Office de la Propriete Canadian CA 2926692 A1 2016/08/04

Intellectuell Intellectual P t
du Canada office on 2 926 692
g-rngﬂgﬁr?fgaena i ﬁ;’:jsg,[f;‘éyaﬁ; i (12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2016/04/11 (51) Cl.Int./Int.Cl. HO3M 7/30 (2006.01),

(41) Mise a la disp. pub./Open to Public Insp.: 2016/08/04 GO6F 5/00 (2006.01), GO6F 12/00 (2006.01)

s e . (71) Demandeur/Applicant:
(30) Priorites/Priorities: 2015/04/15 (US62/148,160); SYMBOLIC IO CORPORATION. US

2015/0/7/20 (US14/804,175)

(72) Inventeur/Inventor:
IGNOMIRELLO, BRIAN M., US

(74) Agent: BERESKIN & PARR LLP/S.E.N.C.R.L.,S.R.L.

(54) Titre : METHODE ET APPAREIL DE RETENTION NUMERIQUE HYPER DENSE 10
(54) Title: METHOD AND APPARATUS FOR DENSE HYPER IO DIGITAL RETENTION

Processor 202

Cache memory
103

Operating System
204

| Data adaptation
module 241

CMOS 222

\BIOS 24

105 DIMM socksts
fdeocr ot |
Controlle |

I _ 1386
110 [r 108
-— F B e . 108

I

I

- - - Vemory interface 218

Eneigy sourcy 219
Controller Huh

114 RAM storage unit 220

Cher
USB Ethernet Audio RO
131 Disk 133 13¢ 135
drive

(57) Abrege/Abstract:
System and method to encode and decode raw data. The method to encode Includes recelving a block of uncoded data,

decomposing the block of uncoded data Iinto a plurality of data vectors, mapping each of the plurality of data vectors to a bit
marker; and storing the bit marker in a memory to produce an encoded representation of the uncoded data. Encoding may further

Include decomposing the block of uncoded data into default data and non-default data, and mapping only the non-default data. In
some embodiments, bit markers may include a seed value and replication rule, or a fractalized pattern.

SRS ER VNN
R RN N
: "c‘:‘? R - e
AR =0y g s ¥, "..’
' h_ N .

SO/
SR e CIPO
3 Y
SRR ‘-g;}::q
4

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02926692 2016-04-11

ABSTRACT

System and method to encode and decode raw data. The method to encode includes receiving a block of
uncoded data, decomposing the block of uncoded data into a plurality of data vectors, mapping each of
the plurality of data vectors to a bit marker; and storing the bit marker in a memory to produce an encoded
representation of the uncoded data. Encoding may further include decomposing the block of uncoded data

into detault data and non-default data, and mapping only the non-default data. In some embodiments, bit

markers may include a seed value and replication rule, or a fractalized pattern.

CA 02926692 2016-04-28

METHOD AND APPARATUS FOR DENSE HYPER 10 DIGITAL RETENTION

[001]

BACKGROUND

[002] In the early 1980s, the emergent computer industry incorporated mathematician and physicists
John Von Neumann’s distributed theorized compute model. Von Neumann’s theories were way ahead of
his time and were conceived long before the personal computing era became a reality. The Von Neumann
model enabled the notion that many smaller computers could scale and produce higher computer power
than a single centralized expensive computer (e.g., mainframe). As the Digital Age began, the personal
computer not only became powertul but also grew in presence in homes and offices, bringing the
usefulness of applications. Overtime, the personal computer (PC) out grew just being a desktop device
and expanded into the data center and morphed into servers. Servers in the data center transformed into
the client-server market and the well-known distributed compute model that John Von Neumann

theorized forty-five years prior became reality.

[003] For decades the PC, laptops and servers have been known to use RISC, PowerPC, ARM® and
x86 architectures for processing power (CPU), limited memory (e.g., Random Access Memory RAM)
and Hard Disk (HDA) devices for storage media. As the digital era continued to expand, the content
computers created continued to get richer, larger in density and drove yearly innovation and upgrades in
computer processing power (CPU), RAM capacities and hard drive densities. There continues to be

several detriments to this approach; (1) not all components are gaining performance while gaining density

[Moore’s Law]; (2) the I/O interfaces of these elements are not the same speed, creating I/0O bottlenecks

[Kryder’s Law].

[004] A well-known upgrade technique in the computer industry has been to upgrade a computers
memory (RAM) to get more performance out of a machine. Conversely, memory (RAM) capacities have
been limited by several key factors, the CPU processor, nanometer density limitations of silicon, and
power dissipation. By today’s standards the largest memory module available is only 128 GB in capacity
in contrast to the largest computer hard drive 1s 6 TB in capacity. In this example the hard drive 1s 93.75X
larger than the memory module; this 1s the density issue. Contrariwise, the maximum input/ output (I/O)

transter speed for memory modules (1.e., RAM) 1s currently 56.7 GB per sec, and the maximum [/O

CA 02926692 2016-04-11

transfer speed for a Senal Attached SCSI (SAS-II) interface is currently 750 MB per sec. Thus, the
memory module 1s 76.8X faster than today’s SAS-II hard drive.

[005] Under light computing loads, one might not notice this imbalance or battle of density vs.
performance. However under a heavy computing load there 1s no equalizing this major imbalance of
density vs. performance and I/O bottlenecks inevitably will occur. These eventually will slow the entire
computing operation to the speed of the hard drive. The futile attempt to avoid this is to add more systems

at the problem and rewrite applications to further distribute applications over more processor cores.

[006] The answer to this quintessential problem would be to add more memory (RAM) and write

application algorithms to alleviate the bottlenecks.

[007] Nevertheless, the next challenge materializes, cost. Memory (RAM) in general can be very
expensive depending of the density of the RAM module. A real world example of how expensive RAM 1s
that the largest available memory module currently available 1s 64 GB. A single 64 GB RAM module
currently sells for about $1,000.00 USD per module. The average x86 server motherboard currently sells
for about $700.00 USD and can use up to 16 or 24 RAM modules. By fully populating an inexpensive
x86 motherboard with 16 modules currently would cost about $16,000.00 USD; this makes RAM about

20 times more expensive than the inexpensive motherboard and would yield only 1 TB of RAM.

[008] In an unflawed world, computers would need only memory (RAM) and high speed processors. It
the challenge of density and cost did not exist, then computers without storage devices would be possible.
The hurdle becomes how a memory modules (RAM) functions. All memory modules today are

considered a volatile technology, meaning that when you power off a compute system, the memory losses
power and the memory becomes erased. Storage device media of today do not have this issue — when the

power is removed, storage device media retain the information that had been written to them. When you

combine all of the factors of density, performance, cost and volatility, one can quickly deduce the reality

of a computer with only CPU and RAM has been unachievable.

[009] What is needed is an improved computing system to overcome the drawbacks the conventional

art described above.

BRIEF SUMMARY

[0010] Embodiments in accordance with the present disclosure provide an inexpensive computer
computing and storage apparatus that relies upon CPU and RAM, without a need for a magnetic storage

device such as a conventional rotating hard drive. Embodiments provide a computing and storage

CA 02926692 2016-04-11

apparatus and system that provides a quantum leap beyond the abovementioned obstacles surrounding
computing and storage. Embodiments in accordance with the present disclosure enable a computer that
may have a 57.6 GB constant I/O level that is 76.8X faster than any x86 and high performance computer

In existence today.

[0011] Embodiments in accordance with the present disclosure provide a system and method to encode
and decode raw data. The method to encode includes receiving a block of uncoded data, decomposing the
block of uncoded data into a plurality of data vectors, mapping each of the plurality of data vectors to a
bit marker; and storing the bit marker in a memory to produce an encoded representation of the uncoded
data. The method to decode includes retrieving a plurality of bit markers from a memory, mapping bit
markers in the plurality of bit markers to respective data vectors, combining the respective data vectors
with a block of uncoded data to produce a composite uncoded data block; and producing the uncoded

composite data block as the decoded data.

|0012] The preceding is a simplified summary of embodiments of the disclosure to provide an
understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive
overview of the disclosure and its various embodiments. It is intended neither to identify key or critical
elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of
the disclosure in a simplified form as an introduction to the more detailed description presented below. As
will be appreciated, other embodiments of the disclosure are possible utilizing, alone or in combination,

one or more of the features set forth above or described in detail below.
BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The above and still further features and advantages of the present invention will become apparent

upon consideration of the following detailed description of embodiments thereof, especially when taken

in conjunction with the accompanying drawings wherein like reference numerals in the various figures are

utihized to designate like components, and wherein:

[0014] FIG. 1 illustrates a functional block diagram of a personal computer (PC) system as known in the

art;

[0015] FIG. 2 1llustrates a functional block diagram of a PC system 1n accordance with an embodiment

of the present disclosure;

0016] FIG. 3A 1illustrates a method to encode data 1in accordance with an embodiment of the present

disclosure; and

CA 02926692 2016-04-11

[0017] FIG. 3B illustrates a method to decode data in accordance with an embodiment of the present

disclosure.

|[0018] The headings used herein are for organizational purposes only and are not meant to be used to
limit the scope of the description or the claims. As used throughout this application, the word "may" is
used 1n a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include”, “including”, and “includes” mean including but not
limited to. To facilitate understanding, like reference numerals have been used, where possible, to
designate like elements common to the figures. Optional portions of the figures may be illustrated using

dashed or dotted lines, unless the context of usage indicates otherwise.
DETAILED DESCRIPTION

[0019] In the following detailed description, numerous specific details are set forth in order to provide a
thorough understanding of embodiments or other examples described herein. In some instances, well-
known methods, procedures, components and circuits have not been described in detail, so as not to
obscure the following description. Further, the examples disclosed are for exemplary purposes only and
other examples may be employed in lieu of, or in combination with, the examples disclosed. It should
also be noted the examples presented herein should not be construed as limiting of the scope of

embodiments of the present invention, as other equally effective examples are possible and likely:.

[0020] As used herein, the term "module" refers generally to a logical sequence or association of steps,
processes or components. For example, a software module may comprise a set of associated routines or
subroutines within a computer program. Alternatively, a module may comprise a substantially self-
contained hardware device. A module may also comprise a logical set of processes irrespective of any

software or hardware implementation.

[0021] A module that performs a function also may be referred to as being configured to perform the
function, e.g., a data module that receives data also may be described as being configured to receive data.
Configuration to perform a function may include, for example: providing and executing computer code
that performs the function; providing provisionable configuration parameters that control, limit, enable or
disable capabilities of the module (e.g., setting a flag, setting permissions, setting threshold levels used at
decision points, etc.); providing a physical connection, such as a jumper to select an option, or to enable /
disable an option; attaching a physical communication link; enabling a wireless communication link;
energizing a circuit that performs the function (e.g., providing power to a transceiver circuit in order to

receive data); and so forth.

CA 02926692 2016-04-11

[0022] FIG. 1 illustrates a functional block diagram of a conventional computer system 100 as known 1n
the art. System 100 may be used, for example, in a computer system based upon an Intel®-compatible

architecture. As fabrication technology advances, various functional components may be fabricated in
different integrated circuit (IC) configurations, depending upon factors such as generation of chipset,
price-to-performance ratio of the targeted customer, targeted application (e.g., mobile devices, servers,

etc.), and so forth. Certain functions may be combined into various configurations such as in a single IC,

such as an IC 116.

[0023] System 100 includes a processor 102, which may be a general-purpose processor such as Xeon®,
Intel Core 17®, 15®, 13®, or processors from Advanced Micro Devices® (AMD) such as Athlon64®, and
the like. In other embodiments, processor 102 may be a graphics processing unit (GPU). In the functional
block diagram of FIG. 1, processor 102 as used herein may refer to the tunctions of a processor, and/or
refer to the one or more hardware cores of a processor. Processor 102 may include multiple processing
cores that operate at multi-GHz speeds. Processor 102 may include a cache memory 103 (e.g., L1 or L2
cache). Processor 102 also may be programmed or configured to include an operating system 104.
Examples of operating system 104 include various versions of Windows®, Mac OS®, Linux®, and/or
operating systems or operating system extensions in accordance with an embodiment of the present
disclosure, and so forth. The registered trademark Windows 1s a trademark of Microsoft Inc. The
registered trademark Mac OS is a trademark of Apple Inc. The registered trademark Linux 1s used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
world-wide basis. Operating system 104 performs conventional functions that include the running of an
application program (not shown in FIG. 1). Functionally, operating system 104 1s 1llustrated as being a
part of processor 102, but portions of operating system 104 may physically reside in a non-volatile

memory (e.g., a hard disk), not illustrated in FIG. 1, and at least portions of operating system 104 may be

read into RAM memory as needed for execution by processor 102.

[0024] Processor 102 may use several internal and external buses to interface with a variety of functional
components. System 100 includes communication bus 105 that links processor 102 to memory controller
106. Memory controller 106 may also be referred to as a northbridge. Communication bus 105 may be

implemented as one of a front side bus (FSB), a Non-uniform memory access (NUMA) bus, an EV6 bus,

a Peripheral Component Interconnect (PCI) bus, and so forth.

[0025] System 100 further includes a nonvolatile memory 122 (e.g., a CMOS memory) coupled to
processor 102. CMOS memory 122 may include a basic input/output system (BIOS) 124, which helps

manage low-level communication among computer components, and may include storage of computer

CA 02926692 2016-04-11

code to perform a power-on self-test. Conventionally, a power-on self-test may include a test of the data

integrity of installed RAM.

[0026] Memory controller hub 106 typically handles communications between processor 102 and
various high-speed functional components such as external RAM memory installed in dual in-line
memory module (DIMM) slots 108a, 108b via communication bus 107, and video graphics card 110 via
communication bus 109. Communication buses 107 and 109 may be high-speed interfaces, such as
Peripheral Component Interconnect Express (PCle) or Accelerated Graphics Port (AGP). Memory
controller hub 106 may also handle communications between processor 102 and controller hub 114, via
communication bus 112. Controller hub 114 may also be known by other names such as a southbridge, an
[/O Controller Hub (ICH), a Fusion Controller Hub (FCH), a Platform Controller Hub (PCH), and so
forth. Controller hub 114 in turn manages further communication with additional and/or slower /O
devices or interfaces such as USB ports 131, disk drives 132 with standard interfaces (e.g., ATA/SATA,
mSATA, SAS, etc.), Ethernet transceivers 133, audio ports 134, other PCI devices 135, and so forth.

(0027} In some configurations of system 100 (not illustrated), processor 102 is designed to bypass
memory controller 106 and communicate directly with controller hub 114 via a Direct Media Interface
(DMI). Such contigurations also may integrate the functions of processor 102 and memory controller 106
into a single IC 116. In such configurations, controller hub 114 is typically a Platform Controller Hub
(PCH).

[0028] Although the memory chips that make up RAM memory installed in DIMM slots 108a, 108b may
have a very high maximum access speed (e.g., about 57 GBytes/sec), communication bus 109 normally
cannot support such fast speeds. For example, the speed of PCle 4.0 in a 16-lane slot is limited to 31.508
GBytes/sec. AGP 1s slower still than PCle. Therefore, communication bus 107 is a bottleneck that

prevents faster memory access.

[0029] The bottleneck of memory access i1s one drawback of the conventional art. Other drawbacks
described above of a conventional computer include the mismatch in storage size between the size of
RAM memory (typically on the order of a few Gbytes) and the storage size of a conventional hard disk
(typically on the order of a few Tbytes), and the relatively small storage size of RAM memory to the

storage size of a conventional hard disk. Another drawback of the conventional art 1s the volatile nature of

the RAM memory.

[0030] Embodiments in accordance with the present disclosure break the density issue that RAM has

today. Embodiments in accordance with the present disclosure address these drawbacks of the

CA 02926692 2016-04-11

conventional art by providing a novel hardware interface for storage units, and a novel driver interface for

the hardware intertace.

[0031] Outside of the CPU, RAM is the fastest element in x86 and x64 computing systems, SO
embodiments allows for the alignment of today’s high speed RAM performance with a new method of
gaining density. As this effect 1s applied, it completely changes the cost paradigm and allows low cost

memory modules to replace the need for high-density, high cost memory modules.

[0032] A remaining issue 1s the volatility of standard memory modules. Since all RAM is volatile, it does
not lend itself to becoming a long-term storage medium. Embodiments are similar to but differ from non-

volatile RAM (NVRAM) technology, which circumvents the volatility issue found in standard DIMM

devices.

[0033] Embodiments in accordance with the present disclosure use a basic inexpensive x64 motherboard
that can be powered by Intel® or AMD® CPU processors. The motherboard has a modified CME and
BIOS that gives it the intelligence required to be Non-Volatile Memory aware. In addition, the
motherboard provides to each memory module a DC supply voltage (e.g., 1.2v, 1.35v, 1.5v, etc.) that may
be used to charge environmentally-safe low-load, slow-drain capacitors. This design allows for shutdown
state (e.g., loss of power or safe shutdown) to maintain data persistence within the memory module, thus

making the memory module a viable long-term storage device.

[0034] FIG. 2 1llustrates a functional block diagram of a computer system 200 in accordance with an

embodiment of the present disclosure. Functional components already described in FIG. 1 are assigned in
FIG. 2 the same reference number as that shown in FIG. 1. System 200 includes a memory interface 218,
which may be physically coupled to a DIMM slot (e.g., DIMM slot 108b) by use of a connector 208 such

as a Molex® connector. Memory interface 218 communicates with processor 202 through DIMM slot

108b by use of conventional protocols on communication bus 107. Memory interface 218 is coupled
physically and communicatively to RAM storage unit 220. Functions of memory interface 218 include
communicatively coupling RAM storage unit 220 to communication bus 107, monitoring for certain
events like state ot health related to RAM storage unit 220, other hardware events, taking certain actions
based upon detected signals or hardware events, and so forth. Functions of memory interface 218 also
may include simple processing and housekeeping functions such as resolving memory addresses,
reporting memory size, /O control, keeping track of and reporting total power cycles, run time in an hour,
reporting number of DIMMs, reporting status such as ultra capacitor (cap) current voltage, bus ready, last

restore success or failure, device ready, flash status of the NAND area, cap connected, cap charge status,

CA 02926692 2016-04-11

valid image present, DIMM init performed, read registers, and so forth. NAND may be known as a type

of non-volatile IC-based storage technology that does not require power to retain data.

[0035] System 200 further includes a nonvolatile memory 222 (e.g., a CMOS memory) coupled to
processor 202. CMOS memory 222 may include a basic input/output system (BIOS) 224, which helps
manage low-level communication among computer components, and may include storage of computer
code to perform a power-on self-test. Conventionally, a power-on self-test may include a test of the data
integrity of installed RAM. Embodiments in accordance with the present disclosure may include a
modified power-on self-test (as compared to the power-on self-test of BIOS 124), such that the power-on
self-test may skip the test for at least some predetermined memory modules, e.g., if the test would be

incompatible with the nature of data stored in the predetermined memory module.

0036} Embodiments in accordance with the present disclosure also address the RAM volatility
shortcoming of the known art by coupling an energy source 219 with RAM storage unit 220. Energy
source 219 may be incorporated with memory interface 218. Energy source 219 is a source of backup
power, such that if an external power supply to RAM storage unit 220 is lost (e.g., by way of an AC
power failure attecting the entire computing system 200, removal of a battery powering a mobile system
200, motherboard fatlure, etc.), energy source 219 may provide sufficient power in order to maintain

integrity of data stored in RAM storage unit 220.

[0037] A destage process involves transferring data among physical media. Embodiments in accordance
with the present disclosure implement a destage process by use of both hardware and software
components. Hardware components include connector 208, memory interface 218, energy source 219 and
RAM storage unit 220. Connector 208 may include a predetermined pin used to supply operating power

to memory interface 218. Memory interface 218 may include limited processing power (e.g., a small

CPU) to manage detection and notification processes such as for charging status of energy source 219,
anomaly detection, and for LED lights (e.g., green, yellow, red). It a power loss is indicated, a switch may
be activated to mitiate a transter to protected storage of data in memory interface 218 critical to system
operation (e.g., configuration information, system state, etc.). Once destaging is complete, memory
interface 218 may enter a reduced-power mode, and/or power off. Power for performing the destaging

process may be supplied at least in part by energy source 219. Data integrity will be maintained by use of

power from energy source 219.

[0038] If connector 208 1s removed from its respective DIMM slot 108, connector 208 and/or memory
interface 218 may include features to help ensure that 1f/when connector 208 is removed from a

predetermined DIMM slot 108, that connector 208 when reinserted will be reinserted into the same

CA 02926692 2016-04-11

respective DIMM slot 108. These features may act as security features, such that if incorrect reinsertion

occurs, bits stored effectively will be scrambled and rendered unreadable.

[0039] Embodiments in accordance with the present disclosure also provide a restoration procedure. The
restoration procedure is usable for recovery from a complete system failure or power loss. For example, if
a motherboard fails, embodiments enter a low-power mode and repairs of the system (e.g., a motherboard
replacement) or salvaging of components (e.g., removing of connector 208, memory interface 218, energy
source 219 and RAM storage unit 220 for placement in a new unit). The restoration process includes re-
installing memory modules into the same respective slot locations that they occupied in the defective unit.
Memory modules may include physical or logical keying such that the memory modules will be unusable
1f installed in different slot locations within the replacement unit. For example, memory modules installed
in different slot locations may produce scrambled bits (1.€., “bit scrambling”) if an attempt 1s made to read
data from memory modules so inserted. The signature is associated with the module in the slot. So, for
example, if you had a memory module originally installed in the B1 slot, and tried to reinstallit into the

E1 slot, or vice versa, then the machine would not start. Data modules are matched to a slot number. A
rationale for a hard association between memory modules and slot numbers is that attempting to restore
data with memory modules installed in the wrong slots may destroy data, so embodiments detect a wrong

slot condition and prevent data access.

[0040] Backup and restoration procedures may be implemented by way of a module API (i.e., “chip
calls™). API functions may include backup and restore. API functions may be triggered upon occurrence
of certain predetermined events, €.g., an “on-trigger’ API call. For example, an application program may
include a checkpoint, at which the system checks for an occurrence of a condition or an event that may
pose a risk to the data. Upon such a detection, a backup API may be triggered, which may copy certain

critical data, configuration information, metadata, etc., into a protected and nonvolatile memory such as a

NAND memory. Examples of events that may trigger a backup include initiation of a boot process,

recovery from a hardware or software fault, and so forth.

[0041] At system initialization, circuit power 1s supplied and the system components receive power.
Energy source 219 will begin to recharge. Status indicators (e.g., LEDs ot various colors such as green,
yellow, red, etc.) may be provided for the visual benetit of users. Status indicators may indicate progress
at a first stage (e.g., performing a checksum). If a problem may be indicated, embodiments pay proceed to
an alternate and/or more comprehensive procedure, €.g., checking the data image to carefully compare
every bit and byte. Using conventional methods, this may be a very slow due to NAND speed limits, e.g.,

a ten-minute boot. Fault conditions may be detected and cause a system halt, module missing, module

CA 02926692 2016-04-11

mismatch, etc. As noted earlier, if memory interface 218 and RAM storage unit 220 are not replaced
correctly (e.g., wrong slot or wrong order), or are installed on a wrong system (1.¢., one without required
bitmarkers), data cannot be recovered. This behavior 1s needed 1n order to provide heavy security. A

separate indicator may indicate when an API function 1s complete.

[0042] Voltage and power flow (e.g., 1.2v, 1.35v, 1.5v, etc.) 1s applied through connector 208 to a
designated DIMM pin or alternate element, which in turn under normal operation energizes energy source

219. Thermal design of memory interface 218 may include an element to cool energy source 219, e.g., by

use of a heat sink.

[0043] Energy source 219 may have sufficient energy to maintain data integrity for a period of time of at
least several months. Energy source 219 may be a large-capacitance capacitor known as a “super cap”,
e.g., at least 600 Farads. Alternatively, energy source 219 may be a battery. However, a battery-based
energy source such as a lithium battery 1s prone to catastrophic failure (e.g., arcing, fire) if damaged or 1n
an internal short-circuit develops. Energy source 219 may be continuously charged under normal
conditions by the main power to system 200 when energy source 219 1s not supplying power to RAM

storage unit 220.

0044] System state may be restored, so long as system state 1s stored in RAM storage unit 220. In some
embodiments, a separate backup energy source also may provide energy to other portions of a computing
system (e.g., a processor and cache), such that a system state or other additional states may be preserved
during a power outage. When the external power supply is restored, the computing system may be
restarted or restored from a persistent or stateful state. In some embodiments, the system may enter or
exist in a state of reduced power consumption while system state is preserved by the backup energy

SOUrcCce,

[0045] Functions of memory interface 218 may further include monitoring a state of health of energy
source 219, e.g., a voltage level since voltage levels may decay over time or in advance of a failure. Such
a state of health may be communicated back to a monitoring system via communication bus 107. Memory

interface 218 and RAM storage unit 220 may operate without requiring modification to cache memory

103.

[0046] System 200 further includes operating system 204, which 1s adapted to store and retrieve data to /
from RAM storage unit 220. Operating system 204 includes data adaptation module 211 as part of a novel
driver interface. Data adaptation module 211 executes bit generator software, which provides the

functions of data adaptation module 211 described herein. The bit generation software may be loaded 1n

10

CA 02926692 2016-04-11

real-time during the initialization process of processor 202. Conventional RAM memory (e.g., memory
coupled to DIMM slot 108a) and/or cache memory 103 may be used to support functions of data
adaptation module 211. When storing data, data adaptation module 211 adapts data to be stored in RAM

storage unit 220 by encoding raw data into encoded data, and then storing the encoded data into RAM
storage unit 220. Typically, for raw data of a predetermined size (i.e., a predetermined number of raw data
bits), the encoded data is smaller, i.¢., the encoded data may be represented by a smaller number of
encoded data bits than the number of raw data bits. Data adaptation module 211 may store into RAM
storage unit 220 an amount of data that, if represented in its raw form, would exceed the storage capacity
of RAM storage unit 220. An effective storage capacity of RAM storage unit 220, e.g., as measured by an
equivalent number of raw data bits, may exceed a physical storage capacity of RAM storage unit 220.
Processor 202 may utilize conventional RAM memory and/or cache memory 103 in order to support

operation of processor 202 for conventional functions, e.g., as a server.

[0047] The transter of encoded data by data adaptation module 211 into RAM storage unit 220 may take
place at a transfer rate that, if represented by the transfer of the equivalent raw data bits, would exceed the
maximum data transter rate ot the processor, RAM storage unit 220, and the communication bus linking

the processor to RAM storage unit 220,

[0048] Similarly, when retrieving stored data from RAM storage unit 220, data adaptation module 211
adapts data read from RAM storage unit 220 by decoding encoded data into raw data, and then providing

the raw data for other uses, e.g., by processor 202 or application programs running on processor 202.

[0049] Data adaptation module 211 adapts the data at a sufficiently high speed such that resources spent
encoding data (e.g., processing time by processor 202) is less than the resources saved (e.g., transmission

time on communication bus 107) by transmission of encoded data rather than raw data to RAM storage

unit 220. Similarly, the processing time spent decoding data is less than the time saving resulting from

transmission of encoded data rather than raw data from RAM storage unit 220.

[0050] Embodiments in accordance with the present disclosure, when in production, may run a
specialized thin OS in data adaptation module 211 that enables the platform to be a hybrid compute and
storage system. The OS will also offer an embedded server virtualization platform to allow several virtual
machines to run simultaneously on the platform. One of many examples of these would be a single

system running ten to fifteen or more Microsoft Windows 1nstances independently and simultaneously, all

without ever experiencing an I/O lag that otherwise would be inherent to conventional known virtual

compute platforms.

11

CA 02926692 2016-04-28

[0051] Embodiments in accordance with the present disclosure may also be used when running extreme
high-performance transaction processing found in complex database systems. Such applications enable

the possibility of running a large portion of, or the entirety of, the system database purely in RAM.

[0052] Preliminary testing and/or simulation of embodiments indicate that a properly configured system

could achieve upwards of 4 TB of extreme high speed RAM storage with as little 48 GB of NVRAM.

[0053] Processes to encode raw data, and to decode processed data to produce raw data, as described
herein may be performed by invoking modules within data adaptation module 211. These modules may

be invoked by operating system 204, or another application program executing on processor 202.

[0054] One embodiment of encoding of raw data is described in U.S. Patent Application Publication No.
2014/0223118 to Ignomirello (*the *118 Publication™), which is commonly assigned with the present

application.

[0055] Other embodiments may encode raw data by use of a Bit marker method, such as described in
the 118 Publication, which enables the effective storage capacity of RAM storage unit 220 to become
more elastic, and allowing the effective storage capacity and density to grow very quickly. Storage
capacity may be elastic in the sense that an equivalent amount of raw data that can be stored is not a fixed
value, but may change depending upon characteristics of the raw data, e.g., how well the raw data
matches to the Bit markers. The raw data capacity is not controlled or known in advance by the operating
system or by lower-level software such as the basic input / output system (BIOS). Embodiments may
reduce the need for RAM chips of very high physical capacity, and concomitant very dense nanometer
feature design, thus allowing for usage of lower-density and/or older generations of RAM chips for RAM
storage unit 220.

[0056] A Bit marker may be derived from, or based at least in part from, a characteristic of the raw data,
or a characteristic derived from the raw data. The characteristic of the raw data may be, for example, the
type of raw data (e.g., an audio file, a graphics file, a video file, a ZIP file, a Word file, a PDF, etc.), a file
format (e.g., for graphics files, bitmapped, GIF, TIF, JPEG, etc.), content of the file (e.g., for an MP3
audio file, whether it 1s an MP3 of classical music, jazz, rap, rock music, spoken words such as an audio
book, etc.), attributes of the file (e.g., for an MP3 audio file, the bit rate, mono or stereo, metadata, total
length, encoder used, dynamic range, time length, etc.), statistics of the file (e.g., size, age, date modified,
probability distribution of bytes or sequences of bytes within the file, etc.), and so forth. For example, an
MP3 tile may contain certain raw data bits (i.e., sequences of bytes) more often than a different type of

file (e.g., a JPG file), therefore knowledge that a file is an MP3 file may affect the Bit markers selected

12

CA 02926692 2016-04-11

and the raw data bits that each Bit marker represents. Data adaptation module 211 may adaptively change,
over time or over amount of raw data processed, the Bit markers used to represent the raw data in
response to changes in characteristics of the raw data, e.g., if the characteristics of the raw data become

better known or are not stationary in a statistical sense.

[0057] A Bit marker may represent a vector of raw data, 1.e., a predetermined sequence of raw data bits.
The vector of raw data also may be referred to as a data segment. Different Bit markers may represent
vectors of different length. Raw data may be decomposed into vectors of raw data, and the vectors then
mapped to a Bit marker. In some embodiments, concatenated vectors may represent the raw data. In other
embodiments, vectors may overlap such that a combination of vectors (e.g., Boolean AND, OR, XOR,
NAND, etc.) may represent the raw data. The raw data may be represented by a plurality of layers (e.g.,
for a graphics file, separate layers for each color component such: as R, G, B; or C, Y, M, K; or other
logical layers, etc.), and Bit markers may be used to represent separately raw data bits within each color
layer. In some embodiments, the raw data may be represented as a multidimensional data structure (e.g., a
2-D array, a 3-D cube, an N-dimensional structure, etc.), and a vector may represent a contiguous portion
of the multidimensional data structure (e.g., a rectangular portion of a 2-D array of raw data). A bit
marker may be viewed as a translational function that translates between a vector pointer and the raw

vector data itself.

[0058] In some embodiments, knowledge of a Bit marker (e.g., the characteristic derived from the raw
data), may be sufficient to generate model vectors to match to the raw data. For example, suppose that a
set of raw bits (e.g., a file or information received from a communication link) represent video streaming
media. It may be surmised, deduced, or otherwise configured that the raw bits represent video streaming
media having particular characteristics (e.g., frame rate, resolution, pixel dimensions, color palette, etc.),

and a Bit marker may be selected to indicate that the data 1s video streaming media of those

characteristics. Knowledge that the Bit marker represents video streaming media of those characteristics
may be used to generate model vectors predictively matched to the characteristics of video streaming
media, e.g., frame rate, resolution, pixel dimensions, color palette, etc. A benefit of such an embodiment
is that once the Bit marker 1s known, encoding can be accomplished on the fly, e.g., by processing
streaming media in real time. For the processing a file (e.g., an MP3 file, a DVD video disk, etc.), the
processing may be accomplished without needing to read in the entire file (e.g., on a section-by-section

basis), and needing only a buffer of a relatively modest size. Encoded data may be stored to RAM storage

unit 220 as 1t 1s produced.

13

CA 02926692 2016-04-11

[0059] In some embodiments, an object may be a compound object, 1.€., an object of one file type and
yet encompass another file type. For example, an email object may include within it an embedded object

such as an attached PDF, an attached ZIP file, an attached Word document, another email object, etc.
Knowledge that an object 1s a compound object may be useful to help select vectors and Bit markers

appropriate for the embedded type of object, and for separate portions of the compound object.

[0060] In some embodiments, raw data may be converted from a one-dimensional structure to a
multidimensional structure by analyzing the raw data to determine useful boundaries between various
sections prior to partitioning. The various sections after partitioning form the multidimensional structure.
[n some embodiments, the analysis may take into account available processor cache size, €.g., in order to

help ensure that the analysis can be performed quickly.

[(0061] In some embodiments, a Bit marker may represent a nucleus (i.e., a relatively small set of seed
raw data bits, a starting value, a starting pattern, etc.) together with a replication rule for how to produce
additional data from the seed, ¢.g., to expand the nucleus to an arbitrarily large number of raw data bits.
The rule for producing additional data may include, e.g., replication a predetermined number of times or
to a predetermined length, a fractal-based replication, run length replication, and so forth. Such a
representation may be useful for a fractal-based mapping of raw data bits to a fractal pattern rendered at a
particular size, for example, if a portion of a 2-D multidimensional raw data structure could be
represented by a fractal pattern. As used by embodiments, fractal patterns for data encoding and decoding

may exist for raw data in other dimensionality, e.g., 1-D (a linear pattern), 3-D, and so forth.

[0062] In some embodiments, a Bit marker may represent one or more DNA submarkers, together with a
rule for combining the DNA submarkers. For example, a Bit marker may represent a vector V4

concatenated with the XOR product of V; and V,. The resulting Bit marker then may act as a submarker

for combining with other submarkers to form another marker.

[0063] Initially, vectors and their corresponding Bit markers may be stored 1n a vector field. The vector
field 1s normally stored in a separate memory, apart from RAM storage unit 220. For example, if RAM
storage unit 220 is coupled to DIMM socket 108b, then the vector field may be stored 1n a conventional

DIMM memory coupled to DIMM socket 108a, or in cache memory 103, and so forth. A group of raw
data bits may be transmitted to data adaptation module 211, which then maps or correlates the raw data
bits or a portion thereof to vectors in the vector field. Corresponding Bit markers then may be retrieved
from the vector field and stored in RAM storage unit 220 1n place of the equivalent raw data bits. Bit

markers may be reused or “amplified”, such that if the raw data includes multiple instances of raw data

bits, the corresponding Bit marker may be stored in RAM storage unit 220 with an indication that it is

14

CA 02926692 2016-04-11

used for the multiple instances of raw data bytes. Amplification refers to a ratio between the size of a bit
marker (e.g., as measured by the number of bits or bytes) and the size of the equivalent raw data bits (or

bytes) replaced by instances of the usage of the bit marker.

[0064] In some embodiments, RAM storage unit 220 may be logically partitioned, such that one portion
of RAM storage unit 220 (e.g., one physically addressable portion) may store Bit markers, while another
portion of RAM storage unit 220 may operate as traditional memory. In some embodiments, RAM
storage unit 220 coupled to one of the DIMM slots (e.g., DIMM slot 108b) may operate to store Bit
markers, and a RAM module coupled to another DIMM slot (e.g., DIMM slot 108a) may operate as

conventional memory.

[0065] Other embodiments in accordance with the present disclosure include a bit generator which
encodes long form data into short form bit Markers during data population and decodes short form bit

Markers into long form data on the fly when requested.

[0066] In some embodiments, one or more patterns may be discerned in a set of raw data. The pattern
may be, for example, a periodicity in the raw bits when the raw bits are expressed as a linear series of “0”
and “1”. Patterns may also be in the form of a periodicity in the raw data when the raw data 1s expressed
as a linear series of bytes, or a multidimensional periodicity when the raw data 1s expressed as a
multidimensional set of raw data. The periodicity may be expressed as a frequency of a predetermined
pattern in the raw data. Characteristics of the periodicity may include a frequency and a phase.
Multidimensional data may be characterized independently in each dimension. A period (or conversely a
frequency) may be expressed as raw bits per repeating cycle of the predetermined pattern, e.g., 256 bits
per cycle, 65,536 bits per cycle, etc. A phase may indicate a starting point of the pattern with respect to a

reference copy of the predetermined pattern (e.g., a dictionary copy). Embodiments may use the

frequency and phase characteristics as identifying characteristics (e.g., a Bit marker, a fingerprint, etc.).

[0067] In some embodiments, a periodicity in a one-dimensional raw data may be modeled or analyzed
as a multidimensional raw data. For example, a data trace representing an electrocardiogram includes an
inherent periodicity represented by the heartbeat rate. The periodicity is not perfect, because the
frequency (e.g., beats per minute) may change over time, and the exact shape of the electrocardiogram
may change from one beat to another. Nevertheless, the electrocardiogram trace may be modeled as a
multidimensional structure, with the electrocardiogram for one beat (e.g., a first beat, or a reference beat,
or an ideal beat, etc.) representing one plane (i.e., two axes) of voltage versus time, and a third dimension
representing ordinal beat number. Data may be encoded in part by analyzing the differences in the third

dimension, after accounting for changes in factors such as frequency noted above.

15

CA 02926692 2016-04-11

[0068] In some embodiments, the pattern may represent a linear combination of one or more basis
functions or basis vectors. In mathematics, a basis function is an element of a particular basis for a
function space. Every continuous function in the function space can be represented as a linear
combination of basis functions. Similarly, every vector in a vector space can be represented as a linear
combination of basis vectors. Basis vectors are known as a set of linearly independent vectors in a vector

space, and every other vector in the vector space 1s linearly dependent on these vectors.

[0069] For example, the raw data may be decomposed into a combination ot basis vectors. Each basis
vector is a measurable binary pattern. Preferably, a basis vector should be very long compared to a Bit
marker (i.e., a pointer to a basis vector in a vector map) used to reference the basis vector, but the basis
vector may be shorter than the entire raw data. The representation of raw data as basts vectors may
include one or more data pairs of (a) a Bit marker for a basis vector and (b) a starting position in the raw

data of the basis vector. A gene pool is related to the vector map, in that the gene pool may include

information regarding how to reconstruct raw data from vectors. For example, a gene pool may indicate a

type of file to be reconstructed (e.g., an MP3 file), knowledge of which would be usetul in reconstructing
the file. Analogizing to a jigsaw puzzle, vectors may represent individual pieces of a jigsaw puzzle, and a

gene pool may represent a photo that the entire jigsaw puzzle should look like when completed.

[0070] In some embodiments, raw data not represented by a basis vector may be deemed to be a

predetermined value, e.g., a 0x00 or OXFF byte. This may be useful if the raw data has a large number of

consecutive bits or bytes of the predetermined value, e.g., a large number of consecutive 0x00 bytes.

[0071] In some embodiments, raw data may be decomposed into basis vectors that may at least partially

overlap. Overlapping basis vectors may be combined by default as a Boolean OR, but other Boolean

functions may be used (e.g., AND, XOR, NAND, etc.).

(0072] In some embodiments, the vector dictionary may be adaptive to changes in statistics of the raw

data. For example, if the type of information being stored changes (e.g., from video to MP3), the statistics

of the raw data may also change. Such changes may mean that certain basis vectors are used less often,

and other basis vectors may be used more often. Embodiments may recognize changes 1n usage and

update a basis dictionary appropriately, €.g., by culling some basts vectors and adding other basis vectors.

The decoder will be aware of changes in the vector dictionary, e.g., by inclusion of a dictionary update.

[0073] In some embodiments, entries in the vector dictionary may have different, but fixed lengths. The
lengths may depend upon statistics of the raw data. For example, Bit markers may have different lengths,

such that Bit markers corresponding to more commonly-occurring vectors in the raw data may be shorter

16

CA 02926692 2016-04-11

(1.e., the Bit marker comprises fewer bits) than Bit markers corresponding to less commonly-occurring
vectors in the raw data. Alternatively, Bit markers may have equal lengths, but some Bit markers may
correspond to a longer but more commonly-occurring vector ot raw data than other Bit markers that

represent shorter but less commonly-occurring vector of raw data.

[0074] In some embodiments, Bit markers may be represented in a tree and leaf paradigm, which may be

inherently hierarchical. In this paradigm, each Bit marker 1s represented by a leaf, with a size and/or

position of the leaf in the tree corresponding to a characteristic ot the Bit marker 1t represents. For

example, a more commonly-occurring Bit marker may be represented as a smaller leaf or a leaf closer to
the root of the tree. Conversely, a less commonly-occurring Bit marker may be represented as a larger leat
or a leaf farther from the root of the tree. The goal may be to use leaves that are as small as possible, or to

use leaves as close to the root as possible, or to use leaves that tend to minimize a mathematical function,

such as a product of the size of the leaf times the number of times that the leat 1s used.

[0075] Decoding data involves reading encoded data from RAM storage unit 220, and then performing

functions to reverse the encoding processes. Decoding functions may be provided by modules within data

adaptation module 211. For example, to restore data, a block of encoded data may be read from RAM
storage unit 220. The block of encoded data may be temporarily stored in a high speed memory while
decoding processes are performed. Decoding processes are provided by modules within data adaptation

module 211. These modules may be called by operating system 204.

[0076] More particularly, when retrieving data from RAM storage unit 220 and decoding 1t, data
adaptation module 211 adapts data to be stored in RAM storage unit 220 by decoding raw data into
decoded data. Conventional RAM memory (e.g., memory coupled to DIMM slot 108a) and/or cache

memory 103 may be used to support decoding functions of data adaptation module 211.

[0077] FIG. 3A illustrates an encoding process 300 in accordance with an embodiment of the present

disclosure. Process 300 may be performed by operating system 204 and data adaptation module 211.

(0078] Process 300 begins at step 301, at which a block of raw data to be stored 1s received from an

application program that intends to store the raw data. The raw data may be in the form of a file, a

streaming media, a fixed-size or variable-size block of data, and so forth.

[0079] Next, process 300 transitions to step 303, at which portions of the raw data received 1n step 301
may be mapped or matched to candidate vectors of raw data. The candidate vectors may be stored as a
table of (marker, vector) pairs in conventional memory. The goal is to represent each bit or byte in the

raw data by at least one vector. Certain raw data bytes such as 0x00 or OxFT may be deemed to be a

17

CA 02926692 2016-04-11

detault value, and for any raw data bytes equal to the default value, it is optional to represent the default

bytes with a vector.

[0080] Next, process 300 transitions to step 305, at which vectors determined in step 303 may be mapped

to a respective bit marker from the table of (marker, vector) pairs. The bit marker is a short way to refer to

the associated vector.

[0081] Next, process 300 transitions to step 307, at which the bit marker from the table of (marker,

vector) pairs 1s stored in memory, such as RAM storage unit 220.

[0082] FIG. 3B illustrates a decoding process 350 in accordance with an embodiment of the present

disclosure. Process 350 may be performed by operating system 204 and data adaptation module 211.

[0083] Process 350 begins at step 351, at which a block of encoded data to be decoded 1s read from a
memory, such as RAM storage unit 220. Addresses may be managed by virtual address adjustment

methods and tables, as known to persons of skill in the art.

[0084] Next, process 350 transitions to step 353, at which bit markers are extracted from the encoded

data.

[0085] Next, process 350 transitions to step 355, at which the extracted bit markers from step 353 are

searched for in the table of (marker, vector) pairs.

[0086] Next, process 350 transitions to step 357, at which a raw data vector 1s extracted from an entry in

the table of (marker, vector) pairs, corresponding to the extracted bit marker from step 353.

[0087] Next, process 350 transitions to step 359, at which the extracted raw data vectors from step 357

are combined to form reconstructed decoded data. If the combined raw data vectors do not cover all

addresses within an entire expected address range of the reconstructed decoded data, the uncovered

addresses may be deemed to take on a default value in the decoded data, e.g., 0x00 or OxFF bytes.

[0088] When analyzing the I/O capability, conventional systems may allow for continuous I/O speeds up

to 57.6 GB per second. In contrast, for a system in accordance with an embodiment of the present
disclosure, the system tested with Intel Ivy Bridge 2697 v2 processors, embodiments may have 24
physical process cores and up to 40 hyper threaded cores, 6144 KB of L.2 processor cache, 60 MB of L3
processor cache all at 5.4 GHz with a boost capability of 7.6 GHz. Comparing performance of the

embodiments vs. any other Ivy Bridge 2697 v2 server shows an /O increase of 76.8X {faster.

18

CA 02926692 2016-04-11

Commensurate performance gains are achievable with other computing environments, including Haswell

motherboard architectures and DDR4 memory.

[0089] While the foregoing is directed to embodiments of the present invention, other and further
embodiments of the present invention may be devised without departing from the basic scope thereof. It
1s understood that various embodiments described herein may be utilized in combination with any other
embodiment described, without departing from the scope contained herein. Further, the foregoing
description 1s not intended to be exhaustive or to limit the invention to the precise form disclosed.
Modifications and variations are possible in light of the above teachings or may be acquired from practice
of the invention. Certain exemplary embodiments may be identified by use of an open-ended list that
includes wording to indicate that the list items are representative of the embodiments and that the list is
not itended to represent a closed list exclusive of further embodiments. Such wording may include

2% ¢

“e.g.,” “etc.,” “such as,” “for example,” “and so forth,” “and the like,” etc., and other wording as will be

apparent from the surrounding context.

[0090] No element, act, or instruction used in the description of the present application should be
construed as critical or essential to the invention unless explicitly described as such. Also, as used herein,
the article "a" 1s intended to include one or more items. Where only one item is intended, the term "one"
or similar language 1s used. Further, the terms "any of" followed by a listing of a plurality of items and/or
a plurality of categories of items, as used herein, are intended to include "any of," "any combination of,"
"any multiple ot," and/or "any combination of multiples of" the items and/or the categories of items,

individually or in conjunction with other items and/or other categories of items.

[0091] Moreover, the claims should not be read as limited to the described order or elements unless

stated to that effect. In addition, use of the term "means” in any claim 1s intended to invoke 35 U.S.C.

§112, 9 6, and any claim without the word "means' is not so intended.

19

10

15

20

25

CA 02926692 2016-04-28

| claim:

1. An encoding method, comprising:
receiving a block of uncoded data;
decomposing the block of uncoded data into a plurality of data vectors;
deriving a bit marker from a characteristic of the uncoded data;
mapping each of the plurality of data vectors to a respective derived bit
marker; and
storing the derived bit marker in a memory to produce an encoded

representation of the uncoded data.

2. The encoding method of claim 1, wherein the block of uncoded data

represents a compound object.

3. The encoding method of claim 1, wherein the block of uncoded data

represents a multi-dimensional data object.

4. A decoding method, comprising:

retrieving a plurality of bit markers from a memory;

mapping bit markers in the plurality of bit markers to respective data
vectors;

combining the respective data vectors with a block of uncoded data to
produce a composite uncoded data block; and

combining the composite uncoded data block with default data to produce
the decoded data.

5. The decoding method of claim 4, wherein the decoded data represents a

compound object.

20

10

15

20

29

30

CA 02926692 2016-04-28

6. The decoding method of claim 4, wherein the decoded data represents a

multi-dimensional data object.

7. A system to encode data, comprising:
a data interface to receive a block of uncoded data; and
a processor coupled to a memory, the processor configured:
to decompose the block of uncoded data into a plurality of data vectors;
to derive a plurality of bit markers from a characteristic of the uncoded data;
to map each of the plurality of data vectors to one of the plurality of bit
markers; and
to store the plurality of bit markers in the memory to produce an encoded

representation of the uncoded data.

8. The system of claim 7, wherein the block of uncoded data represents a

compound object.

9. The system of claim 7, wherein the block of uncoded data represents a

multi-dimensional data object.

10. The system of claim 7, wherein the bit marker comprises a seed value and

a replication rule.

11. The system of claim 7, wherein the bit marker comprises plurality of other

bit markers and a combination rule.

12. The system of claim 7, wherein said data vector comprises a fractalized

pattern.

13. The system of claim 7, wherein the block of uncoded data represents a

compound object.

21

10

15

20

25

30

CA 02926692 2016-04-28

14. The system of claim 7, wherein the block of uncoded data represents a

muliti-dimensional data object.

15. The system of claim 7, wherein the bit marker comprises a seed value and

a replication rule.

16. The system of claim 7, wherein the bit marker comprises plurality of other

bit markers and a combination rule.

17. The system of claim 7, wherein said data vector comprises a fractalized

pattern.

18. The system of claim 7, wherein the block of uncoded data represents a

compound object.

19. The system of claim 7, wherein the block of uncoded data represents a

muilti-dimensional data object.

20. The system of claim 7, wherein the bit marker comprises a seed value and

a replication rule.

21. The system of claim 7, wherein the bit marker comprises plurality of other

bit markers and a combination rule.

22. The system of claim 7, wherein said data vector comprises a fractalized

pattern.

23. A system to decode data comprising:

a data interface to retrieve a plurality of bit markers from a memory; and

22

10

15

20

25

CA 02926692 2016-04-28

a processor coupled to a memory, the processor configured:

to map bit markers in the plurality of bit markers to respective data vectors;

to combine the respective data vectors with a block of uncoded data to
produce a composite uncoded data block; and

to produce the uncoded composite data block as the decoded data,
wherein the bit marker comprises plurality of other bit markers and a combination

rule.

24. An encoding method, comprising:
receiving a block of uncoded data,;
decomposing the block of uncoded data into default data and non-default
data;
mapping the non-default data to a plurality of data vectors;
mapping each of the plurality of data vectors to a respective bit marker; and
storing the bit marker in a memory to produce an encoded representation of

the uncoded data.

25. The encoding method of claim 24, wherein the block of uncoded data

represents a compound object.

26. The encoding method of claim 24, wherein the block of uncoded data

represents a multi-dimensional data object.

27. An encoding method, comprising:
receiving a block of uncoded data;

decomposing the block of uncoded data into a plurality of data vectors;
mapping each of the plurality of data vectors to a respective bit marker; and

storing the bit marker in a memory to produce an encoded representation of

the uncoded data,

23

10

15

20

25

CA 02926692 2016-04-28

wherein at least some of the plurality of data vectors overlap one another when

representing the block of uncoded data.

28. The encoding method of claim 27, wherein the block of uncoded data

represents a compound object.

29. The encoding method of claim 27, wherein the block of uncoded data

represents a multi-dimensional data object.

30. An encoding method, comprising:
receiving a block of uncoded data;
decomposing the block of uncoded data into a plurality of data vectors;
mapping each of the plurality of data vectors to a respective bit marker; and

storing the bit marker in a memory to produce an encoded representation of

the uncoded data,

wherein the bit marker comprises a seed value and a replication rule.

31. The encoding method of claim 30, wherein the block of uncoded data

represents a compound object.

32. The encoding method of claim 30, wherein the block of uncoded data

represents a multi-dimensional data object.

33. An encoding method, comprising:
receiving a block of uncoded data;

decomposing the block of uncoded data into a plurality of data vectors;
mapping each of the plurality of data vectors to a respective bit marker; and

storing the bit marker in a memory to produce an encoded representation of

the uncoded data,

24

10

15

20

25

30

CA 02926692 2016-04-28

wherein the bit marker comprises plurality of other bit markers and a combination

rule.

34. The encoding method of claim 33, wherein the block of uncoded data

represents a compound object.

35. The encoding method of claim 33, wherein the block of uncoded data

represents a multi-dimensional data object.

36. An encoding method, comprising:
receiving a block of uncoded data;
decomposing the block of uncoded data into a plurality of data vectors;
mapping each of the plurality of data vectors to a respective bit marker; and

storing the bit marker in a memory to produce an encoded representation of

the uncoded data,

wherein said data vector comprises a fractalized pattern.

37. The encoding method of claim 36, wherein the block of uncoded data

represents a compound object.

38. The encoding method of claim 36, wherein the block of uncoded data

represents a multi-dimensional data object.

39. A decoding method, comprising:
retrieving a plurality of bit markers from a memory;

mapping bit markers in the plurality of bit markers to respective data

vectors:

combining the respective data vectors with a block of uncoded data to

produce a composite uncoded data block; and

producing the uncoded composite data block as the decoded data,

25

10

15

20

25

30

CA 02926692 2016-04-28

wherein at least some of the plurality of data vectors overlap one another when

forming the decoded data.

40. The decoding method of claim 39, wherein the decoded data represents a

compound object.

41. The decoding method of claim 39, wherein the decoded data represents a

multi-dimensional data object.

42. A decoding method, comprising:

retrieving a plurality of bit markers from a memory;

mapping bit markers in the plurality of bit markers to respective data
vectors;

combining the respective data vectors with a block of uncoded data to
produce a composite uncoded data block; and

producing the uncoded composite data block as the decoded data,

wherein a bit marker comprises a seed value and a replication rule.

43. The decoding method of claim 42, wherein the decoded data represents a

compound object.

44. The decoding method of claim 42, wherein the decoded data represents a

multi-dimensional data object.

45. A decoding method, comprising:

retrieving a plurality of bit markers from a memory;

mapping bit markers in the plurality of bit markers to respective data
vectors;

combining the respective data vectors with a block of uncoded data to

produce a composite uncoded data block; and

26

10

15

20

25

30

CA 02926692 2016-04-28

producing the uncoded composite data block as the decoded data,

wherein a bit marker comprises a plurality of other bit markers and a combination

rule.

46. The decoding method of claim 45, wherein the decoded data represents a

compound object.

47. The decoding method of claim 45, wherein the decoded data represents a

multi-dimensional data object.

48. A decoding method, comprising:

retrieving a plurality of bit markers from a memory;

mapping bit markers in the plurality of bit markers to respective data
vectors,

combining the respective data vectors with a block of uncoded data to
produce a composite uncoded data block; and

producing the uncoded composite data block as the decoded data, wherein

said data vector comprises a fractalized pattern.

49. The decoding method of claim 48, wherein the decoded data represents a

compound object.

50. The decoding method of claim 48, wherein the decoded data represents a

multi-dimensional data object.

51. A system t{o encode data, comprising:
a data interface to receive a block of uncoded data; and
a processor coupled to a memory, the processor configured:
to decompose the block of uncoded data into default data and non-default

data;

27

10

15

20

25

30

CA 02926692 2016-04-28

to map the non-default data to a plurality of data vectors;
to map each of the plurality of data vectors to a respective bit marker; and
to store the respective bit marker in the memory to produce an encoded

representation of the uncoded data.

52. A system to encode data, comprising:
a data interface to receive a block of uncoded data: and
a processor coupled to a memory, the processor configured:
to decompose the block of uncoded data into a plurality of data vectors;
to map each of the plurality of data vectors to a respective bit marker; and
to store the respective bit marker in the memory to produce an encoded
representation of the uncoded data,
wherein at least some of the plurality of data vectors overlap one another when

representing the block of uncoded data.

53. A system to decode data comprising:
a data interface to retrieve a plurality of bit markers from a memory; and
a processor coupled to a memory, the processor configured:
to map bit markers in the plurality of bit markers to respective data vectors;
to combine the respective data vectors with a block of uncoded data to
produce a composite uncoded data block; and

to produce the uncoded composite data block as the decoded data,

wherein said data vector comprises a fractalized pattern.

54. A system to decode data comprising:

a data interface to retrieve a plurality of bit markers from a memory; and
a processor coupled to a memory, the processor configured:

to map bit markers in the plurality of bit markers to respective data vectors;
to combine the respective data vectors with a block of uncoded data to

produce a composite uncoded data block; and

28

CA 02926692 2016-04-28

to produce the uncoded composite data block as the decoded data,
wherein at least some of the plurality of data vectors overlap one another when

forming the decoded data.

29

Video card

USB
131

CA 02926692 2016-04-11

105
109

1/3

FIG. 1 100
r—=—=—==-====-=]
! |
l l\/* 110
I |
l |
l |
l |
! I
I 1| Operating Sys. !
I 104]
! |
I |
| I
I CMOS 122
I
| 8108 124| |
! l
| , DIMM sockets
I I
I I

Memory
Controller

@ Ethernet Audio
133 134

107

Other

PCI
135

108a
108b
108c
108d

Video card

USB
131

CA 02926692 2016-04-11
2/3

Processor

Cache memory

103

Operating System
204

I

!

|

!

!

I

I

I

!

I

I Data adaptation
| module 211
I
!
I
I
]
I
I
I
I
!
I

CMOS 222

BIOS 224

105

DIMM sockets

109
Memory

Controlle
1 10

—

. .
. .

107

Memory interface 218

Energy source 219
Controller Hub
114 RAM storage unit 220

Cz > Gt
Ethernet pC)|
133 135

108a
108b
108¢c
108d

CA 02926692 2016-04-11

Receive block of raw

data to be encoded
301

Match raw data in

block to vectors
03

dhnl—

Map each vector to
a bit marker from

(marker, vector) table
305

Store bit marker in
memory

307

3/3

Read block of

encoded data
351

Extract bit markers

from encoded data
353

Search for bit marker
In (marker, vector)
table 355

Extract raw data
vector from (marker,
vector) table 357

Combine data vectors

To form decoded data
399

Video card

11

USB
31

109

Disk
drive

Processor

202

Cache memory

103

———

Operating System
204

module

Data adaptation
211

-———-—————--——--_—-—

Memory
Controlle

Controller Hub

— e -

105

DIMM sockets

Memory interface 218

114

Abh—

Ethernet
133

Audio
134

Energy source 219

RAM storage unit 220

QOther

PCI
135

108a
108b
108¢
108d

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - abstract drawing

