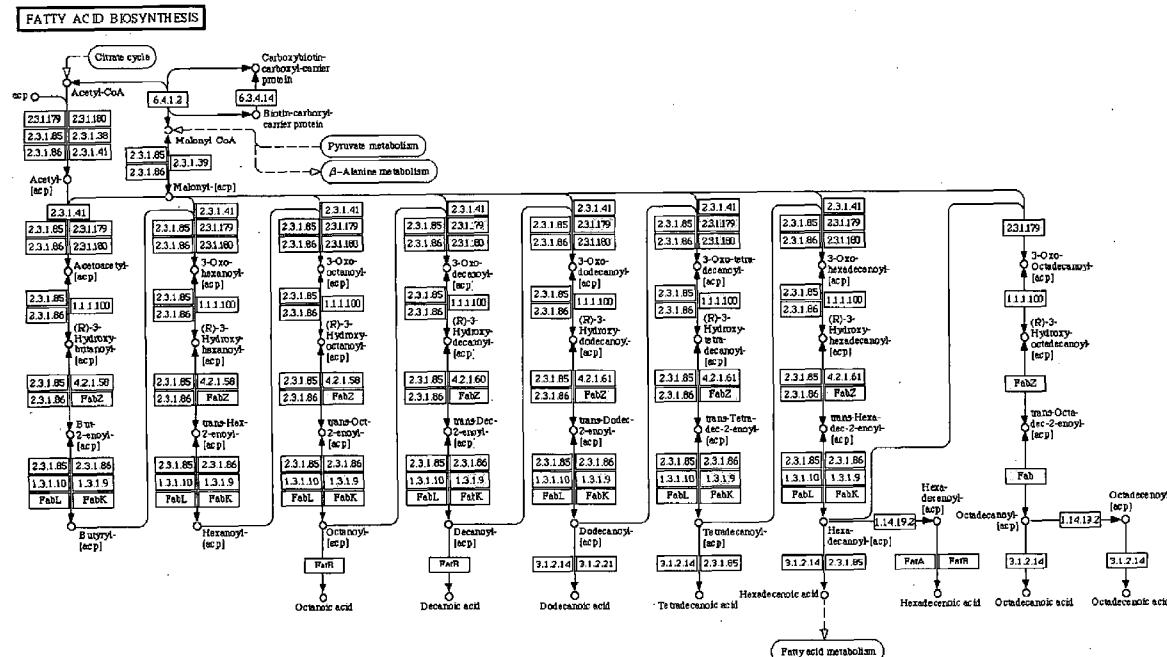


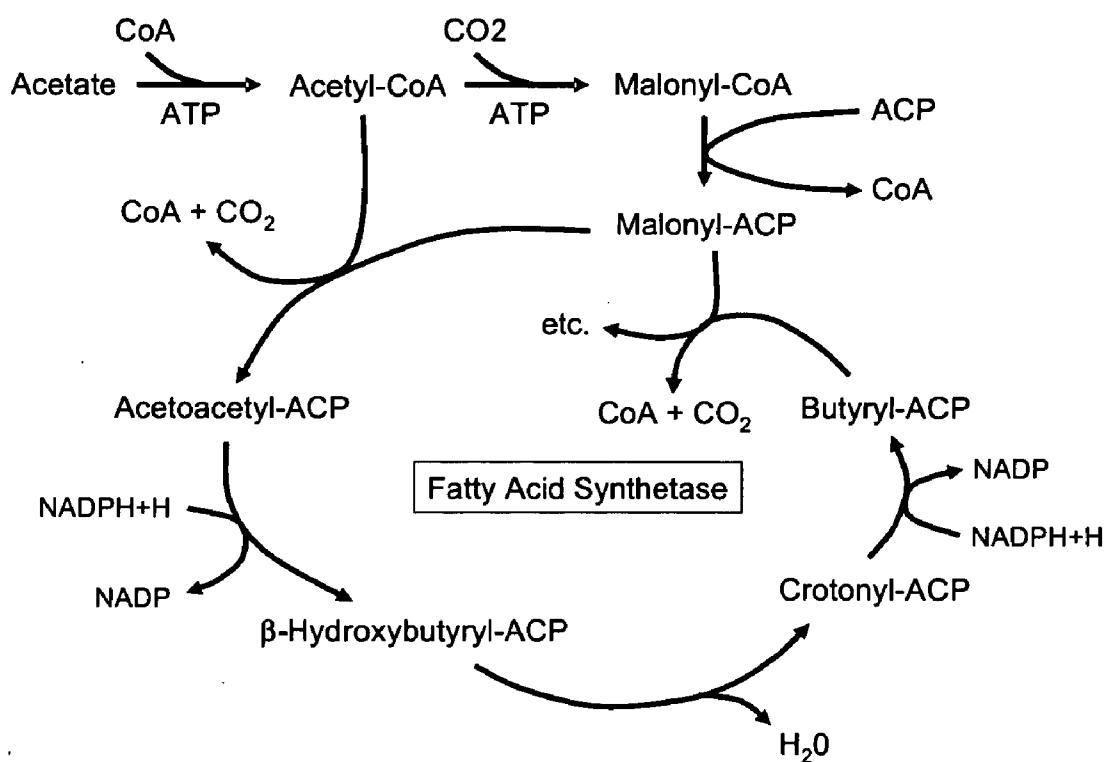
US 20090298143A1

(19) United States

(12) Patent Application Publication
ROESSLER et al.(10) Pub. No.: US 2009/0298143 A1
(43) Pub. Date: Dec. 3, 2009(54) SECRETION OF FATTY ACIDS BY
PHOTOSYNTHETIC MICROORGANISMS(76) Inventors: **Paul Gordon ROESSLER**, San Diego, CA (US); **You Chen**, San Diego, CA (US); **Bo Liu**, San Diego, CA (US); **Corey Neal Dodge**, Cardiff, CA (US)Correspondence Address:
Synthetic Genomics c/o MoFo
12531 High Bluff Drive, Suite 100
San Diego, CA 92130 (US)(21) Appl. No.: **12/333,280**(22) Filed: **Dec. 11, 2008**

Related U.S. Application Data


(60) Provisional application No. 61/007,333, filed on Dec. 11, 2007.


Publication Classification

(51) Int. Cl.
C12P 7/64 (2006.01)
C12N 1/13 (2006.01)
C12N 1/21 (2006.01)
C07C 57/00 (2006.01)
C10L 1/18 (2006.01)(52) U.S. Cl. **435/134; 435/257.2; 435/252.3;**
554/1; 44/308

(57) ABSTRACT

Recombinant photosynthetic microorganisms that convert inorganic carbon to secreted fatty acids are described. Methods to recover the secreted fatty acids from the culture medium without the need for cell harvesting are also described.

Figure 1

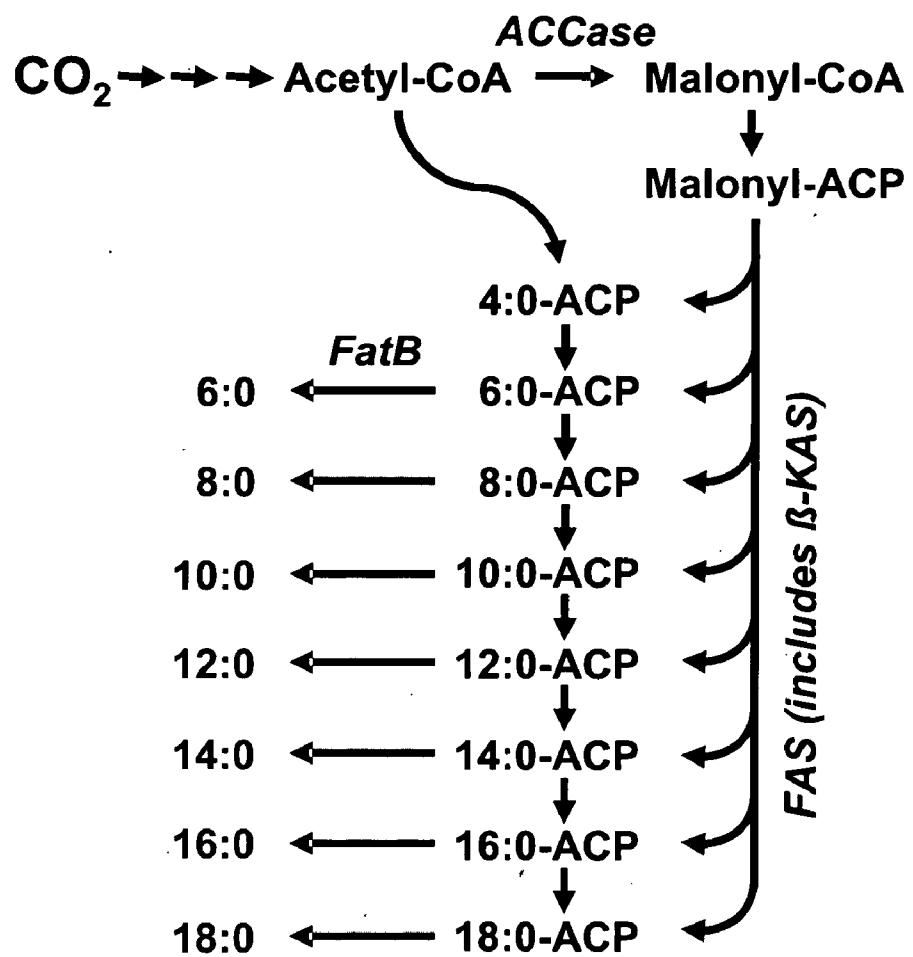


Figure 2

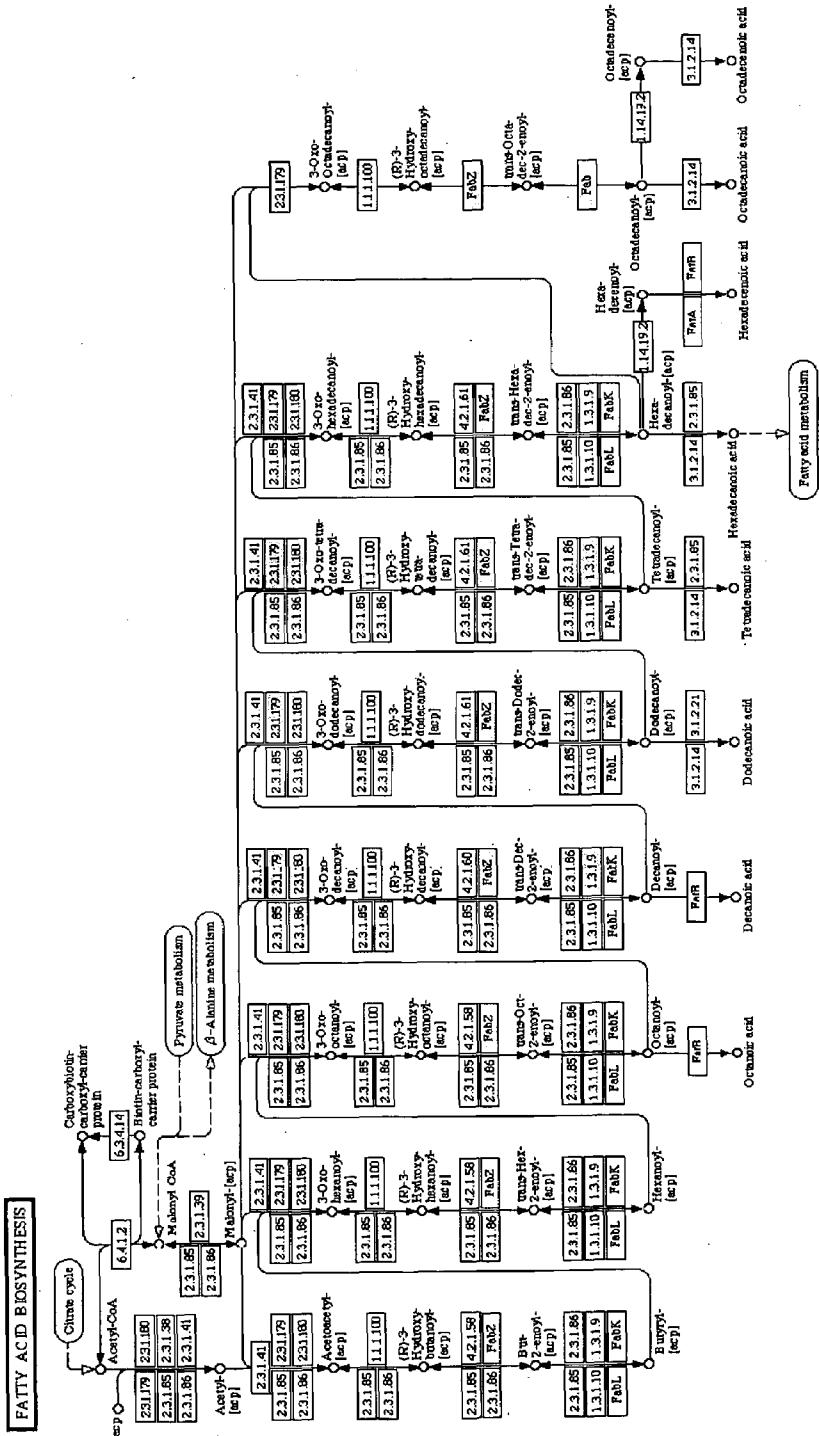
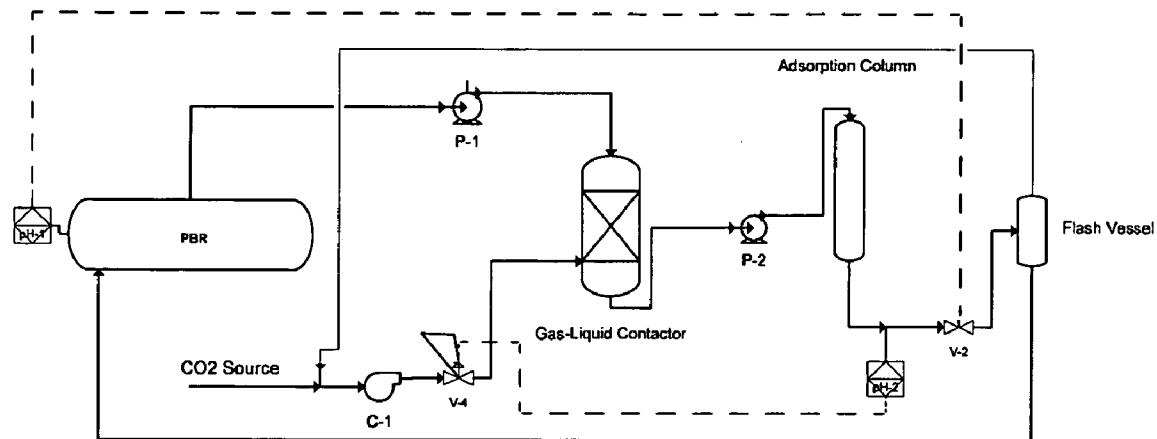
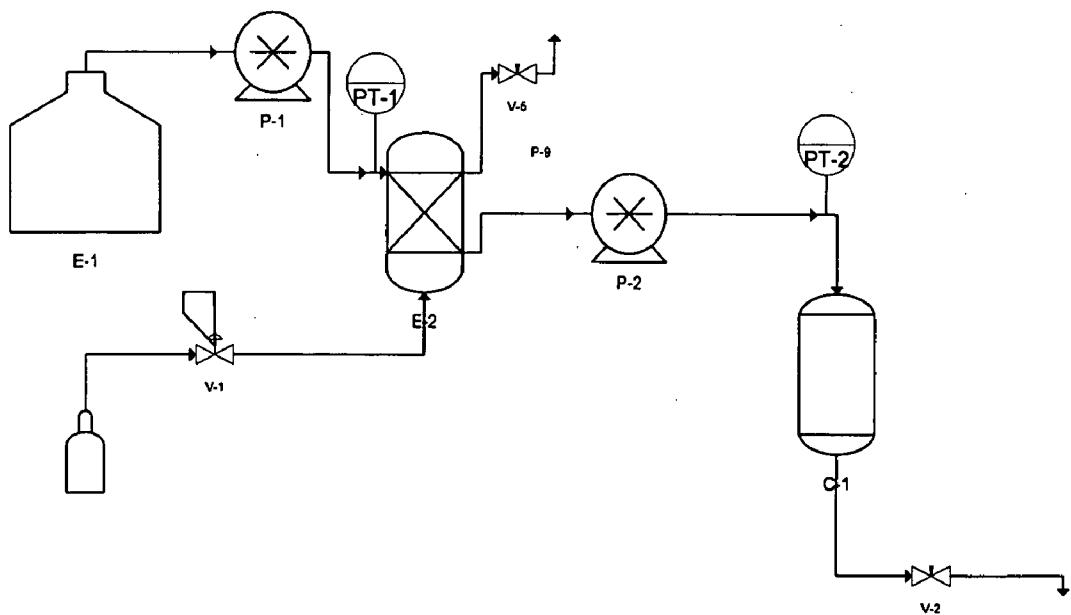




Figure 3

Integrated CO₂ delivery and product recovery schematic.
Figure 4

CO₂-mediated acidification of hydrophobic adsorption column load **Figure 5**

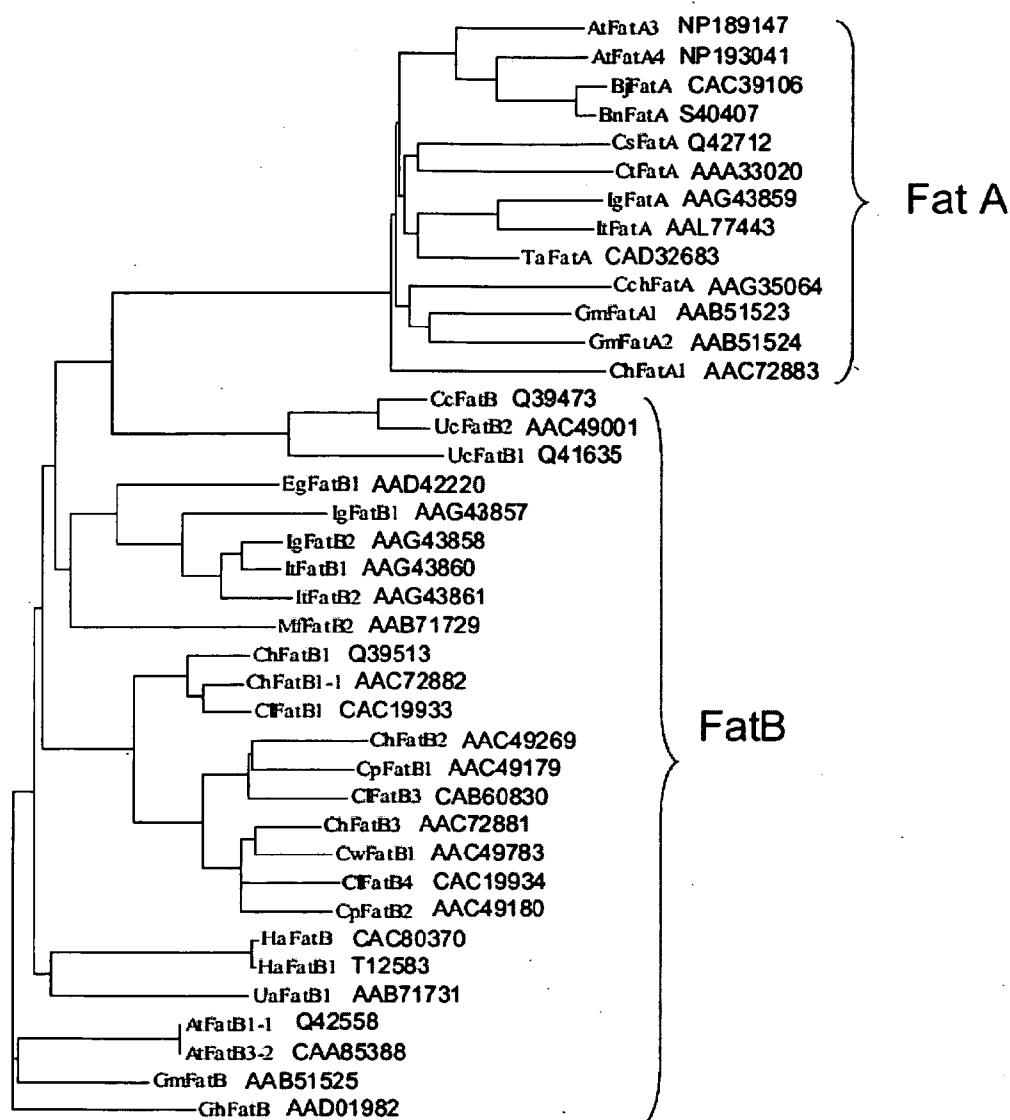


Figure 6

SECRESSION OF FATTY ACIDS BY PHOTOSYNTHETIC MICROORGANISMS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit of provisional application 61/007,333 filed 11 Dec. 2007. The contents of this application are incorporated herein by reference.

TECHNICAL FIELD

[0002] This invention relates to photosynthetic microorganisms that convert inorganic carbon to fatty acids and secrete them into the culture medium, methods of production of fatty acids using such organisms, and uses thereof. The fatty acids may be used directly or may be further modified to alternate forms such as esters, reduced forms such as alcohols, or hydrocarbons, for applications in different industries, including fuels and chemicals.

BACKGROUND ART

[0003] Photosynthetic microorganisms, including eukaryotic algae and cyanobacteria, contain various lipids, including polar lipids and neutral lipids. Polar lipids (e.g., phospholipids, glycolipids, sulfolipids) are typically present in structural membranes whereas neutral lipids (e.g., triacylglycerols, wax esters) accumulate in cytoplasmic oil bodies or oil globules. A substantial research effort has been devoted to the development of methods to produce lipid-based fuels and chemicals from photosynthetic microorganisms. Typically, eukaryotic microalgae are grown under nutrient-replete conditions until a certain cell density is achieved, after which the cells are subjected to growth under nutrient-deficient conditions, which often leads to the accumulation of neutral lipids. The cells are then harvested by various means (e.g., settling, which can be facilitated by the addition of flocculants, followed by centrifugation), dried, and then the lipids are extracted from the cells by the use of various non-polar solvents. Harvesting of the cells and extraction of the lipids are cost-intensive steps. It would be desirable to obtain lipids from photosynthetic microorganisms without the requirement for cell harvesting and extraction.

[0004] PCT publication numbers WO2007/136762 and WO2008/119082 describe the production of biofuel components using microorganisms. These documents disclose the production by these organisms of fatty acid derivatives which are, apparently, short and long chain alcohols, hydrocarbons, fatty alcohols and esters including waxes, fatty acid esters or fatty esters. To the extent that fatty acid production is described, it is proposed as an intermediate to these derivatives, and the fatty acids are therefore not secreted. Further, there is no disclosure of converting inorganic carbon directly to secreted fatty acids using a photosynthetic organism grown in a culture medium containing inorganic carbon as the primary carbon source. The present invention takes advantage of the efficiency of photosynthetic organisms in secreting fatty acids into the medium in order to recover these valuable compounds.

[0005] The invention includes the expression of heterologous acyl-ACP thioesterase (TE) genes in photosynthetic microbes. Many of these genes, along with their use to alter lipid metabolism in oilseeds, have been described previously.

Genes encoding the proteins that catalyze various steps in the synthesis and further metabolism of fatty acids have also been extensively described.

[0006] The two functional classes of plant acyl-ACP thioesterases (unsaturated fatty acid-recognizing FatA versus saturated fatty acid-recognizing FatB) can be clustered based on amino acid sequence alignments as well as function. FatAs show marked preference for 18:1-ACP with minor activity towards 18:0- and 16:0-ACPs, and FatBs hydrolyze primarily saturated acyl-ACPs with chain lengths that vary between 8-16 carbons. Several studies have focused on engineering plant thioesterases with perfected or altered substrate specificities as a strategy for tailoring specialty seed oils.

[0007] As shown in FIG. 1, fatty acid synthetase catalyzes a repeating cycle wherein malonyl-acyl carrier protein (ACP) is condensed with a substrate, initially acetyl-CoA, to form acetoacetyl-ACP, liberating CO₂. The acetoacetyl-ACP is then reduced, dehydrated, and reduced further to butyryl-ACP which can then itself be condensed with malonyl-ACP, and the cycle repeated, adding a 2-carbon unit at each turn. The production of free fatty acids would therefore be enhanced by a thioesterase that would liberate the fatty acid itself from ACP, breaking the cycle. That is, the acyl-ACP is prevented from reentering the cycle. Production of the fatty acid would also be encouraged by enhancing the levels of fatty acid synthetase and inhibiting any enzymes which result in degradation or further metabolism of the fatty acid.

[0008] FIG. 2 presents a more detailed description of the sequential formation of acyl-ACPs of longer and longer chains. As shown, the thioesterase enzymes listed in FIG. 2 liberate the fatty acid from the ACP thioester.

[0009] Taking advantage of this principle, Dehesh, K., et al., *The Plant Journal* (1996) 9:167-172, describe "Production of high levels of octanoic (8:0) and decanoic (10:0) fatty acids in transgenic canola by overexpression of ChFatB2, a thioesterase cDNA from *Cuphea hookeriana*." Dehesh, K., et al., *Plant Physiology* (1996) 110:203-210, and report "Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of *Cuphea palustris* seed oil."

[0010] Voelker, T., et al., *Science* (1992) 257:72-74, describe "Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants." Voelker, T., and Davies, M., *Journal of Bacteriology* (1994) 176:7320-7327, describe "Alteration of the specificity and regulation of fatty acid synthesis of *Escherichia coli* by expression of a plant medium-chain acyl-acyl carrier protein thioesterase."

DISCLOSURE OF THE INVENTION

[0011] The present invention is directed to the production of recombinant photosynthetic microorganisms that are able to secrete fatty acids derived from inorganic carbon into the culture medium. Methods to remove the secreted fatty acids from the culture medium without the need for cell harvesting are also provided. It is anticipated that these improvements will lead to lower costs for producing lipid-based fuels and chemicals from photosynthetic microorganisms. In addition, this invention enables the production of fatty acids of defined chain length, thus allowing their use in the formulation of a variety of different products, including fuels and chemicals.

[0012] Carbon dioxide (which, along with carbonic acid, bicarbonate and/or carbonate define the term "inorganic carbon") is converted in the photosynthetic process to organic compounds. The inorganic carbon source includes any way of delivering inorganic carbon, optionally in admixture with any

other combination of compounds which do not serve as the primary carbon feedstock, but only as a mixture or carrier (for example, emissions from biofuel (e.g., ethanol) plants, power plants, petroleum-based refineries, as well as atmospheric and subterranean sources).

[0013] One embodiment of the invention relates to a culture of recombinant photosynthetic microorganisms, said organisms comprising at least one recombinant expression vector encoding at least one exogenous acyl-ACP thioesterase, wherein the at least one exogenous acyl-ACP thioesterase preferentially liberates fatty acid chains containing 6 to 20 carbons from these ACP thioesters. The fatty acids are formed from inorganic carbon as their carbon source and the culture contains substantially only inorganic carbon as a carbon source. The presence of the exogenous thioesterase will increase the secretion levels of desired fatty acids by at least 2-4 fold.

[0014] Specifically, in one embodiment, the invention is directed to a cell culture of a recombinant photosynthetic microorganism where the microorganism has been modified to contain a nucleic acid molecule comprising at least one recombinant expression system that produces at least one exogenous acyl-ACP thioesterase, wherein said acyl-ACP thioesterase preferentially liberates a fatty acid chain that contains 6-20 carbons, and wherein the culture medium provides inorganic carbon as substantially the sole carbon source and wherein said microorganism secretes the fatty acid liberated by the acyl-ACP thioesterase into the medium. In alternative embodiments, the thioesterase preferentially liberates a fatty acid chain that contains 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 carbons.

[0015] In other aspects, the invention is directed to a method to produce fatty acids of desired chain lengths by incubating these cultures and recovering these secreted fatty acids from the cultures. In one embodiment, the recovery employs solid particulate adsorbents to harvest the secreted fatty acids. The fatty acids thus recovered can be further modified synthetically or used directly as components of biofuels or chemicals.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. 1 is a diagram of the pathway of fatty acid synthesis as is known in the art.

[0017] FIG. 2 is a more detailed diagram of the synthesis of fatty acids of multiple chain lengths as is known in the art.

[0018] FIG. 3 is an enzymatic overview of fatty acid biosynthesis identifying enzymatic classes for the production of various chain length fatty acids.

[0019] FIG. 4 is a schematic diagram of a recovery system for fatty acids from the medium.

[0020] FIG. 5 shows an experimental system based on the principles in FIG. 4.

[0021] FIG. 6 shows representative acyl-ACP thioesterase from a variety of organisms.

MODES OF CARRYING OUT THE INVENTION

[0022] The present invention provides photosynthetic microorganisms that secrete fatty acids into the culture medium, along with methods to adsorb the fatty acids from the culture medium and collect them for processing into fuels and chemicals. The invention thereby eliminates or greatly reduces the need to harvest and extract the cells, resulting in substantially reduced production costs.

[0023] FIG. 2 is an overview of one aspect of the invention. As shown in FIG. 2, carbon dioxide is converted to acetyl-CoA using the multiple steps in the photosynthetic process. The acetyl-CoA is then converted to malonyl-CoA by the action of acetyl-CoA carboxylase. The malonyl-CoA is then converted to malonyl-ACP by the action of malonyl-CoA:ACP transacylase which, upon progressive action of fatty acid synthetase, results in successive additions of two carbon units. In one embodiment of the invention, the process is essentially halted at carbon chain lengths of 6 or 8 or 10 or 12 or 14 or 16 or 18 carbons by supplying the appropriate thioesterase (shown in FIG. 2 as FatB). To the extent that further conversions to longer chain fatty acids occur in this embodiment, the cell biomass can be harvested as well. The secreted fatty acids can be converted to various other forms including, for example, methyl esters, alkanes, alkenes, alpha-olefins and fatty alcohols.

[0024] Thioesterases (Acyl-ACP TEs)

[0025] In order to effect secretion of the free fatty acids, the organism is provided at least one expression system for at least one thioesterase that operates preferentially to liberate fatty acids of the desired length. Many genes encoding such thioesterases are available in the art. Some of these are subjects of U.S. patents as follows:

[0026] Examples include U.S. Pat. No. 5,298,421, entitled "Plant medium-chain-preferring acyl-ACP thioesterases and related methods," which describes the isolation of an acyl-ACP thioesterase and the gene that encodes it from the immature seeds of *Umbellularia californica*. Other sources for such thioesterases and their encoding genes include U.S. Pat. No. 5,304,481, entitled "Plant thioesterase having preferential hydrolase activity toward C12 acyl-ACP substrate," U.S. Pat. No. 5,344,771, entitled "Plant thioesterases," U.S. Pat. No. 5,455,167, entitled "Medium-chain thioesterases in plants," U.S. Pat. No. 5,512,482, entitled "Plant thioesterases," U.S. Pat. No. 5,530,186, entitled "Nucleotide sequences of soybean acyl-ACP thioesterase genes," U.S. Pat. No. 5,639,790, entitled "Plant medium-chain thioesterases," U.S. Pat. No. 5,667,997, entitled "C8 and C10 medium-chain thioesterases in plants," U.S. Pat. No. 5,723,761, entitled "Plant acyl-ACP thioesterase sequences," U.S. Pat. No. 5,807,893, entitled "Plant thioesterases and use for modification of fatty acid composition in plant seed oils," U.S. Pat. No. 5,850,022, entitled "Production of myristate in plant cells," U.S. Pat. No. 5,910,631, entitled "Middle chain-specific thioesterase genes from *Cuphea lanceolata*," U.S. Pat. No. 5,945,585, entitled "Specific for palmitoyl, stearoyl and oleoyl-alp thioesters nucleic acid fragments encoding acyl-ACP thioesterase enzymes and the use of these fragments in altering plant oil composition," U.S. Pat. No. 5,955,329, entitled "Engineering plant thioesterases for altered substrate specificity," U.S. Pat. No. 5,955,650, entitled "Nucleotide sequences of canola and soybean palmitoyl-ACP thioesterase genes and their use in the regulation of fatty acid content of the oils of soybean and canola plants," and U.S. Pat. No. 6,331,664, entitled "Acyl-ACP thioesterase nucleic acids from maize and methods of altering palmitic acid levels in transgenic plants therewith."

[0027] Others are described in the open literature as follows:

[0028] Dörmann, P. et al., *Planta* (1993) 189:425-432, describe "Characterization of two acyl-acyl carrier protein thioesterases from developing *Cuphea* seeds specific for medium-chain and oleoyl-acyl carrier protein." Dörmann, P.,

et al., *Biochimica Biophysica Acta* (1994) 1212:134-136, describe "Cloning and expression in *Escherichia coli* of a cDNA coding for the oleoyl-acyl carrier protein thioesterase from coriander (*Coriandrum sativum* L.)." Filichkin, S., et al., *European Journal of Lipid Science and Technology* (2006) 108:979-990, describe "New FATB thioesterases from a high-laurate *Cuphea* species: Functional and complementation analyses." Jones, A., et al., *Plant Cell* (1995) 7:359-371, describe "Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases." Knutson, D. S., et al., *Plant Physiology* (1992) 100:1751-1758, describe "Isolation and characterization of two safflower oleoyl-acyl carrier protein thioesterase cDNA clones." Slabaugh, M., et al., *The Plant Journal* (1998) 13:611-620, describe "Condensing enzymes from *Cuphea wrightii* associated with medium chain fatty acid biosynthesis."

[0029] Additional genes, not previously isolated, that encode these acyl-ACP TEs can be isolated from plants that naturally contain large amounts of medium-chain fatty acids in their seed oil, including certain plants in the Lauraceae, Lythraceae, Rutaceae, Ulmaceae, and Vochysiaceae families. Typically, the fatty acids produced by the seeds of these plants are esterified to glycerol and retained inside the cells. The seeds containing the products can then be harvested and processed to isolate the fatty acids. Other sources of these enzymes, such as bacteria may also be used.

[0030] The known acyl-ACP TEs from plants can be divided into two main classes, based on their amino acid sequences and their specificity for acyl-ACPs of differing chain lengths and degrees of unsaturation. The "FatA" type of plant acyl-ACP TE has preferential activity on oleoyl-ACP, thereby releasing oleic acid, an 18-carbon fatty acid with a single double bond nine carbons distal to the carboxyl group. The "FatB" type of plant acyl-ACP TE has preferential activity on saturated acyl-ACPs, and can have broad or narrow chain length specificities. For example, FatB enzymes from different species of *Cuphea* have been shown to release fatty acids ranging from eight carbons in length to sixteen carbons in length from the corresponding acyl-ACPs. Listed below in Table 1 are several plant acyl-ACP TEs along with their substrate preferences. (Fatty acids are designated by standard shorthand notation, wherein the number preceding the colon represents the acyl chain length and the number after the colon represents the number of double bonds in the acyl chain.)

TABLE 1

Plant Acyl-ACP Thioesterase	
<i>Garcinia mangostana</i> FatA	18:1 and 18:0
<i>Carthamus tinctorius</i> FatA	18:1
<i>Coriandrum sativum</i> FatA	18:1
<i>Cuphea hookeriana</i> FatB1	16:0
<i>Cuphea hookeriana</i> FatB2	8:0 and 10:0
<i>Cuphea wrightii</i> FatB1	12:0 to 16:0
<i>Cuphea palustris</i> FatB1	8:0 and 10:0
<i>Cuphea palustris</i> FatB2	14:0 and 16:0
<i>Cuphea calophylla</i> FatB1	12:0 to 16:0
<i>Umbellularia californica</i> FatB1	12:0
<i>Ulmus americana</i> FatB1	8:0 and 10:0

[0031] The enzymes listed in Table 1 are exemplary and many additional genes encoding acyl-ACP TEs can be isolated and used in this invention, including but not limited to genes such as those that encode the following acyl-ACP TEs (referred to by GenPept Accession Numbers):

[0032] CAA52069.1, CAA52070.1, CAA54060.1, CAA85387.1, CAA85388.1, CAB60830.1, CAC19933.1, CAC19934.1, CAC39106.1, CAC80370.1, CAC80371.1, CAD32683.1, CAL50570.1, CAN60643.1, CAN81819.1, CAO17726.1, CAO42218.1, CAO65585.1, CAO68322.1, AAA33019.1, AAA33020.1, AAB51523.1, AAB51524.1, AAB51525.1, AAB71729.1, AAB71730.1, AAB71731.1, AAB88824.1, AAC49001.1, AAC49002.1, AAC49179.1, AAC49180.1, AAC49269.1, AAC49783.1, AAC49784.1, AAC72881.1, AAC72882.1, AAC72883.1, AAD01982.1, AAD28187.1, AAD33870.1, AAD42220.2, AAG35064.1, AAG43857.1, AAG43858.1, AAG43859.1, AAG43860.1, AAG43861.1, AAL15645.1, AAL77443.1, AAL77445.1, AAL79361.1, AAM09524.1, AAN17328.1, AAQ08202.1, AAQ08223.1, AAX51636.1, AAX51637.1, ABB71579.1, ABB71581.1, ABC47311.1, ABD83939.1, ABE01139.1, ABH11710.1, ABI18986.1, ABI20759.1, ABI20760.1, ABL85052.1, ABU96744.1, EAY74210.1, EAY86874.1, EAY86877.1, EAY86884.1, EAY99617.1, EAZ01545.1, EAZ09668.1, EAZ12044.1, EAZ23982.1, EAZ37535.1, EAZ45287.1, NP_001047567.1, NP_001056776.1, NP_001057985.1, NP_001063601.1, NP_001068400.1, NP_172327.1, NP_189147.1, NP_193041.1, XP_001415703.1, Q39473, Q39513, Q41635, Q42712, Q9SQI3, NP_189147.1, AAC49002, CAA52070.1, CAA52069.1, 193041.1, CAC39106, CAO17726, AAC72883, AAA33020, AAL79361, AAQ08223.1, AAB51523, AAL77443, AAA33019, AAG35064, and AAL77445.

Additional sources of acyl-ACP TEs that are useful in the present invention include: *Arabidopsis thaliana* (At); *Bradyrhizobium japonicum* (Bj); *Brassica napus* (Bn); *Cinnamomum camphoratum* (Cc); *Capsicum chinense* (Cch); *Cuphea hookeriana* (Ch); *Cuphea lanceolata* (Cl); *Cuphea palustris* (Cp); *Coriandrum sativum* (Cs); *Carthamus tinctorius* (Ct); *Cuphea wrightii* (Cw); *Elaeis guineensis* (Eg); *Gossypium hirsutum* (Gh); *Garcinia mangostana* (Gm); *Helianthus annuus* (Ha); *Iris germanica* (Ig); *Iris tectorum* (It); *Myristica fragrans* (Mf); *Triticum aestivum* (Ta); *Ulmus americana* (Ua); and *Umbellularia californica* (Uc). Exemplary TEs are shown in FIG. 6 with corresponding NCBI accession numbers.

[0033] In one embodiment, the present invention contemplates the specific production of an individual length of medium-chain fatty acid, for example, predominantly producing C8 fatty acids in one culture of recombinant photosynthetic microorganisms. In another embodiment, the present invention contemplates the production of a combination of two or more different length fatty acids, for example, both C8 and C10 fatty acids in one culture of recombinant photosynthetic microorganisms.

[0034] Illustrated below are manipulations of these art-known genes to construct suitable expression systems that result in production of effective amounts of the thioesterases in selected recombinant photosynthetic organisms. In such constructions, it may be desirable to remove the portion of the gene that encodes the plastid transit peptide region, as this region is inappropriate in prokaryotes. Alternatively, if expression is to take place in eukaryotic cells, the appropriate

plastid transit peptide encoding region to the host organism may be substituted. Preferred codons may also be employed, depending on the host.

[0035] Other Modifications

[0036] In addition to providing an expression system for one or more appropriate acyl-ACP TE genes, further alterations in the photosynthetic host may be made. For example, the host may be modified to include an expression system for a heterologous gene that encodes a β -ketoacyl synthase (KAS) that preferentially produces acyl-ACPs having medium chain lengths. Such KAS enzymes have been described from several plants, including various species of *Cuphea*. See Dehesh, K., et al., *The Plant Journal* (1998) 15:383-390, describe "KAS IV: a 3-ketoacyl-ACP synthase from *Cuphea* sp. is a medium chain specific condensing enzyme."; Slabaugh, M., et al., *The Plant Journal* (1998) 13:611-620), and would serve to increase the availability of acyl-ACP molecules of the proper length for recognition and cleavage by the heterologous medium-chain acyl-ACP TE. Another example is that the photosynthetic host cell containing a heterologous acyl-ACP TE gene may be further modified to include an expression system for a heterologous gene that encodes a multifunctional acetyl-CoA carboxylase or a set of heterologous genes that encode the various subunits of a multi-subunit type of acetyl-CoA carboxylase. Other heterologous genes that encode additional enzymes or components of the fatty acid biosynthesis pathway could also be introduced and expressed in acyl-ACP TE-containing host cells.

[0037] The photosynthetic microorganism may also be modified such that one or more genes that encode beta-oxidation pathway enzymes have been inactivated or downregulated, or the enzymes themselves may be inhibited. This would prevent the degradation of fatty acids released from acyl-ACPs, thus enhancing the yield of secreted fatty acids. In cases where the desired products are medium-chain fatty acids, the inactivation or downregulation of genes that encode acyl-CoA synthetase and/or acyl-CoA oxidase enzymes that preferentially use these chain lengths as substrates would be beneficial. Mutations in the genes encoding medium-chain-specific acyl-CoA synthetase and/or medium-chain-specific acyl-CoA oxidase enzymes such that the activity of the enzymes is diminished would also be effective in increasing the yield of secreted fatty acids. An additional modification inactivates or down-regulates the acyl-ACP synthetase gene or inactivates the gene or protein. Mutations in the genes can be introduced either by recombinant or non-recombinant methods. These enzymes and their genes are well known, and may be targeted specifically by disruption, deletion, generation of antisense sequences, generation of ribozymes or other recombinant approaches known to the practitioner. Inactivation of the genes can also be accomplished by random mutation techniques such as UV, and the resulting cells screened for successful mutants. The proteins themselves can be inhibited by intracellular generation of appropriate antibodies or intracellular generation of peptide inhibitors.

[0038] The photosynthetic microorganism may also be modified such that one or more genes that encode storage carbohydrate or polyhydroxyalkanoate (PHA) biosynthesis pathway enzymes have been inactivated or down-regulated, or the enzymes themselves may be inhibited. Examples include enzymes involved in glycogen, starch, or chrysotamalin synthesis, including glucan synthases and branching

enzymes. Other examples include enzymes involved in PHA biosynthesis such as acetoacetyl-CoA synthase and PHA synthase.

[0039] Expression Systems

[0040] Expression of heterologous genes in cyanobacteria and eukaryotic algae is enabled by the introduction of appropriate expression vectors. For transformation of cyanobacteria, a variety of promoters that function in cyanobacteria can be utilized, including, but not limited to the lac, tac, and trc promoters and derivatives that are inducible by the addition of isopropyl β -D-1-thiogalactopyranoside (IPTG), promoters that are naturally associated with transposon- or bacterial chromosome-borne antibiotic resistance genes (neomycin phosphotransferase, chloramphenicol acetyltransferase, spectinomycin adenyltransferase, etc.), promoters associated with various heterologous bacterial and native cyanobacterial genes, promoters from viruses and phages, and synthetic promoters. Promoters isolated from cyanobacteria that have been used successfully include the following:

[0041] secA (secretion; controlled by the redox state of the cell)

[0042] rbc (Rubisco operon)

[0043] psaAB (PS I reaction center proteins; light regulated)

[0044] psbA (D1 protein of PSII; light-inducible)

[0045] Likewise, a wide variety of transcriptional terminators can be used for expression vector construction. Examples of possible terminators include, but are not limited to, psbA, psaAB, rbc, secA, and T7 coat protein.

[0046] Expression vectors are introduced into the cyanobacterial strains by standard methods, including, but not limited to, natural DNA uptake, conjugation, electroporation, particle bombardment, and abrasion with glass beads, SiC fibers, or other particles. The vectors can be: 1) targeted for integration into the cyanobacterial chromosome by including flanking sequences that enable homologous recombination into the chromosome, 2) targeted for integration into endogenous cyanobacterial plasmids by including flanking sequences that enable homologous recombination into the endogenous plasmids, or 3) designed such that the expression vectors replicate within the chosen host.

[0047] For transformation of green algae, a variety of gene promoters and terminators that function in green algae can be utilized, including, but not limited to promoters and terminators from *Chlamydomonas* and other algae, promoters and terminators from viruses, and synthetic promoters and terminators.

[0048] Expression vectors are introduced into the green algal strains by standard methods, including, but not limited to, electroporation, particle bombardment, and abrasion with glass beads, SiC fibers, or other particles. The vectors can be 1) targeted for site-specific integration into the green algal chloroplast chromosome by including flanking sequences that enable homologous recombination into the chromosome, or 2) targeted for integration into the cellular (nucleus-localized) chromosome.

[0049] For transformation of diatoms, a variety of gene promoters that function in diatoms can be utilized in these expression vectors, including, but not limited to: 1) promoters from *Thalassiosira* and other heterokont algae, promoters from viruses, and synthetic promoters. Promoters from *Thalassiosira pseudonana* that would be suitable for use in expression vectors include an alpha-tubulin promoter (SEQ ID NO:1), a beta-tubulin promoter (SEQ ID NO:2), and an

actin promoter (SEQ ID NO:3). Promoters from *Phaeodacylum tricornutum* that would be suitable for use in expression vectors include an alpha-tubulin promoter (SEQ ID NO:4), a beta-tubulin promoter (SEQ ID NO:5), and an actin promoter (SEQ ID NO:6). These sequences are deduced from the genomic sequences of the relevant organisms available in public databases and are merely exemplary of the wide variety of promoters that can be used. The terminators associated with these and other genes, or particular heterologous genes can be used to stop transcription and provide the appropriate signal for polyadenylation and can be derived in a similar manner or are known in the art.

[0050] Expression vectors are introduced into the diatom strains by standard methods, including, but not limited to, electroporation, particle bombardment, and abrasion with glass beads, SiC fibers, or other particles. The vectors can be 1) targeted for site-specific integration into the diatom chloroplast chromosome by including flanking sequences that enable homologous recombination into the chromosome, or 2) targeted for integration into the cellular (nucleus-localized) chromosome.

[0051] Host Organisms

[0052] The host cells used to prepare the cultures of the invention include any photosynthetic organism which is able to convert inorganic carbon into a substrate that is in turn converted to fatty acid derivatives. These organisms include prokaryotes as well as eukaryotic organisms such as algae and diatoms.

[0053] Host organisms include eukaryotic algae and cyanobacteria (blue-green algae). Representative algae include green algae (chlorophytes), red algae, diatoms, prasinophytes, glaucophytes, chlorarachniophytes, euglenophytes, chromophytes, and dinoflagellates. A number of cyanobacterial species are known and have been manipulated using molecular biological techniques, including the unicellular cyanobacteria *Synechocystis* sp. PCC6803 and *Synechococcus elongatus* PCC7942, whose genomes have been completely sequenced.

[0054] The following genera of cyanobacteria may be used: one group includes

Chamaesiphon
Chroococcus
Cyanobacterium
Cyanobium
Cyanothecae
Dactylococcopsis
Gloeobacter
Gloeocapsa
Gloeothecae
Microcystis
Prochlorococcus
Prochloron
Synechococcus
Synechocystis

[0055] Another group includes

Cyanocystis
Dermocarpea
Stanieria
Xenococcus
Chroococcidiopsis

-continued

Myxosarcina
Pleurocapsa

[0056] Still another group includes

Arthrosira
Borzia
Crinalium
Geitlerinema
Halospirulina
Leptolyngbya
Limnothrix
Lyngbya
Microcoleus
Oscillatoria
Planktothrix
Prochlorothrix
Pseudanabaena
Spirulina
Staria
Symploca
Trichodesmium
Tychonema

[0057] Still another group includes

Anabaena
Anabaenopsis
Aphanizomenon
Calothrix
Cyanospira
Cylindrospermopsis
Cylindrospermum
Nodularia
Nostoc
Rivularia
Scytonema
Tolyphothrix

[0058] And another group includes

Chlorogloeopsis
Fischerella
Geitleria
Iyengariella
Nostochopsis
Stigonema

[0059] In addition, various algae, including diatoms and green algae can be employed.

[0060] Desirable qualities of the host strain include high potential growth rate and lipid productivity at 25-50° C., high light intensity tolerance, growth in brackish or saline water, i.e., in wide range of water types, resistance to growth inhibition by high O₂ concentrations, filamentous morphology to aid harvesting by screens; resistance to predation, ability to be flocculated (by chemicals or 'on-demand autoflocculation'), excellent inorganic carbon uptake characteristics, virus or cyanophage-resistance, tolerance to free fatty acids or other compounds associated with the invention method, and ability to undergo metabolic engineering.

[0061] Metabolic engineering is facilitated by the ability to take up DNA by electroporation or conjugation, lack of a restriction system and efficient homologous recombination in the event gene replacement or gene knockouts are required.

[0062] Fatty Acid Adsorption, Removal, and Recovery

[0063] The fatty acids secreted into the culture medium by the recombinant photosynthetic microorganisms described above can be recovered in a variety of ways. A straightforward isolation method by partition using immiscible solvents may be employed. In one embodiment, particulate adsorbents can be employed. These may be lipophilic particulates or ion exchange resins, depending on the design of the recovery method. They may be circulating in the separated medium and then collected, or the medium may be passed over a fixed bed column, for example, a chromatographic column containing these particulates. The fatty acids are then eluted from the particulate adsorbents by the use of an appropriate solvent. Evaporation of the solvent, followed by further processing of the isolated fatty acids and lipids can then be carried out to yield chemicals and fuels that can be used for a variety of commercial purposes.

[0064] The particulate adsorbents may have average diameters ranging from 0.5 mm to 30 mm which can be manufactured from various materials including, but not limited to, polyethylene and derivatives, polystyrene and derivatives, polyamide and derivatives, polyester and derivatives, polyurethane and derivatives, polyacrylates and derivatives, silicone and derivatives, and polysaccharides and derivatives. Certain glass and ceramic materials can also be used as the solid support component of the fat adsorbing objects. The surfaces of the particulate adsorbents may be modified so that they are better able to bind fatty acids and lipids. An example of such modification is the introduction of ether-linked alkyl groups having various chain lengths, preferably 8-30 carbons. In another example, acyl chains of various lengths can be attached to the surface of the fat adsorbing objects via ester, thioester, or amide linkages.

[0065] In one embodiment, the particulate adsorbents are coated with inorganic compounds known to bind fatty acids and lipids. Examples of such compounds include but are not limited to aluminum hydroxide, graphite, anthracite, and silica.

[0066] The particles used may also be magnetized or otherwise derivatized to facilitate recovery. For instance the particles may be coupled to one member of a binding pair and the adsorbed to a substrate containing the relevant binding partner.

[0067] The fatty acids may be eluted from the particulate adsorbents by the use of an appropriate solvent such as hexane or ethanol. The particulate adsorbents may be reused by returning them to the culture medium or used in a regenerated column. The solvent containing the dissolved fatty acids is then evaporated, leaving the fatty acids in a purified state for further conversion to chemicals and fuels. The particulate adsorbents can be designed to be neutrally buoyant or positively buoyant to enhance circulation in the culture medium. A continuous cycle of fatty acid removal and recovery can be implemented by utilizing the steps outlined above. The recovered fatty acids may be converted to alternative organic compounds, used directly, or mixed with other components. Chemical methods for such conversions are well understood in the art, and developments of biological methods for such conversions are also contemplated.

[0068] The present invention further contemplates a variety of compositions comprising the fatty acids produced by the recombinant photosynthetic microorganisms described herein, and uses thereof. The composition may comprise the fatty acids themselves, or further derivatives of the fatty acids, such as alcohols, alkanes, and alkenes which can be generated from the fatty acids produced by the microorganisms by any methods that are known in the art, as well as by development of biological methods of conversion. For example, fatty acids may be converted to alkenes by catalytic hydrogenation and catalytic dehydration.

[0069] The composition may serve, for example, as a biocrude. The biocrude can be processed through refineries that will convert the composition compounds to various petroleum and petrochemical replacements, including alkanes, olefins and aromatics through processes including hydrotreatment, decarboxylation, isomerization and catalytic cracking and reforming. The biocrude can be also converted to ester-based fuels, such as fatty acid methyl ester (commercially known as biodiesel), through established chemical processes including transesterification and esterification.

[0070] In addition, one of skill in the art could contemplate a variety of other uses for the fatty acids of the present invention, and derivatives thereof, that are well known in the art, for example, the production of chemicals, soaps, surfactants, detergents, lubricants, nutraceuticals, pharmaceuticals, cosmetics, etc. For example, derivatives of the fatty acids of the present invention include C8 chemicals, such as octanol, used in the manufacture of esters for cosmetics and flavors as well as for various medical applications, and octane, used primarily as a co-monomer in production of polyethylene. Derivatives of the fatty acids of the present invention may also include C10 chemicals, such as decanol, used in the manufacture of plasticizers, surfactants and solvents, and decene, used in the manufacture of lubricants.

[0071] Biocrudes are biologically produced compounds or a mix of different biologically produced compounds that are used as a feedstock for refineries in replacement of, or in complement to, crude oil or other forms of petroleum. In general, but not necessarily, these feedstocks have been pre-processed through biological, chemical, mechanical or thermal processes in order to be in a liquid state that is adequate for introduction in a petroleum refinery.

[0072] The fatty acids of the present invention can be a biocrude, and further processed to a biofuel composition. The biofuel can then perform as a finished fuel or a fuel additive.

[0073] "Finished fuel" is defined as a chemical compound or a mix of chemical compounds (produced through chemical, thermochemical or biological routes) that is in an adequate chemical and physical state to be used directly as a neat fuel or fuel additive in an engine. In many cases, but not always, the suitability of a finished fuel for use in an engine application is determined by a specification which describes the necessary physical and chemical properties that need to be met. Some examples of engines are: internal combustion engine, gas turbine, steam turbine, external combustion engine, and steam boiler. Some examples of finished fuels include: diesel fuel to be used in a compression-ignited (diesel) internal combustion engine, jet fuel to be used in an aviation turbine, fuel oil to be used in a boiler to generate steam or in an external combustion engine, ethanol to be used in a flex-fuel engine. Examples of fuel specifications are ASTM standards, mainly used in the US, and the EN standards, mainly used in Europe.

[0074] “Fuel additive” refers to a compound or composition that is used in combination with another fuel for a variety of reasons, which include but are not limited to complying with mandates on the use of biofuels, reducing the consumption of fossil fuel-derived products or enhancing the performance of a fuel or engine. For example, fuel additives can be used to alter the freezing/gelling point, cloud point, lubricity, viscosity, oxidative stability, ignition quality, octane level, and flash point. Additives can further function as antioxidants, demulsifiers, oxygenates, thermal stability improvers, cetane improvers, stabilizers, cold flow improvers, combustion improvers, anti-foams, anti-haze additives, icing inhibitors, injector cleanliness additives, smoke suppressants, drag reducing additives, metal deactivators, dispersants, detergents, demulsifiers, dyes, markers, static dissipaters, biocides, and/or corrosion inhibitors.

[0075] The following examples are offered to illustrate but not to limit the invention.

Example 1

Secretion of Fatty Acids by Strains Derived from the Unicellular Photoautotrophic Cyanobacterium *Synechococcus elongatus* PCC 7942

[0076] The *Cuphea hookeriana* FatB2 gene encoding an acyl-ACP thioesterase (ChFatB2) enzyme was modified for optimized expression in *Synechococcus elongatus* PCC 7942. First, the portion of the gene that encodes the plastid transit peptide region of the native ChFatB2 protein was removed. The remainder of the coding region was then codon-optimized using the “Gene Designer” software program (version 1.1.4.1) provided by DNA2.0, Inc. The nucleotide sequence of this derivative of the ChFatB2 gene (hereafter ChFatB2-7942) is provided as SEQ ID NO:7. The protein sequence encoded by this gene is provided in SEQ ID NO:8.

[0077] Two different versions of the trc promoter, trc (Egon, A., et al., *Gene* (1983) 25:167-178) and “enhanced trc” (hereafter trcE, from pTrcHis A, Invitrogen) were used to drive the expression of ChFatB2-7942 in *S. elongatus* PCC 7942. The trc promoter is repressed by the Lac repressor protein encoded by the lacIq gene and can be induced by the addition of isopropyl β -D-1-thiogalactopyranoside (IPTG). The trcE promoter is a derivative of trc designed to facilitate expression of eukaryotic proteins in *E. coli* and is also inducible by IPTG.

[0078] The fusion fragments of ChFatB2-7942 operably linked to trc or trcE, together with the lacIq gene, were cloned into the shuttle vector pAM2314 (Mackey, S. R., et al., *Methods Mol. Biol.* (2007) 362:115-129), which enables transformation of *S. elongatus* PCC 7942 via double homologous recombination-mediated integration into the “NS1” site of the chromosome. The constructed plasmid containing the trcE::ChFatB2-7942 expression cassette and lacIq gene is designated pSGI-YC01. SEQ ID NO:9 represents the sequence between and including the NS1 recombination sites of pSGI-YC01. The constructed plasmid containing the trc::ChFatB2-7942 expression cassette and lacIq gene is designated pSGI-YC09. SEQ ID NO: 10 represents the sequence between and including the NS1 recombination sites of pSGI-YC09.

[0079] Each of the plasmids pSGI-YC01 and pSGI-YC09, along with the control vector pAM2314, were introduced into wild-type *S. elongatus* PCC 7942 cells as described by

Golden and Sherman (*J. Bacteriol.* (1984) 158:36-42). Both recombinant and control strains were pre-cultivated in 100 mL of BG-11 medium supplied with spectinomycin (5 mg/L) to late-log phase ($OD_{730\text{ nm}}=1.0$) on a rotary shaker (150 rpm) at 30° C. with constant illumination (60 $\mu\text{E m}^{-2} \text{ sec}^{-1}$). Cultures were then subcultured at initial $OD_{730\text{ nm}}=0.4-0.5$ in BG-11 and cultivated overnight to $OD_{730\text{ nm}}=0.7-0.9$. For time-course study, 60 mL aliquots of the culture were transferred into 250-mL flasks and induced by adding IPTG (final conc.=1 mM) if applicable. Cultures were sampled 0, 48, 96, and 168 hours after IPTG induction and then filtered through Whatman® GF/F filters using a Millipore vacuum filter manifold. Filtrates were collected in screw top culture tubes for gas chromatographic (GC) analysis.

[0080] Free fatty acids (FFAs) were separated from filtered cell cultures using liquid-liquid extraction. Five mL of the filtrate were mixed with 125 μL of 1 M H_3PO_4 and 0.25 mL of 5 M NaCl, followed by addition of 2 mL of hexane and thorough mixing. For GC-FID analyze, a 0.2 μl sample of the hexane was injected using a 40:1 split ratio onto a DB-FFAP column (J&W Scientific, 15 m \times 250 $\mu\text{m}\times$ 0.25 μm), with a temperature profile starting at 150° C. for 0.5 min, then heating at 15° C./min to 230° C. and holding for 7.1 min (1.1 mL/min He).

[0081] GC analysis results indicating the levels of medium-chain FFAs (8:0 and 10:0) in cultures containing various *Synechococcus elongatus* strains 168 hours after IPTG induction are shown in Table 1-1.

TABLE 1-1

Medium-chain fatty acid secretion in various strains of <i>S. elongatus</i>					
Strain	Strain	Parent	Plasmid	Fatty Acids (mg/L)	
				Added	Transgenes
SGC-YC2-5	PCC 7942	pAM2314	none	ND	ND
SGC-YC1-2	PCC 7942	pSGI-YC01	trcE::ChFatB2-7942	1.5	3.5
SGC-YC14-4	PCC 7942	pSGI-YC09	trc::ChFatB2-7942	5.1	10.1

Note:

ND represents “not detected” (<1 mg/L).

Example 2

Secretion of Fatty Acids by Strains Derived from the Unicellular Photoheterotrophic Cyanobacterium *Synechocystis* sp. PCC 6803

[0082] The trcE::ChFatB2-7942 and trc::ChFatB2-7942 fusion fragments, together with the lacIq gene, were cloned into the shuttle vector pSGI-YC03 (SEQ ID NO:11), which enables transformation of *Synechocystis* sp. PCC 6803 via double homologous recombination-mediated integration into the “RS1” site of the chromosome (Williams, *Methods Enzymol.* (1988) 167:766-778). The constructed plasmid containing the trcE::ChFatB2-7942 expression cassette and lacIq gene is designated pSGI-YC08. SEQ ID NO:12 represents the sequence between and including the RS1 recombination sites of pSGI-YC08. The constructed plasmid containing the trc::ChFatB2-7942 expression cassette and lacIq gene is des-

ignated pSGI-YC14. SEQ ID NO:13 represents the sequence between and including the RS1 recombination sites of pSGI-YC14.

[0083] Each of the plasmids pSGI-YC08, pSGI1-YC14, and the control vector pSGI-YC03, was introduced into wild-type *Synechocystis* PCC 6803 cells, as described by Zang, X. et al., *J. Microbiol.* (2007) 45:241-245. Both recombinant and control strains were pre-cultivated in 100 mL of BG-11 medium supplied with kanamycin (10 mg/L) to late-log phase ($OD_{730\text{ nm}}=1.0$) on a rotary shaker (150 rpm) at 30° C. with constant illumination (60 $\mu\text{E}\cdot\text{m}^{-2}\text{ sec}^{-1}$). Cultures were then subcultured at initial $OD_{730\text{ nm}}=0.4-0.5$ in BG-11 and cultivated overnight to $OD_{730\text{ nm}}=0.7-0.9$. For time-course studies, 60-mL aliquots of the culture were transferred into 250-mL flasks and induced by adding IPTG (final conc.=1 mM) when applicable. Cultures were sampled 0, 72, and 144 hours after IPTG induction and then filtered through Whatman® GF/B filters using a Millipore vacuum filter manifold. Filtrates were collected in screw top culture tubes for gas chromatographic (GC) analysis. Free fatty acids (FFA) were separated from the filtered culture supernatant solutions by liquid-liquid extraction. For each sample, 2 mL filtered culture was extracted with a mixture of 50 μl phosphoric acid (1 M), 100 μl NaCl (5 M) and 2 mL hexane. A 0.2 μl sample was injected using a 40:1 split ratio on to a DB-FFAP column (J&W Scientific, 15 m \times 250 $\mu\text{m}\times$ 0.25 μm), with a temperature profile starting at 150° C. for 0.5 min, then heating at 15° C./min to 230° C. and holding for 7.1 min (1.1 mL/min He).

[0084] GC analysis results indicating the levels of medium-chain FFAs (8:0 and 10:0) in cultures 144 hours after IPTG induction are shown in Table 2-1.

TABLE 2-1

Medium-chain fatty acid secretion in various strains of <i>Synechocystis</i> .					
Strain	Strain	Parent	Plasmid	Fatty Acids (mg/L)	
				Added	Transgenes
				8:0	10:0
SGC-YC9-8	PCC 6803	pSGI-YC03	none	ND	ND
SGC-YC10-5	PCC 6803	pSGI-YC08	trcE::ChFatB2-7942	61.3	52.7
SGC-YC16-2	PCC 6803	pSGI-YC14	trcE::ChFatB2-7942	2.7	5.8

Note:

ND represents "not detected" (<1 mg/L).

Example 3

Secretion of Fatty Acids by Strains Derived from the Filamentous Cyanobacterium *Anabaena variabilis* ATCC 29413

[0085] The trc::ChFatB2-7942 and trcE::ChFatB2-7942 fusion fragments, together with the lacIq gene, were PCR amplified using primers RS3-3F (SEQ ID NO:14) and 4YC-rnrBter-3 (SEQ ID NO:15) from pSGI-YC14 and pSGI-YC08, respectively, and then cloned into the shuttle vector pEL17, which enables transformation of *A. variabilis* ATCC 29413 via double homologous recombination-mediated integration into the nifU1 locus of the chromosome (Lyons and Thiel, *J. Bacteriol.* (1995) 177:1570-1575). The constructed

plasmids are designated pSGI-YC69 and pSGI-YC70 for trc::ChFatB2-7942 and trcE::ChFatB2-7942, respectively.

[0086] Each of the plasmids pSGI-YC69, pSGI-YC70, along with the control vector pEL17, are introduced into wild-type *A. variabilis* ATCC 29413 cells via tri-parental conjugation, as described by Elhai and Wolk (*Methods Enzymol.* (1988) 167:747-754). Both recombinant and control strains are pre-cultivated in 100 mL of BG-11 medium supplied with 5 mM NH₄Cl and spectinomycin (3 mg/L) to late-log phase ($OD_{730\text{ nm}}=1.0$) on a rotary shaker (150 rpm) at 30° C. with constant illumination (60 $\mu\text{E}\cdot\text{m}^{-2}\text{ sec}^{-1}$). Cultures are then subcultured at initial $OD_{730\text{ nm}}=0.4-0.5$ in BG-11 and cultivated overnight to $OD_{730\text{ nm}}=0.7-0.9$. For time-course studies, 60-mL aliquots of the culture are transferred into 250 mL flasks and induced by adding IPTG (final conc.=1 mM) if applicable. Cultures are sampled every 72 hours and then filtered through Whatman® GF/F filters using a Millipore vacuum filter manifold. Filtrates are collected in screw top culture tubes for gas chromatographic (GC) analysis as described in Example 1.

Example 4

Secretion of Fatty Acids in Strains Derived from *Synechococcus elongatus* PCC 7942 Containing an Inactivated Acyl-ACP Synthetase Gene

[0087] A putative acyl-ACP synthetase gene in *S. elongatus* PCC 7942, synpcc7942_0918 (Cyanobase gene designation), was disrupted via replacing of an internal 422-bp portion of its coding region with a 1,741-bp DNA sequence carrying the chloramphenicol resistance marker gene, cat (which encodes chloramphenicol acetyltransferase). Primer pairs 918-15 (SEQ ID NO: 16)/918-13 (SEQ ID NO: 17) and 918-25 (SEQ ID NO:18)/918-23 (SEQ ID NO:19) were used to amplify two DNA fragments corresponding to a 5' portion (1-480 bp) and a 3' portion (903-1521 bp) of the coding region of synpcc7942_0918, respectively. The cat fragment was amplified from plasmid pAM1573 (Mackey et al., *Methods Mol. Biol.* 362:115-29) using PCR with primers NS21-3 Cm (SEQ ID NO:20) and ter-3 Cm (SEQ ID NO:21), which overlap primers 918-13 and 918-25, respectively. The recombinant chimeric PCR technique was then used to amplify the complete disruption cassette with the three aforementioned PCR fragments, as well as primers 918-15 and 918-23. The resulting 2,840-bp blunt-end PCR fragment (SEQ ID NO:22) was then ligated into pUC19 (Yanisch-Perron et al., *Gene* 33:103-119), which has been digested with both HindIII and EcoRI to remove the multiple cloning sites and subsequently blunted with T4 DNA polymerase, to yield plasmid pSGI-YC04.

[0088] Plasmid pSGI-YC04 was introduced into *S. elongatus* strain SGC-YC1-2, which harbors a copy of trcE::ChFatB2-7942 integrated into NS1 (see Example 1). The resulting strain was designated SGC-YC4-7. Fatty acid production assays and GC analyses were performed as described in Example 1. The results of GC analyses indicating the levels of FFAs in cultures of various *S. elongatus* strains 168 hours after IPTG induction are shown in Table 4-1. It is possible that inactivation of the acyl-ACP synthetase gene has a larger impact on secretion of long-chain fatty acids than on secretion of medium-chain fatty acids.

TABLE 4-1

Medium-chain fatty acid secretion in various strains of <i>S. elongatus</i> .									
Strain	Parent Strain	Added	Plasmid	Transgenes	Deletions	Fatty Acids (mg/L)			
						8:0	10:0	16:0	16:1
SGC-YC2-5	PCC 7942	pAM2314	none	none		ND	ND	ND	1.4
SGC-YC1-2	PCC 7942	pSGI-YC01	trcE::ChFatB2-7942	none		1.4	4.2	ND	1.6
SGC-YC4-7	SGC-YC1-2	pSGI-YC04	trcE::ChFatB2-7942	synpcc7942_0918		1.0	3.1	1.1	3.9

Note:

ND represents "not detected" (<1 mg/L).

Example 5

Secretion of Fatty Acids in Strains Derived from *Synechocystis* sp. PCC6803 Containing an Inactivated Acyl-ACP Synthetase Gene

[0089] A ~b 1.7-kbp DNA fragment spanning an area upstream and into the coding region of the acyl-ACP synthetase-encoding gene, slr1609 (Cyanobase gene designation), from *Synechocystis* sp. PCC 6803 was amplified from genomic DNA using PCR with primers NB001 (SEQ ID NO:23) and NB002 (SEQ ID NO:24). This fragment was cloned into the pCR2.1 vector (Invitrogen) to yield plasmid pSG1-NB3 and subsequently cut with the restriction enzyme Mfe1. A chloramphenicol resistance marker cassette containing the cat gene and associated regulatory control sequences was amplified from plasmid pAM1573 (Andersson, et al., *Methods Enzymol.* (2000) 305:527-542) to contain flanking Mfe1 restriction sites using PCR with primers NB010 (SEQ ID NO:25) and NB011 (SEQ ID NO:26). The cat gene expression cassette was then inserted into the Mfe1 site of pSG1-NB3 to yield pSG1-NB5 (SEQ ID NO:27).

inoculate 100 mL BG-11 medium in 250 mL polycarbonate flasks to $OD_{730\text{ nm}}=0.4-0.5$ and incubated overnight. 45 mL of overnight culture at $OD_{730\text{ nm}}=0.7-0.9$ were added to new 250 mL flasks, inducing with 1 mM IPTG or using as uninduced controls. 5 mL samples were taken at 0, 72 and 144 hours post induction and processed as described in Example 2.

[0091] Free fatty acids (FFA) were separated from the filtered culture supernatant solutions by liquid-liquid extraction for GC/FID (flame ionization detector) analysis. For each sample, 2 mL filtered culture was extracted with a mixture of 50 μl phosphoric acid (1 M), 100 μl NaCl (5 M) and 2 mL hexane. A 0.2 μl sample was injected using a 40:1 split ratio on to a DB-FFAP column (J&W Scientific, 15 $\text{m} \times 250\text{ }\mu\text{m} \times 0.25\text{ }\mu\text{m}$, with a temperature profile starting at 150° C. for 0.5 min, then heating at 15° C./min to 230° C. and holding for 7.1 min (1.1 mL/min He).

[0092] GC results indicating secreted levels of free fatty acids after 144 hours are shown in Table 5-1.

TABLE 5.1

Medium-chain fatty acid secretion in various strains of *Synechocystis*.

Strain	Parent Strain	Added	Plasmid	Transgenes	Deletions	Fatty Acids (mg/L)	
						8:0	10:0
SGC-YC10-5	PCC 6803	pSGI-YC08	trcE::ChFatB2-7942	none		58.3	67.7
SGC-NB10-4	SGC-YC10-5	pSGI-NB5	trcE::ChFatB2-7942	slr1609		57.7	73.7

Note:

ND represents "not detected" (<1 mg/L).

[0090] The pSGI-NB5 vector was transformed into trcE::ChFatB2-7942-containing *Synechocystis* strain SGC-YC10-5 (see Example 1) according to Zang et al., *J Microbiology* (2007) 45:241-245. Insertion of the chloramphenicol resistance marker into the Slr1609 gene through homologous recombination was verified by PCR screening of insert and insertion site. The resulting strain was designated SGC-NB10-4, which was tested in liquid BG-11 medium for fatty acid secretion. All liquid medium growth conditions used a rotary shaker (150 rpm) at 30° C. with constant illumination (60 $\mu\text{E} \cdot \text{m}^{-2} \cdot \text{sec}^{-1}$). Cultures were inoculated in 25 mL of BG-11 medium containing chloramphenicol and/or kanamycin (5 $\mu\text{g}/\text{mL}$) accordingly and grown to a sufficient density (minimal $OD_{730\text{ nm}}=1.6-2$). Cultures were then used to

Example 6

Expression of *Cuphea lanceolata* Kas-IV and *Helianthus annuus* Kas-III genes in *Synechocystis* sp.

[0093] A DNA fragment comprising a functional operon was synthesized such that it contained the following elements in the given order: the trc promoter, the *Cuphea lanceolata* 3-ketoacyl-acyl carrier protein synthase IV gene (CIKas-IV, GenBank Accession No. CAC59946) codon-optimized for expression in *Synechococcus elongatus* PCC 7942, and the rps14 terminator (SEQ ID NO:28) from *Synechococcus* sp. WH8102. The nucleotide sequence of this entire functional

operon, along with various flanking restriction enzyme recognition sites, is provided in SEQ ID NO:29.

[0094] Another DNA fragment comprising a functional operon was synthesized such that it contained the following elements in the given order: the trc promoter, the *Helianthus annuus* 3-ketoacyl-acyl carrier protein synthase III gene (HaKas-III, GenBank Accession No. ABP93352) codon-optimized for expression in both *Synechococcus elongatus* PCC 7942 and *Synechocystis* sp. PCC 6803, and rps14 terminator from *Synechococcus* sp. WH8102. The nucleotide sequence of this functional operon, along with various flanking restriction enzyme recognition sites, is provided in SEQ ID NO:30.

[0095] Codon optimization was performed by the use of the "Gene Designer" (version 1.1.4.1) software program provided by DNA2.0, Inc. The functional operon (expression cassette) containing the codon-modified ClKas-IV gene as represented in SEQ ID NO:29 was digested by the restriction enzymes SpeI and XbaI and inserted into plasmid pSGI-YC39 between the restriction sites SpeI and XbaI to form plasmid pSGI-BL26, which enables integration of the functional operon into the *Synechocystis* sp. PCC 6803 chromosome at the "RS2" recombination site (Aoki, et al., *J. Bacteriol.* (1995) 177:5606-5611). The plasmid pSGI-BL27 containing the DNA fragment represented in SEQ ID NO:30 was constructed in the same way.

[0096] Plasmid pSGI-BL43 contains the trcE promoter, the codon-optimized ClKas-IV gene, and the rps14 terminator as represented in SEQ ID NO:31 and was made by inserting a SpeI/NcoI trcE fragment from pTrcHis A (Invitrogen) into SpeI/NcoI-digested pSGI-BL26. An additional plasmid, pSGI-BL44, contains the trcE promoter, the optimized ClKas-IV gene, the *S. elongatus* PCC 7942 kaiBC intergenic region, the optimized HaKas-III gene, and the rps14 terminator as represented in SEQ ID NO:32 and was made by inserting a BamHI/SacI fragment (containing the *S. elongatus* kaiBC intergenic region, the HaKas-III gene, and the rps14 terminator) generated via PCR amplification into BglIII/SacI-digested pSGI-BL43. The PCR primers used to generate the DNA fragment containing the kaiBC region, HaKas-III, and rps14 terminator are provided as SEQ ID NO:33 and SEQ ID NO:34.

[0097] Wild-type *Synechocystis* PCC 6803 cells and transgenic *Synechocystis* strain SGC-YC10-5, which contains the ChFatB2-7942 gene, were transformed with plasmids pSGI-BL26, pSGI-BL27, pSGI-BL43 and pSGI-BL44 as described by Zang, X. et al. *J. Microbiol.* (2007) 45:241-245. Both recombinant and wild-type control strains were precultivated in 20 mL of BG-11 medium to mid-log phase ($OD_{730\ nm}=0.7-0.9$) on a rotary shaker (150 rpm) at 30° C. with constant illumination (60 $\mu\text{E}\cdot\text{m}^{-2}\cdot\text{sec}^{-1}$). Kanamycin (5 $\mu\text{g}/\text{mL}$) and/or spectinomycin (10 $\mu\text{g}/\text{mL}$) were included in recombinant cultures as appropriate. Cultures were then subcultured at initial $OD_{730\ nm}=0.4-0.5$ in BG-11 and cultivated overnight to $OD_{730\ nm}=0.7-0.9$. For a time-course study, 45-mL aliquots of the culture were transferred into 250 mL flasks and induced by adding IPTG (final conc.=1 mM) when applicable. Cultures were sampled 0, 72, and 144 hours after IPTG induction and then filtered through Whatman® GF/B filters using a Millipore vacuum filter manifold. Filtrates were collected in screw top culture tubes for gas chromatographic (GC) analysis as described in Example 2.

[0098] Results indicating the levels of secreted octanoic acid and decanoic acid in culture supernatants 144 hours after culture inoculation are shown in Table 6-1. The ClKas-IV and HaKas-III genes present in the indicated strains were under the control of the trc promoter.

TABLE 6-1

Medium-chain fatty acid secretion in (in mg/L) various <i>Synechocystis</i> sp. strains					
Strain	Strain	Added	Plasmid	Fatty Acids (mg/L)	
				Parent	Transgenes
Strain	Strain	Added	Plasmid	8:0	10:0
PCC 6803	n/a	n/a	None	ND	ND
SGC-YC10-5	PCC 6803	pSGI-YC08	trcE-ChFatB2-7942	69.8	68.4
SGC-BL26-3	PCC 6803	pSGI-BL26	trc-ClKas-IV	ND	ND
SGC-BL26-5	SGC-YC10-5	pSGI-BL26	trcE-ChfatB2-7942	69.5	71.9
			trc-ClKas-IV		
SGC-BL27-1	PCC 6803	pSGI-BL27	trc-HaKas-III	ND	ND
SGC-BL27-2	SGC-YC10-5	pSGI-BL27	trcE-ChFatB2-7942	65.7	66.6
			trc-HaKas-III		

Note:

ND represents "not detected" (<1 mg/L).

[0099] For a more optimized measurement of fatty acid secretion in these strains, the fatty acid secretion data shown in Table 6-1 were normalized to cell culture density, measured as optical density at 730 nm ($OD_{730\ nm}$); these data are presented in Table 6-2. Other experiments described in this application could be normalized in a similar fashion.

TABLE 6-2

Normalized medium-chain fatty acid secretion (mg/L/ $OD_{730\ nm}$) in various <i>Synechocystis</i> sp. strains					
Strain	Strain	Added	Plasmid	Fatty Acids	
				Parent	Transgenes
Strain	Strain	Added	Plasmid	8:0	10:0
PCC 6803	n/a	n/a	None	ND	ND
SGC-YC10-5	PCC 6803	pSGI-YC08	trcE-ChFatB2-7942	11.7	11.4
SGC-BL26-3	PCC 6803	pSGI-BL26	trc-ClKas-IV	ND	ND
SGC-BL26-5	SGC-YC10-5	pSGI-BL26	trcE-ChfatB2-7942	11.7	12.1
			trc-ClKas-IV		
SGC-BL27-1	PCC 6803	pSGI-BL27	trc-HaKas-III	ND	ND
SGC-BL27-2	SGC-YC10-5	pSGI-BL27	trcE-ChFatB2-7942	12.2	12.3
			trc-HaKas-III		

Note:

ND represents "not detected" (<1 mg/L).

[0100] Results indicating the levels of secreted octanoic acid and decanoic acid in culture supernatants of additional strains 120 hours after culture inoculation are shown in Table 6-3. The ClKas-IV and HaKas-III genes present in the indicated strains were under the control of the trcE promoter.

TABLE 6-3

Medium-chain fatty acid secretion (in mg/L) in various <i>Synechocystis</i> sp. strains						
Strain	Parent Strain	Plasmid	Added	Transgenes	Fatty Acids (mg/L)	
					8:0	10:0
SGC-YC10-5	PCC 6803	pSGI-YC08		trcE-ChFatB2-7942	34.8	43.5
SGC-BL44	PCC 6803	pSGI-BL44		trcE-ClKAS-IV + HaKAS-III	ND	ND
SGC-YC10-5-BL43	SGC-YC10-5	pSGI-BL43		trcE-ChFatB2-7942 trcE-ClKas-IV	40.0	48.1
SGC-YC10-5-BL44	SGC-YC10-5	pSGI-BL44		trcE-ChfatB2-7942 trcE-ClKAS-IV + HaKAS-III	38.5	47.1

Note:

ND represents "not detected" (<1 mg/L).

[0101] For a more optimized measurement of fatty acid secretion in these strains, the fatty acid secretion data shown in Table 6-1 were normalized to cell culture density, measured as optical density at 730 nm (OD_{730 nm}); these data are presented in Table 6-4.

[0103] To produce an expression vector for *T. pseudonana*, the ChFatB2-Thal gene was placed between the *T. pseudonana* alpha-tubulin promoter and terminator regulatory sequences. The alpha-tubulin promoter was amplified from genomic DNA isolated from *T. pseudonana* CCMP 1335 by

TABLE 6-4

Normalized medium-chain fatty acid secretion (mg/L/OD _{730 nm}) in various <i>Synechocystis</i> sp. strains						
Strain	Parent Strain	Plasmid	Added	Transgenes	Fatty Acids	
					8:0	10:0
SGC-YC10-5	PCC 6803	pSGI-YC08		trcE-ChFatB2-7942	6.8	8.5
SGC-BL44	PCC 6803	pSGI-BL44		trcE-ClKAS-IV + HaKAS-III	ND	ND
SGC-YC10-5-BL43	SGC-YC10-5	pSGI-BL43		trcE-ChFatB2-7942 trcE-ClKas-IV	7.4	8.9
SGC-YC10-5-BL44	SGC-YC10-5	pSGI-BL44		trcE-ChfatB2-7942 trcE-ClKAS-IV + HaKAS-III	8.3	10.2

Example 7

Introduction of a Heterologous Acyl-ACP Thioesterase Gene into a Diatom

[0102] A synthetic gene that encodes a derivative of the ChFatB2 enzyme with specificity for medium-chain (8:0-10:0) acyl-ACPs is expressed in various diatoms (Bacillariophyceae) by constructing and utilizing expression vectors comprising the ChFatB2 gene operably linked to gene regulatory regions (promoters and terminators) that function in diatoms. In a preferred embodiment, the gene is optimized for expression in specific diatom species and the portion of the gene that encodes the plastid transit peptide region of the native ChFatB2 protein is replaced with a plastid transit peptide that functions optimally in diatoms. The nucleotide sequence provided as SEQ ID NO:35 represents a synthetic derivative of the ChFatB2 gene that has been optimized for expression in *Thalassiosira pseudonana* and in which the native plastid transit peptide-encoding region of the gene has been replaced with the plastid transit peptide (including coupled signal sequence) associated with the gamma subunit of the coupling factor portion (CF1) of the chloroplast ATP synthase from *T. pseudonana* (JGI Identifier=jgi/Thaps3/40156/est_Ext_gwp_gwl.C_chr_40019). The protein encoded by this gene, referred to hereafter as ChFatB2-Thal, is provided in SEQ ID NO:36.

use of primers PR1 (SEQ ID NO:37) and PR3 (SEQ ID NO:38), whereas the alpha-tubulin terminator was amplified by use of primers PR4 (SEQ ID NO:39) and PR8 (SEQ ID NO:40). The KpnI/BamHI fragment from the alpha-tubulin promoter amplicon, the BamHI/XbaI fragment from the alpha-tubulin terminator and the large fragment from KpnI/XbaI-cut pUC118 (Vieira and Messing, *Meth. Enzymol.* (1987) 153:3-11) were then combined to form pSG1-PR5. The NcoI/BamHI fragment from ChFatB2-Thal gene was then inserted into NcoI/BamHI-digested pSG1-PR5 to form pSG1-PR16. In addition, a codon-optimized gene that encodes the nourseothricin acetyltransferase (NAT) enzyme from *Streptomyces noursei* (SEQ ID NO:41) (Krugel, et al., *Gene* (1993) 127:127-131) was synthesized and the NcoI/BamHI fragment from this NAT-encoding DNA molecule was inserted into the large NcoI/BamHI fragment from pSG1-PR5 to form pSG1-PR7, which upon introduction into *T. pseudonana* and other diatoms can provide resistance to the antibiotic nourseothricin.

[0104] pSG1-PR16 and pSG1-PR7 were co-transformed into *T. pseudonana* CCMP 1335 by means of particle bombardment essentially as described by Poulsen, et al., (*J. Phycol.* (2006) 42:1059-1065). Transformed cells were selected on agar plates in the presence of 100 mg/L nourseothricin (ClonNAT, obtained from Werner BioAgents, Germany). The presence of the ChFatB2-Thal gene in cells was confirmed by

the use of PCR. Transformants were grown in ASW liquid medium (Darley and Volcani, *Exp. Cell Res.* (1964) 58:334) on a rotary shaker (150 rpm) at 18° C. with constant illumination (60 $\mu\text{E}\cdot\text{m}^{-2}\cdot\text{sec}^{-1}$). Samples were removed seven days after inoculation and the culture medium was tested for the presence of FFAs as described in Example 1.

[0105] Although no fatty acid secretion was detected under these particular experimental conditions, optimization of the ChFatB2-Thal gene and diatom host strain can be performed to achieve fatty acid secretion in diatoms, which are known to have relatively impervious cell walls.

Example 8

Secretion of Fatty Acids by Green Algae

[0106] A synthetic gene that encodes a derivative of the ChFatB2 enzyme with specificity for medium-chain (8:0-10:0) acyl-ACPs is expressed in green algae (Chlorophyceae) by constructing and utilizing expression vectors comprising the ChFatB2 gene operably linked to gene regulatory regions (promoters and terminators) that function in green algae. The gene is optimized for expression in specific green algal species and the portion of the gene that encodes the plastid transit peptide region of the native ChFatB2 protein is replaced with a plastid transit peptide that functions optimally in green algae. The nucleotide sequence provided as SEQ ID NO:42 represents a derivative of the ChFatB2 gene optimized for expression in *Chlamydomonas reinhardtii* and in which the native plastid transit peptide-encoding region of the gene has been replaced with the plastid transit peptide associated with the gamma subunit of the coupling factor portion (CF1) of the chloroplast ATP synthase from *C. reinhardtii* (GenPept Accession No. XP 001696335). The protein encoded by this gene is provided in SEQ ID NO:43.

Example 9

Secretion of Fatty Acids in Strains of *Synechocystis* sp. Containing a Disrupted 1,4-alpha-Glucan Branching Enzyme Gene

[0107] A 1.4-kbp DNA fragment spanning an area upstream and into the coding region of the 1,4-alpha-glucan

restriction enzyme *Ava*I. A spectinomycin resistance marker cassette containing the *aadA* gene and associated regulatory control sequences was digested by *Hind*III from plasmid pSGI-BL27. Both of the linear fragments were treated with the Quick Blunting™ Kit (New England Biolabs). The *aadA* gene expression cassette was then inserted into the *Ava*I site of pSGI-BL32 to yield pSGI-BL33. The portion of pSGI-BL33 that inserts into and inactivates the *glgB* gene is provided as SEQ ID NO:46.

[0108] The pSGI-BL33 vector was transformed into wild-type *Synechocystis* PCC 6803 and into *trcE::ChFatB2-7942*-containing *Synechocystis* strain SGC-YC10-5 (see Example 1) according to Zang, et al., *J. Microbiology* (2007) 45:241-245. Insertion of the spectinomycin resistance marker into the S110158 (*glgB*) gene via homologous recombination was verified by PCR screening of insert and insertion site. Verified knockout strains were tested in liquid BG-11 medium for secretion of fatty acids. All liquid medium growth conditions used a rotary shaker (150 rpm) at 30° C. with constant illumination (60 $\mu\text{E}\cdot\text{m}^{-2}\cdot\text{sec}^{-1}$). Cultures were inoculated in 25 mL of BG-11 medium containing spectinomycin (10 $\mu\text{g}/\text{mL}$) and/or kanamycin (5 $\mu\text{g}/\text{mL}$) accordingly and grown to a sufficient density (minimal $\text{OD}_{730\text{ nm}}=1.6-2$). Cultures were then used to inoculate 100 mL BG-11 medium in 250-mL polycarbonate flasks to $\text{OD}_{730\text{ nm}}=0.4-0.5$ and incubated overnight. Forty-five mL of overnight culture at $\text{OD}_{730\text{ nm}}=0.5$ were added to new 250-mL flasks; some cultures were induced with 1 mM IPTG or used as uninduced controls. Samples (0.5 mL) were taken at 0, 72, 144, and 216 hours post induction and processed as described in Example 2.

[0109] Free fatty acids (FFA) were separated from the filtered culture supernatant solutions by liquid-liquid extraction for GC/FID analysis. For each sample, 2 mL of filtered culture were extracted with a mixture of 50 μL phosphoric acid (1 M), 100 μL NaCl (5 M) and 2 mL hexane. A 0.2 μl sample was injected using a 40:1 split ratio on to a DB-FFAP column (J&W Scientific, 15 m \times 250 $\mu\text{m}\times$ 0.25 μm), with a temperature profile starting at 150° C. for 0.5 min, then heating at 15° C./min to 230° C. and holding for 7.1 min (1.1 mL/min He).

[0110] GC results indicating secreted levels of free fatty acids after 216 hours are shown in Table 9-1.

TABLE 9-1

Medium-chain Fatty Acid Secretion (in mg/L) in Various <i>Synechocystis</i> sp. Strains							
Strain	Parent Strain	Plasmid			Fatty Acids		
		Added	Deletion	Transgenes	8:0	10:0	
PCC 6803	n/a	n/a	None	None	ND	ND	
SGC-BL33-1	PCC 6803	pSGI-BL33	Sll0158 (<i>glgB</i>)	None	ND	ND	
SGC-YC10-5	PCC 6803	pSGI-YC08	None	<i>trcE::ChFatB2-7942</i>	70.0	68.7	
SGC-BL33-2	SGC-YC10-5	pSGI-BL33	Sll0158 (<i>glgB</i>)	<i>trcE::ChFatB2-7942</i>	66.2	68.1	

Note:

ND represents "not detected" (<1 mg/L).

branching enzyme gene (*glgB*, Cyanobase gene designation=s110158) from *Synechocystis* sp. PCC6803 was amplified from genomic DNA using PCR with primers *glgB-5* (SEQ ID NO:44) and *glgB-3* (SEQ ID NO:45). This fragment was cloned into the pCR4-Topo vector (Invitrogen) to yield plasmid pSGI-BL32 and subsequently cut with the

[0111] For a more optimized measurement of fatty acid secretion in these strains, the fatty acid secretion data shown in Table 9-1 were normalized to cell culture density, measured as optical density at 730 nm ($\text{OD}_{730\text{ nm}}$); these data are presented in Table 9-2. Other experiments described in this application could be normalized in a similar fashion.

TABLE 9-2

Normalized Medium-chain Fatty Acid Secretion (mg/L/OD_{730 nm}) in Various *Synechocystis* sp. Strains

Strain	Parent Strain	Plasmid			Fatty Acids	
		Added	Deletion	Transgenes	8:0	10:0
PCC 6803	n/a	n/a	None	None	ND	ND
SGC-BL33-1	PCC 6803	pSGI-BL33	SII0158 (glgB)	None	ND	ND
SGC-YC10-5	PCC 6803	pSGI-YC08	None	trcE-ChFatB2-7942	9.8	9.7
SGC-BL33-2	SGC-YC10-5	pSGI-BL33	SII0158 (glgB)	trcE-ChFatB2-7942	10.4	10.7

Note:

ND represents "not detected" (<1 mg/L).

Example 10

Capture of Free Fatty Acids from Model Solutions with Hydrophobic Adsorbent Resins

[0112] A spike solution was formulated by dissolving 75 mg/L octanoic acid and 75 mg/L decanoic acid in BG-11 medium supplemented with 300 mM NaCl and adjusting the pH to 5.8. 50 mg of each of the resins listed in Table 1 were weighed into a 50 mL centrifuge tube and combined with 1.0 mL of methanol and shaken gently. The excess methanol was decanted and the resins were dried under a 25 in Hg vacuum, room temperature, overnight. 50 mL of the spike solution was then added to each of the resins and incubated with gentle shaking at 31° C. for 24 hours. Following incubation, the resins were removed by filtering over a Whatman® GF/F glass fiber filter and the filtrates were analyzed for octanoic acid and decanoic acid content by gas chromatography as described in Example 2. The capacity of each resin for octanoic and decanoic acid could then be determined by the difference in the concentration of each fatty acid before and after incubation with each resin. The results are shown in Table 10-1 below.

methanol per mg of adsorbent and shaken gently at room temperature for 4 hours. The methanol eluates and post-adsorption spikes were analyzed for free fatty acid concentration by gas chromatography. The results are listed in Table 10-2 below.

TABLE 10-2

Desorption of free fatty acids in methanol

mL MeOH/mg Resin	% Desorption		
	0.1 mL/mg	0.5 mL/mg	1.0 mL/mg
Dowex Optipore ® V503	92%	84%	100%
CBV 28014	53%	76%	84%
CBV 901	78%	76%	57%
Norit ® ROW	44%	85%	77%

[0114] The effect of pH on adsorbent capacity was studied utilizing Dowex® Optipore® V503. 40 mg of the resin were combined with 40 mL of BG-11 media spiked with 150 mg/L of octanoic and decanoic acid and adjusted to a pH of 10.0, 7.5, 4.8, or 2.8. The pH 10 spike was buffered with 5 mM

TABLE 10-1

Adsorption capacities of several commercially-available adsorbents

Description	Resin type	Adsorption Capacity (mg/g)		
		Octanoic Acid	Decanoic acid	Total free fatty acids
Dowex Optipore ® V503 (Dow Chemical)	Post cross-linked macroporous polystyrene divinyl benzene	26.3	69.8	96.0
Lewatit 1064 MD (LanXess)	Macroporous polystyrene divinyl benzene	1.1	46.7	47.8
Zeolyst CBV 28014 (Zeolyst)	Very low-alumina zeolite	17.4	74.7	92.0
Zeolyst CBV 901 (Zeolyst)	Low-alumina zeolite	5.4	64.8	70.1
Hisiv 3000 Silicalite (UOP Honeywell)	Hydrophobic silicalite	15.3	23.7	39.1
Lipidex 5000 (Packard Instrument Co.)	Alkylated sephadex gel	0.00	18.6	18.6
Norit ROW 0.8 (Fluka)	Extruded activated charcoal	40.2	71.8	112.1

[0113] Elution of free fatty acids from the hydrophobic adsorbents was also investigated. Dowex® Optipore® V503, Zeolyst CBV 28014, Zeolyst CBV 901, and Norit® ROW were incubated with 1.0 mL of spike solution per mg of adsorbent as described above. After the incubation period, the adsorbents were rinsed and combined with 0.1, 0.5, or 1.0 mL

CAPS. The pH 7.5 and 2.8 spikes were buffered with 5 mM phosphate, and the pH 4.8 was buffered naturally by the dissolved fatty acids, with 5 mM NaCl added to maintain consistent conductivity. The spikes were incubated with resin as described above. Free fatty acid concentrations were measured with an enzymatic assay purchased from Zen-bio. The

results are displayed in Table 10-3 below. From these results, it is clear that hydrophobic adsorption of free fatty acids is possible over a wide range of pH.

TABLE 10-3

Adsorption capacity of Dowex® Optipore® V503 at various pH values	
pH	Adsorption Capacity (mg FFA/g resin)
10	42 ± 13
7.5	64 ± 4
4.8	172 ± 4
2.8	259 ± 1

[0115] Reported values are the mean of two experimental replicates, +/− one standard deviation.

Example 11

In Vivo Capture of Free Fatty Acids from Cultures of *Synechocystis* Strain SGC-YC10-5

[0116] *Synechocystis* sp. strain SGC-YC10-5, which contains the ChFatB2-7942 gene as described in Example 1, was cultured in BG-11 with and without Dowex® Optipore® V503 resin. 400 mL of fresh culture was induced with 5 mM IPTG and incubated at room temperature for 1 hour to allow for uptake of the inducer. The culture was then divided into four 1,000 mL baffled Erlenmeyer flasks with PTFE vent caps. To two of the flasks, approximately 400 mg of Dowex® Optipore® V503 were added. The adsorbent resin in the test flasks was recovered and exchanged for fresh resin daily for 10 days. The recovered resin was washed liberally with deionized water and eluted with 2 mL of methanol. Samples of culture medium from the test flasks and control flasks were also taken daily. The samples were measured for OD_{730 nm} and filtered over a Whatman® GF/B glass fiber filter and analyzed for octanoic acid and decanoic acid content by gas chromatography as previously described in Example 2. The results are presented in Table 11-1.

TABLE 11-1

In vivo capture of free fatty acids from <i>Synechocystis</i> SGC-YC10-5 cultures		
	Avg. Specific Growth Rate (d ⁻¹)	Average Free Fatty Acid Productivity (mg L ⁻¹ d ⁻¹)
Without Dowex	0.090 ± 0.005	16 ± 0.8
With Dowex	0.090 ± 0.010	31 ± 3

[0117] Reported values are the mean of two biological duplicates +/− one standard deviation.

Example 12

Integration of CO₂ Delivery and Product Recovery as a Means for Enhancing the Efficiency and Economy of Both

[0118] Table 10-3 above reveals a clear relationship between free fatty acid adsorption capacity and pH. This relationship results from the inefficiency of extraction of the ionized form of the free fatty acids. Many potential production hosts require a pH significantly higher than the pKa of free fatty acids in order to survive and reproduce. An extreme

example of this would be the alkalophilic cyanobacteria such as those belonging to the genera *Synechococcus*, *Synechocystis*, *Spirulina*, and many others, which prefer a pH between 9 and 11 for optimum growth. FIG. 5 outlines an embodiment of the invention wherein this problem is solved by recycling a portion of the culture first through a vessel where it is contacted with concentrated CO₂ gas to lower the pH, then through a stationary adsorbent column wherein the protonated free fatty acids are captured.

[0119] The CO₂-enriched, free fatty acid-depleted suspension is then returned to the bulk culture. The pressure inside the gas-liquid contactor can be controlled independently to provide a constant pH in the stream exiting the adsorption column. Further, the pressure of the post-column flash vessel can be controlled so as to provide a supply of CO₂ which is titrated to the CO₂ consumption rate of the bulk culture through PID control of pH, dissolved CO₂, off-gas CO₂, or any combination of the three. The excess CO₂ can then be recycled.

[0120] In order to demonstrate proof of concept for the invention described above, an experimental system was constructed as displayed in FIG. 5.

[0121] Vessel E-1 was filled with 4L of a spike solution containing 700 mg/L octanoic acid dissolved in 100 mM NaCl, pH 11.1. Column C1 was filled with 45.2 g of Dowex® Optipore® V503 polymeric resin. The resin was activated with two column volumes of methanol, followed by a wash of three column volumes of 100 mM NaCl, pH 11.1. Liquid-gas contact vessel E2 was then filled with 200 mL of spike solution and 34.7 psia of CO₂. When the pH of the spike solution inside E-2 had decreased to between 5 and 6 (as determined by a strip of pH paper contained within E-2) peristaltic pumps P-1 and P-2 were set to the same flow rate and column loading was initiated. Valve V-2 was adjusted as needed to increase the column pressure and prevent the formation of gas bubbles.

[0122] Fractions of the flow through were taken at periodic intervals of 70-100 mL and assayed for octanoic acid by a commercially-available free fatty acid assay purchased from Zen-Bio. Two superficial linear flow rates were evaluated: 16.3 cm/min and 6.1 cm/min. For both flow rates, a control run was performed whereby vessel E-2 was bypassed and the column was loaded directly at a pH of 11.1. Table 12-1 below displays the results of this experiment. For both flow rates, column dynamic binding capacity was approximately 4-fold greater when CO₂ was used to lower the pH of the load.

TABLE 12-1

Dynamic binding capacity with and without CO ₂ -mediated load acidification		
	Dynamic Binding Capacity (mg/g)	
Flow velocity (cm/min)	+34.7 psia CO ₂	Control (pH 11.1) 0 psia CO ₂
6.1	43.5	10.5
16.3	7.2	1.9

Example 13

Secretion of Oleic Acid by Photosynthetic Microorganisms

[0123] A synthetic gene that encodes a derivative of a FatA-type plant acyl-ACP TE enzyme with specificity for oleoyl-ACP is expressed in various photosynthetic microorganisms by constructing and utilizing expression vectors comprising a

FatA gene operably linked to gene regulatory regions (promoters and terminators) that function in the host photosynthetic microorganism. The gene is optimized for expression in the host photosynthetic microorganism and the portion of the gene that encodes the plastid transit peptide region of the native FatA protein is removed for expression in cyanobacteria or replaced with a plastid transit peptide that functions effectively in the host eukaryotic photosynthetic microorganisms.

[0124] Genes that could be used for this purpose include, but are not limited to, those that encode the following acyl-ACP TEs (referred to by GenPept Accession Numbers): NP_189147.1, AAC49002, CAA52070.1, CAA52069.1, 193041.1, CAC39106, CAO17726, AAC72883, AAA33020, AAL79361, AAQ08223.1, AAB51523, AAL77443, AAA33019, AAG35064, and AAL77445.

[0125] The following is a sequence listing of all sequences referred to above. SEQ ID NO:1

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 46

<210> SEQ ID NO 1
<211> LENGTH: 723
<212> TYPE: DNA
<213> ORGANISM: Thalassiosira pseudonana

<400> SEQUENCE: 1

atatcggttga	gtatataat	gggtggggagg	tgtgggttag	tagttgcgag	caaagatgac	60
acttggtaaa	ctgtatcgac	gtggataactg	cgacgaagat	tggccgtaca	cacgtcgat	120
ttgaatgaac	atatgtgttt	tattcaaacc	aatttgacta	gtttgaggaa	ccttcacgtg	180
tttcgctctc	aaacttttag	acaacagcct	ccgaatccaa	atgaatgact	tttaaacaca	240
agcttaggagc	tggtgatata	taatatgctg	gttgtatgaa	agagactaat	cgtgtgaaat	300
aaatgatggc	tgcgcctagt	gaatgctcct	cagagacgct	cattcgtcca	agtgttcgtc	360
acttctgtca	ttgtttccctc	cgagggcaag	gtgggtcgagt	aggttagatac	cagctattct	420
cttgcttctt	ttacttttac	tccctctacc	aaaaacagca	cgttattatc	tccttccat	480
tccacgcaat	aacaagaggc	aatcggtaaa	gaggcacaaa	caagagaaca	aagaccccgg	540
ctgcttctct	cgtccgtccg	ccggccctaa	acttcaagtt	ttacttcaag	ttcaatctgt	600
tttttggcgc	aaaaagcgcc	gttgcctcgc	cgtccctccgc	actttcagt	tctctgtcg	660
cgaggactgt	tatcaacttc	caagatctcc	atctttctc	ctatcctccc	ctaacaagg	720
acg						723

<210> SEQ ID NO 2
<211> LENGTH: 700
<212> TYPE: DNA
<213> ORGANISM: Thalassiosira pseudonana

<400> SEQUENCE: 2

gttcaatgcc	tttgggtgtt	tgcgtcaatag	gcacttcgac	tttgccttgc	gttccgttat	60
cccaaacttg	aacgagcgcc	acggccctct	cggtttcggt	ggtatccccag	gaccctctcg	120
agttgatgca	gggttcagaa	tgcgatataac	tcatgttgc	gttttgttgc	tttgtgattt	180
taccttgcctt	ccagcttcg	gtctgttatt	acagtgacac	gctgtactag	aatatgtat	240
cgtttgatgg	aatctctaaa	attatgagct	atttatgaac	acaggagatc	tcatcaactt	300
tccatcgaaa	tccgttaggag	aattctaaatg	tcctcttcgg	acgagagaca	gacgttatcg	360
gagtcaacttgc	aagggttccaa	gattctatct	tcatgaggatc	tggatatgac	agtctgcct	420
tcgaggcaag	ccctgtcaact	gtgacccctt	cgcgctgtca	ataattttag	gaacgcaagg	480
atagggattt	tccatagtaa	ggactattgt	ttgaccctgt	aaacttcaac	ctttacccca	540

-continued

agaatggggc attcataagt gaaaaacgtt tgttatgtat gccccattc ctacacagga	600
ataggtattg aatcacgtag aaaaatgtatcg ttgcggcgca agcaaaacaca ccggctctct	660
tccggcgac tctcttccaa tccaacaaac aaacgcaacc	700

<210> SEQ ID NO 3
<211> LENGTH: 700
<212> TYPE: DNA
<213> ORGANISM: Thalassiosira pseudonana

<400> SEQUENCE: 3

acgcagatag tgtatatttgcgtc tcttgcgtc ataggagagg agaactagag	60
aacaaaaaaggc gtcatgtat aaatgttggc tggatgttgcgtc cagttatccaa	120
aacaccgaat tggcgagggtt cgtgagcttgcgtc cagactcat ggcaacggctt aatttcatat	180
ctatgttatac aatgttatactt gtaacactaa tgctaaatggc tggatgttgcgtc acttataatcc	240
tccggctctt cactccactt cgtgacgttgcgtc gtttgcgttatttgcgtc tattattccaa	300
gttgaatctg cagttgaggc attctctaaac ttagccgaga aatcaagacg gtgactttga	360
atttacaatgttgcgtc ttacacaaga tacatccatc acaaaaaaaggc ttccgttggc	420
tcccaactgcgtt cattgtactt tggtacttgcgtc cccatgttgcgtc actggatttgcgtc gggaaagag	480
ggagtcttgcgtc tttgttataatggc tacatccatc attccatccatc ttatccatc ttatccatc catcaactaaac	540
tcatcgatgtca tacagagaaa aacaatctcc actttctccaa caaaatgttgcgtc cacaatgttgcgtc	600
ctccgacacaca gcctcaagag ccgaccgttgcgtc gtttgcgttatttgcgtc acacacacac	660
acacacacac ccacacacac ccacacacac ttatccatc ttatccatc	700

<210> SEQ ID NO 4
<211> LENGTH: 779
<212> TYPE: DNA
<213> ORGANISM: Phaeodactylum tricornutum

<400> SEQUENCE: 4

agtccggatttgcgtc aaaaacaggcgaa atgtacgcca ttccaaaggc gctcaggaaaggagacata	60
tgcacacatc cagcgaaatgttgcgtc aagtacgaca cttgaacaag agcatgacccgttgcgtc gtcaaagcat	120
gctgccatcg tcgttgcgtc tctatccatc atgacacttttgcgtc ggttgcgtc gtttgcgtc acttgcgtc	180
ccggcaatcgaa aaaaataaaggc gatagacccttgcgtc gaccaacggc agctttccatc ttatccatc ttatccatc	240
ggcagatatttgcgtc cggatccatc tttatccatc cagcaacacac ccgttgcgtc gtttgcgtc tttatccatc	300
caagacgaca agcacaatgttgcgtc tggatgttgcgtc gtcataatccatc attgactatgttgcgtc ttatccatc	360
caactctcat ggcgtttgaa aatctgttgcgtc cttcacagta aagagacaaatgttgcgtc ctcttgcgtc	420
tgactgttgcgtc agagatggaa aaaaaggatgttgcgtc ctaccggaaatgttgcgtc ttgacagacttgcgtc gatgtgaaaatgttgcgtc	480
cagagatggaaatgttgcgtc ccgtaaacaaatgttgcgtc gtaccggtaa atgttgcgtc aacctttacttgcgtc ttttgcgtc	540
gcgtctgtca tttatccatc cggatccatc tttatccatc aaaaatgttgcgtc ccgttgcgtc tttatccatc	600
catcgacaaatgttgcgtc cgttgcgtc ggccggcgatgttgcgtc caatcggttgcgtc gtttgcgtc tttatccatc	660
cttttgcgtc aacgaccctgcgtc ggaggaccac aatgttgcgtc ctcttgcgtc gtttgcgtc tttatccatc	720
tctattacatgttgcgtc ttatccatc atgttgcgtc aagctctgttgcgtc tttatccatc	779

<210> SEQ ID NO 5
<211> LENGTH: 807
<212> TYPE: DNA

-continued

<213> ORGANISM: Phaeodactylum tricornutum

<400> SEQUENCE: 5

ttttgttaatt	cgccactacc	tttacgcaag	taagaacgtt	tcatgttgg	gtcggtggacc	60
aatcgtaagg	tatacgtag	tcataccccg	cctgtactat	ttacgacacg	agagaaagcc	120
actgcagttc	tgggatggga	ttagatgttt	gtcccttca	ctgcgttgc	aaactgtatg	180
ctagacacga	ctcgatgg	atatcgaaat	caaacggccg	agaatgggtt	cggtatgtcg	240
tccggagcta	cctaggaaaa	gcttctttt	cgtttccgg	caccaagagg	gaagcgctgc	300
ctgtactcg	gcatatggaa	gcatcagacg	tatttgcgtt	gatgatgtca	caccagaact	360
agccaggcag	ccagcttagct	attgtcatct	acagatttcg	aaccaaactgt	ggataactaga	420
aagcatggga	ttgactgtga	ctgtgatttt	tgttgcacac	tttataccta	ccctcgacct	480
cgtactttgt	gttagtagaa	aatgtggatt	gtgcgttga	atgtagaagg	gtttgggtt	540
gacacgggtt	cattcatatc	cgggtactcg	aaaatgaccg	caacgatact	catcgatcga	600
gatacgggt	acacgttagac	tacgtagaaa	acctacgagg	aagcagatata	gattttccgg	660
tccgcagcat	ccacccagcc	aacgtcggca	aacaacccaa	caacctcg	gccccctgtt	720
gttcaagatc	tgcattccat	tgacagcctt	ttcaacgaaa	ccgttcgctc	gtttgattcc	780
atacgcttt	gaataccaac	agaaaat				807

<210> SEQ ID NO 6

<211> LENGTH: 791

<212> TYPE: DNA

<213> ORGANISM: Phaeodactylum tricornutum

<400> SEQUENCE: 6

aaagtatcaa	tagtttattc	cagattttt	tgtatgttgc	ctacttgtaa	agcagcggag	60
gtctgtcatg	acgggttagt	ggctggtttc	gctccggaaa	ttaagttctg	gttttatatc	120
tcaacataac	tagagataaa	gttacaggca	cgttactgt	agtccgcaga	tgcataatgc	180
tttgcttcgg	tgtccgtaaa	gcttatgtt	ctgttctaga	ttagagtgtt	atccacgatt	240
ttcaaaacgaa	agtgacatata	tgcgaattgt	gcagtgatcag	aaaatctcca	aagcaggagc	300
atacatttagt	ttggccgtat	tgcaacgagt	agctctccgt	aagatgcaag	taatagaggc	360
tgtgagcgt	aataatgaat	ttgcctgttt	agaagctgg	gatcacatct	cgtgcctcccc	420
aaaagtctct	cagtaaatca	agaatgttcc	tatttcgaa	aacattgtct	tttattttgt	480
taaccggctt	cgtcctccca	tttaaataaa	gattttcaaa	aatgacacca	ccaacgtccg	540
caagatcacg	attcgagagg	attcttcttt	gtcccaacca	tggatgacct	ctcctattaa	600
cacgtatatg	aagtaccgt	gctggtagcc	ggaaaagaga	ggacattct	tgtgggagag	660
tcatcgatgc	gctgccaatc	aaaaaaaatg	ccaaggcgg	aaaagcgcag	ttcggttctt	720
taatccaatt	ttgagttca	agacatactc	gttgctacct	tcccaccc	ccaaccaaac	780
cactcgcaac	c					791

<210> SEQ ID NO 7

<211> LENGTH: 1093

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct

-continued

<400> SEQUENCE: 7

```

ccatggcgaa tggttctgca gtctcttga aatctggaag cttgaatacg caggaggata      60
ctagttccag tccccctct cggacgttt tgcacatcgct gcccgactgg agtcgcttgc      120
tgaccgccc cacaacagtg tttgtcaaat ctaaacgacc ggacatgcat gatcgaaaaa      180
gcaagcgccc agatatgctc gtcgatagtt tcggactcga gtctactgtg caggacggcc      240
tgggttcccg tcaatccttc agcatccgaa gctacgagat tggtaacggac cgtaccgcta      300
gcattgaaac gttgatgaac catctccaag aaaccagttt gaaccactgc aagagcacgg      360
gcattcctgtc ggtatggttt ggccgcacat tggaaatgtg caagcgagac ttgatctggg      420
tggtcattaa aatgcagatc aaagttaatc gataccggc ctggggagat accgttggaa      480
tcaatacactg ctttccgt ttggcggaaa ttggcatggg tcgcgatgg ctgatctccg      540
actgcaacac cggtgagatc ttggtccgtg caacgtctgc gtacgctgatg atgaatcaaa      600
agacgcgtcg gttgagtaag ctgcccgtat aagttcacca agaaattgtt ccattttcg      660
ttgatagtcg cgttatcgag gattctgacc tcaaagtcca caagttaaa gtcaagactg      720
gcgattccat ccagaaggcctg ctgacgcgcg gttggaaacga tctggatgtg aaccacacg      780
ttagcaacgt taagtatatc ggctggatct tggaaagtat gcctacggaa gtcctggaga      840
cgcaggaaact ctgcgtctc gctctggagt accggccgtgatg gtgtggccgt gattccgtgc      900
tcgagtcgtcgt cactgcgtatg gaccctagca aagtgggtgt tcgcagtcaa taccacacc      960
tcttcggct cgaagatggg accggccattg tgaacggcgc gaccgaatgg cgccccaaaa      1020
atgcggcgc taacggggca attagtacccg ggaaaacctc caatggaaac agcgtcagct      1080
aatgatagga tcc                                         1093

```

<210> SEQ ID NO 8

<211> LENGTH: 359

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 8

```

Met Ala Asn Gly Ser Ala Val Ser Leu Lys Ser Gly Ser Leu Asn Thr
1           5           10          15

Gln Glu Asp Thr Ser Ser Ser Pro Pro Pro Arg Thr Phe Leu His Gln
20          25           30

Leu Pro Asp Trp Ser Arg Leu Leu Thr Ala Ile Thr Thr Val Phe Val
35           40           45

Lys Ser Lys Arg Pro Asp Met His Asp Arg Lys Ser Lys Arg Pro Asp
50           55           60

Met Leu Val Asp Ser Phe Gly Leu Glu Ser Thr Val Gln Asp Gly Leu
65           70           75           80

Val Phe Arg Gln Ser Phe Ser Ile Arg Ser Tyr Glu Ile Gly Thr Asp
85           90           95

Arg Thr Ala Ser Ile Glu Thr Leu Met Asn His Leu Gln Glu Thr Ser
100          105          110

Leu Asn His Cys Lys Ser Thr Gly Ile Leu Leu Asp Gly Phe Gly Arg
115          120          125

Thr Leu Glu Met Cys Lys Arg Asp Leu Ile Trp Val Val Ile Lys Met
130          135          140

```

-continued

Gln Ile Lys Val Asn Arg Tyr Pro Ala Trp Gly Asp Thr Val Glu Ile
 145 150 155 160
 Asn Thr Arg Phe Ser Arg Leu Gly Lys Ile Gly Met Gly Arg Asp Trp
 165 170 175
 Leu Ile Ser Asp Cys Asn Thr Gly Glu Ile Leu Val Arg Ala Thr Ser
 180 185 190
 Ala Tyr Ala Met Met Asn Gln Lys Thr Arg Arg Leu Ser Lys Leu Pro
 195 200 205
 Tyr Glu Val His Gln Glu Ile Val Pro Leu Phe Val Asp Ser Pro Val
 210 215 220
 Ile Glu Asp Ser Asp Leu Lys Val His Lys Phe Lys Val Lys Thr Gly
 225 230 235 240
 Asp Ser Ile Gln Lys Gly Leu Thr Pro Gly Trp Asn Asp Leu Asp Val
 245 250 255
 Asn Gln His Val Ser Asn Val Lys Tyr Ile Gly Trp Ile Leu Glu Ser
 260 265 270
 Met Pro Thr Glu Val Leu Glu Thr Gln Glu Leu Cys Ser Leu Ala Leu
 275 280 285
 Glu Tyr Arg Arg Glu Cys Gly Arg Asp Ser Val Leu Glu Ser Val Thr
 290 295 300
 Ala Met Asp Pro Ser Lys Val Gly Val Arg Ser Gln Tyr Gln His Leu
 305 310 315 320
 Leu Arg Leu Glu Asp Gly Thr Ala Ile Val Asn Gly Ala Thr Glu Trp
 325 330 335
 Arg Pro Lys Asn Ala Gly Ala Asn Gly Ala Ile Ser Thr Gly Lys Thr
 340 345 350
 Ser Asn Gly Asn Ser Val Ser
 355

<210> SEQ ID NO 9
 <211> LENGTH: 7259
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic construct

 <400> SEQUENCE: 9

 cgcgggggtt ggcagcttag tcttgcgcaa tcttactac atctgccaac ccagtggaaat 60
 tttgatcttt gctggcagta gtcggcccgat tagtgatggc cgccgagggt gctatcgctt 120
 ggtcaaggggc ggcagcagcc tgcgggttacc tctgctggaa aaagcgctcc gcatggatct 180
 gaccaacatg atcattggat tgcgcgtttc caatgccttc tccaggcgcc gcattccct 240
 gactgttgaa ggctgttgcata atatcaagat tgctggggaa gaaccgacca tccacaacgc 300
 gatcgagcgg ctgcgtggca aaaaccgtaa ggaaatcgag caaattgcca aggagaccct 360
 cgaaggcaac ttgcgtggtg ttttagccag cctcacgccc gagcagatca acgaggacaa 420
 aattgccttt gccaaaatgc tgcgtggaa ggccggaggat gacctggcgc agctgggtct 480
 agtcctcgat acgctgcag tccagaacat ttccgatgag gtcggttatc tctcggttag 540
 tggacgcag cagcggctg atctgcagcg agatgcccga attgctgaag ccgatgccc 600
 ggctgcctct gcgatccaaa cggccgaaaa tgacaagatc acggccctgc gtcggatcga 660
 tcgcgatgtt gcgatgcggc aagccgaggc cgagcgcggg attcaggatg cggtgcgcg 720

-continued

gcgcgaagcg	gtgggtggccg	aagctgaagc	ggacattgct	accgaagtgc	ctcgtagcca	780
agcagaactc	cctgtgcagc	aggagcggat	caaacaggtg	cagcagaac	ttcaagccga	840
tgtgatcgcc	ccagctgagg	cagcttgtaa	acggggcgatc	gcggaagcgc	ggggggccgc	900
cgcggatc	gtcgaagatg	gaaaagctca	agcggaaaggg	acccaaacggc	tggcggaggc	960
ttggcagacc	gctggtgcta	atgcccgcga	catcttcctg	ctccagaagc	tcgaaattcg	1020
agctcggtac	catttacgtt	gacaccatcg	aatggtgcaa	aaccttcgc	ggttatggcat	1080
gatagcgccc	ggaagagagt	caattcaggg	tggtgaatgt	gaaaccagta	acgttatacg	1140
atgtcgcaga	gtatgcccgt	gtcttatttc	agaccgttcc	ccgcgtgggt	aaccaggcca	1200
gccacgttcc	tgcgaaaacg	cgggaaaaag	tggaagcggc	gatggcggag	ctgaattaca	1260
ttcccaaccc	cgtggcacaa	caactggcg	gaaacacagtc	gttgcgtatt	ggcggttgc	1320
cctccagtc	ggccctgcac	gcccgcgtc	aaattgtcgc	ggcgattaaa	tctcgccgc	1380
atcaactggg	tgccagcgtg	gtggtgtcga	tggttagaacg	aagcggcgtc	gaagecgtgt	1440
aaggggcggt	gcacaattt	ctcgccgaaac	ggtcagtg	gctgatcatt	aactatccgc	1500
tggatgacca	ggatgccatt	gctgtggaa	ctgcctgcac	taatgttccg	gcgttatttc	1560
ttgatgtctc	tgaccagaca	cccatcaaca	gtattatttt	ctccatgaa	gacggtaacgc	1620
gactggcggt	gggacatctg	gtcgcattgg	gtcaccagca	aatcgcgctg	ttagegggcc	1680
cattaagttc	tgtctcgccg	cgtctcgctc	tggctggctg	gcataaaat	ctcactcgca	1740
atcaaattca	gccgatagcg	gaacgggaag	gctgactggag	tgccatgtcc	ggtttcaac	1800
aaaccatgca	aatgctgaat	gagggcatcg	ttcccactgc	gatgctgggt	gccaacgatc	1860
agatggcgct	gggcgcaatg	cgccatcattt	ccgagtcgg	gctgcgcgtt	ggtgeggata	1920
tctcggtagt	gggatacgc	gataccgaag	acagctcatg	ttatatcccg	ccgttaacca	1980
ccatcaaaca	ggattttcgc	ctgctggggc	aaaccacgtt	ggaccgcgtt	ctgcaactct	2040
ctcaggggcca	ggcggtgaag	ggcaatcagc	tgttgcctgt	ctcaactgtt	aaaagaaaaa	2100
ccaccctggc	gcccataatcg	caaaccgcct	ctccccgcgc	gttggccgt	tcattaatgc	2160
agctggcaeg	acaggttcc	cgactggaaa	gccccgcgt	agcgcaacgc	aattaatgt	2220
agtttagcgc	aattgatctg	gtttgacagc	ttatcatcg	ctgcacgg	caccaatgt	2280
tctggcgta	ggcagccatc	ggaagctgt	gtatggctgt	gcaggctgt	aatcaactgc	2340
taattcgtgt	cgtcaaggc	gcactcccg	tctggataat	gtttttgc	ccgacatcat	2400
aacggttctg	gcaaatattc	tgaaatgagc	tgttgacaaat	taatcatccg	gctcgatataa	2460
tgtgtggaaat	tgtgagcgg	taacaatttc	acacaggaaa	cagcgcgcgt	gagaaaaagc	2520
gaagcggcac	tgtctttaa	caatttatca	gacaatctgt	gtgggcactc	gaccggaaatt	2580
atcgattaac	tttattttaa	aaaattaaag	aggtatataat	taatgtatcg	attaaataag	2640
gaggaataaa	ccatggcga	tggttctgca	gtcttttga	aatctggaa	cttgaataacg	2700
caggaggata	ctagttccag	tccccctcc	cgacgtttt	tgcatacg	gccccactgg	2760
agtcgcttgc	tgaccgcac	cacaacagt	tttgtcaat	ctaaacgacc	ggacatgc	2820
gatcgaaaaa	gcaagcgccc	agatatgctc	gtcgatagtt	tcggactcg	gtctactgt	2880
caggacggcc	tggtgttccg	tcaatccttc	agcatccgaa	gctacgagat	tggtacggac	2940
cgtaccgcta	gcattgaaac	gttgatgaac	catctccaag	aaaccagttt	gaaccactgc	3000

-continued

aagagcacgg	gcatcctgct	ggatggttt	ggccgcacat	tggaaatgtg	caagcgagac	3060
ttgatctggg	tggtcattaa	aatgcagatc	aaagttaatc	gataccggc	ctggggagat	3120
accgttggaa	tcaatacacg	cttttcccg	ttgggcaaaa	ttggcatggg	tcgcgattgg	3180
ctgatctccg	actgcaacac	cggtgagatc	ttggtcccg	caacgtctgc	gtacgcgatg	3240
atgaatcaa	agacgcgtcg	gttgagtaa	ctgcccgtatg	aagttcacca	agaaattgtt	3300
ccattgttcg	ttgatagtc	cgttatcgag	gattctgacc	tcaaagtcca	caagtttaaa	3360
gtcaagactg	gcgattccat	ccagaagggc	ctgacgcccag	gttggAACGA	tctggatgtg	3420
aaccaacacg	ttagcaacgt	taagtataatc	ggctggatct	tggaaagtat	gcctacggaa	3480
gtcctggaga	cgcaggaact	ctgcagtctc	gctctggagt	accgcgcgt	gtgtggccgt	3540
gattccgtgc	tcgagtcgt	cactgcgtat	gaccctagca	aagtgggtgt	tcgcagtcaa	3600
taccaacacc	tcttgcggct	cgaagatggg	accgcatttgc	tgaacggcgc	gaccgaatgg	3660
cgcgcacaaa	atgcggcgc	taacggggca	attagtaccc	ggaaaaccc	caatggaaac	3720
agcgtcagct	aatgatagga	tccgagtcg	agatctgcag	ctggtaccat	atggaaattc	3780
gaagcttggc	tggtttggcg	gatgagagaa	gattttcagc	ctgatacaga	ttaaatcaga	3840
acgcagaagc	ggtctgataa	aacagaattt	gcctggggc	atgagcgcgg	ttgtcccacc	3900
tgaccccatg	ccgaaactcag	aagtggaaac	ccgtagcgc	gatggtagtgc	tggggctc	3960
ccatgcgaga	gtagggaaact	gccaggcatc	aaataaaacg	aaaggctcag	tcgaaagact	4020
gggccttgc	ttttatctgt	tgtttgtcg	tgaacgcct	cctgagtagg	acaaatccgc	4080
cgggagcgg	tttgaacgtt	gcgaagcaac	ggccggagg	gtggcggca	ggacgcggc	4140
cataaactgc	caggcatca	attaaggcaga	aggccatct	gacggatggc	ctttttgcgt	4200
ttctacaaac	tctttgttt	attttctaa	atacattca	atatgtatcc	gctcatgggg	4260
atccgactag	taggcctega	ggaattcacc	cgtacgtaga	tctccgcgc	cgccgatcct	4320
ctagtatgt	tgtaaacccgt	tttgcgaaa	aattttaaa	ataaaaaagg	ggacctctag	4380
gttccccaaat	taatttagtaa	tataatctat	taaaggctat	tcaaaaggct	atccaccgg	4440
tcagcttagt	aaagccctcg	ctagattta	atgcggatgt	tgcgattact	tcgccaacta	4500
ttgcgataac	aagaaaaacg	cagccttca	tgtatatact	cccaatttgc	gtagggctta	4560
ttatgcacgc	ttaaaaataa	taaaaggcaga	cttgacctga	tagttggct	gtgagcaatt	4620
atgtgcctag	tgcatac	gcttgcgtt	agccgcgcgc	cgaageggcg	tcggctgaa	4680
cgaattgtt	gacatttattt	gcgcactacc	ttgggtgatct	cgcccttac	gtatgtggaca	4740
aattcttca	actgatctgc	gwgcgaggcc	aagcgatctt	cttcttgc	aagataagcc	4800
tgtctagctt	caagttatgc	gggctgatac	tggggcggca	ggcgctccat	tgcccagtc	4860
gcagcgacat	ccttcggcgc	gattttgcgc	gttactgcgc	tgtaccaat	gcgggacaac	4920
gtaagcacta	catttcgtc	atgcgcagcc	cagtcggcg	gcgagttcca	tagegttaag	4980
gtttcattt	gcgcctcaaa	tagatctgt	ttagggatcc	gatcaaaagag	ttccctccgc	5040
gctggaccta	ccaaggcaac	gtatgttct	cttgctttgc	tgcgttgc	ccatttcca	5100
atgtcgatcg	tggctggc	gaagatacc	gcaagaatgt	cattgcgtc	ccatttcca	5160
aattgcagtt	cgcgccttagc	tggataacgc	cacggatga	tgtcgctgt	cacaacaatg	5220
gtgacttcta	cagcgccggag	aatctcgctc	tctccagggg	aagccgaagt	ttccaaaagg	5280

-continued

tcgttgcata aagctcgccg cggtgttca tcaaggctta cggtcaccgt aaccagcaaa	5340
tcaatatcac tgtgtggctt caggccgcca tccactgcgg agccgtacaa atgtacggcc	5400
agcaacgtcg gttcgagatg ggcgtcgatg acgccaacta cctctgatag ttgagtcgtat	5460
acttcggcga tcaccgcttc cctcatgtat tttactttt ttttagggcg actgcctgc	5520
tgcgtaacat cgttgctgct ccataacatc aaacatcgac ccacggcgta acgcgttgc	5580
tgcttggatg cccgaggcat agactgtacc ccaaaaaaaac agtcataaca agccatgaaa	5640
accgcactg cgccgttacc accgctgcgt tcggtaagg ttctggacca gttgcgtgag	5700
cgcatatcgct acttgcatta cagcttacga accgaacagg cttatgttca ctgggttcgt	5760
gccttcatcc gtttccacgg tgtgcgtcac ccggcaacct tgggcagcag cgaagtcgag	5820
gcatttctgt cctggctggc gaacgagcgc aaggtttgg tctccacgc tcgtcaggca	5880
ttggcggcct tgcgtttttt ctacggcaag gtgcgttgca cggatctgc ctgggttcag	5940
gagatcgaa gacctcgcc gtcgcggcgc ttgcccgggg tgctgacccc ggatgaagt	6000
gttgcatecc tgggttttctt ggaaggcagat ctcgtttgt tcgcccagat tctgtatgg	6060
acgggcatgc ggatcagtga gggtttgcac ctgcgggtca aggtctggat ttgcgtatcac	6120
ggcacgatca tcgtgcggga gggcaaggatc tcggatggatc gggccttgcgtt gttacccgag	6180
agcttggcac ccaggctcgcc cgagcaggaa aattgtatcg gtggatgacc ttttgaatga	6240
ccttaatag attatattac taattaattt gggaccctatc aggtcccctt ttttattttt	6300
aaaatttttt cacaacacgg ttacaagca taaagctcta gagtcgacccat gcaggatgc	6360
aagcttcgag tccctgctcg tcacgcttcc aggcacccgt ccagatatcg acgtggagtc	6420
gatcaactgtt attggcgaag gggaggcag cgctacccaa atcgatgt tgctggagaa	6480
gctgaaacaa accacgggca ttgatctggc gaaatcccta ccgggtcaat ccgactcgcc	6540
cgctgcgaag tcctaagaga tagcgatgtt accgcgtatcg cttgtcaaga atcccgatgt	6600
tcccaacca taggaaggca agtcaatgc ttgcctcgatc ttgaggacta tctagatgtc	6660
tgtggAACGC acatttatttgc ccatcaagcc cgatggcggtt cagcgggggtt tggteggat	6720
gatcatcgcc cgctttgagc aaaaagggtt caaaactgggtt ggcctaaagc agctgaagcc	6780
cagtcgcgag ctggccgaaac agcaatatgc tgcgtccaccgc gagcggccct tcttcaatgg	6840
cctcgatcgat ttcatcacct ctggcccgat cgtggcgatc gtcttggaaag gcgaaggcgat	6900
tgtggcggtt gctcgcaagt tgcgtggcgc tccaatccgc ctgcacggcag aaccgggcac	6960
cattccgtggat gatttgggtt tcaatattgg cgcacatc atccatggct cggatgcaat	7020
cggaaacagca caacaggaaa ttgcgtctgtt gtttageccca gcagagctaa gtgattggac	7080
ccccacgatt caaccctggc tgcgtacataa aggtctgcatt tccttcagatc agacattgcc	7140
atgeccgtgc tgcgtatcgcc cttccaagctt gccttgcgttcc gctgtttggc gctggcagcc	7200
ctggcggttgg ggctggcgac cgcttgcacaa gaaagcagcg ctccgcgggc tgccggatc	7259

<210> SEQ ID NO 10

<211> LENGTH: 7113

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 10

-continued

cgccggggct ggcagcttag tcctgcgcaa tctctactac atctgccaac ccagtgaaat	60
tttgcattt gctggcagta gtcgcccag tagtgcgtgc cgccgagttg gctatcgctt	120
ggtaaggc ggcagcagcc tgcgggtacc tctgcgtggaa aaagcgctcc gcatggatct	180
gaccaacatg atcattgagt tgccgcgttcc caatgccttc tccaaggcg gcattccct	240
gactgtgaa ggcgttgcca atatcaagat tgctgggaa gaaccgacca tccacaacgc	300
gatcgagcgg ctgcgtggca aaaacgcgtaa ggaaatcgag caaattgcca aggagaccct	360
cgaaggcaac ttgcgtggtg ttttagccag cctcacgcg gaggcagatca acgaggacaa	420
aattgcctt gccaaaagtc tgctggaaga ggccggaggat gaccttgagc agctgggtct	480
agtccctcgat acgctgcaag tccagaacat ttcccgatgag gtcggttatc tctcggttag	540
tggacgcagc cagcgggtcg atctgcgcgc agatgcccga attgtctgaa cccatggccca	600
ggctgcctct gcgatccaaa cggccgaaaa tgacaagatc acggccctgc gtcggatcga	660
tcgcgcgtgt gcgatcgcgc aagccggggc cgagcgcggg attcaggatg cggtgcgcg	720
gcgcgaagcg gtgggtggccg aagctgaagc ggacattgtt accgaagtgc ctctgtggcc	780
agcagaactc cctgtgcgcg aggagcggat caaacaggcg cagcagcaac ttcaagccga	840
tgtgatcgcc ccagctgagg cagctgtaa acggggcgtc gcgaaagcgc gggggggccgc	900
cgcgggtatc gtcgaagatg gaaaagtcg aacggaaaggc acccaacggc tggcggaggc	960
ttggcagacc gctgggtgcta atgcccgcga catcttcctg ctccagaagc tcgaaattcg	1020
agctcggtac catttacgtt gacaccatcg aatggtgcaa aaccttcgc ggtatggcat	1080
gatagcgccc ggaagagagt caattcaggg tggtaatgt gaaaccagta acgttatacg	1140
atgtcgccaga gtatgcccgt gtcttattc agaccgttc cccgcgtggta aaccaggccca	1200
gccacgttcc tgccaaaaacg cggaaaaaaag tggaaagcggc gatggcggag ctgaattaca	1260
ttcccaaccc cggtggccaaa caactggccg gcaaacagtc gttgcgtattt ggcgttgc	1320
cctccagttt ggcctgcac ggcgcgtcgc aaattgtcgc ggcgattaaa tctcgccgc	1380
atcaactggg tgcacgcgtg gtgggtgcga tggtagaaacg aacggcgtc gaagectgt	1440
aageggcggt gcacaatctt ctgcgcacac ggcgtcgtgg gctgatcatt aactatccgc	1500
tggatgacca ggtatggcatt gctgtggaaat ctgcctgcac taatgttccg ggcgttattc	1560
ttgatgtctc tgaccagaca cccatcaaca gtattatccc ctccatgaa gacggtacgc	1620
gactggcggt ggacgcattc gtcgcattgg gtcaccagca aatcgccgtg ttgcggggcc	1680
cattaaatgc tgcgtcgatc tggctggctg gcataaaat ctcactcgca	1740
atcaaaatca ggcgcgtatcg gaaacggaaat ggcgcgttgc tgccatgtcc ggtttcaac	1800
aaaccatgca aatgtctgaaat gaggcgtcgc ttccactgc gatgcgtggtt gccaacgtc	1860
agatggcgct gggcgcaatg cgccgcattt ccgcgtccgg gctgcgcgtt ggtgcggata	1920
tctcggtatgt gggatacgac gataccgaag acagctcatg ttatatcccg ccgttaacca	1980
ccatcaaaaca ggatccgcg ctgcgtggggc aaaccaggcg ggcgcgttgc ctgcactct	2040
ctcaggggcca ggcgggtgaag ggcaatcgcg tggccgttgc tcaactgggtt aaaagaaaaa	2100
ccaccctggc gcccaatacg caaacccgcctt ctccccgcgc gttggccat tcattaatgc	2160
agctggcactg acagggttcc cgactggaaa gcccggcgtg agcgcaacgc aattaatgt	2220
agtttagcgcg aattgtatcg gttgcacgc ttatcatcgatc ctgcacggcg caccaatgt	2280

-continued

tctggcgtca	ggcagccatc	ggaagctgtg	gtatggctgt	gcaggtcgta	aatcactgca	2340
taattcgtgt	cgctcaaggc	gcactcccgt	tctggataat	gtttttgcg	ccgacatcat	2400
aacggttctg	gcaaataattc	tgaaatgagc	tgttgacaat	taatcatccg	gctcgataaa	2460
tgtgtggaaat	tgtgagcgga	taacaatttc	acacaggaaa	cagaccatgg	cgaatggttc	2520
tgcagtctct	ttgaaatctg	gaagcttgaa	tacgcaggag	gatactagtt	ccagtcffff	2580
tcctcggacg	ttttgcatac	agctgcccga	ctggagtcgc	ttgctgaccg	ccatcacaac	2640
agtgtttgtc	aaatctaaac	gaccggacat	gcatgatcg	aaaagcaagc	gcccagatat	2700
gctcgtcgat	agtttcggac	tcgagtcatac	tgtgcaggac	ggcctgggt	tccgtaatc	2760
cttcagcatac	cgaagctacg	agattggta	ggaccgtacc	gctagcattg	aaacgttgat	2820
gaaccatctc	caagaaacca	gttgaacca	ctgcaagagc	acgggcatacc	tgctggatgg	2880
ttttggccgc	acattggaaa	tgtcaagcg	agacttgatc	tgggtggta	ttaaaatgca	2940
gatcaaagt	aatcgatacc	cggcctgggg	agataccgtt	gagatcaata	cacgctttc	3000
cggtttgggc	aaaattggca	tgggtcgaga	ttggctgatc	tccgactgca	acaccgggt	3060
gatcttggtc	cgtcaacgt	ctgcgtacgc	gatgtgaat	caaagacgc	gtcggttgag	3120
taagctgccc	tatgaagttc	accaagaaat	tgttccattg	ttcggtgata	gtcccgat	3180
cgaggattct	gacotcaaag	tccacaagg	taaagtcaag	actggcgatt	ccatcoagaa	3240
gggcctgacg	ccaggttgga	acgatctgga	tgtgaaccaa	cacgttagca	acgttaagta	3300
tatcggtctg	atcttggaaa	gtatgcatac	ggaagtctcg	gagacgcagg	aactctgcag	3360
tctcgctctg	gagtaaccgc	gtgagtggtgg	ccgtgattcc	gtgctcgagt	ccgtcactgc	3420
gatggaccct	agcaaagtgg	gtgttcgacg	tcaataccaa	cacctcttgc	ggctcgaaga	3480
tgggaccgc	attgtgaacg	gcccgcacgg	atggcgcccc	aaaaatgcgg	gcccgtacgg	3540
ggcaattagt	acccggaaaa	cctccaatgg	aaacagcgac	agctaatacgat	aggatccgag	3600
ctcgagatct	gcagctggta	ccatatggga	attcgaagct	tggctgtttt	ggcggatgag	3660
agaagatttt	cagcctgata	cagattaaat	cagaacgcag	aaggcgtctg	ataaaaacaga	3720
atttgcctgg	cggcagtagc	gcccgtgtcc	cacctgaccc	catgcggaaac	tcagaagtga	3780
aacgcgttag	cgcgcgttgt	agtgtgggg	ctccccatgc	gagagtaggg	aactgcagg	3840
catcaaataa	aacgaaaggc	tcaagtgc	gactgggcct	ttcggtttat	ctgttgttt	3900
tcgggtgaacg	cttcctcgag	taggacaaat	ccgcggggag	cgatttgc	cggtgcgaag	3960
caacggcccg	gagggtggcg	ggcaggacgc	ccgcccataaa	ctgcaggca	tcaaattaag	4020
cagaaggcca	tccgtacgga	tggcctttt	cggttctac	aaactctttt	gtttat	4080
ctaaatacat	tcaaataatgt	atccgctcat	ggggatccga	ctagtaggcc	tcgaggaaatt	4140
cacgcgtacg	tagatctcg	cggccgcgc	tcctctagta	tgcttgtaaa	ccgtttgtg	4200
aaaaaatttt	taaaataaaa	aaggggacct	ctagggccc	caattaatta	gtaatataat	4260
ctattaaagg	tcattcaaaa	ggtcatccac	cggatcagct	tagtaaagcc	ctcgctagat	4320
ttaatgcgg	atgttgcgt	tacttcgcca	actattgcga	taacaagaaa	aagccagcct	4380
ttcatgatat	atctcccaat	ttgtgttaggg	cttattatgc	acgctaaaaa	ataataaaag	4440
cagacttgac	ctgatagttt	ggctgtgagc	aattatgtgc	ttagtgcatac	taacgcttga	4500
gttaagccgc	gcccgcgaagc	ggcgtcggt	tgaacgaatt	gttagacatt	atttgcgcac	4560

-continued

taccttggtg atctcgccctt tcacgttagt gacaaattct tccaaactgat ctgcgcgcga	4620
ggccaagcga tcttcttctt gtccaagata agcctgtcta gcttcaagta tgacgggctg	4680
atactgggcc ggcaggcgct ccattgccc gtcggcagcg acatcctcg gcgcgatttt	4740
gccggttact gcgcgttacc aaatgcggga caacgtaaac actacatttc gctcatcgcc	4800
agcccagtgc ggcggcgagt tccatagcgt taaggttca tttagcgcct caaatagatc	4860
ctgttcagga accggatcaa agagttcctc cgccgctgga cctaccaagg caacgtatg	4920
ttctcttgc tttgtcagca agatagccag atcaatgtcg atcgtggctg gctcgaagat	4980
acctgcaaga atgtcattgc gtcgcattc tccaaattgc agttcgcgt tagctggata	5040
acgcccacgga atgatgtcgt cgtgcacaac aatgggtgact tctacagcgc ggagaatctc	5100
gctctctcca ggggaagcgg aagtttccaa aagggtcggt atcaaagctc gcccgcgttgc	5160
ttcatcaagc cttacggta cctgttaaccag caaatcaata tcactgtgtg gcttcaggcc	5220
gccccactcact cggcggccgt acaaattgtac ggccagcaac gtcggttcga gatggcgctc	5280
gatgacgcca actaccttg atagttgagt cgatacttcg gcgatcaccg ttccctcat	5340
gatgtttaac tttgttttag ggcgactgcg ctgctgcgt aacatcggtc tgctccataa	5400
catcaaacat cgacccacgg cgtaacgcgc ttgctgcgtt gatgcccggag gcatagactg	5460
taccccaaaa aaacagtcat aacaaggccat gaaaaccggcc actgcgcgtt taccacccgt	5520
gcgttcggtc aagggtctgg accagttgcg tgagcgcata cgctacttgc attacagctt	5580
acgaaccgaa caggctttagt tccactgggt tctgtgccttc atccgttcc acgggtgcg	5640
tcacccggca accttggca gcagcgaagt cgaggcattt ctgtcctggc tggcgaacga	5700
gcgcgggtt tcggctccaa cgcacgtca ggcattggcg gccttgcgt tcttctacgg	5760
caagggtgcg tgcacggata tgccctggct tcaggagatc ggaagacactc ggccgtcg	5820
gcgcgggtcg tggttgctga cccggatga agtgggtcgc atccctgggt ttctggaaagg	5880
cgagcatcgat ttgttcgecc agttctgtt aacggatcgatca gtgagggttt	5940
gcaactgcgg gtcaggatc tggtttcgta tcacggcact atcattgcg gggaggccaa	6000
ggggtccaag gatcggttccat tgatgttacc cgagagcttgc acacccagcc tgcgegagca	6060
ggggattgttgc tccgggtggat gacctttgtt aatgcacccat atagattata ttactaatta	6120
attggggacc cttagaggatc cttttttat tttaaaaatt tttcacaaa acggtttaca	6180
agcataaaatc tcttaggtcg acctgcaggatc atgcacgttgc ctgcgttacgc	6240
tttcaggcacat cgtgcccggat atcgacgtgg agtgcgttacatc tgcgtatggc gaaggggaaag	6300
gcagcgctac ccaatcgctt agttgtcgatc agaagcttgc acaaaccacg ggcattgtatc	6360
tggcgaaatc cctaccgggtt caatccgact cggccgttgc gaagtcctaa gagatagcga	6420
tgtgaccggat atcgcttgc aagaatccca gtgatcccgaa accataggaa ggcaagctca	6480
atgtttgcct cgtcttgcagg actatctaga tgcgttgcgtt acgcacattt attgcctatca	6540
agccccatgg cgttcaggggg ggttggcgatc gtacgtatcat cggccgttgc gagcaaaaag	6600
gcttcaaact ggtgggccta aagcagctga agcccagtcg cgagctggcc gaacagcact	6660
atgcgttcca cccgcgcgcgc cccttcttca atggcctcgatc cgagttcatc acctctggc	6720
cgatcgtggc gatcgttccatc gaaggcgaag gcgttgcgttgc ggctgcgc aagttgtatc	6780
gcgcgttacaa tccgctgacg gcagaaccgg gcaccatccg tgggtatccc ggtgtcaata	6840

-continued

ttggccgcaa	catcatccat	ggctcgatg	caatcgaaac	agcacaacag	gaaattgctc	6900
tctggtttag	cccagcagag	ctaagtgatt	ggaccccccac	gattcaaccc	tggctgtacg	6960
aataaggct	gcattccttc	agagagacat	tgccatgccc	gtgctgcgat	cgccttcca	7020
agctgcctt	ccccgctgtt	tcgggctggc	agccctggcg	ttggggctgg	cgaccgcttg	7080
ccaagaaagc	agcgctccgc	cggctgcccgg	atc			7113

<210> SEQ ID NO 11

<211> LENGTH: 7173

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 11

cttccgcttc	ctcgctca	gactcgctgc	gctcggtcgt	tcggctgcgg	cgagcggtat	60		
cagctca	ctc	aaaggcggt	ta	atacggttat	ccacagaatc	agggataac	gcaggaaaga	120
acatgtgagc	aaaaggccag	caaaaggcca	ggaaccgtaa	aaaggcccg	ttgtcggt	180		
ttttccatag	gctccgcccc	cctgacgacg	atcaca	aaaaaa	tcgacgc	tca	agtcagaggt	240
ggcgaaaccc	gacaggacta	taaagatacc	aggcg	tttcc	ccctggaa	agc	tccctcg	300
gtcttc	tcgacc	ccgttacc	cgat	cc	cttccgg	gaa	360	
gctggcg	cttc	catagc	tcacg	ctgt	ttcggt	gt	tcgt	420
ccaa	gctgg	ctgt	gcac	gaa	cccg	ccg	ttatccgg	480
actatcg	tgt	ccgt	taa	cc	actgg	ca	gcagc	540
gt	ac	ccg	ggat	cc	actgg	ca	gcagc	600
ctaactac	cg	ctac	actaga	agg	actgt	gt	actgt	660
c	tt	cc	tttt	aa	cc	ccgt	ttatccgg	720
gtttttt	tt	ca	agg	ttt	cc	ccgt	ttatccgg	780
tgat	ttt	tc	ac	gg	cc	ccgt	ttatccgg	840
tca	tg	at	ttt	cc	ccgt	ttatccgg	900	
aatca	at	ca	ttt	aa	cc	ccgt	ttatccgg	960
aggc	cc	ct	cc	ttt	cc	ccgt	ttatccgg	1020
tgt	at	ac	cc	ttt	cc	ccgt	ttatccgg	1080
gag	cc	cc	ttt	aa	cc	ccgt	ttatccgg	1140
agc	cc	cc	ttt	aa	cc	ccgt	ttatccgg	1200
aag	cc	cc	ttt	aa	cc	ccgt	ttatccgg	1260
gc	cc	cc	ttt	aa	cc	ccgt	ttatccgg	1320
ca	cc	cc	ttt	aa	cc	ccgt	ttatccgg	1380
cg	cc	cc	ttt	aa	cc	ccgt	ttatccgg	1440
ata	cc	cc	ttt	aa	cc	ccgt	ttatccgg	1500
cca	cc	cc	ttt	aa	cc	ccgt	ttatccgg	1560
ggg	cc	cc	ttt	aa	cc	ccgt	ttatccgg	1620
cgg	cc	cc	ttt	aa	cc	ccgt	ttatccgg	1680

-continued

gtgcacccaa	ctgatcttca	gcatcttta	ctttcaccag	cgtttctggg	tgagcaaaaa	1740
caggaaggca	aatgccgca	aaaaagggaa	taagggcgac	acggaaatgt	tgaatactca	1800
tactcttcct	tttcaatat	tattgaagca	tttatcaggg	ttattgtctc	atgagcggat	1860
acatatttga	atgtatTTAG	aaaataaac	aaataggggt	tccgcgcaca	tttccccgaa	1920
aagtgccacc	tgacgtctaa	gaaaccatta	ttatcatgac	attaacctat	aaaaataggc	1980
gtatcacgag	gcccttcgt	ctcgcgct	tcggtgatga	cggtgaaaac	ctctgacaca	2040
tgcagctccc	ggagacggtc	acagcttgc	tgttaagcgg	tgccgggagc	agacaagccc	2100
gtcagggcgc	gtcagcgggt	gttggcgggt	gtcggggctg	gcttaactat	gccccatcag	2160
agcagattgt	actgagagtg	caccataaaa	ttgttaaacgt	taatattttg	ttaaaattcg	2220
cgttaaattt	ttgttaaatac	agtcatttt	ttaaccaata	ggccgaaatc	ggccaaaatcc	2280
cttataaatac	aaaagaatag	cccgagatag	ggttgagttgt	tgttccagtt	tggaacaaga	2340
gtccactatt	aaagaacgtg	gactccaacg	tcaaagggcg	aaaaaccgtc	tatcagggcg	2400
atggcccact	acgtgaacca	tcacccaaat	caagttttt	ggggtcgagg	tgccgtaaag	2460
cactaaatcg	gaaccctaaa	gggagccccc	gatttagagc	ttgacgggga	aaggccggcga	2520
acgtggcgag	aaaggaaggg	aagaaagcga	aaggagcggg	cgctagggcg	ctggcaagt	2580
tagcggtcac	gctgcgcgt	accaccacac	ccggcgcgct	taatgcgc	ctacagggcg	2640
cgtactatgg	ttgctttgac	gtatgcggtg	tgaaataccg	cacagatgcg	taaggagaaa	2700
ataccgcatac	aggcgcatt	cgccattcag	gtgcgc	tgttgggaag	ggcgatcggt	2760
gccccctct	tcgcatttac	gccagctggc	gaaaggggga	tgtgc	gatcggat	2820
ttgggttaacg	ccagggttt	cccagtcacg	acgttgtaaa	acgacggcca	gtgc	2880
atgcgtgaag	cggaaatccc	ggtaatgc	gcccgc	atgc	tctca	2940
gggcacattt	aacgc	ttca	ccggcattt	ttagagctaa	ccaaatct	3000
gagttattgg	cgatcga	ccatcgcat	atgc	ccatgcattt	ccagegggc	3060
tccgtgtat	tggattt	gatccat	attgac	ctgttgc	aatgggttc	3120
gaagtggta	aactgt	cagtgg	cgg	gttgc	aggata	3180
gtcaccgc	cgtt	ctcc	ccgg	attgttgc	ccctcaccgc	3240
accatcgta	aaattcg	tcc	cc	cgttgc	cgttgc	3300
tttcaata	acgaaat	atcg	ccatcg	caaaccac	ctgttgc	3360
ggccaggat	tgtatcg	cc	cc	atcgaaa	tttacacc	3420
ccttc	ctg	at	at	tttacacc	taatattgaa	3480
gtggggggag	aa	ac	ag	ggggcc	tttgc	3540
ctggacagtc	agg	at	gttgc	ggggcc	tttgc	3600
gccctc	cg	at	gttgc	tttgc	tttgc	3660
ataactt	tttgc	at	at	at	tttgc	3720
cgatcg	cgttgc	at	at	at	tttgc	3780
cctca	acacc	at	at	at	tttgc	3840
agcca	actat	at	at	at	tttgc	3900
gttgc	tttgc	at	at	at	tttgc	3960

-continued

atcgtcgaca ggcctctaga cccgggctcg agcttagcaag cttggccgga tccggccgga	4020
tccggagttt gtagaaacgc aaaaaggcca tccgtcagga tggcctctg cttaatttg	4080
tgcctggcag tttatggcgg gcgctctgcc cgccacccctc cggggccgtt ctccgcaacg	4140
ttcaaatccg ctccccgggg atttgcctta ctcaggagag cgttcaccga caaacaacag	4200
ataaaacgaa aggcccagtc tttcgtactga gcctttcggtt ttatggatg cctggcagtt	4260
ccctactctc gcatggggag accccacact accatcgccg ctacggcggtt tcacttctga	4320
gttcggcatg gggtcaggtg ggaccaccgc gctactgccc ccaggcaaat tctgttttat	4380
tgagccgtta cccccacctac tagctaatcc catctggca catccgtatgg caagaggccc	4440
gaaggtcccc ctctttggtc ttgcgacgtt atgcgggtt agctaccgtt tccagtagtt	4500
atccccctcc atcaggcagt ttcccagaca ttactcaccc gtccgcaact cgtcagcaaa	4560
gaagcaagct tagatcgacc tgcagggggg ggggggaaag ccacgttgcg tctcaaaatc	4620
tctgtatgtta cattgcacaa gataaaaata tatcatcatg aacaataaaa ctgtctgctt	4680
acataaacag taatacaagg ggtgttatga gccatattca acgggaaacg tcttgcgtca	4740
ggccgcgatt aaattccaaac atggatgttgc atttatatgg gtataaatgg gctcgcgata	4800
atgtcgggca atcagggtcg acaatctatc gattgtatgg gaagcccgat ggcgcagagt	4860
tgtttctgaa acatggcaaa ggtagcgttg ccaatgtatgt tacagatgag atggcagac	4920
taaaactggct gacggaattt atgccttttc cgaccatcaa gcattttatc cgtactcctg	4980
atgtatgcattgttgcgatcc acgtcgatcc cccggggaaac acgattccatcg gtatttgcgat	5040
aatatcctga ttcaaggtaaa aatattgttg atgcgttgcg agtgttctgt cgccgggtgc	5100
atcgatccatcgatcc tttttgtatgttgcgatcc cgtatttgcgtt ctgcgttgc	5160
cgcaatcaacg aatgaataac ggtttgggttgcgatcc ttttgcgttgcgatcc ggggttgc	5220
gtctggctgt tgaacaagtc tggaaagaaa tgcataagct tttgcatttc tcacccggatt	5280
cagtcgtcac tcatggtgat ttctcaatttgcgatcc ttttgcgttgcgatcc gggaaattaa	5340
taggttgcgtat ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	5400
tatggaaactg cctcggttagt ttttgcgttgcgatcc ttttgcgttgcgatcc	5460
gtattgataatgc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	5520
aatcagaattt ggttaattgg ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	5580
gcccgtttgt ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	5640
cgacaacgcg aaccgttccgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	5700
caacaaagcttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	5760
ggcctggatgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	5820
tgcaggcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	5880
caaaatccgc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	5940
gaatttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	6000
aatgtggcccttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	6060
gctatttagca cttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	6120
attcccatgttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	6180
gtaatgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc ttttgcgttgcgatcc	6240

-continued

gaatacaacg aacggcaaac ggtagtaatt acggcaatt ttggtaatcg ttaacccca	6300
ggcacggagg gagcgattta tcccgttcc gtaggcacag tgttggacag tactccttg	6360
gaaatggtgg gacccaacgg cccggtaagt gcgggtggta ttaccattga tagtctcaac	6420
ccctacgtgg ccggcaatgg tcccaaattt gtcggccta agtttagacccg cttcagtgac	6480
ctggggaaag gggctccctt ctggtagcc accaatcaaa ataacagtgg cgggattta	6540
tatggagacc aagcccaatt tcgttgcga attacacca gcgcggggtt ttcccccgt	6600
ggcattgcca gtttactacc cacagaattt gaacggattt ttcaactcca agcggaaagat	6660
attacgggac ggacagttat cctaaacccaa actgggttg attatgaaat tcccggttt	6720
ggctgggtgc aggtgttggg gctggcgat ttggccgggg ttcaggacag ctatgacctg	6780
acttacatcg aagatcatga caactattac gacattatcc tcaaagggga cgaagccgca	6840
gttcgc当地 ttaagagggg tgctttcccc tccgaagggg attattggc ggttataat	6900
cccggtggcc ccggcaatga tccagagaat ggcccccaaa attcgtatac atgtcatgc	6960
tgtttccctgt gtgaaattgt tatccgctca caattccaca caacatacga gccggaagca	7020
taaagtgtaa agcctggggt gcctaattgg tagctact cacattaatt gcgttgcgt	7080
cactgccccgc tttccagtcg ggaaacctgt cgtgccagct gcattaatga atcggcaac	7140
gcccggggag aggcgggttg cgtattggc gct	7173

```
<210> SEQ ID NO 12
<211> LENGTH: 7029
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic construct
```

<400> SEQUENCE: 12
attgctgaag cggaatccct ggttaatgcc gccgcgcgtg ccaattgcat tctccaagtg 60
gggcacattt aacgcttcaa cccggcattt ttagagctaa ccaaattct caaaacggaa 120
gagttattgg cgatcgaagc ccatcgcatg agtccctatt cccaggggc caatgatgtc 180
tccgtggat tggattgtat gatccatgac attgaccgtt tgctggatt ggtgggttcg 240
gaagtggta aactgtccgc cagtgccagt cgggcttctg ggtcaggata tttggattat 300
gtcacccgcta cgtaggcattt ctccctccgcg attgtggcca ccctcaccgc cagtaaggc 360
accctatgtt aatttcgtt categccgc cactgcaaaa attccctcac cgaagcggat 420
tttctcaata acgaaatttt gatccatcg caaaccacccg ctgattggag cgccgactat 480
ggccaggtat tggatcgcca ggtggctta atcgaaaagg tttacaccag taatattgaa 540
cctctccacg ctgaatttgc acattttatt cattgtgttta gggggagggtga tcaaccctca 600
gtggggggag aacaggccct caaggccctg aagttagcca gtttaattga agaaaatggcc 660
ctggacagtc aggaatggca tgggggggaa gttgtgacag aatatcaaga tgccaccctg 720
gcctctcgatg cgagtggttta aatcaactta attaatgcattt ttattgcgag ttcaactcg 780
ataactttgt gaaatattac tggatcgatc atctatgact attcaatacaca ccccccctagc 840
cgatcgcctgttggccatcc tcgcgcgcga tcgcctaaat ctcagcgcca agagtagttc 900
cctcaacacc agtattctgc tcagcagtga cctattcaat caggaagggg gaattgtaac 960
agccaaactat ggctttgtt gttatcgatc accatatggt gcactctcgt tacaatctgc 1020

-continued

tctgatgccg	catagttaaag	ccagtataca	ctccgctatac	gctacgtgac	tgggtcatgg	1080
ctgcgccccg	acacccgcca	acacccgctg	acgcgcctg	acgggcttgt	ctgctcccg	1140
catccgctta	cagacaagct	gtgaccgtct	ccgggagctg	catgtgtcag	aggtttcac	1200
cgtcatcacc	gaaacgcgcg	aggcagcaga	tcaattcgcg	cgcgaaggcg	aagcggcatg	1260
catttacgtt	gacaccatcg	aatggtgcaa	aaccttcgc	ggtatggcat	gatagcgccc	1320
ggaagagagt	caattcaggg	tggtaatgt	gaaaccagta	acgttatacg	atgtcgcaga	1380
gtatgccgtt	gtctcttatac	agaccgtttc	ccgcgtggtg	aaccaggcca	gccacgttcc	1440
tgcgaaaacg	cggaaaaaag	tggaaagcgcg	gatggcggag	ctgaattaca	ttcccaaccg	1500
cgtggcacaa	caactggcgg	gcaaacagtc	gttgctgatt	ggcgttgcca	cctccagtc	1560
ggccctgcac	gcccgcgtgc	aaattgtcgc	ggcgattaaa	tctcgcgcgc	atcaactggg	1620
tgccagcgtg	tgggtgtcga	tggtagaacf	aagcggcgct	gaagcctgta	aagcggcggt	1680
gcacaatctt	ctcgcgcaac	ggtcagtcg	gctgatcatt	aactatccgc	tggatgcaca	1740
ggatgccatt	gctgtggaaag	ctgcctgcac	taatgttccg	gcgttatttc	ttgatgtctc	1800
tgaccagaca	cccatcaaca	gtattatttt	ctcccatgaa	gacggtaacgc	gactggcggt	1860
ggagcatctg	gtcgcatattgg	gtcaccagca	aatcgcgctg	ttagcgggcc	cattaagttc	1920
tgtctcgccg	cgtctcgctc	tggctggctg	gcataaaat	ctcaactcgca	atcaaaattca	1980
gccgatacg	gaacgggaag	gctgactggag	tgccatgtcc	ggtttcaac	aaaccatgca	2040
aatgctgaat	gagggcatcg	tcccatctgc	gtatgtgggtt	gccaacgatc	agatggcgct	2100
ggggcgaatg	cgcgcattta	ccgagtcggg	gtgcgcgtt	ggtgcggata	tctcggtagt	2160
gggatacgac	gataccgaag	acagctcatg	ttatatcccg	ccgttaacca	ccatcaaaca	2220
ggatttcgc	ctgctggggc	aaaccagcgt	ggaccgcttg	ctgcaactct	ctcaggggcca	2280
ggcggtaag	ggeaatcgc	tgttgccctg	ctcaactggtg	aaaagaaaaa	ccacccctggc	2340
gccaatacg	caaaccgcct	ctccccgcgc	gttggccgat	tcattaatgc	agctggcacf	2400
acaggttcc	cgtactggaaa	ggggcgtgt	agcgcaacgc	aattaatgt	agttagcgcg	2460
aattgatctg	gtttgacagc	ttatcatcga	ctgcacggtg	caccaatgt	tctggcgtca	2520
ggcagccatc	ggaagctgtg	gtatggctgt	gcaggtcgta	aatcaactgc	taattctgt	2580
cgctcaaggc	gcactccct	tctggataat	gtttttgcg	ccgacatcat	aacggttctg	2640
gcaaatattc	tgaaatgagc	tgttgacaat	taatcatccg	gctcgataa	tgtgtggaa	2700
tgtgagcgg	taacaatttc	acacaggaaa	cagcgcgc	gagaaaaaagc	gaagcggcac	2760
tgctctttaa	caatttatca	gacaatctgt	gtgggcactc	gaccggaaatt	atcgatataac	2820
tttatttata	aaaattaaag	aggtatataat	taatgtatcg	ataaaataag	gaggaataaa	2880
ccatggcgaa	tggttctgc	gtctcttgc	aatctggaaag	cttgaatacg	caggaggata	2940
ctagttccag	tccccctct	cgacgtttt	tgcatcagct	gcccgactgg	agtcgcttgc	3000
tgaccggccat	cacaacagtg	tttgcataat	ctaaacgacc	ggacatcgat	gatcgaaaa	3060
gcaagcgccc	agatatgctc	gtcgatagtt	tcggactcga	gtctactgtg	caggacggcc	3120
tggtgttccg	tcaatccctc	agcatccgaa	gctacgagat	tggtaacggac	cgtaccgcta	3180
gcattgaaac	gttgatgaac	catctccaag	aaaccagttt	gaaccactgc	aagagcacgg	3240
gcacccctgt	ggatggtttt	ggccgcacat	tggaaatgt	caagcgagac	ttgatctggg	3300

-continued

tggtcattaa aatgcagatc aaagttaatc gataccggc ctggggagat accgttggaa	3360
tcaatacacg ctttccgt ttggcaaaa ttggcatggg tcgcgatgg ctgatctccg	3420
actgcaacac cggtgagatc ttggtccgtg caacgtctgc gtacgcgatg atgaatcaaa	3480
agacgcgtcg gttgagtaag ctgccgtatg aagttcacca agaaattgtt ccattgttcg	3540
ttgatagtcc cggtatcgag gattctgacc tcaaagtcca caagtttaaa gtcaagactg	3600
gcgattccat ccagaagggc ctgacgcag gttggaacga tctggatgtg aaccaacacg	3660
ttagcaacgt taagtatatac ggctggatct tggaaagtat gcctacggaa gtcctggaga	3720
cgcaggaact ctgcagtcgc gctctggagt accgcgtga gtgtggcgtg gattccgtgc	3780
tcgagtcgt cactgcgtatg gaccctagca aagtgggtgt tcgcagtcaa taccaacacc	3840
tcttgccgct cgaagatggg accgcattg tgaacggcgc gaccgaatgg cgccccaaaa	3900
atgcggcgc taacggggca attagtaccg ggaaaaccc caatggaaac agcgtcagct	3960
aatgatagga tccgagctca gatctaccag gttgtccttg ggcgcgcgt tcccacgctg	4020
agaggggtgtt gcccgtcactg ggttaaccgat atcgctgaca ggcctctaga cccggcgtcg	4080
agctagcaag cttggccgga tccggccgga tccggagtt gttagaaacgc aaaaaggcca	4140
tccgtcagga tggccttctg ctttaatttga tgcctggcag tttatggcgg ggcgtcctgcc	4200
cggccaccctc cggggccgttg ctgcacacg ttcaaatccg ctcggccggg atttgcctta	4260
ctcaggagag cggttcaccga caaacaacag ataaaacgaa agggccagtc ttgcactga	4320
gccttcgtt ttatgtatg cctggcgtt cctactctc gcatggggag accccacact	4380
accatcgccg ctacggcggtt tcacttctga gttcggcatg gggtcaggtg ggaccaccgc	4440
gctactgcgc ccaggcaat tctgttttat tgagccgtt ccccacctac tagctaattcc	4500
catctggca catccgatgg caagaggccc gaagggtcccc ctctttggc ttgcgcacgtt	4560
atgcggattt agetaccgtt tccagtagtt atccccctcc atcaggcagt ttcccagaca	4620
ttactcaccc gtccggccact cgtcagcaaa gaagcaagct tagatcgacc tgcagggggg	4680
ggggggaaag ccacgttgc tctcaaaatc tctgtatgtt cattgcacaa gataaaaata	4740
tatcatcatg aacaataaaa ctgtctgtt acataaaacag taatacaagg ggtgttatga	4800
gccatattca acgggaaacg tcttgctcga ggccgcgatt aaattccaaat atggatgctg	4860
atttatatgg gtataaatgg gtcgcgata atgtcgccaa atcagggtgcg acaatctatc	4920
gattgtatgg gaagcccgat ggcgcagatg tgggtctgaa acatggcaaa ggttaggttg	4980
ccaatgtatgt tacagatgag atggtcacac taaactggct gacggaaattt atgccttc	5040
cgaccatcaa gcattttatc cgtactctcg atgatgcattg gttactcacc actggegatcc	5100
ccggggaaac agcattccag gtattagaag aatatcctga ttccaggtaa aatattgttg	5160
atgegctggc agtggccgttgc attcgattcc tgggtatgtt tgcctttta	5220
acagcgatcg cgtatgttgc ctgcgtcagg cgcaatcactg aatgaataac ggtttgggtt	5280
atgcgagatgtt tttgtatgtac gagcgtatgtt gttggcgttgc tgaacaagtc tggaaagaaa	5340
tgcataagct tttgccattc tcaccggatt cagtcgtcac tcatgggtat ttctcacttg	5400
ataacccat ttttgacgag gggaaattaa taggttgtat tggatgttggaa cgagtccgaa	5460
tcgcagaccg ataccaggat cttgcccattc tatggaaactg cctcggtgag ttttcctt	5520
cattacagaa acggctttt caaaaatatg gtattgataa tcctgtatgt aataaattgc	5580

-continued

agtttcattt gatgctcgat gagttttctt aatcagaatt ggttaattgg ttgttaacact	5640
ggcagagcat tacgctgact tgacgggacg gcggcttgc tgaataaatac gaactttgc	5700
ttagttgaag gatcagatca cgcatcttcc cgacaacgcg gaccgttccg tggcaaagca	5760
aaagttcaaa atcaccaact ggtccaccta caacaaagct ctcataacc gtggctccct	5820
cacttctgg ctggatgatg gggcgattca ggcctggat gagtcaacaa caccttcttc	5880
acggggcaga cctcagcgc cccccccccc tgcaggtcga tctggtaacc ccagcgcgg	5940
tgctaccaag tagtgaccgg cttcgtgatg caaaatccgc tgacgatatt cgggcgatcg	6000
ctgctgaatg ccatacgagca gtaacgtggc gaattcggta ccggatggta tggcaacgc	6060
gcggaatccc aacagattgc ctttgacaac aatgtggcct ggaataacct gggggatttg	6120
tccaccacca cccaaacgggc ctacacttcg gctatttagca cagacacagt gcagagtgtt	6180
tatggcgta atctggaaaa aaacgataac attcccatg ttttgcgtg gcccattttt	6240
ccaccaccc ttaatcccac agatttcag gtaatgccta acacggggaa aattgtcacc	6300
ccgggtatcg cctctttatc tcccaacatg gaatacaacg aacggcaaaac ggttagtaatt	6360
acggggcaatt ttggtaatcg ttttacccca ggcacggagg gagcgattta tcccggttcc	6420
gtagggcacag tggtggacag tactcctttg gaaatggtgg gacccaaacgg cccggcgt	6480
gggggttta ttaccattga tagtctcaac ccctacgtgg ccggcaatgg tcccaaaatt	6540
gtcgccgcta agtttagaccc cttcagtgc ctggggaaag gggctccctt ctgggttagcc	6600
accaatcaaa ataacagtgg cggggattta tatggagacc aagcccaatt tcgtttgcga	6660
atttacacca ggcgggttt ttcccccattt ggcattgcac gtttactacc cacagaattt	6720
gaacggattt ttcaactcca agcggaatg attacgggac ggacagttt cctaaacccaa	6780
actgggttg attatgaaat tcccggtttt ggtctgggtc aggtgttggg gctggggat	6840
ttggccgggg ttcaaggacag ctatgacatcg atttacatcg aagatcatga caactattac	6900
gacattatcc tcaaagggga cgaagccgca gttcgccaaa ttaagagggt tgctttgcc	6960
tccgaagggg attattcggc gggttataat cccgggtggcc ccggcaatga tccagagaat	7020
ggtccccca	7029

<210> SEQ ID NO 13

<211> LENGTH: 6883

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 13

attgctgaag cggaaatccct ggttaatgcc gccggcgatg ccaattgcatt tctccaatgt	60
ggcgcattt aacgcgttcaa cccggcattt ttagagctaa cccaaatctt caaaacggaa	120
gagttattgg cgatcgaagc ccatcgcattt agtccctattt cccaggggc caatgtatgc	180
tccgtggat gatccatgac attgacctgt tgctggaaattt ggtgggttcg	240
gaagtggta aactgtccgc cagtgccgtt cgggcttctg ggtcaggata tttggattat	300
gtcaccgcta cgtaggtttt ctccctccggc attgtggccaa ccctcaccgc cagtaaggc	360
acccatcgta aaattcgttc catcgccgca cactgcaaaa attccctcac cgaagcggat	420
tttctcaata acgaaatttt gatccatgc caaaccacgg ctgattggag cgccggactat	480

-continued

ggccaggtat	tgtatcgcca	ggatggtcta	atcggaaaagg	tttacaccag	taatattgaa	540
cctctccacg	ctgaattaga	acattttatt	cattgtgtta	ggggaggtga	tcaaccctca	600
gtggggggag	aacaggccct	caaggccctg	aagtttagcca	gtttaattga	agaaatggcc	660
ctggacagtc	aggaatggca	tgggggggaa	gttgtgacag	aatatcaaga	tgccaccctg	720
gccctcagtg	cgagtgttta	aatcaactta	attaatgcaaa	ttattgcgag	ttcaaactcg	780
ataactttgt	gaaatattac	tgttgaatta	atctatgact	attcaataca	cccccttagc	840
cgatcgcctg	ttggcctacc	tcgcccggca	tcgcctaaat	ctcagcgcca	agagtagttc	900
cctcaacacc	agtattctgc	tcagcagtga	cctattcaat	caggaaggggg	gaattgtAAC	960
agccaaactat	ggctttgatg	gttatatggt	accatatggt	gcactctcag	tacaatctgc	1020
tctgatgccc	catagttaag	ccagttataca	ctccgcatac	gctacgtgac	tgggtcatgg	1080
ctgcgcggcg	acacccgcga	acacccgcgtg	acgcgcgcctg	acgggctgt	ctgcgcggcg	1140
catccgccta	cagacaagct	gtgaccgtct	ccgggagctg	catgtgtcag	aggttttcac	1200
cgtcatcacc	gaaacgcgcg	aggcagcaga	tcaattcgcg	cgcgaaggcg	aageggcatg	1260
catttacgtt	gacaccatcg	aatggtgcaaa	aacctttcgc	ggtatggcat	gatagcgcgg	1320
ggaagagagt	caattcaggg	tggtgaatgt	gaaaccagta	acgttatacg	atgtcgcaga	1380
gtatgcgggt	gtctcttatac	agaccgttcc	ccgcgtgggt	aaccaggcca	gccacgtttc	1440
tgcgaaaacg	cggggaaaaag	tggaaagcggc	gatggcggag	ctgaattaca	ttcccaaccg	1500
cgtggcacaa	caactggcg	gcaaacatcg	gttgcgtatt	ggcgttgcca	cctccagtc	1560
ggccctgcac	gcgcgcgtgc	aaattgtcgc	ggcgattaaa	tctcgcccg	atcaactggg	1620
tgcgcgcgtg	gtgggtgtcga	tggtagaacc	aaggcggcgtc	gaagcctgtta	aaggcggcggt	1680
gcacaatctt	ctgcgcacac	gcgtcagtgg	gtgtatcatt	aactatccgc	tggatgacca	1740
ggatgccatt	gctgtggaaag	ctgcctgcac	taatgttccg	gcgttatttc	ttgtatctc	1800
tgaccagaca	cccatcaaca	gtattatttt	ctcccatgaa	gacggtaacgc	gactggcggt	1860
ggagcatctg	gtgcattgg	gtcaccagca	aatcgcgcgt	ttagcggggc	cattaagttc	1920
tgtctcgccg	cgtctgcgtc	tggctggctg	gcataaaatat	ctcactcgca	atcaattca	1980
gccgatagecg	gaacggaaag	gcgactggag	tgccatgtcc	ggtttcaac	aaaccatgca	2040
aatgctgaat	gagggcatcg	ttcccaactgc	gtgtctgggt	gccaacgatc	agatggcgct	2100
ggggegaatg	cgcgcattaa	ccgagtcggg	gtgcgcgtt	ggtgcggata	tctcggtagt	2160
gggatacgac	gataccgaag	acagctcatg	ttatatcccg	ccgttaacca	ccatcaaaca	2220
ggatttcgc	ctgctggggc	aaaccagctg	ggaccgcgtt	ctgcaactct	ctcaggcgcca	2280
ggcgggtgaag	ggcaatcgc	tgttgcggct	ctcactggtg	aaaagaaaaa	ccaccctggc	2340
gccaatacg	caaaccgcct	ctcccccgc	gttggccgat	tcattatgc	agctggcacg	2400
acaggtttcc	cgactggaaa	gccccgcgt	agcgcaacgc	aattaatgt	agttagcgcg	2460
aattgatctg	gtttgacgc	ttatcatcga	ctgcacggtg	caccaatgt	tctggcgctca	2520
ggcagccatc	ggaagctgtg	gtatggctgt	gcaggtcgta	aatcactgca	taattcgtgt	2580
cgctcaaggc	gcactcccgt	tctggataat	gtttttcg	ccgacatcat	aacggttctg	2640
gcaaatattc	tgaatgagc	tgttgacaat	taatcatccg	gctcgataaa	tgtgtggaaat	2700
tgtgagcgga	taacaatttc	acacaggaaa	cagaccatgg	cgaatggttc	tgcagtctct	2760

-continued

ttgaaatctg	gaagcttgaa	tacgcaggag	gatactagtt	ccagcccccc	tcctcgacg	2820
ttttgcac	agctgcccga	ctggagtcgc	ttgctgaccg	ccatcacaac	agtgttgtc	2880
aaatctaaac	gaccggacat	gcatgatcg	aaaagcaagc	gcccgatata	gctcgatcgat	2940
agtttcggac	tcgagtctac	tgtgcaggac	ggcctgggtgt	tccgtcaatc	cttcagcatc	3000
cgaagctacg	agattggta	ggaccgtacc	gctagcattg	aaacgttgat	gaaccatctc	3060
caagaaacca	gtttaacca	ctgcaagagc	acggggatcc	tgctggatgg	ttttggccgc	3120
acattggaaa	tgtcaagcg	agacttgatc	tgggtggtca	ttaaaatgca	gatcaaagtt	3180
aatcgatacc	cggectgggg	agataccgtt	gagatcaata	cacgcttttc	ccgtttgggc	3240
aaaattggca	tgggtcgaga	ttggctgatc	tccgactgca	acaccggta	gatcttggtc	3300
cgtcaacgt	ctgctgtacgc	gatgtat	caaaagacgc	gtcggttgag	taagctgccc	3360
tatgaagttc	accaagaaat	tgttccattt	ttcggttata	gtcccgttat	cgaggattct	3420
gacactcaaag	tccacaagtt	taaaagtca	actggcgatt	ccatccagaa	gggcctgacg	3480
ccaggttgg	acgatctgga	tgtgaaccaa	cacgttagca	acgttaagta	tatcggttgg	3540
atcttggaaa	gtatgcctac	ggaagtctgt	gagacgcagg	aactctgcag	tctcgctctg	3600
gagtaccg	gtgagtgtgg	ccgtgattcc	gtgctcgagt	ccgtcaactgc	gatggaccct	3660
agcaaaagtgg	gtgttcgag	tcaataccaa	caccttgc	ggctcgaaga	tgggacccgc	3720
attgtgaacg	gcgcgaccga	atggcgcccc	aaaaatgcgg	gcgctaaccgg	ggcaattagt	3780
accgggaaaa	cctccaaatgg	aaacagcg	agctaata	aggatccgg	ctcagatcta	3840
ccaggttgc	cttggcgac	cgottccac	gttgagaggg	tgtagccgt	cacgggtaac	3900
cgatatcg	gacaggc	tagacccgg	ctcgagctag	caagcttgc	cgatccggc	3960
cgatccgg	gtttgtgaa	acgaaaaaag	gcatacg	aggatggct	tctgttaat	4020
ttgatgcctg	gcagtttatg	gggggcgtcc	tgcccgcac	cctccggg	gttgcgtcgc	4080
aacgttcaaa	tccgctcccg	gcccattt	cctactcagg	agagcg	tca ccgacaaaca	4140
acagataaaa	cggaaaggccc	agtcttgc	ctgagcctt	cgttttat	gtgcgttgc	4200
agttccctac	tctcgatgg	ggagacccc	cactaccatc	ggcgctacgg	cgtttactt	4260
ctgagttcg	catgggg	tca	ccgcgtact	gccgcaggc	aaattctgtt	4320
ttattgagcc	gttacccac	ctactagct	atcccatctg	ggcacatcc	atggcaagag	4380
gcccggaa	gttccctt	ggtcttgc	cgtttatgcgg	tattagctac	cgtttccagt	4440
agttatcccc	ctccatcagg	cagttccca	gacattactc	acccgtccgc	cactcgatcg	4500
caaagaagca	agtttagatc	gacctgcagg	gggggggggg	aaagccacgt	tgtgtctcaa	4560
aatctctgtat	gttacattgc	acaagataaa	aatatatcat	catgaacaat	aaaactgtct	4620
gcttacataa	acagtaatac	aagggggtgtt	atgagccata	ttcaacggga	aacgttgc	4680
tcgaggccgc	gattaaattc	caacatggat	gttgatttat	atgggtataa	atgggctcgc	4740
gataatgtcg	ggcaatcagg	tgcgacaatc	tatcgattgt	atgggaagcc	cgatcgcc	4800
gagttgttcc	tgaacatgg	caaaggtac	gttgccaatg	atgttacaga	tgagatggc	4860
agactaaact	ggctgacgga	atttatgcct	cttccgacca	tcaagcattt	tatccgtact	4920
cctgatgatg	catggtaact	caccactgcg	atccccggga	aaacagcatt	ccaggttata	4980
gaagaatatac	ctgattcagg	tgaaaatatt	gttgatgcgc	tggcagtgtt	cctgcgcgg	5040

-continued

ttgcattcga ttccctgtttg taattgtcct ttaaacagcg atcgcgtatt tcgtctcgct	5100
caggcgcaat cacgaatgaa taacgggttg gttgatgcga gtgattttga tgacgagcgt	5160
aatggctggc ctgttgaaca agtctggaaa gaaatgcata agctttgcc attctcaccg	5220
gattcagtcg tcactcatgg tgatttctca cttgataacc ttatTTTGA cgaggggaaa	5280
ttaatagggtt gtattgtatgt tggacgagtc ggaatgcag accgataccca ggatcttgc	5340
atcctatgga actgcctcgg tgagtttct ctttcattac agaaaacggct ttttcaaaaa	5400
tatggtattt ataatcctga tatgaataaa ttgcagttc atttgcgtcgatcgatgttt	5460
ttctaatcag aattggttaa ttgggtttaa cactggcaga gcattacgt gacttgacgg	5520
gacggcggct ttgttgaata aatcgaactt ttgctgagtt gaaggatcag atcacgcattc	5580
ttcccgacaa cgcagaccgt tccgtggcaa agcaaaaagtt caaaatcacc aactggtcca	5640
cctacaacaa agtctctatc aaccgtggct ccctcactt ctggctggat gatggggcga	5700
ttcaggcctg gtatgagtca gcaacacctt cttcacgagg cagacctcag cgcccccccc	5760
ccccctgcagg tcatatcggtt aaccccgccg cgggtgtac caagtatgtca cccgttttgt	5820
gatgcacaaat ccgtgtacga tattcggggc atcgctgtg aatgcctatcg agcgtatcgt	5880
tggcgaattc ggtaccggta tggatggcac cgtgcggaa tcccaacaga ttgccttga	5940
caacaatgtg gccttggata acctgggggaa ttgttccacc accacccaaac gggcctacac	6000
ttcggctatt agcacagaca cagtgcagag tgtttatggc gttaatctgg aaaaaaacga	6060
taacattccc attgttttg cgtggcccat ttttccacc acccttaatc ccacagattt	6120
tcaggtaatg cttaaacacgg gggaaattgt caccgggtg atcgccttt tgattccaa	6180
cagtgaatac aacgaacggc aaacggtagt aattacgggc aattttggta atcgatgttac	6240
cccaaggcactg gaggggcggca tttatcccggt ttccgttaggc acagtgttgg acagttactcc	6300
tttggaaatg gtggggaccca acggcccggt cagtgcgggt ggtattacca ttgtatgtct	6360
caacccctac gtggccggca atggtcccaa aattgtcgcc gctaagttag accgtttcag	6420
tgacctgggg gaaggggctc ccctctggtt agccaccaat caaaataaca gtggggggaa	6480
tttatatgga gaccaagecc aatttcgtt gcaatttac accageggcg gttttcccc	6540
cgatggcatt gccagtttac taccacaga atttgcacgg tattttcaac tccaaacgg	6600
agatattacg ggacggacag ttatcctaacc ccaaactgggt gttgattatg aaattccgg	6660
ctttggctcg gtgcagggtgt tggggctggc ggattttggcc ggggttcagg acagttatgt	6720
cctgacttac atcgaagatc atgacaacta ttacgcacatt atcctaaag gggacgaagc	6780
cgcagttcgc caaattaaga ggggtgtttt gccctccgaa ggggattatt cggcggttta	6840
taatcccggtt ggcggccggca atgatccaga gaatggtccc cca	6883

<210> SEQ ID NO 14
 <211> LENGTH: 20
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 14

accctggccc tcagtgcgag

-continued

```
<210> SEQ ID NO 15
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 15
tgttcttg ctgacgagt g 21

<210> SEQ ID NO 16
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 16
gtgactggaa ccgcctcg 19

<210> SEQ ID NO 17
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 17
ccatcgagca gtaacgtggc cgatagtgac gctaaaccag gctg 44

<210> SEQ ID NO 18
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 18
cgagtggcgg acgggtgagt ctacgagggc gtgcagaagc 40

<210> SEQ ID NO 19
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 19
caccaagttg cttcacca c 21

<210> SEQ ID NO 20
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 20
cagcctgggt tagcgtcact atcggccacg ttactgctcg atgg 44

<210> SEQ ID NO 21
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

-continued

<220> FEATURE: OTHER INFORMATION: Primer
 <400> SEQUENCE: 21
 gcttctgcac gcccctcgtag actcacccgt ccggccactcg 40

<210> SEQ ID NO 22
 <211> LENGTH: 2840
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 22
 gtgactggaa ccgcgcctcgcc gcaaccccgcc gccattacgc cccacgaaca gcaggttttg 60
 gccaaactga aaagctatcg cgatatccaa agttgtcgcc aaatttgggg acgtgctgcc 120
 agtcaatttgcatgatggcc ggctttgggtt gcacccatgc ccaaaccaggc gatcaccctc 180
 agttatcaag aattggcgat tcagatccaa gcgtttgcag ccggactgct cgcgctggga 240
 gtgccttacccctccacagcccgat tgactttccgc cctcgcttgc cgcagttgc ggataaacaggc 300
 ccccgcttgggt tgattgtcgat ccaaggcacg ttgtggcag gggctgcggaa tgcggtgcgc 360
 ggcgcccaag ctgaagtatc ggagctgctc taegtcttag aggacagccggttgcatggc 420
 ttgtattgtcg aagacgcggc gctgtcgaaag aaactacaggc ctgggtttagc gtcactatcg 480
 gecacgttac tgctcgatgg cattcagcag cgatcgcccg aatatcgatca gcggttttg 540
 catcacgaag cgggtcacta cttggtagca accgcgttgc ggttaccaga tccgtcgatc 600
 atatcgatca ttatttacccctc cacggggaga gcctgagca actggcctca ggcattttag 660
 aagcacacgg tcacactgct tccggtagtc aataaaccgg taaaccagca atagacataa 720
 gcggttattt aacgaccctg ccctgttgc acgaccgggtt cgaatttgc ttgttgcatttgc 780
 tgccattcat ccgttatttc tcacttatttc agggcttagca ccaggcggtt aagggcacca 840
 ataactgcct taaaaaaattt acggcccgcc ctggccactca tcgcgtact gttgttatttgc 900
 attaaggattt ctggccgacat ggaaggccatc acaaaccggca tgatgttgcatttgc 960
 cggcatcagc accttgcgc cttgcgtata atatggcccg atgggtaaaaa cggggccgaa 1020
 gaagttgtcc atatggccca cgtttaatc aaaaactgggtt aacttcaccc agggatggc 1080
 tgagacgaaa aacatatttc caataaaccctt ttttagggaaa taggcagggtt tttcaccgt 1140
 acacggccaca tcttgcgaat atatgtgttag aactggccgg aatcgctgtt ggtatttcat 1200
 ccagagcgat gaaaacgtt cagttgtctc atggaaaacgc gtgttaccaag ggttacact 1260
 atccccatatc accagctcac cgttccat tgcataccgg aattccggat gaggcattcat 1320
 caggcggccca agaatgtgaa taaaggccgg aaaaacttg tgcttattttt tctttacgg 1380
 ctttaaaaag gccgtatataat ccagctgaaac ggtctgggtt taggtacattt gagcaactgat 1440
 ctgaaatgcc taaaaatgtt ctgttacgtatccat ccattgggtt atatcaacgg tggtatcc 1500
 agtgatgtttt ttctccat ttagttccctt agtctgttgc aatctcgatca actcaaaaaaa 1560
 taacggccgggtt agtgatgttgc tttcattatgtt gtgaaagttt gaaaccttgc cgttccgtt 1620
 aacgttccat ttttcggccaa agttggccca gggcttccgg gatcaacag ggacaccagg 1680
 atttattttat tctgttgcgtt gatcttccgtt cacaggatattt tatttgcgtt aaaaaggggcc 1740
 tctgttgcgttccat ttttcggccaa agttggccca gggcttccgg gatcaacag ggacaccagg 1800

-continued

gtggcacttt tcggggaaat gtgcgcggaa cccctatttgc ttattttc taaatacatt	1860
caaatatgtatccgctatg agacaataac cctgataaat gcttcaataa tattaaaaaa	1920
ggaagagttat gaggatttcaatccgatgc tcgccttat tcccttttgcggcatttt	1980
gccttcctgt ttttgcacccagaaacgc tggtaaaatgaaaatgct gaagatcagt	2040
tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagatgtt	2100
ttcgccccga agaacgttttccaaatgtatgc gcacttttaa agttctgtatgc tggccgcgg	2160
tattatccccgtgtgacggat ctaagcttgc ttctttgtatgc acgagtggcg gacgggttag	2220
tctacgaggg cgtgcagaag cagtttcgcgc agcaaccggc gaagaaacgt cgcttgatcg	2280
ataccttctt tggcttgagt caacgcataatg tttggcaacgcgcgcgttgcgcaaggactgg	2340
atttgctggc actgaaccaa tccccagccc agcgcctcgc tgagggtgtc cggatgttgg	2400
cgcgtacacc gttgcataag ctggcgatgc gcctcgatgc cggcaaaatgcgagaagcca	2460
cgggtggcccg aattccggcag gtatcgatgc ggggtggctc actggactgcacccatcgata	2520
ccttccttgcgaaattgttgggttgc tggatggatgc tggcttgatgc gaaacccatc	2580
cagtgctgac ggggcgacgg cttggcaca acctacgggg ttccggccggatcgccgatcc	2640
caggtacggc gattcggatgc gtcgatctgc aaacgaaggaa aaaccgaccc agtggcgatgc	2700
cgggcttgggt gctggcgaaa gggccgcaaa tcatgcagggttgcacttcaat aaaccggagg	2760
cgaccgcgaa agcgatcgat gccgaaagggttgcacttcaat ggccgacttgcgatcg	2820
tcgggtgaagg caacttggatgc	2840

<210> SEQ ID NO 23
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 23

ctcgagcccc cgtgcataatgc ctatgc	25
--------------------------------	----

<210> SEQ ID NO 24
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 24

ctcgagccccg gaacgttttt tgcgttgc	28
---------------------------------	----

<210> SEQ ID NO 25
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 25

caattggatca cacggatataa taccggcc	29
----------------------------------	----

<210> SEQ ID NO 26
<211> LENGTH: 36

-continued

```

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 26
caattggtcg atcatatcgt caattattac ctccac 36

<210> SEQ ID NO 27
<211> LENGTH: 7224
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 27
cccccggtct atgactagcg gcgatcgcca taccggccac gaccatttgc attggatccc 60
caacggcgcc cacaacttcc atggcattga gatgcgggaa atgatgttct agactctgac 120
gcaccaaagc caatttttgt ttagtgggtgc aatggggatg actactgttc actttgcccc 180
cagcgtaat gccttagaccc agcagttaccc ccaggggtgt ggttagtgc cccaccacgc 240
attcgcttag cactaagtaa ctttcggcat gttcctgggc taactgtgcg ccccaactgca 300
aacccctgctg aaaaagatgc tccaccaggg ccaacggtaa cgcttgcct gtggaaagac 360
agcggggcgcc ttgtccgtct agattgtatgc ctggcaccgc tggggaaatg ggttaaaccag 420
agttaaataa ataaaccgga gtatggaggg catccaccaa cgctttggtg atgaacactg 480
gggaaacccc agaaatgagg ggaggttaagg gatagggtgc ccctgcgtta gttcccttga 540
ttaaaaattc cgcatcgccg atcgccgtca atttcgatc agcgggggtt ttaccogccg 600
cagaaatgcc cggaaattaaa ccagtttccg taaagcccaa cacacagaca aacacccgtg 660
gacagttggcc atggcgctca atccaggata aagcttggtc agactgggtta taaactgtca 720
acatatttct gcaagagtgg gcccatttgg gaaaatcaac ctcatttcca ttggaaatgc 780
ctttttcaa ccgtaaaaat ccaactttct ctcttccctt cttcatttcca tctgattatg 840
gttacgccaa ttaactacca ttccatccat tgcctggcg atatctggc tatcaccgg 900
gaaaattttg ccgatattgt ggcctcaac gatcgccata gtcattcccc cgtaacttta 960
acatatgccc aattggtcac acgggataat accgcgcac atagcagaac tttaaaatgt 1020
ctcatcattt gaaaacgttc ttccggcgaa aactctcaa ggtatctacc gctgttgg 1080
tccagttcga tgtaacccac tctgtgcacc aactgtatctt cagcatctt tactttacc 1140
agcggttctg ggtgagcaaa aacagggaaagg caaaatgcgg caaaaaagg aataaggcg 1200
acacggaaat gttgaataact catactttc cttttcaat attattgaag catttatcg 1260
ggttattgtc tcatgagggg atacatattt gaatgtatcc agaaaataa acaaataagg 1320
gttccgcga catttcccg aaaagtgcac cctgacgtct aagaaaccat tattatcatg 1380
acattaacct ataaaaatag gctgtatcag aggcccttc gtcttcaat aaatacctgt 1440
gacggaaat gacttcgcag aataaataaa tcttgggtgc cctgttgcata cggggaaagcc 1500
ctggggccaaac ttttggcgaa aatgagacgt tgatcgccac gtaagaggtt ccaacttca 1560
ccataatgaa ataagatcac taccggcgat attttttgcgat ttatcgatgat tttcaggagc 1620
taagggaaatgct aaaaatggaga aaaaatcac tggatatacc accgttgcata tatcccaatg 1680
gcatcgtaaa gaacattttg aggcattca gtcagttgtcaatgttacca ataaccagac 1740

```

-continued

cgttcagctg	gatattacgg	ccttttaaa	gaccgtaaaag	aaaaataaagc	acaagttta	1800
tccggcctt	attcacatc	ttgcccgcct	gatgaatgct	catccgaaat	tccgtatggc	1860
aatgaaagac	ggtgagctgg	tgatatggga	tagtgttac	ccttggta	ccgtttcca	1920
tgagcaaact	gaaacgtttt	catcgctcg	gagtgaatac	cacgacgatt	tccggcagtt	1980
tctacacata	tattcgcaag	atgtggcgtg	ttacggtgaa	aacctggcct	atttccctaa	2040
agggtttatt	gagaatatgt	tttcgtctc	agccaatccc	tgggtgagtt	tcaccagttt	2100
tgattnaac	gtggccaata	tggacaactt	cttcgcccc	gtttcacca	tgggcaaata	2160
ttatacgcaa	ggcgacaagg	tgctgatgcc	gctggcgatt	cagggatc	atgcggtttg	2220
tgatggctc	catgtcgca	gaatgcttaa	tgaattacaa	cagtactgcg	atgagtggca	2280
gggcggggcg	taatttttt	aaggcagtta	ttggtgccct	taaacgcctg	gtgctacgccc	2340
tgaataagt	ataataagcg	gatgaatggc	agaaattcga	aagcaaattc	gaccggctcg	2400
tcgggtcagg	gcagggtcg	taatacgccg	cttatgtcta	ttgctggttt	accggtttat	2460
tgactaccgg	aaggcgtgt	accgtgtgt	tctcaatgc	ctgaggccag	tttgcgtcagg	2520
ctctcccg	ggaggtaata	attgacgata	tgatcgacca	attgcgggaa	gaaattacag	2580
ctttgcccgc	tggcctacag	agtttaggag	ttacccccc	tcaacacctg	gccatttcg	2640
ccgacaacag	ccccgggtgg	tttatcgccg	atcaaggcag	tatgtggct	ggagcogtca	2700
acgcccgtccg	ttctgccc	gcagagcgcc	aggaattact	ctacatccta	gaagacagca	2760
acagccgtac	ttaatcgca	gaaaatcgcc	aaaccctaag	caaattggcc	ctagatggcg	2820
aaaccattga	cctgaaaacta	atcatcctcc	tcaccatgta	agaagtggca	gaggacagcg	2880
ccattccca	atataactt	gcccaggta	tggccctagg	ggccggcaaa	atccccactc	2940
ccgttcccg	ccaggaagaa	gatttagcca	ccctgatcta	cacccggc	accacaggac	3000
aacccaaagg	ggtgatgtc	agccacggta	atttattgca	ccaagtgacgg	gaattggatt	3060
cggtgattat	tccccgcccc	ggcgatcagg	tgttgagcat	tttgcctgt	tggcactccc	3120
tagaaaagaag	cgccgaatat	tttcttctt	ccggggctg	cacgatgaa	tacaccagca	3180
ttcgccattt	caagggggat	gtgaaggaca	ttaaacc	tcacattgtc	ggtgtgcccc	3240
ggctgtggga	atccctctac	gaaggggtac	aaaaaacgtt	ccgggctaa	ggcgaattct	3300
gcagataatcc	atcacactgg	cgcccgctcg	agcatgcatc	tagagggccc	aatteggcct	3360
atagtgagtc	gtattacaat	tcactggcc	tcgttttaca	acgtcg	tggaaaacc	3420
ctggcgatc	ccaaacttaat	cgccctg	cacatcccc	tttcgc	aggcgtataa	3480
gcgaagagggc	ccgcaccat	cgcccttccc	aacagtgcg	cagcctgaat	ggcgaatgg	3540
cgcgcctgt	ageggcgc	taagcgeggc	gggtgtgg	gttacgcgca	gcgtgaccgc	3600
tacacttgc	ageggccctag	cgcccgctcc	tttcgc	ttcccttct	ttctcgccac	3660
gttgcgcggc	tttccccgtc	aagctctaa	tcgggggctc	cctttagggt	tccgatttag	3720
tgcttacgg	cacctcgacc	ccaaaaact	tgattaggt	gatggttc	atgtggcc	3780
atcgccctga	tagacggttt	ttcgccctt	gacgttgag	tccacgttct	ttaatagtgg	3840
actcttgc	caaactggaa	caacactcaa	ccctatctcg	gtctattctt	ttgattata	3900
agggatttt	ccgatttcgg	cctattgg	aaaaatgag	ctgatttaac	aaaaattaa	3960
cgcgaatttt	aacaaaattc	agggcgcaag	ggctgctaaa	ggaagcgaa	cacgtagaaa	4020

-continued

gccagtcgc	agaaacggtg	ctgaccccg	atgaatgtca	gctactggc	tatctggaca	4080
agggaaaacg	caagcgcaa	gagaaagcag	gtagcttgc	gtgggcttac	atggcgatag	4140
ctagactggg	cggtttatg	gacagcaagc	gaaccggaat	tgccagctgg	ggcgccctct	4200
ggtaaggttg	ggaagccctg	caaagtaaac	tggatggc	tcttgcgc	aaggatctga	4260
tggcgcaggg	gatcaagatc	tgatcaagag	acaggatgag	gatcgttcg	catgattgaa	4320
caagatggat	tgcacgcagg	ttctccggcc	gcttgggtgg	agaggctatt	cggtatgac	4380
tgggcacaac	agacaatcgg	ctgctctgat	gccgcgcgtgt	tccggctgtc	agcgcagggg	4440
cgcgggttc	ttttgtcaa	gaccgacactg	tccggtgccc	tgaatgaact	gcaggacgag	4500
gcagcgcggc	tatcggtggct	ggccacgacg	ggcggtccctt	gcccgcgtgt	gtcgacgtt	4560
gtcaactgaag	cgggaaggga	ctggctgtca	ttggggcgaag	tgccggggca	ggatctccctg	4620
tcatcccacc	ttgtctctgc	cgagaaaagta	tccatcatgg	ctgatgcaat	gcggcggtc	4680
catacgcttgc	atccggctac	ctgcccattc	gaccaccaag	cgaaacatcg	catcgacgca	4740
gcacgtactc	ggatggaagc	cggtcttgc	gatcaggatg	atctggacga	agagcatcag	4800
gggctcgccgc	cagccgaact	gttcgcccagg	ctcaaggccgc	gcatgcggca	cgccgcaggat	4860
ctcgctgtca	cccatggcga	tgcgtgtttg	ccgaatatca	tggtgaaaaa	tggccgttt	4920
tctggattca	tcgactgtgg	ccggctgggt	gtggcgacc	gctatcgaga	catagcggtt	4980
gctacccgtg	atattgctga	agagcttggc	ggcgaatggg	ctgaccgtt	cctcggtgtt	5040
tacggatcg	ccgctcccg	ttcgccggc	atcgcccttc	atcgcccttc	tgacgagttc	5100
ttctgaatttgc	aaaaaggaag	agtatgagta	ttcaacattt	ccgtgtcgcc	cttattccct	5160
tttttgcggc	attttgcctt	cctgtttttg	ctcacccaga	aacgctgggt	aaagtaaaag	5220
atgctgaaga	tcagttgggt	gcacgagtgg	gttacatcga	actggatctc	aacagcggtt	5280
agatccttgc	gagtttgcgc	cccgaaagac	gttttcaat	gatgagact	tttaaagttc	5340
tgctatgtgg	cgcggattta	tcccgtatttgc	acgcggggca	agagcaactc	ggtcgcgcga	5400
tacactattc	tcagaatgac	ttgggtttagt	actcaccagt	cacagaaaag	catcttacgg	5460
atggcatgac	agtaagagaa	ttatgcagtg	ctgccataac	catgagtgtat	aacactgcgg	5520
ccaaacttact	tctgacaacgc	atcgaggagct	aaccgctttt	ttgcacaaca		5580
tggggatca	tgtactcg	cttgategtt	gggaaccgga	gctgaatgaa	gccataccaa	5640
acgacgacgc	tgacaccacg	atgcctgttag	caatggcaac	aacgttgcgc	aaactattaa	5700
ctggcgaact	acttactcta	gcttccggc	aacaattaaat	agactggatg	gaggcgata	5760
aagttgcagg	accacttgc	cgctcgcccc	ttccggctgg	ctggtttatt	gctgataaat	5820
ctggagccgg	tgagcgtggg	tctcgccgt	tcattgcagc	actggggcca	gatggtaagc	5880
cctccgtat	cgttagttatc	tacacgacgc	ggagtcaggc	aactatggat	gaacgaaata	5940
gacagatcg	tgagataggt	gcctcactga	ttaagcatg	gtactgtca	gaccaagttt	6000
actcatatata	acttttagatt	gatttaaaac	tccatgtttt	atttaaaagg	atcttaggtga	6060
agatcctttt	tgataatctc	atgaccaaaa	tcccttaacg	tgagtttgc	ttccactgag	6120
cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	tcctttttt	ctgcgcgtaa	6180
tctgctgtt	gcaaacaaaa	aaaccaccgc	taccagcggt	ggtttgcgttgc	ccggatcaag	6240
agctaccaac	tcttttccg	aaggtaactg	gttcagcag	agcgcagata	ccaaatactg	6300

-continued

ttcttcttagt gtagccgtag tttaggccacc acttcaagaa ctctgttagca ccgcctacat	6360
acctcgctct gctaattctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta	6420
ccgggttggaa ctcaagacga tagttaccgg ataaggcgca gcgggtgggc tgaacggggg	6480
gttcgtgcac acagcccgcg ttggagcgaa cgacctacac cgaactgaga tacctacagc	6540
gtgagctatg agaaagcgcc acgcttcccc aaggagaaaa ggcggacagg tatccggtaa	6600
gcggcagggtt cgaaacacgga gagcgacgaa gggagcttcc agggggaaac gcctggatc	6660
tttatagtcc tgcgggttt cgccacctct gacttgagcg tcgattttg tgatgctgt	6720
caggggggcg gagectatgg aaaaacgcga gcaacgcggc ctttttacgg ttctggcct	6780
tttgcggcc ttttgcac atgttcttc ctgcgttatac ccctgattct gtggataacc	6840
gtattaccgc ctttgagtga gctgataccg ctgcggcagc ccgaacgacc gagcgcagcg	6900
agtcaagttag cggaggaagcg gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt	6960
ggccgattca ttaatgcgc tggcacgaca ggtttcccgta ctggaaagcg ggcagtgagc	7020
gcaacgcaat taatgtgagt tagctcaactt attaggacc ccagggttta cactttatgc	7080
ttccggctcg tatgttgtgt ggaattgtga gcgataaca atttcacaca ggaaacagct	7140
atgaccatga ttacgccaag cttggtagcc agctcgatc cactagtaac ggccgcagg	7200
gtgtggaaat tcgccttctc cgag	7224

<210> SEQ ID NO 28
 <211> LENGTH: 79
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 28

gatccgctgt tgacccaaca gcatgagtcg ttatccaagg ggagcttcgg ctccctttt	60
tcatgcgcgg atgcgggtga	79

<210> SEQ ID NO 29
 <211> LENGTH: 1503
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 29

ggatccacta gtcctgaggt gttgacaatt aatcatccgg ctcgtataat gtgtggatt	60
gtgagcggat aacaatttca cacagggaaac agaccatggc cgtcgactg caaccagctc	120
aagaagtcgc aactaagaaa aagcctgcaa tcaaacagcg gcgcgtgggt gttaccggca	180
tgggtgtggt gactccctc gggcatgaac cggatgttt ttacaacaat ctccctggatg	240
gcgtgagcgg cattagttag atcgagaatt ttgactcgac gcagttccc actcgatttgc	300
ccggcgaaat caagagttt acgaccgacg gctgggtcgc gcccaaattt agcaaacgg	360
tggataaaatt gatgctgtat ctgctcaccg caggcaagaa agcgctggcc gatgcgggca	420
tcacggatga tgcgtatgaaa gagctggata aacgcaaatg tggagttctg attggcagt	480
gcatggcggg catgaagctg ttctacgatg cgctcgaaagc cctgaagatt tcgtatcgaa	540
agatgaaccc attctgtgtg cttttgcga ccacgaatat ggtagcgcc atgctggcta	600

-continued

tggattggg gtggatgggg ccgaattata gtatccac cgcgtgcga acctcgact	660
tctgcacatctt gaacgcggct aaccacatta tccgtggtga agcagacatg atgctctgcg	720
gcggctccga tgcggtcatt atccctatcg gtttgggggg ctttgggtct tgccgcgcct	780
tgagccaaacg caataacgac ccaaccaagg catcgccccc gtgggacagc aatcgccatg	840
gcttcgtcat gggcgaggga gccgggggtgc tgctgttgg aagctggaa cacgcgaaaa	900
agcgaggcgc gacaatctat gctgagttct tgggagggtc ctttacatgc gatgcctacc	960
acatgacgga gcctcaccca gagggcgcag gcgtgatctt gtgtatcgag aaggcaatgg	1020
ctcaggcagg agtctctcgc gaggatgtta actacattaa tgctcacgca acgtccacgc	1080
cggctggtga catcaaggaa taccaagctc tcgccccatg tttcgccag aactcgagc	1140
tgcgggtcaa tagtacaaag tccatgatcg gtcatctgt ggggtctgccc ggtgggtcg	1200
aagctgtgac agtcattcaa gccatccgca cccggctggat tcaccctaat ctgaacctgg	1260
aagacccgga caaggccgtt gacgcaaaat tccatcgccg accggagaaa gaacgtctca	1320
acgttaaagt cggattgagc aatagttcg gttttgggg ccataactct agtatactgt	1380
ttgcacccta taattgataa tagatctgat ccgctgttga cccaaacagca tgagtcgtta	1440
tccaaaggga gcttcggctc cctttttca tgcgccggatg cggtgagagc tcacgtgtct	1500
aga	1503

<210> SEQ_ID NO 30
 <211> LENGTH: 1224
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 30	
ggatccacta gtcctgaggt gttgacaatt aatcatccgg ctcgtataat gtgtggatt	60
gtgagcggat aacaatttca cacagggaaac agaccatggc aagccgtgtt gttggtaaag	120
gttggtaact cgttggatgt ggttagtgcgc tcccgaaagt ggaggtgagt aacgacgacc	180
tcaagtaatg cgtggataact tccgatgaat ggatttctgt tcggacggga atccgcaacc	240
ggcgggtgat tactggtaag gataagatg cggggctggc ggtcgaggca gcccagaaag	300
ccctggaaat ggctgaagtc gatgctgacg atgtggactt gtcctgttg tgcaccccca	360
ccccagatga tctctttgga agtgcgcgcg aaatccaggc ggcactcggc tgcaaaggaa	420
accctctggc atttgatatt acagccgctt gtagccgctt cggtctgggt ctggtgagt	480
cttcctgcta tatccgcgcg ggcgggttca agaacgtctt ggatccggc gcgacgcac	540
ttagccgcta cgtcgattgg actgacccgcg gcacatgcat tctctttgt gacgecgctg	600
gcgtgtgtt ggtccaggcg tgtgagagc aggacgacgg cgtttccggg tttgatctgc	660
atagcgatgg agagggttat cgccacctgc atactggat caaggcgaac gaggagttcg	720
ggacgaacgg ttccgtgtg gatttccgc ccaagcgacg cagctactct tccatccaaa	780
tgaatggaa agaagtgttc cgtttcgcct gccgcgtcgt gccccagtc attgagatcg	840
cactcgagaa cgcgggcctc acacgttcta gcattgatg gtcgtgcctc caccaagcaa	900
accaacgaat ctggatgcc gtcgcaacgc gtctggaaat tcccgacac cgcgtgatta	960
gtaacttggc taattacggc aataacttctg ccggcagcat tccgtggca ctggatgaag	1020

-continued

ccgtgcgcag	cggttaaggc	aaaccggc	agactatcg	aacttcggg	tttggagc	1080
gcttgacatg	gggcagcgc	atcattcg	ggaattaat	atagatctg	tccgctgtt	1140
acccaacagc	atgagtcgtt	atccaagggg	agcttcgg	ccctttt	atgcgcggat	1200
gcggtgagag	ctcacgtgtc	taga				1224

<210> SEQ ID NO 31
 <211> LENGTH: 1613
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 31							
tgttgacaat	taatcatccg	gctcgtataa	tgtgtggaat	tgtgagccg	taacaattc	60	
acacaggaaa	cagcgcgc	gagaaaaa	gaagcggc	ac	tgctctt	120	
gacaatctgt	gtgggcactc	gaccgaa	att	atcgattaa	tttattatt	aaaattaa	180
aggtatata	taatgtatcg	attaaataa	gaggaataa	ccatggcc	gt	cgcactg	240
ccagctcaag	aagtgc	caac	taagaaaa	cctgcaat	ca	aacagcggc	300
accggcatgg	gtgtgg	tgac	tccc	tcggg	catg	accgg	360
ctggatggcg	tgagcgg	cat	tagt	gagatc	gagaattt	actcgac	420
cgcattgccc	gcgaaat	caa	gagttc	agc	accgacgg	gggtcgc	480
aaacggatgg	ataaaatt	at	gtgtatcg	ctcacc	gcaagaa	gcgtggcc	540
gcgggcatca	cggatgatgt	gatgaa	agag	ctggataa	ac	gcaa	600
ggcagtgcc	tgggcgg	cat	gaag	tgtt	tttgc	gtttcc	660
tatcgaaaga	tgaaccc	att	ctgtgt	gacca	cgaat	atgg	720
ctggctatgg	at	tttggg	gtt	gatgg	tttcc	accgc	780
tcgaacttct	gc	atctt	gaa	cg	ggc	taac	840
ctctgcggcg	g	tc	ctt	atcg	tttgc	ggcgtt	900
cgcgccttga	gc	caac	gc	taac	gac	ccat	960
cgcgatggc	tc	gtc	atgg	cg	gggg	tcgt	1020
gcgaaaaa	gagg	cg	gac	aat	tttgc	tttgc	1080
gcctaccaca	tgac	ggag	cc	ctt	ggc	tttgc	1140
gcaatggctc	aggc	cagg	gt	tttgc	tttgc	tttgc	1200
tccacggccg	ct	gg	gat	tttgc	tttgc	tttgc	1260
tcggagctgc	gg	gt	tttgc	tttgc	tttgc	tttgc	1320
ggcgtcgaag	ct	gt	tttgc	tttgc	tttgc	tttgc	1380
aaccttggaa	acc	ccg	tttgc	tttgc	tttgc	tttgc	1440
cgtctcaacg	ttaa	agg	tttgc	tttgc	tttgc	tttgc	1500
atcctgtttt	cac	cctata	ttgata	atctgat	tttgc	tttgc	1560
gtcg	ttatcc	aagg	tttgc	tttgc	tttgc	tttgc	1613

<210> SEQ ID NO 32
 <211> LENGTH: 2698

-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 32

cctgagggtgt tgacaattaa tcatccgct cgtataatgt gtggattgt gagcggataa 60
caatttcaca caggaaacag cgccgctgag aaaaagcga gccgcactgc tctttacaa 120
tttatcagac aatctgtgtg ggcactcgac cggaatttac gattaacttt attattaaaa 180
attnaagagg tatataattaa tgtatcgatt aaataaggag gaataaaacca tggccgtcgc 240
actgcaacca gctcaagaag tcgcaactaa gaaaaagcct gcaatcaaac agcggcgcgt 300
ggtggttacc ggcattgggtg tggtactcc cctcgggcat gaaccggatg tggtttacaa 360
caatctctg gatggcgtga gcggcattag tgagatcgag aatttgact cgacgcagtt 420
tcggactcgc attggccggcg aaatcaagag ttgcggacc gacggctggg tcgcgcggca 480
attnagcataa cggatggata aattgtatgt gtatctgtc accgcaggca agaaagcgt 540
ggccgatgcg ggcattcacgg atgtatgtat gaaagagcgt gataaaacgc aatgtggagt 600
tctgattggc agtggcatgg gcggcatgaa gctgttctac gatgcgtcg aagccctgaa 660
gattnctgtat cgaaagatga acccattctg tgcctttt ggcaccacga atatggtag 720
cgccatgtcg gctatggatt tgggtggat gggccgaaat tatagttttt ccaccgcgtg 780
cgcaacctcg aacttctgca tcttgcacgc ggcataaccac attatccgtg gtgaagcaga 840
catgtatgtc tgcggcggtt ccgcgtcggtt cattatccct atcggttgg ggcgtttgt 900
tgcttgcgcg gccttgcgaa aacgcataa cgacccaaacc aaggcatcgcc gcccgtggg 960
cagcaatcgc gatggcttcg tcatggcgaa gggagccggg gtgctgtgt tggaggagct 1020
ggaaacacgcg aaaaagcgtg ggcgcacaaat ctatgtcgat ttcttggag ggtcccttac 1080
atgcgtatgcc taccacatga cggagcctca cccagagggc gcaggcgtga tcttgcgtat 1140
cgagaaggca atggctcagg caggagtcctc tgcgcaggat gttactaca ttaatgctca 1200
cgcaacgtcc acgcggcgctg gtgacatcaa ggaataccaa gctctcgccc attgttccgg 1260
ccagaactcg gagctgcggg tcaatagttaa aagtccatg atcggtcattc tgctgggtgc 1320
tgccgggtggc gtcgaagctg tgacagtcat tcaagccatc cgcacccggct ggattcaccc 1380
taatctgaac ctggaaagacc cggacaaggc cggtgacgc aaattccgtc tcggaccggaa 1440
gaaagaacgt ctcaacgtt aagtccggatt gagcaatagt ttccgggttgg gtcggccataa 1500
ctcttagtatac ctgtttgcac cctataatttataatagatc ctgtcgatccatc tgctttgtt 1560
ggtaactaccat gacttcaccc tctttttaaga tggcaagccg tgggttgggtt aaaggttgc 1620
aactcggtgg atgtggtagt ggcgtcccgaa agttggaggt gagtaacgc gacccgtat 1680
agatcggtgg tacttcggat gaatggattt ctgttccggc gggaaatccgc aaccggccggg 1740
tgattactgg taaggataag atgacggggc tggcggtcga ggcagcccgaa aagccctgg 1800
aaatcggtgcg aactcgatgttgc gacgtgtgg acttgcgttccat gttgtgcacc tccaccccg 1860
atgtatctt tggaaagtgcg ccgcaatcc aggcggcact cggctgoaaa ggaaaccctc 1920
tggcatttgcg tattacagcc gcttgcgttccat gggatccgc tgggttgggtt aactcgatgttccat 1980
gtatcgatcccg cggccggccggg ttcaagaacgc tccgtttat cggccggcact gacgtggcc 2040
gtacgtcgatcccg tggactgac cggccgcacat gcattcttccat tgggtgcacc gctggcgctg 2100

-continued

tgttggtcca	ggcgtgtgag	agcgaggacg	acggcgtctt	cgggtttgat	ctgcatacg	2160
atggagaggg	ttatcgccac	ctgcatactg	ggatcaaggc	gaacgaggag	ttcgggacga	2220
acgggtccgt	tgtggatttt	ccgcccaga	gcagcagcta	ctcttccatc	caaataatg	2280
gaaaagaagt	gttccgttcc	gcctgcccgc	tcgtgcccc	gtctattgag	atcgactcg	2340
agaacgcggg	cctcacacgt	tctagcattt	attggctgt	gctccaccaa	gcaaaccac	2400
aatcttgg	tgccgtcgca	acgcgtctgg	aaattccgc	agaccgcgtg	attagtaact	2460
tggctaatta	cggcaataact	tctgccgcca	gcattccgtt	ggcactggat	gaagccgtgc	2520
gcagcggtaa	ggtaaacc	ggtcagacta	tcgcaactc	gggggttgg	gcagggttga	2580
catggggcag	cgcgatcatt	cgctggaatt	aatgatagat	ctgatccgt	gttgacccaa	2640
cagcatgagt	cgttatccaa	ggggagcttc	ggctccctt	tttcatgcgc	ggatgcgg	2698
<210> SEQ ID NO 33						
<211> LENGTH: 89						
<212> TYPE: DNA						
<213> ORGANISM: Artificial Sequence						
<220> FEATURE:						
<223> OTHER INFORMATION: Synthetic construct						
<400> SEQUENCE: 33						
gtacgggatc	cctgtcgta	actgctttgt	tggtactacc	tgacttcacc	ctcttttaag	60
atggcaagcc	gtgttgttgg	taaagggtt				89
<210> SEQ ID NO 34						
<211> LENGTH: 29						
<212> TYPE: DNA						
<213> ORGANISM: Artificial Sequence						
<220> FEATURE:						
<223> OTHER INFORMATION: Synthetic construct						
<400> SEQUENCE: 34						
cacgtgagct	ctcaccgcat	ccgcgcat				29
<210> SEQ ID NO 35						
<211> LENGTH: 1252						
<212> TYPE: DNA						
<213> ORGANISM: Artificial Sequence						
<220> FEATURE:						
<223> OTHER INFORMATION: Synthetic construct						
<400> SEQUENCE: 35						
tcatgaagtt	ccttgcgtc	gccgtctcag	cacttgcac	tgcatactg	ttcacaacca	60
gtcctgcctc	tttccaccact	gtcagcagtc	cttcgggtaa	caatgttgc	ggacaggagg	120
gaaatgctca	caggaacagg	agagctacca	ttgtcatgga	tggagctaac	ggaagtgcag	180
tcagttgaa	aagtgggtca	ttgaatacgc	aggaggacac	aagtctgt	ccacccccc	240
gtacattct	tcaccaactc	cctgattgga	gcagattgt	cactgcac	acaaccgtt	300
ttgttaaaag	taagcgtccg	gatatgcat	atcgtaagtc	aaaaaggccg	gacatgtcg	360
tggatagttt	cgggttggag	agtaccgttc	aggatggact	cgtgtccgt	caaagcttt	420
cgtccgttc	atatgagatt	ggaactgatc	gtacggcttc	cattgagact	ttgtatgaa	480
atcttcagga	gacttccctc	aaccattgt	agagtcagg	aattttgtt	gatggattcg	540
gacgcacact	cgtttatgtt	aagcgcgatt	tgatttgggt	cgtcattaaa	atgcagatca	600

-continued

aggtaatag atacccggcc tggggcgata cagtagaaat caatactagg ttcagcagac	660
ttggtaatcg cggcatgggt cgagattggc tcattagcga ctgcaatacc ggtgagatcc	720
tgcgtcgggc aaccagcgcc tacgccatga tgaatcagaa gacccgaaga ctctcgaagc	780
ttccgtacga ggtccaccaa gagattgtcc cccttttgcgactcccc gtaattgaag	840
atccggatct caaggatccac aaattcaaaat taaaaacggg tgacagcatc cagaaggac	900
ttactcctgg ttggAACGAC ctcgatgtga accaacatgt ttcgAACGTC aaataatatcg	960
gctggattct tgagagtatg ccaaccgagg tacttgagac gcaggaattt tgctcggttgg	1020
cattggagta tcgtcgttag tggggcgag actcagtctt cgaaagtgtt acagcaatgg	1080
acccaagcaa agttgggttt cgttcacagt atcaacacccctt cctccgtctc gaggatggaa	1140
cagccattgtt gaacggggcc acagagtggaa ggccaaagaa cgctggcgctt aacggagctt	1200
tctccacagg aaagaccagg aatggtaact ctgtgagttt atgataggat cc	1252

<210> SEQ ID NO 36

<211> LENGTH: 412

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 36

Met Lys Phe Leu Val Val Ala Val Ser Ala Leu Ala Thr Ala Ser Ala	
1 5 10 15	

Phe Thr Thr Ser Pro Ala Ser Phe Thr Thr Val Ser Ser Pro Ser Val	
20 25 30	

Asn Asn Val Phe Gly Gln Glu Gly Asn Ala His Arg Asn Arg Arg Ala	
35 40 45	

Thr Ile Val Met Asp Gly Ala Asn Gly Ser Ala Val Ser Leu Lys Ser	
50 55 60	

Gly Ser Leu Asn Thr Gln Glu Asp Thr Ser Ser Ser Pro Pro Pro Arg	
65 70 75 80	

Thr Phe Leu His Gln Leu Pro Asp Trp Ser Arg Leu Leu Thr Ala Ile	
85 90 95	

Thr Thr Val Phe Val Lys Ser Lys Arg Pro Asp Met His Asp Arg Lys	
100 105 110	

Ser Lys Arg Pro Asp Met Leu Val Asp Ser Phe Gly Leu Glu Ser Thr	
115 120 125	

Val Gln Asp Gly Leu Val Phe Arg Gln Ser Phe Ser Ile Arg Ser Tyr	
130 135 140	

Glu Ile Gly Thr Asp Arg Thr Ala Ser Ile Glu Thr Leu Met Asn His	
145 150 155 160	

Leu Gln Glu Thr Ser Leu Asn His Cys Lys Ser Thr Gly Ile Leu Leu	
165 170 175	

Asp Gly Phe Gly Arg Thr Leu Glu Met Cys Lys Arg Asp Leu Ile Trp	
180 185 190	

Val Val Ile Lys Met Gln Ile Lys Val Asn Arg Tyr Pro Ala Trp Gly	
195 200 205	

Asp Thr Val Glu Ile Asn Thr Arg Phe Ser Arg Leu Gly Lys Ile Gly	
210 215 220	

Met Gly Arg Asp Trp Leu Ile Ser Asp Cys Asn Thr Gly Glu Ile Leu

-continued

225	230	235	240
Val Arg Ala Thr Ser Ala Tyr Ala Met Met Asn Gln Lys Thr Arg Arg			
245	250	255	
Leu Ser Lys Leu Pro Tyr Glu Val His Gln Glu Ile Val Pro Leu Phe			
260	265	270	
Val Asp Ser Pro Val Ile Glu Asp Ser Asp Leu Lys Val His Lys Phe			
275	280	285	
Lys Val Lys Thr Gly Asp Ser Ile Gln Lys Gly Leu Thr Pro Gly Trp			
290	295	300	
Asn Asp Leu Asp Val Asn Gln His Val Ser Asn Val Lys Tyr Ile Gly			
305	310	315	320
Trp Ile Leu Glu Ser Met Pro Thr Glu Val Leu Glu Thr Gln Glu Leu			
325	330	335	
Cys Ser Leu Ala Leu Glu Tyr Arg Arg Glu Cys Gly Arg Asp Ser Val			
340	345	350	
Leu Glu Ser Val Thr Ala Met Asp Pro Ser Lys Val Gly Val Arg Ser			
355	360	365	
Gln Tyr Gln His Leu Leu Arg Leu Glu Asp Gly Thr Ala Ile Val Asn			
370	375	380	
Gly Ala Thr Glu Trp Arg Pro Lys Asn Ala Gly Ala Asn Gly Ala Ile			
385	390	395	400
Ser Thr Gly Lys Thr Ser Asn Gly Asn Ser Val Ser			
405	410		

<210> SEQ ID NO 37
 <211> LENGTH: 26
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Primer

<400> SEQUENCE: 37

caggatccgg ggaggtgtgg tgttagt

26

<210> SEQ ID NO 38
 <211> LENGTH: 43
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Primer

<400> SEQUENCE: 38

taggatccag tggtgcccat ggtactttgt taggggagga tag

43

<210> SEQ ID NO 39
 <211> LENGTH: 27
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Primer

<400> SEQUENCE: 39

caggatccctc actctgtcgc gctgttg

27

<210> SEQ ID NO 40
 <211> LENGTH: 27
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence

-continued

```

<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 40

catctagaga ggattgattt ccgagtc                                27

<210> SEQ ID NO 41
<211> LENGTH: 573
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 41

atgggcacca ctctcgacga cacggcttac cgctaccgca ccagtgtgcc gggggacgcc      60
gaggccatcg aggcaactgga tgggtccttc accaccgaca ccgtcttccg cgtcaccgccc    120
accggggacg gttcacccct gccccggatgg ccgggtggacc cggccctgac caaggtgttc    180
cccgacgacg agtcggacga cgagtcggac gacggggagg acggcgaccc ggactccgg      240
acgttcgctcg cgtacgggga cgacggcgac ctggcgggtc tctgtggctgt ctgtactcc    300
ggctgaaacc gccggctgac cgtcgaggac atcgaggtcg ccccgaggca cggggggcac      360
gggttcgggc gcgcgctgtat ggggctcgcg acggagttcg cccgcgacg gggtgccggg      420
cacctctggc tggaggtcac caacgtcaac gcacccggca tccacgctga cggcgaggatg    480
gggttcaccc tctgcggcct ggacaccgccc ctgtacgacg gcacccgcctc ggacggcgag    540
caggcgctct acatgtccat gcccgtcccc taa                                573

<210> SEQ ID NO 42
<211> LENGTH: 1198
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 42

ccatggccgc tatgtcgcc tctaaggcagg ggcgccttcat gggccgcagc tcctttgccc      60
ccgcggccaa gggcgctcgcc agcccgccgcct ccctgcaggt ggtggccggc gccaacggca    120
gcgcgggtgag cctgaagtctcg ggttccctca acactcagga ggacacccctcg tcctcgcccc    180
cgccgcgcac gttccctgac cagctgcggg actgggtcccg cctgctgacg gctattacga    240
ccgtgttcgt gaagtcgaag cgcccccaca tgcacgcacg caagagaag cggcctgata      300
tgctgggtgga cagctttggc ctggagtcctca cgggtgcaggaa cggcctcggt ttccggcaaa    360
gcttcagcat ccgcagactac gagatccggc cggaccgcac cgcgtcgatc gagaacgtca    420
tgaaccaccc ccaggagacg tgcgtcaacc actgcaagtc caccggatc ctgctggacg      480
gctttggccg caccctggag atgtgcacgc gggatctgtat ctgggtggat atcaagatgc    540
agatcaaggt gaaccgcata cccgcctggg gtgacaccgt cgagattaac acccgcttct    600
cgcgccctggg caagatccggc atggggccgc acgggtcgat ctcggactgc aacactggcg    660
agatccctggc ccggggccacg tcggccctacg ccatgtgaa ccagaagact cggcggctga    720
gcaagctgcc ttacgaggatg catcaggaga tgcgtccgtt cttcggtggac agccccgtga    780
tcgaggacag cgatctgaag gtgcacaagt tcaagggtcaa gacccggac acatccaga      840
agggcctgac tcccggtgg aacgacccgtt acgtgaacca gcacgtctcg aacgtgaagt    900

```

-continued

```

acatcggtcg gattctggag tcgatgcccc ccgaggtgct ggagacgcag gagctgtgct 960
ccctggcgct ggagtatcgc cgcgagtgcg gcccgcactc cgtgctggag tccgtcaccg 1020
cgatggaccc gtcgaagggtg ggtgtccgca gccagttacca acacctgctg cgcctcgagg 1080
acggcaccgc cattgtgaac ggccgcacgg agtggcgcc gaagaacgcg ggccgttaacg 1140
gcccacatctc cacgggcaag acctccaacg gcaactcggt gagctaata taggatcc 1198

```

<210> SEQ ID NO 43

<211> LENGTH: 394

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 43

```

Met Ala Ala Met Leu Ala Ser Lys Gln Gly Ala Phe Met Gly Arg Ser
1 5 10 15

```

```

Ser Phe Ala Pro Ala Pro Lys Gly Val Ala Ser Arg Gly Ser Leu Gln
20 25 30

```

```

Val Val Ala Gly Ala Asn Gly Ser Ala Val Ser Leu Lys Ser Gly Ser
35 40 45

```

```

Leu Asn Thr Gln Glu Asp Thr Ser Ser Pro Pro Pro Arg Thr Phe
50 55 60

```

```

Leu His Gln Leu Pro Asp Trp Ser Arg Leu Leu Thr Ala Ile Thr Thr
65 70 75 80

```

```

Val Phe Val Lys Ser Lys Arg Pro Asp Met His Asp Arg Lys Ser Lys
85 90 95

```

```

Arg Pro Asp Met Leu Val Asp Ser Phe Gly Leu Glu Ser Thr Val Gln
100 105 110

```

```

Asp Gly Leu Val Phe Arg Gln Ser Phe Ser Ile Arg Ser Tyr Glu Ile
115 120 125

```

```

Gly Thr Asp Arg Thr Ala Ser Ile Glu Thr Leu Met Asn His Leu Gln
130 135 140

```

```

Glu Thr Ser Leu Asn His Cys Lys Ser Thr Gly Ile Leu Leu Asp Gly
145 150 155 160

```

```

Phe Gly Arg Thr Leu Glu Met Cys Lys Arg Asp Leu Ile Trp Val Val
165 170 175

```

```

Ile Lys Met Gln Ile Lys Val Asn Arg Tyr Pro Ala Trp Gly Asp Thr
180 185 190

```

```

Val Glu Ile Asn Thr Arg Phe Ser Arg Leu Gly Lys Ile Gly Met Gly
195 200 205

```

```

Arg Asp Trp Leu Ile Ser Asp Cys Asn Thr Gly Glu Ile Leu Val Arg
210 215 220

```

```

Ala Thr Ser Ala Tyr Ala Met Met Asn Gln Lys Thr Arg Arg Leu Ser
225 230 235 240

```

```

Lys Leu Pro Tyr Glu Val His Gln Glu Ile Val Pro Leu Phe Val Asp
245 250 255

```

```

Ser Pro Val Ile Glu Asp Ser Asp Leu Lys Val His Lys Phe Lys Val
260 265 270

```

```

Lys Thr Gly Asp Ser Ile Gln Lys Gly Leu Thr Pro Gly Trp Asn Asp
275 280 285

```

```

Leu Asp Val Asn Gln His Val Ser Asn Val Lys Tyr Ile Gly Trp Ile

```

-continued

290	295	300	
Leu Glu Ser Met Pro Thr Glu Val Leu Glu Thr Gln Glu Leu Cys Ser			
305	310	315	320
Leu Ala Leu Glu Tyr Arg Arg Glu Cys Gly Arg Asp Ser Val Leu Glu			
325	330	335	
Ser Val Thr Ala Met Asp Pro Ser Lys Val Gly Val Arg Ser Gln Tyr			
340	345	350	
Gln His Leu Leu Arg Leu Glu Asp Gly Thr Ala Ile Val Asn Gly Ala			
355	360	365	
Thr Glu Trp Arg Pro Lys Asn Ala Gly Ala Asn Gly Ala Ile Ser Thr			
370	375	380	
Gly Lys Thr Ser Asn Gly Asn Ser Val Ser			
385	390		

<210> SEQ ID NO 44
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 44

ggtgaaaaat gcctatgtgt taacg	25
-----------------------------	----

<210> SEQ ID NO 45
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 45

cgtaggcagt gtgcaaccag gagcc	25
-----------------------------	----

<210> SEQ ID NO 46
<211> LENGTH: 3418
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic construct

<400> SEQUENCE: 46

ggtgaaaaat gcctatgtgt taacggatct acaaaccagc accaaactct attacgaacc	60
ccacggtttc cactctcccc aactgcaaga cttggggccc attgatgtgg ttttaacccc	120
cgtcattggc atcaataatcc tcggattctt gccgggtgctc aatggccaga aaaccaccc	180
ggagctttgt cgcaactgtcc atccccaggc gatcgatccc acctctggag ccgcagaatt	240
gaactatacg gtttactaa ctaaagttt acgttttagac ggcgatctca gtcaattcg	300
ccagtcctta attgacgaaag ggataacaagg ttccctatgg gaaccccaagg tgggagtgcc	360
cctcaatgtg ccccaatcca ccgttggcta ggttggatg ttcaaattcac tggcggtgt	420
gatgcttgat aaatacagtg agccaggaa aactgaaaa aagtgtataa agtaggttta	480
acttgaatca aaatccttcc tccgcagtca tagccaggag taggaagatt accagcgaag	540
caagttgtct tcccttagct ttgggcgggc aaaccccttg cagtattgccc aacgtcaaaa	600
aatcaccata gcccgaatgac ctacaccatc aacgctgacc aagtccatca gattgtccat	660

-continued

-continued

ccccaaactga	cggattttga	cctccatgtg	tttgggaaag	gcaaccacca	ccgtattac	3000
aaaaaaactcg	gtgctcacct	gatgacggtg	gatggagtta	aaggggttta	ttttgtgtg	3060
tggggcccca	atgcccgaa	cgtttccatt	ttgggggatt	tcaacaactg	ggacggcaga	3120
ttgcacccaa	tgcggaaacg	caacaacatg	gtgtgggat	tatttatccc	tgagttgggg	3180
gtgggactt	cttataagta	tgagattaaa	aactgggaaag	ggcacatcta	cgaaaagact	3240
gacccttacg	gtttttacca	agaagtacgc	cccaaaacccg	cttccattgt	ggcagacttg	3300
gacggttacc	aatggcacga	cgaagattgg	ttggaagcta	ggcgcaccag	cgatccccctg	3360
agcaaaccgg	tttccgttta	cgaactccat	ttaggctct	ggttgcacac	tgccctacg	3418

1. A cell culture of a recombinant photosynthetic microorganism, said microorganism modified to contain a nucleic acid molecule comprising at least one recombinant expression system that produces at least one exogenous acyl-ACP thioesterase,

wherein said acyl-ACP thioesterase preferentially liberates a fatty acid chain that contains 6-20 carbons, and wherein the culture medium provides inorganic carbon as substantially the sole carbon source and wherein said microorganism secretes the fatty acid liberated by the acyl-ACP thioesterase into the culture medium.

2. The culture of claim 1, wherein the at least one exogenous acyl-ACP thioesterase is a Fat B thioesterase.

3. The culture of claim 1, wherein the at least one exogenous acyl-ACP thioesterase is a Fat B thioesterase derived from the genus *Cuphea*.

4. The culture of claim 1, wherein the at least one exogenous acyl-ACP thioesterase is ChFatB2.

5. The culture of claim 1, wherein the recombinant photosynthetic microorganism has further been modified to produce an exogenous β -ketoacyl synthase (KAS).

6. The culture of claim 5, wherein the exogenous KAS preferentially produces acyl-ACPs having the chain length for which the thioesterase has preferred activity.

7. The culture of claim 1, wherein the recombinant photosynthetic microorganism is further modified so that one or more genes encoding beta-oxidation pathway enzymes are inactivated or downregulated, or said enzymes are inhibited.

8. The culture of claim 1, wherein the recombinant photosynthetic microorganism is further modified so that one or more genes encoding acyl-ACP synthetases are inactivated or downregulated, or said synthetases are inhibited.

9. The culture of claim 1, wherein the recombinant photosynthetic microorganism is further modified so that one or more genes encoding an enzyme involved in carbohydrate biosynthesis are inactivated or downregulated, or said enzymes are inhibited.

10. The culture of claim 9, wherein the enzyme involved in carbohydrate biosynthesis is a branching enzyme.

11. A method to convert inorganic carbon to fatty acids, said method comprising:

incubating the culture of claim 1 such that the recombinant photosynthetic microorganism therein secretes the fatty acid into the culture medium; and recovering the secreted fatty acids from the culture medium.

12. The method of claim 11, wherein the fatty acids are recovered from the culture by contacting the medium with particulate adsorbents.

13. The method of claim 12, wherein the particulate adsorbents circulate in the medium.

14. The method of claim 12, wherein the particulate adsorbents are contained in a fixed bed column.

15. The method of claim 14, wherein the pH of the medium is lowered during said contacting.

16. The method of claim 15, wherein said pH lowering process comprises adding CO₂.

17. The method of claim 16, wherein the medium is recirculated to the culture.

18. The method of claim 12, wherein the particulate adsorbents are lipophilic.

19. The method of claim 12, wherein the particulate adsorbents are ion exchange resins.

20. A composition comprising a fatty acid produced by the culture of claim 1.

21. The composition of claim 20, wherein the composition is used to produce another compound.

22. The composition of claim 20, wherein the composition is a biocrude.

23. A composition comprising a derivative of a fatty acid produced by the culture of claim 1.

24. The composition of claim 23, wherein the composition is a finished fuel or fuel additive.

25. The composition of claim 23, wherein the composition is a biological substitute for a petrochemical product.

26. The composition of claim 23, wherein the derivative is an alcohol, an alkane, or an alkene.

* * * * *