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METHODS AND APPARATUS EMPLOYING FEC CODES WITH
PERMANENT INACTIVATION OF SYMBOLS FOR ENCODING AND
DECODING PROCESSES

CROSS REFERENCES
[0001] This application is a continuation-in-part of U.S. Patent Application No. 12/604,773,
filed October 23, 2009, naming M. Amin Shokrollahi, et al. and entitled “Method and

Apparatus Employing FEC Codes with Permanent Inactivation of Symbols for Encoding and
Decoding Processes” and further claims priority from the following provisional applications,
cach naming M. Amin Shokrollahi, et al. and each entitled “Method and Apparatus
Employing FEC Codes with Permanent Inactivation of Symbols for Encoding and Decoding
Processes”: U.S. Provisional Patent Application No. 61/353,910, filed June 11, 2010, U.S.
Provisional Patent Application No. 61/257,146, filed November 2, 2009, and U.S. Provisional
Patent Application No. 61/235,285, filed August 19, 2009. Each provisional and

nonprovisional application cited above is hereby incorporated by reference for all purposes.

[0002] The following references are herein incorporated by reference in their entirety for all

purposes:

[0003] 1) U.S. Patent No. 6,307,487 issued to Michael G. Luby entitled “Information

Additive Code Generator and Decoder for Communication Systems” (hereinafter “Luby I”);

[0004] 2) U.S. Patent No. 6,320,520 issued to Michael G. Luby entitled “Information
Additive Group Code Generator and Decoder for Communication Systems” (hereinafter

“Luby 1I”);

[0005] 3) U.S. Patent No. 7,068,729 issued to M. Amin Shokrollahi entitled “Multi-Stage

Code Generator and Decoder for Communication Systems” (hereinafter “Shokrollahi I7);

[0006] 4) U.S. Patent No. 6,856,263 issued to M. Amin Shokrollahi entitled “Systems and
Processes for Decoding a Chain Reaction Code Through Inactivation” (hereinafter

“Shokrollahi II);

[0007] 5) U.S. Patent No. 6,909,383, issued to M. Amin Shokrollahi entitled “Systematic
Encoding and Decoding of Chain Reaction Codes” (hereafter “Shokrollahi I11);
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[0008] 6) U. S. Patent Publication No. 2006/0280254 naming Michael G. Luby and M. Amin
Shokrollahi and entitled “In-Place Transformations with Applications to Encoding and

Decoding Various Classes of Codes” (hereafter “Luby I11);

[0009] 7) U.S. Patent Publication No. 2007/0195894 naming M. Amin Shokrollahi and
entitled “Multiple-Field Based Code Generator and Decoder for Communications Systems”

(hereafter “Shokrollahi IV”).

FIELD OF THE INVENTION

[0010] The present invention relates to encoding and decoding data in communications
systems and more specifically to communication systems that encode and decode data to

account for errors and gaps in communicated data in an efficient manner.

BACKGROUND OF THE INVENTION

[0011] Techniques for transmission of files between a sender and a recipient over a
communications channel are the subject of much literature. Preferably, a recipient desires to
receive an exact copy of data transmitted over a channel by a sender with some level of
certainty. Where the channel does not have perfect fidelity (which covers most all physically
realizable systems), one concern is how to deal with data lost or garbled in transmission.
Lost data (erasures) are often easier to deal with than corrupted data (errors) because the
recipient cannot always tell when corrupted data is data received in error. Many
error-correcting codes have been developed to correct for erasures and/or for errors.
Typically, the particular code used is chosen based on some information about the infidelities
of the channel through which the data is being transmitted and the nature of the data being
transmitted. For example, where the channel is known to have long periods of infidelity, a
burst error code might be best suited for that application. Where only short, infrequent errors

are expected a simple parity code might be best.

[0012] As used herein, “source data” refers to data that is available at one or more senders
and that a receiver is used to obtain, by recovery from a transmitted sequence with or without
errors and/or erasures, etc. As used herein, “encoded data” refers to data that is conveyed and
can be used to recover or obtain the source data. In a simple case, the encoded data is a copy
of the source data, but if the received encoded data differs (due to errors and/or erasures)
from the transmitted encoded data, in this simple case the source data might not be entirely
recoverable absent additional data about the source data. Transmission can be through space

or time. In a more complex case, the encoded data is generated based on source data in a



WO 2011/022555 PCT/US2010/046027
3

transformation and is transmitted from one or more senders to receivers. The encoding is
said to be “systematic” if the source data is found to be part of the encoded data. In a simple
example of systematic encoding, redundant information about the source data is appended to

the end of the source data to form the encoded data.

[0013] Also as used herein, “input data” refers to data that is present at an input of an FEC
(forward-error correcting) encoder apparatus or an FEC encoder module, component, step,
etc., (“FEC encoder”) and “output data” refers to data that is present at an output of an FEC
encoder. Correspondingly, output data would be expected to be present at an input of an FEC
decoder and the FEC decoder would be expected to output the input data, or a
correspondence thereof, based on the output data it processed. In some cases, the input data
is, or includes, the source data, and in some cases, the output data is, or includes, the encoded
data. In other cases, a sender device or sender program code may comprise more than one
FEC encoder, i.¢., source data is transformed into encoded data in a series of a plurality of
FEC encoders. Similarly at the receiver, there may be more than one FEC decoder applied to

generate source data from received encoded data.

[0014] Data can be thought of as partitioned into symbols. An encoder is a computer system,
device, electronic circuit, or the like, that generates encoded symbols or output symbols from
a sequence of source symbols or input symbols and a decoder is the counterpart that recovers
a sequence of source symbols or input symbols from received or recovered encoded symbols
or output symbols. The encoder and decoder are separated in time and/or space by the
channel and any received encoded symbols might not be exactly the same as corresponding
transmitted encoded symbols and they might not be received in exactly the same sequence as
they were transmitted. The “size” of a symbol can be measured in bits, whether or not the
symbol is actually broken into a bit stream, where a symbol has a size of M bits when the
symbol is selected from an alphabet of 2™ symbols. In many of the examples herein, symbols
are measured in bytes and codes might be over a field of 256 possibilities (there are 256
possible 8-bit patterns), but it should be understood that different units of data measurement

can be used and it is well-known to measure data in various ways.

[0015] Luby I describes the use of codes, such as chain reaction codes, to address error
correction in a compute-efficient, memory-efficient and bandwidth-efficient manner. One
property of the encoded symbols produced by a chain reaction encoder is that a receiver is

able to recover the original file as soon as enough encoded symbols have been received.
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Specifically, to recover the original K source symbols with a high probability, the receiver

needs approximately K+A encoded symbols.

[0016] The “absolute reception overhead” for a given situation is represented by the value A,
while a “relative reception overhead” can be calculated as the ratio A/K. The absolute
reception overhead is a measure of how much extra data needs to be received beyond the
information theoretic minimal amount of data, and it may depend on the reliability of the
decoder and may vary as a function of the number, K, of source symbols. Similarly, the
relative reception overhead, A/K, is a measure of how much extra data needs to be received
beyond the information theoretic minimal amount of data relative to the size of the source
data being recovered, and also may depend on the reliability of the decoder and may vary as a

function of the number K of source symbols.

[0017] Chain reaction codes are extremely useful for communication over a packet based
network. However, they can be fairly computationally intensive at times. A decoder might
be able to decode more often, or more casily, if the source symbols are encoded using a static
encoder prior to a dynamic encoder that encodes using a chain reaction or another rateless
code. Such decoders are shown in Shokrollahi I, for example. In examples shown there,
source symbols are input symbols to a static encoder that produces output symbols that are
input symbols to a dynamic encoder that produces output symbols that are the encoded
symbols, wherein the dynamic encoder is a rateless encoder that that can generate a number
of output symbols in a quantity that is not a fixed rate relative to the number of input
symbols. The static encoder might include more than one fixed rate encoder. For example a
static encoder might include a Hamming encoder, a low-density parity-check (“LDPC”)

encoder, a high-density parity-check (“HDPC”) encoder, and/or the like.

[0018] Chain reaction codes have a property that as some symbols are recovered at the
decoder from the received symbols, those symbols might be able to be used to recover
additional symbols, which in turn might be used to recover yet more symbols. Preferably, the
chain reaction of symbol solving at the decoder can continue such that all of the desired
symbols are recovered before the pool of received symbols is used up. Preferably, the
computational complexity of performing chain reaction encoding and decoding processes is

low.

[0019] A recovery process at the decoder might involve determining which symbols were

received, creating a matrix that would map the original input symbols to those encoded
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symbols that were received, then inverting the matrix and performing a matrix multiplication
of the inverted matrix and a vector of the received encoded symbols. In a typical system, a
brute force implementation of this can consume excessive computing effort and memory
requirements. Of course, for a particular set of received encoded symbols, it might be
impossible to recover all of the original input symbols, but even where it is possible, it might

be very computationally expensive to compute the result.

[0020] Shokrollahi II describes an approach called “inactivation”, wherein decoding occurs
in two steps. In the first step, the decoder takes stock of what received encoded symbols it
has available, what the matrix might look like and determines, at least approximately, a
sequence of decoding steps that would allow for the chain reaction process to complete given
the received encoded symbols. In the second step, the decoder runs the chain reaction
decoding according to the determined sequence of decoding steps. This can be done in a
memory-efficient manner (i.e., a manner that requires less memory storage for the operation

than a more memory-inefficient process).

[0021] In an inactivation approach, the first decoding step involves manipulating the matrix,
or its equivalent, to determine some number of input symbols that can be solved for and when
the determination stalls, designating one of the input symbols as an “inactivated symbol” and
continue the determination process assuming that the inactivated symbol is indeed solved,
then at the end, solving for the inactivated symbols using Gaussian elimination or some other
method to invert a matrix that is much smaller than the original decoding matrix. Using that
determination, the chain reaction sequence can be performed on the received encoded
symbols to arrive at the recovered input symbols, which can either be all of the original input

symbols or a suitable set of the original input symbols.

[0022] For some applications that impose tight constraints on the decoder, such as where the
decoder is in a low-power device with limited memory and computing power, or such as
when there are tight constraints on the allowable absolute or relative reception overhead,

improved methods might be indicated relative to the inactivation approach described above.

[0023] Also, methods for partitioning a file or large block of data into as few source blocks
as possible subject to a constraint on the smallest sub-symbol size, and then subject to this
split into as few sub-blocks as possible subject to a constraint on the maximum sub-block

size, might be useful.
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BRIEF SUMMARY OF THE INVENTION

[0024] According to one embodiment of an encoder according to aspects of the present
invention, an encoder, at, in or for a sender that transmits an ordered set of source symbols
from one or more senders to one or more receivers over a communications channel, wherein
the encoder generates data to be sent that includes a plurality of encoded symbols generated
from the source symbols. In a first step, intermediate symbols are generated from the source
symbols using a method that is invertible, i.e., there is also an inverse method for generating
the source symbols from the intermediate symbols. In another step, the intermediate symbols
are partitioned into a first set of intermediate symbols and a second set of intermediate
symbols, wherein there is at least one intermediate symbol in the first set of intermediate
symbols and there is at least one intermediate symbol in the second set of intermediate
symbols and at least one encoded symbol is generated from at least one intermediate symbol

from each of the two sets. In some variations, there are more than two sets.

[0025] In some embodiments, values for a first set and a second set of temporary symbols are
generated, wherein the values of the first set of temporary symbols depend on the values of
the first set of intermediate symbols and the values for the second set of temporary symbols
depend on the values of the second set of intermediate symbols. The values for encoded

symbols are generated from the first set and the second set of temporary symbols.

[0026] In some variations, the number of encoded symbols that can be generated is

independent of the number of source symbols.

[0027] Decoder embodiments are also provided. According to one embodiment of a decoder
according to aspects of the present invention, a decoder, at, in or for a receiver, receives
encoded symbols generated from intermediate symbols, wherein the intermediate symbols are
generated from source symbols using a method that is invertible, i.c., there is also an inverse
method for generating the source symbols from the intermediate symbols, and wherein at
least one of the intermediate symbols is designated a permanently inactivated symbol and
wherein there is at least another one of the intermediate symbols that is not among the
permanently inactivated symbols. The decoder decodes, from the received encoded symbols,
a set of intermediate symbols and the decoder takes into account at least one permanently
inactivated symbol, and generates source symbols from the decoded set of intermediate

symbols using the inverse method.
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[0028] In decoding, decoding steps are scheduled, setting aside the scheduling of
permanently inactivated symbols. The permanently inactivated symbols can be solved using
novel or conventional methods and then used in solving for the other intermediate symbols.
One approach to solving for the permanent inactivated symbols (and other on-the-fly
inactivations, if used) might be by applying Gaussian elimination to solve for the inactivated
symbols. Some of the remaining intermediate symbols are recovered based on the values of

the recovered permanently inactivated symbols and received encoded symbols.

[0029] In some variations of the decoding method, the permanently inactivated symbols
comprise the second set of intermediate symbols from the encoding embodiments. In some
variations of the decoding method, the permanently inactivated symbols comprise a subset of
the intermediate symbols wherein the corresponding encoding method is not a multi-stage
chain reaction code. Such encoding methods might include one or more of a Tornado code, a
Reed-Solomon code, a chain reaction code (examples described in Luby 1), or the like for the

subset of the intermediate symbols.

[0030] Intermediate symbols are used for encoding and decoding, wherein the method for
generating intermediate symbols from source symbols and the corresponding inverse method,
are indicated for a desired set of performance characteristics, such as decodability. In some
embodiments, the intermediate symbols comprise the source symbols. In some embodiments,
the intermediate symbols comprise the source symbols, along with redundant symbols that
are generated from the source symbols, where the redundant symbols might be chain reaction
symbols, LDPC symbols, HDPC symbols or other types of redundant symbols.

Alternatively, intermediate symbols could be based on prescribed relationships between
symbols, for example relationships between the intermediate symbols and the source
symbols, and additional LDPC and HDPC relationships among the intermediate symbols,
wherein a decoding method is used to generate the intermediate symbols from the source

symbols based on the prescribed relationships.

[0031] The methods and systems can be implemented by electronic circuits or by a
processing device that executes programming instructions and has the appropriate instruction

program code to implement encoding and/or decoding.

[0032] Numerous benefits are achieved by way of the present invention. For example, in a
specific embodiment, the computational expense of encoding data for transmission over a

channel is reduced. In another specific embodiment, the computational expense of decoding
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such data is reduced. In another specific embodiment, the absolute and relative reception
overhead is substantially reduced. Depending upon the embodiment, one or more of these
benefits may be achieved. These and other benefits are provided in more detail throughout

the present specification and more particularly below.

[0033] A further understanding of the nature and the advantages of the inventions disclosed
herein may be realized by reference to the remaining portions of the specification and the

attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] Fig. 1 is a block diagram of a communications system that uses multi-stage coding

that includes permanent inactivation, along with other features and elements.

[0035] Fig. 2 is a table of variables, arrays and the like, that are used in various other figures

herein.

[0036] Fig. 3 is a block diagram of a specific embodiment of the encoder shown in Fig. 1.
[0037] Fig. 4 is a block diagram showing the dynamic encoder of Fig. 3 in greater detail.
[0038] Fig. 5 is a flowchart illustrating a permanent inactivation (PI) encoding process.
[0039] Fig. 6 is a flowchart illustrating a dynamic encoding process.

[0040] Fig. 7 is a flowchart of an operation of calculating a weight for a symbol calculation.

[0041] Fig. 8 illustrates a table that might be stored in memory, usable to determine a degree

of a symbol based on a lookup value.
[0042] Fig. 9 shows a matrix used in an encoding or decoding process.

[0043] Fig. 10 shows an equation representing parts of the matrix shown in Fig. 9, for a

specific minimal polynomial.

[0044] Fig. 11 is a flowchart illustrating a process for setting up an array for use in encoding

or decoding.

[0045] Fig. 12 illustrates a matrix representation of a set of equations to be solved by a
decoder to recover an array, C(), representing recovered source symbols from an array, D(),
representing received encoded symbols, using a submatrix SE representing R static symbols

or equations known by the decoder.
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[0046] Fig. 13 illustrates a matrix resulting from row/column permutations of the matrix of

Fig. 12, using OTF inactivation.
[0047] Fig. 14 is a block diagram describing a process for generating the matrix in Fig. 12.

[0048] Fig. 15 illustrates a matrix representation of a set of equations to be solved by a
decoder to recover an array, C(), representing recovered source symbols from an array, D(),
representing received encoded symbols, using a submatrix SE and a submatrix corresponding

to permanently inactivated symbols.

[0049] Fig. 16 is a flowchart illustrating a process for generating an LT submatrix as might

be used in the matrix of Fig. 12 or the matrix of Fig. 15.

[0050] Fig. 17 is a flowchart illustrating a process for generating a PI submatrix as might be

used in the matrix of Fig. 15.

[0051] Fig. 18 is a block diagram of a matrix generator.

[0052] Fig. 19 is a flowchart illustrating a process for generating an SE submatrix.
[0053] Fig. 20 is a flowchart illustrating a process for generating a PI submatrix.

[0054] Fig. 21 is a flowchart illustrating a process for solving for recovered symbols in a

decoder.

[0055] Fig. 22 illustrates a matrix representation of a set of equations to be solved by a
decoder to recover an array, C(), representing recovered source symbols from an array, D(),

representing received encoded symbols, after permutations.

[0056] Fig. 23 illustrates a matrix representation of a set of equations to be solved by a

decoder and corresponding to the matrix shown in Fig. 26.
[0057] Fig. 24 illustrates a matrix representation usable as part of a decoding process.
[0058] Fig. 25 illustrates a matrix representation usable as another part of a decoding process.

[0059] Fig. 26 illustrates a matrix representation of a set of equations to be solved by a

decoder after partial solution.

[0060] Fig. 27 is a flowchart illustrating another process for solving for recovered symbols in

a decoder.
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[0061] Fig. 28 illustrates a matrix representation of a set of equations to be solved by a

decoder.

[0062] Fig. 29 illustrates a matrix representation of a set of equations to be solved by a

decoder.

[0063] Fig. 30 illustrates an example encoding system that might be implemented as
hardware modules, software modules, or portions of program code stored in a program store
and executed by a processor, possibly as a collective unit of code not separated as shown in

the figure.

[0064] Fig. 31 illustrates an example decoding system that might be implemented as
hardware modules, software modules, or portions of program code stored in a program store
and executed by a processor, possibly as a collective unit of code not separated as shown in

the figure.

[0065] Attached as Appendix A is a code specification for a specific embodiment of an
encoder/decoder system, an error correction scheme, and applications to reliable delivery of
data objects, sometimes with details of the present invention used, which also includes a
specification of how a systematic encoder/decoder might be used in object delivery transport.
It should be understood that the specific embodiments described in Appendix A are not
limiting examples of the invention and that some aspects of the invention might use the
teachings of Appendix A while others might not. It should also be understood that limiting
statements in Appendix A may be limiting as to requirements of specific embodiments and
such limiting statements might or might not pertain the claimed inventions and, therefore, the

claim language need not be limited by such limiting statements.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

[0066] Details for implementing portions of encoders and decoders that are referenced herein
are provided by Luby I, Luby II, Shokrollahi I, Shokrollahi II, Shokrollahi III, Luby III, and
Shokrollahi IV and are not entirely repeated here for the sake of brevity. The entire
disclosures of those are herein incorporated by reference for all purposes and it is to be
understood that the implementations therein are not required of the present invention, and
many other variations, modifications, or alternatives can also be used, unless otherwise

indicated.
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[0067] Multi-stage encoding, as described herein, encodes the source data in a plurality of
stages. Typically, but not always, a first stage adds a predetermined amount of redundancy to
the source data. A second stage then uses a chain reaction code, or the like, to produce
encoded symbols from the original source data and the redundant symbols computed by the
first stage of the encoding. In one specific embodiment, the received data is first decoded
using a chain reaction decoding process. If that process is not successful in recovering the

original data completely, a second decoding step can be applied.

[0068] Some of the embodiments taught herein can be applied to many other types of codes,
for example to the codes as described in the Internet Engineering Task Force (IETF) Request
for Comments (RFC) 5170 (hereinafter “IETF LDPC codes”), and to the codes described in
U.S. Patent Nos. 6,073,250, 6,081,909 and 6,163,870 (hereinafter “Tornado codes”),
resulting in improvements in reliability and/or CPU and/or memory performance for those

types of codes.

[0069] One advantage of some embodiments taught herein, is that fewer arithmetic
operations are necessary to produce encoded symbols, as compared to chain reaction coding
alone. Another advantage of some specific embodiments that include a first stage of
encoding and a second stage of encoding is that the first stage of encoding and the second
stage of encoding can be done at separate times and/or by separate devices, thus partitioning
the computational load and minimizing the overall computational load and also the memory
size and access pattern requirements. In embodiments of multi-stage encoding, redundant
symbols are generated from the input file during the first stage of encoding. In these
embodiments, in the second stage of encoding, encoded symbols are generated from the
combination of the input file and the redundant symbols. In some of these embodiments, the
encoded symbols can be generated as needed. In embodiments in which the second stage
comprises chain reaction encoding, each encoded symbol can be generated without regard to
how other encoded symbols are generated. Once generated, these encoded symbols can then
be placed into packets and transmitted to their destination, with each packet containing one or
more encoded symbols. Non-packetized transmission techniques can be used instead or as

well.

[0070] As used herein, the term “file” refers to any data that is stored at one or more sources
and is to be delivered as a unit to one or more destinations. Thus, a document, an image, and

a file from a file server or computer storage device, are all examples of “files” that can be
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delivered. Files can be of known size (such as a one megabyte image stored on a hard disk)
or can be of unknown size (such as a file taken from the output of a streaming source). Either
way, the file is a sequence of source symbols, where each source symbol has a position in the
file and a value. A “file” may also be used to refer to a short portion of a streaming source,
1.e., the stream of data may be partitioned into one second intervals, and the block of source
data within each such one second interval may be considered to be a “file”. As another
example, the blocks of data from a video streaming source may be further partitioned into
multiple parts based on priorities of that data defined for example by a video system that can
playout the video stream, and each part of each block may be considered to be a “file”. Thus,

the term “file” is used generally and is not intended to be extensively limiting.

[0071] As used herein, source symbols represent the data that is to be transmitted or
conveyed, and encoded symbols represent the data generated based on source symbols that is
conveyed over a communications network, or stored, to enable the reliable reception and/or
regeneration of the source symbols. Intermediate symbols represent symbols that are used or
generated during an intermediate step of the encoding or decoding processes, wherein
typically there is a method for generating intermediate symbols from source symbols and a
corresponding inverse method for generating the source symbols from the intermediate
symbols. Input symbols represent data that is input to one or more steps during the process of
encoding or decoding, and output symbols represent data that is output from one or more

steps during the process of encoding or decoding.

[0072] In many embodiments, these different types or labels of symbols can be the same or
comprised at least partially of other types of symbols, and in some examples the terms are
used interchangeably. In an example, suppose that a file to be transmitted is a text file of
1,000 characters, each of which is deemed a source symbol. If those 1,000 source symbols
are provided as is to an encoder, that in turn outputs encoded symbols that are transmitted, the
source symbols are also input symbols. However, in embodiments where the 1,000 source
symbols are in a first step converted to 1,000 (or more or fewer) intermediate symbols and
the intermediate symbols are provided to the encoder to generate encoded symbols in a
second step, the source symbols are the input symbols and the intermediate symbols are the
output symbols in the first step, and the intermediate symbols are the input symbols and the
encoded symbols are the output symbols in the second step, whereas the source symbols are
the overall input symbols to this two-step encoder and the encoded symbols are the overall

output symbols of this two-step encoder. If, in this example, the encoder is a systematic
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encoder, then the encoded symbols may comprise the source symbols together with repair
symbols generated from the intermediate symbols, whereas the intermediate symbols are
distinct from both the source symbols and the encoded symbols. If instead, in this example,
the encoder is a non-systematic encoder, then the intermediate symbols may comprise the
source symbols together with redundant symbols generated from the source symbols, using
for example an LDPC and/or HDPC encoder in the first step, whereas the encoded symbols

are distinct from both the source symbols and the intermediate symbols.

[0073] In other examples, there are more symbols and each symbol represents more than one
character. In either case, where there is a source-to-intermediate symbol conversion in a
transmitter, the receiver might have a corresponding intermediate-to-source symbol

conversion as the inverse.

[0074] Transmission is the process of transmitting data from one or more senders to one or
more recipients through a channel in order to deliver a file. A sender is also sometimes
referred to as the encoder. If one sender is connected to any number of recipients by a perfect
channel, the received data can be an exact copy of the source file, as all the data will be
received correctly. Here, we assume that the channel is not perfect, which is the case for
most real-world channels. Of the many channel imperfections, two imperfections of interest
are data erasure and data incompleteness (which can be treated as a special case of data
erasure). Data erasure occurs when the channel loses or drops data. Data incompleteness
occurs when a recipient does not start receiving data until some of the data has already passed
it by, the recipient stops receiving data before transmission ends, the recipient chooses to only
receive a portion of the transmitted data, and/or the recipient intermittently stops and starts
again receiving data. As an example of data incompleteness, a moving satellite sender might
be transmitting data representing a source file and start the transmission before a recipient is
in range. Once the recipient is in range, data can be received until the satellite moves out of
range, at which point the recipient can redirect its satellite dish (during which time it is not
receiving data) to start receiving the data about the same input file being transmitted by
another satellite that has moved into range. As should be apparent from reading this
description, data incompleteness is a special case of data erasure, since the recipient can treat
the data incompleteness (and the recipient has the same problems) as if the recipient was in
range the entire time, but the channel lost all the data up to the point where the recipient

started receiving data. Also, as is well known in communication systems design, detectable
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errors can be considered equivalent to erasures by simply dropping all data blocks or symbols

that have detectable errors.

[0075] In some communication systems, a recipient receives data generated by multiple
senders, or by one sender using multiple connections. For example, to speed up a download,
a recipient might simultaneously connect to more than one sender to transmit data concerning
the same file. As another example, in a multicast transmission, multiple multicast data
streams might be transmitted to allow recipients to connect to one or more of these streams to
match the aggregate transmission rate with the bandwidth of the channel connecting them to
the sender. In all such cases, a concern is to ensure that all transmitted data is of independent
use to a recipient, i.¢., that the multiple source data is not redundant among the streams, even
when the transmission rates are vastly different for the different streams, and when there are

arbitrary patterns of loss.

[0076] In general, a communication channel is that which connects the sender and the
recipient for data transmission. The communication channel could be a real-time channel,
where the channel moves data from the sender to the recipient as the channel gets the data, or
the communication channel might be a storage channel that stores some or all of the data in
its transit from the sender to the recipient. An example of the latter is disk storage or other
storage device. In that example, a program or device that generates data can be thought of as
the sender, transmitting the data to a storage device. The recipient is the program or device
that reads the data from the storage device. The mechanisms that the sender uses to get the
data onto the storage device, the storage device itself and the mechanisms that the recipient
uses to get the data from the storage device collectively form the channel. If there is a chance
that those mechanisms or the storage device can lose data, then that would be treated as data

erasure in the communication channel.

[0077] When the sender and recipient are separated by a communication channel in which
symbols can be erased, it is preferable not to transmit an exact copy of an input file, but
instead to transmit data generated from the input file that assists with recovery of erasures.
An encoder is a circuit, device, module or code segment that handles that task. One way of
viewing the operation of the encoder is that the encoder generates encoded symbols from
source symbols, where a sequence of source symbol values represent the input file. Each
source symbol would thus have a position, in the input file, and a value. A decoder is a

circuit, device, module or code segment that reconstructs the source symbols from the



WO 2011/022555 PCT/US2010/046027
15

encoded symbols received by the recipient. In multi-stage coding, the encoder and the

decoder are sometimes further divided into sub-modules each performing a different task.

[0078] In embodiments of multi-stage coding systems, the encoder and the decoder can be
further divided into sub-modules, each performing a different task. For instance, in some
embodiments, the encoder comprises what is referred to herein as a static encoder and a
dynamic encoder. As used herein, a “static encoder” is an encoder that generates a number of
redundant symbols from a set of source symbols, wherein the number of redundant symbols
is determined prior to encoding. When static encoding is used in a multi-stage coding
system, the combination of the source symbols and the redundant symbols generated from the
source symbols using a static encoder are often referred to as the intermediate symbols.
Examples of potential static encoding codes include Reed-Solomon codes, Tornado codes,
Hamming codes, LDPC codes such as the IETF LDPC codes, etc. The term “static decoder”

is used herein to refer to a decoder that can decode data that was encoded by a static encoder.

[0079] As used herein, a “dynamic encoder” is an encoder that generates encoded symbols
from a set of input symbols, where the number of possible encoded symbols is independent of
the number of input symbols, and where the number of encoded symbols to be generated
need not be fixed. Often in a multi-stage code, the input symbols are the intermediate
symbols generated using a static code and the encoded symbols are generated from
intermediate symbols using a dynamic encoder. One example of a dynamic encoder is a
chain reaction encoder, such as the encoders taught in Luby I and Luby II. The term
“dynamic decoder” is used herein to refer to a decoder that can decode data that was encoded

by a dynamic encoder.

[0080] In some embodiments, encoding that is multi-stage code and systematic uses a
decoding process applied to the source symbols to obtain the intermediate symbol values
based on the relationships defined by the static encoder among the intermediate symbols and
defined by the dynamic encoder between the intermediate symbols and the source symbols,
and then a dynamic encoder is used to generate additional encoded symbols, or repair
symbols, from the intermediate symbols. Similarly, a corresponding decoder has a decoding
process to receive encoded symbols and decode from them the intermediate symbol values
based on the relations defined by the static encoder among the intermediate symbols and

defined by the dynamic encoder between the intermediate symbols and the received encoded
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symbols, and then a dynamic encoder is used to generate any missing source symbols from

the intermediate symbols.

[0081] Embodiments of multi-stage coding need not be limited to any particular type of
symbol. Typically, the values for the symbols are selected from an alphabet of 2™ symbols
for some positive integer M. In such cases, a source symbol can be represented by a
sequence of M bits of data from the input file. The value of M is often determined based on,
for example, the uses of the application, the communication channel, and/or the size of the
encoded symbols. Additionally, the size of an encoded symbol is often determined based on
the application, the channel, and/or the size of the source symbols. In some cases, the coding
process might be simplified if the encoded symbol values and the source symbol values were
the same size (i.c., representable by the same number of bits or selected from the same
alphabet). If that is the case, then the source symbol value size is limited when the encoded
symbol value size is limited. For example, it may be desired to put encoded symbols in
packets of limited size. If some data about a key associated with the encoded symbols were
to be transmitted in order to recover the key at the receiver, the encoded symbol would
preferably be small enough to accommodate, in one packet, the encoded symbol value and

the data about the key.

[0082] As an example, if an input file is a multiple megabyte file, the input file might be
broken into thousands, tens of thousands, or hundreds of thousands of source symbols with
each source symbol encoding thousands, hundreds, or only few bytes. As another example,
for a packet-based Internet channel, a packet with a payload of size of 1024 bytes might be
appropriate (a byte is 8 bits). In this example, assuming each packet contains one encoded
symbol and 8 bytes of auxiliary information, an encoded symbol size of 8128 bits

((1024 - 8) * 8) would be appropriate. Thus, the source symbol size could be chosen as

M = (1024 - 8) * §, or 8128 bits. As another example, some satellite systems use the MPEG
packet standard, where the payload of each packet comprises 188 bytes. In that example,
assuming each packet contains one encoded symbol and 4 bytes of auxiliary information, an
encoded symbol size of 1472 bits ((188 - 4) * 8), would be appropriate. Thus, the source
symbol size could be chosen as M = (188 - 4) * 8, or 1472 bits. In a general-purpose
communication system using multi-stage coding, the application-specific parameters, such as
the source symbol size (i.e., M, the number of bits encoded by a source symbol), might be

variables set by the application.
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[0083] Each encoded symbol has a value. In one preferred embodiment, which we consider
below, each encoded symbol also has associated therewith an identifier called its “key.”
Preferably, the key of each encoded symbol can be easily determined by the recipient to
allow the recipient to distinguish one encoded symbol from other encoded symbols.
Preferably, the key of an encoded symbol is distinct from the keys of all other encoded
symbols. There are various forms of keying discussed in previous art. For example, Luby |
describes various forms of keying that can be employed in embodiments of the present
invention. In other preferred embodiments, such as the one described in Appendix A, the key
for an encoded symbol is referred to as an “Encoded Symbol Identifier”, or “Encoding

Symbol Identifier”, or more simply the “ESI”.

[0084] Multi-stage coding is particularly useful where there is an expectation of data erasure
or where the recipient does not begin and end reception exactly when a transmission begins
and ends. The latter condition is referred to herein as “data incompleteness.” Regarding
erasure events, multi-stage coding shares many of the benefits of chain reaction coding taught
in Luby I. In particular, multi-stage encoded symbols are information additive, so any
suitable number of packets can be used to recover an input file to a desired degree of
accuracy. These conditions do not adversely affect the communication process when
multi-stage coding is used, because the encoded symbols generated with multi-stage coding
are information additive. For example, if a hundred packets are lost due to a burst of noise
causing data erasure, an extra hundred packets can be picked up after the burst to replace the
loss of the erased packets. If thousands of packets are lost because a receiver did not tune
into a transmitter when it began transmitting, the receiver could just pickup those thousands
of packets from any other period of transmission, or even from another transmitter. With
multi-stage coding, a receiver is not constrained to pickup any particular set of packets, so it
can receive some packets from one transmitter, switch to another transmitter, lose some
packets, miss the beginning or end of a given transmission and still recover an input file. The
ability to join and leave a transmission without receiver-transmitter coordination helps to

simplify the communication process.

[0085] In some embodiments, transmitting a file using multi-stage coding can include
generating, forming or extracting source symbols from an input file, computing redundant
symbols, encoding source and redundant symbols into one or more encoded symbols, where
cach encoded symbol is generated based on its key independently of all other encoded

symbols, and transmitting the encoded symbols to one or more recipients over a channel.
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Additionally, in some embodiments, receiving (and reconstructing) a copy of the input file
using multi-stage coding can include receiving some set or subset of encoded symbols from
one of more data streams, and decoding the source symbols from the values and keys of the

received encoded symbols.

Systematic Codes and Nonsystematic Codes

[0086] A systematic code is a code where the source symbols are among the encoded
symbols that can be transmitted. In this case, the encoded symbols are comprised of source
symbols and redundant symbols, also called repair symbols, generated from the source
symbols. A systematic code is preferable over a non-systematic code for many applications,
for a variety of reasons. For example, in a file delivery application, it is useful to be able to
start transmitting data in sequential order while the data is being used to generate repair data,
where the process of generating repair data can take some amount of time. As another
example, many applications prefer to send the original source data in sequential order in its
unmodified form to one channel, and to send repair data to another channel. One typical
reason for this is to support both legacy receivers that don’t incorporate FEC decoding while
at the same time providing a better experience to enhanced receivers that do incorporate FEC
decoding, wherein legacy receivers join only the source data channel and enhanced receivers

join both the source data channel and the repair data channel.

[0087] In these and related types of applications it can sometimes be the case that the loss
patterns and the fraction of loss among received source symbols by a receiver is quite
different than that experienced among received repair symbols. For example, when source
symbols are sent prior repair symbols, due to the bursty loss conditions of the channel, the
fraction and pattern of loss among source symbols can be quite different than the
corresponding fraction and pattern of loss among repair symbols, and the pattern of loss
among source symbols may be far from what might be typical than if the loss were uniformly
random. As another example, when the source data is sent on one channel and the repair data
on another channel, there might be quite different loss conditions on the two channels. Thus,
it is desirable to have a systematic FEC code that works well under different types of loss

conditions.

[0088] Although examples herein refer to systematic codes (where the output or encoded
symbols include the source or input symbols) or nonsystematic codes, the teachings herein

should be assumed to be applicable to both, unless otherwise indicated. Shokrollahi I11
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teaches methods to convert a non-systematic chain reaction code to a systematic code in such
a way that the robustness properties of the non-systematic code are maintained by the

systematic code so constructed.

[0089] In particular, using the methods taught in Shokrollahi III, the constructed systematic
code has the property that there is little differentiation in terms of recoverability by the
decoder between lost source symbols and lost repair symbols, i.¢., the decoding recovery
probability is essentially the same for a given amount of total loss almost independent of the
proportion of the loss among the source symbols compared to the proportion of the loss
among the repair symbols. Furthermore, the pattern of loss among the encoded symbols does
not significantly affect the decoding recovery probability. In comparison, for the
constructions of other systematic codes, such as those described for Tornado codes or for
IETF LDPC codes, there is in many cases a strong differentiation in terms of recoverability
by the decoder between lost source symbols and lost repair symbols, i.e., the decoding
recovery probability can vary widely for the same for a given amount of total loss depending
on the proportion of the loss among the source symbols compared to the proportion of the
loss among the repair symbols. Furthermore, the pattern of loss among the encoded symbols
can have a strong effect on the decoding recovery probability. The Tornado codes and IETF
LDPC codes have reasonably good recovery properties if the losses of encoded symbols are
uniformly random among all of the encoded symbols, but the recovery properties deteriorate
as the loss model deviates from uniform random loss. Thus, in this sense, the embodiments

taught in Shokrollahi III have advantages over other constructions of systematic codes.

[0090] For an FEC code with the property that there is a strong effect in terms of
recoverability by the decoder depending on the proportion of lost source symbols and lost
repair symbols, and depending on loss patterns, one approach to overcome this property when
it is applicable is to send the encoded symbols in a uniformly random order, i.c., the
combination of source and repair symbols are sent in uniformly random order, and thus the
source symbols are randomly interspersed among the repair symbols. Sending the encoded
symbols in random order has an advantage that whatever the channel loss model, whether the
losses are bursty or uniformly random or some other type of losses, the losses to the encoded
symbols are still random. However, as noted above, this approach is not desirable for some
applications, e.g., for applications where it is desirable to send the source symbols in
sequence before the repair symbols, or where the source symbols are sent on a different

channel than the repair symbols.
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[0091] In such cases, constructions of systematic codes where the pattern of loss among the
encoded symbols does not greatly affect the recovery properties of the decoder are desired

and some examples are provided herein.

[0092] As used herein, “random” and “pseudorandom” are often equivalent and/or
interchangeable and may depend on context. For example, random losses may refer to which
symbols are lost by a channel, which may truly be a random event, whereas a random
selection of symbol neighbors might actually be a repeatable pseudorandom selection
according to a nonrandom process, but that has the same or similar properties or behaviors as
would be the case with a truly random selection. Unless otherwise indicated explicitly or by

context, characterizing something as random is not meant to exclude pseudorandomness.

[0093] In one approach to such a systematic FEC encoder, source symbols are obtained by an
encoder that includes multiple encoder sub-blocks or subprocesses, one of which operates as
a decoder to generate intermediate symbols that are input symbols for another sub-block or
subprocess. The intermediate symbols are then applied to another sub-block or subprocess
that encodes the intermediate symbols into the encoded symbols so that the encoded symbols
include the source symbols (along with additional, redundant symbols) generated from one
consistent process, thereby providing robustness benefits and other benefits over an encoder
that is a systematic encoder that uses one process (e.g., copying) to get the source symbols for
the encoded symbol set and another process to get the redundant symbols for the encoded

symbol set.

[0094] The output encoding can be a chain reaction encoder, a static encoder or other
variations. Appendix A describes a systematic code embodiment. After reading the present
disclosure, one of ordinary skill in the art should be able to easily extend the teachings of
Shokrollahi III to apply to systematic codes such as the Tornado codes and IETF LDPC
codes, to yield new versions of these codes that are also systematic codes but have better
recovery properties. In particular, the new versions of these codes, obtained by applying the
general method described below, are enhanced to have the property that the proportion of loss
among the source symbols compared to the proportion of loss among the repair symbols does
not significantly affect the decoding recovery probability, and furthermore that the pattern of
loss does not significantly affect the decoding recovery probability. Thus, these codes can be

effectively used in the applications described above that require usage of systematic FEC
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codes with recovery properties that are not strongly affected by different fractional loss

amounts among source and repair symbols or by different loss patterns.

[0095] The new encoding method can be applied generally to encoding for systematic FEC
codes, non-systematic FEC codes, fixed rate FEC codes and chain reaction FEC codes to
yield an overall encoding method for new enhanced systematic FEC codes. There is also a

corresponding new decoding method that can be applied.

Decoder-in-the-Encoder Example

[0096] An example of a decoder in an encoder will now be provided.

[0097] Let encoding method E be an encoding method used by an encoder (in a transmitter or
elsewhere) for a fixed-rate (non-systematic or systematic) FEC code E that generates N
encoded symbols from K source symbols, where N is at least K. Similarly, let decoding
method E be the corresponding decoding method for FEC code E, used by a decoder in a

receiver or elsewhere.

[0098] Suppose FEC code E has the property that a random set of K out of the N encoded
symbols are sufficient to recover the original K source symbols with reasonable probability
using decoding method E, where reasonable probability might, for example, be probability
1/2. The reasonable probability can be some requirement set by the use or the application
and might be a value other than 1/2. It should be understood that the construction of a
particular code need not be specific to a particular recovery probability, but that applications
and systems can be designed to their particular level of robustness. In some instances, the
recovery probability can be increased by considering more than K symbols, and then
determining using a decoding process a set of K symbols out of these considered symbols

that allows successful decoding.

[0099] Suppose that for FEC code E, an ESI (Encoded Symbol Identifier) is associated with
cach encoded symbol and that ESI identifies that encoded symbol. Without loss of
generality, the ESIs are labeled herein with 0, 1, 2, ..., N-1.

[0100] In one embodiment of a systematic encoding method F for a systematic FEC code F
generated using the methods for FEC code E, K and N are input parameters. The source
symbols for FEC code F will have ESIs O, ..., K-1 and the repair symbols for FEC code F
will have ESIs K, ..., N-1. The systematic encoding method F for FEC code F generates N
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encoded symbols from K source symbols C(0), ..., C(K-1) using encoding method E and

decoding method E for FEC code E, performed by hardware and/or software as follows:

[0101] (1) randomly permute the N ESIs associated with FEC code E to arrive at the
FEC code E permuted ESI set X(0), ..., X(N-1), wherein this permuted ESI set is organized
in such a way that the K source symbols of FEC code E can be decoded from the first K
encoded symbols of FEC code E with respect to the permutation order of ESIs X(0), ...,
X(K-1),

[0102] (2) foreachi=0, ..., N-1, associate ESI i of FEC code F with ESI X(i) of
FEC code E,
[0103] (3) foreachi=0, ..., K-1, set the value of the FEC code E encoded symbol

with ESI X(i) to the value of source symbol C(i),

[0104] (4) apply the decoding method E to the source symbols C(0), ..., C(K-1) with
corresponding FEC code E ESIs X(0), ..., X(K-1) to generate the decoded symbols E(0), ...,
E(K-1), and

[0105] (5) apply the encoding method E to the decoded symbols E(0), ..., E(K-1) to
generate FEC code E encoded symbols D(0), ..., D(N-1) with associated FEC code ESIs 0,
..oy N-1,

[0106] (6) the encoded symbols for encoding method F with ESIs 0, 1, ..., N-1 are
D(X(0)), D(X(1)), ..., DCX(N-1)).

[0107] Note that the output of encoding method F is N encoded symbols, of which the first K
are the source symbols C(0), ..., C(K-1) with associated ESIs 0, 1, ..., K-1. Thus, encoding

method F produces a systematic encoding of the source data.

[0108] One embodiment of a decoding method F that corresponds to the encoding method F
just described is the following, where K and N are input parameters to this method that are
used throughout. This decoding method F recovers K source symbols C(0), ..., C(K-1) from
K received encoded symbols D(0), ..., D(K-1) with associated FEC code F ESIs Y(0), ...,
Y(K-1). The received symbols need not be exactly the sent symbols. The method, performed

by hardware and/or software, is as follows:

[0109] (1) randomly permute the N ESIs associated with FEC code E to arrive at the
FEC code E permuted ESI set X(0), ..., X(N-1), wherein this permuted ESI set is organized
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in such a way that the K source symbols of FEC code E can be decoded from the first K
encoded symbols of FEC code E with respect to the permutation order of ESIs X(0), ...,
X(K-1),

[0110] (2) apply decoding method E to the encoded symbols D(0), ..., D(K-1) with
associated FEC code E ESIs X(Y(0)), ..., X(Y(K-1)) to generate decoded symbols E(0), ...,
E(K-1),

[0111] (3) using encoding method E, generate the encoded symbols C(0), ..., C(K-1)
with FEC code E ESIs X(0), ..., X(K-1) from E(0), ..., E(K-1),

[0112] (4) the decoded source symbols of FEC code F with ESIs 0, ..., K-1 are C(0),
..oy C(K-1).

[0113] Methods and apparatus that operate as just described have some desirable properties.
For example, consider an FEC code E that is a systematic code and has the property that a
random set of K received encoded symbols can be decoded with high probability, but also has
the property that when K encoded symbols are received and the proportion of source symbols
among the received encoded symbols is not close to K/N, then it cannot be decoded with high
probability. In this case, the embodiment describes a new FEC code F that uses the encoding
and decoding methods of FEC code E, and the new FEC code F has the desirable property
that it will decode with high probability from a set of K received encoded symbols,

independent of the proportion of the received encoded symbols that are source symbols.

[0114] There are many variants of the above embodiment. For example, in step (1) of the
encoding method F, the random permutation of the ESIs could be pseudorandom or based on
some other method that produces a good selection of the ESIs but is neither random nor
pscudorandom. In the case that FEC code E is a systematic code, it is preferable that the
fraction of the first K ESIs in the permutation selected in step (1) from among the systematic
ESIs is proportional to the rate of FEC code E, i.e., proportional to K/N. It is preferable that
the random choices of the ESIs made by new encoding method F in step (1) can be
represented by a succinct amount of data, for example by a seed to a well-known or agreed
upon pseudorandom generator together with a agreed upon method to choose the ESIs based
on the seed and how the pseudorandom generator works, so that the new decoding method F
can make exactly the same ESI permutation choice in step (1) based on the same seed and
pscudorandom generator and methods for generating ESIs. In general, it is preferable if the

process used in new encoding method F in step (1) to generate the sequence of ESIs and the
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process used in new decoding method F in step (1) to generate the sequence of ESIs both
generate the same sequence of ESIs, to ensure that new decoding method F is the inverse of

new encoding method F.

[0115] There are other variants as well, where for example explicit ESIs are not used, but
instead the unique identifier of an encoded symbol is by its position with respect to other

encoded symbols, or by other means.

[0116] In the description above, the original ESIs of the FEC code E are remapped by the
FEC code F so that the ordered set of source symbols are assigned the ESIs 0, ..., K-1 in
consecutive order, and the repair symbols are assigned the ESIs K, ..., N-1. Other variants
are possible, for example the remapping of ESIs can occur at a sender just after encoding
method F has generated the encoded symbols but before the encoded symbols are transmitted,
and the inverse remapping of ESIs can occur at a receiver as the encoded symbols are
received but before the encoded symbols are processed for recovery of the original source

symbols by decoding method F.

[0117] As another variant, in step (1) of new encoding method F the permutation might be
selected by first selecting K+A FEC code E ESIs, where A is a value that is chosen to ensure
decodability with high probability, and then during a simulation of the decoding process it is
determined which of the K out of K+A ESIs are actually used during decoding, and the
permutation selected might select the K ESIs actually used during decoding out of the initial
set of K+A ESIs to be the first K ESIs of the permutation. Similar variants apply to new
decoding method F.

[0118] As another variant of encoding method F, a seed that is used to generate the random
permutation is pre-computed for a value of K to ensure that the first K encoded symbols of
FEC code E associated with the permutation of ESIs produced in step (1) is decodable, and
then this seed is always used for K in step (1) of encoding method F and corresponding
decoding method F to generate the permutation in step (1). Methods for choosing such a seed
include randomly choosing seeds until one is found that ensures decodability in step (1) and
then selecting this seed. Alternatively, the seed could be dynamically generated with these
properties by encoding method F and then this seed could be communicated to decoding

method F.

[0119] As another variant of encoding method F, a partial permutation might be selected in

step (1), i.e., not all of the ESIs need be generated in step (1) of new encoding method F, and
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not all of the encoded symbols need be generated if they are not needed in steps (5) and (6),
e.g., because they correspond to source symbols that are part of the encoded symbols, or
because less than N encoded symbols need to be generated. In other variants, not all of the
encoded symbols in steps (3) and (4) of new decoding method F need be recomputed, as
some of the received encoded symbols may correspond to some of the source symbols that
are being recovered. Similarly, in step (2) of new decoding method F, not all K symbols
E(0), ..., E(K-1) need be decoded, for example if some of the symbols decoded in step (2) are

not needed in subsequent steps to generate encoded symbols.

[0120] The methods and embodiments described above have many applications. For
example, encoding method F and decoding method F and their variants can be applied to
Tornado codes and to IETF LDPC codes to provide improved reception overhead and
decoding failure probability performance. In general, these new methods apply to any fixed
rate FEC code. Variants of these new methods can also be applied to FEC codes that have no
fixed rate, i.c., to FEC codes such as chain reaction codes where the number of encoded

symbols that can be generated is independent of the number of source symbols.

[0121] Shokrollahi III contains similar teachings for creating systematic encoding and
decoding methods for chain reaction codes. In some embodiments, the encoding and the
decoding methods E used for these codes are those taught in Luby I, Luby II, Shokrollahi I,
Shokrollahi II, Luby III, Shokrollahi IV. To describe systematic encoders, it is often
sufficient to describe encoding method E and decoding method E and use the general
principles described above and known from those references to transform these methods to
systematic encoding methods F and systematic decoding methods F. It should thus be
apparent to one of ordinary skill in the art, upon reading this disclosure and the cited
references, how to take the teachings that describe the encoding methods E and the decoding
methods E and to apply the same to systematic encoding methods F and systematic decoding

methods F, or the like.

Inactivation

[0122] Inactivation decoding, as taught in Shokrollahi 11, is a general method that can be
applied in combination with belief propagation whenever solving for a set of unknown
variables from a set of known linear equation values, and is particularly beneficial when
implementing efficient encoding and decoding methods that are based on sets of linear

equations. In order to distinguish between inactivation decoding as described in Shokrollahi
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IT and permanent inactivation decoding as described herein below, “on the fly” inactivation
(abbreviated to “OTF inactivation” in places) is used to refer to the methods and teachings of
Shokrollahi II, whereas “permanent inactivation” is used to refer to the methods and

teachings herein where inactivations are selected in advance.

[0123] One tenet of belief propagation decoding is that, whenever possible during the
decoding process, the decoder should use a (possibly reduced) equation that depends on one
remaining unknown variable to solve for that variable, and that equation is thus associated
with that variable, and then reduce remaining unused equations by eliminating the
dependence of those equations on the solved variable. Such a simple belief-propagation
based decoding process has been used, for example, in some of the embodiments of Tornado
codes, the chain reaction codes as described in Luby I, Luby II, Shokrollahi I, Shokrollahi II,
Luby III, Shokrollahi IV, and the IETF LDPC codes.

[0124] OTF inactivation decoding goes in multiple phases. In a first phase of an OTF
inactivation decoding method, whenever the belief propagation decoding process cannot
continue because there is no remaining equation that depends on just one remaining unknown
variable, the decoder will “OTF inactivate” one or more unknown variables and consider
them “solved” with respect to the belief propagation process and “eliminated” from the
remaining equations (even though they really are not), thus possibly allowing the belief
propagation decoding process to continue. The variables that are OTF inactivated during the
first phase are then solved for, for example using Gaussian elimination or more
computationally efficient methods, in for example a second phase, and then in a third phase,
the values of these OTF inactivated variables are used to fully solve for the variable

associated with the equations during the first phase of decoding.

[0125] OTF inactivation decoding, as taught in greater detail in Shokrollahi II, can be applied
to many other types of codes beyond chain reaction codes. For example, it can be applied to
the general class of LDPC and LDGM codes, in particular to the IETF LDPC codes and to
the Tornado codes, resulting in improvements in reliability (decreasing the probability of
failing to decode) and/or CPU and/or memory performance (increasing the speed of encoding
and/or decoding and/or decreasing the memory size required and/or access pattern

requirements) for those types of codes.
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[0126] Some of the variants of chain reaction code embodiments in combination with OTF
inactivation decoding are described in Shokrollahi IV. Other variants are described in the

present application.

System Overview

[0127] Fig. 1 is a block diagram of a communications system 100 that uses multi-stage
coding. It is similar to that shown in Shokrollahi I, but in this case the encoder 115 takes into
account a designation of which intermediate symbols are “permanently inactivated” and
operates differently on those intermediate symbols than the intermediate symbols that are not
permanently inactivated during the dynamic encoding process. Likewise, the decoder 155

also takes the permanently inactivated intermediate symbols into account when decoding.

[0128] As illustrated in Fig. 1, K source symbols (C(0), ..., C(K-1)) are input to encoder 115
and, if decoding is successful with the symbols that become available to decoder 155, then
decoder 115 can output a copy of those K source symbols. In some embodiments, a stream is
parsed into K-symbol blocks and in some embodiments, a file of some number of source
symbols larger than K is divided into K-sized symbol blocks and so transmitted. In some
embodiments, where a block size of K’ > K is preferred, K’ - K padding symbols can be
added to the K source symbols. These padding symbols can have values 0, or any other fixed
value that is known to both encoder 115 and decoder 155 (or is otherwise able to be
determined at decoder 155). It should be understood that encoder 115 might comprise

multiple encoders, modules or the like, and that may also be the case for decoder 155.

[0129] As illustrated, encoder 115 also receives a sequence of dynamic keys from a dynamic
key generator 120 and a sequence of static keys from as static key generator 130, each of
which might be driven by a random number generator 135. The output of dynamic key
generator 120 might be simply a cardinal number sequence, but that need not be the case.

The operation of the key generators might be as shown in Shokrollahi 1.

[0130] It should be understood that various functional blocks shown in the figures can be
implemented as hardware with the specified inputs provided as input signals, or they can be
implemented by a processor executing instructions that are stored in an instruction memory
and executed in the appropriate order to perform the corresponding function. In some cases,
specialized hardware is used to perform the functions and/or execute program code. Program
code and processor are not always shown, but one of ordinary skill would know how to

implement such details upon reading this disclosure.
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[0131] Encoder 115 also receives inputs from an inactivation designator 125 and other
parameters input to system 100 along the lines described elsewhere herein. Outputs of
inactivation designator 125 might include a value, P, representing the number of intermediate
symbols that are designated as “permanently inactivated” for decoding purposes (the “PI list”
indicates which P of the intermediate symbols are on the list). As explained elsewhere, the
intermediate symbols used for encoding processes are just the K source symbols in some
embodiments, but in other embodiments, there is some type of processing, conversion,
encoding, decoding, etc. that generates the intermediate symbols from the K source symbols

beyond just copying them.

[0132] Input parameters might include random seeds used by the key generators and/or the
encoder’s encoding processes (described in more detail below), the number of encoded
symbols to generate, the number of LDPC symbols to generate, the number of HDPC
symbols to generate, the number of intermediate symbols to generate, the number of
redundant symbols to generate, etc. and/or some of these values are calculated from other
values available to encoder 115. For example, the number of LDPC symbols to be generated

might be calculated entirely from a fixed formula and the value of K.

[0133] Encoder 115 generates, from its inputs, a sequence of encoded symbols (B(Ip), B(I;),
B(I,), ...) and provides them to a transmit module 140 that also receives the dynamic key
values (Ig, I1, I, ...) from dynamic key generator 120, but this might not be necessary if there
is another method of conveying that information. Transmit module 140 conveys what it is
given to a channel 145, possibly in a conventional manner that does not need to be described
here in more detail. A receive module 150 receives the encoded symbols and the dynamic
key values (where needed). Channel 145 may be a channel through space (for transmitting
from one place to be received at another place) or a channel through time (for recording to
media, for example, for replay back at a later time). Channel 145 may cause the loss of some
of the encoded symbols. Thus, the encoded symbols B(I,), B(Iy), ... that decoder 115
receives from receive module 150 might not equal the encoded symbols that transmit

modules sent. This is indicated by the different subscripted indices.

[0134] Decoder 155 is preferably able to regenerate the keys used for the received symbols
(which keys might differ), using dynamic key regenerator 160, random number generator 163

and static key generator 165, and to receive as inputs various decoding parameters. Some of
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these inputs might be hardcoded (i.e., input during construction of a device) and some might

be changeable inputs.

[0135] Fig. 2 is a table of variables, arrays and the like, with a summary of the notation that
is most often used in the other figures and throughout this disclosure. Unless stated
otherwise, K denotes the number of source symbols for the encoder, R denotes the number of
redundant symbols generated by a static encoder, and L is the number of “intermediate

symbols,” i.e., the combination of source and redundant symbols and so L = K+R.

[0136] As is explained below, in some embodiments of a static encoder, two types of
redundant symbols are generated. In a specific embodiment, used in many examples here,
the first set comprises LDPC symbols and the second set comprises HDPC symbols. Without
loss of generality, many examples herein refer to S as the number of LDPC symbols and H as
the number of HDPC symbols. There might be more than two types of redundant symbols,
so it is not required that R = S+H. LDPC symbols and HDPC symbols have different degree
distributions and a person of ordinary skill in the art, upon reading this disclosure, would see
how to use redundant symbols that are not LDPC or HDPC symbols, but where the redundant
symbols comprise two (or more) sets of symbols wherein each set has a degree distribution
distinct from the degree distributions of the other sets. As is well known, the degree
distribution of a set of redundant symbols refers to the distribution of degree, wherein the
degree of a redundant symbol refers to the number of source symbols upon which the

redundant symbol depends.

[0137] P denotes the number of permanently inactive symbols among the intermediate
symbols. The permanently inactive symbols are those that are designated for a particular
treatment, namely to be “set aside” or “inactivated” in a belief propagation network in order
to continue the belief propagation (and then come back to solve after solving the inactivated
symbols), wherein permanently inactivated symbols are distinguished from other inactivated
symbols in that the permanently inactivated symbols are designated at the encoder for such

treatment.

[0138] N denotes the number of received symbols on which a decoding attempt is made by
decoder 155, and A is the number of “overhead” symbols, i.¢., the number of received

encoded symbols beyond K. Hence, A = N-K.

[0139] K, R, S, H, P, N and A are integers, typically all greater than or equal to one, but in

specific embodiments, some of these can be one or zero (e.g., R=0 is the case where there are
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no redundant symbols and P=0 falls back to the case of Shokrollahi II, where there is only

OTF inactivation.)

[0140] The vector of source symbols is denoted by (C(0), ..., C(K-1)) and the vector of
redundant symbols is denoted by (C(K), ..., C(L-1)). Therefore, (C(0), ..., C(L-1)) denotes
the vector of intermediate symbols, in the systematic case. A number, P, of those
intermediate symbols are designated “permanently inactive.” A “PI list” indicates which
ones of the intermediate symbols are the permanently inactive ones. In many embodiments,
the PI list simply points to the last P intermediate symbols, i.e., C(L-P), ..., C(L-1), but this is
not a requirement. That case is assumed only to simplify the remaining portions of this

description.

[0141] The intermediate symbols that are not on the PI list are referred to as “LT
intermediate symbols” herein. In the example, the LT intermediate symbols would be C(0),

..., C(L-P-1). D(0), ..., D(N-1) denote the received encoded symbols.

[0142] It should be noted that where an array of values is described as “N(0), ..., N(x)” or the
like, it should not be assumed that this requires at least three values, as it is not intended to

exclude the case where there is only one or two values.

Encoding method using permanent inactivation

[0143] Fig. 3 is a block diagram of one specific embodiment of encoder 115 shown in Fig. 1.
As illustrated there, the source symbols are stored in an input buffer 205 and provided to a
static encoder 210 and a dynamic encoder 220, which also receive key inputs and other
inputs. Static encoder 210 might include internal storage 215 (memory, buffer, virtual
memory, register storage, etc.) for storing internal values and program instructions.
Likewise, dynamic encoder 220 might include internal storage 225 (memory, buffer, virtual

memory, register storage, etc.) for storing internal values and program instructions.

[0144] In some embodiments, a redundancy calculator 230 determines the number R of
redundant symbols to create. In some embodiments, static encoder 210 generates two distinct
sets of redundant symbols and in a specific embodiment, the first set is the first S redundant
symbols, i.e., symbols C(K), ..., C(K+S-1) and they are LDPC symbols, while the second set
is the next H redundant symbols, i.e., C(L-H), ..., C(L-1) and they are HDPC symbols. If the
PI list is the last P redundant symbols, then all of the H redundant symbols may be on the PI
list (if P > H) or all of the P redundant symbols may be HDPC symbols (if P < H).
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[0145] The operations leading to the generation of these two sets of symbols may be quite
different. For example, in some embodiments described below, the operations for generating
the LDPC redundant symbols are binary operations and the operations for generating the

HDPC symbols are non-binary.

[0146] The operation of dynamic encoder 220 is explained in further detail in Fig. 4.
According to one embodiment, dynamic encoder 220 comprises two encoders, a PI encoder
240 and an LT encoder 250. In some embodiments, LT encoder 250 is a chain reaction
encoder and PI encoder 240 is a chain reaction encoder of a particular type. In other
embodiments, these two encoders may be very similar, or PI encoder 240 is not a chain
reaction encoder. No matter how these encoders are defined, they generate symbols, wherein
LT encoder 250 generates its symbols from the LT intermediate symbols C(0), ..., C(L-P-1)
that are designated as not permanently inactive, and whereas PI encoder 240 generates its
symbols from the permanently inactive intermediate symbols C(L-P), ..., C(L-1). These two

generated symbols enter combiner 260 that generates the final encoded symbol 270.

[0147] In some embodiments of the present invention some of the permanently inactivated
symbols may participate in the LT-encoding process, and some of the symbols that are not
permanently inactivated symbols may participate in the PI encoding process. In other words,
the PI list and the set of symbols comprising the LT intermediate symbols need not be
disjoint.

[0148] In preferred embodiments, the symbols provided to combiner 260 may have the same
length, and the function performed by combiner 260 is an XOR operation on these symbols to
generate the encoded symbol 270. This is, however, not necessary for the working of this

invention. Other types of combiners can be envisioned that could lead to similar results.

[0149] In other embodiments, the intermediate symbols are subdivided into more than two
sets, for example one set of LT symbols and several (more than one) sets of PI symbols, each
with its associated encoder 240. Of course, cach associated encoder might be implemented as
a common computing element or hardware element that operates on different instructions

according to an encoding process when acting as a different encoder for different sets.

[0150] An example operation of PI encoding process 241, as might be performed by PI
encoder 240, is exemplified in Fig. 5. Using the key I a corresponding to an encoded symbol
to be generated, at step 261, the encoder determines a positive weight, WP, and a list, ALP,
containing WP integers between L-P and L-1, inclusive. In step 263, if list ALP = (t(0), ...,
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t(WP-1)), then the value of a symbol X is set to X = C(t(0)) @ C(t(1)) @ ... ® C(t(WP-1)),

wherein @ denotes the XOR operation.

[0151] In some embodiments, the weight WP is fixed to some number, such as 3, or 4 or
some other fixed number. In other embodiments, the weight WP may belong to a small set of
possible such numbers, such as being chosen to be equal to either 2 or 3. For example, as
shown in the embodiment of Appendix A, the weight WP depends on the weight of the
symbol generated by LT encoding process 251, as might be performed by LT encoder 250. If
the weight generated by the LT encoder 250 is 2, then WP is chosen to be either 2 or 3,
depending on the key I a, wherein the proportion of times in which WP is 2 or 3 is roughly
equal; if the weight generated by the LT encoder 250 is larger than 3, then WP is chosen to be
2.

[0152] Fig. 6 is an example of an LT encoding process 251 according to one of the
embodiments of the present invention and using the teachings of Luby I and Shokrollahi I. In
step 267, the key I a is used to generate a weight, WL, and a list, AL, respectively. In step
269, if list ALP = (j(0), ..., jJ(WL-1)), then the value of a symbol X is set to X = C(j(0)) ©
CG(1)) @ ... ® CG(WL-1)).

[0153] Fig. 7 illustrates an operation of calculating the weight WL. As shown there, in step
272, a number, v, is created that is associated with the encoded symbol to be generated and
may be computed based on the key I _a for that encoded symbol. It can be the index, the
representative label, etc. of the encoded symbol, or a distinct number, so long as encoders and
decoders can be consistent. In this example, v is between 0 and 2%° but in other examples,
other ranges are possible (such as 0 to 2*?). The generation of v can be done in an explicit
way using randomness generating tables, but the exact operation of how to generate these

random numbers can vary.

[0154] The encoder is assumed to have access to a table M, an example of which is provided
in Fig. 8. Table M, called a “degree distribution lookup” table, contains two columns and
multiple rows. The left column is labeled with possible values of the weight WL, and the
right column is labeled with integers between 0 and 2%, inclusive. For any value of v, there
is exactly one cell in the M[d] column of the degree distribution lookup table wherein
M[d-1] <v < M[d] is true. For that one cell, there is a corresponding value in the d column,
and the encoder uses that as the weight WL for the encoded symbol. For example, where an

encoded symbol has v = 900,000, the weight for that encoded symbol would be WL = 7.
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[0155] Static encoder 210 has access to elements SE(k,j) where k=0, ...,R-1 andj=0, ...,
L-1. These element can belong to any finite field for which there is an operation * between
elements o of the field and symbols X such that a*X is a symbol, and a*(X@Y) = a*X &
a*Y where @ denotes the XOR operation. Such fields and operations have been detailed in
Shokrollahi IV. The operation of static encoder 210 can be described as computing, for a
given sequence of source symbols C(0), ..., C(K-1), a sequence of redundant symbols C(K),
..., C(L-1) satisfying the relation shown in Equation 1, wherein Z(0), ..., Z(R-1) are values

known to the encoder and the decoder (for example, 0).

C(0)
SE(0,0 SEQO.) ... SE.L-2 SE(0,L—1 : Z(0
(: ) ( ) . ( : ) ( : ) o CK-D|_ (:) (Equ. 1)
: : . : : co |
SE(R-1,0) SE(R—L1) ... SE(R—=1,L—2) SE(R—1,L—1) : Z(R—-1)
C(L-1)

[0156] In Equation 1, the entries SE(k,j) can all be binary, or some of them can belong to the
field GF(2) while others belong to other fields. For example, the corresponding matrix of the
embodiment of Appendix A is given in Fig. 9. It comprises two submatrices, one with S
rows and one with H rows. The upper submatrix comprises two parts: the submatrix
comprising the last P columns in which every row has two consecutive ones (where the
positions are counted modulo P). The first W = L-P columns of this matrix comprise
circulant matrices followed by an SxS identity matrix. The circulant matrices comprise B of
the columns and each (except possibly the last) has S rows. The number of these circulant
matrices is ceil(B/S). The columns in these circulant matrices have each exactly 3 ones. The
first column of the k-th circulant matrix has ones at positions 0, (k+1) mod S, and (2k+1)
mod S. The other columns are cyclic shifts of the first. The lower H rows in Fig. 9 comprise

a matrix Q with entries in GF(256) followed by an HxH identity matrix.

[0157] If o denotes an element of GF(256) with minimal polynomial x*+x*+x’+x’+1, then
the matrix Q is equal to the matrix given in Fig. 10. Here, Ay, ..., Ag:s.; are columns of
weight 2 for which the positions of the 2 nonzero entries are determined pseudorandomly
according to the procedure outlined in Section 5.3.3.3. of Appendix A. For judicious choices
of values S, P, and H (such as the ones provided in Appendix A), the matrix in Fig. 10 leads
to excellent recovery properties of the corresponding code. The procedure described above is
exemplified in Fig. 11. In step 276, the matrix SE is initialized to 0. In step 278, an input

variable S, equal to the number of LDPC symbols, is provided to the process, and the values
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of SE(i,j) are set to 1 for pairs (i,j) such that i1 =j mod S, or i = (1+floor(j/S)) +j mod S, or
1= 2%(1+floor(j/S))+j mod S. This step takes care of the circulant matrices in Fig. 9.

[0158] In step 280, the positions corresponding the identity matrix Ig in Fig. 9 are set to one.
In step 282, the positions corresponding to the PI part of the matrix in Fig. 9 are set to 1.
These positions are of the form (i,]) and (i,t), where | =1 mod P and t = (i+1) mod P. In step
284, the positions corresponding to the matrix Q in Fig. 9 are set. Accordingly, the matrix Q
is provided as an additional input to this step. In step 286, the positions corresponding to the

identity matrix Iy in the matrix of Fig. 9 are set to one.

[0159] Other choices for matrix SE are possible and depend on the particular application and
the requirements demanded of the overall code. No matter how the matrix in Equation 1 is
chosen, the task of the static encoder 210 can be accomplished in a variety of ways. For
example, Gaussian elimination can be used as a process to recover the unknown values
C(K), ..., C(L-1) as would be apparent to one of ordinary skill in the art upon reading this

disclosure.

Decoding and permanent inactivation

[0160] The decoding problem can be stated as follows: decoder 155 has N encoded symbols
B(1,), B(Iy), ... with corresponding keys I, Iy, ... The entire set of these encoded symbols, or
a subset thereof, may have been received by the decoder, whereas the other encoded symbols
may have been given to the decoder by other means. The goal of the decoder is to recover
the source symbols C(0), ..., C(K-1). To simplify the presentation, we denote the received
encoded symbols by D(0), ..., D(N-1).

[0161] Many of the decoding operations can be succinctly described using the language of
matrices and operations on such matrices, in particular solving systems of equations with
such matrices. In the following description, equations can correspond to received encoded
symbols and variables can correspond to the source symbols or a combined set of source and
redundant symbols generated from the source symbols, often called intermediate symbols,
that are to be solved for based on received encoded symbols. In the specification provided as
Appendix A, the encoded symbols might be referred to as “encoding symbols” (and there are
other variations), but it should be apparent after reading the entire specification and appendix
how the references relate. It should also be understood that the matrices and operations and

solutions to equations can be implemented as computer instructions corresponding to those
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mathematical operations, and indeed it is not practical to do such operations without a

computer, processor, hardware or some electronic element.

[0162] Permanent inactivation is used to determine at the decoder a set of variables to
inactivate, called the permanently inactivated symbols or variables, before the first phase of
the decoding process is initiated. The permanent inactivation decoding methods described
below can be applied either to existing codes, or codes can be specially designed to work
even better in conjunction with permanent inactivation decoding. Permanent inactivation
decoding methods can be applied to solving any system of linear equations, and in particular

can be applied to chain reaction codes, IETF LDPC codes and Tornado codes.

[0163] Permanent inactivation decoding is a general method that can be applied in
combination with belief propagation decoding and/or OTF inactivation decoding whenever
solving for a set of unknown variables from a set of known linear equation values, and is
particularly beneficial when implementing efficient encoding and decoding methods that are
based on sets of linear equations. In a first phase, based on the structure of the known
encoding method or based on the received equations, a set of unknown variables are declared
to be permanently inactivated, and the permanently inactivated variables are removed from
the linear equations and considered to be “solved” in the second phase of the decoding
process (except that as the second phase linear equations are reduced, the same reductions are

performed on the permanently inactivated variables).

[0164] In the second phase, either belief propagation decoding is applied to the unknown
variables that are not permanently inactivated using belief propagation decoding described
previously, or OTF inactivation decoding is applied to the unknown variables that are not
permanently inactivated, similar to that described for first phase of the OTF inactivation
decoding method, thereby producing a set of reduced encoded symbols or equations. The
reduced encoded symbols or equations that result from the second phase have the property
that their dependency on the variables or symbols that are not inactivated has been
eliminated, and thus the reduced encoded symbols or equations depend only on the
inactivated variables or symbols. Note that an original encoded symbols or equations may be
kept as well, so that both the original encoded symbols and the reduced encoded symbols

may be available in some implementations.

[0165] In a third phase, the permanently inactivated variables together with any additional

OTF inactivated variables generated in the second phase using OTF inactivation decoding are
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solved for using the reduced encoded symbols or equations, for example using Gaussian
elimination, or, if it exists, a special structure of the relationships between the permanently
inactivated variables and the linear equations is used to solve more efficiently than by using

Gaussian elimination.

[0166] In a fourth phase, the values of the solved for inactivated variables, either OTF
inactivated variables or permanently inactivated variables, are used in conjunction with the
original encoded symbols or equations (or rederived original encoded symbols or equations)

to solve for the variables that were not inactivated.

[0167] One of the advantages of permanent inactivation decoding methods is that the number
w of OTF inactivations other than the permanent inactivations can be generally small or zero
and can be largely independent of which encoded symbols are received. This can make the
decoding complexity consistently small independent of which encoded symbols are received,
allow more reliable decoding, and allow more predictable and fewer memory accesses which
can be more efficiently scheduled. Because there are only a small number of OTF
inactivations in the second phase, and because OTF inactivations in the second phase are
generally only determined during the decoding process which can make the pattern of symbol
operations somewhat unpredictable, the memory access patterns are more predictable during

decoding, overall allowing more predictable efficient decoding processes.

[0168] There are many variants of the above. For example, the phases may be executed in
non-sequential interleaved order. As another example, the inactivated symbols may in turn
be solved for in the third phase using either OTF inactivation decoding or permanent
inactivation decoding in multiple additional phases. As another example, permanent
inactivation decoding may be applied to a linear system of equations and variables that may
be used for error-correcting codes, or erasure correcting codes, or for other applications that
can be solved using linear systems of equations. As another example, these methods can be
applied to both systematic codes and to non-systematic codes. As another example, these
methods can also be applied during an encoding process, for example when encoding using
the methods taught in Shokrollahi I1I for generating systematic codes from non-systematic

codes.

[0169] In some cases, it is possible to design the encoding process so that permanent
inactivation decoding methods will be especially effective. For example, belief propagation

decoding is known to be computationally efficient whenever it can be applied, but it is also
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known that it cannot provide high reliability decoding when used alone. When belief
propagation decoding is used within OTF inactivation decoding, the belief propagation steps
can be processed very efficiently, but the OTF inactivation steps interspersed within the
belief propagation steps can slow down decoding, and the more such OTF inactivation steps

there are, the slower is the decoding process.

[0170] In typical embodiments of OTF inactivation decoding, when trying to solve for K+R
unknown variables using N+R linear equation values, the number of OTF inactivation steps is
typically largest when N =K, i.e., when trying to solve the variables using zero overhead. On
the other hand, as N grows larger than K, it is typically the case that the complexity of OTF
inactivation decoding decreases due to fewer OTF inactivation steps, until when N is large
enough so there are in some cases no OTF inactivation steps and inactivation decoding is as,
or nearly as, computationally efficient as belief propagation decoding. In other embodiments
of OTF inactivation decoding, the number of OTF inactivations may remain large even when

N is considerably larger than K.

[0171] In one preferred embodiment of permanent inactivation decoding, the number P of
permanently inactivated variables and the structure of the linear equations is designed so that
when solving for the L-P variables that are not permanently inactivated using OTF
inactivation decoding from K+R values of linear equations, the number of OTF inactivation
steps during OTF inactivation decoding is small and in some cases zero, and thus the OTF

inactivation decoding step is nearly as computationally efficient as belief propagation.

[0172] In preferred embodiments, the structure of the linear equations is designed such that
the OTF inactivation decoding phase is nearly as efficient as belief propagation decoding. In
such preferred embodiments, the relationships of the permanently inactivated variables to the
linear equations is such that the phase of solving for the inactivated variables, comprised of
the permanently inactivate variables together with any OTF inactivated variables from the
OTF inactivation decoding phase, can be performed efficiently. Furthermore, in preferred
embodiments the structure of the permanently inactivated symbols is such that the phase of
completing the solution of the variables that are not inactivated from the solved inactivated

variables is computationally efficient.

Decoding of chain reaction codes with permanent inactivation

[0173] Fig. 12 illustrates a matrix representation of a set of variables to be solved using N

received encoded symbols or equations and R known static symbols or equations by the
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decoder. The task of the decoder is to solve the system of linear equations given in this
figure. Typically, the symbols/equations are represented by values stored in memory or
storage accessible by the decoder and the matrix operations described below are implemented

by instructions executable by the decoder.

[0174] The matrix shown in Fig. 12 comprises L = K + R columns and N+R rows. The LT
submatrix represents the relationships between the N encoded symbols and the L-P LT
symbols of the L intermediate symbols determined by LT encoding process 251. The PI
submatrix represents the relationships between the N encoded symbols and the P PI symbols
of the L intermediate symbols determined by PI encoding process 241. The matrix SE of
Equation 1 represents the relations among the intermediate symbols determined by the static
encoder 210. The decoder can determine these relationships based on the keys for received

encoded symbols and from the code construction.

[0175] The system of linear equations of Fig. 12 is solved by row/column permutations of the
above matrix using the OTF inactivation methods taught in Shokrollahi II to transform it into
a form shown in Fig. 13. It comprises a lower triangular matrix LO 310, a number of
columns comprising matrix 320 (called OTFI) corresponding to OTF inactivations, a matrix
330 PI corresponding to the set of permanently inactive intermediate symbols or a subset
thereof, and a matrix 340 EL corresponding to encoded or static symbols not used in the

triangularization process leading to matrix LO.

[0176] Fig. 14 is a block diagram describing elements that might perform a process leading
to the matrix in Fig. 12. It comprises an LT matrix generator 347, a PI matrix generator 349,
and a static matrix generator 350. Upon receipt of keys I, Iv, ... LT matrix generator creates
the matrix LT in Fig. 12, whereas Pl matrix generator 349 creates the matrix PI of Fig. 12.
The concatenation of these two matrices is forwarded to static matrix generator 350, which
may take as additional hints static keys S 0, S 1, ... The task of static matrix generator is the

creation of matrix SE, and its output is the full matrix given in Fig. 12.

[0177] The operations of LT matrix generator 347 and PI matrix generator 349 are tightly
coupled with the operations of LT encoder 250 and PI encoder 240 in Fig. 15, respectively.
Operation of static matrix generator 350 is the re-creation of matrix SE of Equation 1 used for

static encoding.

[0178] LT matrix generator 347, PI matrix generator 349, and static matrix generator will

now be described in further detail with reference to operations they might perform.



WO 2011/022555 PCT/US2010/046027
39

[0179] Fig. 16 is a flowchart illustrating one embodiment 500 of a method employed by LT
matrix generator 347. In step 505, LT matrix generator 347 initializes a matrix LT of format
N x (L-P) to all zeros. Next, in step 510, the keys I,, I, ... are used to generate the weights
WL(0), ..., WL(N-1), and the lists AL(0), ..., AL(N-1), respectively. Each of the lists AL(1)
comprises WL(i) integers (j(0), ..., j(WL(1)-1)) in the range 0, ..., L-P-1. In step 515, these
integers are used to set entries LT(1,j(0)), ..., LT(1,j(WL(1)-1)) to 1. As explained above,
matrix LT contributes to a system of equations for the unknowns (C(0), ..., C(L-1)) in terms

of the received symbols (D(0), ..., D(N-1)).

[0180] As can be appreciated by those skilled in the art, the operation of LT matrix generator

as described here is similar to the operation of LT encoding process 251 of Fig. 6.

[0181] Fig. 17 is a flowchart illustrating one embodiment 600 of a method employed by PI
matrix generator 349. In step 610, PI matrix generator 349 initializes a matrix PI of format N
x P to all zeros. Next, in step 615, the keys I,, Iy, ... are used to generate weights WP(0), ...,
WP(N-1), and the lists ALP(0), ..., ALP(N-1), respectively. Each of the lists ALP(i)
comprises WP(i) integers (j(0), ..., jJ(WP(i)-1)) in the range 0, ..., P-1. In step 620, these
integers are used to set entries PI(1,j(0)), ..., PI(1,j(WP(i)-1)) to 1. The operation of PI matrix

generator is similar to the operation of PI encoding process 241 in Fig. 5.

[0182] As explained above, the matrices LT and PI contribute to a system of equations in the
unknowns (C(0), ..., C(L-1)) in terms of the received symbols (D(0), ..., D(N-1)). The
reason is the following: once the LT encoder chooses weight WL(i) and associate list

ALQ®1) = (j(0), ..., j(WL(1)-1)), and PI encoder chooses weight WP(i) and associate list
ALP() = (1(0), ..., t(WP(1)-1)), the corresponding encoded symbol D(i) is obtained as shown
below. These equations, accumulated for all values of 1 between 0 and N-1, give rise to the

desired system of equations represented in Equation 2.

D() = C(j(0)) @ ... ®CG(WL(1)-1)) ® C(t(0)) ® ... @CH(WP(1)-1))  (Equ.2)
[0183] The weights WL can be calculated using a procedure similar to the one given in Fig.
7. A person of ordinary skill in the art, upon reviewing this disclosure, would see how to
extend this to the case where there are more than two encoders, each operating with a

different degree distribution.

[0184] A slightly different flow diagram of a matrix generator is provided in Fig. 18. It
comprises an LT matrix generator 710, a static matrix generator 715, and a PI matrix

generator 720. Upon receipt of keys I, Iy, ..., LT matrix generator 710 creates the matrix LT
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illustrated in Fig. 15, whereas static matrix generator 715 creates the matrix SE illustrated in
Fig. 15, and may take the additional static keys S 0, S 1, ... as its further input. The
concatenation of these two matrices is forwarded to PI matrix generator 720 that creates the
matrix PI. Operation of LT matrix generator 710 may be exactly the same as the operation of
LT matrix generator 347 detailed in Fig. 16. The operation of static matrix generator 715
may be different from the operation of the static matrix generator 350 in Fig. 14.

Specifically, Fig. 19 details an exemplary embodiment of such an operation.

[0185] In step 725, the matrix SE is initialized to 0. In step 730, an input variable S, equal to
the number of LDPC symbols, is provided to the process, and the values of SE(i,j) are set to 1
for pairs (i,j) when i =j mod S, i = (1+floor(j/S))+j mod S, or i = 2*(1+floor(j/S))+j mod S.
In step 735, the positions corresponding the identity matrix IS in Fig. 9 are set to one. In step
740, the positions corresponding to a matrix T are provided as an additional input to this step.
This matrix may have entries in multiple finite fields, and can be different for different

applications. It may be chosen based on requirements demanded of the code.

[0186] Fig. 20 is a simplified flow diagram illustrating one embodiment of a method
employed by PI matrix generator 720. In step 745, PI matrix generator 349 initializes a
matrix PI of format (N+R) x P to all zeros. Next, in step 750, the keys 1 a, I b, ... are used
to generate weights WP(0), ..., WP(N-1), and the lists ALP(0), ..., ALP(N-1), respectively.
Each of the lists ALP(i) comprises WP(i) integers (j(0), ..., J(WP(i)-1)) in the range O, ...,
P-1. In step 755, these integers are used to set entries P1(1,j(0)), ..., PI(i,j(WP(i)-1)) to 1. The
operation of PI matrix generator in Fig. 20 is similar to the operation of the PI matrix
generator of Fig. 17 with the exception that this matrix generator creates a matrix with R

more rows and is tightly coupled with the matrix in Fig. 15.

[0187] The system of equations in Fig. 12 or in Fig. 15 is typically sparse, i.¢., the number of
nonzero entries in the matrices involved is typically much smaller than half the possible
entries. In such a case, the matrices might need not be stored directly, but an indication may
be stored that helps in recreating every individual entry of these matrices. For example, for
every one of the rows of the matrices LT or PI, a process may want to store the weight and
the list of neighbors as computed in Figs. 5-6. Other methods are also possible and many of

them have been explained herein or in disclosures incorporated by reference herein.

[0188] Once the matrix generator has created a system of equations in the form given by Fig.

12 or Fig. 15, the task of the decoder is to solve this system for the unknown values of C(0),
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..., C(L-1). A number of different methods can be applied to achieve this goal, including but

not limited to Gaussian elimination, or any of the methods described in Luby I, Luby I,

Shokrollahi I, II, III, IV, or V.

[0189] A possible method for solving the system of equations in Fig. 12 or Fig. 15 is now
outlined with reference to Figs. 21-26. A flow chart of an operation of the decoder according
to some of the embodiments of the present invention is given in Fig. 21. In step 1305, the
decoding matrix is created using some of the methods described earlier. In step 1310, this
matrix is rearranged using row and column permutations. As was mentioned above, such a
matrix may be obtained from either of the matrices in Fig. 12 or Fig. 15 by applying row and
column permutations. Chain reaction decoding in combination with on-the-fly inactivation
decoding of Shokrollahi II can be used to achieve this. There are thus permutations pi
operating on the set {0, 1, ..., L-1} and tau operating on the set {0, 1, ..., N+R-1} such that
the equation in Fig. 22 is satisfied.

[0190] Herein, w denotes the number of rows and columns of matrix LO in Fig. 13, i.e., the
number of intermediate symbols that are neither permanently, nor OTF inactivated. In step
1315, the matrix LO of Fig. 13 is used to zero out all entries of matrix LO below the
diagonal. In doing so, the set of symbols on the right of the equation in Fig. 23 needs to
respect the same operations, so that the new right hand side of the system of equations is

obtained by XORs of some of the D(tau(i)).

[0191] As illustrated in Fig. 24, after this operation, matrix 810 becomes an identity matrix,
matrix EL in 840 will be untouched, and matrices OTFI and PI will be changed to OTFI-2 in
820 and PI-2 in 830, because the decoding process needs to XOR rows of these matrices
together according to the operations that were necessary to reduce matrix LO to the identity

matrix.

[0192] A next step of the decoding process may be step 1320, in which the rest of the
remaining matrix below LO is eliminated to obtain a matrix of the form indicated in Fig. 25.
Denoting the permuted and reduced values of the original symbols D(0), ..., D(N_R-1) after
this step by E(0), ..., E(N+R-1), by u the number of rows of the matrix EL_2, and by g the
number of columns of EL_2, the structure of the matrix in Fig. 25 results in a smaller system

of u linear equations for the values of C(pi(L-g)), ..., C(pi(L-1)) according to Equation 3.
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Cpi(L=g)) (E(N+R-u)
(EL_2)e : = : : Equ. 3

C(pi(L-1)) E(N+R-1)
[0193] A decoding process such as the one described in Fig. 21 may solve this system of
equations in step 1330 by a variety of means, for example by using a Gaussian elimination
process, or a combination of chain reaction coding and Gaussian elimination, or by another
application of inactivation decoding, or by other means. The Gaussian elimination can be
modified so as to separate computations in GF(2) from those in larger fields, such as
GF(256), if the matrix EL has elements belonging to multiple fields, as was taught in
Shokrollahi IV, for example.

[0194] If the system of equations in Equation 3 is not solvable using the processes employed
by the decoder, then the decoder may apply countermeasures in step 1335. Such
countermeasures could include flagging an error and stopping the process, or it could include
requesting more encoded symbols, or it could stop the process and give back to the
application using the decoder a list of intermediate symbols or source symbols that it has
been able to recover so far. If the system is solvable, then the decoder may recover the values
of inactivated intermediate symbols C(pi(L-g)), ..., C(pi(L-1)). In some variants, it may be
as well that some other intermediate symbols besides the inactivated intermediate symbols

are recovered in step 1330.

[0195] Once the values of these symbols are recovered, the decoder proceeds to step 1340
that involves a back substitution. Recovering the values of C(pi(L-g)), ..., C(pi(L-1)) results
in a system of equations of the type given in Fig. 26. This system is easier to solve than a
general system. For example, a decoder may use the process indicated in Fig. 23 to do so.
The process of obtaining the first vector on the right hand side of Fig. 23 may be referred to
as back-substitution, as it is the process of substituting the values of the known symbols into
the system of equations. As can be seen by a person of ordinary skill in the art after reading

this disclosure, the systems given in Figs. 23 and 26 are mathematically equivalent.

[0196] In Fig. 23, the decoder obtains the unknown values C(pi(0)), ..., C(pi(L-g-1)) by
implementing a process in which the entries of the matrix on the right hand side are
multiplied with the entries of the already solved for vector C(pi(L-g)), ..., C(pi(L-1)) using
the rules of matrix multiplication, and XORing the obtained entries with E(0), ..., E(L-g-1).
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The process of XORing the obtained entries with E(0), ..., E(L-g-1) and thus recovering the
values of C(pi(0)), ..., C(pi(L-g-1)) comprises step 1345 of the decoder in Fig. 21.

[0197] Though useful in some applications, this method may lead to a large computational
overhead in some preferred embodiments, since the matrix on the right hand side of Fig. 23 is
typically not sparse and therefore, to obtain one of the elements C(pi(j)) a number of XORs
has to be performed which is proportional to g. In some embodiments, this number may be
large, for example because the number P of permanent inactivations was chosen to be large to
begin with, and g may be at least as large as P. This can put severe limitations on the value
of P, the number of permanently inactivated symbols, and if a smaller value of P is used, then

this could lead to an increase in the number of OTF inactivated intermediate symbols.

[0198] Fig. 27 describes a modified decoding process that may be computationally more
efficient than the process described in Fig. 21. Steps 1405 through 1435 of this process may
be the same as the corresponding steps of the process in Fig. 14. Optionally, this process may
keep a copy of the original matrix in Fig. 12 or Fig. 15, or relevant parts of this matrix, as
well as the original symbols D(0), ..., D(N+R-1) in an additional memory location for future
use. This is not necessary for the working of this process, but it may lead to further speed
advantages if the application has enough memory resources to keep these copies.
Alternatively, the process may only keep a copy of the original symbols D(0), ..., D(N+R-1)
and not the matrix, and re-create the matrix when it needs it. Step 1440 either uses the stored
copy of the matrix or undoes the process in step 1415 to obtain back the original system of
equations in Fig. 22, or only the top part of this system given in Fig. 28. At this point, the
matrix 1510 given in Fig. 29 is sparse, and the values C(pi(w)), ..., C(pi(L-1)) are known,

where w = L-g.

[0199] As is well known, the right hand side of the equation in Fig. 29 can be computed via a
computationally efficient process involving a small number of XORs of symbols, i.c., equal
to the number of non-zero entries in the matrix OTFI plus the number of non-zero entries in
the matrix PI. This step of the process is denoted by 1445 in Fig. 27. After this step is
complete, the right hand side of the equation in Fig. 29 has been computed, and a system of
equations is to be solved in which the unknowns are the values of C(pi(0)), ..., C(pi(w-1)).
This system can be solved in step 1450 using chain reaction decoding, since the lower
triangular LO on the right hand side is sparse, i.¢., the number of XORs of symbols to solve

this system of equations is equal to the number of non-zero entries in the matrix LO and this
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number is typically much smaller than w*w, the maximum number of non-zero entries

possible.

Choice of the Number of Permanent Inactivations

[0200] The choice of the number of permanent inactivations can affect overall performance,
so it can be important. On the one hand, this number needs to be chosen to be as large as
possible: if this number is large, then the number of OTF inactivations may be reduced to a
very small number, sometimes even zero. This is because the combination of the LT and the
SE matrix in Fig. 15 (or their corresponding variants in Fig. 23) is effectively the decoding
matrix of a chain reaction code with a large overhead. This fact makes the number of OTF
inactivations very small. OTF inactivations may be harder to manage in certain
embodiments, hence reducing their number may lead to advantages in terms of speed and/or

memory.

[0201] On the other hand, increasing the number of permanent inactivations may have an
adverse effect on the running time: for example, step 1330 in the decoding process of Fig. 21,
and the corresponding step 1430 in the process of Fig. 27 require solving a system of
equations that has at least P rows and columns. One way to do this would be to identify an
invertible submatrix of the matrix EL-2 in Fig. 25, invert that matrix, and use the inverted
matrix to obtain the values of the intermediate symbols C(pi(L-g-1)), ..., C(pi(L-1)). Since
the matrix EL-2 may not be sparse in many of the embodiments, obtaining the values of the
intermediate symbols may incur on the order of g times g XORs of symbols. Since g is at
least P, the number of XORs of symbols maybe at least P times P, so if the overall number of
XORs of symbols is to be kept linear in K, a good choice is to set the number P to be
proportional to the square root of K. The specific embodiment of Appendix A chooses P to
be of the order of 2.5*sqrt(K), and keeps in line with this observation. This is a good choice
for P, as with this choice of P, typically the number of OTF inactivations is fairly small,

varying from around P to very close to or equal to zero.

[0202] Another quantity of interest is the average number, I, of inactivated intermediate
symbol neighbors there are for an encoded symbol, or for a static symbol. Step 1445 of the
decoding process in Fig. 27 may need as many as I XORs of symbols on average per
unrecovered intermediate symbols to accomplish this step. If I is large, then this number of

XORs may be too many for the memory and computational resources of the processes
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executing the decoding or the encoding process. On the other hand, if I is too small, then the

matrix EL-2 of Fig. 25 may not have full rank, and decodability may be jeopardized.

[0203] A more detailed analysis reveals that an important aspect of permanent inactivation is
to make the matrix PI of Fig. 15 behave in such a way that the columns are linearly
independent of one another, i.¢., the matrix is full rank as much as is possible. Itis
well-known to those of skill in the art that if PI is a random binary matrix, then full rank to
the limits possible may be achieved. On the other hand, PI may have on average in each
column a fraction of ones that is inversely proportional to the square root of K and still satisfy
the same rank properties as that of a purely random matrix. For this reason, the specific
embodiment in Appendix A chooses I to be a number between 2 and 3, and thus with the
choice of P proportional to the square root of K, this means that the number of ones in each

column of PI is on average inversely proportional to square root of K.

[0204] There are many variants of these methods, as one skilled in the art will recognize
upon reading this disclosure. For example, XOR may be replaced with other operators, e.g.,
linear operators over larger finite fields, or the operators may be a mixture of different
operators, ¢.g., some linear operators over larger finite fields for some of the operations and

other linear operators over smaller larger finite fields for others of the operations.

Specific Example with reference to Appendix A

[0205] As detailed above, without permanent inactivations (i.e., predetermined decisions as
to which encoded symbols would not be part of a matrix manipulation that would be part of
determining a sequence for a chain reaction decoding), the number of OTF inactivations
might be quite random and cause potential problems in terms of memory consumption.
Where the number of source symbols is very large and the overhead is very small, the error

probability can be unacceptably close to 1.

[0206] Because of the high error probability for small overheads, it can become increasingly
difficult to find good systematic information when the number of source symbols is large.
Herein, systematic information refers to information needed to provide to the encoder and
decoder in order to be able to construct a systematic code in the sense of Shokrollahi I11.
Moreover, whenever systematic information is obtained, it is to be expected that the behavior
of the code is very far from its average behavior, because on “average” the code should fail at

zero overhead.
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[0207] Some of the parameters for the construction of a chain reaction code with permanent
inactivation may include the degree distribution Q used for the LT encoder 250 of Fig. 4, the
parameters for the PI encoder 240, the determination of the number of permanently
inactivated symbol, the determination of the number of redundant static symbols and their
structure, and the particular way random numbers may be generated and shared between

encoder 115 and decoder 155 in Fig. 1.

Encoders and Decoders that use the RQ Code

[0208] A preferred embodiment of a code, hereafter referred to as “the RQ code”, that uses
the methods described herein is specified in great detail in Section 5 of Appendix A. The
remainder of Appendix A describes one method of applying the RQ code to the reliable

delivery of objects over broadcast or multicast networks.

[0209] The RQ code uses the methods described previously and below to implement a
systematic code, meaning that all the source symbols are among the encoded symbols that
can be generated, and thus encoded symbols can be considered to be a combination of the

original source symbols and repair symbols generated by the encoder.

[0210] Although some of the previous codes have good properties, there are some
improvements that would increase their practical application. Two potential improvements of
importance are a steeper overhead-failure curve and a larger number of supported source
symbols per source block. The overhead is the difference between the number of encoded
symbols received and the number of source symbols in the source block, e.g., an overhead of
2 means that K+2 encoded symbols are received to decode a source block with K source
symbols. The failure probability at a given overhead is the probability that the decoder fails
to completely recover the source block when the number of received encoded symbols
corresponds to that overhead. The overhead-failure curve is a plot of how the failure
probability drops as a function of increasing overhead, starting at overhead zero. An
overhead-failure curve is better if the failure probability of the decoder drops off fast, or

steeply, as a function of overhead.

[0211] A random binary code has an overhead-failure probability curve where the failure
probability drops by essentially a factor of two for each additonal overhead symbol, with
unworkable computational complexity, but the subject of the current discussion is limited to
the overhead-failure probability curve, and not computational complexity). In some

applications, this is a sufficient overhead-failure curve, but for some other applications, a
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steeper overhead-failure curve is preferred. For example, in a streaming application, the
range of the number of source symbols in a source block can be wide, e.g., K =40, K = 200,
K =1,000, K=10,000. To provide a good streaming experience the failure probability may
be required to be low, e.g., a failure probability of 10” or 10°. Since bandwidth is often at a
premium for streaming applications, the percentage of repair symbols sent as a fraction of the
source symbols should be minimized. Suppose, for example, that the network over which the
stream is sent should be protected against up to 10% packet loss when using source blocks
with K = 200, and the failure probability is required to be at most 10°. A random binary
code requires an overhead of at least 20 to achieve a failure probability of 10, i.c., the
receiver needs 220 encoded symbols to decode with this failure probability. A total of 245
encoded symbols need to be sent for each source block to meet the requirements, since
ceil(220/(1-0.1)) = 245. Thus, the repair symbols add an extra 22.5% to the bandwidth

requirements for the stream.

[0212] The RQ code described herein and in Section 5 of Appendix A achieves a failure
probability that is smaller than 102,10, and 10 for overheads 0, 1, and 2, respectively, for
values of K = K’ for all supported values of K’ and for values of K =1 and K = K'+1 for all
but the final supported value of K. Tests have been done for a variety of loss probabilties,

¢.g., loss probabilities of 10%, 20%, 50%, 70%, 90% and 95%.

[0213] For the example above using the RQ code, an overhead of 2 is sufficient to achieve a
failure probability of 10°, and thus only a total of 225 encoded symbols need to be sent for
each source block to meet the requirements, since ceil(202/(1-0.1)) = 225. In this case, the
repair symbols add an extra 12.5% to the bandwidth requirements for the stream, i.e., 10%
less bandwidth overhead than required by a random binary code. Thus, the RQ code

improved overhead-failure curve has some very positive practical consequences.

[0214] There are applications where support for a large number of source symbols per source
block is desirable. For example, in a mobile file broadcast application, it is advantageous
from a network efficiency point of view to encode the file as a single source block or, more
generally, to partition the file into as few source blocks as is practical. Suppose for example
that a file of 50 million bytes is to be broadcast, and that the available size within each packet
for carrying an encoded symbol is one thousand bytes. To encode the file as a single source
block requires that a value of K = 50,000 be supported. (Note that there are sub-blocking

techniques as described previously that allow decoding using substantially less memory).
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[0215] There are a few reasons that the number of source symbols supported for a code might
be limited. One typical reason is that computational complexity becomes unreasonable as K
increases, such as for Reed-Solomon codes, but this is not the case for codes such as chain
reaction codes. Another reason might be that the failure probability at zero overhead
increases to almost 1 as K increases, making it harder to find systematic indices that yield a
good systematic code construction. The failure probability at zero overhead can dictate the
difficulty of deriving a good code construction, because this essentially the probability that
when a systematic index is chosen randomly that the resulting systematic code construction

has the property that the first K encoded symbols are able to decode the K source symbols.

[0216] Because the overhead-failure curve for the the RQ code design is so steep for all
values of K, it is easily possible to find good systematic indices and thus to support much
larger values of K. The RQ code as described in Section 5 of Appendix A supports values of
K up to 56,403, and also supports a total number of encoded symbols up to 16,777,216 per
source block. These limits on supported values for the RQ code were set due to practical
considerations based on perceived application requirements, and not due to limitations of the
RQ code design. Other embodiments beyond those shown in Appendix A might have

different values.

[0217] The RQ code limits the number of different source block sizes that are supported as
follows. Given a source block with K source symbols to be encoded or decoded, a K’ value is
selected based on the table shown in Section 5.6 of Appendix A. The first column in the
table lists the possible values for K'. The value of K’ selected is the smallest value among the
possibilities such that K <K'. The K source symbols C'(0), ..., C'(K-1) are padded with K'-K
symbols C'(K), ..., C'(K'-1) with values set to zeroes to produce a source block comprising
K’ source symbols C'(0), ..., C'(K’-1), and then encoding and decoding are performed on this
padded source block.

[0218] The above approach has the benefit of reducing the number of systematic indices that
need to be supported, i.e., only a few hundred instead of tens of thousands. There is no
disadvantage in terms of the overhead-failure probability for K, as it is the same as the
overhead-failure curve for the selected K': Given the value of K, the decoder can compute the
value of K’, and set the values of C'(K), ..., C'(K’-1) to zeroes, and thus it only has to decode
the remaining K of the K’ source symbols of the source block. The only potential

disadvantages are that slightly more memory or computational resources might be needed for
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encoding and decoding with slightly more source symbols. However, the spacing between
consecutive values of K’ is roughly 1% for larger values of K’, and thus the potential

disadvantage is negligible.

[0219] Because of the padding of the source block from K to K’, the identifier for encoded
symbols C'(0), C'(1), ... within the RQ code is called the Internal Symbol Identifier,
abbreviated to ISI, where C'(0), ..., C'(K'-1) are the source symbols and C'(K"), C'(K'+1), ...

are the repair symbols.

[0220] External applications employing the encoder and decoder use an Encoded Symbol
Identifier, also called an Encoding Symbol Identifier, abbreviated to ESI, that ranges from 0
to K-1 to identify the original source symbols C'(0), ..., C'(K-1) and that continues K, K+1,
... to identify repair symbols C'(K'), C'(K'+1), .... Thus, a repair symbol C'(X) identified
with ISI X within the RQ code is identified externally with an ESI X-(K'-K). This is
described in more detail in Section 5.3.1 of Appendix A.

[0221] The encoding and decoding for the RQ codes is defined by two types of relationships:
constraint relationships among the intermediate symbols and LT-PI relationships between the
intermediate symbols and the encoded symbols. The constraint relationships correspond to
the relationships among the intermediate symbols defined by the SE matrix as for example
shown in Fig. 12 or Fig. 15. The LT-PI relationships correspond to the relationships between
the intermediate symbols and the encoded symbols defined by the LT matrix and PI matrix as

for example shown in Fig. 12 or Fig. 15.

[0222] Encoding proceeds by determining the intermediate symbol values based on: (1) the
source symbol values; (2) LT-PI relationships between the source source symbols and the
intermediate symbols; and (3) the constraint relationships among the intermediate symbols.
The values of repair symbols can be generated from the intermediate symbols based on LT-PI

relationships between the intermediate symbols and the repair symbols.

[0223] Similarly, decoding proceeds by determining the intermediate symbol values based
on: (1) the received encoded symbol values; (2) LT-PI relationships between the received
encoded symbols and the intermediate symbols; and (3) the constraint relationships among
the intermediate symbols. The values of missing source symbols can be generated from the
intermediate symbols based on LT-PI relationships between the intermediate symbols and the

missing source symbols. Thus, encoding and decoding are essentially symmetric procedures.
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Example Hardware Components

[0224] Figs. 30-31 illustrate block diagrams of hardware that might be used to implement
methods described above. Each element can be hardware, program code or instructions

executed by a general purpose or custom-purpose processor or a combination.

[0225] Fig. 30 illustrates an example encoding system 1000, that might be implemented as
hardware modules, software modules, or portions of program code stored in a program store
1002 and executed by a processor 1004, possibly as a collective unit of code not separated as
shown in the figure. Encoding system 1000 receives a signal in, conveying source symbols

and parameter information, and outputs a signal conveying that information.

[0226] An input interface 1006 stores the incoming source symbols into a source symbol
buffer 1008. A source-to-intermediate symbol generator 1010 generates intermediate
symbols from the source symbols. This can be a pass-through in some embodiments and a

decoder module in other embodiments (such as a “systematic” embodiment).

[0227] A redundant symbol generator 1012 generates redundant symbols from the source
symbols. This can be implemented as a chain reaction coder, an LDPC coder, an HDPC
coder, or similar. An inactivator 1014 receives the source symbols, intermediate symbols
and/or redundent symbols, as the case may be, and stores some of them, the permanently
inactivated symbols, in a PI buffer 1018 and provides the others to an output encoder 1016.

This process might only be logically, rather than physically.

[0228] An operator 1020, such as an XOR operator, operates on one or more encoded
symbols from output encoder 1016 (one, in certain embodiments) and one or more of the PI
symbols from PI buffer 1018 (one, in certain embodiments), and the result of the operation is

provided to a transmit interface 1030 that outputs the signal from system 1000.

[0229] Fig. 31 illustrates an example decoding system 1100, that might be implemented as
hardware modules, software modules, or portions of program code stored in a program store
1102 and executed by a processor 1104, possibly as a collective unit of code not separated as
shown in the figure. Some process might only be logically, rather than physically,

implemented.

[0230] Decoding system 1100 takes in an input signal and possibly other information and
outputs souce data, if it is able to. The signal in is provided to a receive interface 1106 that

stores received symbols in a buffer 1108. The ESIs of received symbols is provided to a
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matrix generator 1110 that generates matrixes as described herein, in dependence on the

particular symbols received, and stores the results in a matrix memory 1112.

[0231] A scheduler 1114 can read matrix details from matrix memory 1112 and generates a
schedule, stored in a schedule memory 1016. Schedule 1114 might also generate a done
signal and convey a PI matrix to a PI solver 1118 when complete. PI solver 1118 provides
solved PI symbol values to a solver 1120, which also used the schedule, to decode the

intermediate symbols from the received symbols, schedule and PI symbols.

[0232] The intermediate symbols are provided to an intermediate-to-source symbol generator
1122, which could be an encoder or pass-through. The output of intermediate-to-source
symbol generator 1122 is provided to an output interface 1124 that outputs the source data, or

what source data is available for output.

Other considerations

[0233] In certain situations, there might be a need for enhanced decodability. In examples
provided elsewhere herein, while encoded symbols had both LT neighbors and PI neighbors,
the LDPC symbols only had LT neighbors or PI neighbors that were not among the HDPC
symbols. In some instances, decodability is improved if LDPC symbols also have PI
neighbors that include the HDPC symbols. With neighbors among all of the PI symbols,
including the HDPC symbols, the decoding worth of the LDPC symbols might be more
similar to that of the encoded symbols. As explained elsewhere herein, symbols that depend
on the LT symbols (which can be easy to encode and decode) and also depend on the PI
symbols, including the HDPC symbols (which can provide high reliability decoding), so that
both advantages might be present.

[0234] In an example, each LDPC symbol has two PI neighbors, i.e., an LDPC symbol’s

value depends on the values of two PI symbols.

[0235] Decodability might also be improved, in some situations, reducing the occurrences of
duplicate encoded symbols, where two encoded symbols are duplicates if they have exactly
the same overall neighbor set, where the overall neighbor set for an encoded symbol is
comprised of the LT neighbor set and the PI neighbor set. Duplicate encoded symbols with
the same overall neighbor set carry exactly the same information about the intermediate
source block from which they were generated, and thus there is no better chance at decoding
from having received more than one duplicate encoded symbols than there is from having

received one of the duplicate encoded symbols, i.¢., reception of more than one duplicate
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symbol adds to the reception overhead and only one of the encoded symbols among the

duplicates is useful for decoding.

[0236] A preferable property is that each received encoded symbol is not a duplicate of any
other received encoded symbol, since this means that each received encoded symbol may be
useful for decoding. Thus, it might be preferred to reduce the number of such duplications or

reduce the probability of occurrence of duplicates.

[0237] One approach is to limit the number of LT neighbors that each encoded symbol can
have. For example, if there are W possible neighbors, the maximum number of neighbors
might be limited to W-2. This reduces the chance that overall neighborhood sets would be
duplicated, in some cases, because the neighborhood set comprising all W possible neighbors
would not be allowed. Where the constraint is Deg[v] = min(d, W-2), there are W*(W-1)/2
different neighborhood sets of degree W-2. Thus, it can be less likely that duplicate overall
neighbor sets are generated for encoded symbols. Other constraints, such as min(d, W-Wg)

for some Wg other than Wg = 2, or some other constraint, might be used instead.

[0238] Another technique, which can be used alone or with the above duplicate-reducing
technique, is to choose more than one PI neighbor for each encoded symbol, so that it is less
likely that there are duplicate PI neighbors for encoded symbols, and thus less likely that
duplicate overall neighbor sets are generated for encoded symbols. The PI neighbors can be
generated in similar ways to how the LT neighbors are generated, for example by first
generating a (d1, al, bl) as shown in the Appendix A, Section 5.3.5.4 according to the code

snippet below:

if (d < 4) then {dl = 2 + Randly, 3, 2]} else {dl = 2};
al = 1 + Randly, 4, P1-11;
bl = Randly, 5, P1l];

[0239] Note that in this example, there is a non-trivial random degree distribution defined on
the number of PI neighbors d1 and that distribution depends on the chosen number of LT
neighbors d, and the number of PI neighbors is likely to be greater when the number of LT
neighbors is smaller. This provides the property that the overall degree of the encoded
symbol is such that it reduces the chance that duplicate encoded symbols will be generated

and thus received.

[0240] The encoded symbol value might be generated using the neighbors defined by (d1, al,
b1) as shown in Appendix A, Section 5.3.5.3, and by the following code snippet:
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while (bl »>= P) do {bl = (bl+al) % P1};
result = result * C[W + bl];
For j =1, ..., dl-1 do
bl = (bl+al) % P1;
while (bl »>= P) do {bl = (bl+al) % P1};

result = result *~ C[W + bl];
Return result;

[0241] To support these decodability features or separately to provide for decodability, a
different systematic index J(K') for values of K’ might be used, such as the one shown in

Table 2 of Section 5.6 in Appendix A.

[0242] An example of a process that is performable in a transmission and/or reception system
to generate systematic index J(K') is illustrated as follows. For each K’ in the list of possible
K’, one process that could be performed, typically by an appropriately programmed circuit or
processor, is to check a number of indices for suitability. For example, the circuit/processor
might check, for J =1 ... 1000 [or some other limit], whether the following criteria are met

with respect to possible systematic index J:

[0243] (a) Is decoding possible at zero overhead from the K’ source symbols?
[0244] If Yes, record the number of on-the-fly inactivations
[0245] (b) Are there duplicate overall neighbor sets among the first K'/0.06 possible

encoded symbols (with ESIs 0, ..., K'/0.06)? [Other thresholds might be used instead.]

[0246] (¢) Is the decode failure probability below 0.007 [or some other threshold]
when decoding using the first K’ received encoded symbols within 10,000 runs [or some
other test] when each encoded symbol is lost with probability 0.93 [or some other threshold]

in each run independently of the other encoded symbols?

[0247] The circuit/processor then chooses among the possible systematic indices J that
satisfy criteria (a), (b) and (c) above, choosing the systematic index that recorded an average

number of on-the-fly inactivations in step (a).

[0248] Note that there are many variations of the above selection criteria. For example, in
some cases it might be preferable to choose the systematic index that satisfies (a), (b) and (c)
above and yields the fewest number of decode failures in step (c) within the specified number
of runs. As another example, a combination of the number of on-the-fly inactivations and the
decode failure probability might be taken into consideration when choosing a systematic
index. As another example, multiple systematic indices for each K’ value might be available,

and then one of them is chosen randomly within particular applications.
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[0249] The systematic indices for the K’ values listed in Table 2 in Section 5.6 of Appendix

A 1s one potential list of systematic indices for the code described in Appendix A.

Variations of a Sub-blocking Process

[0250] Sub-blocking, dividing blocks into smaller units, physically or logically, for further
processing, is known for various purposes. For example, it is used in IETF RFC 5053. It is
also known from U.S. Patent No. 7,072,971. One of the primary uses of the sub-blocking
method is to allow a large block of data to be protected as a single entity by an FEC code,
while at the same time using a much smaller amount of memory than the size of the data

block at a receiver to recover the data block using an FEC decoder.

[0251] One method for choosing the number of sub-blocks described in IETF RFC 5053
provides a good source block partition and sub-block partition for many reasonable settings
of parameters, but it may produce a solution in some circumstances that may not strictly
satisfy an upper bound on the sub-block size WS (although even in these cases it produces
solutions where the sub-block size is a modest factor larger than the given constraint WS on
the sub-block size). As another example, in draft-luby-rmt-bb-fec-raptorg-object-00 (where
the maximum number of source symbols in a source block is much larger than in IETF RFC
5053), in Section 4.2, the recipe below is provided to calculate T, Z, and N, where T is the
symbol size, Z is the number of source blocks into which the file (or data block) is
partitioned, and N is the number of sub-blocks. Also, P’ is the packet payload size for
symbols, F is the file size in bytes, K’ max is the maximum number of source symbols
supported (e.g., 56,404), Al is an alignment factor specifying that symbols or sub-symbols
should be multiples of Al bytes in size to allow more efficient decoding, e.g., Al =4 for a

modern CPU is preferred, and WS is the desired upper bound on the sub-block size in bytes.

[0252] Note that the derivation of the parameters T, Z, and N can be done at a sender or an
alternative server based on the values of F, Al, and P’. The receiver only needs to know the
values of F, Al, T, Z, and N in order to determine the sub-block and source block structure of
the file or data block in received packets pertaining to the file or data block. The receiver can
determine P’ from the size of received packets. Note that sent and received packets also
typically contain other information that identifies the contents of the packet, ¢.g., an FEC
Payload ID that is typically 4 bytes in size and that carries the source block number (SBN),
and the encoded symbol identifier (ESI) of the first symbol carried in the packet.
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[0253] A previous method described in Section 4.2 of
draft-luby-rmt-bb-fec-raptorg-object-00 to calculate T, Z, N is to set them at the following

values:
. T=P
o Kt = ceil(F/T)
o Z = ceil(Kt/K’' max)
o N = min {ceil(ceil(Kt/Z)*T/WS), T/Al}

[0254] In these calculations, ceil() is a function that outputs the smallest integer greater than
or equal to its input, and floor() is a function that outputs the largest integer less than or equal

to its input. Also, min() is a function that outputs the minimum of its inputs.

[0255] One issue for some settings of parameters with this way of deriving source blocks and
sub-block partitioning is that if T/Al is smaller than ceil(ceil(Kt/Z)*T/WS), then the upper

bound on the sub-block size W may not be respected.

[0256] A potential secondary issue is that this allows sub-symbols to be as small as Al, which
is typically set to 4 bytes, and may be too small to be efficient in practice. Typically, the
smaller the sub-symbol size, the more processing overhead there is to decode or encode
sub-blocks. Furthermore, especially at a receiver, a smaller sub-symbol size means that more
sub-blocks need to be de-multiplexed and decoded, and this can consume receiver resources
such as CPU cycles and memory accesses. On the other hand, a smaller allowable
sub-symbol size means that a source block can be partitioned into more sub-blocks that
respect a specified upper bound WS on sub-block size. Thus, smaller sub-symbols allow a
larger source block to be supported, and thus the FEC protection provided across this source
block yields better protection and better network efficiency. In practice, in many cases it is
preferable to ensure that sub-symbols are at least a specified minimum size, which provides
the opportunity for a better balance between processing requirements and memory

requirements at a receiver and the efficient usage of network resources.

[0257] As an example of the derived parameters using the previous method described in

Section 4.2 of draft-luby-rmt-bb-fec-raptorg-object-00 to calculate T, Z, N:
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[0258] Input:

F =56,404 KB
P’=1KB = 1,024 bytes
WS =128 KB

Al=4

K’ max = 56,404

[0259] Calculations:

T=1KB
Kt = 56,404
Z=1

N =256 (due to the second input to the min function)

[0260] In this example, there will be one source block, comprising 256 sub-blocks, where
cach sub-block is approximately 220 KB (larger than WS) with at least some sub-blocks

having sub-symbol size 4 bytes (extremely small).

[0261] A third issue is that an AL-FEC solution may not support all possible numbers of
source symbols, i.¢., it may only support a selected list of K’ values, where K’ is a supported
number of source symbols in a source block, and then if the actual number of source symbols
K desired in a source block is not among the K’ values then K is padded up to the nearest K’
value, which means that the size of the source block that is used can be somewhat larger than

the calculated K value from the above.

[0262] We now describe new sub-blocking methods, which are improvements on the
previous methods described above. For the purposes of description, a module for
sub-blocking might take as its inputs data to be partitioned, F, and values including WS, Al,

SS and P’, where the meaning of those variables is described in more detail below.

[0263] WS represents a provided constraint on the maximum size sub-block, possibly in units
of bytes, that is decodable in working memory at a receiver. Al represents a memory
alignment parameter. Since a receiver memory might work more efficiently if symbols and
sub-symbols are aligned in memory along memory alignment boundaries, it might be useful
to track Al and store values in multiples of Al bytes. For example, typically Al = 4, as many
memory devices naturally address data in memory on four byte boundaries. Other values of
Al are also possible, e.g., Al =2 or Al = 8. Typically, Al might be set to the least common

multiple memory alignment of all the many possible receivers. For example, if some
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receivers support 2-byte memory alignment but other receivers support 4-byte memory

alignment, then Al = 4 would be recommended.

[0264] The parameter SS is determined based on the preferred lower bound on sub-symbol
size, such that the lower bound on the sub-symbol size is SS*Al bytes. It may be preferable
to have the sub-symbol size be a multiple of Al, since decoding operations are typically

performed on sub-symbols.

[0265] What follows is a detailed explanation of a method for partitioning data F into Z
source blocks and then the partitioning of those Z source blocks into N sub-blocks. In this
description, P’ refers to a variable stored in memory (or implied) representing the available
bytes within packets for symbols that are to be sent, and it is assumed that P’ is a multiple of
Al. T is a variable representing the size of the symbols that are to be placed within sent

packets. Other variables can be inferred from the text.

New Sub-blocking Method to Determine T, Z and N

T=P
Kt = ceil(F/T);
N_max = floor(T/(SS*Al));
Foralln=1, ..., N max
o KL(n) is the maximum K’ value supported as a possible number of source
symbols in a source block that satisfies
=K' < WS/(Al*(ceil(T/(Al*n))));

o 7= ceill(KVKL(N_max));
e N =minimum n such that ceil(Kt/Z) < KL(n);

[0266] Once these parameters have been determined, then the size of each of the Z source
blocks, and the sizes of the sub-symbols of the N sub-blocks of each source block can be
determined as described in IETF RFC 5053, i.e., Kt = ceil(F/T), (KL, KS, ZL, ZS) =
Partition[Kt, Z], and (TL, TS, NL, NS) = Partition[T/Al, N].

[0267] Kt is the number of source symbols in the file. In a sub-block module, the Kt source
symbols are partitioned into Z source blocks, ZL source blocks with KL source symbols each
and ZS source blocks with KS source symbols each. Then, KL is rounded up to KL, where
KL’ is the smallest supported number of source symbols that is at least KL (and an additional
KL’ - KL zero-padding symbols are added to the source block for purposes of encoding and
decoding, but these additional symbols are typically not sent or received), and similarly KS is
rounded up to KS’, where KS' is the smallest supported number of source symbols that is at

least KS (and an additional KS’ - KS zero-padding symbols are added to the source block for
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purposes of encoding and decoding, but these additional symbols are typically not sent or

received).

[0268] These calculations (performed by the sub-block module, another software module, or
hardware) ensure that the numbers of source symbols for the source blocks are as equal as
possible, subject to the constraint that their numbers total to the number, Kt, of source
symbols in the file. These calculations also ensure that the sizes of the sub-symbols for the
sub-blocks are as equal as possible subject to the constraint that they are multiples of Al and

that their sizes total the symbol size.

[0269] Then, the sub-symbol parameters TL, TS, NL and NS are calculated, where there are
NL sub-blocks that use the larger sub-symbol size TL*Al and there are NS sub-blocks that
use the smaller sub-symbol size TS*Al. The function Partition[I, J] is implemented in

software or hardware and is defined as the function with an output that is a sequence of four

integers (IL, IS, JL, JS), where IL = ceil(I/]), IS = floor(1/J), JL=1-1S * J, and JS=1J - JL.

[0270] Some of the properties of these new methods are worth noting. A sub-block module
can determine a lower bound derived on the smallest sub-symbol size used. From the above
equations, it is known that TS = floor(T/(Al*N)), where TS*Al is the smallest sub-symbol
size used since TS < TL. Note that the smallest sub-symbol is used when N =N _max. Using
X/(floor(Y)) > X/Y for positive X and Y, TS is at least floor(T/(Al*floor(T/(SS*Al)))), which
is in turn at least floor(SS) = SS. Because of these facts, the smallest sub-symbol size
produced by the partitioning method described herein will be at least TS*Al = SS*Al, as

desired.

[0271] A sub-block module can determine an upper bound derived on the largest sub-block
size. The largest sub-block size used is TL*Al* KL', where KL is the smallest K’ value in
the table above that is at least KL = ceil(Kt/Z). Note that, by the definition of N,

KL’ <KL(N), and TL = ceil(T/(A1*N)). Since KL(N) < WS/(Al*(ceil(T/(AI*N)))), it follows
that WS > KL(N)*Al*ceil(T/(AI*N)) > KL™*AI*TL.

[0272] A variable N_max can represent the largest number of sub-symbols into which a
source symbol of size T can be partitioned. Setting N _max to floor(T/(SS*Al)) ensures that
the smallest sub-symbol size is at least SS*Al. KL(n) is the largest number of source
symbols in a source block that can be supported when symbols of the source block are
partitioned into n sub-symbols each, to ensure that each of the sub-blocks of the source block

is of size at most WS.
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[0273] The number Z of source blocks can be chosen to be as small as possible, subject to the
constraint that the number of source symbols in each source block is at most KL(N_max),
which ensures that each source symbol can be partitioned into sub-symbols of size at least
SS*Al and that the resulting sub-blocks are of size at most WS. The sub-block module
determines, from the value of Z, the number of source blocks and the numbers of symbols in

each of the Z source blocks.

[0274] Note that if any smaller value of Z is used than produced by this partitioning method,
then either there would be a sub-block of one of the source blocks that is larger than WS or
else there would be a sub-block of one of the source blocks that had a sub-symbol size
smaller than SS*Al. Also, the smallest of the source blocks that this partitioning method
produces is as large as possible subject to these two constraints, i.c., there is no other method
to partition the file or data block into source blocks that respects both constraints such that the
smallest source block is larger than the smallest source block produced by this partitioning

method. Thus, in this sense the value of Z produced by this partitioning method is optimal.

[0275] The number N of sub-blocks into which a source block is partitioned can be chosen to
be as small as possible subject to the constraint that, for each sub-block, the size of the
sub-symbols of the sub-block times the number of source symbols in the source block which

the sub-block partitions is at most WS.

[0276] Note that if any smaller value of N is used than produced by this partitioning method
from the value of Z, then there would be at least one sub-block whose size would exceed WS.
Also, the smallest sub-symbol size that this partitioning method produces from the given
value of Z is as large as possible subject to the constraint that the largest sub-block size
should not exceed WS, i.¢., there is no other method to produce sub-blocks of the source
blocks determined by the value of Z that respects the largest sub-block constraint such that
the smallest sub-symbol size is larger than the smallest sub-symbol size produced by this
partitioning method. Thus, in this sense the value of N produced by this partitioning method

is optimal.

[0277] In the following examples, it is assumed that all possible K’ values are supported as a

number of source symbols in a source block.
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Example 1
[0278] Inputs:

SS=5

Al = 4 bytes

(Min sub-symbol size = 20 bytes)
WS =128 KB = 131,072 bytes
P’ = 1,240 bytes

F=6 MB = 6,291,456 bytes

[0279] Calculations:

T = 1,240 bytes

Kt =5,074

N _max =62

KL(N_max) = 6,553

Z=1

KL = ceil(Kt/Z) = 5,074

N =52 (KL(N) = 5,461)

TL = 6, larger sub-symbol = 24 bytes
TS = 5, smaller sub-symbol = 20 bytes
TL * AL * KL = 121,776

Example 2
[0280] Inputs:

SS=8

Al = 4 bytes

(Min sub-symbol size = 32 bytes)
WS =128 KB = 131,072 bytes
P’=1KB = 1,024 bytes

F = 56,404 KB = 57,757,696 bytes

[0281] Calculations:

T = 1,024 bytes

Kt = 56,404

N _max =32

KL(N_max) = 4,096

Z=14

KL = ceil(Kt/Z) = 4,029

N =32 (KL(N) = 4,096)

TL = 8, larger sub-symbol = 32 bytes
TS = §, smaller sub-symbol = 32 bytes
TL * AL * KL = 128,928

[0282] There are many variants of the above methods. For example, for some FEC code it is

desirable to have at least a minimum number of source symbols in a source block to minimize
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the source block reception overhead of the FEC code. Since for really small file sizes or data
block sizes F the size of the source symbol might become too small, there might also be a
maximum number of source symbols into which a packet is partitioned. For example, in
IETF RFC 5053, the desired minimal number of source symbols in a source block is

Kmin = 1024 and the maximum number of source symbols into which a packet is partitioned

is Gmax = 10.

[0283] Below is another variant of the new sub-blocking method described above that takes
into account the additional parameters Kmin and Gmax as just described, where G is the
number of symbols for a source block carried in each packet, performable by a subblocking
module or more generally some module or software or hardware at an encoder, decoder,

transmitter and/or receiver.

[0284] In this variant, each packet carries the ESI of the first symbol in the packet and then
cach subsequent symbol in the packet implicitly has an ESI that is one larger than the
preceding symbol in the packet.

New Sub-blocking Method to Determine G, T, Z and N

G = min(ceil(P"*Kmin/F), floor(P"/(SS*Al)), Gmax);
T = floor(P'/(AI*G))* Al
Kt = ceil(F/T);
N_max = floor(T/(SS*Al));
Foralln=1, ..., N max
o KL(n) is the maximum K’ value supported as a possible number of source
symbols in a source block that satisfies
= K'< WS/(Al*(ceil(T/(Al*n))));

o 7= ceill(KVKL(N_max));
e N =minimum n such that ceil(Kt/Z) <KL(n);

[0285] Note that by the way G is calculated, it is guaranteed that the symbol size is at least
SS*Al, i.e., the symbol size is at least the minimum sub-symbol size. Note also that it should
be the case that SS*Al is at least P’ to ensure that the symbol size can be at least SS*Al (and

if it is not, then G will evaluate to zero).

Example 3
[0286] Input:

SS=5

Al =4 bytes

(Min sub-symbol size = 20 bytes)
WS =256 KB =262,144 bytes
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P’ = 1,240 bytes

F =500 KB = 512,000 bytes
Kmin = 1,024

Gmax =10

[0287] Calculations:

G=3

T=412

Kt =1,243

N _max =20

KL(N_max) = 10,992

Z=1

KL = ceil(Kt/Z) = 1,243

N =2 (KL(N) = 1,260)

TL = 52, larger sub-symbol = 208 bytes

TS = 51, smaller sub-symbol = 204 bytes

TL * AL * KL = 258,544
[0288] As has now been described, these new methods introduce a constraint on the smallest
sub-symbol size used for any sub-block. This disclosure provides new methods for
sub-blocking that respect this additional constraint, while at the same time strictly respecting
a constraint on the maximum sub-block size. The methods produce source blocking and
sub-blocking solutions that satisfy the objectives of partitioning a file or data block into as
few source blocks as possible subject to a constraint on the smallest sub-symbol size, and
then subject to this split into as few sub-blocks as possible subject to a constraint on the

maximum sub-block size.

Variations

[0289] In some applications, it may be acceptable to not be able to decode all of the source
symbols, or to be able to decode all of source symbols, but with a relatively low probability.
In such applications, a receiver can stop attempting to decode all of the source symbols after
receiving K+A encoded symbols. Or, the receiver can stop receiving encoded symbols after
receiving less than K+A encoded symbols. In some applications, the receiver may even only
receive K or less encoded symbols. Thus, it is to be understood that in some embodiments of
the present invention, the desired degree of accuracy need not be complete recovery of all the

source symbols.

[0290] Further, in some applications where incomplete recovery is acceptable, the data can
be encoded such that all of the source symbols cannot be recovered, or such that complete

recovery of the source symbols would require reception of many more encoded symbols than
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the number of source symbols. Such an encoding would generally require less computational

expense, and may thus be an acceptable way to decrease the computational expense of

encoding.

[0291] It is to be understood that the various functional blocks in the above-described figures
may be implemented by a combination of hardware and/or software, and that in specific
implementations some or all of the functionality of some of the blocks may be combined.
Similarly, it is also to be understood that the various methods taught herein may be

implemented by a combination of hardware and/or software.

[0292] The above description is illustrative and not restrictive. Many variations of the
invention will become apparent to those of skill in the art upon review of this disclosure. The
scope of the invention should, therefore, be determined not with reference to the above
description, but instead should be determined with reference to the appended claims along

with their full scope of equivalents.
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RaptorQ Forward Error Correction Scheme for Object Delivery
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Abstract

This document describes a Fully-Specified FEC scheme, corresponding
to FEC Encoding ID 6 (to be confirmed (tbc)), for the RaptorQ forward
error correction code and its application to reliable delivery of
data objects.

RaptorQ codes are a new family of codes that provide superior
flexibility, support for larger source block sizes and better coding
efficiency than Raptor codes in RFC5053. RaptorQ is also a fountain
code, i.e., as many encoding symbols as needed can be generated by
the encoder on-the-fly from the source symbols of a source block of
data. The decoder is able to recover the source block from any set
of encoding symbols for most cases equal to the number of source
symbols and in rare cases with slightly more than the number of
source symbols.

The RaptorQ code described here is a systematic code, meaning that
all the source symbols are among the encoding symbols that can be
generated.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
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and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress.™"

This Internet-Draft will expire on February 12, 2011.
Copyright Notice

Copyright (c¢) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
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1. Introduction

This document specifies an FEC Scheme for the RaptorQ forward error
correction code for object delivery applications. The concept of an
FEC Scheme is defined in RFC5052 [RFC5052] and this document follows
the format prescribed there and uses the terminology of that
document. The RaptorQ code described herein is a next generation of
the Raptor code described in RFC5053 [RFC5053]. The RaptorQ code
provides superior reliability, better coding efficiency, and support
for larger source block sizes than the Raptor code of RFC5053

[RFC5053]. These improvements simplify the usage of the RaptorQ code
in an object delivery Content Delivery Protocol compared to RFC5053
[RFC5053] .

The RaptorQ FEC Scheme is a Fully-Specified FEC Scheme corresponding
to FEC Encoding ID 6 (tbc).

Editor's Note: The finalized FEC encoding ID is still to be
defined, but '6é (tbc)' is used as temporary value in this Internet
Draft expecting sequential use of FEC encoding IDs in the IANA
registration process.

RaptorQ is a fountain code, i1.e., as many encoding symbols as needed
can be generated by the encoder on-the-fly from the source symbols of
a block. The decoder is able to recover the source block from any
set of encoding symbols only slightly more in number than the number
of source symbols.

The code described in this document is a systematic code, that is,
the original source symbols can be sent unmodified from sender to
receiver, as well as a number of repair symbols. For more backgound
on the use of Forward Error Correction codes in reliable multicast,
gsee [RFC3453].

2. Requirements notation
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Formats and Codes
3.1. FEC Payload IDs

The FEC Payload ID MUST be a 4-octet field defined as follows:

Luby, et al. Expires February 12, 2011 [Page 5]
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0 1 2 3
0123456789 0123456789012345678°901
e e e T e T e e B b It e Tt R
| SBN | Encoding Symbol ID |
e e e e T e e T R e o b o T R

Figure 1: FEC Payload ID format
o0 Source Block Number (SBN), (8 bits, unsigned integer): A non-

negative integer identifier for the source block that the encoding
symbols within the packet relate to.

o Encoding Symbol ID (ESI), (24 bits, unsigned integer): A non-
negative integer identifier for the encoding symbols within the
packet.

The interpretation of the Source Block Number and Encoding Symbol
Identifier is defined in Section 4.

3.2. FEC Object Transmission Information
3.2.1. Mandatory

The value of the FEC Encoding ID MUST be 6, as assigned by IANA (see
Section 7).

3.2.2. Common

The Common FEC Object Transmission Information elements used by this
FEC Scheme are:

o Transfer Length (F), (40 bits, unsigned integer): A non-negative
integer that is at most 946270874880. This is the transfer length
of the object in units of octets.

o Symbol Size (T), (16 bits, unsigned integer): A positive integer
that is less than 2°%16. This is the size of a symbol in units of
octets.

The encoded Common FEC Object Transmission Information format is
shown in Figure 2.

Luby, et al. Expires February 12, 2011 [Page 6]
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0 1 2 3
0123456789 012345678901234506789T01
I e T e et st e S e e S O Tt T
| Transfer Length (F) |
+ I e Tt e s st e Tt e S
| Reserved | Symbol Size (T) |
e e Tt e T e Tt e T e T I et S R S A A

Figure 2: Encoded Common FEC OTI for RaptorQ FEC Scheme

NOTE 1: The limit of 946270874880 on the transfer length is a
consequence of the limitation on the symbol size to 2°%16-1, the
limitation on the number of symbols in a source block to 56403 and
the limitation on the number of source blocks to 2°78.

3.2.3. Scheme-Specific

The following parameters are carried in the Scheme-Specific FEC
Object Transmission Information element for this FEC Scheme:

o0 The number of source blocks (Z) (12 bits, unsigned integer)
o The number of sub-blocks (N) (12 bits, unsigned integer)
o A symbol alignment parameter (Al) (8 bits, unsigned integer)

These parameters are all positive integers. The encoded Scheme-
specific Object Transmission Information is a 4-octet field
consisting of the parameters Z, N and Al as shown in Figure 3.

0 1 2 3

012345678901234567890123456782901
e e e e B Ik I e T e S T B R e T bk o ot e
| z | N | Al |
e I e B R kT e B R e e bk B o R

Figure 3: Encoded Scheme-specific FEC Object Transmission Information
The encoded FEC Object Transmission Information is a 12-octet field
consisting of the concatenation of the encoded Common FEC Object
Transmission Information and the encoded Scheme-specific FEC Object
Transmission Information.

These three parameters define the source block partitioning as
described in Section 4.4.1.2

Luby, et al. Expires February 12, 2011 [Page 7]
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4. Procedures
4.1. Introduction
For any undefined symbols or functions used in this section, in
particular the functions "ceil" and "floor", refer to Section 5.1.
4.2. Content Delivery Protocol Requirements
This section describes the information exchange between the RaptorQ
FEC Scheme and any Content Delivery Protocol (CDP) that makes use of
the RaptorQ FEC Scheme for object delivery.
The RaptorQ encoder scheme and RaptorQ decoder scheme for object
delivery require the following information from the CDP:
o The transfer length of the object, F, in octets
o A symbol alignment parameter, Al
o The symbol size, T, in octets, which MUST be a multiple of Al
0 The number of source blocks, Z
0 The number of sub-blocks in each source block, N
The RaptorQ encoder scheme for object delivery additionally requires:
- the object to be encoded, F octets
The RaptorQ encoder scheme supplies the CDP with the following
information for each packet to be sent:
o Source Block Number (SBN)
o Encoding Symbol ID (ESI)
o Encoding symbol (s8)
The CDP MUST communicate this information to the receiver.
4.3. Example Parameter Derivation Algorithm

This section provides recommendations for the derivation of the three
transport parameters, T, Z and N. This recommendation is based on the
following input parameters:

Luby,
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o F the transfer length of the object, in octets

O WS the maximum size block that is decodable in working memory, in
octets

o P' the maximum payload size in octets, which is assumed to be a
multiple of Al

o Al the symbol alignment parameter, in octets

O SS a parameter where the desired lower bound on the sub-symbol
size i1s SS*Al

0 K' max the maximum number of source symbols per source block.
Note: Section 5.1.2 defines K' max to be 56403.

Based on the above inputs, the transport parameters T, Z and N are
calculated as follows:

Let,

o Kt = ceil(F/T)
0o N max = floor(T/(SS*al))
o for all n=1, ..., N _max

* KL(n) is the maximum K' value in Table 2 in Section 5.6 such
that

K' <= WS/ (Al*(ceil (T/(A1*n))))
o Z = ceil (Kt/KL(N_max))
o N is the minimum n=1, ..., N max such that ceil (Kt/Z) <= KL(n)
It is RECOMMENDED that each packet contains exactly one symbol.
However, receivers SHALL support the reception of packets that

contain multiple symbols.

The value Kt is the total number of symbols required to represent the
source data of the object.

The algorithm above and that defined in Section 4.4.1.2 ensure that
the sub-symbol sizes are a multiple of the symbol alignment

Luby, et al. Expires February 12, 2011 [Page 9]
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parameter, Al. This is useful because the sum operations used for
encoding and decoding are generally performed several octets at a
time, for example at least 4 octets at a time on a 32 bit processor.
Thus the encoding and decoding can be performed faster if the sub-
symbol sizes are a multiple of this number of octets.

The recommended setting for the input parameter Al is 4.

The parameter WS can be used to generate encoded data which can be
decoded efficiently with limited working memory at the decoder. Note
that the actual maximum decoder memory requirement for a given value
of WS depends on the implementation, but it is possible to implement
decoding using working memory only slightly larger than WS.

4.4. Object Delivery
4.4.1. Source block construction
4.4.1.1. General

In order to apply the RaptorQ encoder to a source object, the object
may be broken into Z »= 1 blocks, known as source blocks. The
RaptorQ encoder is applied independently to each source block. Each
source block is identified by a unique Source Block Number (SBN),
where the first source block has SBN zero, the second has SBN one,
etc. Each source block is divided into a number, K, of source
symbols of size T octets each. Each source symbol is identified by a
unigque Encoding Symbol Identifier (ESI), where the first source
symbol of a source block has ESI zero, the second has ESI one, etc.

Each source block with K source symbols is divided into N >= 1 sub-
blocks, which are small encugh to be decoded in the working memory.
Each sub-block is divided into K sub-symbols of size T'.

Note that the wvalue of K is not necessarily the same for each source
block of an object and the value of T' may not necessarily be the
same for each sub-block of a source block. However, the symbol size
T is the same for all source blocks of an object and the number of
symbols, K is the same for every sub-block of a source block. Exact
partitioning of the object into source blocks and sub-blocks is
described in Section 4.4.1.2 below.

4.4.1.2. Source block and sub-block partitioning
The construction of source blocks and sub-blocks is determined based

on five input parameters, F, Al, T, Z and N and a function
Partition[]l. The five input parameters are defined as follows:

Luby, et al. Expires February 12, 2011 [Page 10]
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o F the transfer length of the object, in octets

o Al a symbol alignment parameter, in octets

o T the symbcol size, in octets, which MUST be a multiple of Al

O Z the number of source blocks

o N the number of sub-blocks in each source block

These parameters MUST be set so that ceil(ceil (F/T)/Z) <= K' max.
Recommendations for derivation of these parameters are provided in
Section 4.3.

The function Partition[] takes a pair of positive integers (I, J) as
input and derives four non-negative integers (IL, IS, JL, JS) as
output. Specifically, the value of Partition[I, J] is the sequence
(IL, IS, JL, JS), where IL = ceil(I/J), IS = floor(i/J), JL = I - IS
* J and JS = J - JL. Partitionl[] derives parameters for partitioning
a block of size I into J approximately equal sized blocks.
Specifically, JL blocks of length IL and JS blocks of length IS.

The source object MUST be partitioned into source blocks and sub-
blocks as follows:

Let
o Kt = ceil(r/T),

o (KL, KS, zL, ZS) Partition [Kt, Z],

o (TL, TS, NL, NS) Partition [T/Al, NJ.

Then, the object MUST be partiticoned intoc Z = ZL + ZS contiguous
source blocks, the first ZL source blocks each having KL*T octets,
i.e. KL source symbols of T octets each, and the remaining ZS source
blocks each having KS*T octets, i1.e. K8 source symbols of T octets
each.

If Kt*T » F then for encoding purposes, the last symbol of the last
source block MUST be padded at the end with Kt*T-F zero octets.

Next, each source block with K source symbols MUST be divided into N
= NL + NS contiguous sub-blocks, the first NL sub-blocks each
consisting of K contiguous sub-symbols of size of TL*Al octets and
the remaining NS sub-blocks each consisting of K contiguous sub-
symbols of size of TS*Al octets. The symbol alignment parameter Al
ensures that sub-symbols are always a multiple of Al octets.

Luby, et al. Expires February 12, 2011 [Page 11]
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Finally, the m-th symbol of a source block consists of the
concatenation of the m-th sub-symbol from each of the N sub-blocks.
Note that this implies that when N > 1 then a symbol is NOT a
contiguous portion of the object.

4.4.2. Encoding packet construction
Each encoding packet contains the following information:
o Source Block Number (SBN)
o Encoding Symbol ID (ESI)
o encoding symbol (8)

Each source block is encoded independently of the others. Source
blocks are numbered consecutively from zero.

Encoding Symbol ID values from 0 to K-1 identify the source symbols
of a source block in sequential order, where K is the number of
source symbols in the source block. Encoding Symbol IDs K onwards
identify repair symbols generated from the source symbols using the
RaptorQ encoder.

Each encoding packet either consists entirely of source symbols
(source packet) or entirely of repair symbols (repair packet). A
packet may contain any number of symbols from the same source block.
In the case that the last source symbol in a source packet includes
padding octets added for FEC encoding purposes then these octet need
not be included in the packet. Otherwise, only whole symbols MUST be
included.

The Encoding Symbol ID, X, carried in each source packet is the
Encoding Symbol ID of the first source symbol carried in that packet.
The subsequent source symbols in the packet have Encoding Symbol IDs,
X+1 to X+G-1, in sequential order, where G is the number of symbols
in the packet.

Similarly, the Encoding Symbol ID, X, placed into a repair packet is
the Encoding Symbol ID of the first repair symbol in the repair
packet and the subsequent repair symbols in the packet have Encoding
Symbol IDs X+1 to X+G-1 in sequential order, where G is the number of
symbols in the packet.

Note that it is not necessary for the receiver to know the total
number of repair packets.

Luby, et al. Expires February 12, 2011 [Page 12]
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5. RaptorQ FEC Code Specification

5.1.

Definitions, Symbols and Abbreviations

For the purpose of the RaptorQ FEC code specification in this
section, the following definitions, symbols and abbreviations apply.

5.1.1.

o

Luby,

Definitions

Source block: a block of K source symbols which are considered
together for RaptorQ encoding and decoding purposes.

Extended Source Block: a block of K' scurce symbols, where K' >= K
constructed from a source block and zero or more padding symbols.

Symbol: a unit of data. The size, in octets, of a symbol is known
as the symbol size. The symbol size is always a positive integer.

Source symbol: the smallest unit of data used during the encoding
process. All source symbols within a source block have the same
size.

Padding symbol: a symbol with all zero bits that is added to the
source block to form the extended source block.

Encoding symbol: a symbol that can be sent as part of the encoding
of a source block. The encoding symbols of a source block consist
of the source symbols of the source block and the repair symbols
generated from the source block. Repair symbols generated from a
source block have the same size as the source symbols of that
source block.

Repair symbol: the encoding symbols of a source block that are not
source symbols. The repair symbols are generated based on the
source symbols of a source block.

Intermediate symbols: symbols generated from the source symbols
using an inverse encoding process. The repair symbols are then
generated directly from the intermediate symbols. The encoding
symbols do not include the intermediate symbols, i.e.,
intermediate symbols are not sent as part of the encoding of a
source block. The intermediate symbols are partitioned into LT
symbols and PI symbols.

LT symbols: The subset of the intermediate symbols that can be LT
neighbors of an encoding symbol.

et al. Expires February 12, 2011 [Page 13]
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o PI symbols: The subset of the intermediate symbols that can be PI
neighbors of an encoding symbol.

o Systematic code: a code in which all source symbols are included
as part of the encoding symbols of a source block. The RaptorQ
code as described herein is a systematic code.

o Encoding Symbol ID (ESI): information that uniquely identifies
each encoding symbol associated with a source block for sending
and receiving purposes.

o Internal Symbol ID (ISI): information that uniquely identifies
each symbol associated with an extended source block for encoding
and decoding purposes.

O Arithmetic operations on octets and symbols and matrices: The
operations that are used to produce encoding symbols from source
symbols and vice-versa. See Section 5.7.

5.1.2. Symbols

i, j, u, v, h, 4, a, b, di, al, bl, v, m, X, VY represent values or
variables of one type or another, depending on the context.

X denotes a non-negative integer value that is either an ISI wvalue
or an ESI value, depending on the context.

ceil(x) denotes the smallest integer which is greater than or equal
to x, where x is a real value.

floor(x) denotes the largest integer which is less than or equal to
X, where x is a real value.

min (x,y) denotes the minimum value of the values x and y, and in
general the minimum value of all the argument wvalues.

max (x,y) denotes the maximum value of the values x and y, and in
general the maximum value of all the argument wvalues.

)

i % j denotes i modulo j.

i + j denotes the sum of 1 and j. If i and j are octets,
respectively symbols, this designates the arithmetic on octets,
respectively symbols, as defined in Section 5.7. If i and j are
integers, then it denotes the usual integer addition.
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j denotes the product of 1 and j. If i and j are octets, this

designates the arithmetic on octets, as defined in Section 5.7.
If i is an octet and j is a symbol, this denotes the
multiplication of a symbol by an octet, as also defined in
Section 5.7. Finally, if i and j are integers, 1 * j denotes
the usual product of integers.

b denotes the operation a raised to the power b. If a is an
octet and b is a non-negative integer, this is understood to

mean a*a*...*a (b terms), with '*' being the octet product as
defined in Section 5.7.

v denotes, for equal-length bit strings u and v, the bitwise

exclusive-or of u and v.

Transpose [A] denotes the transposed matrix of matrix A. In this

AAA_

specification, all matrices have entries that are octets.

1 denotes the inverse matrix of matrix A. In this specification,
all the matrices have octets as entries, so it is understood
that the operations of the matrix entries are to be done as
stated in Section 5.7 and A*"-1 is the matrix inverse of A with
respect to octet arithmetic.

denotes the number of symbols in a single source block.
denotes the number of source plus padding symbols in an extended

source block. For the majority of this specification, the
padding symbols are considered to be additional source symbols.

K' max denotes the maximum number of source symbols that can be in a

single source block. Set to 56403.

denotes the number of intermediate symbols for a single extended
source block.

denotes the number of LDPC symbols for a single extended source
block. These are LT symbols. For each value of K' shown in
Table 2 in Section 5.6, the corresponding value of S is a prime
number.

denotes the number of HDPC symbols for a single extended source
block. These are PI symbols.

denoctes the number of intermediate symbols that are LT symbols
excluding the LDPC symbols.
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W denotes the number of intermediate symbols that are LT symbols.
For each value of K' in Table 2 shown in Section 5.6, the
corresponding value of W is a prime number.

P denotes the number of intermediate symbols that are PI symbols.
These contain all HDPC symbols.

P1 denotes the smallest prime number greater than or equal to P.

U denotes the number of non-HDPC intermediate symbols that are PI
symbols.

C denotes an array of intermediate symbols, CI[0], C[1], CI[2],...,
Cl[L-11.

c! denotes an array of the symbols of the extended source block,
where C'[0], C'[1], C'[2],..., C'[K-1] are the source symbols of
the source block and C'[K], C'[K+1l],..., C'[K'-1] are padding
symbols.

V0, V1, V2, V3 denote four arrays of 32-bit unsigned integers,
vo([0]l, VvOI[1l]l,..., VO[255] ; Vv1[0o]l, Vv1[1],..., V1([255]; Vv2][0],
v2I[1],..., V2[255]; and Vv3[0], V3[1l],..., V3[255] as shown in

Section 5.5.

Rand[y, 1, m] denotes a pseudo-random number generator

Deg[v] denotes a degree generator

Enc[K', C ,{(d, a, b, dil, al, bl)] denotes an encoding symbol

generator

Tuple[K', X] denotes a tuple generator function

T
J(

G

I_

5.1.3.

Luby,

denotes the symbol size in octets.

K') denotes the systematic index associated with K'.
denotes any generator matrix.

S denotes the SxS identity matrix.

Abbreviations
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EST Encoding Symbol ID

HDPC High Density Parity Check

IST Internal Symbol ID

LDPC Low Density Parity Check

LT Luby Transform

PI Permanently Inactive

SBN Source Block Number

SBL Source Block Length (in units of symbols)
5.2. Overview

This section defines the systematic RaptorQ FEC code.

Symbols are the fundamental data units of the encoding and decoding
process. For each source block all symbols are the same size,
referred to as the symbol size T. The atomic operations performed on
symbols for both encoding and decoding are the arithmetic operations
defined in Section 5.7.

The basic encoder is described in Section 5.3. The encoder first
derives a block of intermediate symbols from the source symbols of a
source block. This intermediate block has the property that both
source and repair symbols can be generated from it using the same
process. The encoder produces repalir symbols from the intermediate
block using an efficient process, where each such repair symbol is
the exclusive OR of a small number of intermediate symbols from the
block. Source symbols can alsc be reproduced from the intermediate
block using the same process. The encoding symbols are the
combination of the source and repair symbols.

An example of a decoder is described in Section 5.4. The process for
producing source and repair symbols from the intermediate block is
designed so that the intermediate block can be recovered from any
sufficiently large set of encoding symbols, independent of the mix of
source and repair symbols in the set. Once the intermediate block is
recovered, missing source symbols of the source block can be
recovered using the encoding process.

Requirements for a RaptorQ compliant decoder are provided in

Section 5.8. A number of decoding algorithms are possible to achieve
these requirements. An efficient decoding algorithm to achieve these
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requirements is provided in Section 5.4.

The construction of the intermediate and repair symbols is based in
part on a pseudo-random number generator described in Section 5.3.
This generator is based on a fixed set of 1024 random numbers which
must be available to both sender and receiver. These numbers are
provided in Section 5.5. Encoding and decoding operations for
RaptorQ use operations on octets. Section 5.7 describes how to
perform these operations.

Finally, the construction of the intermediate symbols from the source
symbols is governed by "systematic indices", values of which are
provided in Section 5.6 for specific extended source block sizes
between 6 and K' max = 56403 source symbols. Thus, the RaptorQ code
supports source blocks with between 1 and 56403 source symbols.

5.3. Systematic RaptorQ encoder
5.3.1. Introduction

For a given source block of K source symbols, for encoding and
decoding purpocses the source block is augmented with K'-K additional
padding symbols, where K' is the smallest value that is at least K in
the systematic index Table 2 of Section 5.6. The reason for padding
out a source block to a multiple of K' is to enable faster encoding
and decoding, and to minimize the amount of table information that
needs to be stored in the encoder and decoder.

For purpcses of transmitting and receiving data, the value of K is
used to determine the number of source symbols in a source block, and
thus K needs to be known at the sender and the receiver. 1In this
case the sender and receiver can compute K' from K and the K'-K
padding symbols can be automatically added to the source block
without any additional communication. The encoding symbol ID (ESI)
is used by a sender and receiver to identify the encoding symbols of
a source block, where the encoding symbols of a source block consist
of the source symbols and the repair symbols associated with the
source block. For a source block with K source symbols, the ESIs for
the source symbols are 0,1,2,...,K-1 and the ESIs for the repair
symbols are K, K+1, K+2,... . Using the ESI for identifying encoding
symbols in transport ensures that the ESI values continue
consecutively between the source and repair symbols.

For purposes of encoding and decoding data, the value of K' derived
from K is used as the number of source symbols of the extended source
block upon which encoding and decoding operations are performed,
where the K' source symbols consist of the original K source symbols
and an additional K'-K padding symbols. The internal symbol ID (ISI)
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is used by the encoder and decoder to identify the symbols associated
with the extended source block, i.e., for generating encoding symbols
and for decoding. For a source block with K original source symbols,

the ISIs for the original source symbols are 0,1,2,...,K-1, the ISIs
for the K'-K padding symbols are K, K+1, K+2,..., K'-1, and the ISIs
for the repair symbols are K', K'+1l, K'+2,... . Using the ISI for

encoding and decoding allows the padding symbols of the extended
source block to be treated the same way as other source symbols of
the extended source block, and that a given prefix of repair symbols
are generated in a consistent way for a given number K' of source
symbols in the extended source block independent of K.

The relationship between the ESIs and the ISIs is simple: the ESIs
and the ISIs for the original K source symbols are the same, the K'-K
padding symbols have an ISI but do not have a corresponding ESIT
(since they are symbols that are neither sent nor received), and a
repair symbol ISI is simply the repair symbol ESI plus K'-K. The
translation between ESIs used to identify encoding symbols sent and
received and the corresponding ISIs used for encoding and decoding,
and the proper padding of the extended source block with padding
symbols used for encoding and decoding, is the responsibility of the
padding function in the RaptorQ encoder/decoder.

5.3.2. Encoding overview

The systematic RaptorQ encoder is used to generate any number of
repair symbols from a source block that consists of K source symbols
placed into an extended source block C'. Figure 4 shows the encoding
overview.

The first step of encoding is to construct an extended source block
by adding zero or more padding symbols such that the total number of
symbols, K', is one of the values listed in Section 5.6. Each
padding symbol consists of T octets where the value of each octet is
zero. K' MUST be selected as the smallest value of K' from the table
of Section 5.6 which is greater than or equal to K.
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Figure 4: Encoding Overview
Let C'[0], ..., C'[K-1] denote the K source symbols.
Let C'[K], ..., C'[K'-1] denote the K'-K padding symbols, which are
all set to zero bits. Then, C'[0],..., C'[K'-1] are the symbols of

the extended source block upon which encoding and decoding are
performed.

In the remainder of this description these padding symbols will be
considered as additional source symbols and referred to as such.
However, these padding symbols are not part of the encoding symbols,
i.e., they are not sent as part of the encoding. At a receiver, the
value of K' can be computed based on K, then the receiver can insert
K'-K padding symbols at the end of a source block of K' source
symbols and recover the remaining K source symbols of the source
block from received encoding symbols.

The second step of encoding is to generate a number, L > K', of
intermediate symbols from the K' source symbols. In this step, K'
gource tuples (dI[0], al0l, bIl0]l, d1[0], all0]l, bil[0l), ..., (d[K'-11,
alK'-11, b[K'-1], d1[K'-1]1, al[K'-1], Db1[K'-1]) are generated using
the Tuplel] generator as described in Section 5.3.5.4. The K' source
tuples and the ISIs associated with the K' source symbols are used to
determine L intermediate symbols C[0],..., CI[L-1]1 from the source
symbols using an inverse encoding process. This process can be
realized by a RaptorQ decoding process.
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Certain "pre-coding relationships" must hold within the L
intermediate symbols. Section 5.3.3.3 describes these relationships.
Section 5.3.3.4 describes how the intermediate symbols are generated
from the source symbols.

Once the intermediate symbols have been generated, repair symbols can
be produced. For a repair symbol with ISI X>K', the tuple of non-
negative integers, (d, a, b, dl, al, bl) can be generated, using the
Tuple[] generator as described in Section 5.3.5.4. Then, the (4, a,
b, di1, al, bl)-tuple and the ISI X is used to generate the
corresponding repair symbol from the intermediate symbols using the
Enc[] generator described in Section 5.3.5.3. The corresponding ESI
for this repair symbol is then X-(K'-K). Note that source symbols of
the extended source block can alsc be generated using the same
process, i.e., for any X < K', the symbol generated using this
process has the same value as C'[X].

5.3.3. First encoding step: Intermediate Symbol Generation
5.3.3.1. General

This encoding step is a pre-coding step to generate the L
intermediate symbols C[0], ..., CI[L-1] from the source symbols C'[0],
., C'[K'-1], , where L > K' is defined in Section 5.3.3.3. The
intermediate symbols are uniquely defined by two sets of constraints:

1. The intermediate symbols are related to the source symbols by a
set of source symbol tuples and by the ISIs of the source
symbols. The generation of the source symbol tuples is defined
in Section 5.3.3.2 using the the Tuplel[] generator as described
in Section 5.3.5.4.

2. A number of pre-coding relationships hold within the intermediate
symbols themselves. These are defined in Section 5.3.3.3

The generation of the L intermediate symbols is then defined in
Section 5.3.3.4.

5.3.3.2. Source symbol tuples
Each of the K' source symbols is associated with a source symbol
tuple (d[X1, alX]l, b[X], d1[X], allX], bl[X]) for 0 <= X < K'. The
source symbol tuples are determined using the Tuple generator defined
in Section 5.3.5.4 as:

For each X, 0 <= X < K!
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(d[X], alX], blX], d1[X], allX], bl[X]) = TuplelK, X]
5.3.3.3. Pre-coding relationships

The pre-coding relationships amongst the L intermediate symbols are
defined by requiring that a set of S+H linear combinations of the
intermediate symbols evaluate to zero. There are S LDPC and H HDPC
symbols, and thus L = K'+S+H. Another partition of the L intermediate
symbols is into two sets, one set of W LT symbols and another set of
P PI symbols, and thus it is also the case that L = W+P. The P PI
symbols are treated differently than the W LT symbols in the encoding
process. The P PI symbols consist of the H HDPC symbols together
with a set of U = P-H of the other K' intermediate symbols. The W LT
symbols consist of the S LDPC symbols together with W-S of the other
K' intermediate symbols. The values of these parameters are
determined from K' as described below where H(K'), S(K'), and W(K')
are derived from Table 2 in Section 5.6.

Let

o S S(K")

o W = W(K'")

o L K'*" + S + H

o P =L -W
o Pl denote the smallest prime number greater than or equal to P
o U=P - H

o B =W-S8

o Cl[0], ..., C[B-1] denote the intermediate symbols that are LT
symbols but not LDPC symbols.

o CI[B], ..., C[B+S-1] dencte the S LDPC symbols that are also LT
symbols.

o C[W], ..., C[W+U-1] denote the intermediate symbols that are PI
symbols but not HDPC symbols.

o CI[L-H], ..., CI[L-1] denote the H HDPC symbols that are also PI
symbols.
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The first set of pre-coding relations, called LDPC relations, is
described below and requires that at the end of this process the set

of symbols D[0] , ..., DI[S-1] are all zero:
o Initialize the symbols D[0] = C[R], ..., D[S-1] = C[B+S-1].
o For i =0, ..., B-1 do

* a =1 + floor(i/89)

* DI[b] = D[b] + Cl[i]
* b= (b+ a) %8
* DI[b] = D[b] + Cl[i]
* b= (b+ a) %8
* DI[b] = D[b] + Cl[i]
o For i = 0, , S-1 do
* a =1 %P
* b = (i+l) % P
* D[i] = D[i] + C[wW+a]l + C[W+Db]

Recall that the addition of symbols is to be carried out as specified
in Section 5.7.

Note that the LDPC relations as defined in the algorithm above are
linear, so there exists an S x B matrix G _LDPC,1 and an S x P matrix
G _LDPC,2 such that

G LDPC,1 * Transpose [ (
Transpose (C[W], ..., C
=0

Cl0),...., CI[B-11)] + G _LDPC,2 *
[W+P-1]) + Transpcsel[(C[B], ..., C[B+S-11)]

(The matrix G LDPC,1 is defined by the first loop in the above
algorithm, and G LDPC,2 can be deduced from the second loop.)

The second set of relations among the intermediate symbols C[0], ...,
C[L-1] are the HDPC relations and they are defined as follows:

Let
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o alpha denote the octet represented by integer 2 as defined in
Section 5.7.

0 MT denote an H x (K' + S) matrix of octets, where for
j=0,...,K'+S-2 the entry MT[i,]] is the octet represented by the
integer 1 if i= Rand[j+1,6,H] or i = (Rand[j+1,6,H] + Rand[j+
1,7,H-1] + 1) % H and MT[i,j] is the zero element for all other
values of i, and for j=K'+S8-1, MTI[i,j] = alpha”™®i for i=0,...,H-1.

0 GAMMA denote a (K'+S ) x (K'+S ) matrix of octets, where
GAMMA [1,7] =

AA

alpha (1i-3) for 1 »>= 3,

0 otherwise.
Then the relationship between the first K'+S intermediate symbols
Cl0]l, ..., C[K'+S8-1] and the H HDPC symbols C[K'+S], ..., C[K'+S+H-1]
is given by:

Transpose [
Transpose [

C[K'+S], ..., CIK'+S+H-1]] + MT * GAMMA *

cfol, ..., C[K'+8-1]]1 = 0,

where '*' represents standard matrix multiplication utilizing the
octet multiplication to define the multiplication between a matrix of
octets and a matrix of symbols (in particular the column vector of
symbols) and '+' denotes addition over octet vectors.

5.3.3.4. Intermediate symbols

5.3.3.4.1. Definition

Given the K' source symbols C'[0], C'I[1],..., C'[K'-1] the L
intermediate symbols C[0], CI[1],..., C[L-1] are the uniquely defined
symbol values that satisfy the following conditions:
1. The K' source symbols C'[0], C'[1],..., C'[K'-1] satisfy the K'
constraints
C'[X] = Enc[K', (C[0],..., CIL-1]1), (diX], alX], biX], d1iXx],
all[X], bl[X])], for all X, 0 <= X < K',
where (d[X], alX], b[X], d1[X], al[X], bl[X])) = Tuplel[K' K X],

Tuple[] is defined in Section 5.3.5.4 and Enc[] is described in
Section 5.3.5.3.
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2. The L intermediate symbols C[0], C[1l],..., C[L-1] satisfy the
pre-coding relationships defined in Section 5.3.3.3

5.3.3.4.2. Example method for calculation of intermediate symbols
This section describes a possible method for calculation of the L
intermediate symbols C[0], CI[1],..., C[L-1] satisfying the
constraints in Section 5.3.3.4.1
The L intermediate symbols can be calculated as follows:

Let

o C denote the column vector of the L intermediate symbols, C[0],
crlil,..., ClL-1].

o D denote the column vector consisting of S+H zero symbols followed
by the K' source symbols C'[0], C'[1], ..., C'[K'-1].

Then the above constraints define an L x L matrix A of octets such
that:

A*C =D
The matrix A can be constructed as follows:
Let:

o G LDPC,1 and G LDPC,2 be S x B and S x P matrices as defined in
Section 5.3.3.3.

O G HDPC be the H x (K'+S8) matrix such that

G _HDPC * Transpcse(C[0], ..., C[K'+S-1]) = Transpose(C[K'+S],
.7 C[L_l])l

i.e. G _HDPC = MT*GAMMA
0 I S be the S x S identity matrix
0 I H be the H x H identity matrix
0 G _ENC be the K' x L matrix such that

G_ENC * Transpose [(C
1
[

0l, ..., ClL-11)1 =
Transpose [ (C' [0],C 1 1

[
1],...,C"[K'-1])

7

Luby, et al. Expires February 12, 2011 [Page 25]



WO 2011/022555 PCT/US2010/046027

89
Internet-Draft RaptorQ FEC Scheme August 2010
i.e. G ENCI[i,j] =1 if and only if C[j] is included in the
symbols which are summed to produce Enc[K', (C[0], ...,
clL-11), (dflil, alil, blil, d1[il, allil, bl[i])] and

G ENC[i,j] = 0 otherwise.
Then:
o The first S rows of A are equal to G LDPC,1 | I S | G LDPC,2.
o The next H rows of A are equal to G HDPC | I H.
© The remaining K' rows of A are equal to G ENC.

The matrix A is depicted in Figure (Figure 5) below:

B S U H
fm e fomm - Fom e +
S G_LDPC,1 IS G_LDPC,2

fm e fo—m - it fommm - +
H G_HDPC I H

F fommm - +
K G_ENC

F o +

Figure 5: The matrix A
The intermediate symbols can then be calculated as:
C = (A""-1)*D

The source tuples are generated such that for any K' matrix A has
full rank and is therefore invertible. This calculation can be
realized by applying a Raptor() decoding process to the K' source
symbols C'J[0], C'[1],..., C'[K'-1] to produce the L intermediate
symbols C[0], CI[1],..., C[L-1].

To efficiently generate the intermediate symbols from the source
symbols, it i1s recommended that an efficient decoder implementation
such as that described in Section 5.4 be used.
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5.3.4. Second encoding step: Encoding

In the second encoding step, the repair symbol with ISI X (X >= K')

is generated by applying the generator Enc[K', (C[0], CI[11,...,
c[L-11), (d, a, b, di, al, bl)] defined in Section 5.3.5.3 to the L
intermediate symbols CI[0], CI[1],..., CI[L-1] using the tuple (d, a, b,

dl, al, bl)=TuplelK', X].
5.3.5. Generators
5.3.5.1. Random Number Generator

The random number generator Randly, i, m] is defined as follows,
where y i1s a non-negative integer, 1 is a non-negative integer less
than 256, and m is a positive integer and the value produced is an
integer between 0 and m-1. Let V0O, V1, V2 and V3 be the arrays
provided in Section 5.5.

Let
o x0 = (y + i) mod 2778
o x1 = (floor(y / 2778) + i) mod 2778
o x2 = (floor(y / 2*"16) + i) mod 2778
o x3 = (floor(y / 27"24) + i) mod 2778
Then
Rand[y, i, m] = (VO[x0] * Vv1[x1l] * Vv2[x2] © V3[x3]) % m

5.3.5.2. Degree Generator

The degree generator Deglv] 1s defined as follows, where v is a non-
negative integer that is less than 2720 = 1048576. G@Given v, find
index d in Table 1 such that f[d-1] <= v < f£[d], and set Deglv] =
min(d, W-2). ). Recall that W is derived from K' as described in
Section 5.3.3.3.
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o= to-mmmm - o= to-mmmm - +
| Index d | f[d] | Index d | f[d] |
o= to-mmmm - o= to-mmmm - +
| o | o |1 | 5243 |
o= to-mmmm - o= to-mmmm - +
| 2 | 529531 | 3 | 704294 |
o= to-mmmm - o= to-mmmm - +
| 4 | 791675 | 5 | 844104 |
o= to-mmmm - o= to-mmmm - +
| 6 | 879057 | 7 | 204023 |
o= to-mmmm - o= to-mmmm - +
| 8 | 922747 | 9 | 937311 |
o= to-mmmm - o= to-mmmm - +
| 10 | 948962 | 11 | 958494 |
o= to-mmmm - o= to-mmmm - +
| 12 | 966438 | 13 | 973160 |
o= to-mmmm - o= to-mmmm - +
| 14 | 978921 | 15 | 983914 |
o= to-mmmm - o= to-mmmm - +
| 16 | 988283 | 17 | 992138 |
o= to-mmmm - o= to-mmmm - +
| 18 | 995565 | 19 | 998631 |
o= to-mmmm - o= to-mmmm - +
| 20 | 1001391 | 21 | 1003887 |
o= to-mmmm - o= to-mmmm - +
| 22 | 1006157 | 23 | 1008229 |
o= to-mmmm - o= to-mmmm - +
| 24 | 1010129 | 25 | 1011876 |
o= to-mmmm - o= to-mmmm - +
| 26 | 1013490 | 27 | 1014983 |
o= to-mmmm - o= to-mmmm - +
| 28 | 1016370 | 29 | 1017662 |
o= to-mmmm - o= to-mmmm - +
| 30 | 1048576 | | |
o= to-mmmm o= to-mmmm +

Table 1: Defines the degree distribution for encoding symbols
5.3.5.3. Encoding Symbol Generator

The encoding symbol generator Enc[K', (C[0], C[1],..., CIL-11), (4,
a, b, di1, al, bl)] takes the following inputs:

o K' is the number of source symbols for the extended source block.

Let L, W, B, S, P and Pl be derived from K' as described in
Section 5.3.3.3.
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o (Clo]l, CIl1],..., CIL-1]1) is the array of L intermediate symbols
(sub-symbols) generated as described in Section 5.3.3.4
o (d, a, b, dil, al, bl) is a source tuple determined from ISI X

using the Tuple generator defined in Section 5.3.5.4, whereby

* d is a positive integer denoting an encoding symbol LT degree

* a is a positive integer between 1 and W-1 inclusive

* Db is a non-negative integer between 0 and W-1 inclusive

* dl is a positive integer that has value either 2 or 3 inclusive

denoting an encoding symbol PI degree

* al is a positive integer between 1 and P1-1 inclusive

* Dbl is a non-negative integer between 0 and P1-1 inclusive

The encoding symbol generator produces a single encoding symbol as
output (referred to as result), according to the following algorithm:

o

o

Luby,

result = C[b]

For j =1, ..., d-1 do

* b=(b+a) W

* result = result + C[Db]

While (bl »= P) do bl = (bl+al) % P1

result = result + C[W+bl]

For j =1, ..., dl-1 do
* bl = (bl + al) % P1
* While (bl »>= P) do bl = (bl+al) % P1

* result = result + C[W+bl]

Return result
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5.3.5.4. Tuple generator
The tuple generator Tuple[K',X] takes the following inputs:
o K' - The number of source symbols in the extended source block
o X - An ISIT
Let
0 L be determined from K' as described in Section 5.3.3.3

o J=J(K') be the systematic index associated with K', as defined in
Table 2 inSection 5.6

The output of tuple generator is a tuple, (d, a, b, dl, al, bl),
determined as follows:

o A = 53591 + J*997
o if (A% 2==0) {A=2+11}

o B = 10267*(J+1)

o vy = (B + X*A) % 27732
o v = Randly, 0, 27"20]
o d = Deglv]

o a =1+ Randl[y, 1, W-1]

O
o
Il

Randl[y, 2, W]
o If (d<4) { dlL =2 + RandI[X, 3, 2] } else { dlL = 2 }

o al 1 + Rand[X, 4, P1-1]

o bl = RandI[X, 5, P1]

5.4. Example FEC decoder

5.4.1. General
This section describes an efficient decoding algorithm for the
RaptorQ code introduced in this specification. Note that each

received encoding symbol is a known linear combination of the
intermediate symbols. So each received encoding symbol provides a
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linear equation among the intermediate symbols, which, together with
the known linear pre-coding relationships amongst the intermediate
symbols gives a system of linear equations. Thus, any algorithm for
solving systems of linear equations can successfully decode the
intermediate symbols and hence the source symbols. However, the
algorithm chosen has a major effect on the computational efficiency
of the decoding.

5.4.2. Decoding an extended source block
5.4.2.1. General

It is assumed that the decoder knows the structure of the source
block it is to deccde, including the symbol size, T, and the number K
of symbols in the source block and the number K' of source symbols in
the extended source block.

From the algorithms described in Sections Section 5.3, the RaptorQ
decoder can calculate the total number L = K'+S+H of intermediate
symbols and determine how they were generated from the extended
source block to be decoded. In this description it is assumed that
the received encoding symbols for the extended source block to be
decoded are passed to the decoder. Furthermore, for each such
encoding symbol it is assumed that the number and set of intermediate
symbols whose sum is equal to the encoding symbol is passed to the
decoder. In the case of source symbols, including padding symbols,
the source symbol tuples described in Section 5.3.3.2 indicate the
number and set of intermediate symbols which sum to give each source
symbol.

Let N »>= K' be the number of received encoding symbols to be used for
decoding, including padding symbols for an extended source block and
let M = S+H+N. Then with the notation of Section 5.3.3.4.2 we have
A*C=D.

Decoding an extended source block is eqguivalent to decoding C from
known A and D. It is clear that C can be decoded if and only if the
rank of A is L. Once C has been decoded, missing source symbols can
be obtained by using the source symbol tuples to determine the number
and set of intermediate symbols which must be summed to obtain each
missing source symbol.

The first step in decoding C is to form a decoding schedule. 1In this
step A is converted, using Gaussian elimination (using row operations
and row and column reorderings) and after discarding M - L rows, into
the L by L identity matrix. The decoding schedule consists of the

sequence of row operations and row and column re-orderings during the
Gaussian elimination process, and only depends on A and not on D. The
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decoding of C from D can take place concurrently with the forming of
the decoding schedule, or the decoding can take place afterwards
based on the decoding schedule.

The correspondence between the decoding schedule and the decoding of
C is as follows. Let c¢[0] = 0, c¢[1] =1, ..., c¢[L-1] = L-1 and dI[0]
= 0, 4d[1] =1, ..., d[M-1] = M-1 initially.

o Each time a multiple, beta, of row i of A is added to row i' in
the decoding schedule then in the decoding process the symbol
beta*D[d[i]] i1s added to symbol D[dA[i']]

o Each time a row i of A is multiplied by an octet beta, then in the
decoding process the symbol D[d[i]] is also multiplied by beta.

0 Each time row i is exchanged with row i' in the decoding schedule
then in the decoding process the value of d[i] is exchanged with
the value of d[i'].

0 Each time column j is exchanged with column j' in the decoding
schedule then in the decoding process the value of c[j] is
exchanged with the value of c[j'].

From this correspondence it is clear that the total number of
operations on symbols in the decoding of the extended source block is
the number of row operations (not exchanges) in the Gaussian
elimination. Since A is the L by L identity matrix after the
Gaussian elimination and after discarding the last M - L rows, it is
clear at the end of successful decoding that the L symbols D[dA[0]],
D[d[1]1],..., DIAI[L-1]] are the values of the L symbols Clc[0]],
Clel11],..., ClclL-111.

The order in which Gaussian elimination is performed to form the
decoding schedule has no bearing on whether or not the decoding is
successful. However, the speed of the decoding depends heavily on

the order in which Gaussian elimination is performed. (Furthermore,
maintaining a sparse representation of A is crucial, although this is
not described here). The remainder of this section describes an

order in which Gaussian elimination could be performed that is
relatively efficient.

5.4.2.2. First Phase

In the first phase of the Gaussian elimination the matrix A is
conceptually partitioned into submatrices and additionally, a matrix
X i1s created. This matrix has as many rows and columns as A, and it
will be a lower triangular matrix throughout the first phase. At the
beginning of this phase, the matrix A is copied into the matrix X.
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The submatrix sizes are parameterized by non-negative integers i and
u which are initialized to 0 and P, the number of PI symbols,
respectively. The submatrices of A are:

1. The submatrix I defined by the intersection of the first i rows
and first i1 columns. This is the identity matrix at the end of
each step in the phase.

2. The submatrix defined by the intersection of the first i rows and
all but the first i columns and last u columns. All entries of
this submatrix are zero.

3. The submatrix defined by the intersection of the first i columns
and all but the first i rows. All entries of this submatrix are
Zero.

4. The submatrix U defined by the intersection of all the rows and
the last u columns.

5. The submatrix V formed by the intersection of all but the first i
columns and the last u columns and all but the first i rows.

Figure 6 illustrates the submatrices of A. At the beginning of the
first phase V = A. In each step, a row of A is chosen.

e Rt e e R e +
I All Zeros
to-mmmm - e it + u
All Zeros \%
e Rt e e R e +

Figure 6: Submatrices of A in the first phase

The following graph defined by the structure of V is used in
determining which row of A is chosen. The columns that intersect V
are the nodes in the graph, and the rows that have exactly 2 non-zero
entries in V and are not HDPC rows are the edges of the graph that
connect the two columns (nodes) in the positions of the two ones. A
component in this graph is a maximal set of nodes (columns) and edges
(rows) such that there is a path between each pair of nodes/edges in
the graph. The size of a component is the number of nodes (columns)
in the component.
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There are at most L steps in the first phase. The phase ends
successfully when 1 + u = L, i.e., when V and the all zeroes
submatrix above V have disappeared and A consists of I, the all
zeroes submatrix below I, and U. The phase ends unsuccessfully in
decoding failure if at some step before V disappears there is no non-
zero row in V to choose in that step. 1In each step, a row of A is
chosen ags follows:

o If all entries of V are zero then no row is chosen and decoding
fails.

o Let r be the minimum integer such that at least one row of A has
exactly r ones in V.

* TIf r != 2 then choose a row with exactly r ones in V with
minimum original degree among all such rows, except that HDPC
rows should not be chosen until all non-HDPC rows have been
processed.

* TIf r = 2 then choose any row with exactly 2 ones in V that is
part of a maximum size component in the graph described above
which is defined by V.

After the row is chosen in this step the first row of A that
intersects V is exchanged with the chosen row so that the chosen row
is the first row that intersects V. The columns of A among those that
intersect V are reordered so that one of the r ones in the chosen row
appears in the first column of V and so that the remaining r-1 ones
appear in the last columns of V. The same row and column operations
are also performed on the matrix X. Then, an appropriate multiple of
the chosen row is added to all the other rows of A below the chosen
row that have a non-zero entry in the first column of V.

Specifically, if a row below the chosen row has entry beta in the
first column of V, and the chosen row has entry alpha in the first
column of V, then beta/alpha multiplied by the chosen row is added to
this row to leave a zero value in the first column of V. Finally, 1
is incremented by 1 and u is incremented by r-1, which completes the
step.

Note that efficiency can be improved if the row operations identified
above are not actually performed until the affected row is itself
chosen during the decoding process. This avoids processing of row
operations for rows which are not eventually used in the decoding
process and in particular avoid those rows for which beta!=1 until
they are actually reguired. Furthermore, the row operations required
for the HDPC rows may be performed for all such rows in one process,
by using the algorithm described in Section 5.3.3.3.

Luby, et al. Expires February 12, 2011 [Page 34]



WO 2011/022555 PCT/US2010/046027
98

Internet-Draft RaptorQ FEC Scheme August 2010

5.4.2.3. Second Phase

At this point, all the entries of X outside the first i rows and i
columns are discarded, so that X has lower triangular form. The last
i rows and columns of X are discarded, so that X now has i rows i
columns. The submatrix U is further partitioned into the first i
rows, U upper, and the remaining M - 1 rows, U lower. Gaussian
elimination is performed in the second phase on U lower to either
determine that its rank is less than u (decoding failure) or to
convert it into a matrix where the first u rows is the identity
matrix (success of the second phase). Call this u by u identity
matrix I u. The M - L rows of A that intersect U lower - I u are
discarded. After this phase A has L rows and L columns.

5.4.2.4. Third Phase

After the second phase the only portion of A which needs to be zeroed
out to finish converting A into the L by L identity matrix is

U upper. The number of rows i of the submatrix U upper is generally
much larger than the number of columns u of U upper. Moreover, at
this time, the matrix U upper is typically dense, i.e., the number of
nonzero entries of this matrix is large. To reduce this matrix to a
sparse form, the sequence of operations performed to obtain the
matrix U lower needs to be inverted. To this end, the matrix X is
multiplied with the submatrix of A consisting of the first i rows of
A. After this operation the submatrix of A consisting of the
intersection of the first i1 rows and columns equals to X, whereas the
matrix U upper is transformed to a sparse form.

5.4.2.5. Fourth Phase

For each of the first i rows of U upper do the following: if the row
has a nonzero entry at position j, and if the wvalue of that nonzero
entry is b, then add to this row b times row j of I u. After this
step, the submatrix of A consisting of the intersection of the first
i rows and columns is equal to X, the submatrix U upper consists of
zeros, the submatrix consisting of the intersection of the last u
rows and the first i columns consists of zeros, and the submatrix
consisting of the last u rows and columns is is the matrix I u.

5.4.2.6. Fifth Phase
For j from 1 to i perform the following operations:
1. 4if A[j,Jj] is not one, then divide row j of A by A[j,]]l.

2. For 1 from 1 to j-1, if A[j,1l] is nonzero, then add Alj,1]
multiplied with row 1 of A to row j of A.
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After this phase A is the L by L identity matrix and a complete
decoding schedule has been successfully formed. Then, the
corresponding decoding consisting of summing known encoding symbols
can be executed to recover the intermediate symbols based on the
decoding schedule. The tuples associated with all source symbols are
computed according to Section 5.3.3.2. The tuples for received
source symbols are used in the decoding. The tuples for missing
source symbols are used to determine which intermediate symbols need
to be summed to recover the missing source symbols.

5.5. Random Numbers

The four arrays V0O, V1, V2 and V3 used in Section 5.3.5.1 are
provided below. There are 256 entries in each of the four arrays.
The indexing into each array starts at 0, and the entries are 32-bit
unsigned integers.

5.5.1. The table VO

251291136, 3952231631, 3370958628, 4070167936, 123631495, 3351110283,
3218676425, 2011642291, 774603218, 2402805061, 1004366930,
1843948209, 428891132, 3746331984, 1591258008, 3067016507,
1433388735, 504005498, 2032657933, 3419319784, 2805686246,
3102436986, 3808671154, 2501582075, 3978944421, 246043949,
4016898363, 649743608, 1974987508, 2651273766, 2357956801, 689605112,
715807172, 2722736134, 191939188, 3535520147, 3277019569, 1470435941,
3763101702, 3232409631, 122701163, 3920852693, 782246947, 372121310,
2995604341, 2045698575, 2332962102, 4005368743, 218596347,
3415381967, 4207612806, 861117671, 3676575285, 2581671944,
3312220480, 681232419, 307306866, 4112503940, 1158111502, 709227802,
2724140433, 4201101115, 4215970289, 4048876515, 3031661061,
1909085522, 510985033, 1361682810, 129243379, 3142379587, 2569842483,
3033268270, 1658118006, 932109358, 1982290045, 2983082771,
3007670818, 3448104768, 683749698, 778296777, 1399125101, 1939403708,
1692176003, 3868299200, 1422476658, 593093658, 1878973865,
2526292949, 1591602827, 3986158854, 3964389521, 2695031039,
1942050155, 424618399, 1347204291, 2669179716, 2434425874,
2540801947, 1384069776, 4123580443, 1523670218, 2708475297,
1046771089, 2229796016, 1255426612, 4213663089, 1521339547,
3041843489, 420130494, 10677091, 515623176, 3457502702, 2115821274,
2720124766, 3242576090, 854310108, 425973987, 325832382, 1796851292,
2462744411, 1976681690, 1408671665, 1228817808, 3917210003,
263976645, 2593736473, 2471651269, 4291353919, 650792940, 1191583883,
3046561335, 2466530435, 2545983082, 969168436, 2019348792,
2268075521, 1169345068, 3250240009, 3963499681, 2560755113,
911182396, 760842409, 3569308693, 2687243553, 381854665, 2613828404,
2761078866, 1456668111, 883760091, 3294951678, 1604598575,
1985308198, 1014570543, 2724959607, 3062518035, 3115293053,
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138853680, 4160398285, 3322241130, 2068983570, 2247491078,
3669524410, 1575146607, 828029864, 3732001371, 3422026452,
3370954177, 4006626915, 543812220, 1243116171, 3928372514,
2791443445, 4081325272, 2280435605, 885616073, 616452097, 3188863436,
2780382310, 2340014831, 1208439576, 258356309, 3837963200,
2075009450, 3214181212, 3303882142, 880813252, 1355575717, 207231484,
2420803184, 358923368, 1617557768, 3272161958, 1771154147,
2842106362, 1751209208, 1421030790, 658316681, 194065839, 3241510581,
38625260, 301875395, 4176141739, 297312930, 2137802113, 1502984205,
3669376622, 3728477036, 234652930, 2213589897, 2734638932,
1129721478, 3187422815, 2859178611, 3284308411, 3819792700,
3557526733, 451874476, 1740576081, 3592838701, 1709429513,
3702918379, 3533351328, 1641660745, 179350258, 2380520112,
3936163904, 3685256204, 3156252216, 1854258901, 2861641019,
3176611298, 834787554, 331353807, 517858103, 3010168884, 4012642001,
2217188075, 3756943137, 3077882590, 2054995199, 3081443129,
3895398812, 1141097543, 2376261053, 2626898255, 2554703076,
401233789, 1460049922, 678083952, 1064990737, 940909784, 1673396780,
528881783, 1712547446, 3629685652, 1358307511

5.5.2. The table V1
807385413, 2043073223, 3336749796, 1302105833, 2278607931, 541015020,
1684564270, 372709334, 3508252125, 1768346005, 1270451292,
2603029534, 2049387273, 3891424859, 2152948345, 4114760273,
915180310, 3754787998, 700503826, 2131559305, 1308908630, 224437350,
4065424007, 3638665944, 1679385496, 3431345226, 1779595665,
3068494238, 1424062773, 1033448464, 4050396853, 3302235057,
420600373, 2868446243, 311689386, 259047959, 4057180909, 1575367248,
4151214153, 110249784, 3006865921, 4293710613, 3501256572, 998007483,
499288295, 1205710710, 2997199489, 0640417429, 3044194711, 486690751,
2686640734, 2394526209, 2521660077, 49993987, 3843885867, 4201106668,
415900198, 19296841, 2402488407, 2137119134, 1744097284, 579965637,
2037662632, 852173610, 2681403713, 1047144830, 2982173936, 910285038,
4187576520, 2589870048, 989448887, 3292758024, 506322719, 176010738,
1865471968, 2619324712, 564829442, 1996870325, 339697593, 4071072948,
3618966336, 2111320126, 1093955153, 957978696, 892010560, 1854601078,
1873407527, 2498544695, 2694156259, 1927339682, 1650555729,
183933047, 3061444337, 2067387204, 228962564, 3904109414, 1595995433,
1780701372, 2463145963, 307281463, 3237929991, 3852995239,
2398693510, 3754138664, 522074127, 146352474, 4104915256, 3029415884,
3545667983, 332038910, 976628269, 3123492423, 3041418372, 2258059298,
2139377204, 3243642973, 3226247917, 3674004636, 2698992189,
3453843574, 1963216666, 3509855005, 2358481858, 747331248,
1957348676, 1097574450, 2435697214, 3870972145, 1888833893,
2914085525, 4161315584, 1273113343, 3269644828, 3681293816,
412536684, 1156034077, 3823026442, 1066971017, 3598330293,
1979273937, 2079029895, 1195045909, 1071986421, 2712821515,
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3377754595, 2184151095, 750918864, 2585729879, 4249895712,
1832579367, 1192240192, 946734366, 31230688, 3174399083, 3549375728,
1642430184, 1904857554, 861877404, 3277825584, 4267074718,
3122860549, 666423581, 644189126, 226475395, 307789415, 1196105631,
3191691839, 782852669, 1608507813, 1847685900, 4069766876,
3931548641, 2526471011, 766865139, 2115084288, 425941137¢,
3323683436, 568512177, 3736601419, 1800276898, 4012458395, 1823982,
27980198, 2023839966, 869505096, 431161506, 1024804023, 1853869307,
3393537983, 1500703614, 3019471560, 1351086955, 3096933631,
3034634988, 2544598006, 1230942551, 3362230798, 159984793, 491590373,
3993872886, 3681855622, 903593547, 3535062472, 1799803217, 772984149,
895863112, 1899036275, 4187322100, 101856048, 234650315, 3183125617,
3190039692, 525584357, 1286834489, 455810374, 1869181575, 922673938,
3877430102, 3422391938, 1414347295, 1971054608, 3061798054,
830555096, 2822905141, 167033190, 1079139428, 4210126723, 3593797804,
429192890, 372093950, 1779187770, 3312189287, 204349348, 452421568,
2800540462, 3733109044, 1235082423, 1765319556, 3174729780,
3762994475, 3171962488, 442160826, 198349622, 45942637, 1324086311,
2901868599, 678860040, 3812229107, 19936821, 1119590141, 3640121682,
3545931032, 2102949142, 2828208598, 3603378023, 4135048896

5.5.3. The table V2
1629829892, 282540176, 2794583710, 496504798, 2990494426, 3070701851,
2575963183, 4094823972, 2775723650, 4079480416, 176028725,
2246241423, 3732217647, 2196843075, 1306949278, 4170992780,
4039345809, 3209664269, 3387499533, 293063229, 3660290503,
2648440860, 2531406539, 3537879412, 773374739, 4184691853,
1804207821, 3347126643, 3479377103, 3970515774, 1891731298,
2368003842, 3537588307, 2969158410, 4230745262, 831906319,
2935838131, 264029468, 120852739, 3200326460, 355445271, 2296305141,
1566296040, 1760127056, 20073893, 3427103620, 2866979760, 2359075957,
2025314291, 1725696734, 3346087406, 2690756527, 99815156, 4248519977,
2253762642, 3274144518, 598024568, 3299672435, 556579346, 4121041850,
2896948975, 3620123492, 918453629, 3249461198, 2231414958,
3803272287, 3657597946, 2588911389, 242262274, 1725007475,
2026427718, 46776484, 2873281403, 2919275846, 3177933051, 1918859160,
2517854537, 1857818511, 3234262050, 479353687, 200201308, 2801945841,
1621715769, 483977159, 423502325, 3689396064, 1850168397, 3359959416,
3459831930, 841488699, 3570506095, 930267420, 1564520841, 2505122797,
593824107, 1116572080, 819179184, 3139123629, 1414339336, 1076360795,
512403845, 177759256, 1701060666, 2239736419, 515179302, 2935012727,
3821357612, 1376520851, 2700745271, 966853647, 1041862223, 715860553,
171592961, 1607044257, 1227236688, 3647136358, 1417559141,
4087067551, 2241705880, 4194136288, 1439041934, 20464430, 119668151,
2021257232, 2551262694, 1381539058, 4082839035, 498179069, 311508499,
3580908637, 2889149671, 142719814, 1232184754, 3356662582,
2973775623, 1469897084, 1728205304, 1415793613, 50111003, 3133413359,
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4074115275, 27105400611, 2700083070, 2457757663, 2612845330,
3775943755, 2469309260, 2560142753, 3020996369, 1691667711,
4219602776, 1687672168, 1017921622, 2307642321, 368711460,
3282925988, 213208029, 4150757489, 3443211944, 2846101972,
4106826684, 4272438675, 2199416468, 3710621281, 497564971, 285138270,
765042313, 916220877, 3402623607, 2768784621, 1722849097, 3386397442,
4879200061, 3569027007, 3424544196, 217781973, 2356938519, 3252429414,
145109750, 2692588106, 2454747135, 1299493354, 4120241887,
2088917094, 932304329, 1442609203, 952586974, 3509186750, 753369054,
854421006, 1954046388, 2708927882, 4047539230, 304892599¢,
1667505809, 805166441, 11820069088, 4265546268, 4215029527,
3374748959, 3735320666, 2454243090, 2371530493, 3651087521,
2619878153, 1651809518, 1553646893, 1227452842, 703887512,
3696674163, 2552507603, 2635912901, 895130484, 3287782244,
3098973502, 990078774, 3780326506, 2290845203, 41729428, 1949580860,
2283959805, 1036946170, 1694887523, 4880696, 466000198, 2765355283,
3318686998, 1266458025, 3919578154, 3545413527, 2627009988,
3744680394, 1696890173, 3250684705, 4142417708, 915739411,
3308488877, 1289361460, 2942552331, 1169105979, 3342228712,
698560958, 1356041230, 2401944293, 107705232, 3701895363, 903928723,
3646581385, 844950914, 1944371367, 3863894844, 2946773319,
1972431613, 1706989237, 29917467, 3497665928

5.5.4. The table V3
1191369816, 744902811, 2539772235, 3213192037, 3286061260,
1200571165, 2463281260, 754888894, 714651270, 1968220972, 3628497775,
1277626456, 1493398934, 364289757, 2055487592, 3913468088,
2930259465, 902504567, 3967050355, 2056499403, 692132390, 186386657,
832834706, 859795816, 1283120926, 2253183716, 3003475205, 1755803552,
2239315142, 4271056352, 2184848469, 769228092, 1249230754,
1193269205, 2660094102, 642979613, 1687087994, 2726106182, 446402913,
4122186606, 3771347282, 37667136, 192775425, 3578702187, 1952659096,
3989584400, 3069013882, 2900516158, 4045316336, 3057163251,
1702104819, 4116613420, 3575472384, 2674023117, 1409126723,
3215095429, 1430726429, 2544497368, 1029565676, 1855801827,
4262184627, 1854326881, 2906728593, 3277836557, 2787697002,
2787333385, 3105430738, 2477073192, 748038573, 1088396515,
1611204853, 201964005, 3745818380, 3654683549, 3816120877,
3915783622, 2563198722, 1181149055, 33158084, 3723047845, 3790270906,
3832415204, 2959617497, 372900708, 1286738499, 1932439099,
3677748309, 2454711182, 2757856469, 2134027055, 2780052465,
3190347618, 3758510138, 3626329451, 1120743107, 1623585693,
1389834102, 2719230375, 3038609003, 462617590, 260254189, 3706349764,
2556762744, 2874272296, 2502399286, 4216263978, 2683431180,
2168560535, 3561507175, 668095726, 680412330, 3726693946, 4180630637,
3335170953, 942140968, 2711851085, 2059233412, 4265696278,
3204373534, 232855056, 881788313, 2258252172, 2043595984, 3758795150,
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3615341325,
2105383425,
2543090583,
2200687771,
3531415031,
3237071777,
4007211572,
3115169925,
2208617414,
3399219045,
3789181526,
1238603378,
2310872278,
2311650167,
2096382177,
3801102932,
2982247189,
2983202469,
2170076800,
3289016286,
3413341792,
4076754716,
1684954145,
1456017040,
1044428167,
3573635640,

5.6.

Table 2 below specifies the supported values of K'.
specifies for each supported value of K!'
of HDPC symbols,
of LT symbols.
and W(K')

the number H(K')
and the number W(K')
corresponding values of S(K')

The systematic index J(K')

set of source symbol tuples
., (d[K'-171,

such that the L intermediate symbols are uniquely defined,

2138837681,
2346772751,
1828551634,
2689775688,
1212852141,
3100729255,
3495700105,
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Systematic indices and other parameters

Table 2:

Symbols and Matrices

Operating with Octets,

5.7.

General

7.1,

that are used to generate encoding symbols from source symbols and to

This remainder of this section describes the arithmetic operations
generate source symbols from encoding symbols.

Mathematically,
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octets can be thought of as elements of a finite field, i.e., the
finite field GF(256) with 256 elements, and thus the addition and
multiplication operations and identity elements and inverses over
both operations are defined. Matrix operations and symbol operations
are defined based on the arithmetic operations on octets. This
allows a full implementation of these arithmetic operations without
having to understand the underlying mathematics of finite fields.

5.7.2. Arithmetic Operations on Octets

Octets are mapped to non-negative integers in the range 0 through 255
in the usual way: A single octet of data from a symbol,
B[7],Bl[6],BI[5],BI[4],BI[3],B[2],B[1],BI[0], where B[7] is the highest
order bit and B[0] is the lowest order bit, is mapped to the integer
1=B[7]1*128+B[6]*64+B[5]*32+B[4]*16+B[3]1*8+B[2]1*4+B[1]1*2+B[0].

The addition of two octets u and v defined as the XOR operation,
i.e.,

u + v = 1u V.
Subtraction is defined in the same way, so we also have
A

u - v =1u V.

The zero element (additive identity) is the octet represented by the
integer 0. The additive inverse of u is simply u, i.e.,

u+ u = 0.
The multiplication of two octets is defined with the help of two
tables OCT_EXP and OCT LOG, which are given in Secticon 5.7.3 and
Section 5.7.4, respectively. The table OCT LOG maps octets (other

than the zerc element) to non-negative integers, and OCT EXP maps
non-negative integers to octets. For two octets u and v, we define

0, i1f either u or v are 0,
OCT EXP[OCT LOG[u] + OCT LOG[v]] otherwise.

Note that the '+' on the right hand side of the above is the usual
integer addition, since its arguments are ordinary integers.

The division u / v of two octets u and v, and where v != 0, is
defined as follows:
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0, if u == 0,

OCT_EXP [OCT LOG[u]l - OCT LOG[v] + 255] otherwise.
The one element (multiplicative identity) is the octet represented by
the integer 1. For an octet u that is not the zero element, i.e.,
the multiplicative inverse of u is

OCT_EXP[255 - OCT LOGI[ul].

The octet denoted by alpha is the octet with the integer

representation 2. If i is a non-negative integer 0 <= i < 256, we
have
alpha””i = OCT EXPI[i].

5.7.3. The table OCT EXP

The table OCT EXP contains 510 octets. The indexing starts at 0 and
ranges up to 509, and the entries are the octets with the following
positive integer representation:

1, 2, 4, 8, 16, 32, 64, 128, 29, 58, 1lle6, 232, 205, 135, 19, 38, 76,
152, 45, S0, 180, 117, 234, 201, 143, 3, o6, 12, 24, 48, 96, 192, 157,
3%, 78, 156, 37, 74, 148, 53, 106, 212, 181, 119, 238, 193, 159, 35,
70, 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222,
le61l, 95, 190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30, 60,
120, 240, 253, 231, 211, 187, 107, 214, 177, 127, 254, 225, 223, 163,
91, 182, 113, 226¢, 217, 175, &7, 134, 17, 34, 68, 136, 13, 26, 52,
104, 208, 189, 103, 206, 129, 31, 62, 124, 248, 237, 199, 147, 59,

, 236, 197, 151, 51, 102, 204, 133, 23, 46, 92, 184, 109, 218,
169, 79, 158, 33, 66, 132, 21, 42, 84, le8, 77, 154, 41, 82, 164, 85,
, 73, l4e¢, 57, 114, 228, 213, 183, 115, 230, 209, 191, 99, 198,

, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227, 219, 171,
75, 150, 49, 98, 196, 149, 55, 110, 220, 1le¢5, 87, 174, 65, 130, 25,
50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167, 83, 166, 81,
le62, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9,
18, 36, 72, 144, ¢1, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11,
22, 44, 88, 176, 125, 250, 233, 207, 131, 27, 54, 108, 216, 173, 71,
142, 1, 2, 4, 8, 1l6, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38,
76, 152, 45, 90, 180, 117, 234, 201, 143, 3, 6, 12, 24, 48, 96, 192,
157, 39, 78, 156, 37, 74, 148, 53, 106, 212, 181, 119, 238, 193, 159,
35, 70, 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111,
222, lel, 95, 190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30,
60, 120, 240, 253, 231, 211, 187, 107, 214, 177, 127, 254, 225, 223,
163, 91, 182, 113, 226, 217, 175, 67, 134, 17, 34, 68, 136, 13, 20,
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5.

5.

7

7.

52, 104, 208, 189, 103, 206, 129, 31, 62, 124, 248, 237, 199, 147,
59, 118, 236, 197, 151, 51, 102, 204, 133, 23, 46, 92, 184, 109, 218,
169, 79, 158, 33, 66, 132, 21, 42, 84, le8, 77, 154, 41, 82, 164, 85,
170, 73, 146, 57, 114, 228, 213, 183, 115, 230, 209, 191, 99, 198,
145, 63, 126, 252, 229, 215, 179, 123, 24¢, 241, 255, 227, 219, 171,
75, 150, 49, 98, 196, 149, 55, 110, 220, 1le¢5, 87, 174, 65, 130, 25,
50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167, 83, 166, 81,
le62, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9,
18, 36, 72, 144, ¢1, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11,
22, 44, 88, 176, 125, 250, 233, 207, 131, 27, 54, 108, 216, 173, 71,
142

.4. The table OCT LOG

The table OCT LOG contains 255 non-negative integers. The table is
indexed by octets interpreted as integers. The octet corresponding
to the zero element, which is represented by the integer 0, is
excluded as an index, and thus indexing starts at 1 and ranges up to
255, and the entries are the following:

o, 1, 25, 2, 50, 26, 198, 3, 223, 51, 238, 27, 104, 199, 75, 4, 100,
224, 14, 52, 141, 239, 129, 28, 193, 105, 248, 200, 8, 76, 113, 5,
138, 101, 47, 225, 36, 15, 33, 53, 147, 142, 218, 240, 18, 130, 69,
29, 181, 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, 77, 228, 114,
l66, 6, 191, 139, 98, 102, 221, 48, 253, 226, 152, 37, 179, 16, 145,
34, 136, 54, 208, 148, 206, 143, 150, 219, 189, 241, 210, 19, 92,
131, 56, 70, 64, 30, 66, 182, 163, 195, 72, 126, 110, 107, 58, 40,
84, 250, 133, 186, 61, 202, 94, 155, 159, 10, 21, 121, 43, 78, 212,
229, 172, 115, 243, 167, 87, 7, 112, 192, 247, 140, 128, 99, 13, 103,
74, 222, 237, 49, 197, 254, 24, 227, 165, 153, 119, 38, 184, 180,
124, 17, ¢8, l4e¢, 217, 35, 32, 137, 46, 55, 63, 209, 91, 149, 188,
207, 205, 144, 135, 151, 178, 220, 252, 190, 97, 242, 86, 211, 171,
20, 42, 93, 158, 132, 60, 57, 83, 71, 109, 65, 162, 31, 45, 67, 216,
183, 123, 164, 118, 196, 23, 73, 236, 127, 12, 111, 24¢, 108, 161,
5%, 82, 41, 157, 85, 170, 251, %S¢, 134, 177, 187, 204, 62, 90, 203,
89, 95, 17¢, 156, 169, 160, 81, 11, 245, 22, 235, 122, 117, 44, 215,
79, 174, 213, 233, 230, 231, 173, 232, 1lle, 214, 244, 234, 168, 80,
88, 175

5. Operations on Symbols

Operations on symbols have the same semantics as operations on
vectors of octets of length T in this specification. Thus, if U and
V are two symbols formed by the octets ul0], ..., ulT-1] and v[0],

., v[T-1], respectively, the sum of symbols U + V is defined to be
the component-wise sum of octets, i.e., equal to the symbol D formed
by the octets d[0], ..., dlT-1], such that
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dfi] = uli]l + vI[i], 0 <= 1 < T.

Furthermore, if beta is an octet, the product beta*U is defined to be
the symbol D obtained by multiplying each octet of U by beta, i.e.,

d[i] = beta*uli]l, 0 <= i < T.
5.7.6. Operations on Matrices

All matrices in this specification have entries that are octets, and
thus matrix operations and definitions are defined in terms of the
underlying octet arithmetic, e.g., coperations on a matrix, matrix
rank and matrix inversion.

5.8. Requirements for a Compliant Decoder

If a RaptorQ compliant decoder receives a mathematically sufficient
set of encoding symbols generated according to the encoder
specification in Section 5.3 for reconstruction of a source block
then such a decoder SHOULD recover the entire source block.

A RaptorQ compliant decoder SHALL have the following recovery
properties for source blocks with K' source symbols for all values of
K' in Table 2 of Section 5.6.

1. If the decoder receives K' encoding symbols generated according
to the encoder specification in Section 5.3 with corresponding
ESIs chosen independently and uniformly at random from the range
of possible ESIs then on average the decoder will fail to recover
the entire source block at most 1 out of 100 times.

2. If the decoder receives K'+1l encoding symbols generated according
to the encoder specification in Section 5.3 with corresponding
ESIs chosen independently and uniformly at random from the range
of possible ESIs then on average the decoder will fail to recover
the entire source block at most 1 out of 10,000 times.

3. If the decoder receives K'+2 encoding symbols generated according
to the encoder specification in Section 5.3 with corresponding
ESIs chosen independently and uniformly at random from the range
of possible ESIs then on average the decoder will fail to recover
the entire source block at most 1 out of 1,000,000 times.

Note that the Example FEC Decoder specified in Section 5.4 fulfills
both requirements, i.e.

1. it can reconstruct a source block as long as it receives a
mathematically sufficient set of encoding symbols generated
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generated according to the encoder specification in Section 5.3;

2. 1t fulfills the mandatory recovery properties from above.

6. Security Considerations

Data delivery can be subject to denial-of-service attacks by
attackers which send corrupted packets that are accepted as
legitimate by receivers. This is particularly a concern for
multicast delivery because a corrupted packet may be injected into
the session close to the root of the multicast tree, in which case
the corrupted packet will arrive at many receivers. This is
particularly a concern when the code described in this document is
used because the use of even one corrupted packet containing encoding
data may result in the decoding of an object that is completely
corrupted and unusable. It is thus RECOMMENDED that source
authentication and integrity checking are applied to decoded objects
before delivering objects to an application. For example, a SHA-1
hash [SHA1l] of an object may be appended before transmission, and the
SHA-1 hash is computed and checked after the object is decoded but
before it is delivered to an application. Source authentication
SHOULD be provided, for example by including a digital signature
verifiable by the receiver computed on top of the hash value. It is
also RECOMMENDED that a packet authentication protocol such as TESLA
[RFC4082] be used to detect and discard corrupted packets upon
arrival. This method may also be used to provide source
authentication. Furthermore, it is RECOMMENDED that Reverse Path
Forwarding checks be enabled in all network routers and switches
along the path from the sender to receivers to limit the possibility
of a bad agent successfully injecting a corrupted packet into the
multicast tree data path.

Another security concern is that some FEC information may be obtained
by receivers out-of-band in a session description, and if the session
description is forged or corrupted then the receivers will not use
the correct protocol for decoding content from received packets. To
avoid these problems, it is RECOMMENDED that measures be taken to
prevent receivers from accepting incorrect session descriptions,
e.g., by using source authentication to ensure that receivers only
accept legitimate session descriptions from authorized senders.

7. IANA Considerations
Values of FEC Encoding IDs and FEC Instance IDs are subject to IANA

registration. For general guidelines on IANA considerations as they
apply to this document, see [RFC5052]. This document assigns the
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Fully-Specified FEC Encoding ID 6 (tbc) under the ietf:rmt:fec:
encoding name-space to "RaptorQ Code".
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WHAT IS CLAIMED I8S:

1. A method of electronically transmitting data via one or more transmitters
capable of outputting an electronic signal, wherein the data to be transmitted is represented
by an ordered set of source symbols and the data is transmitted as a sequence of encoded
symbols representing at least a portion of the electronic signal, the method comprising:

obtaining, in an electronically readable form, the ordered set of source symbols;
generating a set of intermediate symbols from the ordered set of source symbols, wherein
the source symbols can be regenerated from the set of intermediate symbols;
designating sets of the intermediate symbols such that each intermediate symbol is
designated as a member of one of the sets of intermediate symbols and there are at
least a first set of intermediate symbols and a second set of intermediate symbols,
and wherein each set of intermediate symbols has associated with it distinct
encoding parameters and has as members at least one intermediate symbol; and
generating a plurality of encoded symbols, wherein an encoded symbol is generated from
one or more of the intermediate symbols, wherein at least one encoded symbol is
generated, directly or indirectly, from a plurality of intermediate symbols selected

from a plurality of the sets of intermediate symbols.

2. The method of claim 1, wherein the first set of intermediate symbols are
designated as symbols for belief propagation decoding and the second set of intermediate

symbols are designated as symbols to be inactivated for belief propagation decoding.

3. The method of claim 1, wherein each encoded symbol is generated from a
combination of a first symbol generated from one or more of the first set of intermediate
symbols and a second symbol generated from one or more of the second set of intermediate

symbols.

4. The method of claim 3, wherein the distinct encoding parameters comprise
at least distinct degree distributions, such that each encoded symbol is generated from a
combination of a first symbol generated from one or more of the first set of intermediate
symbols having a first degree distribution and a second symbol generated from one or more
of the second set of intermediate symbols having a second degree distribution different from

the first degree distribution.
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5. The method of claim 3, wherein the first symbol is generated using a chain

reaction encoding process applied to the first set of intermediate symbols.

6. The method of claim 3, wherein the second symbol is an XOR of a fixed

number of symbols chosen randomly from the second set of intermediate symbols.

7. The method of claim 3, wherein the second symbol is an XOR of a first
number of symbols chosen randomly from the second set of intermediate symbols, and
wherein the first number depends on a second number equal to a number of the symbols

chosen from the first set to generate the first symbol.

8. The method of claim 3, wherein the combination is the XOR of the first

symbol and the second symbol.

9. The method of claim 1, wherein the intermediate symbols comprise the
ordered set of source symbols and a set of redundant source symbols generated from the

ordered set of source symbols.

10. The method of claim 9, wherein at least some of the redundant symbols
are generated using a GF[2] operations and other redundant symbols are generated using

GF[256] operations.

11. The method of claim 1, wherein the intermediate symbols are generated,
during encoding, from the source symbols using a decoding process, wherein the decoding
process is based on a linear set of relations between the intermediate symbols and the source

symbols.

12. The method of claim 11, wherein at least some of the linear relations are

relations over GF[2] and other linear relations are relations over GF[256].

13. The method of claim 1, wherein the number of distinct encoded symbols
that can be generated from a given ordered set of source symbols is independent of the

number of source symbols in that ordered set.

14. The method of claim 1, wherein an average number of symbol operations
performed to generate an encoded symbol is bounded by a constant independent of the

number of source symbols in that ordered set.
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15. The method of claim 1, wherein the first set of symbols is more than an

order of magnitude larger than the second set of symbols.

16. A method of receiving data from a source, wherein the data is received at
a destination over a packet communication channel, and wherein the data representable by a
set of encoded symbols derived from an ordered set of source symbols representing the data
sent from the source to the destination, the method comprising;:
obtaining the set of received encoded symbols;
decoding a set of intermediate symbols from the set of received encoded symbols;
associating each of the intermediate symbols with a set of intermediate symbols, wherein
the intermediate symbols are associated into at least two sets, and wherein one set is
designated as a set of permanently inactive symbols for purposes of scheduling a
decoding process to recover the intermediate symbols from the received encoded
symbols; and
recovering at least some of the source symbols of the ordered set of source symbols from

the set of intermediate symbols according to the decoding process.

17. The method of claim 16, wherein the decoding process comprises at least
a first decoding phase, wherein a set of reduced encoded symbols are generated that depend
on a second set of permanently inactive symbols and a third set of dynamically inactive
symbols that is a subset of the first set of symbols, and a second decoding phase, wherein the
set of reduced encoded symbols is used to decode the second set of permanently inactive
symbols and the third set of dynamically inactive symbols, and a third decoding phase,
wherein the decoded second set of permanently inactive symbols and the third set of
dynamically inactive symbols and the set of received encoded symbols is used to decode at

least some of the remaining intermediate symbols that are in the first set of symbols.

18. The method of claim 17, wherein the first decoding phase uses belief
propagation decoding combined with inactivation decoding, and/or the second decoding

phase uses Gaussian elimination.

19. The method of claim 17, wherein the third decoding phase uses back

substitution or a back sweep followed by a forward sweep.
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20. The method of claim 17, wherein the decoding process operates on the
third set of dynamically inactive symbols considering that the number of symbols in third set
of dynamically inactive symbols is less than 10% of the number of source symbols and/or

less than 10% of the number of symbols in the second set of permanently inactive symbols.

21. The method of claim 16, wherein the received encoded symbols are

operated on as LDPC code generated symbols or Reed-Solomon code generated symbols.

22. The method of claim 16, wherein each received encoded symbol of the set
of received encoded symbols is operated on as being a combination of a first symbol
generated from one or more of the first set of symbols and a second symbol generated from

one or more of the second set of symbols.

23. The method of claim 22, wherein each received encoded symbol is

operated on as the combination being an XOR of the first symbol and the second symbol.

24. The method of claim 22, wherein each received encoded symbol is
operated on as the second symbol being an XOR of a fixed number of symbols that was

chosen randomly from the second set.

25. The method of claim 22, wherein each received encoded symbol is
operated on as the second symbol being an XOR of a first number of symbols that was
chosen randomly from the second set, wherein the first number of symbols depends on the

second number of symbols that was chosen from the first set to generate the first symbol.

26. The method of claim 22, wherein the decoding process operates as if the

first symbol was chosen based on a chain reaction code from the first set of symbols.

27. The method of claim 16, wherein the decoding process operates as if the
size of the second set of permanently inactive symbols is proportional to the square root of

the number of source symbols.

28. The method of claim 16, wherein the decoding process operates as if the
intermediate symbols comprise the ordered set of source symbols and a set of redundant

symbols generated from the ordered set of source symbols.
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29. The method of claim 28, wherein the decoding process operates as if at
least some of the redundant symbols were generated using GF[2] operations and other

redundant symbols were generated using GF[256] operations.

30. The method of claim 16, wherein the decoding process operates as if the

intermediate symbols comprise the ordered set of source symbols.

31. The method of claim 16, wherein the decoding process operates as if the
intermediate symbols are symbols that were generated from the source symbols using a
decoding process based on a linear set of relations between the intermediate symbols and the

source symbols.

32. The method of claim 31, wherein the decoding process operates as if at
least some of the linear relations are relations over GF[2] and other linear relations are

relations over GF[256].

33. The method of claim 16, wherein the decoding process operates as if the
number of different possible encoded symbols that can be received is independent of the

number of source symbols in the ordered set.

34. The method of claim 16, wherein an average number of symbol
operations performed to decode the set of source symbols from the set of received encoded
symbols is bounded by a constant times the number of source symbols, wherein the constant

is independent of the number of source symbols.

35. The method of claim 16, wherein the decoding process operates as if the
number of symbols in the first set of symbols is more than an order of magnitude larger than

the number of symbols in the second set of permanently inactive symbols.

36. The method of claim 16, wherein the decoding process operates such that
recovery of all of the set of K source symbols from a set of N=K+A encoded symbols, for
some K, N and A, has a probability of success of at least a lower bound of 1-(0.01)*(A+1) for

A=0, 1 or 2, with the lower bound being independent of the number of source symbols.

37. A method for serving a file using a server coupled to a data network, wherein

serving includes organizing data of the file into one or more blocks, generating one or more
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encoded symbols for a block based on the data of the block, and wherein at least one block is
physically or logically organized into a plurality of sub-blocks and at least one encoded symbol is
physically or logically organized into a plurality of sub-symbols, the method comprising:
partitioning an input file into an integer number of blocks, wherein each block includes at least
one sub-block, and wherein each sub-block includes at least one source symbol;
determining a value, WS, representing a maximum size for a sub-block based on a memory
constraint;
determining a value SS, wherein SS*AL represents a lower bound for sub-symbol size, in units
of a preferred memory unit size, AL;
determining which blocks of the integer number of blocks is to be organized into a plurality of
sub-blocks, and for each such block, organizing the block into a plurality of sub-blocks
having a size determined by the available space within packets for encoded symbols that are
to be sent, a symbol size that is to be used within each sent packet, in a manner to ensure
that a number of source symbols for source blocks is equal within a threshold and the
number is equal to the number, Kt, of source symbols in the file and to ensure that the
sub-symbol size of each sub-block is at most SS*AL and to ensure that the size of each
sub-block is at most WS;
generating encoded symbols from blocks, wherein sub-symbols are generated from sub-blocks
such that each encoded symbol depends on data from one block; and

outputting the generated encoded symbols.

38. A method for recovering a block of data at a receiver using a client coupled to

a data network, wherein a block includes a grouping of one or more sub-blocks, the method

comprising:

receiving a plurality of encoded symbols generated from the block, wherein each encoded
symbol includes a plurality of sub-symbols generated from at least one sub-block using a
common set of operations;

determining a value, WS, representing a maximum size for a sub-block based on a memory
constraint;

determining a value SS, wherein SS*AL represents a lower bound for sub-symbol size, in units
of a preferred memory unit size, AL;

determining which blocks of the integer number of blocks organized into a plurality of

sub-blocks, and for each such block, organizing the block into a plurality of sub-blocks
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having a size determined by a first parameter set by a sender representing available space
within packets, a second parameter representing a symbol size used within each packet, the
parameters being such that a number of source symbols for source blocks is equal within a
threshold and the number is equal to the number, Kt, of source symbols in the file;

decoding blocks from received encoded symbols, wherein sub-blocks are decoded from
sub-symbols and the sub-blocks form blocks, wherein the sub-symbol size of each
sub-block is at most SS*AL and the size of each sub-block is at most WS; and

outputting the decoded blocks.
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