ABSTRACT

There is disclosed an improved turnstile rotor construction in which vertical rows of rotor arms are carried on and associated with corresponding plates, which plates are assembled in edge-adjacent-to-edge-adjacent relationship to provide the center mounting post of the rotor. All connector components for connecting the plates together, removably connecting the arms to the plates, and for supporting the rotor for rotation about a fixed vertical axis are disposed interiorly of the mounting post.

11 Claims, 8 Drawing Figures
TURNSTILE WITH READILY DISMOUNTABLE ARMS

BACKGROUND OF THE INVENTION

Turnstiles commonly are used for the purposes of controlling fee admission to various types of public and private facilities such as athletic stadiums, transit systems and the like. Turnstiles also can be employed for the purpose of crowd control to funnel large masses of people through entrances and/or exits at such facilities in orderly fashion. Particularly effective to these ends is the type of turnstile referred to in the art as a full strike turnstile unit. The full strike turnstile generally is situated at a suitable entrance opening in the facility to be served thereby and includes a cage structure provided at one side with a barrier wall such as an arcuate configured sheet member, or an assembly of vertical and horizontal intersecting members laid out in an arcuately shaped pattern. The turnstile also includes a turnstile rotor which includes a central vertically disposed mounting post receptively carrying a number of vertically disposed rows of spaced arms which extend radially of the mounting post with the spacing between adjacent rows of arms being sufficient for one person to walk through the turnstile gate when the rotor is rotated. The turnstile also includes at the opposite side of the cage structure a vertical row of fixed arms which are disposed such that the arms on the rotor pass through the spaces between adjacent fixed arms when the turnstile rotor is rotated. For purposes of safety as well as elimination of undue down time periods it is necessary to replace a rotor arm, it is desirable that the rotor arms be readily dismountable from the mounting post. For example, and particularly where a coin or token operated mechanism control rotation of the turnstile rotor and in instances where such mechanisms jams, it is usually necessary to remove certain of the arms at least from one vertical row of such arms on the turnstile rotor in order to release a person who may be trapped in the jammed turnstile unit. As mentioned, it is desirable this be done as quickly and effectively as possible. Furthermore, due to the nature of the service to which turnstiles are subjected, the arm mountings on the turnstile rotor in time wear and such arms can become wobbly and deflect to the point where they may not clear through the space between the fixed arms so that is thus becomes necessary periodically to replace at least certain of the arms on the rotor.

Various forms of turnstile construction are known which provide for effecting rotor replacement rapidly and with reasonable expedience. For example, U.S. Pat. Nos. 2,170,192 and 3,318,045 described the employment of a mounting bracket of special construction which can be used in conjunction with a turnstile rotor to permit removal of single arms from a row of such arms when replacement must be effected. However, the brackets disclosed in the patents aforesaid result in a turnstile rotor construction in which access to the brackets and fastener devices associated therewith are from the outside of the rotor, making it relatively easy for vandals and others intent on malicious purpose to unauthorizedly remove the turnstile arms. Additionally, the turnstile rotor forms described in these patents involve the use of protruberant structure, for example nuts and bolts, extending exteriorly of the rotor which, aside from providing access to those who would tamper with the structure, could present a hazard in certain circumstances to users of the turnstile. For example, a shopper carrying parcels which could become caught on the protruberant structure.

SUMMARY OF THE INVENTION

The present invention is concerned with an improved turnstile construction and more particularly with an improved form of turnstile rotor. It is the purpose of the present invention to provide a turnstile rotor construction which permits rapidly and readily replacing one or more arms in the turnstile rotor in the event of damage and/or wear to the same to a degree necessitating such replacement. A further object of the invention is to provide a turnstile rotor construction in which the rotor arms are mounted in a manner as eliminates the presence of protruberant mounting structures and devices on the exterior surface of the rotor mounting post, thereby lessening the likelihood of surreptitious or unauthorized removal of arms as well as minimizing the likelihood of such protruberant structure being cause for discomfort and/or hazard to users of the turnstile, all connection components associated with connection of the rotor elements, arms and rotatable mounting devices being connectable together interiorly of the rotor central mounting post.

In accordance with the invention, a turnstile rotor is provided which comprises a mounting post including a plurality of elongated plates each having substantially straight side edges, the plates having a special shape and desirably being identical in all respects. The plates are arranged in an assembly of the plates connected in edge-adjacent-to-edge-adjacent relationship with each other so as to form a fully encircling enclosure about a vertical axis, such axis being defined by opposed upper and lower pivots mounted on suitable mounting structure and which pivots are received in hubs disposed at the corresponding upper and lower ends of the mounting post structure. The means for assembly connecting together the plates comprise companion connector components carried on the plates and connectable together in companion relationship interiorly of the enclosure, such connector components desirably comprising projections in the form of bosses with the projections on each plate being in aligned abutment with a companion projection on another plate when the plates are assembled to form the enclosure with a fastener desirably provided as a threaded bolt being employed for maintaining the pairs of aligned projections in connected together abutment. The plates also carry mounting blocks at the upper and lower ends of the mounting post enclosure which align with hub mounting blocks and connectable together by means of suitable fasteners for supporting the enclosure on the hubs for rotation about the fixed turnstile axis of rotation. The plates which comprise the turnstile mounting post are shaped such that when assembled the rotor mounting post has a generally smooth surface external configuration, devoid of protruberant structure and presents a corresponding plurality of arm mounting surfaces arranged about the fixed vertical axis of rotation, there being one mounting surface associated with each plate. Rows of vertically spaced arms associated one row with each of the plates are received through openings in the mounting surfaces with the arms being received at one end in the mounting post and extending radially of the vertical axis in conventional manner. Means also are
3 provided for removably connecting the arms in each row at one end of each such arm to its associated plate, such means comprising an extension piece of reduced dimension at the end of the arm which extension piece extends interiorly of the turnstile mounting post, there being a companion mounting member for each arm extension carried on the associated plate with a fastener being employed for securely connecting the arm extension piece to its companion mounting member. Each of the plates carries boss-like projections therein for connecting it with the other plates in such manner that each plate is connectable with at least two other plates. Each plate is provided with an opening for reception therethrough from a location exterior of the enclosure of the fastener associated with each pair of bosses. In this manner, when it is desired to remove one or more arms from a given vertical row of such arms, the fasteners associated with the plate or plates carrying the row of arms requiring replacement are removed from exterior of the enclosure through openings in such plates and the plates with all arms connected therewith can be removed from the central turnstile structure. Any damaged or broken arm then can be removed from its associated plate and replaced with a new arm unit following which the entire row of arms is reassembled as part of the turnstile mounting post by connecting the associated plate with the other unremoved plates.

In accordance with the invention, the bosses on the respective plates can be provided as hollow cylindrical components fixedly secured to the inner surfaces of the plates as by welding. The arm extension piece of each arm in the rows of such arms desirably is provided as flat sided structure which, when the arm is received in the rotor mounting post, engages with a like flat surface on the mounting member associated therewith and which mounting member is fixedly secured to the interior surface of the associated plate, the mounting member being carried on the plates, e.g., by welded connection therewith. In one suitable form, the companion mounting member can comprise an inverted channel welded at the tips ends of its flanges to the inner surface of the plate, the flat web of such channel receiving the flat arm extension piece in face to face contact therewith. To further enhance the appearance of the turnstile, the arms of such can be comprised of elongated cores which in turn are enclosed in elongated sheaths extending the full length of the arm core and being provided of material readily lending itself to enhancement of the appearance of the turnstile as, for example, stainless steel.

In accordance with the invention, the turnstile rotor can be embodied in a turnstile in which the row of vertical fixed arms customarily associated with such structures are received in a vertical post and removably connected to the latter with such fixed arms having opposed angle pieces at one end thereof which extend into the fixed post, with the fixed post having companion mounting blocks to which the opposed angle pieces can be connected by fasteners extending through both, such fixed arm construction thereby also facilitating ready replacement of one or more of the fixed arms in an efficient and rapidly effected manner.

The invention accordingly comprises the features of construction, combination of elements, and arrangements of parts which will be exemplified in the construction hereinafter set forth and the scope of the invention will be indicated in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

A fuller understanding of the nature and objects of the invention will be had from the following detailed description taken in conjunction with the accompanying drawings, in which:

FIG. 1 is an elevational view of a turnstile embodying the turnstile rotor construction of the present invention.

FIG. 2 is a horizontal sectional view as taken on the line II—II in FIG. 1 depicting the manner in which the elongated shaped plates are connected in edge-adjacent-to-edge-adjacent relationship with each other and further depicting the manner in which the fasteners are received in the aligned connection projections carried on the plates, with the fasteners having been received through openings at the outer surface of the plates.

FIG. 3 is a horizontal sectional view as taken along the line III—III in FIG. 1 depicting the manner in which the rotor arms are removably mounted in the central rotor mounting post.

FIG. 4 is a fragmented elevational view of the rotor mounting post with one plate removed therefrom illustrating the plate connector components as well as the arm mounting members carried at the inside of the enclosure.

FIG. 5 is a fragmented elevational view of the upper portion of the turnstile rotor with one plate removed, depicting the manner in which the rotor mounting post is supported for rotation about a fixed axis.

FIG. 6 is a fragmented elevational view of the lower end of the turnstile rotor, depicting the manner in which it is mounted at such lower end for rotation about a fixed axis.

FIG. 7 is a fragmented elevational view as taken along the line VII—VII in FIG. 1, depicting the manner in which the fixed arms of the turnstile cage are received in and connected to a fixed mounting post.

FIG. 8 is a horizontal fragmentary sectional view as taken along the line VIII—VIII in FIGS. 1 and 7.

Throughout the following description, like reference numberals are used to denote like parts in the drawings.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to FIG. 1 of the drawings, the turnstile 10 comprises a cage-like structure having a fixed post 12 at one side thereof and wherein is mounted vertical rows of fixed arms 14 constituting a barrier and vertically being spaced such that the after-described rotor arms will pass intermediate adjacent ones of the fixed arms 14 as the rotor is rotated. At the opposite side of the cage structure is an arcuate plan outline shaped cage liner 16 which with the vertical rows of radial arms 18 on the turnstile rotor 20 defines a space 21 through which a person can walk up-right using a full walking stride to pass through the turnstile. The turnstile rotor includes a central mounting post 20 or fully encircling hollow enclosure which is mounted in vertical disposition on the turnstile axis of rotation defined by opposed pivots 22, 24 disposed at the upper and lower ends of the rotor mounting post 20. Reference will be made later in greater detail to FIGS. 5 and 6.
which depict the mounting of the rotor for rotation about a fixed vertical axis.

Referring now in detail to FIGS. 1-4, the turnstile rotor mounting post 20 is comprised of a plurality of elongated plates 26, 126, 226 having substantially straight opposite side edges, such plates desirably being of specially shaped configuration. The turnstile illustrated is a three arm type, that is, it is comprised of three rows of vertically arranged rotor arms 18 but it will be apparent that the present invention has application to use of two and four vertical rows of arms as well, the three arm rotor being the more conventionally employed type and thus being depicted as the preferred form thereof. Each of the plates 26, 126, 226 is identically shaped and has a cross-sectional configuration which includes a first generally straight segment extending from one of said opposite side edges to merger with a second straight segment disposed at substantially 90° to the first segment, with the second segment merging with a third straight segment disposed substantially 120° with the second segment and extending to the said other one of the opposite side edges, the respective three segments of each plate being referenced by the letters a, b and c. Thus, when the plates are arranged in edge-adjacent-to-edge-adjacent assembly in the manner depicted in FIGS. 2 and 3, they form a fully encircling enclosure about the axis of rotation of the rotor and provide the mounting post with a smooth external surface configuration devoid of protuberant structure and having a corresponding plurality of arm mounting surfaces (segments 26a, 126a and 226a) arranged spaced about the vertical axis with the arm mounting surfaces serving to receive the rows of vertically spaced arms 18, there being associated one row of arms with each of the plates. For the purposes of receiving the arms, the plate first segments a are provided with openings 28 in a manner that results in the arms extending radially of the vertical axis in conventional manner. For connecting the plates 26, 126, 226 together, each plate is provided with a number of projections desirably in the form of hollow bosses carried at the inner side of the plate and extending as one set of bosses 30 vertically along the inner surface of the plate segment b and a second set of bosses 32 along the inner surface of the plate third segment c. These projections 30, 32, when the plates are assembled, align in abutment with companion projections on the inner surface of the other plates. Thus, each projection 30 lines up with a projection 32 to form a pair of plate connector components interiorly of the enclosure. Each of the bosses 30 on the second segment b of each plate is provided with a through passage 40 and an enlarged inwardly slotted or countersunk portion 42 in which is received in stopped abutment therewith, the head 46 of a threaded bolt fastener 48 which fastener at its opposite end threads into the companion boss 32 to hold each pair of aligned bosses 30, 32 in connected together abutment, the second segments b of each plate having an opening 50 therein through which the threaded fastener can be received from an exterior location on the mounting post to facilitate assembly and dismantling of the plate structure as may be required. Thus, to assemble the three plates 26, 126, 226 in the form of an enclosure defining the turnstile arm mounting post, there need only be employed five threaded fasteners 48 extending through each plate.

The arms 18 of each vertical row of arms as indicated above are readily removably connected to the rotor mounting post 20, with each of the respective corresponding plurality of rows being connected to and associated with a particular one of the plates 26, 126, 226. Each arm 18 comprises an elongated core 56 of preferably solid construction, which core has a segment or extension piece 58 of reduced dimension at one end, such extension piece desirably having the form of a solid rectangular block which is received through the mounting surface opening 28 of the associated plate 26, 126, 226 and engageably contactable in flat surface-to-surface contact with a companion mounting member 60 securely connected to the second segment b of the associated plate. The companion mounting members 60 conveniently are provided as channel members, the tip ends of the flanges of which are securely connected as by welding to the inner surface of plate segments b. Thus, the web 62 of the channel mounting block provides a companion flat surface for receiving the extension piece 58 of the arm core 56. For the purpose of removably securing or connecting the arms 18 with the companion mounting members 62, the extension pieces of the arms are provided with through passages 64 to receive fasteners such as threaded bolts 66 which are threaded into the channel mounting member web 62, as best seen in FIG. 3. To enhance the appearance of the rotor arms, the same may be provided with a sheath or sleeve 68 extending the full length thereof and fashioned from a material suited to the desirable end of aesthetic enhancement, as for example, stainless steel.

FIGS. 5 and 6 depict the manner in which the rotor mounting post or enclosure 20 is supported for rotation about a fixed vertical axis. The mounting post is provided at its upper and lower ends with hubs 70, 72, respectively, in the form of disc-like plates which are fixedly connected to the tip ends of plates 26, 126, 226 as by welding or other suitable manner of connection of the same, welding offering, for example, the advantage of eliminating exterior protuberant connecting structure on the outer sides of the plates 70, 72. Welded or otherwise fixedly connected to the inner surfaces of the hubs 70, 72 are a number of mounting blocks 74 which cooperate with companion mounting blocks 76 carried on the inner surfaces of the plates 26, 126, 226 and intended to align one with the other to permit passage therethrough of a suitable fastener, such as the threaded fasteners 80 depicted in FIG. 1. Internally of the mounting post and disposed centrally of the mounting blocks 74 carried on the upper and lower hubs 70 and 72 are sleeves 82 and 84 which are provided with bored passages for reception of the pivots 22, 24 respectively.

FIGS. 7 and 8 depict a form of mounting the fixed arms 14 in the fixed post 12. The fixed post 12 is provided with a number of vertically spaced openings 90 and the fixed arms 14 are received through such openings with one end of the arms each having a pair of angle members 92 secured thereto as by welding with the angle members 92 being arranged in opposition to each other and being abutted in flat surface-to-surface contact with vertically staggered opposed companion mounting blocks 94 securely connected to opposite inner side surfaces of the fixed post 12. Threaded fasteners 96 are employed to secure the opposed angle pieces to the companion mounting blocks 94.
Further understanding of the present invention will be had by reference to the manner in which the turnstile rotor arms can be dismounted when required for repair and/or replacement, and will be explained with continuing reference to FIGS. 1-4.

Assuming that the turnstile rotor is in the fully assembled condition depicted in FIG. 1, and it is desired to remove one damaged or broken arm from the row of arms associated with plate 226 (the row at the right side of FIG. 1), first the fasteners 48 associated with the connector components 30, 32 carried on plate segments 226b and 126c, respectively, are removed from their fastening position. As will be noted, this can be done from an external location since openings 50 are provided in the plate segment 226b to permit removal of such fasteners. Then the fasteners associated with connector components 30, 32 carried on plate segments 26b and 226c, respectively, are removed in like manner. Then the fasteners 80 engage with hub blocks 74 and blocks 76, which fasteners are accessible from the outer sides of plate segments 26b and 226b are removed. The foregoing completely frees plate 226 carrying the arm to be replaced from its assembled position as part of mounting post 20. One such plate is taken down from its mounted position, the arm 18 to be replaced can be removed by merely removing the two fastener screws 66 holding the arm to its mounting member 60 and a new arm can be installed.

To reerect plate 226 and the arms 18 carried thereon as part of the mounting post structure of the rotor, plate 226 is brought into opposed juxtaposition with the plates 26 and 126 in such manner as brings into alignment the bosses 32 on plate 226 with the bosses 30 of plate 26 and the bosses 30 of plate 226 with the bosses 32 of plate 126. The fastener screws 48 are then inserted and taken up to maintain the abutted fastening projections in connected condition. The same is done with the fastener screws 80 associated with mounting blocks 74 and 76 at the upper and lower ends of the mounting post 20.

From the foregoing it will be noted that the present invention provides an important turnstile rotor construction that permits rapid dismounting and replacement of rotor arms in the event of breakage or other emergency occurrence which would require the removal of such arms. Moreover, the same is effected by employment of connector components which are disposed interiorly of the smooth outer surfaced mounting post.

What is claimed is:

1. In a turnstile, a turnstile rotor comprising:
 a plurality of elongated plates having substantially straight opposite side edges,
 means for supporting said plates in fixed vertical disposition and for rotation about a fixed vertical axis,
 means for assembly connecting said plates together in edge-adjacent-to-edge-adjacent relationship with each other, said plates being shaped such that when assembly connected together they form a fully encircling enclosure about said fixed axis, said plates further being shaped to present when connected together an enclosure having a generally smooth surface external configuration devoid of protuberant structure and a corresponding plurality of arm mounting surfaces arranged spaced about said vertical axis,
 rows of vertically spaced arms associated one row with each of said plates with the arms of each row being received through openings in one of said mounting surfaces, said rows of arms extending radially of said vertical axis, and
 means for removably connecting the arms in each row at one end of each such arm to its associated plate, the means for connecting together said plates and the means for removably connecting said arms to said plates comprising first companion connector components carried on said plates, and second companion connector components carried on said plates and said arms, respectively, the respective first companion connector components and the respective second companion connector components being disposed and connectable together in companion relationship interiorly of said enclosure.

2. In a turnstile, a turnstile rotor comprising:
 a plurality of elongated plates having substantially straight opposite side edges,
 means for supporting said plates in fixed vertical disposition and for rotation about a fixed vertical axis,
 means for assembly connecting said plates together in edge-adjacent-to-edge-adjacent relationship with each other, said plates being shaped such that when assembly connected together they form a fully encircling enclosure about said fixed axis, said plates further being shaped to present when connected together an enclosure having a generally smooth surface external configuration devoid of protuberant structure and a corresponding plurality of arm mounting surfaces arranged spaced about said vertical axis,
 rows of vertically spaced arms associated one row with each of said plates with the arms of each row being received through openings in one of said mounting surfaces, said rows of arms extending radially of said vertical axis, and
 means for removably connecting the arms in each row at one end of each such arm to its associated plate, the means for connecting together said plates and the means for removably connecting said arms to said plates comprising first companion connector components carried on said plates, and second companion connector components carried on said plates and said arms, respectively, the respective first companion connector components and the respective second companion connector components being disposed and connectable together in companion relationship interiorly of said enclosure.

3. In a turnstile, a turnstile rotor comprising:
 a plurality of elongated plates having substantially straight opposite side edges,
 means for supporting said plates in fixed vertical disposition and for rotation about a fixed vertical axis,
 means for assembly connecting said plates together in edge-adjacent-to-edge-adjacent relationship with each other, said plates being shaped such that when assembly connected together they form a fully encircling enclosure about said fixed axis, said plates further being shaped to present when connected together an enclosure having a generally smooth surface external configuration devoid of protuberant structure and a corresponding plurality of arm mounting surfaces arranged spaced about said vertical axis,
3. The turnstile rotor of claim 2 in which the plate carrying at least one of the bosses in each aligned pair of bosses is provided with an opening for reception therethrough from a location exterior of said enclosure of the fastener associated with said pair.

4. The turnstile rotor of claim 1 in which the second companion connector components comprise an extension piece at said one end of each arm, said extension piece extending exteriorly of said enclosure, a companion mounting member for each arm extension piece carried on the associated plate, and a fastener for securely connecting each said arm extension piece to its companion mounting member, the extension piece of each arm and its companion mounting member being provided with substantially smooth flat surfaces engageable one with the other when said extension pieces are connected to their companion mounting member.

5. The turnstile rotor of claim 4 in which the fastener for securely connecting each extension piece to its companion mounting member comprises a threaded bolt extending through the extension piece and threaded into the mounting member.

6. In a turnstile, a turnstile rotor comprising:
 a plurality of elongated plates having substantially straight opposite side edges,
 means for supporting said plates in fixed vertical disposition and for rotation about a fixed vertical axis,
 means for assembly connecting said plates together in edge-adjacent-to-edge-adjacent relationship with each other, said plates being shaped such that when assembly connected together they form a fully encircling enclosure about said fixed axis, said plates further being shaped to present when connected together an enclosure having a generally smooth surface external configuration devoid of protuberant structure and a corresponding plurality of arm mounting surfaces arranged spaced about said vertical axis,
 rows of vertically spaced arms associated one row with each of said plates with the arms of each row being received through openings in one of said mounting surfaces, said rows of arms extending radially of said vertical axis, and
 means for removably connecting the arms in each row at one end of each such arm to its associated plate, the means for connecting together said plates and the means for removably connecting said arms to said plates comprising first companion connector components carried on said plates, and second companion connector components carried on said plates and said arms, respectively, the respective first companion connector components and the respective second companion connector components being disposed and connectable together in companion relationship interiorly of said enclosure, the second companion connector components comprising an extension piece at said one end of each arm, said extension piece extending interiorly of said enclosure, a companion mounting member for each arm extension piece carried on the associated plate, and a fastener for securely connecting each said arm extension piece to its companion mounting member, the extension piece of each arm and its companion mounting member being provided with substantially smooth flat surfaces engageable one with the other when said extension pieces are connected to their companion mounting member, each of the arms comprising an elongated solid core, said core having a section of reduced dimension at said one end providing said extension piece, and a tubular sheath tightly unremovably encircling said core from a location adjacent said extension piece the full length of said core to the opposite end thereof.

7. The turnstile rotor of claim 1 in which the means for supporting said plates in fixed vertical disposition and for rotation about said axis comprise hubs removably connected to said enclosure at the upper and lower ends thereof, said hubs having bores therein for receiving fixed aligned pivots defining said vertical axis.

8. The turnstile rotor of claim 7 in which said hubs carry mounting blocks disposed interiorly of said enclosure, said plates having blocks companion to said hub mounting blocks, and fasteners for connecting said hub mounting blocks with the companion blocks on said plates.

9. In a turnstile, a turnstile rotor comprising:
 a plurality of elongated plates having substantially straight opposite side edges,
 means for supporting said plates in fixed vertical disposition and for rotation about a fixed vertical axis,
 means for assembly connecting said plates together in edge-adjacent-to-edge-adjacent relationship with each other, said plates being shaped such that when assembly connected together they form a fully encircling enclosure about said fixed axis, said plates further being shaped to present when connected together an enclosure having a generally smooth surface external configuration devoid of protuberant structure and a corresponding plurality of arm mounting surfaces arranged spaced about said vertical axis,
 rows of vertically spaced arms associated one row with each of said plates with the arms of each row being received through openings in one of said mounting surfaces, said rows of arms extending radially of said vertical axis, and
 means for removably connecting the arms in each row at one end of each such arm to its associated plate, the means for connecting together said plates and the means for removably connecting said arms to said plates comprising first companion connector components carried on said plates, and second companion connector components carried on said plates and said arms, respectively, the respective first companion connector components and the respective second companion connector components being disposed and connectable together in companion relationship interiorly of said enclosure, said plurality of plates comprising three identically shaped plates, each plate having a cross-sectional configuration which includes a generally straight segment extending from one of said opposite side edges to cover with a second straight segment disposed at substantially 90° to said first segment, said second segment merging with a third straight segment disposed at substantially 120° with said second segment and extending to said other of said opposite side edges, the plates being arranged such that the said one side of each plate is in edge-
adjacent-to-edge-adjacent relationship with the said other side edge of an adjacent plate, the first segment of each plate comprising the mounting surface of such plate.

10. The turnstile rotor of claim 9 in which the first companion connector components comprise projections carried on said second and third segments of each said plate and each being abuttedly alignable with companion projections on the other two plates, and a fastener engageable with the aligned projections and maintaining said in connected together abutment.

11. A turnstile embodying the rotor of claim 1, and further having a row of vertical fixed arms adjacent said rotor, said fixed arms being spacedly disposed at locations intermediate the course of travel of rows of arms on said turnstile rotor to permit passage of the latter through the former when said rotor is rotated about said fixed axis, said fixed arms being received in a vertical post and removably connected to said vertical post, said fixed arms having opposed angle pieces at one end thereof which extend into said fixed post, said fixed post having companion mounting blocks to which said opposed angle pieces can be connected by fasteners extending through both.

* * * * *