The syntactic desi gn/implementation
specification of this loop is generated using a selected programming language grammar.

The integrated architecture specified using the above procedure defines two major
categories of application objects namely Mechatronic objects and Infotronic objects as
shown in figure 91. As shown in figures (92 - 94), each of these objects is a container
object whose structure is specified using “Has_A” and, or “Knows_A” relationships with
a selected components of the three multi layer stacks of the system infrastructure objects.
Infrastructure objects are specified, designed and manufactured in accordance with the
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selected open system interconnect reference model. This model, called the technical
reference model architecture, defines the rules and regulations i.e. protocols that govern
interconnection and interworking among layered system objects. As shown in figure 92,
three categories of physical system resources are encapsulated by the three layered stacks
of system information objects:

The first category of physical resources includes intra-node computer devices
such as discs, displays, and tapes. These resources are managed by the
multilevel stack of data processing controllers consisting of device controllers
(e.g. disc controllers), device managers (e.g., file managers), and supervisory
data processing managers (e.g. distributed data base managers).

The second category of physical resources includes inter-node communication
devices such as communication channels. These resources are managed by the
multilevel stack of controllers consisting of communication controllers,

communication protocol control managers, and supervisory network managers.

The third category of physical resources includes material or energy
transformation devices such as chemical reactors, heat exchangers or radar
antennas. These resources are managed by the multilevel stack of plant
controllers consisting of discrete time controllers such as proportional integral
derivative algorithms, plant event managers which compensate for system
nonlinearities and saturation effects, and supervisory equipment mangers.

It follows from figure 92 that the three stacks of infrastructure objects have a

similar structure where:

Lower layer objects of each stack are used to regulate the dynamic behavior of
the stack physical objects. Network and computer physical objects are managed
using discrete event algorithms or protocols. On the other hand equipment
physical objects are regulated using control algorithms of broad applicability
such as a PID algorithm. The parameters of these algorithms are adjusted to
values that will result in an optimum closed-loop response of the physical
objects. This type of continuous control can be applied when environmental
disturbances result in a small change of the value of the physical process
parameters such as its energy. However, because of the non-linear and time
varying nature of the plant entities, coupled with changes in the operating
conditions (due to changes in set points, etc.), the performance of the controller
will degrade with time. Therefore to maintain good performance, the controller
parameters must be adjusted from time to time. When large soft and
catastrophic failure disturbance events occur, the required corrective action can
be beyond the control range of the continuous controller. As a consequence, the
plant parameters will cross pre-specified limiting values. This results in
switching off the process and execution of higher level discrete event control
algorithms which manage the transitions between system states such as normal,
emergency, off, etc.

Higher layer objects of each stack contain lower level objects and provide
additional discrete event algorithms. For the network and computer stacks,
discrete event algorithms are used to control startup, shutdown, and failure
recovery of system physical and information processing objects. Other
functions include control of the generation, dissemination, storage, and retrieval
of distributed system information. For the equipment stack, discrete event
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algorithms are used to compensate for the non-linear and time varying nature of
physical objects.

The multilayer design of each stack of objects induces an ordering with respect
to the time scale; specifically, the statistical mean period of the control loop
action tends to increase as we proceed from a lower to a higher level of the
control system hierarchy.

By applying procedure 2 rules, elevation and plan projections of the three infra
structure stacks can be developed as shown in figures 93 and 94. Both
projections can be integrated using the geometric cellular structure shown in
figure 95.

By applying entity access construction rules to specify the connectivity of
hardware resources, the fractal structure of the application processing scheme
encapsulates the hardware resources as shown in figure 96. This figure provides
an example of three concurrent user objects, executing on a two hardware
processors system. As shown in figure (96 a-c), the two hardware processors
region is totally contained within the three objects resource region. Different
views of the software/hardware processing scheme can be generated using the
Region Display Setup options of procedure 7.

As shown in figures 97 and 98 the above rules can be applied to generate a
geometric representation of systems whose architecture is specified by a stack
of layered objects at each node.

The geometric regions of the integrated system static/dynamic architecture at each

time instant t are mapped on the physical space required to house system objects such as
memory for computer implemented objects or the physical space occupied by physical
objects such as sensors, or equipment. The physical space is represented by the
Euclidean or Riemann geometry. This mapping is carried out as follows:

The state space structure of each object region is folded into a multi-
dimensional tetrahedron, octahedron, dodecahedron, or icosahhedron structure
which is mapped onto the Euclidean/Riemann “Multi_Node” physical space
grid and the memory space grid within each node as shown in figures 99 and
100. This mapping is carried out using procedure 2 folding/unfolding rules.
Mapping operations are supported by tools specified in procedure 7. These
tools enable system designers to allocate object instances to various system
nodes where a node is defined as a shared set of physical memory regions.
Code compilation tools assign memory regions to various elements of the
virtual system grid.

The Euclidean three dimensional space represented by the Cartesian coordinate
(X, y, z) 1s partitioned into a three dimensional set of cells as shown in figures
100 and 101. In this representation each object may occupy a set of one or more
cells in a single or multiple planes of the three dimensional physical space.

Each of the physical space cells is identified by a unique set of latitude and
longitude parameters.

Procedure 5.3: Geometric Specification of an AMR Control Scheme of a Real

System
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In this procedure, infotronic and mechatronic objects models, created using
procedures 5.1 and 5.2, are used by system planners, configurators and operators to: (see
figure 102)

First, plan and schedule various operational missions supported by an operational
system as shown in procedure 5.3.1.

Second, plan and schedule human and physical objects of a real system as shown
in procedure 5.3.2.

Third, configure an automated system adaptive control scheme. This scheme is
used to monitor, control, and sustain the run time behavior of an operational real system
as shown in procedure 5.3.3.

Procedure 5.3.1: Geometric Specification of Real System Plans

Plans of a real system are constructed using the planning process shown in figure
103 where: :

First, an ALI_Net operational architecture model of desired business missions is
constructed using procedure 5.2 and procedure 7 tools. Instances of each ALI_Net
specified in the operational architecture is created using tools described in procedure 7.

Second, the geographical allocation of mechatronic and infotronic objects,
referenced by the operational architecture, is specified by dragging each object, and/or a
specified set of its ALI_Net segments, onto the three dimensional cellular space as shown
in figure 104. Routing, by Euclidean position, of each mechatronic object position is
specified by an initial position, an end position, and an intermediate set of way points.
Processing conditions of the specified ALI_Net segments at each routing point are
monitored and used by the AMR scheduling algorithm to control the motion of the
mechatronic object.

Third, specify geographical constraints associated with the routing of mechatronic
objects using the three dimensional cellular space shown in figure 105. These constraints
are used by the AMR scheduling algorithms to generate a pre-mission position routing
plan such as those shown in figure 105 or use these constraints to automate and adapt the
motion of the infotronic objects using run time sensor measurements. AMR algorithms
associate with each cell a number which represents the time, distance or fuel cost
associated with arriving to the end position from the referenced cell. During run time the
AMR scheduler uses this information to invoke the movement of the object to the
neighboring cell with the lowest value. This movement will be carried out if and only if
the processing conditions of the object ALI_Net segments at the given set of cells are
satisfied.

Fourth, procedure 7 tools use object transportation functions, shown in figure 106,
to implement routing plans of mechatronic objects. Similarly routing of system messages
between mechatronic and infotronic objects is realized using procedure 5.2.1 as shown in
figures 107 and 108.

Eifth, as shown in figure 103 all information required to perform the above steps
are supported by the AMR knowledge manager specified in procedures 7 and 8

Procedure 5.3.2: Geometric Specification of Human & Physical Object
Schedules of a Real System
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Scheduling of human and physical objects is carried out using the process shown
in figure 109 where:

First, generate a set of ordered instances of organizational and mechatronic
resource objects that may be used to execute specified functions/methods of each set of
one or more instances of the ALI_Net.

Second, use procedure 7 tools to generate a prioritized list of human and
mechatronic object instances to perform required business missions. Use this list to
generate required schedules.

Third, created schedules can be directed, implemented, monitored, controlled and
adapted by the run time tools of procedure 7.

Fourth, as shown in figure 109 all information required to perform the above steps
is supported by the AMR knowledge manager specified in procedures 7 and 8.

Procedure 5.3.3: Geometric Specification of an AMR Control Scheme of a Real
System

An AMR control scheme of the automated information system components of a
real system is constructed as follows: see figures (110-112)

First, as shown in figure 111, an AMR control scheme of an automated
information system is composed of a set of analogue/digital controllers which manage
interfaces with external physical objects, a set of views each of which is tailored to the
semantic requirements of a specific end users type, and adaptive view controllers which
regulate the update of user type views using the AMR supervisory control model.

Second, as shown in figure 112 the AMR control scheme of the automated
information system is constructed using two types of system control models: an AMR
Concurrent Application Control Scheme, as shown in procedure 5.3.3.1, and an AMR
Supervisory Control Scheme, as shown in procedure 5.3.3.2. The first scheme is
constructed in the manner described in section 5.2.1. The second scheme is constructed
using the distributed system ALI_Net Supervisory Control loops. The two schemes are
embedded in figure 111 model to compose the automated system AMR control scheme as
shown in figure 113.

Procedure 5.3.3.1: Geometric Specification of an AMR Concurrent Application
Control Scheme

An AMR Concurrent Application Control Scheme is constructed as follows:
First, specify the dynamic relationship constraints of each ALI_Net referenced in
the integrated architecture model. Dynamic relationship constraints of this model are
specified using the following set of attributes as shown in figure 114
(a) Configuration Control attributes which consist of:

. Loop name.

. Software/Hardware allocation (e.g. node name, processor name, and
concurrent process names allocated as resources required to execute the
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named loop). Values of these attributes may be set by a human operator
or dynamically assigned by the AMR_Configuration_Controller during
run time operation.

(b) Quality Control attributes which consist of:

. Security control attributes such as access rights for each user type and
each instant of a user type. Access right values include No_Access or
Access to a named ALI_Net, a component object loop, a named
object_operation or a data structure. Access rights are further
constrained to deny making any changes to the system configuration,
quality and performance control parameters.

. Reliability control attributes. Desired communication system semantics
such as atomic broadcast, causal broadcast or group broadcast protocols.
In this invention these protocols use the system ALI_Net graphs as the
context graph required to preserve the partial ordering of messages
exchanged among a collection of concurrent processes in the presence of
communication and processor failures.

. Accuracy control attributes (equality, inequality, and discrete
optimization constraints).

. Loop invariants which state common preconditions on all loop
operations. Invariant conditions on the loop state are established by the
object_initialisation operation and are preserved by subsequent loop
operations including failure recovery operations.

. Performance Control aftributes. These attributes are used to specify the
service time distribution of system component objects, the invocation
frequency of each ALI_Net loop, each of its object loop components,
and the desired response time distribution. Furthermore each loop can
be classified by system configurators as critical, essential, or
nonessential and each can be assigned a time based value function.
Critical loops are those with hard response time deadlines which must be
achieved under all operating conditions. Essential loops are those with
soft response time deadlines, which if not achieved will not cause a
catastrophic system failures. Nonessential loops are those with response
time deadlines, which if missed will not affect the system in the near
future such as long term data recording. A loop category determines its
share of available system resources. For each category three types of
performance control attribute values are defined: required, measured,
and predicted. These attributes are measured, predicted and used to
control quality of delivered products and services as shown in procedure
5.3.3.2 and procedure 7.

Second, loop parameters specified in the last step are accepted and used by the
distributed set of the system AMR Supervisory controllers to create the AMR
Loop_Process data structures shown in figure 115. These structures are used by the
AMR controller objects of each concurrent application control process as shown in
procedure 5.3.3.2.

. Inter_Process_Loop_Connectivity_Graph: This graph specifies the
“enable/disable” state of each ALI_Net as well as the interconnections between
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the terminal input/output regions of various ALI_Net_Process_Segments
required to execute each object_loop of each ALI_Net. The
Inter_Process_Loop_Connectivity_Graph is used by the
AMR_Reliable_Communication controllers and the
AMR_Activation_Reply_Forward controller.

Intra_Process_[Loop_Connectivity_Graph: This graph specifies each subset of
each ALI_Net graph (called ALI_Net_Process_Segment) allocated to the named
process. This segment specifies interconnections between intra-process objects,
some times called component objects of the container object i.e. process,
required to execute each object_loop of each ALI_Net allocated to the named
process. The Intra_Process_Loop_Connectivity_Graph is used by the
AMR_Base_Scheme controller.

Loops/Objects_Invocation_Queues.
Loops_Monitoring_Control_Parameters.
Resources_Monitoring_Control_Parameters.
Performance_Control_Parameters.
Security_Control_Parameters (Loops/Objects_Access_Rights).

Reliable_Communication_Parameters. These parameters specify causal
ordering options.

Loop_Control_Flags: Six AMR flags are defined:

-- PR Indicates that Performance Control option is set

--  RC Indicates that Security control option is set

-~ RC Indicates that Reliable Communication control option is set
- RM Indicates that Resource Monitoring control option is set

- LM Indicates that Loop Monitoring control option is set

-- LS Indicates that Loop Scheduling control option is set

Third, application processing objects are allocated to concurrent application

control processes. This allocation can be dynamically changed by the AMR run time
system environment. As shown in figure 118, each AMR concurrent application control
process contains two sets of objects; concurrent controllers object set and application
processing object set. As shown in figure 119, the following set of concurrent controllers
objects use the AMR_Loop_Process data structures, shown in figure 115, and the AMR_
Message_Header, shown in figures 116 and 117, to interconnect and synchronize the
application processing objects within each process as well as between concurrent
processes.

AMR Reliable_Communication Controller: When an application processing
object is invoked, this controller uses the AMR_ Message_Header, the
Inter_Process_Loop_Connectivity_Graph, and the
Reliable_Communication_Parameters to check if processing of the received
message can be handled by the process and that the message is received in
compliance with the casual ordering specified in the
Inter_Process_Loop_Connectivity_Graph. IF the received message was sent to
the wrong process, THEN the requested invocation is rejected, red edge 1-a and
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the supervisory configuration and security controllers are notified ELSE
transaction manager services, ¢.g. CORBA, COM/OLE, etc. services, are used
to lock the application processing object. If the object is not locked then the
invocation is handed over to the security controller, black edge 1-a. On the
other hand if it is locked then, depending on selected configuration parameter
options, the requested invocation is returned to the input process queue or is
rejected, red edge 1-a.

. AMR Security Controller: This controller uses the Security_Control (process
Loop_Objects Access Right) data structure to determine if the invoker, at this
stage of the aggregated ALI_Net loop, is authorized to invoke all object
operations of the named loop or can only invoke a named subset of these
operations. In addition this controller invokes the decryption functions using
the private key assigned to the current session assigned to the current
Object_Loop. If the request is authorized then the request is inserted in the
process Loop_Object Invocation Queues, biack edge 1-b, else the request is
rejected, red edge 1-a.

. AMR Activation Controller: This controller uses the Loop_Objects
Invocation Queues and the Intra_Process Loop Connectivity graph to activate
the thread manager to create a new thread and link it to the requested loop
operation. After termination, the Reply_Forward function sends operation
results to invoker in compliance with the invocation service protocol. On
completion of the process thread operations, the Reply_Forward functions
provide the necessary wrapper and invoke communication object, see figure 91,
to route messages to other process objects in accordance with the Inter_Process
Loop Connectivity graph. Invoked objects may reside on the same or different
stations of the distributed system.

. AMR Concurrency Controller: This controller manages the synchronization
of shared resources and management of the process invocation queue. It
creates, deletes, suspends, resumes, and schedules object threads. Scheduling of
thread objects is determined using AMR message header, process state, and the
set of object preconditions (predicates) specified in the Intra_Process Loop
Connectivity graph

. AMR Reliable_Configuration Controller: This controller accepts process
configuration control parameters from the AMR supervisory controller and uses
these parameters to set the AMR Loop_Process data structure parameters shown
in figure 90. On a hot restart/resume of operations, following a system failure,
the AMR Reliable_Configuration controller restores from secondary memory
all process persistent data for each object loop allocated to the named process.
During the normal processing of process functions, all edits to named persistent
data used by various object loops are automatically stored on secondary
memory by the object manager encapsulating the named persistent data. In
addition an AMR configuration controller uses monitored ALI_Net
communication loads to edit the AMR Loop_Process data structures. This is
carried out such that processes with heavy message communication are
automatically migrated to reside on the same hardware node. This will result in
reducing loading of the communication network infrastructure.

. AMR_Monitoring_Controller: In accordance with the AMR Supervisory
Controller Process requests, this controller collects and dispatches Process and
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Loop state information to the Supervisory Controller Process, see figures 120
and 121. The AMR Monitoring Controller:

- Monitors utilization of system hardware resources such as processor
utilization and memory utilization by different concurrent objects.

-~ Selectively records interactions between different concurrent objects.
Recorded data includes invocation time of operating system services,
attribute values of invoked services such as the identification name of
sender or receiver object, service time used by the operating system to
execute desired service and the program counter identifying the state of
the concurrent object invoking the system service.

--  Use recorded data to identify the concurrent object automata, i.e. internal
processing control loops of the concurrent object. This specification is
dertved at the granularity of interfaces of the concurrent object with the
operating system. The object automata identification algorithm reduces
recorded data to generate statistical estimates of the service times
elapsed between each ordered pair of states of the concurrent object.
These states are specified at the points of interactions with the operating
system. The object automata identification algorithm may be invoked
during run time when the operating system service calls are invoked. In
this invention it is assumed that the necessary data required to identify
the concurrent object automata will be collected using run time
monitoring services provided by operating system vendors.

- Create Performance Relationship Displays associated with different
processing control loops as specified in procedure 5.1.2. This is carried
out by invoking methods of the views object, shown in figure 111.
These methods generate views of processing loop display outputs.
These displays are tailored to specific user types.

Fourth, Pipe connections are used to bind distributed concurrent system objects
into dynamic loop structures as shown in figure 122. In this figure the fractal structure of
object communication model, see figure 73, is aggregated with the concurrent process

structure to form the aggregated concurrent object communication model shown in figure
122.

Procedure 5.3.3.2: Geometric Specification of an AMR Supervisory Control
Scheme

An AMR Supervisory Control scheme is constructed as follows:

Hirst, three sets of supervisory control loops are specified as shown in figures 120
and 121. The first set of loops, designated by the blue color, are used to monitor the
system physical resources; configure and control the allocation of these resources to
application concurrent processes. The second set of loops, designated by the red color,
are used to monitor, configure and control the allocation of each application_specific
processing loops to one or more concurrent processes. These processes may be allocated
to one or more nodes of the distributed hardware system. The second set of loops control
the scheduling of available system resources to serve the run time operational needs of
monitored concurrent processes. The third set of loops, designated by the black color, are
used to coordinate and synchronize the multi-node set of AMR supervisory control
processes. These loops broadcast desired control requests, of a named set of ALI_Net
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loops, to all AMR supervisory control processes residing on each system node involved
in the processing of the named loops. If a performance exception is raised about a named
ALI_Net, then coordination control requests are exchanged between peer AMR
supervisory control processes.

Second, each AMR supervisory control concurrent process has two sets objects,

see figure 123, the concurrent controllers object set, as shown in figures 118 and 119, and
the supervisory controllers object set. Control roles played by the supervisory controller
objects are shown 1n figure 124 as follows:

AMR Overload_Monitor . As shown in figure 125, this monitor uses the
Node Process and Loops state data structure to update the AMR Temporal_State
data structure. This data structure maintains state information about each
ALI_Net loop and its implementation by the distributed system concurrent
processes. Six major sets of variables are tracked by the monitor namely
Loop_Response_Time, Loop_Response_Time_Remaining, Loop_Load,
Loop_Service_Time, Resource_Utilization and Loop_Accuracy. The current
value of the state variable and its estimated deviation, i.e. error, from a desired
set point at the point of measurement is carried out using the Loop_Cycle time
window specified in figure 126. The time Duration of Loop_Cycle_Window
Cx forall x is set equal to the maximum of the Loop_Response Time_Desired

for all loops.

The first set of measurements, Loop_Response_Time (LRT), is used in the
following procedure to compute the Loop_Response_Time_Set_Point for each
loop_component_object O_ of loop L during the current Loop_Cycle C,

Loop_Response_Time_Set_Point (L, O_, C) =

Loop_Response_Time_Desired (L, O) * [Z, _ c1"'*"""({7_1.=i_k(mj=i'1
[Loop_Response_Time_Measured (L, O_, C,, }
/ Loop_Response_Time_Measured (Lu Oe, C.. ) IMk(x))1/b

Such that:
Loop_Response_Time_Measured (L, O, C_,j) <=
Loop_Desired_Response_Time (L, O,)
Where:
Loop_Response_Time_ Measured (L, Oy C,, J) is the measured
response time for the j' 3y " invocation of loop L, after the execution of
object O, during the x Loop_Cycle C,
k(x) = Numbser of invocations of loop L, dunng the x™ Loop_Cycle C,
O, = End terminal component object of loop L, generating L términal
outputs
¢ = Current loop cycle
b = Number of loop cycles included in the computation where each
cycle x have the same set of loops that are invoked in the current cycle

The above formula is used to compute the LRT_Error set :
Loop_Response_Time_Error (L, O, C_, 1) =
{Loop _Response_Time_Measured (L, O, C, 1) -
Loop_Response_Time_Set_Point (L, O, C)}

Loop_Response_Time_Delta_Error (L, O, C_, 1) =
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{Loop _Response_Time_Error (L, O_, C_1) -
Loop _Response_Time_Error (L, O, C, i-1)}

Loop_Response_Time_Differential_Error (L, O, C_, 1) =
Loop_Response_Time_Delta_Error (L, O,,C,1) /
Loop_Response_Time_Ermor (L, O, C_ 1)

Loop_Response_Time_Integral_Error (I, O,_, C) =

2" E s [Loop_Response_Time_Error (L,, O,, C,, j) /d

x=c-1

Where:
d = Number of loop cycles included in the integral error computation

Loop_Response_Time_Remaining_Error (L, O_, C_, 1) =
{Loop_ Response_Time_Measured (L 0,C.,1n -
Loop_Response_Time_ Desned( 2 O}

The second set of measurements, L.oop_ILoad (LL), is used in the
following procedure to compute the Loop_Load_Set_Point and
Loop_Load_Measured for the current Loop_Cycle C_:

Loop_Load_Set_Point (L, C)) = [Z,_.,*"* {Loop_Load_Measured (L, C,)

| 2™ [Loop_Load_Measured (L;, C,)]}/b
where

Loop_Load_Measured (L, C,) = (Total number of invocations of loop
L, during the X" IJoop Cycle C/ LooE Cycle_Time)
m(Xx) = "Number of loops used durmg the x™ Loop_Cycle C,

Furthermore,
Loop_ Load_Current (L, C) =

{Loop_Load_Measured (L, C)) / Z,_,*™ [Loop_Load_Measured (L,, C)I}
The above formula is used to compute the LL_Error set:

Loop_Load_Error (L, C) =
{Loop_L.oad_Current (L,, C) -Loop_Load_Set_Point (L, C) }

Loop_Load_Delta_Error (L, C) =
{Loop_Load_Current (L, C) - Loop_Load_Current (L, C_,) }

Loop_load_Differential_Error (L, C) =
Loop_Load_Delta_Error (L, C) /
Loop_Load_Error (L, C)

Loop_lLoad_Integral_Error (L, C.) =
St E i s [Loop_Response_Time_Error (L, C,, j) /d

Where:
d = Number of loop cycles included in the integral error computation
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The third set of measurements, Loop_Service_Time (LST), is used in the
following procedure is used to compute the Loop_Service_Time_Set_Point for
each loop_component_object O, of loop L, during the current Loop_Cycle C.:

Loop_Service_Time_Set_Point (L,, O,, C) = [Z, _. "=, _; ™"
[Loop_Service_Time_Measured (L, ,O_, C_, j) /
Loop_ Service_Time_Measured (L, O, C_, j) 1}/k(x))]/b
where
Loop_ Serv1ce _Time_Measured (L C.,J) is the cumulative service
time for the _] " invocation of loop L after the execution of object O
during the x* Loop_Cycle C.. Cumulative service time does include any
wait time for availability of 1 required resources.
k(x) = Number of invocations of loop L during the x® Loop_Cycle C,
O, = End terminal component object of loop L, generating L términal
outputs
¢ = Index of current loop cycle
b = Number of loop cycles included in the computation. Each cycle
have the set of loops that are incorporated in the current cycle

The above formula is used to compute the LST_Error set:

Loop_Service_Time_Error (L ,0,_, C_, i) =
{Loop_ Service_Time_Measured (L, O_, C, 1) -
Loop_Service_Time_Set_Point (L_, O_, C)}

Loop_Service_Time_Delta_Error (L, O_, C, i) =
{Loop_ Service_Time_Measured (L , O, C_, 1) -

Loop_ Service_Time_Measured (L, O_, C_,i-1)}

Loop_Service_Time _Differential_Error (L ,O_, C,, i) =
Loop_ Service_Time _Delta_Error (L ,O,_, C_,i) /
Loop_ Service_Time _Error (L, O_, C_, 1)

Loop_Service_Time_Integral_Error (L, O, C) =
2 e T E L wn” [Loop_Service_Time_Error (L, O,, C,, j) /d

Where:
d = Number of loop cycles included in the integral error computation

The fourth set of measurements, Loop_Resource_Utiliztion_Level
(LRUL) such as Queue_Ultilization, CPU_Utiliztion, Equipment_Ultilization or
Human_operator_Utilization levels is used in the following procedure to
compute the Loop_Resource_Utiliztion_Set_Point (L, R, G,, C) of the
resource R; allocated to the G, operational region to support the execution of
loop L, during the current Loop Cycle C,

Loop_Resource_Utiliztion_Set_Point (L,, R;, G, CJ T
[{ Loop_Resource_Utiliztion_Measured (L, R » Gy C)) /

3w [Lmop_Resource_Utlhztlon_Measured (L, R, G, C)I}/b

where
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Loop_Resource_Utiliztion_Measured (L, R, G,, C,) = Maximum
utilization level of Resource R; dunn%ioop cycle C,
m(X) = Number of loops used durmg the x™ Loop_Cycle C

The above formula is used to compute the LRUL_Error set:

Loop_Resource_Utiliztion_Error (L, R;, G,, C) =
{ Loop_Resource_Utiliztion Measured (L, R Gk, C) -
Loop_Resource_Utiliztion_Set_Point (L, R, G,, C) }

Loop_Resource_Utiliztion_Delta_Error (L, R;, G, C) =
{ Loop_Resource_Ultiliztion_ Measured (Ln R, G,,C) -
Loop_Resource_Utiliztion Measured (L., R, G, C )}
Furthermore,
Available_Resource (R, G,, C)) =
Allocated_Resource (&, G, C) -

3., ™ [Loop_Resource_Utiliztion_Measured (L, R, G, C)]

Loop_ Resource_Utiliztion_Differential_Error (L, R, G,, C) =
Loop_ Resource_Utiliztion_Delta Error (L R, G,,C) /
Loop_ Resource Utlhztlon Error (L, R;,

G,,C)

Loop_ Resource_Utiliztion_Integral_Error (L , Rj, G,,C)=
Z et (E i s [Loop_ Resource_Utiliztion_Error (L, R;, G,, C_, j) /d
Where:

d = Number of loop cycles included in the integral error computation

. AMR Learning Controller. As shown in figure 127, methods of this object
accept as inputs time ordered crisp values of observed system state variables
such as the four major set of variables tracked by the AMR_Overload_Monitor.
For a given desired prediction distance, and the maximum prediction error
which meet the desired quality metrics, the Model Estimation and State
Prediction object estimate:

- Minimum order of the process model, underlying the observed state
variables, which meets the desired maximum prediction error metric

—  Process model coefficients including model delay

-~ Predicted value, % error, residual error energy at all future time instants
from now until the maximum prediction distance, where

Maximum_Prediction_Distance (L, O_, C_, 1) =
Loop_Response_Time_Desired (L, O,) -
Loop _Response_Time_Measured (L, O_, C_, i)

State prediction is carried out for measured variables, such as
Loop_Response_Time_Measured, Loop_l.oad_Measured,
Loop_Service_Time_Measured, Loop_Resource_Utiliztion_Measured. Loop
measurements are collected from a single or multiple invocations of a given
loop. In the single invocation case, at the end of execution of current object O
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for the current invocation i of loop L, the error prediction algorithm accepts as
input the response time series

{Loop_Response_Time_Measured (L,, O,, 1),
Loop_Response_Time_Measured (L, O,, 1), ...c........
Loop_Response_Time_Measured (L, O, 1)}

where
{0,,0,,0;,, 0,, ....., O_} is the set of all objects executed in the i th
invocation of loop L

In the multiple invocation case, at the end of execution of current object O, for
the current invocation i of loop L, the error prediction algorithm accepts as
input the time series

{Loop_Response_Time_Measured (L, O, i-k),
Loop_Response_Time_Measured (L, O, i-k-1), ............
Loop_Response_Time_Measured (L, O,, )}

where Kk is the last set of loop invocations of object O, used by the error
prediction algorithm

The AMR_Learning_Controller uses the dead time moving average ladder
algorithm of this invention as specified in procedure 10. This algorithm enables
the estimation of system model order and it’s associated dead time parameters
for non-linear systems with time varying properties. This means that the system
delay can shift as a function of the system operating level. As shown in
procedure 10, the powerful orthogonalization properties of the dead time
moving average ladder algorithm enable the estimation of the probabilty limits
associated with different prediction distances as well as the residual energy of
the prediction error at different system orders. Under special conditions, shown
in procedure 10, the dead time moving average ladder algorithm is reduced to
the prewhitening ladder algorithm used in the seismic and speech recognition
industries (Makhoul 1978, Riley 1972). Fractal representations of procedure 10
algorithms are shown in figures 128 to 132.

. AMR Performance Controller: as shown in figure 133, this object, uses the
ALI_Nets_Temporal_State data structure to generate
Configuration_Control_Requests and Scheduling_Control_Requests required to
adapt system behavior to meet desired performance requirements. To perform
this function the AMR performance controller object invokes the AMR Fuzzy
Control Engine as shown in figure 134. This engine is aggregated using the
following component objects as shown in figure 135:

. Update membership Functions object which enables the specification,
editing, normalization and storage of the member functions of each
linguistic variable in the ALI_Nets_Temporal_State data structure. For
each variable the seven fuzzy labels EXCELLENT, V. GOOD, GOOD,
OK, BAD, V. BAD, TERRIBLE are provided as shown in figure 136.
Shape, overlap, and number of membership functions can be overridden.

. Fuzzifier object which uses the set of ALI_Net Member Functions to
compute the degree of membership of each ALI_Nets_Temporal_State
crisp value referenced in the antecedent propositions of the ALI_Net
rules specified in figures (137-144).

47



WO 00/65488 PCT/US00/10992

. The ALI_Net_Correlator_A ggregator object which maps the fuzzy logic
operations specified in the input fuzzy propositions of the ALI_Net
performance control rules into output fuzzy propositions that are
processed by the Defuzzifier object. The default set of the ALI_Net
performance control rules are shown in figures (137-144). This set is
edited using information provided by the AMR overload monitor and the
AMR learning controller. As selected by the system configurator, the
ALI_Correlator_aggregator object uses:

--  Standard correlation minimum techniques to truncate the
consequent fuzzy set, SCL and CCL, at the limit of the premise’s
truth value of the specified error sets; or the standard Correlation
Product techniques to scale the consequent fuzzy set, SCL and
CCL, by multiplying each truth membership by the premise truth.

--  Standard minimum/maximum aggregation techniques to compute
the maximum of the consequent fuzzy set and the solution fuzzy
set at each point along their mutual membership function. This is
followed by aggregating the set of consequent fuzzy sets using the
fuzzy union operation ; or the standard Additive Aggregation
techniques to add the correlated consequent fuzzy set to the
contents of the solution variable’s output fuzzy region.

. Defuzzifier object. which uses the aggregated result of output fuzzy
propositions to compute the crisp value of the scheduling priority
request conveyed to a specified resource’s scheduler object or the crisp
value of the configuration load shedding request conveyed to the system
configuration control processes.

. AMR Configuration Controller: This object disables the execution of
nonessential, essential, and critical ALI_Net loops, in this order. Loops to be
disabled are those identified in received Configuration_Control_Requests from
the AMR Performance Controller. Duration of the disable period is determined
by the duration time of the overload or malfunction system conditions which
gave rise to conditions detected or predicted by the AMR performance
controller. Enabling and disabling commands are carried out by invoking the
AMR_Reliable_Configuration_Controller of different concurrent processes.

Procedure 6: Control Oriented Specification of Business Management
Activities of a Real System

Failure to adapt products and services, which satisfy rapidly changing customer
needs, are attributed primarily to management failure to:

. Clearly delineate customer needs and how these needs are met by all business
functions at all levels of the organization’s work force.

. Form business teams that can understand market trends and dynamics, target

their products at specific audience, and adapt offered products to changing
requirements of customers.
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Integrate the customer into the design process to guarantee a product that is
tailored not only to the customer’s needs and desires but also to the customer’s
strategies and future goals

Create new products quickly by doing development, manufacturing, and
delivering customer satisfaction “right the first time”.

Incorporate provisions for quantifying, measuring and evaluating the value of
each product, service or business function.

Reduce all costs of production by enhancing labor productivity; reducing errors,
defects, and waste; improving responsiveness and cycle time performance;
improving productivity and effectiveness in the use of resources; reducing idle
time; and speeding the flow of organized information.

Incorporate provisions for the monitoring and control of different interactions
between product development and operational business functions. These
interactions, individually and collectively, determine product quality
requirements, and its development cost as well as the time and effort required to
service customers. Without this analysis, all predictions of business value and
its future viability are suspect.

Facilitate the free, but organized, flow of information between development
functions responsible for the creation of new products and services, and

operational business functions responsible for the day-to-day operation of
business.

measure current business processes, predict the impact of business re-
engineering changes on product quality and financial resuits, plan incremental
implementation of changes, re measure the designed process against the original
goals, evaluate effectiveness of changes and implement the necessary
adjustments.

To resolve the above difficulties, the following procedure is used to plan, analyze

and manage business operations:

First, the internal structure of an organization structure is specified using two

major sets of workflow ALI_Nets as shown in figure 145. The purpose of the first set of
ALI_Nets, called Business Planning ALI_Nets, is to integrate the customer into the
design process of products and services. Product planning ALI_Nets involve three sets of
functions: product positioning, market positioning, and corporate positioning. Design of
these functions should be carried out using the Relationship Marketing approach
advanced by Regis McKenna where:

Product positioning functions determine how the company wants its product to
fit into the competitive market.

Market positioning functions determine early customer advocates, reseller
networks, distributors, third party suppliers, and journalists who control the flow
of information and opinion.

Corporate positioning functions validate the company market positioning and its

product positioning. It is based on many factors, including corporate history,
management strengths, and the selection of product mix. Usually product mix
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should include silver bullet products, required for future technological survival,
and “plain vanilla” products, required for current financial success.

Second, the business planning ALI_Nets should be supported by the second set of

ALI Nets, called AMR Product Development and Operation ALI_Nets. These nets are
composed using the following four sets of loops: architecture specification and analysis
ALI_Nets; “product / service” design and analysis ALI_Nets; product manufacturing and
physical integration ALI_Nets; and product / service tailoring ALI_Nets. Asshownin
figures 146 and 147, a value cost trade-off analysis is embedded in the very internal
operation of each product development loop. This analysis ensures that product
development activities are formulated, elaborated, connected, and synchronized with the
product planning loops as shown in figure 147. In this figure:

L ]

The outermost loop architecture specification functions are used to generate
alternative operational requirement architecture models for a proposed product
concept. These models are used to estimate the technical feasibility, cost, and
business value of each operational architecture model as shown in the next step
of this procedure. Results of the value cost analysis are used to select the set of
one or more operational architecture models to be further investigated.

The middle loop product design functions use the selected operational
architecture models to generate detailed integrated design control architecture
models. These models are used to estimate the technical feasibility, cost and
business value of each system design architecture model as shown in next step
of this procedure. Resuits of the value cost analysis are used to select the set of
one or more design control architecture models to be further investigated.

The inner loop product manufacturing functions use the selected design control
architecture model to generate integrated implementation architecture models.
These models are used to: 1) estimate the technical feasibility, cost and business
value of each system implementation option as shown in next step of this
procedure; 2) automate the manufacturing of products using design automation
tools.

As shown in procedure 5.2, each of the above architecture models is specified by

a set of ALI_Net loops such that each ALI_Net graph:

Specifies the set of end-to-end activities that create a valuable result fora
customer (end user)

Specifies the business importance of system activities used to provide customers
with the required service or product. Business importance is specified using
value metrics agreed to by end users and system buyers. Examples of these
metrics are shown in figure 153. Value metrics are used to resolve design trade
off decisions. To achieve adaptive system goals, value metrics are used by the
AMR system schedulers to manage the allocation of system resources to loop
functions.

Provides system professionals with an invariant mechanism, across different
phases of the system life cycle, for representing how system functions are glued
to provide required end user functions. This enables the specification, design,
implementation, tracking, comprehension, and documentation of the meaning of
different levels of inter-connections required to deliver end user function.
Levels of interconnections include those between users and external system
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objects, between concurrent system objects, or between methods of concurrent
objects.

Third, as shown in figure 148, value cost analysis is carried out using the AMR
Sensitivity Analysis tool. This tool is used to compute the operational performance of
alternate architecture models. Using the AMR Sensitivity Analysis tool, enable the
evaluation of the impact of changes in the system design structure parameters, or
available resources, on the system performance metrics. Examples of system
performance metrics are response time, throughput, resource utilization, and resource
queue levels. Design parameter changes include or its workload characteristics:

. Type of messages communicated between system objects, the execution logic of

each object and type of synchronization mechanism used to synchronize the
sharing of resources used by system objects.

. Values of system design parameters for each architecture model under study.
These parameters include invocation frequency and workload characternistics of
ALI_Net loops and their priorities; processing budgets of object functions;

resource size and their allocation strategy to system objects, and processors'
ratings.

. Scenario generators describing the system environment interactions and inputs
workload characternistics.

As shown in figure 148, the AMR Sensitivity Analysis tools retrieve from the
AMR Knowledge Manager the set of architecture model alternative and their associated
AMR_] oop_Process data structures. Each alternative is defined as a performance
analysis experiment analyzed by the AMR Parallel Simulation Engine. As shown in
figure 149, this engine is composed using two major objects, the Multi_Experiment
Muiti_Node Process Interpreter and the Multi_Experiment Multi_Node Kernel
Interpreter.

Fourth, sensitivity analysis results for each ALI_Net of each product design
alternative are displayed using ALI_Net Business Tracking graphs shown in figure 153-.
These graphs provide a comprehensive summary of the values of the set of metrics used
to measure the operational effectiveness and value of the system design.

Fifth, use the ALI_Net business tracking graphs and their associated Object/loop
state graphs to identify bottlenecks of current operations or proposed system designs and
resolve design trade off decisions.

Sixth, generate incremental business development plans of proposed system
development activities using ALI_Net Project Schedule graphs and their associated Work
Break-down Structure graphs as shown in figures 150, 151 and 152. The spiral,
incremental, business development plan is constructed using the following rules:

. All ALI_Nets can be built concurrently since no coupling between various
ALI_Nets exist.

. Each ALI_Net has an operational integrity of its own. Hence it delivers to the
end user a useful function without compromising the long-term integrity of the
system architecture when subsequent builds are delivered.
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. The Object_Loop precedence graph, of each ALI_Net, specifies coupling
between system components and the order of integration of these components to
create each Object_Loop and the set of coupled Object_Loops composing the
designated ALI_Net. For the automated segments of the real system this
integration may be carried out off-line by system developers or dynamically by
the AMR run time systems.

. ALI_Net graphs are used to automate the generation of system integration and
system acceptance tests. Each graph provides an operational definition of how
system components should be assembled to meet different end user functional
performance requirements.

Seventh, generate Integrated Business Dynamics and Business Control graphs.
As shown in figures 152 and 153, these graphs provide a seamless integration of
information provided by the ALI_Net business tracking graphs of figure 85, and the
ALI_Net project schedule graphs. As shown in figure 152, the geometric regions can be
curved and stretched to represent their time duration, their resource consumption, and
their added value metrics. These metrics are displayed in figure 152 by unfolding the
ALI_Net Business Tracking Graph shown in figures 153. Integrated business dynamics
and business control graphs provide business executives with a comprehensive view of
business performance, its operational value, its financial value measurement and how
these measurements stack against the original goals. This information is used to make
the necessary adjustments and upgrade of current business operations, and how these
operations can be evolved to incorporate new products.

Procedure 7: Specification of Capabilities of the AMR Tools
In this procedure a user interface of the capabilities of AMR tools is presented.
These tools enable the specification, analysis, synthesis, design automation, and
sustainment of systems created using M computational models. Figure 154 provides an
overview of the pull-down menus supported by the foliowing set of AMR tools:
. Architecture Specification tools as shown in procedure 7.1
. Architecture View tools as shown in procedure 7.2
. Architecture Analysis tools as shown in procedure 7.3
. Real System Planning tools as shown in procedure 7.4
. Real System Control tools as shown in procedure 7.5
. Project Management tools as shown in procedure 7.6
User Interface of the AMR tools utilize a mixed style of visual and text system
specifications. The text specification is primarily used to specify the internal design of
visually atomic objects. The visual specification makes extensive use of the M language
of this invention to specify and enact the configuration of visually atomic objects into
adaptive computer based systems. Although the specific user interface description
provided in this procedure contains many specifies, these should not be construed as
limiting the scope of the invention but as merely providing illustrations of some of the
embodiments of this invention.

Procedure 7.1: Architecture Specification Tools
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The following set of menus and dialogue boxes are provided to specify the
architecture of real systems:

. The “Architecture Categories Rules” dialogue box shown in figure 155, which
provides users the capability to:

-~ Specify a new architecture category, attributes of the named category
and their values.

--  Display and edit an architecture category, its associated list of instances,
allowed list of Object/Resource Categories used by the selected
architecture instance, list of allowed Object/Resource Classes of the
selected Object Category, and list of allowed Model_Types used to
specify the selected architecture instance.

. The “Category Specification Rules” dialogue box shown in figure 156, which
provides users the capability to: ~

- Specify categories of entities referenced by the system specifications.
Default category names supported by procedure 7 tools are:

. Model category with default values {Entity_Relationship,
State_Transition, Data_Flow, Colored_Petri_Net,
Object_Relationship, Loop_Relationship}.

. Loop_Relationship category with default values {Processing,
Control, Diagnostics}.

. Loop_Aggregation category with default values {Object,
ALI_Net}.

. Object category with default values {Software, Hardware,
Infotronic, Netronic, Mechatronic, Notronic}.

. Resource category with default values{Human, Physical, Material,
Information}.

. Signal category with default values {Analogue, Digital}.
--  Edit above default category names and their values.

»  The “Model Specification” menu shown in figure 157. This menu provides the
following six dialogue boxes:

- The “Project Region" dialogue box shown in figure 157, which provides
users the capability to:

. Create a project. Project name is used to label the geometric
region allocated to the project.

. Specify names of project root regions. A region is designated a
“Root Region” if 1t is not contained within any other region of the
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same type. Four region types are identified: system, external
systems, storage resource and pipe.

. Display, edit and assign a palette specifying the generalized
graphic icons of each entry in the list of projects, their associated
list of root external system objects, root system objects, and root
resources as shown in figure 158.

. Specify and edit categories of Object_Loop components of an
ALI_Net and their model category as shown in figures (159 and
160). A list of ALI_Net classes and their instances for each
selected model category is displayed as shown in figure 160.

-~ The “Object Region" dialogue box shown in figure 161, which provides
users the capability to:

. Create an object class, an object instance, its attributes, and their
values. Object name is used to label the geometric region
allocated to the object If the object name was previously specified,
then it will be automatically displayed in the Object region as
shown in figure 161.

. Specify input/output pipes names. These regions are specified
using figure 167 dialogue box.

. Specify Object name, its category, class, attributes and methods as
shown in figure 162.

. Display the system object inheritance tree. Two types of displays
can be invoked by the “Class Inheritance Graph Display Option”
button: a traditional class inheritance tree display or a geometric
Class inheritance graph display as shown in figure 162. The latter
display provides a geometric representation of different object
classes of a given object inheritance tree using a fractal pattern of
multilevel regions where the lowest region level represents the root
of the inheritance tree.

. View all system object classes of the selected category (object
class window), attributes of each class (object attributes window)
and its methods (Object methods window). These windows may
display all object classes of the given project such that all list
entries associated with the object region invoking the dialogue box
are tagged when the dialogue box is opened. Or displayed lists
may be limited to relevant information of the object region
invoking the dialogue box as shown in figure 162.

. Specify attributes and methods of object classes. For visually
atomic objects create or edit the code of object classes, methods
and their attributes using the textual natural or programming
language editor window as shown in figure 162.

. Display, edit, and assign a generalized graphic icon to each entry

in the list of object classes and their methods as shown in figure
163.
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. Generate a lower level display of the component objects of a
container object A by double clicking any way within the selected
region as specified by procedure 2 rules.

--  The “Storage Region" dialogue box shown in figure 164, which provides
users the capability to:

. Create a storage type, storage instance, its attributes, and their
values. Storage name is used to label the geometric region
allocated to the storage resource If the storage resource name was
previously specified, then it will be automatically displayed in the
resource region allocated to the resource as shown in figure 164.

. View system storage classes of the selected category, their attribute
values and name of object managers of each resource class. These
windows may display all storage resource classes of the given
project such that all list entries associated with the storage resource
region invoking the dialogue box are tagged when the dialogue box
is opened. Or displayed lists may be limited to relevant
information of the storage resource region invoking the dialogue
box. If a resource manager is not specified then it is assumed that
the named resource is directly manipulated and managed by the
higher level container (parent) object. In this case methods of the
parent object (the resource manager) are used to access the named
resource as shown in figure 165.

. Display, edit, and assign a generalized graphic icon to each entry
in the list of storage resource classes, their attributes and their
resource managers as shown in figure 166.

. Create, edit, or save displayed resource types. Resource attributes
can be defined using abstract data types such as a constant, a
decision or a routing table, an attribute table, a logical relationship,
a relational relationship, or a probabilistic relationship. These
modifications can be saved in project libraries specified using the
dialogue box of figure 155.

. Designate resources that are persistently stored on secondary
memory.

. Specify the allocation of resources to different object loops as
specified in the AMR configuration controller dialogue box, figure
191. This dialogue box enables viewing the list of loop names, and
their types, associated with the named resource region.

. Generate a lower level display of the component resources of a
storage resource region V by double clicking any way within the
selected region as specified by procedure 2 rules.

--  The “Pipe Region" dialogue box shown in figure 167, which provides
users the capability to:
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. Create a pipe type, pipe instance, its attributes, and their values.
Pipe name is used to label the geometric region allocated to the
pipe resource. If the pipe resource name was previously specified,
then it will be automatically displayed in the pipe region allocated
to the resource as shown in figure 168.

. Specify message classes, their attributes and values handled by the
pipe resource and their encapsulating communication manager.
Message classes define the external interface of objects connected
1o the named pipe class. Message class definition include:

- Application data entity subreference specifying message name
and type.

- Object subreference specifying names of message generator,
senders and receivers objects.

- Predicate subreference specifying one or more sets of the
named message data entities.

- Time subreference specifying message generation, send, and
receive times.

. Select and edit message classes and communication managers
using lists of message classes and communication managers stored
in the project data base.

. Allocate selected message types to loops and message coordination
by invoking the Loop Type Specification dialogue box as shown in
figures (168 and 169).

. View pipe classes of the selected category, their attribute values
and their communication managers as shown in figure 168.

. Display, edit and assign a generalized graphic icon to each entry in
the list of pipe classes, their attributes, and their communication
managers. see {igure 169.

. Generate a lower level display of the component resources of a
pipe resource region V by double clicking any way within the
selected region as specified by procedure 2 rules.

-~ The “Loop Region” dialogue Box shown in figure 170, which, for a
selected set of one or more edges, provides users the capability to:

. Create a loop type, loop instance, its attributes, attribute values,
and terminal loop methods. Loop name is used to label the
geometric region allocated to the loop. If the loop resource name
was previously specified, then it will be automatically displayed in
the loop region allocated to the resource as shown in figure 170.
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. Designate the loop as a root loop. A loop is designated a “Root
loop” if all of its edges are not a subset of the loop edges of
another loop.

. Display the inheritance tree of system loops.

. View all system loop classes of the selected category, attributes of
each class, their methods and the interface definition language
specification of each component object performing loop functions.
These windows may display all loop classes of the given project
such that all list entries associated with the set of loops invoking
the dialogue box are tagged when the dialogue box is opened. Or
displayed lists may be limited to relevant information of the set of
loops invoking the dialogue box. As shown in procedure 5.3.3.1,
loop attributes include loop priority to specify the business
criticality of a selected loop and the desired and actual
performance parameters of the selected loop such as the loop
execution frequency, loop response time, and loop throughput.
These parameters are used to generate display diagrams to
visualize system dynamic evolution under different operating
conditions as shown in figure 36. As shown in procedure 5.3
these parameters are also used by loop enactment tools to control
system behavior to meet user specified loop performance
parameters.

. Specify the loop branching conditions executed by each
component object of the selected loop. The loop branching
conditions dialogue box, enables the display of loop lists for each
object selected from the Loop Object window, resources
consumed, generated, or shared by the selected object to perform
loop functions and the attributes of each of these resources.
Entries from these lists are selected and used to specify the logical
expressions of both input, output conditions and the annotation of
loop edges as shown in figures (74-77).

. Specify message coordination executed for each branch of the
selected loop. The message coordination dialogue box of figure
171, enables:

- Selection of message synchronization options such as
synchronous or asynchronous.

- Designation of a named event flag to indicate send or receive
events of the named messages by the sender and receiver
objects.

- Attach a no wait or a specified wait condition to the loop
branch communication request. If the requested message
communication is not completed within the specified wait time,
then the named event flag will be set.

. Display, edit and assign a generalized graphic icon to each entry in

the list of ALI_Net loops, Object loops, their methods and
arguments as shown in figure 172.
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. Generate a lower level display of the component of a compound
loop region A by double clicking any way within the selected
region as specified by procedure 2 rules.

. The “Model Manipulation” menu shown in figure 173. This menu enables tool
functions providing Aggregate, De-aggregate, Layer, Fold, and Unfold
operations on the selected set of geometric regions using drag and drop
operations. These operations are carried out on the selected geometric regions
using rules specified in procedures 2, 3, 4 and 5 and their supporting figures.

. The “Architecture Constraints” menu which consists of the Object Relationship

Constraint menu and the Loop Relationship Constraint menu as shown in figure
174 where:

- The Object Relationship Constraint menu provides the following two
dialogue boxes:

. The “Containment Relationship Constraint menu " dialogue box,
which provides users the capability to:

- Conlfigure a container object using a set of one or more
component objects as shown in figure 174. This operation can
be equally achieved by drag and drop operations on the
geometric regions of the container and component objects
using rules specified in procedures 1-6.

- Display a list of message interface and storage resource classes
encapsulated by the selected container or component objects as
shown in figure 174.

. The “Association Relationship Constraint menu " dialogue box,
which for a selected one or more object regions provides users the
capability to:

- Display the association relationships between the selected set
of objects using the coloring scheme shown in figure 175 or an
equivalient form of relationship identification such as the
associated object name.

- Specify the Cardinality Constraints and the min. and max.
parameters of the participation and the Co_Occurrence
constraints for each selected association relationship using the
dialogue box of figure 176.

- The “Loop Relationship Constraint” menu dialogue box shown in figure
177, which provides users the capability to:

. Display a list of ALI_Net classes and their instances; their
component Object_loops and their instances.

. Display a list of coupled ALI_Nets for a selected ALI_Net class or
one of its instances.
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. Display a list of coupled object_loops for a selected object_loop
class or one of its instances.

Procedure 7.2: Architecture Viewing Tools

The following set of dialogue boxes are provided to specify display views of a
real system:

. The “Architecture View Type” dialogue box, shown in figure 178, which
provides users the capability to:

- Specify the display type of the architecture views of a selected model
type of a selected architecture category. This view may be restricted to a
selected set of ALI_Net classes, and their component object_loops,
executing on a selected set of nodes and processors.

- Define the architecture view display type by selecting projection type
and enabling/disabling the semantics and geometric icons of components
referenced by the selected architecture.

. The “Region View Type” dialogue box, shown in figure 179, which provides
users the capability to:

- Define the region display type by enabling/disabling the semantics and
geometric icons of the selected region categories.

- Define region annotation as shown in the annotation options dialogue
box for the selected region type.

Procedure 7.3: Architecture Analysis Tools

The following set of dialogue boxes are provided to analyze the architecture of a
real system:

. The “Structural Analysis Reports” dialogue box shown in figure 180, which
provides users the capability to:

- Display a list of undefined initial condition resource regions and list of
unreachable state regions for selected instances of a selected ALI_Net
class or selected instances of a selected Object_loop class of the selected
instances of the selected ALI_Net.

- Display a list of boundedness, deadlock, and liveness metrics of the
selected set of coupled ALI_Nets and their component object_loops.

- Display a tool computed fractal dimension of the selected set of coupled
ALI_Nets and their component object_loops.

- Display a tool computed entropy metric of each object_loop of a
selected ALI_Net.
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- Display a tool computed entropy coupling transmission metric between
selected object loops

. The “Dynamic Analysis Reports” dialogue box, shown in figure 181, which
provides users the capability to:

- Display a list of desired, actual, and error values of “Loop_lL.oad,
Loop_Response_Time & Loop_Service_Time” variables for selected
instances of a selected ALI_Net class or the selected instances of a
selected Object_loop class of the selected instances of the selected
ALI_Net.

- Display a list of desired, actual, and error values of “Loop_load &
Loop_Service_Time” variables for the selected instances of selected
Object_loop class of the selected instances of the selected ALI_Net.

- Display a list of service times and utilization levels of methods and
resources used to execute the selected ALI_Net loops and their
component object_loops.

Procedure 7.4: Real System Planning Tools

The “Real System Planning” dialogue box shown in figure 182, enables users to
plan the routing and connectivities between real system objects. To support these
activities, three dialogue boxes are provided:

. The “Specify Geographical Constraints of Infotronic and Organizational
Objects” dialogue box shown in figure 183, which provides users the capability
to:

- Display lists of organizational objects, workstations, infotronic objects
and geographical map overlays.

- Display a three dimensional grid of the selected geographical area as
shown in figure 183. Each cell in this display represents a geographical
region in the Euclidean space of the physical grid and may contain a
resource object or a container object.

- Drag an entry into the above list and drop it in a cell on the three
dimensional display. This action will be used by tool functions to
allocate the selected object to the selected region. Lower level state
space composition of the selected object will be contained within the
Euclidean cell region allocated to the object.

- Display the configuration of a node selected from the cellular structure
as shown in figure 184.

. The “Specify Geographical Constraints of Mechatronic Objects” dialogue box
shown in figure 185, which provides users the capability to:

- Display lists of mechatronic objects and geographical map overlays.
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- Display a three dimensional grid of the selected geographical area as
shown in figure 185. Each cell in this display represents a geographical
region in the Euclidean space of the physical grid and may contain a
resource object or a container object as specified in procedure 5.2.

- Drag an entry into the infotronic objects list and drop it in a cell on the
three dimensional display as either an initial, way or target position.
This action will be used by tool functions to allocate the selected object
to the selected region. Lower level state space composition of the
selected object will be contained within the Euclidean cell region
allocated to the object.

- Select a set of regions as obstructed by a selected type of physical
constraint from the selected constraints category list.

e The “Plan Routing and Connectivity of Mechatronic Objects” dialogue box,
shown in figure 186, which provides users the capability to:

- Specify route plan of the selected infotronic object.

- Display a tool generated route for the selected infotronic object. This
route can be edited by the user.

Procedure 7.5: Real System Control Tools
The following set of menus and dialogue boxes are provided:

The “Information Control” menu. This menu provides the following six dialogue
boxes:

. The “AMR Supervisory Control” dialogue box shown in figure 187, enables
users to edit the configuration of the AMR supervisory controllers. To support
these activities, six dialogue boxes are provided:

- The “AMR Overload Monitor View Controller” dialogue box shown in
figure 188, which provides users the capability to:

. Display lists of ALI_Net loops; object loop components of the
selected ALI_Net and their instances; component objects and their
methods for selected object loop and their attributes, resources
used by the above selected loops and methods; attribute names and
their values for the selected resources.

. Enable or Disable the monitoring views controller.

. Declare a selected loop category as critical, essential or non-
essential.

. Select the default set of parameters monitored by the monitoring
views controller for a selected set of loops. Default set consists of
loop load, loop response time, loop service time, method service
time, and loop accuracy.
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Select a subset of the default set of performance parameters
monitored by the monitoring views controller.

Monttor and persistently store a selected set of resources used by a
selected set of one or more loops.

The “AMR Learning Controller” dialogue box shown in figure 189,
which provides users the capability to:

*

Display lists of ALI_Net loops; object loop components of the
selected ALI_Net and their instances; component objects and their
methods for selected object loop and their attributes, resources
used by the above selected loops and methods; attribute names and
their values for the selected resources.

Enable or Disable the ALI_Net learning controller.

Select the default prediction distance set and maximum prediction
distance.

Specify maximum prediction distance and maximum allowable
prediction error.

Predict the utilization levels of a selected set of resources.

The “AMR Performance Controller” dialogue box shown in figure 190,
which provides users the capability to:

Display lists of ALI_Net loops; object loop components of the
selected ALI_Net and their instances; component objects and their
methods for selected object loop and their attributes, resources
used by the above selected loops and methods; attribute names and
their values for the selected resources.

Enable or Disable the ALI_Net performance controller.

Declare a selected loop category as critical, essential, or non-
essential.

Specify desired load and response time of a selected set of one or
more loops.

Specify service time of a selected set of one or more methods.

Select the default set of parameters used by the ALI_Net
performance controller for the selected set of loops. Default set
consists of temporal data structures, control rules,
correlation/aggregation rules, and fuzzy control membership
functions.

Control the performance of ALI_Nets referenced by the above
selections.
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- The “AMR Configuration Controller” dialogue box shown in figure 191,
which provides users the capability to:

. Display lists of ALI_Net loops; object loop components of the
selected ALI_Net and their instances; component objects and their
methods for selected object loop and their attributes, resources
used by the above selected loops and methods; attribute names and
their values for the selected resources.

. Enable or Disable the ALI_Net configuration controller.

. Declare a selected loop category as critical, essential, or non-
essential.

. Select dynamic allocation of resources to selected loop functions
implemented by the ALI_Net performance controiler.

. Bind the selected set of ALI_Net, object loops, and objects to the
selected set of physical resources.

- The “AMR Security Controller” dialogue box shown in figure 192,
which provides users the capability to:

. Display lists of ALI_Net loops; object loop components of the
selected ALI_Net and their instances; component objects and their
methods for selected object loop and their attributes, resources
used by the above selected loops and methods; attribute names and
their values for the selected resources.

. Enable or Disable the ALI_Net security controller.

. Select security level for the selected set of loops, objects, and/or
methods.

. Select the use of public session keys for a selected object loop.

. Specify authorized users for each security level associated with the
selected loops.

. Select read/write options protections for the resources associated
with the selected set of loops, objects, and/or methods.

. Enforce security requirements specified by the above selections.

- The “AMR Reliability Controller” dialogue box shown in figure 193,
which provides users the capability to:

. Display lists of ALI_Net loops; object loop components of the
selected ALI_Net and their instances; component objects and their
methods for selected object loop and their atiributes, resources
used by the above selected loops and methods; attribute names and
their values for the selected resources.

. Enable or Disable the ALI_Net reliability controlier.
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. Select communication and or system recovery reliability functions
implemented by the ALI_Net controllers.

. Select communication semantics as exactly once or at least once to
the selected set of loops.

. Select resource categories recovered by the ALI_Net reliability
controller.

. The “Equipment Scheduling” dialogue box shown in figures 194 which
provides users the capability to:

- Select object loop category as processing, control, or diagnostics.

- Display lists of ALI_Net loops and object loop component of the
selected ALI_Net.

- Display lists of candidate instances of the mechatronic, infotronic, and
notronic component objects and their instances.

- Define a priority level for each object instance.
- Schedule objects referenced by the above selections.
. The “Personnel Scheduling” dialogue box shown in figures 195 which provides
users the capability to:
- Select object loop category as processing, control, or diagnostics.

- Display lists of ALI_Net loops and object loop component of the
selected ALI_Net.

- Display lists of candidate instances of organizational object classes.
- Define a priority level for each object instance.

«  The “ALI_Net Scheduling” dialogue box, shown in figure 196, which provides
users the capability to:

- Select object loop category as processing, control, or diagnostics.

- Display lists of ALI_Net loops and object loop components of the
selected ALI_Net.

- Select value function associated with the selected ALI_Net and/or
Object_Loop. This function is used by the ALI_Net scheduler.

- Define new value functions.

- Define trigger timer of the selected loops.
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. The “Real System Identification” dialogue box, shown in figure 197, which
provides users the capability to extract the dynamic behavior model for the
selected set of ALI_Nets, Object_Loops, and their methods residing on a
selected set of nodes and processors. This is carried out for the selected set of
event types associated with the selected ALI_Nets.

Procedure 7.6: Project Management Tools

The “Project Management” dialogue box shown in figure 198, provides users the
capability to:

. Select an architecture model from the list of alternate architecture models stored
in the knowledge data base. Each of these models defines the integrated
operational/system architecture model of the business operations under study.
See procedure 6 for description of method used to generate alternate business
architecture models.

. Select the set of value functions/metrics used to evaluate the selected
architecture model.

. Display lists of ALI_Net loops; object loop components of the selected
ALI_Net and their instances; component objects and their methods for selected
. object loop and their attributes, and resources used by the above selected loops.

. Select required value/cost project management displays to incorporate break
down structure, project schedule, business tracking, and operations
dependencies information for the selected architecture specification level. The
four level categories, operational architecture, design, manufacturing, and
tailoring, are specified as shown in procedure 6.

. Select display type as tabular or graphic. Graphic displays are generated for the
selected information using displays of the type shown in figures 150 - 153.

Procedure 8: Architecture of the AMR Tools Kit

Plan projection of the AMR tools kit is shown in figure 199. The AMR Common
Development Environment (CDE) knowledge controller and the AMR Common
Operating Environment (COE) knowledge controller knowledge controllers are used to
specify, encapsulate and manage the integrated ALI_Net meta model which captures the
static and dynamic object relationships of the enterprise during all phases of the real
system life cycle.

Each AMR knowledge controller is created using the concurrent processing
control objects set shown in figure 123. As shown in figure 200, each Reliability
Controller is constructed using four set of objects: Data_Integrity_Controller,
Transaction_Correctness_Controller, Transaction_Atomicity_Controller, and the
AMR _Structural_Integrity_Controller. The latter controller verifies and validates the
structural integrity of the evolving enterprise wide operational/system architectures and
its compliance with declared constraints and rules provided in this invention including
object attribute and association constraints as shown in figures (42 and 43); and structural
constraints as shown in figures (68, 92, 112 and 113) and their associated construction
procedures. For each enterprise these rules and constraints are captured by a layered set
of distributed M data model schemas as shown in figures 201 to 209 where:
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. Each of the M(k) schemas, where k is BM, DM, ASA, SP, ASC, SI and OS,
provides data base administrators with defined views used to regulate their
respective tools access to shared and protected data.

. A semantic filter defined between each M(k) schema and its respective CDE or

COE M metaschema as shown in the two isomorphic plan projections of figures
202 and 203.

. Each of the M(k) schemas is specified by a set of subschemas. Each M
subschema specifies the M schema at a specified level of abstraction. The

containment relationships between the different levels is shown in figures 204
and 205.

. Each of the M subschema is defined using the set of a data definition dictionary,
meta knowledge rules and ALI_Nets as shown in figures 205 and 206. This set,
in accordance with procedure 5.2.2 rules, is defined at the given level of system
abstraction over the shared set of active and passive object entities. Meta
knowledge rules may restrict the allocation of the set of active/passive objects to
a certain set of one or more architecture levels.

The above set of M schemas are implemented using a set of distributed
cooperating servers residing on each node of different sites of the distributed
development systems. Two basic types of configurations can be realized. The first fully
distributed configuration has no semantic filters as shown in figures 207 and 208. In this
configuration each of the M schemas supporting BM, DM, ASA, SP, ASC, SI and OS
loops categories is embedded within the boundary of tools supporting the specification,
analysis, synthesis, design automation and sustainment of these loops. This implies a
homogeneous design of the AMR tools kit where the underlying design of each tool is
carried out using an M schema and its underlying M model design concepts. The second
partially distributed configuration is shown in figure 209. In this configuration the tool
kit is created using a heterogeneous set of tools whose interoperability 1s mediated using
a set of semantic filters as shown in figure 213. These filters mediate the underlying
semantics of each tool with the integrated semantics of the CDE M schema and COE M
schema

The CDE knowledge controller is implemented by a set of distributed cooperating
servers residing on each node of different sites of the distributed operational systems.
These servers provide the product development/acquisition loop tool set with the
following set of service capabilities as shown in figure 210:

»  Declare the set of rules used to specify the enterprise integrated operational /
system architecture using procedure 7 dialogue boxes. These rules enable
project / enterprise architects to:

- Define the number and user defined names of the set of architecture
“integration level” models. As shown in figure 204, these models are
used to specify business operations at different levels of abstraction from
the specification of operational missions down to the blue print
specification of the real system implementation and fabrication
architectures. Examples of architecture “integration level” models are
multi-site operational requirement architecture, multi-site functional
architecture, multi-node network architecture, multi-processor hardware
architecture, and multi-process software architecture.
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- Define the set of static and dynamic model types used to specify system
architecture at each architecture integration level. As shown in figure
212, examples of UML static model types are classification, association,
and aggregation, object relationship models. Examples of UML
dynamic model types are sequence, collaboration, statechart, activity,
and implementation diagrams.

- Specify the integration level of each model type. Integration levels
provide an ordered top-down hierarchical containment relationship
between a given set of architecture models.

- Associate with each architecture level the set of admissibie objects and
resource types. Each of these items is an element of the real system
Entity Relationship or Object Relationship models. Objects and
resource types of each level may be hierarchically ordered.

Visually Create, store, retrieve and edit static and dynamic model types.

Visually Create, store, retrieve and edit instances, i.e. occurrences, of static and
dynamic model types.

Automatically integrate model types at each level to create single level and
multi level integrated architecture models. Integration rules are dependent on
the model type paradigm used such as UML, IDEF, etc. For the UML case, the
formal geometric language of this invention enables: 1) integration of different
UML static and dynamic model types into a single level integrated architecture,
and 2) integration of different levels of system architectures into one unified
AMR architecture.

Automatically generate model types tailored to the semantic requirements of a
specific end user type or a specific tool type. Examples of user types are project
managers, system architects, object developers, and system operators.

Examples of tool types are project management, cost analysis, requirements
analysis, architecture specification, capacity planning, design simulation,
reverse engineering, code generation, and test automation.

Check, report, and enforce compliance of the architecture integration models
and their component models, to project and/or enterprise wide architecture
rules.

The AMR COE knowledge controller, is implemented by a set of distributed

cooperating servers residing on each node of different sites of the distributed operational
systems. These servers provide business operations with the following set of service
capabilities as shown in figure 211:

Configure the real system integrated architecture at each node using architecture
specification, planning, and scheduling procedures of this invention.

Use existing system loading and installation tools to load and install the
configured architecture and its underlying AMR data structures at each node
(site).

Support the run time operations of the AMR planning, scheduling, and system
control as shown in procedure 5.3 and figure 100.
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Two major types of AMR tool kits are specified. Whereas the first type of kit is
created using a homogeneous set of tools, the second type of kit is created using a
heterogeneous set of tools. By a homogeneous set of tools we mean that each tool is
designed to implement the underlying semantics of the ALI_Nets as specified by the
design concepts, data structures, and procedures of this invention. By a heterogeneous
set of tools, we mean that each tool was not designed to implement the M model design
concepts but nevertheless can provide some required system specification, analysis or
implementation functions. As shown in figure 213, the second type of tools kit consists
of a heterogeneous set of tools. Each of these tools can be an off-the-shelf commercial
tool which can provide some of the functions required to implement the integrated design
concepts, data structures, and procedures of this invention. Interoperability of these tools
requires the specification of a semantic filter, 1.e. information schema, for each tool.

Procedure 9: AMR Architecture Complexity Metrics

In procedures 4 and 5 it is shown that the integrated architecture of a real system
is efficiently specified by the geometric system evolution map illustrated in figures 35,
36, and 37. These figures describe the set of evolutionary processes used to specify the
static and dynamic binding of system component objects into adaptive operational system
architectures. The quality of an architecture is evaluated using two types of architecture
complexity metrics. The first type of metrics, calculated using procedure 9.1, enables the
evaluation of the packing efficiency of the system structure. The second type of metrics,
calculated using procedure 9.2, enables the evaluation of system order, its structural
partitioning and aggregation. Both types of metrics are applicable to a broad area of
application systems and are independent of the implementation medium of the specified
architecture. The implementation medium may be software, computer hardware,
firmware, or metal.

Procedure 9.1: Fractal Dimension Metrics of System Complexity

An integrated architecture of real systems has a self-similar or a self-affine fractal
design structure as shown in figures 35, 36, 51, 52, 62, 94, and 97. This structure is used
to specify: 1) the static and dynamic binding, i.€. integration, of system components to
form Infotronic, Mechatronic and Netronic objects, and 2) the dynamic binding of these
objects to create adaptive operational system architectures. A useful description of a
given system architecture is the fractal dimension of the system’s spatial structure. As
introduced by Mandelbort, the key idea behind fractal dimension is that a rugged object
can be described by extending the classical concept of dimensional analysis to include a
fractional number that describes the ruggedness of the object in the space spanned by the
whole number dimensions encompassing its fractional magnitude. This invention,
provides a novel application of Mandelbort’s ideas to evaluate the spatial structure of
software intensive system architectures. Specifically this invention:

. Recognizes that the dimensionality of a software intensive system depends on
the operations performed on it either mentally during the concept exploration
and analysis phases or physically during the development and sustainment
phases of the system life cycle. This means that system geometric regions
which may be smooth at the system functional architecture level can appear to
be rugged, i.e. fractured, at the system implementation architecture level. This
implies that the fractal dimension of the architecture of a real system is always
associated with its specified resolution at various architecture levels.
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. Provides a set of architecture complexity metrics. These metrics are used to
evaluate the fractal design structure of an evolving system architecture at the
different levels of resolution. Each level is used to support specified system
operations during a specified phase of the system life cycle.

Complexity metrics of system architectures are calculated using the following
procedure where each category of the system architecture is specified at a given phase of
the system life cycle:

First, compute:

SON(L,) = number of self-affine component objects specified at the n" level of
the fractal structure of the static architecture.

SOS(L,) = scale factor used to generate SON (L) components
Set Fractal_Dimension_Static_Structure (L) = log (SON(L)) / log (1/SOS(L,)))
Second, compute:

DON (L) = number of self-affine ALI_Nets specified at the n* level of the
fractal structure of the dynamic architecture.

DOS(L,) = scale factor used to generate DON (L, ) components

Set Fractal_Dimension_Dynamic_Structure (L ) =
log (DON(L,)) / log (1/DOS(L,))

Third, plot:
log (SON(L,)) vs log (1/SOS(L.,))
Fourth, generate:
The best fit straight line for the log (SON(L,)) vs log (1/SOS(L,)) plot.

And set:
Average_Fractal_Dimension_Static_Structure = Slope of the generated best fit line.

Fifth, plot: .
log (DON(L,))) vs log (1/DOS(L))
Sixth, generate:

The best fit straight line for the log (DON(L,)) vs log (1/DOS(L,)) plot.

And set:

Average_Fractal_Dimension_Dynamic_Structure = Slope of the generated best fit
line

In the above calculations it is assumed that 1) the mass of each component object
is empirically specified as the number of lines of code used to specify the visually atomic
component object at the specified resolution, and 2) all component objects have a unit
mass. This latter assumption can be relaxed by modifying the above procedure where
SON(L,) and DON (L,) are specified as follows:
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SON(L, ) = SOM(L,) = Average mass of the component objects specified at the
n" layer of the fractal structure of the real system static object model.

SOS(L,) = SOL(L,) = Average length of geometric region of the component
objects used to calculate SOM (L)

DON (L) = DOM (L) = Average mass of the concurrent object components of
the ALI_Net specified at the n" level of the fractal structure of the dynamic
architecture.

DOS(L,,) = DOS(L,) = Average length of geometric region of the concurrent
objects used to calculate DOM (L,)

Procedure 9.2: Entropy Metrics of Systems Complexity

As shown in procedure 4, the spatial and time evolution of the system design
structure is specified using a geometric system iterative map as shown in figures 35 and
36. This map specifies a time indexed sequence of instances of the system architecture
model. Each element in this sequence is a snapshot of the system state space structure at
a specified time instant and the state of the system at each time instants is specified by the
values of an ordered set of variables xj which reside in various passive regions of the M

model of a real system.

S (1) =[xj(®) 11 =j=n]=[x1(t), x2(1), ... Xn(V)]
In this invention an architecture complexity is measured using entropy metrics of
the set of ALI_Nets used to compose a given architecture. Justifications for selecting
entropy as an architecture metric are:

e Each ALI_Net specifies an architecture partition which can be independently
configured, tested, controlled, maintained and modified.

e  Each ALI_Net defines the set of relations between system elements that operate
as a constraint on the behavior of the system varables.

Since the absence of relations or constraints is randomness, it is reasonable to use entropy
as a measure of system order. By that we mean a measure of the degree of coupling and
interaction between the component objects of each ALI_Net. This measure is calculated
using the following procedure:

Given an architecture model of a real system S specified by the set of ALI Nets where,

S = [AL(1), AL(2), ..., AL(m), ....., AL(n)]

And each ALI_Net, AL(m), is specified by the aggregated set of object_loops

AL(m) = [OL(m, 1), OL(m, 2), ..., OL(m, j), ....., OL(m, k )]

And the state of each object_loop, OL(m, j), is defined by the state vector,

OL(m, j) = [X(j, 1), X(j, 2 ), coveeees X(Jo ;)] -
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First, compute the entropy H [OL(m, j)] of each object_loop, OL(m, j), where

) 1
H[OL(m, ) =log2 N-x7 3 niloga ni

=1
where nj = number of occurrences of the ith possible value of OL(m, j)

Second, compute the coupling C ( Lj , Lj ) between each pair of system loops
object_loop, OL(m, i), and object_loop, OL(m, j), provided by the transmission T(Sj:S;).

C(Li,Lj)=HI[OLm,1)]+H[OL(m, j)] - H {(OL(m, i) , OL{m, j)]
where
H [(OL(m, i) , OL(m, j)} = Entropy of the union of the two loops OL(m, i) and OL(m, j).
From the above equation it follows that:

H [ (OL(m, i) , OL(m, j) ] = 0iff OL(m, i) and OL(m, j) are statistically independent and,
H [ (OL(m, 1) , OL(m, j) ] = maximum if one loop is dependent upon the other loop.

Procedure 10: Error Prediction and Model Estimation Algorithms
Error Prediction and Model Estimation is carried out as follows:

Given an unknown single input-single output system and a pair of measurements
(#,,y,), estimation of system parameters can be carried out in terms of:

1. The impulse response (moving average, all zeros) model

Y, = G(z_’)u, +e, (1)
2. The Auto regressive-Moving average model
4 B
yt=zk:{ u +e, (2)

where A, B, and G are polynomials in z~' whose orders are n,, n, and n .
respectively.
From equation (2):

v,=2,.G (3)

where ¥, @, and G are the cross covariance and auto covariance functions.

wu?

Equation (3) does not, in general, provide efficient estimates for and requires
knowledge of j beyond which g; is effectively zero. If variation in input is large
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compared to that due to noise and/or a large volume of data is available, then
the impulse response can be directly estimated from the orthogonal set of
equations defining the cross correlation function between the prewhitened input

u, and the corresponding transformed output y; , that is:

/Tl

I (4)

where
= Wz )Xz, )
3 =W)Xy, (6)
By equating the coefficients of z-! of equations (1) and (2), we have:
=0 for i<k |

g =b - Zaw for ksisk+n,

jo1

8= Zajwl  Jor ik +n,

Knowledge of the estimated cross correlation function ¥, and its standard

error can be used for iteratively estimating k, A and B polynomials ( Box 1976,
Godfrey 1969, Clarke 1969)

Dead time estimation by this method depends on the inspection of the terms
where in the presence of noise it may be hard to discriminate between zero and
non-zero terms. In this invention, a ladder structure is developed which
computes the optimum impulse response by minimizing the total square error.

uH) g (7

I= E(e ) [\vt Z;IWI("‘") J

where
Lim W =
By setting
oI/ 6w, =0 for i=0,1, .., n, -1 t))

w_lw,. E(u,_ju,_,.)= E(y,u,_j), j=0,1, .., n,-1

Computation of the expectation functions E of equation (8) depends on the
statistical characteristics of the signal where it can be shown that if u, is
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stationary, then E(u,_ ju,_i) is the auto correlation matrix @, (i, j) which is
Symmetric Toeplitz. On the other hand, if %, is nonstationary, then the

expectation function is the auto covariance matrix @, (i, j) which is Symmetric
but non-Toeplitz.

Equation (8) can be solved in two stages using Levinson recursion whose
derivation is based on the Toeplitz properties of the auto correlation matrix as
follows: (Levinson 1947)

First, Compute the auxiliary sequence Cy") (where m defines the order
of the filter) as follows:

G = 6.,/ ,,(0) ©)

gm+1) - £CT, ()
'(m) - — i=1 (10)

9.0 - Z GV, (m=1)

-i) (m-1)
G"=GI - (a
Second, Compute the impulse response coefficients as follows:

o = $,,(0)/ $,,(0) (12)

(m+1) ¢y“(m+1)—-%W:'(M)%u(mw“l—i)
Wm+1 = ml—l (13)
$0) ~ 3. C 0 G~ )

=0

w(m+1) - w(m) _ w(m+l) Ci(m) (14)

i i m+l

Third, Estimate the adequacy of the predictor length from:
E,=$.(0)/ ¢,,00 (15)
Epor =B, + w0 (9, 0m+ 1= 2 C™,,0) 16)

A moving average ladder can be built to implement equation (9) to (16) as
follows:
Equations (11) and (14) can be rewritten in the form:
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[ 1 r 1] [0 ]
l-c™ 1 |-cim| |-c{m |
I_C( )1 l l (m—l) I | C(m—l) I
m- 1
| | | | |
- |+ (=) |
| I | | |
| || | | l
| |-G |-CmP
l-cem] [ o] [ 1]
[-wy” 1 [-wg" "] -G "1
| | opinen] ||
I |_| |+(—w""’)| |
N A N
EREREN ey
vl o] | 1]
By defining:
pmH) — 1_ C,(,"’:Il)z_l C;m21)~—2 - - Ct)m—l)z—m
Q(m+l) C\(m 1) (m 1)"—1 - +Z-m

(m+1) I:,(m+1)

1 -1 1 -1 1
bt(m+ ) =z d(m+ )ut =7z r§m+ )
m+1) (m-1) (m-1)_-1 (m=1)_-m
WD o w2 - w2

d,('n) - W("Hl)ut_l
Therefore, from equations (17) and (18):
W(m+2) _ W(m+l) _ W(m)Q(M+1)

dt(m+2) - dt(m+l) _ w(m)b(m+l)

[,(m+2)_P(m+1) C(’")"~l (m+1)
= -G,z Q
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(17)

(18)

(19)
(20)
21
(22)
(23)

(24)

(25)
(26)

(27)
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(m+2) j(m+1) _ C(m)b(m+1)
2 -1 1 ) 1
Q("H' ) z Q("H' ) _ C(()'" I)("'+ )

(m+2) -1 (m+1) m) A m+l)
bx =< (bt _C(() ﬁ )

and from equations (7) and (26):

2

(m+2) d(m+1) _ ,m+D) _

W(M)b(mH)

=Y +4q, =€,

PCT/US00/10992

(28)
(29)

30)

€3]

Equations (28), (30) and (31) can be represented by the Moving Average ladder shown in
figure 128. The moving average ladder can be reduced as special cases to implement
prediction filters with prediction distance k where from equations (7) and (8) for y, = ux.

By defining:

S(m+l) — 1 _

it follows that:

I E/qu 2 W(HW) t 1>

n.,—l
(n,) :
2 ¢.-D) W™ ==, +k
for j=0,1...,n,-1
-k
dt(m) =7z +1bt(m)
-1)_-k —1y_-k-1 ~1)_—k-m+1
wm Dzt i P

(34)

e(m+1) - S(m+1)

¢ u

1

S(m+2) S(m+1) (m)Z—k+1Q(m+l)

(m+2) (m+1)

1
e = e w(rn)d(m+ )

(32)

(33)

35)

(36)

37

which results in the general auto regressive prediction ladder shown in figure 129.

The prewhitening filters used in the seismic and speech recognition industries
(Riley 1972, Makhoul 1975, 1977, 1978, Messershmitt 1980) can be derived from the
general prediction ladder for k=1.

If k=1, then from equations (10) to (14):

(m) _ ~(m)
w =Cy, for all m
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w™=C™ fori=0,1,..., m-1 (39)
and from equation (33),
4" =" (40)

and from equations (19), (22) and (39),

e” = f;" (41)

The above equations show that for the spiking ladder case, the right-hand side of figure 1

is the mirror image of the left-hand side. Furthermore, by defining the two-point vector
T

T @) (0) 0)
x, =(u,y,) and /i = (”f -Gy ¥~ Gy yx—l) where Cs . estimation is based on
statistics only, then the whitened input, transformed output pair is defined by x,l = (ll,l , )’,1 )
as implied by the ladder shown in figure 130.

The residual error energy at different stages of single variable ladders is estimated
as follows:

At the (m+ 1)t stage of the ladder, there are three residual error sequences whose energies
are defined by:

Ty a7y 2 Y TRty 2 2
m+2) {(m+2) p(m+2) _ (m+1) m) m+l) 7. (m+1) (m) (m+1)
Ej(f =ft t _(fz ) -2C(§ fl( bt +(C0 ) (bz )

(42)
Efmn) - r‘(m+2)r§m+2) _ (b:(m+l))2 _ 2C(()m)ft(marl)bt(rmvl) + (C(()m))z( t(m+1) )2 (43)
E:m+2) _ et(m+2)e:m+2) _ (et(mn))2 _ 2Wf,.M)e,(m+l)b,(m+l) + (wfnm))z(bt(mi-l))z (44)
For weakly stationary signals, from equations (19) and (20):
E(m+2) _ E(m+2) _ E(m+2)
f T -
From equations (92) and (95), it is shown that:
w’("m) =et(m+l)bl(m+l) / E.(m+l) (45)
C(()m) =ft(m+l)b[(m+l) / E(m+1) (46)
Therefore, from equations (44) to (46):
Em e (W(m) )2 D 7
m+ m+ m 2
E( 2) - E 1)(1_(C(§ )) ) (48)
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where:
E:” _ ¢§:) (49)
FO _ ¢© (50)
Therefore:
E™D _g® ,-I_:z’[o(l 3 (C((,D )2) (51)
and
E™ - ¢;yo) — ¢ é}( Wim)z ?3;(1_(6,31-))2) (52)

For the general auto regressive ladder, from equations (33), (35), (37) and (94), 1t
follows that:

Ez(’m+2) = ¢uu( O) ’:i-,_Iol(l - (Wi(i) )2) B (W(M))Z E(m+1) (53)

m

Therefore, the goodness of the prediction as a function of the prediction distance
k can be computed from equations (51) and (53):

E§m+2) ,:i:I;(l— (W'-(i) )2) (w'(n'") )2
(m+2) . m N2\ m) \2 (54)
ETfi1-(c0)) (-67)

i=0

which is a function of the pivotal elements of the ladder w and C? only.

Another measure about the adequacy of the length of the prediction filter which
is independent of the energy of the input time series is given by:

B ) B )
Tl o

The structural properties of single variable ladders are evaluated as follows:

By defining the polynomial:
(1 (1, —wl™, =™, ) (57

1 m~1

then from equations (26) and (31):
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(m+1) (T-(m+1)) (58)

where:

V,= ( Vool sty gy o o s u,_m_l) (59)

It can be shown that minimization of:
E™(0) = ¢,(0)-2 ¢ (i+1)+ z i Wi, i~ Hw
will result in the normal equations:
T G- 0w = g+ D) for 1=0,1,. ., m=1 (60)
and the residual error energy of:
E™(0) = 4, (0~ Z ¢, (i + "™ (61)

By augmenting equations (60) and (61), we have:

[¢yy(0) ¢yu(l) - ¢yu(m + 1)] [ 1 ] [E(mﬂ)(o)'l
16,.D) $,,0) $.1) S| 1w | o |
:¢yu(2> PulD) $,(0) : : e i 0 }
| | |7 | (62)
| I L |
| SRR I R I
[‘pyu(m + 1) ¢uu(m) ¢uu(0) J (m UJ L 0 J

The above matrix is symmetric but non-Toeplitz.
From equation (58), we can define the matrix §
e=3S

v

which can be expanded as follows:
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Therefore:

[ Ty
(0)
:1 w! 0 0 : lu, , |
|1 w®  —w® 0 | by, , |
. I |
| N |
: i
' ' I |
I e

D, =ce’ = 3 SVWIS =50 5

€e
t=—m

From equations (62) and (64), it can be shown that:

So ST

|

= |
| :
| o
I
[

[Ee(l)(O) E:z)(O) Ef)(()) . E:"'*”(O)]
|E®(0) E®©) E®(0) .
E®(0) E®(0) E®(0) . :
E™(0) |
|

E™D(0) . .. E™V(0) . . . Ej’“”(O)J'

Therefore, the determinant of S®_,S” is given by:

det (SQ)WST)= E:"Hl)(O) r:i;-Ill(E:n(O) _ E:i+1)(0))

Since from equation (63), determinant of S is given by:

m-1 5
det (§) = II w’

it follows that determinant of @, is given by:

det (®,,) = E"©) TL{EC(0)~ E“2(0)) 1 T (w®:

Since

i=1

fi 20 - £ o) T (E0© - B0 0) ()
i=0 i=0
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(63)

(64)

(65)

(66)

(67)

(68)
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where A" ™" are the eigen values associated with @, and since a positive definite real
symmetric matrix has only positive eigen values, it follows from equation (52) and (77)
that the positive definite conditions of ®,, is guaranteed if all E(0) are positive and

monotonically decreasing which implies that the modulus of CY and w;” forall i is less
than one and are monotonically decreasing.

Next for the general prediction ladder from equations (34), (35) and (37), it can be
shown that the normal equations are:

m=1
z (-0 w" =g (l+k) for =0, 1 ... m-1 (69)
with an associated residual error energy of:
(m+1) ml N (m-1)
E"(0) = 4,0 - Z ¢,(k+i) w, (70)
Furthermore:
q)ur“' S(i+l) — \pulu,+k (71)
where W, , ., is the cross correlation function of the input and desired time functions.

From equations (69) to (71), it follows that:
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| 0.,(0) 9.,(1) . .. Bulk+i=1) ... d.(])

|l_ 1 —‘ [‘Egml)(o) —I
:¢W(l> ¢,,,,(0)...¢,,,,<k+z'—2>...%(l—l){lo ey |
| AR |
) AN |
| =] 0
Pk +)  $.00) Nl | 0| o
5 3 oo
=' 'I‘-wg;»' Ly (ki)
L¢w(n.........,...........¢w(0)ﬂ01~k-mJ LW“*"(I)

where 0, , is the null array of dimension -/ and where w*" () is the " lag cross
correlation function associated with the i order filter

VG = 4D - Z W 4, G-k -m)

The high order lags of the cross correlation function will disappear when the
optimum length of the filter is set equal to the length of the auto correlation vector.
Furthermore, from equation (69), the zero lag auto correlation function of the residual
error E“(0) is equal to the zero lag cross correlation function y/(i“) (0). Inthis
case, the prediction error filter S D shortens the input wavelet u, of length k +i to
an output wavelet of length k. Because & is user defined, the user has a means for
controlling the desired degree of wavelet contraction.(Alam 1977)

By reversing S, equation (72) can be rewritten in the form:
y g q

4.0 (D) 4O 0 | 1 0
4D .00 4.0-D =D | o
i
D p D (k+1)
S R L (73)
Bk +i=1) $..(0) e W (k- 1)
oa—l i+1
4.1 7 | | A0
- 4 T LETO)

From equation (34), we define the matrix S such that:

e=Su (74)
Equation (73) can be expanded as:
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e? 0,, N 1 ]
ef(S) m-2 - w'l(l) - w(()l) Oa—l 1 ul—k—m+1
= (75)
u,
B X R B LA
hence:
©, = ee’ = Suu'ST = so, S =
EM(0)  EP0)  EX(0) E™(0)]
E®(0) E®(0) EP(0)
® E®0 @ E™ (o
EQQ)  EP©O)  EX©) “O0 | 2
LE™(0) E(0) E™(0) |

det (S @, ST)

£ [JE0© -E0) o)

Since

det (S @, S™) det (@, ) .det (det(S))* , it follows
that if det ®@,, is negative, then det ®_, is negative. Equation (77) implies that

existence of the inverse of S depends only on the zero lag autocorrelation of the error
sequence at different filter orders, and it exists if'

1. All zero lag auto correlation functions £ (0) are positive

2. E®(0) wherei=1,2, ..., m;is monotonically decreasing

Since E{"(0)is a function of C{” and w"’ forj=0,1, ..., i-1, it follows from

equation (52) that the above conditions are satisfied if Iw,,(i)l ({ |C(§i)| (1 foralli

and all elements w” are monotonically decreasing.

Finally, by analyzing the left hand side of the ladder for k = 1, from equation
(69) and (70):

m—1
> G =D WY = g.(+1) where /=0,1, ..., m-1
=0
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E™0) = 4u®) - 3 gulieD) W

Augmenting the last two equations results in the matrix equation:

(m+1) _ O"'+1
(Duu Q - E("H'l)
which is expanded as follows:
4,0) 4D dulm) | [-CV] o
6.0 4.0 bu(m=1| |-C"P 0
0
= (78)
_ C(m;l) 0
Bu(m) g (m=D) 6.0 | 1 | |Ee
Therefore, from equation (22):
R = Q u  which is defined by:
r? 1 0 0 0 0] 4 ]
@ e 1 o 0.,
r® ~C®» W 1
= (79)
ul—m
] I e Be L e A I
Therefore, it can be shown that:
®, = rr’ = P®O,0 = Q0O0,P = E(@0)

where E is defined by the diagonal matrix
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[E®@©0) o 0 o |
0 E®(0) 0 0
E = 0 0 E®(0) 0 (81)
0 0 0 E"D(0)

Equation (80) shows that residual energies at different stages of the left hand-side of
the ladder, the spiking side, are orthogonal to each other which implies that different
stages of the spiking side are decoupled from each other. Furthermore, the diagonal
elements of E are the eigen values of the covariance matrix @, and can be computed

directly from the reflection coefficients C;” using equation (51). Since a positive
definite real symmetric matrix has only positive eigen values, it follows that the
conditions for positive definiteness of ®,, are satisfied if £ is positive for all i.

From equation (51), this condition is satisfied if and only if le" ( 1 foralli. This

condition guarantees that P""*" is minimum phase.

For the moving average ladder, the transfer coefficients, w,,("’ , and the reflection
coefficients C{” for all 1 can be estimated as follows:
From equations (7) and (31)

I= e ) = 5 A o s )

k=1

where f, is the time varying forgetting factor.
By setting 5 1 /s w{™ = 0, we have

t

wm () = ( gﬂk e )/ ( A (BmY ) (82)

k=1

and it follows that:

t+1 t+1

Wy = (Sa o ne )(Sa ) ) o

since from equations (31), (82) and (83)

t+1 t+1

1 n\?
Y8 B = W) LB (B0 + B b0 e
k=1 k=1

Therefore:
wiP(t+1) = W) + y e (84)

t+1

where:
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ron = (B )1 400) H (1-(c°0 V) @9

For the general prediction ladder, it can be shown that equation (85) is true
where  y,,, 1isdefined by:

ror = (B V(@ I1 (-0 ) @9

Estimation of the C{” parameters may be carried out by minimizing the
performance index:

2
] = E (rtz_}_ftz) - E ((rt(mz) )2+(.f;(m+2)) )
where from equations (22), (28), and (30), it can be shown that § 7 /5 C{™(¢) = 0
results in:

t

= (228 60 £ )1(ZA (6 «(7Y) @7

k=1

Since:

t+1 t+1

234 b0 £ Y=o TA () + (1)) +
k=1 k=1
( b(m]+1) fl(m+2) +ft(m+1) rt(n;+2) )
t+ +

it follows that:

Cém)(t+l) :Cém)(t) _ 7t+] (b(m+1) ﬂi7+2) + (m+1) r(m+2) ) (88)

t+1 t+1 t+1

Voo = Aa 124,00 H (1-(cowm V) (89)

Finally the optimum dead time impulse response ladder, shown in figure (131),
is used to estimate the optimum lag between the system input and its desired output.
This ladder enables the generation of performance index contour maps as a function of
filter memory length and a range of lags or prediction distances.

Conclusions, Ramifications, and Scope
Accordingly, the geometric display tools, methods, and adaptive model

reference tools of this invention enable the specification, analysis, synthesis, and design
automation of an adaptive integrated architecture of a real system. These systems can
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be adapted during system development to compensate for requirement changes and
design errors, and during run time operation to compensate for unanticipated
operational system conditions. AMR tools enable the verification and validation of
adaptive real system designs built in compliance with a declared enterprise wide
technical architecture. Architecture components can be specified using AMR tools or
can be imported into the AMR tool set. Although the description above contains many
specifics, these should not be construed as limiting the scope of the invention but as
merely providing illustrations of some of the embodiments of this invention. For
example the user interface description provided in procedure 7 should be viewed as
one of many different ways used to describe the look and feel of the user interface
required to enable the specification, analysis, synthesis and enactment of this invention.
Thus the scope of the invention should be determined by the appended claims and their
legal equivalents, rather than by the examples given.
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CLAIMS
I claim :

1. A means for creating an integrated architecture of a real system which contains
one or more component objects from the group consisting of mechatronic objects and
infotronic objects, human objects, and human organization objects comprising:

(a) ameans for providing a cellular display which is virtual, tessellated, and
wraparound and wherein a cell is composed of two adjacent triangular
display tiles and each cell represents a unique segment in the system spatial
state time grid

(b) a method for composing an object region which is geometric and is fractal
and is defined for each said component object of said real system where said
object region is composed of a set of atomic regions which are geometric and
triangular

(¢) amethod for folding and unfolding said object region of said component
object of said real system

(d) a method for composing projections of a multi-layered stack of said
component objects wherein said projections are a plan projection which is
geometric and is fractal and an elevation projection which is geometric and is
fractal

(e) a method for constructing a static architecture, which is geometric and is
fractal, comprising:

(el) a means for constructing said projections of a classification
relationship between said component objects of said real system

(e2) a means for constructing said projections of an association
relationship between said component objects of said real system

(e3) ameans for constructing said projections of a composition
relationship between said component objects of said real system

(e4) a means for integrating said projections of said classification
relationship and said association relationship and said composition
relationship

(e5) a means for composing a minimum static architecture of said static
architecture using a minimal orthogonal set of object attributes and a
minimal orthogonal set of object functions which are used to compose
said component objects of said real system
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(f) amethod for constructing a dynamic architecture of said real system which is
geometric and is fractal and incorporates said projections of said static
architecture, comprising;

(f1)

(f2)

(3)

()

(f5)

(f6)

£7)

a method for constructing an integrated model which is geometric and
which fuses information specified in a set of graph types comprising
tree graphs, inheritance graphs, state transition graphs, data flow
graphs, control flow graphs, and Petri Net graphs

a method for constructing an atomic connection, of said integrated
model, which defines communication protocols used to connect said
component objects specified in said static architecture wherein said
atomic connection is token based and is geometric and the geometric
region of said atomic connection does not contain said object regions
of infrastructure objects used to support connections between said
component objects

a method for constructing a compound connection, of said integrated
model, which defines communication protocols used to connect said
component objects specified in said static architecture wherein said
compound connection is token based and is geometric wherein the
geometric region of said compound connection contains said
component object regions of infrastructure objects used to support
connections

a means for constructing an object loop of said real system wherein an
object loop is specified using a set of said atomic connections and said
compound connections which specify cyclic performance constrained
interactions between said component objects of said real system
wherein all interactions within the boundaries of said component
objects of said real system are internal interactions during one
complete loop cycle

a means for constructing an adaptive loop information network of
said real system wherein said adaptive loop information network is
specified using a group of said object loops wherein each said
adaptive loop information network specifies a proper partition of said
real system which is observable and controllable and configurable and
whose semantics match the conceptual model of external objects
invoking services of said adaptive loop information networks

a means for constructing said projections of said dynamic architecture
which is specified by a set of said adaptive loop information networks

a means for composing a minimum dynamic architecture of said

dynamic architecture using a minimal orthogonal set of said ALI Nets
and a minimal orthogonal set of object loops
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(2) amethod for constructing a minimum integrated architecture of said real
system which is geometric and is fractal, comprising:

(g1)

(g2)

(g3)

(g4)

(g5)

a means for constructing an operational requirements architecture
which is a dynamic architecture and which specifies performance
constrained interactions between external system objects and said real
system wherein internal structure of said real system is not
incorporated in said operational requirements architecture

a means for using said operational requirements architecture to
construct a design control architecture which specifies performance
constrained interactions between internal system objects, whereby a
group of one or more said design control architectures can be
specified for each said operational requirements architecture

a means for using said design control architecture to construct an
implementation architecture which binds design control loops, of said
design control architecture, to a programming language and a given
object class library, whereby a group of one or more said
implementation architectures can be specified for each said design
control architecture

a means for integrating said operational requirements architecture,
said design control architecture, and said implementation architecture
to construct said integrated architecture which specifies the internal
implementation structure of said real system

a means for constructing an iterative map of said integrated
architecture which is geometric and is fractal and which specifies
spatial and state and time evolution of said real system at all levels of
system abstraction and composition

whereby said integrated architecture enables development and dynamic binding of said
mechatronic component objects and said infotronic component objects of said real
system, to generate an automated operational system.

2. A method for constructing an adaptive design control scheme of said integrated
architecture of claim 1 which is used to adapt the operational behavior of said real
system, comprising:

(a) ameans for constructing an operational plan and schedule of said component
objects of said real system, comprising:

(al)

a means for using said cellular display to construct an integrated space
grid of said real system which is geometric and is fractal and is
multilayered wherein cells of said integrated space grid fuse the
physical space regions used to house said component objects and the
information state space regions which specify static structure and
dynamic behavior of said component objects
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(a2)

(a3)

(a4)

(a3)

PCT/US00/10992

a means for creating adaptive loop information network instances of
said adaptive loop information networks referenced in said integrated
architecture of said real system

a means for using said integrated space grid to specify the initial
configuration and physical space constraints of said component
objects of said adaptive loop information network instances

a means for constructing a plan which specifies the routing and
connection of said component objects allocated to said integrated
space grid

a means for using said plan to schedule and direct and monitor and
adapt said mechatronic objects and said human objects

(b) ameans for constructing a concurrent application control process, which is a
group of said component objects of said real system, comprising:

(b1)

(b2)

(b3)

a means for using specifications of said adaptive loop information
network instances to construct a reliable communication controller
and a security controller and an activation controller and a reliable
configuration controller and a concurrency controller and a
monitoring controller whereby controller components of said
concurrent application control process enforce static and dynamic
constraints associated with segments of said adaptive loop
information network instances allocated to said concurrent application
control process

a means for configuring and executing segments of said adaptive loop
information network instances allocated to said concurrent application
control process

a means for using run time system environments to enable interactions
between said concurrent control processes of said real system

(c) ameans for constructing an adaptive supervisory control process, which is a
said concurrent application control process, further comprising;

(cl)

(c2)

(c3)

a means for constructing an overload monitor controller and a
learning controller and a performance controller and a configuration
controller

a means for coordinating a group of said adaptive supervisory control
processes to adapt said integrated architecture to meet desired

functional performance requirements of said real system

a means for configuring and executing segments of said adaptive loop
information network instances allocated to said concurrent process
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(c4) a means for estimating a system model order and it’s associated dead
time parameters for a system with time varying properties

whereby said adaptive design control scheme enables the run time monitoring, control
and adaptation of the behavior of said automated operational system.

3. A means for using said integrated architecture of claim 1 and data monitored by
said adaptive design control scheme of claim 2, to evaluate cost and value of said real
system of claim 1, comprising

(a) amethod for using said adaptive loop information networks to specify
business operations of said real system

(b) a means for constructing an adaptive simulator which incorporates a
simulation engine to impiement the computational model of this invention

(¢) ameans for using said adaptive simulator to analyze the performance
sensitivity of current and proposed business operations.

4. A means for generating displays of said projections of said static architecture
and said dynamic architecture and said integrated architecture of claim 1 wherein said
displays are created in compliance with static and dynamic constraints associated with
said adaptive loop information networks and said adaptive loop information network
instances, comprising a means for generating an object state display, a dynamic graph
display, a business tracking graph dispiay, and a business control graph of said real
system of claim 1.

5. A means for evaluating a set of static structure metrics of said adaptive loop
information networks of said integrated architecture of claim 1 wherein said static
structure metrics comprise fractal dimension metrics, entropy coupling metrics,
boundedness metrics, deadlock metrics, and liveness metrics.

6. A means for evaluating a set of dynamic structure metrics of said adaptive loop
information networks of said integrated architecture of claim 1 wherein said dynamic
structure metrics comprise load metrics, service time metrics, response time metrics,
and utilization level metrics.

7. A means for using said adaptive supervisory control process to construct a
knowledge controller which is a group of said component objects of said integrated
architecture of claim 1, comprising:

(a) ameans for using said adaptive loop information networks to construct a
multilevel schema wherein a schema level is defined for each level of
abstraction of said adaptive loop information network

(b) a means for using said multilevel schema to construct a semantic filter

wherein a group of said semantic filters are used to regulate access to data
managed by said knowledge controller
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(¢) means for constructing said knowledge controller using an overload
controller and a learning controller and a performance controller and a
configuration controller.
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Elevation Projection of a Layered Object Loop

Fractal Rmr_esenution of s CORBA and a COM Object

Elevation Projection

(70-a) CORBA Representation of a Container Object

Figure 69: Elevation Projection of a Layered Object Loop

Figure 70: Fractal Representation of a CORBA and a COM Object

Fractal Representation of an interface Mesage Set

An Exampleof Two Connected Loops

(71-2) interface Message Set “
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(71-b) Folding and Unfolding of the interface Message Set
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Figure 71: Fractal Representation of an Interface Message Set
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Basic Twe Sided Communication Construct

Figure 73: An M Compound Connection

Loop Fork Communication Construct

(74-3) Representation of “O, Object” Send Request at time t,

Figure 74: Basic Two Sided Communication Construct

1. 0op Branch Communication Construct

(75-2) Representation of “O, Object” Send Request with a Fork Condition at time t,

{75-b) Represeatation of '0a Receiver Object” Instantiated at time ¢t

Figure 75: Loop_Fork_Communication Construct
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(76-3) Represenmation of "OF Object” Send Request at time ¢,

e = - - - D - — - - - - - -

{76-b) Representation of'Oi Object” Recetve Request with x Branch Condition M, af time t,

Figure 76: Loop_Branch_Communication Construct
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Loop Join_Communication Construct

of the C d Two Loep Exampic

(77-3) Representation of “O, Object” Send Roquest at time ¢,

Laver i
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System
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Figure 78: Elevadon Projection of the Connected Two Loop Example

wer |evel Plan jection of the wo Svs

Figure 79: High Level Plan Projecti
Example

of the C

d Two Loop System

Figure 80: Lower Level Plan Projection of the Connected Two Loop
System Example
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“Message/Data/objects” Wiring Diagram Multi Level Wiring Dingrams of Container and Contained Obij
The Two Loop Svstem Example
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Figure 81: “Message/Data/objects” Wiring Diagram,

The Two Loop System Example

Figure 82: Multi Level Wiring Diagrams of Container and
Contained Objects

Lavered Composition of an ALI Net Dvnamic Graph

An ALI Net Business Tracking Graph

. -~Customer Profilesw::

Customer Complaints

Potental Customers

farket Share

Computsr Hardware
{Mgmory, peripherais., eyl
Software

Operational Metrics & Scenarios

Figure 84: An ALI_Net Business Tracking Graph
Figure 83: Layered Composition of an ALI_Net Dynamic Graph
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An A ated ALI Net Business Tracking Graph

Comouter Haraward
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Seftware

System Desired ALI-Net Cumuliative

ALI-Net Individual
Operating Region Performance Region

Performance Region

SRR ERIE IR

Figure 85: An Aggregated ALI_Net Business Tracking Graph

Fuzzy Linguistic Models

Figure 86: Categories of Cognitive Models

The Two Desien Space Models
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Figure 87: Fuzzy Linguistic Models
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Elevation Projection of the Object I,oops of an Integrated Architecture

(89-2) Elevation
Projections of

an integrated Architecture Integrated Loops

Figure 89: Elevation Projection of the Object Loops of an Integrated
Architecture

Geometric Representation of an Information Access Loop __}

< R W
Attribwes|
Entity Representation Entity Record
(no operatons specified) Structure

N

(90-3) An Entity Relationship Model

Entity Emtity

(90-c) Geometric Representation of an Information Access Loop

Figure 96: Geometric Representation of an information Access

Loop

ALI_Net Components of an integrated Architeciure

Layered structure of Nettronic, infotrenic and M C Obj:

Figure 91: ALI_Net Components of an Integrated Architecture
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Figure 92: Lavered stracture of Nettronic. Infotronic and
Mechatronic Container Objects
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Elevation Projection of Nettronic, Infotronic and Mechatronic Object
“STITES=

Ptan Projection of Nettroi Infotronic and Mechatronic ObE Stacks

Magnification of
each Stack of
Moulti-layer

Further
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Each Resource
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Further
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Figure 93: Elevation Projection of Nettronic. Infotronic
and Mechatronic Object Stacks
Figure 94: Plan Projection of Nettronic, Infa ic and Mech i
Cellular Projections of a Set of Infe ic and Mechatronic Objects Object Stacks
* Plan Projection of an Infotronic Object
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Figure 95: Cellular Projections of a Set of Infotronic and Figure 96: Plan Projection of an Infotronic Object

Mechatronic Objects
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Elevation Projection of a Two Nede Architecture
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Geonretric Projection of s Cellular System Architecture

(98-a): Plan Projection

(98-a): Elevation Projection of Nodes Cellular Structure

Figure 97: Elevation Projection of a Two Node Architecture

Figure 98: Geometric Projection of a C: lud

System Archi 3
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Figure 99: Multi-Dimensional Folding of an Object Region

Figure 100: Mapping of Virtual State Space Grid to Physical Space Grid
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3

Operational Model of AMR | .ing, Scheduling and Coutrol Teols

—
—————y

‘ Euclidean/Riemann Phvsical Space Grid |

. i . . Figure 102: Operational Model of AMR Planning, Scheduling and Control
Figure 101: Euclidean Physical Space Grid Tools

AMR Piasming Precedure

Figure 103: AMR Planning Procedure
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Geographical Configuratien of Svstem Objects

of Geographical Constraints
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Figure 103: Specification of Geographical
Constraints
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Figure 106: Mechatronic Object Navigation Mechanisms

Figure 107: Cellular Allocation of Mechatronic and Infotronic
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Communication Connections

Human & Physical Objects Scheduling Procedure

et ———————————————————————

Organizationai
Obiects

Com Network M t K

Transportation Mechanism of Informstion Messages
Between Infotronic Objects Residing in Different Physical Locations

Figure 108: C ication C

Figure 109: Human & Physical Objects Scheduling Procedure
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Figure 110: Operational Model of the AMR Automated
System Control Scheme

Phan Projection ef the AMR Control Scheme of an Automsted System

Figure 111: Plan Projection of the AMR Control
Scheme of an Automated System
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. —— — Three Lavers Elevation Projection of the AMR Control Scheme of an Automated
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Figure 112: Two Layers Elevation Projection of the H
AMR Control Scheme of an Automated System Figure 113: Three Layers Elevation Projection of the
AMR Control Sch of an Aut d System
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Figure 114: Dynamic Relationship Constraints Interface Figure 115: AMR.Loop Process Data Structures
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AMR Message Header Format ALI_Net Message Header Format
I
Network P : ALIN¢ -“::':‘;‘;“
( emmunication Header e ' Header Rods

(116-2) Generic System Header

‘I rep Header Length Version

13 1 or [ Application
) | DP RS AN L Data
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Figure 116: AMR Message Header Format Figure 117: ALI_Net Message Header Format

Subl ofaC ent Application Control Process

Plan Projection of an AMR Concurrent Applicstion Control Process
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Figure 118: Plan Projection of an AMR Concurrent Application
Control Process Figure 119: Subloops of a Concurrent Application Control
Process
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Hieh Lovel Contrel visery 286 C R N F High Level Elevation Proiection of an AMR Supervisorv Control Process

/

7 Node |
/Appiication_Specific,
7/ System Monitoring \

& Control Processes

Figure 121: High Level Elevation Projection of an
Figure 120: High Level Control Loops Binding Supervisory AMR Supervisory Control Process
and Concurrent Application Control Processes

High Level Plan Projection of a Concurreat AMR Supervisory Controi Process

Compound Coanectians of Concmrent Applicstion Cantrel Procress

Figure 122: Compound Connections ef Figure 123: High Level Plan Projection of a
Concurrent Application Control Pr Concurrent AMR Supervisory Control Process
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Subloops of a Cencurrent AMR Supervisory Control Process
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Figure 125: AMR Overload Monitor
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Figure 126: Loop Cycle Window Measuremeats Figure 127: Internal structure of AMR Learning Controller
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Prediction Procedure (The G« 1 Auto .R_EEWC Ladder)

Prediction Procedure

Figure 128: Elevation Projection of Model Estimation and State
he impuise Response Ladder

Figure 129: Elevation Projection of Model Estimation and State
Prediction Procedure (The General Auto Regressive Ladder)
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Figure 130: Elevation Projection of Model Estimation and
State Prediction Procedure (The PreWhitening Ladder)

Figure 131: Elevation Projection of Model Estimation and State Prediction
Procedure (The Optimum Dead Time Impuilse Response Ladder)

33/ 54



WO 00/65488 PCT/US00/10992

AMR Performance Controller
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Figure 133: AMR Performance Controller
Figure 132: Elevation Projection of Model Estimation and State

Prediction Procedure (Time Shifted, Campact Form)
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Figure 135: Lower Level Compaosition of the AMR Fuzzy Control Engine
Figure 134: Lower Level Composition-of the AMR Performance Controlier

34 / 54



WO 00/65488 PCT/US00/10992

Centrol Rules of Loop_Response: Time (LxT) Measurements.of Critical Loops -
Fuzzv Performance Control Membership Functions

Membership Function Shape

iTriﬁuhr En Shnpedl EnEoidll -B

+ SCL (B SCLB) R ET50 scL@) | scuz) | sclz)
CL By ch-m‘g%dm,zﬁ ccLe) | coL@) | coLz)

l ruth SerieJ

M ¥ scues) | scus) | scuay | scuay {sciesy.
-4 3 CCL(-S) | CCL{-9) CCLE) CCLZ) |CCLtS)
s |l scus | scus | scwes | sam | s scuosy. | scos |
- CCL(-S) | CCLL-S) | CCL(-S) CECLZ) CClZ) CCLES) m’) B
. | cCLes)
- ;| sam | saw | sa | sam | s
tnench CCL(Z) §| CCLZ) CCL (Z) CCLZ) CCL(+9)|
Linguistic
Varinkie
I +s scL+s) | scLes) | scLes): | scLes)
FNCELLFNT V. GOOD cOOn RAD V. BAD TFRRIBLE

CCL(#+S) | CCL (+9) | CCL(+S) | CCL(+S)

Ssegative 1ouuve Tuauve rosbve
nsl) Sout Medmum B +M

+B

Abbreviations

Negative Error Values Positive Ervor Values Z :No_Change
+B : Posittve_Big

+M : Poditive_Mediam
+5 : Posttive_Small

SCL : Scheduling_Coatrol_Level -B : Negative_Big
-M : Negative_Medium
CCL : Configuration_Control _Level -S : Negative_Small

Scope of Crisp Variable X Values

Figure 136: Fuzzy Performance Control Membership Functions Figure 137: Control Rules of Loop_Response_Time (LRT)
- Measurements of Critical Loops
Control Rules of Predicted Loop_Respoase_Time (LRT) Messurements of Critical Ldop: Coatrol Ruies of Loop_Losd (LL) Measurements of Critical Leops
LRT_Predicted_ LL_Difr
Errer rror
LR -B -M -S z +S +M +B LL_ -B -M -S Z +S +M +B
—Eerer Error

B B) ¢ MM SCL(Z) SCLZ) SCL@) B B SCL -1 SCLERYV B 2 SCIZ) | SCL@) | SCLZ)
R CCLZ) CCLEZ) CCL@R) - CCL(-B) s CCLLM § ccLz) | cocudy | ccua).

| | ! U

M i SCL(-S) | SCL(-S) SCL@Z) SCLZ) SCLi+S) M q SCL(-S) SCLZ) | SCLZ) " | SCL+SY
s ’ CCL-S) | CCLLS) CCLZ) CCLEZ) CCLH+S) - ¥ CCL(-S) ccL@) | ccLm |coLes) |

s || scus | scus | scus  sam  scm cscwm scues scues) | s | s | scuosy | soues |

CCL{-8) | CCL(-S) | CCL(S) CCLZ) CCLEZ) CCLiFS) CCLgS) -S CCL{-S) | CCL(-S) | CCL(-S) | CCLI) CCLZ) | CCL(#*3) | CCL+B)

1 | [ | 1 ’
Z SCLZ) SCLZ) SCL@) SCLZ)  SCLZ) z scuz) | scL@) | scL@) | scLa) | sCLes)
CCLZ) CCuZ) CCL@D) CCLZ) - CCLZ) CCL(Z) | CCLZ) | CCLT) CCLZ) CCL{S)!

| 1 1 ! |

CLZ) L@ SCLE)  SCL@)  SCLE) . sc scLes . | scLes | scLes)
+S | cCL@ oL@ CCL@) CCL@)  CCk@) +S ccld:?y ccn.:-g) a:u?s); CCL#S)

+M

+M
+B " :_ 0 '. +B
Abbreviations Abbreviations
Z :Ne_Cha : hange
SCL 2 Scheduting Coutrel_Livel :51: m”" +B: ;;cuv:_ Ul;ng SCL : Scheduling Coutrol_Level :'l::ﬁﬂg fs ?;;:m-_nu
CCL : Configuration_Control_Levei  -S : Negative_Small :;': :P?x_sr:l‘m CCL : Conflpuration_Control_Level S : Negative_Small :;":::3':‘.‘-

Figure 138: Control Rules of Predicted Loop_Response_Time (LRT) Figure 139: Control Rules of Loop_Load (LL) Measurements of Critical
Measurements of Critical Loops Leeps-

35 7 54




WO 00/65488

. on

PCT/US00/10992

Control Rules of Loop_Service_Time (LS™ Measurements of Critical Loops--
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Figure 141: Control Rules of Loop_Service_Time (LST)
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Figure 206: Components of a Multi_Level Schema
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