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CONFIGURING SPARSE NEURONAL NETWORKS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application claims the benefit of U.S. Provisional Patent
Application No. 61/930,858, filed on January 23, 2014, U.S. Provisional Patent
Application No. 61/930,849, filed on January 23, 2014, and U.S. Provisional Patent
Application No. 61/939,537, filed on February 13, 2014, the disclosures of which are

expressly incorporated by reference herein in its entirety.

BACKGROUND
Field

[0002] Certain aspects of the present disclosure generally relate to neural system
engineering and, more particularly, to systems and methods for operating a neural

network with a reduced number of model neurons.

Background

[0003] An artificial neural network, which may comprise an interconnected group
of artificial neurons (i.c., neuron models), is a computational device or represents a
method to be performed by a computational device. Artificial neural networks may
have corresponding structure and/or function in biological neural networks. However,
artificial neural networks may provide innovative and useful computational techniques
for certain applications in which traditional computational techniques are cumbersome,
impractical, or inadequate. Because artificial neural networks can infer a function from
observations, such networks are particularly useful in applications where the complexity
of the task or data makes the design of the function by conventional techniques

burdensome.

SUMMARY

[0004] In one aspect, a method for selecting a reduced number of model neurons in
a neural network is disclosed. The method includes generating a first sparse set of non-
zero decoding vectors. Each of the decoding vector is associated with a synapse

between a first neuron layer and a second neuron layer. The method further includes
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implementing the neural network only with selected model neurons in the first neuron

layer associated with the non-zero decoding vectors.

[0005] In another aspect, an apparatus for selecting a reduced number of model
neurons in a neural network is disclosed. The apparatus includes a memory and one or
more processors coupled to the memory. The processor(s) is(are) configured to
generate a first sparse set of non-zero decoding vectors. Each of the decoding vector is
associated with a synapse between a first neuron layer and a second neuron layer. The
processor(s) is(are) further configured to implement the neural network only with
selected model neurons in the first neuron layer associated with the non-zero decoding

vectors.

[0006] In yet another aspect, an apparatus for selecting a reduced number of model
neurons in a neural network is disclosed. The apparatus includes means for generating a
first sparse set of non-zero decoding vectors. Each of the decoding vector is associated
with a synapse between a first neuron layer and a second neuron layer. The apparatus
further includes means for implementing the neural network only with selected model

neurons in the first neuron layer associated with the non-zero decoding vectors.

[0007] In still another aspect, a computer program product for selecting a reduced
number of model neurons in a neural network is disclosed. The computer program
product includes a non-transitory computer readable medium having encoded thereon
program code. The program coded includes program code to generate a first sparse set
of non-zero decoding vectors. Each of the decoding vector is associated with a synapse
between a first neuron layer and a second neuron layer. The program code further
includes program code to implement the neural network only with selected model

neurons in the first neuron layer associated with the non-zero decoding vectors.

[0008] This has outlined, rather broadly, the features and technical advantages of
the present disclosure in order that the detailed description that follows may be better
understood. Additional features and advantages of the disclosure will be described
below. It should be appreciated by those skilled in the art that this disclosure may be
readily utilized as a basis for modifying or designing other structures for carrying out
the same purposes of the present disclosure. It should also be realized by those skilled

in the art that such equivalent constructions do not depart from the teachings of the
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disclosure as set forth in the appended claims. The novel features, which are believed to
be characteristic of the disclosure, both as to its organization and method of operation,
together with further objects and advantages, will be better understood from the
following description when considered in connection with the accompanying figures. It
is to be expressly understood, however, that each of the figures is provided for the
purpose of illustration and description only and is not intended as a definition of the

limits of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The features, nature, and advantages of the present disclosure will become
more apparent from the detailed description set forth below when taken in conjunction
with the drawings in which like reference characters identify correspondingly

throughout.

[0010] FIGURE 1 illustrates an example network of neurons in accordance with

certain aspects of the present disclosure.

[0011] FIGURE 2 illustrates an example of a processing unit (neuron) of a
computational network (neural system or neural network) in accordance with certain

aspects of the present disclosure.

[0012] FIGURE 3 illustrates an example of spike-timing dependent plasticity

(STDP) curve in accordance with certain aspects of the present disclosure.

[0013] FIGURE 4 illustrates an example of a positive regime and a negative regime
for defining behavior of a neuron model in accordance with certain aspects of the

present disclosure.

[0014] FIGURE 5 illustrates an example implementation of designing a neural
network using a general-purpose processor in accordance with certain aspects of the

present disclosure.

[0015] FIGURE 6 illustrates an example implementation of designing a neural
network where a memory may be interfaced with individual distributed processing units

in accordance with certain aspects of the present disclosure.
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[0016] FIGURE 7 illustrates an example implementation of designing a neural
network based on distributed memories and distributed processing units in accordance

with certain aspects of the present disclosure.

[0017] FIGURE 8 illustrates an example implementation of a neural network in

accordance with certain aspects of the present disclosure.

[0018] FIGURE 9 is a block diagram illustrating an exemplary structure for a neural

network in accordance with aspects of the present disclosure.

[0019] FIGURES 10A-D are exemplary diagrams illustrating reduced sets of model

neurons in accordance with aspects of the present disclosure.

[0020] FIGURE 11 illustrates a method for selecting a neuron model with a low
firing rate for operating in a neural network in accordance with an aspect of the present

disclosure.

[0021] FIGURE 12 is a block diagram illustrating a method for selecting a reduced
number of model neurons in a neural network in accordance with an aspect of the

present disclosure.

[0022] FIGURE 13 is a block diagram illustrating a method for generating a neural

network in accordance with an aspect of the present disclosure.

DETAILED DESCRIPTION

[0023] The detailed description set forth below, in connection with the appended
drawings, is intended as a description of various configurations and is not intended to
represent the only configurations in which the concepts described herein may be
practiced. The detailed description includes specific details for the purpose of providing
a thorough understanding of the various concepts. However, it will be apparent to those
skilled in the art that these concepts may be practiced without these specific details. In
some instances, well-known structures and components are shown in block diagram

form in order to avoid obscuring such concepts.

[0024] Based on the teachings, one skilled in the art should appreciate that the

scope of the disclosure is intended to cover any aspect of the disclosure, whether
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implemented independently of or combined with any other aspect of the disclosure. For
example, an apparatus may be implemented or a method may be practiced using any
number of the aspects set forth. In addition, the scope of the disclosure is intended to
cover such an apparatus or method practiced using other structure, functionality, or
structure and functionality in addition to or other than the various aspects of the
disclosure set forth. It should be understood that any aspect of the disclosure disclosed

may be embodied by one or more elements of a claim.

[0025] The word “exemplary” is used herein to mean “serving as an example,
instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily

to be construed as preferred or advantageous over other aspects.

[0026] Although particular aspects are described herein, many variations and
permutations of these aspects fall within the scope of the disclosure. Although some
benefits and advantages of the preferred aspects are mentioned, the scope of the
disclosure is not intended to be limited to particular benefits, uses or objectives. Rather,
aspects of the disclosure are intended to be broadly applicable to different technologies,
system configurations, networks and protocols, some of which are illustrated by way of
example in the figures and in the following description of the preferred aspects. The
detailed description and drawings are merely illustrative of the disclosure rather than
limiting, the scope of the disclosure being defined by the appended claims and

equivalents thereof.

AN EXAMPLE NEURAL SYSTEM, TRAINING AND OPERATION

[0027] FIGURE 1 illustrates an example artificial neural system 100 with multiple
levels of neurons in accordance with certain aspects of the present disclosure. The
neural system 100 may have a level of neurons 102 connected to another level of
neurons 106 through a network of synaptic connections 104 (i.e., feed-forward
connections). For simplicity, only two levels of neurons are illustrated in FIGURE 1,
although fewer or more levels of neurons may exist in a neural system. It should be
noted that some of the neurons may connect to other neurons of the same layer through
lateral connections. Furthermore, some of the neurons may connect back to a neuron of

a previous layer through feedback connections.
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[0028] As illustrated in FIGURE 1, each neuron in the level 102 may receive an
input signal 108 that may be generated by neurons of a previous level (not shown in
FIGURE 1). The signal 108 may represent an input current of the level 102 neuron.
This current may be accumulated on the neuron membrane to charge a membrane
potential. When the membrane potential reaches its threshold value, the neuron may
fire and generate an output spike to be transferred to the next level of neurons (e.g., the
level 106). In some modeling approaches, the neuron may continuously transfer a
signal to the next level of neurons. This signal is typically a function of the membrane
potential. Such behavior can be emulated or simulated in hardware and/or software,

including analog and digital implementations such as those described below.

[0029] In biological neurons, the output spike generated when a neuron fires is
referred to as an action potential. This electrical signal is a relatively rapid, transient,
nerve impulse, having an amplitude of roughly 100 mV and a duration of about 1 ms.

In a particular embodiment of a neural system having a series of connected neurons
(e.g., the transfer of spikes from one level of neurons to another in FIGURE 1), every
action potential has basically the same amplitude and duration, and thus, the information
in the signal may be represented only by the frequency and number of spikes, or the
time of spikes, rather than by the amplitude. The information carried by an action
potential may be determined by the spike, the neuron that spiked, and the time of the
spike relative to other spike or spikes. The importance of the spike may be determined

by a weight applied to a connection between neurons, as explained below.

[0030] The transfer of spikes from one level of neurons to another may be achieved
through the network of synaptic connections (or simply “synapses’) 104, as illustrated
in FIGURE 1. Relative to the synapses 104, neurons of level 102 may be considered
presynaptic neurons and neurons of level 106 may be considered postsynaptic neurons.
The synapses 104 may receive output signals (i.e., spikes) from the level 102 neurons

and scale those signals according to adjustable synaptic weights wl(i’iﬂ),. e wg’iﬂ)

where P is a total number of synaptic connections between the neurons of levels 102
and 106 and 1 is an indicator of the neuron level. In the example of FIGURE 1, 1
represents neuron level 102 and i+1 represents neuron level 106. Further, the scaled
signals may be combined as an input signal of each neuron in the level 106. Every

neuron in the level 106 may generate output spikes 110 based on the corresponding
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combined input signal. The output spikes 110 may be transferred to another level of

neurons using another network of synaptic connections (not shown in FIGURE 1).

[0031] Biological synapses can mediate either excitatory or inhibitory
(hyperpolarizing) actions in postsynaptic neurons and can also serve to amplify
neuronal signals. Excitatory signals depolarize the membrane potential (i.e., increase
the membrane potential with respect to the resting potential). If enough excitatory
signals are received within a certain time period to depolarize the membrane potential
above a threshold, an action potential occurs in the postsynaptic neuron. In contrast,
inhibitory signals generally hyperpolarize (i.c., lower) the membrane potential.
Inhibitory signals, if strong enough, can counteract the sum of excitatory signals and
prevent the membrane potential from reaching a threshold. In addition to counteracting
synaptic excitation, synaptic inhibition can exert powerful control over spontancously
active neurons. A spontancously active neuron refers to a neuron that spikes without
further input, for example due to its dynamics or a feedback. By suppressing the
spontancous generation of action potentials in these neurons, synaptic inhibition can
shape the pattern of firing in a neuron, which is generally referred to as sculpturing.
The various synapses 104 may act as any combination of excitatory or inhibitory

synapses, depending on the behavior desired.

[0032] The neural system 100 may be emulated by a general purpose processor, a
digital signal processor (DSP), an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable logic device (PLD), discrete
gate or transistor logic, discrete hardware components, a software module executed by a
processor, or any combination therecof. The neural system 100 may be utilized in a large
range of applications, such as image and pattern recognition, machine learning, motor
control, and alike. Each neuron in the neural system 100 may be implemented as a
neuron circuit. The neuron membrane charged to the threshold value initiating the
output spike may be implemented, for example, as a capacitor that integrates an

electrical current flowing through it.

[0033] In an aspect, the capacitor may be eliminated as the electrical current
integrating device of the neuron circuit, and a smaller memristor element may be used
in its place. This approach may be applied in neuron circuits, as well as in various other

applications where bulky capacitors are utilized as electrical current integrators. In
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addition, each of the synapses 104 may be implemented based on a memristor element,
where synaptic weight changes may relate to changes of the memristor resistance. With
nanometer feature-sized memristors, the area of a neuron circuit and synapses may be
substantially reduced, which may make implementation of a large-scale neural system

hardware implementation more practical.

[0034] Functionality of a neural processor that emulates the neural system 100 may
depend on weights of synaptic connections, which may control strengths of connections
between neurons. The synaptic weights may be stored in a non-volatile memory in
order to preserve functionality of the processor after being powered down. In an aspect,
the synaptic weight memory may be implemented on a separate external chip from the
main neural processor chip. The synaptic weight memory may be packaged separately
from the neural processor chip as a replaceable memory card. This may provide diverse
functionalities to the neural processor, where a particular functionality may be based on

synaptic weights stored in a memory card currently attached to the neural processor.

[0035] FIGURE 2 illustrates an exemplary diagram 200 of a processing unit (e.g., a
neuron or neuron circuit) 202 of a computational network (e.g., a neural system or a
neural network) in accordance with certain aspects of the present disclosure. For
example, the neuron 202 may correspond to any of the neurons of levels 102 and 106
from FIGURE 1. The neuron 202 may receive multiple input signals 204,-204y, which
may be signals external to the neural system, or signals generated by other neurons of
the same neural system, or both. The input signal may be a current, a conductance, a
voltage, a real-valued, and/or a complex-valued. The input signal may comprise a
numerical value with a fixed-point or a floating-point representation. These input
signals may be delivered to the neuron 202 through synaptic connections that scale the
signals according to adjustable synaptic weights 206,-206x5 (W1.-Wy), where N may be a

total number of input connections of the neuron 202.

[0036] The neuron 202 may combine the scaled input signals and use the combined
scaled inputs to generate an output signal 208 (i.e., a signal Y). The output signal 208
may be a current, a conductance, a voltage, a real-valued and/or a complex-valued. The
output signal may be a numerical value with a fixed-point or a floating-point

representation. The output signal 208 may be then transferred as an input signal to other
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neurons of the same neural system, or as an input signal to the same neuron 202, or as

an output of the neural system.

[0037] The processing unit (neuron) 202 may be emulated by an electrical circuit,
and its input and output connections may be emulated by electrical connections with
synaptic circuits. The processing unit 202 and its input and output connections may
also be emulated by a software code. The processing unit 202 may also be emulated by
an electric circuit, whereas its input and output connections may be emulated by a
software code. In an aspect, the processing unit 202 in the computational network may
be an analog electrical circuit. In another aspect, the processing unit 202 may be a
digital electrical circuit. In yet another aspect, the processing unit 202 may be a mixed-
signal electrical circuit with both analog and digital components. The computational
network may include processing units in any of the aforementioned forms. The
computational network (neural system or neural network) using such processing units
may be utilized in a large range of applications, such as image and pattern recognition,

machine learning, motor control, and the like.

[0038] During the course of training a neural network, synaptic weights (e.g., the
weights w1 i) from FIGURE 1 and/or the weights 206,-206x from

FIGURE 2) may be initialized with random values and increased or decreased according
to a learning rule. Those skilled in the art will appreciate that examples of the learning
rule include, but are not limited to the spike-timing-dependent plasticity (STDP)
learning rule, the Hebb rule, the Oja rule, the Bienenstock-Copper-Munro (BCM) rule,
etc. In certain aspects, the weights may settle or converge to one of two values (i.e., a
bimodal distribution of weights). This effect can be utilized to reduce the number of
bits for each synaptic weight, increase the speed of reading and writing from/to a
memory storing the synaptic weights, and to reduce power and/or processor

consumption of the synaptic memory.

Synapse Type

[0039] In hardware and software models of neural networks, the processing of
synapse related functions can be based on synaptic type. Synapse types may be non-
plastic synapses (no changes of weight and delay), plastic synapses (weight may
change), structural delay plastic synapses (weight and delay may change), fully plastic
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synapses (weight, delay and connectivity may change), and variations thereupon (e.g.,
delay may change, but no change in weight or connectivity). The advantage of multiple
types is that processing can be subdivided. For example, non-plastic synapses may not
use plasticity functions to be executed (or waiting for such functions to complete).
Similarly, delay and weight plasticity may be subdivided into operations that may
operate together or separately, in sequence or in parallel. Different types of synapses
may have different lookup tables or formulas and parameters for each of the different
plasticity types that apply. Thus, the methods would access the relevant tables,

formulas, or parameters for the synapse’s type.

[0040] There are further implications of the fact that spike-timing dependent
structural plasticity may be executed independently of synaptic plasticity. Structural
plasticity may be executed even if there is no change to weight magnitude (e.g., if the
weight has reached a minimum or maximum value, or it is not changed due to some
other reason) s structural plasticity (i.e., an amount of delay change) may be a direct
function of pre-post spike time difference. Alternatively, structural plasticity may be set
as a function of the weight change amount or based on conditions relating to bounds of
the weights or weight changes. For example, a synapse delay may change only when a
weight change occurs or if weights reach zero but not if they are at a maximum value.
However, it may be advantageous to have independent functions so that these processes

can be parallelized reducing the number and overlap of memory accesses.

DETERMINATION OF SYNAPTIC PLASTICITY

[0041] Neuroplasticity (or simply “plasticity”) is the capacity of neurons and neural
networks in the brain to change their synaptic connections and behavior in response to
new information, sensory stimulation, development, damage, or dysfunction. Plasticity
is important to learning and memory in biology, as well as for computational
neuroscience and neural networks. Various forms of plasticity have been studied, such
as synaptic plasticity (e.g., according to the Hebbian theory), spike-timing-dependent
plasticity (STDP), non-synaptic plasticity, activity-dependent plasticity, structural

plasticity and homeostatic plasticity.

[0042] STDP is a learning process that adjusts the strength of synaptic connections
between neurons. The connection strengths are adjusted based on the relative timing of

a particular neuron’s output and received input spikes (i.e., action potentials). Under
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the STDP process, long-term potentiation (LTP) may occur if an input spike to a certain
neuron tends, on average, to occur immediately before that neuron's output spike. Then,
that particular input is made somewhat stronger. On the other hand, long-term
depression (LTD) may occur if an input spike tends, on average, to occur immediately
after an output spike. Then, that particular input is made somewhat weaker, and hence
the name "spike-timing-dependent plasticity." Consequently, inputs that might be the
cause of the postsynaptic neuron's excitation are made even more likely to contribute in
the future, whereas inputs that are not the cause of the postsynaptic spike are made less
likely to contribute in the future. The process continues until a subset of the initial set
of connections remains, while the influence of all others is reduced to an insignificant

level.

[0043] Because a neuron generally produces an output spike when many of its
inputs occur within a brief period (i.c., being cumulative sufficient to cause the output),
the subset of inputs that typically remains includes those that tended to be correlated in
time. In addition, because the inputs that occur before the output spike are
strengthened, the inputs that provide the earliest sufficiently cumulative indication of

correlation will eventually become the final input to the neuron.

[0044] The STDP learning rule may effectively adapt a synaptic weight of a synapse
connecting a presynaptic neuron to a postsynaptic neuron as a function of time

difference between spike time 7, of the presynaptic neuron and spike time ¢, of the

postsynaptic neuron (i.e., t =¢,,, —¢,,). Atypical formulation of the STDP is to

increase the synaptic weight (i.e., potentiate the synapse) if the time difference is
positive (the presynaptic neuron fires before the postsynaptic neuron), and decrease the
synaptic weight (i.e., depress the synapse) if the time difference is negative (the

postsynaptic neuron fires before the presynaptic neuron).

[0045] In the STDP process, a change of the synaptic weight over time may be

typically achieved using an exponential decay, as given by:

t/k

—t/k

a.e "+ u,t>0

Aw(t)z{ ‘ e (1)
ae'“,t<0
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where k, and k_1sign(At)tsen(an are time constants for positive and negative time
difference, respectively, a, and a  are corresponding scaling magnitudes, and g is an

offset that may be applied to the positive time difference and/or the negative time

difference.

[0046] FIGURE 3 illustrates an exemplary diagram 300 of a synaptic weight change
as a function of relative timing of presynaptic and postsynaptic spikes in accordance
with the STDP. If a presynaptic neuron fires before a postsynaptic neuron, then a
corresponding synaptic weight may be increased, as illustrated in a portion 302 of the
graph 300. This weight increase can be referred to as an LTP of the synapse. It can be
observed from the graph portion 302 that the amount of LTP may decrease roughly
exponentially as a function of the difference between presynaptic and postsynaptic spike
times. The reverse order of firing may reduce the synaptic weight, as illustrated in a

portion 304 of the graph 300, causing an LTD of the synapse.

[0047] As illustrated in the graph 300 in FIGURE 3, a negative offset 4 may be
applied to the LTP (causal) portion 302 of the STDP graph. A point of cross-over 306

of the x-axis (y=0) may be configured to coincide with the maximum time lag for
considering correlation for causal inputs from layer i-1. In the case of a frame-based
input (i.e., an input that is in the form of a frame of a particular duration comprising

spikes or pulses), the offset value u can be computed to reflect the frame boundary. A

first input spike (pulse) in the frame may be considered to decay over time either as
modeled by a postsynaptic potential directly or in terms of the effect on neural state. If
a second input spike (pulse) in the frame is considered correlated or relevant to a
particular time frame, then the relevant times before and after the frame may be
separated at that time frame boundary and treated differently in plasticity terms by
offsetting one or more parts of the STDP curve such that the value in the relevant times
may be different (e.g., negative for greater than one frame and positive for less than one

frame). For example, the negative offset u may be set to offset LTP such that the curve

actually goes below zero at a pre-post time greater than the frame time and it is thus part

of LTD instead of LTP.

NEURON MODELS AND OPERATION
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[0048] There are some general principles for designing a useful spiking neuron
model. A good neuron model may have rich potential behavior in terms of two
computational regimes: coincidence detection and functional computation. Moreover,
a good neuron model should have two elements to allow temporal coding: arrival time
of inputs affects output time and coincidence detection can have a narrow time window.
Finally, to be computationally attractive, a good neuron model may have a closed-form
solution in continuous time and stable behavior including near attractors and saddle
points. In other words, a useful neuron model is one that is practical and that can be
used to model rich, realistic and biologically-consistent behaviors, as well as be used to

both engineer and reverse engineer neural circuits.

[0049] A neuron model may depend on events, such as an input arrival, output spike
or other event whether internal or external. To achieve a rich behavioral repertoire, a
state machine that can exhibit complex behaviors may be desired. If the occurrence of
an event itself, separate from the input contribution (if any), can influence the state
machine and constrain dynamics subsequent to the event, then the future state of the
system is not only a function of a state and input, but rather a function of a state, event,

and input.

[0050] In an aspect, a neuron » may be modeled as a spiking leaky-integrate-and-

fire neuron with a membrane voltage v, (t) governed by the following dynamics:

dv, (1)
dt

=av, (t)+ ﬁZWm’n Y, (t —-At,, ), (2)

where o and B are parameters, w, , wm,nis a synaptic weight for the synapse

connecting a presynaptic neuron m to a postsynaptic neuron #, and y (t) is the spiking

output of the neuron m that may be delayed by dendritic or axonal delay according to

At until arrival at the neuron #’s soma.

[0051] It should be noted that there is a delay from the time when sufficient input to
a postsynaptic neuron is established until the time when the postsynaptic neuron
actually fires. In a dynamic spiking neuron model, such as Izhikevich’s simple model, a

time delay may be incurred if there is a difference between a depolarization threshold
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v, and a peak spike voltage v For example, in the simple model, neuron soma

peak *
dynamics can be governed by the pair of differential equations for voltage and recovery,

1e.:

%z(k(v—vt)(v—vr)—u+l)/(7, (3)
du
— = alblv-v,)-u). *

where v 1s a membrane potential, # is a membrane recovery variable, & is a parameter
that describes time scale of the membrane potential v, a is a parameter that describes
time scale of the recovery variable u, b is a parameter that describes sensitivity of the
recovery variable u to the sub-threshold fluctuations of the membrane potential v, v, is
a membrane resting potential, / is a synaptic current, and C is a membrane’s
capacitance. In accordance with this model, the neuron is defined to spike

whenv>v ..

Hunzinger Cold Model

[0052] The Hunzinger Cold neuron model is a minimal dual-regime spiking linear
dynamical model that can reproduce a rich variety of neural behaviors. The model’s
one- or two-dimensional linear dynamics can have two regimes, wherein the time
constant (and coupling) can depend on the regime. In the sub-threshold regime, the
time constant, negative by convention, represents leaky channel dynamics generally
acting to return a cell to rest in a biologically-consistent linear fashion. The time
constant in the supra-threshold regime, positive by convention, reflects anti-leaky
channel dynamics generally driving a cell to spike while incurring latency in spike-

generation.

[0053] As illustrated in FIGURE 4, the dynamics of the model 400 may be divided
into two (or more) regimes. These regimes may be called the negative regime 402 (also
interchangeably referred to as the leaky-integrate-and-fire (LIF) regime, not to be
confused with the LIF neuron model) and the positive regime 404 (also interchangeably
referred to as the anti-leaky-integrate-and-fire (ALIF) regime, not to be confused with

the ALIF neuron model). In the negative regime 402, the state tends toward rest (v_) at
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the time of a future event. In this negative regime, the model generally exhibits
temporal input detection properties and other sub-threshold behavior. In the positive
regime 404, the state tends toward a spiking event (v,). In this positive regime, the
model exhibits computational properties, such as incurring a latency to spike depending

on subsequent input events. Formulation of dynamics in terms of events and separation

of the dynamics into these two regimes are fundamental characteristics of the model.

[0054] Linear dual-regime bi-dimensional dynamics (for states vand u ) may be

defined by convention as:

dv
TpZ:‘H'qp (%)
du
—T,—=u-+r 6
“ (6)

where g, and rare the linear transformation variables for coupling.

[0055] The symbol p is used herein to denote the dynamics regime with the

(I

convention to replace the symbol p with the sign “-” or “+” for the negative and

positive regimes, respectively, when discussing or expressing a relation for a specific

regime.

[0056] The model state is defined by a membrane potential (voltage) v and recovery
current . In basic form, the regime is essentially determined by the model state.
There are subtle, but important aspects of the precise and general definition, but for the

moment, consider the model to be in the positive regime 404 if the voltage v is above a

threshold (v, ) and otherwise in the negative regime 402.

[0057] The regime-dependent time constants include 7_which is the negative
regime time constant, and 7, which is the positive regime time constant. The recovery
current time constant 7, is typically independent of regime. For convenience, the
negative regime time constant 7 _is typically specified as a negative quantity to reflect

decay so that the same expression for voltage evolution may be used as for the positive

regime in which the exponent and 7, will generally be positive, as will be 7.
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[0058] The dynamics of the two state elements may be coupled at events by
transformations offsetting the states from their null-clines, where the transformation

variables are:
r=58(v+e) 8)

where &, ¢, f and v , v, are parameters. The two values for v ,are the base for
reference voltages for the two regimes. The parameter v_ is the base voltage for the
negative regime, and the membrane potential will generally decay toward v_ in the
negative regime. The parameter v, is the base voltage for the positive regime, and the

membrane potential will generally tend away from v, in the positive regime.

[0059] The null-clines for v and u are given by the negative of the transformation

variables g and r, respectively. The parameter 0 is a scale factor controlling the slope
of the unull-cline. The parameter ¢ is typically set equal to —v_. The parameter S is
a resistance value controlling the slope of the v null-clines in both regimes. The 7,

time-constant parameters control not only the exponential decays, but also the null-cline

slopes in each regime separately.

[0060] The model may be defined to spike when the voltage v reaches a value v .

Subsequently, the state may be reset at a reset event (which may be one and the same as

the spike event):
v="y 9)
u=u+Au (10)
where v_and Au are parameters. The reset voltage v_is typically set tov .

[0061] By a principle of momentary coupling, a closed form solution is possible not
only for state (and with a single exponential term), but also for the time to reach a

particular state. The close form state solutions are:
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v(t+At)=(v(t)+qp)e;—qp (11)
u(t+At)=(u(t)+ r)e_; —r (12)

[0062] Therefore, the model state may be updated only upon events, such as an
input (presynaptic spike) or output (postsynaptic spike). Operations may also be

performed at any particular time (whether or not there is input or output).

[0063] Moreover, by the momentary coupling principle, the time of a postsynaptic
spike may be anticipated so the time to reach a particular state may be determined in
advance without iterative techniques or Numerical Methods (e.g., the Euler numerical

method). Given a prior voltage state v, , the time delay until voltage state v, is reached

is given by:

Vf+qp

V0+qp

At=17,log (13)

[0064] If a spike is defined as occurring at the time the voltage state v reaches v,

then the closed-form solution for the amount of time, or relative delay, until a spike
occurs as measured from the time that the voltage is at a given state v is:
Ve + .
T, log =L i > v,

Aty = vtq, (14)

o0 otherwise

where V_is typically set to parameter v, , although other variations may be possible.

[0065] The above definitions of the model dynamics depend on whether the model
is in the positive or negative regime. As mentioned, the coupling and the regime p may
be computed upon events. For purposes of state propagation, the regime and coupling
(transformation) variables may be defined based on the state at the time of the last
(prior) event. For purposes of subsequently anticipating spike output time, the regime
and coupling variable may be defined based on the state at the time of the next (current)

cvent.



WO 2015/112262 PCT/US2014/068449
18

[0066] There are several possible implementations of the Cold model, and executing
the simulation, emulation or model in time. This includes, for example, event-update,
step-event update, and step-update modes. An event update is an update where states
are updated based on events or “event update” (at particular moments). A step update is
an update when the model is updated at intervals (e.g., 1ms). This does not necessarily
use iterative methods or Numerical methods. An event-based implementation is also
possible at a limited time resolution in a step-based simulator by only updating the

model if an event occurs at or between steps or by “step-event” update.
Optimizations for Operating a Neural Network

[0067] Neural networks may include multiple layers of neurons that may fire at
various times according to a neuron model and neuron state. As the population of
neurons in the network increases, the number of neurons spiking in the network
increases and in turn, the power consumed in operating the neural network likewise

increases.

[0068] Aspects of the present disclosure are directed to improving or even
optimizing a neural network. In some exemplary configuration, the improvements may
include operating a neural network at a reduced firing rate and/or operating with a
reduced set of model neurons. Such improvements may reduce power consumption and

improve scalability of the neural network among other benefits.

[0069] FIGURE 5 illustrates an example implementation 500 of operating a neural
network using a general-purpose processor 502 in accordance with certain aspects of the
present disclosure. Variables (neural signals), synaptic weights, system parameters
associated with a computational network (neural network), delays, and frequency bin
information may be stored in a memory block 504, while instructions executed at the
general-purpose processor 502 may be loaded from a program memory 506. In an
aspect of the present disclosure, the instructions loaded into the general-purpose

processor 502 may comprise code for selecting a neuron model based on a selected rate
bandwidth.

[0070] In another exemplary configuration, the general-purpose processor 502 may
comprise code for generating a first sparse set of non-zero decoding vectors, each

decoding vector being associated with a synapse between a first neuron layer and a
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second neuron layer. Further, in this exemplary configuration, the general-purpose
processor 502 may comprise code for implementing the neural network only with
selected model neurons in the first neuron layer associated with the non-zero decoding

vectors.

[0071] In yet another exemplary configuration, the general-purpose processor 502
may comprise code for selecting a neuron model with a membrane potential that
changes linearly based on an input current. Further, in this exemplary configuration,
the general-purpose processor 502 may comprise code for resetting the membrane

potential to a predetermined value when the membrane potential reaches a threshold.

[0072] FIGURE 6 illustrates an example implementation 600 of operating a neural
network where a memory 602 can be interfaced via an interconnection network 604
with individual (distributed) processing units (neural processors) 606 of a computational
network (neural network) in accordance with certain aspects of the present disclosure.
Variables (neural signals), synaptic weights, system parameters associated with the
computational network (neural network) delays, and/or frequency bin information may
be stored in the memory 602, and may be loaded from the memory 602 via
connection(s) of the interconnection network 604 into each processing unit (neural
processor) 606. In an aspect of the present disclosure, the processing unit 606 may be

configured to select a neuron model based on a selected rate bandwidth.

[0073] In another exemplary configuration, the processing unit 606 may be
configured to generate a first sparse set of non-zero decoding vectors, each decoding
vector being associated with a synapse between a first neuron layer and a second neuron
layer. Further, in this exemplary configuration, the processing unit 606 may be
configured to implement the neural network only with selected model neurons in the

first neuron layer associated with the non-zero decoding vectors.

[0074] In yet another exemplary configuration, the processing unit 606 may be
configured to select a neuron model with a membrane potential that changes linearly
based on an input current. Further, in this exemplary configuration, the processing unit
606 may be configured to resetting the membrane potential to a predetermined value

when the membrane potential reaches a threshold.
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[0075] FIGURE 7 illustrates an example implementation 700 of operating a neural
network. As illustrated in FIGURE 7, one memory bank 702 may be directly interfaced
with one processing unit 704 of a computational network (neural network). Each
memory bank 702 may store variables (neural signals), synaptic weights, and/or system
parameters associated with a corresponding processing unit (neural processor) 704
delays, and/or frequency bin information. In an aspect of the present disclosure, the
processing unit 704 may be configured to select a neuron model based on a selected rate

bandwidth.

[0076] In another exemplary configuration, the processing unit 704 may be
configured to generate a first sparse set of non-zero decoding vectors, each decoding
vector being associated with a synapse between a first neuron layer and a second neuron
layer. Further, in this exemplary configuration, the processing unit 704 may be
configured to implement the neural network only with selected model neurons in the

first neuron layer associated with the non-zero decoding vectors.

[0077] In yet another exemplary configuration, the processing unit 704 may be
configured to select a neuron model with a membrane potential that changes linearly
based on an input current. Further, in this exemplary configuration, the processing unit
704 may be configured to reset the membrane potential to a predetermined value when

the membrane potential reaches a threshold.

[0078] FIGURE 8 illustrates an example implementation of a neural network 800 in
accordance with certain aspects of the present disclosure. As illustrated in FIGURE 8,
the neural network 800 may have multiple local processing units 802 that may perform
various operations of methods described herein. Each local processing unit 802 may
comprise a local state memory 804 and a local parameter memory 806 that store
parameters of the neural network. In addition, the local processing unit 802 may have a
local (neuron) model program (LMP) memory 808 for storing a local model program, a
local learning program (LLP) memory 810 for storing a local learning program, and a
local connection memory 812. Furthermore, as illustrated in FIGURE 8, each local
processing unit 802 may be interfaced with a configuration processor unit 814 for
providing configurations for local memories of the local processing unit, and with a

routing unit 816 that provide routing between the local processing units 802.
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[0079] In one configuration, a neuron model is configured for selecting a rate
bandwidth based on a difference between a selected minimum firing rate at which the
neural network will operate and a selected maximum firing rate at which the neural
network will operate and/or selecting a neuron model based on the selected rate
bandwidth. The neuron model includes means for selecting a rate bandwidth and means
for selecting a neuron model. In one aspect, the means for selecting a bandwidth and/or
means for selecting a neuron model may be the general-purpose processor 502, program
memory 506, memory block 504, memory 602, interconnection network 604,
processing units 606, processing unit 704, local processing units 802, and or the routing
connection processing elements 816 configured to perform the functions recited. In
another configuration, the aforementioned means may be any module or any apparatus

configured to perform the functions recited by the aforementioned means.

[0080] In yet another configuration, a neuron model is configured for reducing a
number of model neurons in a neural network. The neuron model includes means for
generating a first sparse set of non-zero decoding vectors and means for implementing
the neural network. In one aspect, the generating means and/or implementing means
may be the general-purpose processor 502, program memory 506, memory block 504,
memory 602, interconnection network 604, processing units 606, processing unit 704,
local processing units 802, and or the routing connection processing elements 816
configured to perform the functions recited. In another configuration, the
aforementioned means may be any module or any apparatus configured to perform the

functions recited by the aforementioned means.

[0081] In still another configuration, a neuron model is configured to generate a
neural network. The neuron model includes means for selecting a neuron model with a
membrane potential that changes linearly based on an input current and means for
resetting the membrane potential to a predetermined value when the membrane potential
reaches a threshold. In one aspect, the selecting means and/or resetting means may be
the general-purpose processor 502, program memory 506, memory block 504, memory
602, interconnection network 604, processing units 606, processing unit 704, local
processing units 802, and or the routing connection processing elements 816 configured
to perform the functions recited. In another configuration, the aforementioned means
may be any module or any apparatus configured to perform the functions recited by the

aforementioned means.
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[0082] According to certain aspects of the present disclosure, each local processing
unit 802 may be configured to determine parameters of the neural network based upon
desired one or more functional features of the neural network, and develop the one or
more functional features towards the desired functional features as the determined

parameters are further adapted, tuned and updated.
Operating a Neural Network at a Reduced Firing Rate

[0083] Aspects of the present disclosure are directed to operating a neural network
at a reduced firing rate. Reducing the firing rate or achieving a low firing or spiking
rate in the neural network has numerous benefits including reduced power consumption.
This is especially so for hardware systems that are configured or even optimized for
event-based simulations. In addition, the reduced firing rate may reduce computational
complexity and improve scalability in terms of the size of the networks that may be run

on the hardware system.

[0084] FIGURE 9 is a block diagram illustrating an exemplary structure for a neural
network 900 in accordance with aspects of the present disclosure. Referring to FIGURE
9, the neural network 900 may have three layers, an input layer 902, a hidden layer 904,
and an output layer 906. Although only three layers are shown in the neural network
900, this is merely exemplary and for ease of illustration and explanation. Of course,

the neural network may be structured with additional or fewer layers.

[0085] Each of the layers of neural network may include one or more neurons,
which may be coupled together via synapses (908, 910) in an all-to-all configuration, an

all-to-one configuration or any other configuration.

[0086] The neurons of the input layer 902 (e.g., x0, ..., xD) may comprise nonlinear
spiking neurons, which may be configured, for example, to receive an analog input and
output a spike, which may be supplied to neurons of the hidden layer 904 via synapses
908. In some aspects, the synapses 908 may be configured with randomly initialized
weights. The randomly initialized weights may, for example, be provided from a
continuous random distribution. In other aspects, the weights for synapses 908 may be

differentially assigned such that the weights for each synapse are distinct.
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[0087] The hidden layer 904 may comprise one or more neurons 912a, 912b, ...,
912n (which maybe collectively referred to as neurons 912). The neurons 912 may, in
some aspects, comprise spiking neurons of a non-linear neuron model. For example, the
neurons of the hidden layer 904 may comprise Leaky Integrate and Fire (LIF) neurons,
quadratic integrate and Fire (QIF) neurons, Linear Threshold (LT) neurons, Cold
neurons, a map based neuron model, a differential equation based neuron model or the

like and/or a combination thereof.

[0088] The input data (e.g., input current /) may be encoded in the firing rates (or
neural response function) of the hidden layer neurons 904. The output layer 906, which
may comprise linear non-spiking neurons, may be configured to decode the firing rates
and output a linearly weighted sum of the firing rates of the hidden layer neurons 912.
The output weights (decoding vectors) may be analytically determined to beneficially
provide fast one-shot training. As such, one mechanism for improving/optimizing the
neural network may be realized by virtue of the controlling the firing rates of the

ncurons.

[0089] In one exemplary configuration, the neural network 900, which may for
example, be a Neural Engineering Framework (NEF) network, may be operated at low
or reduced firing rate according to a bounded error. The bounded error may comprise a
target maximum error (£). The target maximum error (£) may correspond to an error
tolerance threshold for achieving the transformation of analog inputs to spikes in
operating the neural network. For example, the target maximum error may be the

maximum allowed mean square error.

[0090] A rate bandwidth () may be selected based on the firing rate range. For

example, the rate bandwidth may be selected such that

max
"B <TNEF — Tmin (15)

where 7,4, 18 the maximum frequency of encoding and 7, 1s the minimum frequency of

encoding. The values of the 7, and 7,,,c may be predetermined or user defined.
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[0091] For a given value of 7, (rate minimum), a neuron model may be selected.
it is desirable to reduce the firing to be as close to 0 as possible. In some aspects, the

neuron model may be selected based on the following condition:

synaptic activity a(lo) < Tmin (16)

da(T)
dl

< 7B
I'>Io+1, (17)

where /; is an input current, a(/) is the synaptic activity (e.g., firing rate), /I is a spiking

threshold such that a(/)=0 when 7 < Iys. I is a function of the selected neuron model.

[0092] The neurons 912 of the hidden layer 904 may, for example, be configured in
accordance with a neuron model such as a Leaky Integrate and Fire (LIF) neuron model,
a quadratic integrate and Fire (QIF) model, a Linear Threshold (LT) neuron model, and

a Cold neuron Model, or the like.

[0093] The LIF neuron model may be expressed as follows:

!

4o . . .
o =~ e i
Lo

(18)

where Trc is a time constant, v is the membrane potential, v, is a reset value, and vy, is
threshold value.
[0094] The QIF neuron model may be expressed as follows:

dv

res =t ontl e
233 ( 1 9)

where Trc is a time constant, v is the membrane potential, v, is a reset value, and vy, is

threshold value.

[0095] The LT neuron model may be expressed as follows:

(20)
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where Trc is a time constant, v is the membrane potential, v, is a reset value, and vy, is

threshold value.

[0096] The neuron model may be selected such that the conditions specified in
Equation 16 and 17 are satisfied. By selecting a neuron model based on these
conditions and populating the hidden layer with neurons 912 configured according to

the selected neuron model, the neural network 900 may be operated at a low firing rate.

[0097] By way of example, the performance of the neural network using various
neuron models may be compared to identify a desired or even optimal model neuron for
the hidden layer neurons. In accordance with aspects of the present disclosure, a neuron
model and a rate bandwidth may be selected. For example, for the LT model the

synaptic activity may be given by:

on;

(21)

[0098] Accordingly, Equations 16 and 17 above are satisfied for any r5> 0 and

rmin=>0, with an input current /= vy; and time constant 7gc=20 ms.

[0099] In another example, the synaptic activity for the LIF model may be given by:

oy - & X ~ RN ¥
QS T oNR & "3 (22)

[00100] Accordingly, Equations 16 and 17 above are satisfied for 75=60; ;=5 with
non-standard model parameters (e.g., time constant 7zgc=400 ms as compared to the
standard time constant Trc=20 ms) . However, Equations 16 and 17 may not be

satisfied for 5 =60; 7, =5 with standard model parameters (i.e., Trc =20 ms).

[00101] In a further example, the synaptic activity for the QIF model may be
given by: m m
10007 = 5

el ) s T
B 1o €V e ST R

(23)
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[00102] As such, Equations 16 and 17 above are satisfied for 75 >100 and 7, > 5

with input current /y/=vy, and time constant 7gc =20 ms.

[00103] In one exemplary aspect, the neural network may be configured to operate

with a low firing rate as follows:

[00104] Select a range of neuron firing rates for the hidden neurons 912, 7, t0 rpax.
The values for 7, and r,. may be user defined or may be selected based on the input
and output signals of a function, such as their Nyquist rates (e.g. 7, > input signal

Nyquist rate), and target hardware parameters, such as tau step size.

[00105] Choose a rate range and rate bandwidth (7;), such that 7 < ryex - Fmin. In
some aspects, a large r may be chosen to meet this constraint and fits other factors,

such as parameter quantization for fixed point.

[00106] Sclect a neuron model that satisfies Equations 16 and 17 as specified above.
In one exemplary configuration, the neuron model may be the Linear Threshold neuron
model. Of course, QIF, LIF and other neuron models may also be selected. In some
aspects, computation, power, performance desires and available neuron models may
also serve as a basis for neuron model selection, for example, where multiple neurons

satisfy Equations 16 and 17.

[00107] Further, a set of parameters for the neuron model that satisfy Equations (16)
and (17) may be selected. In some aspects, this may occur using a parameter search
approach, for example. Additional criteria may further be specified for neural network
optimization. Alternatively, the set of parameters for the neuron model may be

determined using the solution spaces specified above or the like.

[00108] Model weights are determined based on the selected neuron model and set of
parameters to realize the function. In some aspects, a NEF procedure may determine

model weights.

[00109] In some aspects, the model performance may be checked against the targeted
performance. Further, the model parameters may be modified to improve performance,

while satisfying Equations 16 and 17.

Operating a Neural Network Using A Reduced Number of Model Neurons
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[00110] Once a neural model is detected, the neural network 900 may be improved
by reducing a set of model neurons 912 (are corresponding synapses). Operating the
neural network 900 with a reduced number of model neurons 912 may have significant
performance and cost benefits. For example, a reduced set of model neurons in a
neuronal network may improve storage capacity on hardware systems (e.g., more
neuron layers may be packed onto a hardware systems) and may decrease computational

complexity and power consumption.

[00111] In accordance with an exemplary aspect of the present disclosure, a reduced
set of model neurons (may be referred to as “effective” neurons) may be obtained by
generating a sparse (i.¢., having some zero values) set of decoding vectors ¢ (decoding
vectors ¢ may represent synaptic connection weights). In turn, the neural network 900
may be operated using only neurons with non-zero decoding vectors. That is, hidden
layer neurons (e.g., 912b, 912¢) coupled to the output layer 906 via a synaptic
connection (e.g., 910b, 910¢) with a zero weight may be removed such that the neural

network 900 may be operated using only the remaining neurons.

[00112] The sparse set of decoding vectors ¢ may be generated using regularization
techniques. Regularization techniques may reduce model complexity that may result in
overfitting and other problems. Accordingly, regularization techniques may reduce the
number of synaptic connections and/or neurons in a neural network. Regularization

results in fewer small values, instead increasing the number of zero values.

[00113] For example, in some aspects, the sparse set of decoding vectors ¢ may be
generated using least-squares optimization with L1 regularization (also known as
LASSO (least absolute shrinkage and selection operator) optimization) as follows:

argEy ey i —

- Y
i B YT
& (N1 SRZ Y SARTYRS 24
1

where ) is a regularization term (which is varied to meet performance targets) and ¥ is
an estimate of the output corresponding to the weighted sum of firing rates, which may

be supplied to the output layer 906 and is given by:

(25)
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where x is the input signal, a,(x) (i=1,...,N) is the neural response function and ¢ is the
decoding vector. Applying, L1 regularization, optimal decoding vectors may be
determined. In performing the L1 regularization, some of the decoding vectors ¢ or

synaptic connections may be zeroed out.
Method 1:

[00114] In one exemplary configuration, a reduced set of model neurons may be
determined by generating a neural network with N nodes in the hidden layer. In some

aspects, the neural network may be a NEF network or the like.

[00115] LASSO processing may generate a sparse-set of M (M < N) non-zero
decoding vectors. The neurons with non-zero decoding vectors may be labeled as
effective model neurons. The neural network may thus be operated with only the
effective model neurons. Accordingly, the neural network may be operated with a

reduced set of neurons and corresponding connections there between.
Method 2:

[00116] In a second exemplary configuration, a reduced set of model neurons may be
determined by generating M < N effective model neurons as described in Method 1. A
new layer may be generated with the new layer comprising the M effective model

neurons and a new set of N-M model neurons.

[00117] LASSO processing may generate a sparse-set (L <M < N') of non-zero
decoding vectors. The set of L neurons with non-zero decoding vectors may be labeled
as effective model neurons. The neural network may in turn be operated with only the
effective model neurons. Accordingly, the neural network may be operated with a

reduced set of neurons and corresponding interconnections.
Method 3:

[00118] In a further exemplary configuration, a reduced set of model neurons may be

determined by repeating Method 1 L times to generate a regularized committee of
neural networks with Z hidden layers comprising of M <N effective model neurons

cach. The committee of neural networks may be pooled to implement a neural network

comprising N* effective model neurons, where
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L
NEC — M, < N
,; (26)

Method 4:

[00119] In still a further exemplary configuration, a reduced set of model neurons

may be determined by performing LASSO processing on the set of N effective model

RC RC .
neurons from Method 3 to generate a sparse set M~ <N of decoding vectors. The

neuron network may be implemented with the new set of M* effective model neurons.

[00120] Although, the exemplary configurations described above utilize LASSO
regularization, L2 regularization or other regularization methods could also be used.
For example, in one aspect, L2 regularization may be used. In some aspects,

generating the sparse set of non-zero decoding vectors may further comprise setting

decoding vectors having small values (e.g., absolute value less than a threshold) to zero.

[00121] In some aspects, the regularization term (A) of Equation 24 may be selected
to reduce or even minimize the number of effective neurons for a given value of
expected desired performance. That is, the regularization term () may be selected for
example, based on an error rate, a number of neurons, other system and/or performance
consideration or metrics. For example, for Method 1, a performance target (e.g., in
terms of MSE (mean square error)) may be set and used to find the reduced number of
effective neurons to meet the desired level of performance target by varying A. The
error tolerance can be user selected, and then the regularization term can be set

accordingly.

[00122] In some aspects, a neural network (e.g., 900) including a reduced set of
model neurons (e.g., according to Methods 1-4 above) in hidden layer (e.g., 904) may
be operated at a low firing rate as described above, thereby producing a further

optimized neural network.

[00123] In some aspects of the present disclosure, a neural network may be generated
by selecting a neuron model (e.g., a spiking neuron model) having a membrane potential
that changes linearly with the input current and resetting the membrane potential when

it reaches a threshold.
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[00124] FIGURES 10A-D are exemplary diagrams illustrating reduced sets of model
neurons. FIGURE 10A illustrates a reduced set of model neurons generated according
to Method 1 described above. FIGURE 10A shows hidden layer 1002 of a neural
network including N neurons (e.g., 1004a, ..., 1004n, which may be referred to as
neurons 1004). The hidden layer 1002 may be configured similar to that of the hidden
layer 904 of FIGURE 9.

[00125] LASSO processing (L1) may be performed to estimate or learn the

postsynaptic weights represented by the decoding vectors (e.g., 1008). Applying the L1
regularization, some of the estimated or learned decoding vectors weights may be set to
zero, while the remainder may be set to a non-zero value. The decoding vectors having

a zero weight may be removed thereby generating a reduced set or more sparse set of

decoding vectors, which may be referred to as a sparse-set M <N non-zero decoding
vectors 1008a, ..., 1008m (which may be collectively referred to as non-zero decoding

vectors 1008).

[00126] In some aspects, the neurons associated with decoding vectors having a zero
weight are removed from the hidden layer 1002 to produce a modified hidden layer
1006. The M remaining hidden layer neurons (e.g., 1004a,..., 1004m) with non-zero
decoding vectors (e.g., 1008a,..., 1008m) may be labeled as effective model neurons
1004a,...1004m. In this way, a reduced set of M hidden layer neurons 1004 may be
realized. Accordingly, the neural network may be operated with the reduced set of

neurons 1006 and corresponding interconnections.

[00127] FIGURE 10B illustrates a reduced set of model neurons generated according
to Method 2 described above. FIGURE 10B shows a modified hidden layer 1006 of a
neural network including M effective model neurons generated according to Method 1
(and shown in FIGURE 10A) and a new set of N-M model neurons 1010. In some
aspects, the weights of the presynaptic connections for the M effective model neurons
(1006) may be fixed, while the weights of the presynaptic connections for new set of N-

M model neurons may be random.

[00128] LASSO processing (L1) may be performed on the combination of the M
effective model neurons (1006) and the new set of N-M model neurons (1010) to learn

decoding vector weights (e.g., 1008a). As discussed above with respect to FIGURE
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10A, some of the decoding vector weights may be zero and thus removed to thereby

generate a sparse-set of L (L <M < N') non-zero decoding vectors 1008.

[00129] Similarly, the hidden layer neurons having zero weight decoding vectors
may also be removed to produce a hidden layer 1012 including L neurons. The set of L
neurons with non-zero decoding vectors may be labeled as effective model neurons.

The neural network may, in turn, be operated with only the L effective model neurons in
the hidden layer 1012. Accordingly, the neural network may be operated with a

reduced set of neurons and corresponding connections there between.

[00130] FIGURE 10C illustrates a reduced set of model neurons generated according
to Method 3 described above. As shown in FIGURE 10C, a regularized committee of

neural networks includes hidden layers comprising M (M < N') effective model neurons
(1021, 1023, 1025) each generated according to Method 1 described above (and shown
in FIGURE 10A). The regularized committee of neural networks may be pooled to

implement a neural network comprising N*¢ effective model neurons 1030.

[00131] FIGURE 10D illustrates a reduced set of model neurons generated according
to Method 4 described above. As shown in FIGURE 10D, the set of N*¢ effective
model neurons 1030 generated according to Method 3 (and shown in FIGURE 10C)
may be further reduced by performing LASSO processing (L1) on the set of N*©

effective model neurons 1030 to produce a sparse set M TSN of decoding vectors
(1034). Accordingly, the neural network may be implemented with the new set of M*¢

effective model neurons 1032.

[00132] FIGURE 11 illustrates a method 1100 for selecting a neuron model with a
low firing rate for operating in a neural network. In block 1102, the process selects a
rate bandwidth based on a firing rate range. Furthermore, in block 1104, the process

selects a neuron model based on the selected rate bandwidth.

[00133] FIGURE 12 illustrates a method 1200 for selecting a reduced number of
model neurons in a neural network. In block 1202, the process generates a first sparse
set of non-zero decoding vectors. Each decoding vector is associated with a synapse

between a first neuron layer and a second neuron layer. Furthermore, in block 1204, the
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process implements the neural network only with selected model neurons in the first

neuron layer associated with the non-zero decoding vectors.

[00134] FIGURE 13 illustrates a method 1300 for generating a neural network. In
block 1302, the process selects a neuron model (e.g., a spiking neuron model). The
neuron model has a membrane potential that changes linearly based on an input current.
Furthermore, in block 1304, the process resets the membrane potential to a

predetermined value when the membrane potential reaches a threshold.

[00135] The various operations of methods described above may be performed by
any suitable means capable of performing the corresponding functions. The means may
include various hardware and/or software component(s) and/or module(s), including,
but not limited to, a circuit, an application specific integrated circuit (ASIC), or
processor. Generally, where there are operations illustrated in the figures, those
operations may have corresponding counterpart means-plus-function components with

similar numbering.

[00136] As used herein, the term “determining” encompasses a wide variety of
actions. For example, “determining” may include calculating, computing, processing,
deriving, investigating, looking up (¢.g., looking up in a table, a database or another data
structure), ascertaining and the like. Additionally, “determining” may include receiving
(e.g., receiving information), accessing (e.g., accessing data in a memory) and the like.
Furthermore, “determining” may include resolving, selecting, choosing, establishing
and the like.

[00137] As used herein, a phrase referring to “at least one of” a list of items refers to
any combination of those items, including single members. As an example, “at least

one of* a, b, or ¢” is intended to cover: a, b, ¢, a-b, a-c, b-¢, and a-b-c.

[00138] The various illustrative logical blocks, modules and circuits described in
connection with the present disclosure may be implemented or performed with a general
purpose processor, a digital signal processor (DSP), an application specific integrated
circuit (ASIC), a field programmable gate array signal (FPGA) or other programmable
logic device (PLD), discrete gate or transistor logic, discrete hardware components or
any combination thereof designed to perform the functions described herein. A general-

purpose processor may be a microprocessor, but in the alternative, the processor may be
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any commercially available processor, controller, microcontroller or state machine. A
processor may also be implemented as a combination of computing devices, ¢.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or

more microprocessors in conjunction with a DSP core, or any other such configuration.

[00139] The steps of a method or algorithm described in connection with the present
disclosure may be embodied directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module may reside in any form
of storage medium that is known in the art. Some examples of storage media that may
be used include random access memory (RAM), read only memory (ROM), flash
memory, erasable programmable read-only memory (EPROM), electrically erasable
programmable read-only memory (EEPROM), registers, a hard disk, a removable disk,
a CD-ROM and so forth. A software module may comprise a single instruction, or
many instructions, and may be distributed over several different code segments, among
different programs, and across multiple storage media. A storage medium may be
coupled to a processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be

integral to the processor.

[00140] The methods disclosed herein comprise one or more steps or actions for
achieving the described method. The method steps and/or actions may be interchanged
with one another without departing from the scope of the claims. In other words, unless
a specific order of steps or actions is specified, the order and/or use of specific steps

and/or actions may be modified without departing from the scope of the claims.

[00141] The functions described may be implemented in hardware, software,
firmware, or any combination thereof. If implemented in hardware, an example
hardware configuration may comprise a processing system in a device. The processing
system may be implemented with a bus architecture. The bus may include any number
of interconnecting buses and bridges depending on the specific application of the
processing system and the overall design constraints. The bus may link together various
circuits including a processor, machine-readable media, and a bus interface. The bus
interface may be used to connect a network adapter, among other things, to the
processing system via the bus. The network adapter may be used to implement signal

processing functions. For certain aspects, a user interface (e.g., keypad, display, mouse,
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joystick, etc.) may also be connected to the bus. The bus may also link various other
circuits such as timing sources, peripherals, voltage regulators, power management
circuits, and the like, which are well known in the art, and therefore, will not be

described any further.

[00142] The processor may be responsible for managing the bus and general
processing, including the execution of software stored on the machine-readable media.
The processor may be implemented with one or more general-purpose and/or special-
purpose processors. Examples include microprocessors, microcontrollers, DSP
processors, and other circuitry that can execute software. Software shall be construed
broadly to mean instructions, data, or any combination thereof, whether referred to as
software, firmware, middleware, microcode, hardware description language, or
otherwise. Machine-readable media may include, by way of example, random access
memory (RAM), flash memory, read only memory (ROM), programmable read-only
memory (PROM), erasable programmable read-only memory (EPROM), electrically
erasable programmable Read-only memory (EEPROM), registers, magnetic disks,
optical disks, hard drives, or any other suitable storage medium, or any combination
thereof. The machine-readable media may be embodied in a computer-program

product. The computer-program product may comprise packaging materials.

[00143] In a hardware implementation, the machine-readable media may be part of
the processing system separate from the processor. However, as those skilled in the art
will readily appreciate, the machine-readable media, or any portion thereof, may be
external to the processing system. By way of example, the machine-readable media
may include a transmission line, a carrier wave modulated by data, and/or a computer
product separate from the device, all which may be accessed by the processor through
the bus interface. Alternatively, or in addition, the machine-readable media, or any
portion thereof, may be integrated into the processor, such as the case may be with
cache and/or general register files. Although the various components discussed may be
described as having a specific location, such as a local component, they may also be
configured in various ways, such as certain components being configured as part of a

distributed computing system.

[00144] The processing system may be configured as a general-purpose processing

system with one or more microprocessors providing the processor functionality and
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external memory providing at least a portion of the machine-readable media, all linked
together with other supporting circuitry through an external bus architecture.
Alternatively, the processing system may comprise one or more neuromorphic
processors for implementing the neuron models and models of neural systems described
herein. As another alternative, the processing system may be implemented with an
application specific integrated circuit (ASIC) with the processor, the bus interface, the
user interface, supporting circuitry, and at least a portion of the machine-readable media
integrated into a single chip, or with one or more field programmable gate arrays
(FPGAs), programmable logic devices (PLDs), controllers, state machines, gated logic,
discrete hardware components, or any other suitable circuitry, or any combination of
circuits that can perform the various functionality described throughout this disclosure.
Those skilled in the art will recognize how best to implement the described functionality
for the processing system depending on the particular application and the overall design

constraints imposed on the overall system.

[00145] The machine-readable media may comprise a number of software modules.
The software modules include instructions that, when executed by the processor, cause
the processing system to perform various functions. The software modules may include
a transmission module and a receiving module. Each software module may reside in a
single storage device or be distributed across multiple storage devices. By way of
example, a software module may be loaded into RAM from a hard drive when a
triggering event occurs. During execution of the software module, the processor may
load some of the instructions into cache to increase access speed. One or more cache
lines may then be loaded into a general register file for execution by the processor.
When referring to the functionality of a software module below, it will be understood
that such functionality is implemented by the processor when executing instructions

from that software module.

[00146] If implemented in software, the functions may be stored or transmitted over
as one or more instructions or code on a computer-readable medium. Computer-
readable media include both computer storage media and communication media
including any medium that facilitates transfer of a computer program from one place to
another. A storage medium may be any available medium that can be accessed by a
computer. By way of example, and not limitation, such computer-readable media can

comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
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disk storage or other magnetic storage devices, or any other medium that can be used to
carry or store desired program code in the form of instructions or data structures and
that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if the software is transmitted from a website,
server, or other remote source using a coaxial cable, fiber optic cable, twisted pair,
digital subscriber line (DSL), or wireless technologies such as infrared (IR), radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. Disk and disc, as used herein, include compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk, and Blu-ray® disc where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in
some aspects computer-readable media may comprise non-transitory computer-readable
media (e.g., tangible media). In addition, for other aspects computer-readable media
may comprise transitory computer- readable media (e.g., a signal). Combinations of the

above should also be included within the scope of computer-readable media.

[00147] Thus, certain aspects may comprise a computer program product for
performing the operations presented herein. For example, such a computer program
product may comprise a computer-readable medium having instructions stored (and/or
encoded) thereon, the instructions being executable by one or more processors to
perform the operations described herein. For certain aspects, the computer program

product may include packaging material.

[00148] Further, it should be appreciated that modules and/or other appropriate
means for performing the methods and techniques described herein can be downloaded
and/or otherwise obtained by a user terminal and/or base station as applicable. For
example, such a device can be coupled to a server to facilitate the transfer of means for
performing the methods described herein. Alternatively, various methods described
herein can be provided via storage means (¢.g., RAM, ROM, a physical storage medium
such as a compact disc (CD) or floppy disk, etc.), such that a user terminal and/or base
station can obtain the various methods upon coupling or providing the storage means to
the device. Moreover, any other suitable technique for providing the methods and

techniques described herein to a device can be utilized.
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[00149] It is to be understood that the claims are not limited to the precise
configuration and components illustrated above. Various modifications, changes and
variations may be made in the arrangement, operation and details of the methods and

apparatus described above without departing from the scope of the claims.
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CLAIMS
WHAT IS CLAIMED IS:
1. A method for selecting a reduced number of model neurons in a neural network,

comprising:

generating a first sparse set of non-zero decoding vectors, each decoding vector
being associated with a synapse between a first neuron layer and a second neuron layer;
and

implementing the neural network only with selected model neurons in the first

neuron layer associated with the non-zero decoding vectors.

2. The method of claim 1, in which the generating comprises performing a least

squares optimization.

3. The method of claim 2, in which the least squares optimization comprises least

absolute shrinkage and selection operator (LASSO) regularization.

4. The method of claim 2, further comprising selecting a regularization term to

reduce a number of the selected neurons for a desired level of performance.

5. The method of claim 1, further comprising:

updating the first neuron layer to include the selected model neurons and a new
set of input synaptic weights for remaining model neurons;

generating a second sparse set of non-zero decoding vectors, each decoding
vector being associated with a synapse between the updated first neuron layer and the
second neuron layer; and

implementing the neural network only with a new set of selected model neurons

in the updated first neuron layer associated with the non-zero decoding vectors.

6. The method of claim 5, further comprising:

repeating the updating and generating a plurality of times to create a pooled set
of updated first neuron layers; and

implementing the neural network only with the pooled set of updated first

neuron layers.
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7. The method of claim 6, further comprising:

generating a final sparse set of non-zero decoding vectors, each decoding vector
being associated with a synapse between the pooled set of updated neuron layers and the
second neuron layer; and

implementing the neural network only with model neurons in the pooled set of

updated neuron layers associated with the non-zero decoding vectors.

8. An apparatus for selecting a reduced number of model neurons in a neural
network, comprising:

a memory; and

at least one processor coupled to the memory, the at least one processor being
configured:

to generate a first sparse set of non-zero decoding vectors, each decoding vector
being associated with a synapse between a first neuron layer and a second neuron layer;
and

to implement the neural network only with selected model neurons in the first

neuron layer associated with the non-zero decoding vectors.

9. The apparatus of claim 8, in which the at least one processor is further
configured to generate the first sparse set of non-zero decoding vectors by performing a

least squares optimization.

10.  The apparatus of claim 9, in which the least squares optimization comprises least

absolute shrinkage and selection operator (LASSO) regularization.

11.  The apparatus of claim 9, in which the at least one processor is further
configured to select a regularization term to reduce a number of the selected neurons for

a desired level of performance.
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12.  The apparatus of claim 8, in which the at least one processor is further
configured:

to update the first neuron layer to include the selected model neurons and a new
set of input synaptic weights for remaining model neurons;

to generate a second sparse set of non-zero decoding vectors, each decoding
vector being associated with a synapse between the updated first neuron layer and the
second neuron layer; and

to implement the neural network only with a new set of selected model neurons

in the updated first neuron layer associated with the non-zero decoding vectors.

13.  The apparatus of claim 12, in which the at least one processor is further
configured:

to repeat the updating and generating a plurality of times to create a pooled set
of updated first neuron layers; and

to implement the neural network only with the pooled set of updated first neuron

layers.

14.  The apparatus of claim 13, in which the at least one processor is further
configured:

to generate a final sparse set of non-zero decoding vectors, each decoding vector
being associated with a synapse between the pooled set of updated neuron layers and the
second neuron layer; and

to implement the neural network only with model neurons in the pooled set of

updated neuron layers associated with the non-zero decoding vectors.

15. An apparatus for selecting a reduced number of model neurons in a neural
network, comprising:

means for generating a first sparse set of non-zero decoding vectors, each
decoding vector being associated with a synapse between a first neuron layer and a
second neuron layer; and

means for implementing the neural network only with selected model neurons in

the first neuron layer associated with the non-zero decoding vectors.
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16.  The apparatus of claim 15, in which the generating comprises performing a least
squares optimization.
17.  The apparatus of claim 16, in which the least squares optimization comprises

least absolute shrinkage and selection operator (LASSO) regularization.

18.  The apparatus of claim 16, further comprising means for selecting a
regularization term to reduce a number of the selected neurons for a desired level of

performance.

19.  The apparatus of claim 15, further comprising:

means for updating the first neuron layer to include the selected model neurons
and a new set of input synaptic weights for remaining model neurons;

means for generating a second sparse set of non-zero decoding vectors, each
decoding vector being associated with a synapse between the updated first neuron layer
and the second neuron layer; and

means for implementing the neural network only with a new set of selected
model neurons in the updated first neuron layer associated with the non-zero decoding

vectors.

20.  The apparatus of claim 19, further comprising:

means for repeating the updating and generating a plurality of times to create a
pooled set of updated first neuron layers; and

means for implementing the neural network only with the pooled set of updated

first neuron layers.

21.  The apparatus of claim 20, further comprising:

means for generating a final sparse set of non-zero decoding vectors, each
decoding vector being associated with a synapse between the pooled set of updated
neuron layers and the second neuron layer; and

means for implementing the neural network only with model neurons in the

pooled set of updated neuron layers associated with the non-zero decoding vectors.
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22. A computer program product for selecting a reduced number of model neurons
in a neural network, comprising:

a non-transitory computer readable medium having encoded thereon program
code, the program code comprising;:

program code to generate a first sparse set of non-zero decoding vectors, cach
decoding vector being associated with a synapse between a first neuron layer and a
second neuron layer; and

program code to implement the neural network only with selected model

neurons in the first neuron layer associated with the non-zero decoding vectors.

23.  The computer program product of claim 22, further comprising program code to
generate the first sparse set of non-zero decoding vectors by performing a least squares

optimization.

24.  The computer program product of claim 23, in which the least squares
optimization comprises least absolute shrinkage and selection operator (LASSO)

regularization.

25.  The computer program product of claim 23, further comprising program code to
select a regularization term to reduce a number of the selected neurons for a desired

level of performance.

26.  The computer program product of claim 22, further comprising:

program code to update the first neuron layer to include the selected model
neurons and a new set of input synaptic weights for remaining model neurons;

program code to generate a second sparse set of non-zero decoding vectors, each
decoding vector being associated with a synapse between the updated first neuron layer
and the second neuron layer; and

program code to implement the neural network only with a new set of selected
model neurons in the updated first neuron layer associated with the non-zero decoding

vectors.
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27.  The computer program product of claim 26, further comprising:

program code to repeat the updating and generating a plurality of times to create
a pooled set of updated first neuron layers; and

program code to implement the neural network only with the pooled set of

updated first neuron layers.

28. The computer program product of claim 27, further comprising:

program code to generate a final sparse set of non-zero decoding vectors, each
decoding vector being associated with a synapse between the pooled set of updated
neuron layers and the second neuron layer; and

program code to implement the neural network only with model neurons in the

pooled set of updated neuron layers associated with the non-zero decoding vectors.
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