DEMANDE DE BREVET D’INVENTION

Date de dépôt : 04.10.02.

Demandeur(s) : LABORATOIRES FOURNIER S.A. Société anonyme — FR.

Inventeur(s) : BOUBIA BENAissa, SAMRETH SOTH, OU KHAN, CHAPUT EVELYNE, RATEL PHILIPPE et EDGAR ALAN.

Titulaire(s) :

Mandataire(s) : CABINET BEAU DE LOMENIE.

COMPOSES DERIVES DE LA 2-THIOHYDANTOINE ET LEUR UTILISATION EN THERAPEUTIQUE.

L’invention concerne des composés de la 2-thiohydantoine choisis parmi les composés de formule générale (I):

![Chemical Structure]

dans laquelle notamment l’un des radicaux R₁ ou R₂ comprend dans la structure deux noyaux aromatiques où représente le groupe dibenzofuranyle,

• R₃ représente un atome d’hydrogène, un atome d’halogène, un groupe alkyle en C₁-C₄, un groupe alcoxy en C₁-C₄, un groupe hydroxy, un groupe phényle ou un groupe benzyle.

• R₄ représente un atome d’hydrogène, un atome d’halogène ou un groupe alkyle en C₁-C₄ et leurs sels d’addition avec un acide non toxique, non-
La présente invention concerne de nouveaux composés dérivés de la 2-thiohydantoïne (ou 2-thioxo-imidazolidin-4-one), leur procédé de fabrication et leur utilisation en tant que principes actifs pour la préparation de médicaments destinés notamment au traitement du diabète.

Art antérieur

La publication J. Pharm. Sc., Vol. 70, no 8, p. 952-956 cite des dérivés cycliques de la sulfonylethiourée, parmi lesquels la thiourée peut être représentée par un cycle thiohydantoïne, lesdits dérivés présentant une activité antidiabétique à la dose d'environ 100 mg/kg.

Objet de l'invention

La présente invention concerne des composés nouveaux comprenant dans leur structure l'hétérocycle 2-thiohydantoïne (ou 2-thioxo-imidazolidin-4-one) ainsi que leur procédé de préparation et leur utilisation en thérapeutique, notamment pour la préparation d'un médicament destiné au traitement du diabète, des maladies dues à une hyperglycémie, des hypertriglyceridémies, des dyslipidémies ou de l'obésité.

Description

Selon l'invention, on propose des composés nouveaux comportant le cycle 2-thioxo-imidazolidin-4-one (ou 2-thiohydantoïne), de formule (I):

\[
\begin{align*}
\text{R}_1 & \quad \text{N} \\
\text{R}_2 & \quad \text{N} \\
\text{R}_3 & \quad \text{O} \\
\text{R}_4 &
\end{align*}
\]

(I)

dans laquelle

- \text{R}_1 et \text{R}_2, indépendamment l'un de l'autre représentent
 - un groupe alkyle en C$_1$-C$_5$,
 - un groupe alcènyle en C$_3$-C$_4$,
 - un groupe hydroxyalkyle en C$_2$-C$_3$,
 - un groupe alcoxyalkyle en C$_3$-C$_5$,
 - un groupe CH$_2$-COOCH$_3$,
 - un groupe N,N-dialkylaminoalkyle,
 - un groupe
---(CH₂)ₙ---N

\[\text{dans lequel } m \text{ représente 2 ou 3, et} \]
\[Y \text{ représente O ou N-CH₃,} \]

- un groupe dibenzofuranyle,
- un groupe (CH₂)ₚ-Ar, dans lequel
- p représente 0 ou 1, et
- Ar représente un noyau aromatique phényle ou pyridinyle, non substitué ou substitué par un ou plusieurs atomes ou groupes d’atomes choisi(s) parmi les halogènes, les groupes alkyl en C₁-C₄, hydroxy, nitro, alcoxy en C₁-C₃, méthylénedioxy, ester, trifluorométhyl, trifluorométhoxy, cyano, morpholinyle ou le groupe

\[\text{---A---X---R₅} \]

\[\text{dans lequel} \]
- A représente O ou S,
- X représente C ou N et,
- R₅ représente un atome d’hydrogène, un atome d’halogène, un groupe N,N-dialkylamino, un groupe alcoxy en C₁-C₃, ou un groupe hydroxy libre ou estérisé par un aminoacide,
 - R₃ représente un atome d’hydrogène, un atome d’halogène, un groupe alkyle en C₁-C₄, un groupe alcoxy en C₁-C₄, un groupe hydroxy, un groupe phényle ou un groupe benzyle,
 - R₄ représente un atome d’hydrogène, un atome d’halogène ou un groupe alkyle en C₁-C₄,

avec la condition que l’un au moins des substituants R₁ et R₂ comprenne dans sa structure 2 noyaux aromatiques choisis parmi les groupes phényle ou pyridinyle, ou représente le groupe dibenzofuranyle ;

et les sels d’addition des composés de formule (I) avec un acide non toxique lorsque lesdits composés de formule (I) comprennent une fonction salifiable basique.

Dans la présente description, le groupe dibenzofuranyle est considéré comme comprenant 2 noyaux aromatiques.

Une famille de composés préférés selon l’invention sont les composés de formule (I) :
dans laquelle :

- R₁ représente
 - un groupe alcényle en C₃-C₄,
 - un groupe dibenzofuranyle,
 - un groupe (CH₂)ₙ-Ar dans lequel
 n représente 0 ou 1, et
 Ar représente un noyau aromatique phényle ou pyridinyle, non substitué ou
 substitué par un ou plusieurs des atomes ou groupes d'atomes choisis parmi :
 les halogènes, les groupes alkyle en C₁-C₄, nitro, alcoxy en C₁-C₃,
 alcoxyalkyle en C₃-C₄, ou le groupe

\[
\begin{array}{c}
- A - X - R₅ \\
\end{array}
\]

dans lequel
 A représente O ou S,
 X représente C ou N et,
 R₅ représente un atome d'hydrogène, un atome d'halogène, un groupe N,N-
 di(C₁-C₃)alkylamino, un groupe alcoxy en C₁-C₃, ou un groupe hydroxy libre
 ou estérifié par un aminoacide,

- R₂ représente
 - un groupe alkyle en C₁-C₅,
 - un groupe alcényle en C₃-C₄,
 - un groupe hydroxyalkyle en C₂-C₃,
 - un groupe alcoxyalkyle en C₃-C₅,
 - un groupe CH₂-COOCH₃,
 - un groupe N,N-di(C₁-C₃)alkylamino(C₁-C₃)alkyl,
dans lequel m représente 2 ou 3, et
Y représente O ou N-CH₃,

- un groupe (CH₂)ₚAr, dans lequel
 p représente 0 ou 1, et
Ar représente un noyau aromatique phényle ou pyridinyle, non substitué ou
substitué par un ou plusieurs atomes ou groupes d’atomes choisi(s) parmi les
halogènes, les groupes alkyl en C₁-C₄, hydroxy, nitro, alcoxy en C₁-C₃,
méthylènedioxy, ester, trifluorométhyl, trifluorométhoxy, cyano,
morpholinyle ou le groupe

\[
\begin{align*}
 \text{B} & \quad \text{dans lequel} \\
 \text{B} & \quad \text{représente O ou S ;} \\
\end{align*}
\]

 \begin{itemize}
 \item R₃ représente un atome d’hydrogène, un atome d’halogène, un groupe alkyle en C₁-
 C₄, un groupe alcoxy en C₁-C₄, un groupe hydroxy, un groupe phényle ou un
groupe benzyle,
 \item R₄ représente un atome d’hydrogène, un atome d’halogène ou un groupe alkyle en
 C₁-C₄,
 \end{itemize}

avec la condition que l’un au moins des substituants R₁ et R₂ comprenne dans sa
structure 2 noyaux aromatiques choisis parmi les groupes phényle ou pyridinyle ou
que R₁ représente le groupe dibenzofuranyle.

Des composés particulièrement préférés selon l’invention sont les composés
de formule (I) dans laquelle l’un des radicaux R₁ ou R₂ représente le groupe
phénylphényle ou phénylthiophényle, les radicaux R₃ et R₄ et l’autre radical R₁ ou
R₂ sont tels que définis précédemment.

L’invention comprend également, lorsque les substituants R₃ et R₄ sont
différents, les composés de configuration R, les composés de configuration S et leurs
mélanges.
L’invention comprend également les sels des composés de formule (I) lorsque ceux-ci comprennent dans leur structure une fonction salifiable basique, telle que par exemple une fonction amine, un groupe pyridine ou un groupe morpholine. Ces sels peuvent être obtenus avec des acides minéraux ou organiques non toxiques et acceptables en thérapeutique, notamment les acides chlorhydrique, sulfurique, phosphorique, méthanesulfonique, citrique, maleïque, fumarique, oxalique et trifluoroacétique.

L’invention concerne également les composés de formule (I) pour leur utilisation en tant que substance pharmacologiquement active.

En particulier, l’invention concerne l’utilisation d’au moins un composé selon la formule (I) ci-dessus en tant que principe actif pour la préparation d’un médicament destiné à une utilisation en thérapeutique, notamment pour lutter contre les maladies dues à une hyperglycémie, le diabète, les hypertriglycéridémies, les dyslipidémies ou l’obésité.

Description détaillée

Dans la formule (I) représentant les composés selon l’invention, on entend par groupe alkyle en C₁-C₄ une chaîne hydrocarbonée ayant de 1 à 4 atomes de carbone, linéaire ou ramifiée, ou bien encore cyclique. Des exemples de groupes alkyle en C₁-C₄ comprennent les groupes méthyle, éthyle, propyle, butyle, 1-méthyléthyle, 1-méthylpropyl, 2-méthylpropyle et 1,1-diméthyléthyle. Par groupe alkyle en C₁-C₅, on entend, une chaîne hydrocarbonée ayant de 1 à 5 atomes de carbone, linéaire ou ramifiée, ou bien encore cyclique. Des exemples de groupes alkyles en C₁-C₂ comprennent les groupes précédemment cités ainsi que les groupes pentyle, isopentyle et cyclopentyle. Lorsqu’un groupe phényle est substitué, le substituant peut se trouver en position ortho, méta ou para, la position para étant préférée. Par groupe alcoxy en C₁-C₃ linéaire ou ramifié, on entend les groupes méthoxy, éthoxy, propoxy et 1-méthyléthoxy.

Par atome d’halogène, on comprend les atomes de fluor, chlore, brome et iode, les atomes de fluor et de chlore étant préférés.

Par groupe N,N-di(C₁-C₃)alkylamino, on désigne notamment les groupes diméthylamino, diéthylamino, dipropylamino et diisopropylamino.
Par groupe N,N-di(C₁₋C₃)alkylamino(C₁₋C₃)alkyl, on désigne notamment les groupes diméthylaminoéthyle, diéthylaminoéthyle, et diméthylaminopropylique.

Par groupe alcényle en C₃-C₄, on entend une chaîne hydrocarbonée comprenant 3 ou 4 atomes de carbone comprenant dans sa structure une liaison éthylénique entre 2 carbones.

Par groupe alcoxyalkyle en en C₃-C₄, on entend une chaîne hydrocarbonée ayant 3 ou 4 atomes de carbone interrompu par un atome d’oxygène, notamment les groupes méthoxyéthyle et éthoxyéthyle.

Les composés de formule (I) peuvent être préparés selon un premier procédé général A comprenant les étapes consistant à :

1) faire réagir un acide de formule

![Acide](image)

(II)

dans laquelle R₁ est tel que défini précédemment pour les composés de formule (I), R₃ représente H, alkyle en C₁-C₄, phényle ou benzyle et R₄ représente H ou alkyle, avec un isothiocyanate de formule

![Isothiocyanate](image)

(III)
dans laquelle R₂ représente un groupe tel que défini précédemment pour les composés de formule (I), dans un solvant tel que par exemple l’éthanol, à une température comprise entre 20°C et la température d’ébullition du solvant, en présence d’une base aprotique telle que par exemple la triéthylamine et pendant 1 à 20 heures, pour obtenir le composé de formule (I)

![Produit](image)

(I)
dans laquelle R₁, R₂, R₃ et R₄ conservent la même signification que dans les produits de départ ;
b) si nécessaire, lorsque le composé de formule (I) obtenu ci-dessus comporte une fonction salifiable basique, telle que par exemple une amine, faire réagir ledit composé avec un acide minéral ou organique, dans un solvant anhydre, pour obtenir le sel du composé de formule (I).

Selon une variante de ce procédé, on peut utiliser, à la place de l’acide de formule (II), un ester de formule (IV)

![Diagramme de l'ester de formule (IV)]

dans laquelle R₁, R₃ et R₄ sont tels que définis dans le procédé A et R représente un groupe alkyle en C₁-C₄, préférentiellement un groupe méthyle, éthyle ou isopropyle, que l’on fait réagir avec un isothiocyanate de formule (III),

![Diagramme de l'isothiocyanate de formule (III)]

la réaction étant alors conduite dans un solvant, tel que le toluène ou le xylène, en présence d’un acide faible organique, tel que l’acide acétique, à une température comprise entre 80 °C et la température d’ébullition du solvant, pendant 0,5 à 5 heures, pour obtenir le composé de formule (I)

![Diagramme de l’acide de formule (I)]

dans laquelle R₁, R₂, R₃ et R₄ conservent la même signification que dans les composés de départ et si nécessaire, dans le cas où le composé de formule (I) comprend une fonction salifiable basique, on fait réagir ledit composé avec un acide pour obtenir le sel correspondant. Ce procédé sera dénommé ci-après procédé E.

Les composés de formule (I) dans laquelle R₃ représente un atome d’halogène, notamment l’atome de fluor peuvent être obtenus à partir de composés de formule (I) dans lesquels R₃ est un atome d’hydrogène par action successive d’un agent halogénant, tel que le N-bromosuccinimide, de l’eau (qui permet d’obtenir le composé de formule (I) dans laquelle R₃ représente un groupe hydroxy) puis d’un
agent halogènant, tel que le N,N-diéthylamino-trifluorure de soufre qui conduit au composé de formule (I) dans laquelle R_3 représente un atome de fluor.

Les composés de formule (I) dans lesquels R_3 représente un groupe alcoxy en C$_1$-C$_4$ peuvent être obtenus à partir des composés de formule (I) dans lesquels R_3 est un atome d’hydrogène, par action d’un agent halogénant, tel que le N-bromo succinimide, puis action d’un alcool aliphatique en C$_1$-C$_4$.

Les composés de formule (II) sont généralement des produits connus ou peuvent être préparés selon des méthodes connues de l’homme de métier, par exemple par réaction d’une amine primaire aliphatique ou aromatique de formule (V):

$$R_1\text{-NH}_2 \text{ (V)}$$

dans laquelle R_1 est tel que défini précédemment, avec un acide halogéné de formule (VI)

$$\begin{array}{c}
\text{Hal} \\
\text{COOH} \\
R_3 \\
R_4
\end{array} \text{ (VI)}$$

dans laquelle Hal représente un atome d’halogène, et R_3 et R_4 sont tels que définis précédemment, de préférence en l’absence de solvant, en présence d’une base faible comme par exemple le bicarbonate de sodium et à une température comprise entre 60 et 150 °C, pendant 0,5 à 10 heures.

De préférence, on utilise un acide α-bromé.

Les composés de formule (IV) sont généralement des produits connus ou peuvent être préparés selon des méthodes connues de l’homme de métier, par exemple par réaction d’une amine primaire aliphatique ou aromatique de formule (V):

$$R_1\text{-NH}_2 \text{ (V)}$$

dans laquelle R_1 est tel que défini précédemment, avec un ester halogéné de formule (VII)
dans laquelle Hal représente un atome d’halogène, R₃ et R₄ sont tels que définis précédemment et R représente un groupe alkyle, notamment méthyle ou éthyle, de préférence en l’absence de solvant, en présence d’une base faible comme par exemple le bicarbonate de sodium ou une amine tertiaire, et à une température comprise entre 60 et 150 °C, pendant 0,5 à 10 heures.

De préférence, on utilise un ester α-bromé.

Les composés de formule (III) sont généralement des produits connus ou peuvent être préparés selon des méthodes connues de l’homme de métier, par exemple par réaction d’une amine primaire aliphatique ou aromatique de formule R₂-NH₂ avec le thiophosgène en présence d’une amine tertiaire ou avec le 1,1’-thiocarboxyldiimidazole.

Les exemples suivants de préparation de composés selon la formule (I) permettront de mieux comprendre l’invention.

Dans ces exemples, on désigne par « préparation » les exemples décrivant la synthèse de composés intermédiaires et par « exemples » ceux décrivant la synthèse de composés de formule (I) selon l’invention. Les points de fusion sont mesurés au banc Kofler et les valeurs spectrales de Résonance Magnétique Nucléaire sont caractérisées par le déplacement chimique calculé par rapport au TMS, par le nombre de protons associés au signal et par la forme du signal (s pour singulet, d pour doublet, t pour triplet, q pour quadruplet, m pour multiplet). La fréquence de travail et le solvant utilisé sont indiqués pour chaque composé.

Si les composés contiennent un carbone asymétrique, l’absence d’indication particulière signifie que le composé est sous sa forme racémique, et la présence du signe de chiralité (R ou S) signifie que le composé est sous sa forme chirale.
PREPARATION I
N-(4-phényoxphényle)alanine

On mélange intimement par broyage dans un mortier 203,7 g (1,1 mole) de 4-(phényoxy)aniline et 323 g (3,84 moles) de bicarbonate de sodium. Le mélange est ensuite placé dans un réacteur de 2l, équipé d’une agitation robuste, et on ajoute 306 ml (3,3 moles) d’acide 2-bromopropanoïque. Le mélange est chauffé sous agitation à 90°C pendant 1 heure, puis refroidi et versé sur 2l d’eau froide. Le milieu d’hydrolyse est ensuite acidifié lentement jusqu’à pH 4 à l’aide d’acide chlorhydrique concentré. Le précipité formé est séparé par filtration, lavé à l’eau plusieurs fois sur le filtre puis séché à l’étuve à vide.

On obtient ainsi 178,5 g du produit attendu sous forme d’un solide blanc (rendement = 63 %).

F = 160°C

PREPARATION II
1-(isothiocyanato)-4-(phényltio)benzène

On prépare une solution de 10 g (50 mmole) de 4-(phényltio)aniline dans 40 ml de diméthylformamide et on ajoute, à 0°C et sous agitation, une solution de 10,8 g (55 mmole) de 1,1′-thiocarbonyldiimidazole dans 35 ml de diméthylformamide. Le milieu réactionnel est maintenu sous agitation pendant 5 h à 5 °C, puis versé sur de l’eau glacée. Le mélange obtenu est extrait deux fois par 180 ml de dichlorométhane et les phases organiques rassemblées sont lavées à l’eau puis séchées sur sulfate de sodium et concentrées sous pression réduite. Le résidu est purifié par chromatographie en éluant par du cyclohexane. On obtient le produit attendu sous forme d’une huile incolore (rendement = 96 %).

PREPARATION III
N-[4-(4-fluorophényoxy)phényl]alanine

En opérant de façon analogue à la préparation I, mais en utilisant comme produit de départ la 4-(4-fluorophényoxy)aniline, on obtient le produit attendu, utilisé ultérieurement sans purification complémentaire (rendement = 88 %).
PREPARATION IV

N-[4-(4-hydroxyphénynoxy)phényl]alanine

En opérant de façon analogue à la préparation I, mais en utilisant comme produit de départ le 4-(4-aminophénynoxy)phénol, on obtient le produit attendu sous forme d’un solide fin blanc (rendement = 75 %).

F = 188 °C

PREPARATION V

N-[4-(phénylthio)phényl]alanine

En opérant de façon analogue à la préparation I, mais en utilisant comme produit de départ la 4-(phénylthio)aniline, on obtient le produit attendu sous forme d’une huile jaune clair (rendement = 81 %).

RMN 1H (300 MHz, DMSO) : 7,24 (m, 4H) ; 7,11 (t, 1H) ; 7,03 (d, 2H) ; 6,61 (d, 2H) ; 3,98 (q, 1H) ; 1,39 (d, 3H).

PREPARATION VI

Acide 2-[(4-phényoxyphényl)amino] butanoïque, éthyl ester

On mélange 5 g (27 mmole) de 4-(phénynoxy)aniline et 10,72 g (55 mmole) de 2-bromobutanoate d’éthyle et on ajoute 3,36 g (40 mmole) de bicarbonate de sodium. Le mélange est agité pendant 5 h à 140 °C puis refroidi et repris par 70 ml d’eau et 150 ml d’éther éthylïque. Après décantation, la phase aqueuse est à nouveau extraite par 75 ml d’éther éthylïque. Les phases organiques rassemblées sont lavées à l’eau puis séchées sur sulfate de sodium et concentrées sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l’aide d’un mélange méthylcyclohexane/acétate d’éthyle (8/2 ; v/v). On obtient le produit attendu sous forme d’une huile jaune (rendement = 80 %).

RMN 1H (300 MHz, DMSO) : 7,29 (m, 2H) ; 7,01 (t, 1H) ; 6,83 (m, 4H) ; 6,59 (d, 2H) ; 5,91 (d, 1H) ; 4,11 (m, 2H) ; 3,86 (q, 1H) ; 1,78 (m, 2H) ; 1,17 (t, 3H) ; 0,97 (t, 3H).

PREPARATION VII

2-méthyl-N-(4-phényoxyphényl)alanine

On prépare une solution de 15 g (67,7 mmole) du chlorhydrate de 4-(phénynoxy)aniline dans 200 ml de diméthylformamide et on ajoute 13,7 g (82 mmole) d’acide 2-bromo-2-méthylpropanoïque puis 9,5 ml (67,7 mmole) de triéthylamine.
Le mélange réactionnel est maintenu sous agitation pendant 24 h à 100 °C, puis refroidi et versé sur 250 ml d’eau glacée. Le mélange est extrait par 2 fois 250 ml d’acétate d’éthyle et les phases organiques rassemblées sont lavées à l’eau puis séchées sur sulfate de sodium et concentrées sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice. On obtient le produit attendu sous forme de cristaux blancs (rendement = 75 %).
F = 192 °C

PREPARATION VIII
2-méthyl-N-(2-propényl)-alanine, méthyl ester

On mélange 15 ml d’allylamine et 12 g de 2-bromo-2-méthylpropanoate de méthyle et on porte le mélange à 80°C pendant une nuit. L’excès d’amine est chassé sous pression réduite et le résidu est purifié par chromatographie sur gel de silice en éluant avec un mélange cyclohexane/acétate d’éthyle (7/3 ; v/v). On obtient ainsi le produit attendu sous forme d’une huile jaune pâle (rendement = 11%).

RMN 1H: (DMSO d₆, 300 MHz) 1,20 (s, 6H) ; 3,03 (s, 2H) ; 3,62 (s, 3H) ; 4,98 (d, 1H) ; 5,11 (d, 1H) ; 5,79 (m, 1H).

PREPARATION IX
N-(4-phénoxyphényl)-phénylalanine

On prépare un mélange de 2,17 g (7,3 mmole) de 4-phénoxy-iodobenzène, 1,02 g (6,2 mmole) de phénylalanine, 0,48 g de dichlorure de bis (tri-o-tolyl palladium), 125 mg d’iodure cuivreux, 240 mg de chlorure de benzyltriéthylammonium et 876 mg de carbonate de potassium dans 12 ml de diméthylformamide, 1,2 ml d’eau et 2,4 ml de triéthylamine. Ce milieu réactionnel est maintenu sous agitation à 100 °C pendant 24 h puis refroidi. On ajoute 50 ml de toluène et concentre sous pression réduite. Le résidu est repris dans 40 ml d’acétate d’éthyle et 40 ml d’eau et le mélange est acidifié jusqu’à pH 2. Le précipité formé est séparé par filtration et lavé avec 10 ml d’eau et 5 ml d’acétate d’éthyle, puis séché. On obtient ainsi 640 mg du produit attendu sous forme d’un solide fin gris (rendement = 30 %).
F = 194 °C
PREPARATION X
N-[4-(4-fluorophénoxy)phényl]alanine, éthyl ester

En opérant de façon analogue à la préparation VII, mais en utilisant comme produits de départ la 4-(4-fluorophénoxy)aniline et le 2-bromopropanoate d'éthyle, dans l'éthanol et en présence d'acétate de sodium, on obtient le produit attendu sous forme d'un liquide huileux beige, utilisé ultérieurement sans purification complémentaire (rendement = 80 %).

PREPARATION XI
N-[4-(3-chlorophénoxy)phényl]alanine

On prépare une solution de 0,8 g (3,64 mmole) de 4-(3-chlorophénoxy)aniline dans 10 ml de diméthoxyéthane et on ajoute 0,328 ml (3,64 mmole) d'acide 2-bromopropanoïque et 0,5 ml de triéthylamine. Le milieu réactionnel est maintenu sous agitation pendant 24 h à 50 °C puis refroidi et versé sur 50 ml d'eau. Le mélange est amené à pH basique par addition d'une solution d'hydroxyde de sodium et extrait par 50 ml d'acétate d'éthyle. La phase aqueuse est ensuite acidifiée par une solution d'acide chlorhydrique jusqu'à pH 4 et extraite par 2 fois 70 ml d'éther ethylique. Les phases organiques rassemblées sont lavées à l'eau puis séchées sur sulfate de magnésium et concentrées sous pression réduite. On obtient ainsi 0,75 g du produit attendu sous forme d'un solide beige, utilisé ultérieurement sans purification complémentaire (rendement = 70 %).

F = 138-140 °C

PREPARATION XII
N-[4-(2-chlorophénoxy)phényl]alanine

En opérant de façon analogue à la préparation XI, mais en utilisant comme produit de départ la 4-(2-chlorophénoxy)aniline, on obtient le produit attendu sous forme d'une huile (rendement = 70 %). Ce composé est utilisé ultérieurement sans purification complémentaire.

PREPARATION XIII
N-[4-[3-(diméthylamino)phénoxy]phényl]alanine, éthyl ester

En opérant de façon analogue à la préparation VII, mais en utilisant comme produit de départ la 4-[3-(diméthylamino)phénoxy]aniline, on obtient le produit attendu sous forme d'une huile marron (rendement = 64 %).
RMN 1H (300 MHz, CDCl$_3$): 7,18 (t, 1H); 6,89 (q, 2H); 6,60 (q, 2H); 6,41 (m, 2H); 6,23 (2d, 1H); 4,21 (q, 2H); 4,06 (q, 1H); 2,91 (s, 6H); 1,47 (d, 3H); 1,26 (t, 3H).

PREPARATION XIV

5 N-[4-phényoxyphényl)méthyl]alanine, éthyl ester

En opérant de façon analogue à la préparation VII, mais en utilisant comme produit de départ le 4-phényoxy-benzèneméthanamine et le 2-bromopropanoate d'éthyle, dans le dioxane on obtient le produit attendu sous forme d'une huile beige (rendement = 37%).

10 RMN 1H (300 MHz, DMSO): 7,37 (m, 4H); 7,12 (t, 1H); 6,97 (m, 4H); 4,09 (q, 2H); 3,63 (2d, 2H); 3,24 (q, 1H); 1,20 (m, 6H).

PREPARATION XV

N-[2-phényoxy-5-pyridylnyl]alanine

En opérant de façon analogue à la préparation I, mais en utilisant comme produits de départ la 5-amino-2-phényoxypyridine et l'acide 2-bromopropanoïque, on obtient le produit attendu sous forme d'un solide mal cristallisé, utilisé ultérieurement sans purification complémentaire.

PREPARATION XVI

N-[4-(4-chlorophényxy)phényl]alanine, éthyl ester

En opérant de façon analogue à la préparation X, au départ de 4-(4-chlorophényxy)aniline, on obtient le produit attendu sous forme d'un solide blanc (rendement = 78%).

F = 156°C

PREPARATION XVII

N-[4-(phénylythio)phényl]glycine

En opérant de façon analogue à la préparation I, au départ de 4-(phénylythio)aniline et d'acide bromacétique, on obtient le produit attendu sous forme d'une huile (rendement = 93%).

RMN 1H: (DMSO d$_6$, 250 MHz) 4,13 (s, 2H); 6,61 (d, 2H); 7,09 (d, 2H); 7,30 (m, 5H)
PREPARATION XVIII

En opérant de façon analogue à la préparation XVII, au départ d’acide 2-bromo-2-méthylpropanoïque, on obtient le produit attendu sous forme d’une huile (rendement = 99%).

5 RMN 1H: (DMSO d$_6$, 300 MHz) 1,40 (s, 6H) ; 6,57 (d, 2H) ; 7,02 (d, 2H) ; 7,18 (m, 5H).

PREPARATION XIX

N-(4-phénoxyphényl)-2-phénylglycine

En opérant de façon analogue à la préparation XI, on obtient le produit attendu sous forme d’un solide blanc (rendement = 67%).

10 F = 145°C

PREPARATION XX

Acide 2-[4-phénoxyphényl]amino]pentanoïque

En opérant de façon analogue à la préparation I, on obtient le produit attendu sous forme d’une pâte (rendement = 70%).

15 RMN 1H (DMSO d$_6$, 300 MHz) : 0,91 (t, 3H) ; 1,43 (m, 2H) ; 1,69 (m, 2H) ; 3,81 (t, 1H) ; 6,59 (d, 2H) ; 6,83 (m, 4H) ; 6,99 (t, 1H) ; 7,29 (t, 2H).

PREPARATION XXI

Acide 1-[(4-phénoxyphényl)amino]cyclopropanecarboxylique, éthyl ester

a) On prépare une suspension de 6,15 g d’acide 1-aminocyclopropane carboxylique dans 100 ml d’éthanol et on ajoute doucement 6,5 ml de chlorure de thionyle. Le mélange réactionnel est chauffé à doux reflux pendant 8 heures puis concentré sous pression réduite, en ajoutant du toluène pour chasser l’éthanol. On obtient ainsi 10 g du chlorhydrate de l’ester éthylé de l’acide de départ.

20 b) On mélange 1,25 g du chlorhydrate de l’ester obtenu ci-dessus avec 6,25 g de diacétyl-tri(4-phénoxyphényl)bismuth dans 20 ml de dichlorométhane et on ajoute 1,1 ml de triéthylamine et 22 mg de poudre de cuivre. Le mélange réactionnel est agité à température ambiante pendant une nuit, puis chromatographié sur gel de silice en éluant avec un mélange dichlorométhane/cyclohexane (8/2 ; v/v). On obtient ainsi 0,47 g du produit attendu (rendement = 24%).

F = 80°C
PREPARATION XXII
Acide 1-[(4-phénynoxyphényl)amino]cyclopropanecarboxylique

On mélangé 0,35 g de l’ester obtenu selon la préparation XXI, 1 ml d’une solution de soude à 10%, 20 ml de diméthoxyéthane et 20 ml de méthanol et on agite ce milieu réactionnel à température ambiante pendant une nuit. Ce mélange est ensuite concentré sous pression réduite et repris par 20 ml d’eau. La solution obtenue est filtrée et acidifiée par une solution N d’acide chlorhydrique. Le précipité est extrait par du dichlorométhane et la phase organique obtenue est séchée sur sulfate de magnésium puis concentrée. On obtient ainsi l’acide attendu sous forme de cristaux blancs (rendement = 97%).
F = 163°C

PREPARATION XXIII
Acide 2-[(4-phénynoxyphényl)amino]-4-méthylpentanoïque

En opérant de façon analogue à la préparation I, au départ d’acide 2-bromo-4-méthylpentanoïque, on obtient le produit attendu sous forme d’une pâte (rendement = 10%).

RMN 1H (CDCl₃, 250 MHz) : 0,9 (m, 6H) ; 1,6 (m, 2H) ; 1,8 (m, 1H) ; 3,8 (t, 1H) ; 6,6 (d, 2H) ; 6,9 (m, 4H) ; 7,0 (t, 1H) ; 7,3 (t, 1H).

PREPARATION XXIV
N-(2,6-diméthylphényl)-2-méthylalamine

En opérant de façon analogue à la préparation XI, on obtient le produit attendu sous forme de cristaux beiges (rendement = 53%).
F = 148°C

Exemple 1
5-méthyl-1-(4-phénynoxyphényl)-3-phényl-2-thioxo-4-imidazolidinone

On prépare un mélange de 175 g (0,68 mole) du composé obtenu selon l’étape précédente et de 104 ml de triéthylamine dans 2l d’éthanol. La solution obtenue est filtrée sur verre fritté et on ajoute 89,5 ml (0,75 mole) d’isothiocyanate de phényle. Le mélange réactionnel est agité à température ambiante pendant 18 heures. Le précipité blanc formé est séparé par filtration puis repris en solution dans un mélange dichlorométhane/éthanol. La solution est traitée au charbon actif,
filtrée et partiellement reconcentrée à l’évaporateur sous pression réduite. Le précipité blanc obtenu est séparé par filtration, lavé avec de l’éthanol et séché. On obtient ainsi 228,3 g du produit attendu sous forme de cristaux blancs (rendement = 89 %).
F = 141°C

5 Exemples 2 et 3
5(S)-méthyl-1-(4-phénoxyphényl)-3-phényl-2-thioxo-4-imidazolidinone (exemple 2)
5(R)-méthyl-1-(4-phénoxyphényl)-3-phényl-2-thioxo-4-imidazolidinone (exemple 3)

On prépare une solution de 50 mg du composé racémique obtenu selon l’exemple 1 dans 1 ml d’un mélange hexane/dichlorométhane. Cette solution est injectée dans un dispositif de chromatographie préparative à haute pression équipé d’une colonne 250x20 mm, CHIRALPACK AD 10 μm (fournie par DAICEL). L’éluant est un mélange hexane/isopropanol 75/25, avec un débit de 10 ml/min. Le composé de configuration (S) présente un temps de rétention de l’ordre de 26 à 32 min et le composé de configuration (R) présente un temps de rétention d’environ 26 min. Les composés séparés, récupérés en solution après chromatographie, sont obtenus par évaporation du solvant à basse température. On obtient ainsi environ 9 mg de chacun des deux énantiomères :
Exemple 2 : (énantiomère S) : $\alpha_\text{D}^{23} = + 8^\circ$ (C = 1,24 ; CH$_2$Cl$_2$)
Exemple 3 : (énantiomère R) : $\alpha_\text{D}^{23} = - 6^\circ$ (C = 1,02 ; CH$_2$Cl$_2$).

La preuve de la configuration des deux énantiomères a été établie par synthèse non équivoque, au départ de la (R)alanine et de la (S)alanine.

Exemple 4
5-méthyl-1,3-bis(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 1, mais en utilisant l’isothiocyanate de 4-phénoxyphényle à la place de l’isothiocyanate de phényle, on obtient le produit attendu sous forme d’un solide blanc cassé (rendement = 74 %).
F = 184-186 °C

Exemple 5
3-(4-méthoxyphényl)-5-méthyl-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 1 mais en utilisant l’isothiocyanate de 4-méthoxyphényle à la place de l’isothiocyanate de phényle, et en utilisant
l’acétonitrile comme milieu solvant, on obtient le produit attendu sous forme de cristaux blancs (rendement = 84 %).
F = 170 °C
Exemple 6
5 5-méthyl-3-(4-nitrophényl)-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 1, mais en utilisant l’isothiocyanate de 4-nitrophényle à la place de l’isothiocyanate de phényle, on obtient le produit attendu sous forme d’une poudre orangée (rendement = 70 %).
F = 210-212 °C
Exemple 7
10 3-(4-hydroxyphényl)-5-méthyl-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 1 mais en utilisant l’isothiocyanate de 4-hydroxyphényle à la place de l’isothiocyanate de phényle, et en utilisant comme solvant l’acétonitrile, on obtient le produit attendu sous forme d’un solide fin blanc (rendement = 71 %).
F = 202-204 °C
Exemple 8
15 3-éthyl-5-méthyl-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 1 mais en utilisant l’isothiocyanate d’éthyle à la place de l’isothiocyanate de phényle, on obtient le produit attendu sous forme d’un solide blanc (rendement = 64 %).
F = 102 °C
Exemple 9
20 5-méthyl-1-(4-phénoxyphényl)-3-(2-propényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 1, mais en utilisant l’isothiocyanate d’allyle à la place de l’isothiocyanate de phényle, on obtient le produit attendu sous forme d’un solide beige (rendement = 58 %).
F = 77 °C
Exemple 10
5-méthyl-3-(4-phénoxyphényl)-1-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, mais en utilisant comme produits de départ la N-phénylalanine et l'isothiocyanate de 4-phénoxyphényle, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 83 %).

F = 132 °C

Exemple 11
5-méthyl-1-phényl-3-[4-(phénylthio)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 10, mais en utilisant comme produit de départ l'isothiocyanate obtenu selon la préparation II, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 42 %).

F = 136-138 °C

Exemple 12
1-(4-méthoxyphényl)-5-méthyl-3-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, mais en utilisant comme produits de départ la N-(4-méthoxyphényl)alanine et l'isothiocyanate de 4-phénoxyphényle, on obtient le produit attendu sous forme de cristaux blancs (rendement = 92 %).

F = 208-210 °C

Exemple 13
1-[4-(4-fluorophénoxy)phényl]-5-méthyl-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, mais en utilisant comme produit de départ l'acide obtenu selon la préparation III, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 15 %).

F = 145 °C

Exemple 14
1-[4-(4-hydroxyphénoxy)phényl]-5-méthyl-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, mais en utilisant comme produit de départ le composé obtenu selon la préparation IV, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 53 %).

F = 106-108 °C
Exemple 15
1-[4-(4-hydroxyphényoxy)phényl]-3-(4-méthoxyphényl)-5-méthyl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 14, mais en utilisant l'isothiocyanate de 4-méthoxyphényle à la place de l'isothiocyanate de phényle, on obtient le produit attendu sous forme d'un solide fin blanc (rendement = 15 %).
F = 196-198 °C

Exemple 16
5-méthyl-3-phényl-1-[4-(phénylthio)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, mais en utilisant comme produit de départ le composé obtenu selon la préparation V, on obtient le produit attendu sous forme de cristaux légers jaunes (rendement = 47 %).
F = 84 °C

Exemple 17
1-(4-phénynoxyphényl)-3-(2-propényl)-2-thioxo-4-imidazolidinone

On prépare une solution de 2,71 g (10 mmole) de l'ester éthyllique de la N-[4-(phénynoxy)phényl]glycine dans 30 ml de xylène et on ajoute 1,2 g (12 mmole) d'isothiocyanate d'allyle et 10 ml d'acide acétique. Le mélange réactionnel est chauffé sous agitation pendant 2 h à 110 °C puis concentré sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant par du dichlorométhane. La fraction pure est cristallisée dans l'éther éthyllique, filtrée et séchée. On obtient ainsi le produit attendu sous forme de cristaux jaunes (rendement = 33 %).
F = 158-160 °C

Exemple 18
5-éthyl-1-(4-phénynoxyphényl)-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 17, mais en utilisant comme produit de départ le composé obtenu selon la préparation VI, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 43 %).
F = 158-159 °C
Exemple 19
3-(4-fluorophényl)-5-méthyl-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

On prépare un mélange de 1,29 g (5 mmole) de l’acide obtenu selon la préparation I dans 40 ml d’acétonitrile. On ajoute 1,14 ml (8,4 mmole) de triéthylamine (on obtient une solution), puis on ajoute 1,15 g (7,5 mmole) d’isothiocyanate de 4-fluorophényle. Le mélange réactionnel est maintenu sous agitation pendant 15 h à température ambiante puis le solvant est éliminé sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l’aide d’un mélange cyclohexane/acétate d’éthyle (9/1 ; v/v). On obtient le produit attendu sous forme d’une poudre (rendement = 16 %).
F = 150 °C

Exemple 20
3-(3-fluorophényl)-5-méthyl-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 19, mais en utilisant comme produit de départ l’isothiocyanate de 3-fluorophényle, dans le dichlorométhane, on obtient le produit attendu sous forme de cristaux blancs (rendement = 65 %).
F = 116 °C

Exemple 21
3-(3,4-diméthoxyphényl)-5-méthyl-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 19, mais en utilisant comme produit de départ l’isothiocyanate de 3,4-diméthoxyphényle dans le dichlorométhane, on obtient le produit attendu sous forme d’un solide blanc (rendement = 74 %).
F = 156 °C

Exemple 22
3-(3,4-méthylènedioxyphényl)-5-méthyl-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 19, au départ d’isothiocyanate de 3,4-méthylènedioxyphényle, dans le dichlorométhane, on obtient le produit attendu sous forme de poudre blanche (rendement = 73 %).
F = 185 °C
Exemple 23
3-(cyclopentyl)-5-méthyl-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 19, mais en utilisant comme produit de départ l'isothiocyanate de cyclopentyle, on obtient le produit attendu sous forme de cristaux blancs (rendement = 35 %).

F = 99 °C

Exemple 24
3-(2-méthoxyéthyl)-5-méthyl-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 19, mais en utilisant comme produit de départ l'isothiocyanate de 2-méthoxyéthyle, dans l'éthanol, on obtient le composé attendu sous forme d'un produit gommeux orange (rendement = 76 %).

RMN 1H (300 MHz, CHCl$_3$) : 7,4 (m, 2H) ; 7,33 (m, 2H) ; 7,19 (m, 1H) ; 7,08 (m, 4H) ; 4,42 (q, 1H) ; 4,13 (t, 2H) ; 3,72 (t, 2H) ; 3,39 (s, 3H) ; 1,42 (d, 3H).

Exemple 25
3-(2-hydroxyéthyl)-5-méthyl-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

On prépare une solution de 1,5g (4,21 mmole) du composé obtenu selon l'exemple 24 dans 75 ml de dichlorométhane. Le mélange est refroidi à −70°C et on ajoute 16,8 ml (16,8 mmole) d'une solution normale de tribromure de bore dans le dichlorométhane. Le milieu réactionnel est agité à −70°C pendant 15 mn puis à 0°C pendant 2 h, et ensuite versé sur 500 ml d'eau. Le mélange obtenu est extrait par 500 ml d'acétate d'éthyle. La phase organique est lavée à l'eau, séchée sur sulfate de magnésium et concentrée sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/diéthyléther (80/20 ; v/v). On obtient le produit attendu sous forme de cristaux blancs (rendement = 29 %).

F = 120 °C

Exemple 26 a
5-méthyl-3-[2-(4-morpholinyliéthyl]-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 19, mais en utilisant comme produit de départ l'isothiocyanate de 2-(4-morpholinyliéthyle, on obtient le produit attendu sous forme de mousse blanche (rendement = 58 %).
RMN 1H (300 MHz, DMSO) : 7,47 (m, 4H) ; 7,14 (m, 5H) ; 4,90 (q, 1H) ; 3,90 (t, 2H) ; 3,5 (m, 4H) ; 2,54 (m, 6H) ; 1,25 (d, 3H).

Exemple 26 b

5-méthyl-3-[2-(4-morpholiny1)éthyl]-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone, chlorhydrate

On prépare une solution de 0,27g (0,656 mmole) du composé obtenu selon l'exemple 26a dans 20 ml d'éther diéthyle et 2 ml d'éthanol et on ajoute 0,7ml d'une solution normale de chlorure d'hydrogène dans l'éther éthylique. Il se forme un précipité blanc. On ajoute 25 ml d'éther éthylique, puis on isole le précipité par filtration. Le solide est lavé sur le filtre avec 2 fois 5 ml d'éther éthylique puis séché. On obtient ainsi 0,27g du produit attendu sous forme de fines cristaux blancs (rendement = 94 %).

$F = 246 \, ^{\circ}C$

Exemple 27 a

5-méthyl-3-[3-(4-morpholiny1)propyl]-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 19, mais en utilisant comme produit de départ l'isothiocyanate de 3-(4-morpholiny1)propyle, on obtient le produit attendu sous forme d'une huile jaune pâle (rendement = 61 %).

RMN 1H (300 MHz, DMSO) : 7,45 (m, 4H) ; 7,08 (m, 5H) ; 4,86 (q, 1H) ; 3,82 (t, 2H) ; 3,68 (m, 4H) ; 2,33 (m, 6H) ; 1,82 (m, 2H) ; 1,26 (d, 3H).

Exemple 27 b

5-méthyl-3-[3-(4-morpholiny1)propyl]-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone, chlorhydrate

En opérant de façon analogue à l'exemple 26b, mais en utilisant comme produit de départ le composé obtenu selon l'exemple 27a, on obtient le produit attendu sous forme de cristaux blancs (rendement = 84 %).

$F = 140 \, ^{\circ}C$
Exemple 28 a
5-méthyl-1-(4-phénoxyphényl)-3-(pyridinyl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 19, mais en utilisant comme produit de départ l’isothiocyanate de 3-pyridinyle, on obtient le produit attendu sous forme de mousse blanche (rendement = 68 %).

RMN 1H (300 MHz, DMSO) : 8,63 (m, 2H) ; 7,88 (m, 1H) ; 7,50 (2m, 5H) ; 7,17 (2m, 5H) ; 5,07 (q, 1H) ; 1,39 (d, 3H).

Exemple 28 b
5-méthyl-1-(4-phénoxyphényl)-3-(pyridinyl)-2-thioxo-4-imidazolidinone, chlorhydrate

En opérant de façon analogue à l’exemple 26b, mais en utilisant comme produit de départ le composé obtenu selon l’exemple 28a, on obtient le produit attendu sous forme de cristaux blancs (rendement = 96 %).

F = 140 °C

Exemple 29
5-méthyl-1-(4-phénoxyphényl)-3-(phénylethylméthyl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 19, mais en utilisant comme produit de départ l’isothiocyanate de benzyle, on obtient le produit attendu sous forme d’une huile qui cristallise ensuite (rendement = 57 %).

F = 62 °C

Exemple 30
5,5-diméthyl-3-(4-méthoxyphényl)-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 19, mais en utilisant comme produits de départ l’acide obtenu selon la préparation VII et l’isothiocyanate de 4-méthoxyphényle, on obtient le produit attendu sous forme de cristaux blancs (rendement = 32 %).

F = 144 °C

Exemple 31
1-(4-phénoxyphényl)-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 17, mais en utilisant comme produits de départ l’ester éthylque de la N-(4-phénoxyphényl)glycine, et
l'isothiocyanate de phényle, on obtient le produit attendu sous forme de poudre blanche (rendement = 84 %).

F = 213 °C

Exemple 32

5-méthoxy-1-(4-phényoxyphényl)-3-phényl-2-thioxo-4-imidazolidinone

On prépare une solution de 0,4 g (1,1 mmole) du composé obtenu selon l'exemple 31 dans 60 ml de tétrachlorure de carbone et on ajoute 0,22 g (1,22 mmole) de N-bromosuccinimide. On agite ensuite le milieu réactionnel pendant 1 h à reflux du solvant. Après refroidissement à température ambiante, on ajoute 50 ml de méthanol, on agite le mélange pendant 15 min, puis on concentre sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide de dichlorométhane. Le produit obtenu est cristallisé dans l'éther éthylique, filtré et séché. On obtient le produit attendu sous forme de cristaux orange clair (rendement = 87 %).

F = 164 °C

Exemple 33

5-fluoro-1-(4-phényoxyphényl)-3-phényl-2-thioxo-4-imidazolidinone

On prépare une solution de 0,5 g (1,33 mmole) du composé obtenu selon l'exemple 47, dans 10 ml de dichlorométhane et on ajoute 0,53 ml de (diéthylamino)trifluorure de soufre. Le mélange réactionnel est agité pendant 10 min, puis concentré sous pression réduite. Le résidu obtenu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/cyclohexane (6/4 ; v/v). On obtient le produit attendu sous forme de cristaux beiges (rendement = 63 %).

F = 126 °C

Exemple 34

3,5-diphényl-1-(4-phényoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 19, mais en utilisant comme produits de départ l'acide α-[(4-phényoxyphényl)amino]benzèneacétique et l'isothiocyanate de phényle, on obtient le produit attendu sous forme de poudre blanche (rendement = 20 %).
F = 100 °C

Exemple 35
1-(4-phénoxyphényl)-3-phényl-5-phénylméthyl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 19, mais en utilisant comme produit de départ l’acide obtenu selon la préparation IX et l’isothiocyanate de phényle, on obtient le produit attendu sous forme d’un solide fin blanc (rendement = 30 %).
F = 130 °C

Exemple 36
1-[4-(4-fluorophénoxy)phényl]-3-(4-hydroxyphényl)-5-méthyl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 17, mais en utilisant comme produits de départ le composé obtenu selon la préparation X et l’isothiocyanate de 4-hydroxyphényle dans le toluène, on obtient le produit attendu sous forme de cristaux blancs (rendement = 30 %).
F = 148 °C

Exemple 37
1-[4-(4-fluorophénoxy)phényl]-3-(4-méthoxyphényl)-5-méthyl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 36, mais en utilisant comme produit de départ l’isothiocyanate de 4-méthoxyphényle, on obtient le produit attendu sous forme de cristaux blancs (rendement = 40 %).
F = 194 °C

Exemple 38
1-[4-(3-chlorophénoxy)phényl]-5-méthyl-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 1, mais en utilisant comme produit de départ l’acide obtenu selon la préparation XI, on obtient le produit attendu sous forme d’un solide floconneux blanc (rendement = 70 %).
F = 156 °C

30
Exemple 39
1-[4-(2-chlorophénoxy)phényl]-5-méthyl-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 19, mais en utilisant comme produit de départ le composé obtenu selon la préparation XII et l'isothiocyanate de phényle, on obtient le produit attendu sous forme de poudre blanche (rendement = 25 %).

F = 108 °C

Exemple 40a
1-[4-[3-(diméthylamino)phényoxy]phényl]-5-méthyl-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 17, en utilisant comme produits de départ l'ester obtenu selon la préparation XIII et l'isothiocyanate de phényle, dans le toluène, on obtient le produit attendu sous forme de poudre beige (rendement = 33 %).

F = 135 °C

Exemple 40b
1-[4-[3-(diméthylamino)phényoxy]phényl]-5-méthyl-3-phényl-2-thioxo-4-imidazolidinone, chlorhydrate

On dissout 0,32 g (0,76 mmole) du composé obtenu selon l'exemple 40 a dans 5 ml d'une solution normale de chlorure d'hydrogène dans l'éthanol, à 0 °C. La solution obtenue est ensuite versée lentement sur 30 ml d'éther éthylique refroidi à 0°C. Le précipité formé est séparé par filtration puis séché sous vide. On obtient le produit attendu sous forme d'une poudre blanche (rendement = 91 %).

F = 142 °C

Exemple 41
1-[4-[4-[2-(diéthylamino)-1-oxéthoxy]phényoxy]phényl]-3-(4-méthoxy phényl)-5-méthyl-2-thioxo-4-imidazolidinone, chlorhydrate

On prépare un mélange de 1 g (2,38 mmoles) du composé obtenu selon l'exemple 15, 0,24 g de triéthylamine et 0,23 g de chloroformiate d'éthyle dans 100 ml de dichlorométhane. Le mélange est agité pendant 30 min à température ambiante, puis on ajoute 0,28 g de N,N-diéthylglycine. Après 24 h sous agitation à température ambiante, le mélange réactionnel est versé sur 50 ml d'eau. La phase organique est séparée et la phase aqueuse est extraite par 40 ml de dichlorométhane.
Les phases organiques rassemblées sont lavées à l’eau puis séchées sur sulfate de magnésium et concentrées sous pression réduite. Le résidu semi-solide est repris dans 25 ml d’acétate d’éthyle et on ajoute 2,5 ml d’une solution normale de chlorure d’hydrogène dans l’éther éthylique. Le précipité obtenu est séparé par filtration, rincé à l’aide de 4 ml d’éther éthylique et séché sous vide. On obtient ainsi le produit attendu sous forme de cristaux jaune pâle (rendement = 96 %).

F = 120 °C

Exemple 42
5-méthyl-1-(4-phénoxyphényl)méthyl-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 40a, mais en utilisant comme produit de départ l’ester obtenu selon la préparation XIV, on obtient le produit attendu sous forme de cristaux blancs (rendement = 86 %).

F = 122 °C

Exemple 43
5-méthyl-1-(2-phénoxy-5-pyridinyl)-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 19, mais en utilisant comme produits de départ l’acide obtenu selon la préparation XV et l’isothiocyanate de phényle, on obtient le produit attendu sous forme de cristaux blancs (rendement = 25 %).

F = 156 °C

Exemple 44
5-méthyl-3-(4-phénoxyphényl)-1-phénylméthyl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 19, mais en utilisant comme produit de départ la N-(phénylméthyl)alanine et l’isothiocyanate de 4-phénoxyphényle, on obtient le produit attendu sous forme d’une poudre blanc cassé (rendement = 50 %).

F = 138 °C

Exemple 45
5-méthyl-3-(3-phénoxyphényl)-1-(2-propényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l’exemple 17, mais en utilisant comme produits de départ l’ester éthylique de la N-(2-propényl)alanine et l’isothiocyanate de 3-phénoxyphényle, on obtient le produit attendu sous forme de cristaux blancs (rendement = 77 %).
F = 88 °C

Exemple 46

3-(4-nitrophényl)-1-(4-phénoxyphényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 19, mais en utilisant comme produit de départ la N-(4-phénoxyphényl)glycine et l'isothiocyanate de 4-nitrophényle, on obtient le produit attendu sous forme de poudre beige (rendement = 40 %).

F = 204 °C

Exemple 47

5-hydroxy-1-(4-phénoxyphényl)-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 32, mais en traitant le dérivé bromé par de l'eau en remplacement du méthanol, on obtient le produit attendu sous forme de cristaux orange pâle (rendement = 61 %).

F = 160 °C

Les structures chimiques des composés décrits précédemment sont résumées dans le tableau I ci-après.

Le tableau I regroupe les exemples 1 à 47 décrits précédemment.

Le tableau II regroupe d'autres exemples de composés 48 à 137, obtenus selon des méthodes de préparation analogues à celles utilisées pour l'obtention des exemples 1 à 48. Les lettres A et E indiquant la méthode de préparation correspondent respectivement aux procédés des exemples 1 (à partir d'un acide) et 18 (à partir d'un ester).
TABLEAU I

<table>
<thead>
<tr>
<th>EX</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>(S)CH₃</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>(R)CH₃</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Structure 1</td>
<td>Structure 2</td>
<td>R</td>
<td>H</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>C$_2$H$_5$</td>
<td>H</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>No.</td>
<td>Structure 1</td>
<td>Structure 2</td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>26b</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>27b</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>28b</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>H</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>CH$_3$</td>
<td>CH$_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>苯</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>苯</td>
<td>OCH₃</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>苯</td>
<td>F</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>苯</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>苯</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>苯-OH</td>
<td>CH₃</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>苯-O-CH₃</td>
<td>CH₃</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>苯</td>
<td>CH₃</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>苯</td>
<td>CH₃</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td></td>
<td>R1</td>
<td>R2</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>---</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>40a</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>40b</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td>HO</td>
<td>H</td>
</tr>
<tr>
<td>Ex.</td>
<td>R_3</td>
<td>R_2</td>
<td>R_1</td>
<td>aspect</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>48</td>
<td>62</td>
<td>168</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>49</td>
<td>30</td>
<td>139</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>204</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>113</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td>78</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>53</td>
<td>53</td>
<td>78</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
<td>78</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td>78</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Ex.</td>
<td>R₄</td>
<td>R₃</td>
<td>R₂</td>
<td>R₁</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>56</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>57</td>
<td>H</td>
<td>H</td>
<td>C'</td>
<td>R</td>
</tr>
<tr>
<td>58</td>
<td>H</td>
<td>H</td>
<td>C'</td>
<td>R</td>
</tr>
<tr>
<td>59</td>
<td>H</td>
<td>H</td>
<td>C'</td>
<td>R</td>
</tr>
<tr>
<td>60</td>
<td>H</td>
<td>H</td>
<td>C'</td>
<td>R</td>
</tr>
<tr>
<td>61</td>
<td>H</td>
<td>H</td>
<td>C'</td>
<td>R</td>
</tr>
<tr>
<td>62</td>
<td>H</td>
<td>H</td>
<td>C'</td>
<td>R</td>
</tr>
<tr>
<td>63</td>
<td>H</td>
<td>H</td>
<td>C'</td>
<td>R</td>
</tr>
<tr>
<td>Ex.</td>
<td>R₁</td>
<td>R₂</td>
<td>R₃</td>
<td>R₄</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Ex.</td>
<td>R₁</td>
<td>R₂</td>
<td>R₃</td>
<td>R₄</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td>C₆H₅</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td>C₆H₅</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td>C₆H₅</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td>C₆H₅</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td>C₆H₅</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td>C₆H₅</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td>C₆H₅</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td>C₆H₅</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td>C₆H₅</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>Ex.</td>
<td>R₁</td>
<td>R₂</td>
<td>R₃</td>
<td>R₄</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>82</td>
<td>H₂C</td>
<td>H₂C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Ex.</td>
<td>R₁</td>
<td>R₂</td>
<td>R₃</td>
<td>R₄</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R₂</td>
<td>R₃</td>
<td>R₄</td>
<td>F°C</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>H</td>
<td>H</td>
<td>184</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>H</td>
<td>H</td>
<td>141</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>H</td>
<td>H</td>
<td>148</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>H</td>
<td>H</td>
<td>176</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>H</td>
<td>H</td>
<td>RMN 105</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>H</td>
<td>H</td>
<td>RMN 105</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>H</td>
<td>H</td>
<td>RMN 107</td>
</tr>
<tr>
<td>Ex.</td>
<td>R₁</td>
<td>R₂</td>
<td>R₃</td>
<td>R₄</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex.</td>
<td>R₁</td>
<td>R₂</td>
<td>R₃</td>
<td>F/C</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td>H</td>
<td>93C</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td>H</td>
<td>93C</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td>H</td>
<td>93C</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
<td>H</td>
<td>93C</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td>H</td>
<td>93C</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td>H</td>
<td>93C</td>
</tr>
<tr>
<td>124</td>
<td>F</td>
<td></td>
<td>H</td>
<td>93C</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td>H</td>
<td>93C</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td>H</td>
<td>93C</td>
</tr>
<tr>
<td>Ex.</td>
<td>R₁</td>
<td>R₂</td>
<td>R₃</td>
<td>R₄</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td></td>
<td>H</td>
<td>H₂C</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td>H</td>
<td>H₂C</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
<td>H</td>
<td>H₂C</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td>H</td>
<td>H₂C</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
<td>H</td>
<td>H₂C</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td>H</td>
<td>H₂C</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td>H</td>
<td>H₂C</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
<td>H</td>
<td>H₂C</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td>H</td>
<td>H₂C</td>
</tr>
<tr>
<td>Ex.</td>
<td>R₁</td>
<td>R₂</td>
<td>R₃</td>
<td>R₄</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td></td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>
(*) chlorhydrate

(**) Ex 124: Ce composé est préparé au départ de l’exemple 31, dans le tétrachlorure de carbone, par action du N-fluorobenzènesulfonimide (2 équivalents) et du DAST (diethylaminoisulfur trifluoride, 3 équivalents) à reflux du solvant pendant 10 h, puis purification du produit brut par chromatographie sur gel de silice.

(***) Ex 135 : Ce composé est préparé dans le dichlorométhane par action du thiocarboxyldiimidazole sur le 3-aminopropanol en présence de l’amine acide obtenu selon la préparation I et de triéthylamine, pendant 24 h à température ambiante, puis purification du produit brut par chromatographie sur gel de silice.

10
RMN 60
RMN 1H: (DMSO d$_6$, 300 MHz) : 1,3 (d, 3H) ; 4,37 (m, 2H) ; 4,70 (q, 1H) ; 5,11 (m, 2H) ; 5,81 (m, 1H) ; 6,96 (d, 1H) ; 7,05 (d, 2H) ; 7,18 (t, 1H) ; 7,25 (t, 1H) ; 7,38 (m, 3H) ; 7,53 (d, 1H).

15
RMN 79
RMN 1H: (DMSO d$_6$, 250 MHz) : 4,80 (s, 2H) ; 4,99 (s, 2H) ; 6,98 (m, 4H) ; 7,14 (t, 1H) ; 7,39 (m, 7H) ; 7,69 (d, 2H).

20
RMN 80
RMN 1H: (DMSO d$_6$, 250 MHz) : 1,26 (d, 3H) ; 4,99 (s, 2H) ; 5,03 (m, 1H) ; 6,99 (m, 4H) ; 7,14 (t, 1H) ; 7,42 (m, 7H) ; 7,53 (m, 2H).

RMN 81
MN 1H: (DMSO d$_6$, 300 MHz) : 1,37 (d, 6H) ; 5,02 (s, 2H) ; 7,00 (t, 4H) ; 7,15 (t, 1H) ; 7,38 (m, 6H) ; 7,53 (m, 3H).

RMN 97
RMN 1H: (DMSO d$_6$, 300 MHz) : 1,33 (d, 3H) ; 4,27 (q, 1H) ; 4,36 (m, 2H) ; 4,78 (d, 1H) ; 5,12 (dd, 2H) ; 5,23 (d, 1H) ; 5,83 (m, 1H) ; 6,99 (m, 4H) ; 7,14 (t, 1H) ; 7,39 (m, 4H).
RMN 99
RMN 1H: (DMSO d$_6$, 300 MHz) : 1,27 (d, 3H) ; 4,39 (d, 2H) ; 5,00 (q, 1H) ; 5,17 (m, 2H) ; 5,83 (m, 1H) ; 7,06 (m, 3H) ; 7,18 (t, 1H) ; 7,28 (m, 2H) ; 7,45 (m, 3H).

5 RMN 105
RMN 1H: (DMSO d$_6$, 300 MHz) : 1,17 (d, 3H) ; 2,97 (m, 2H) ; 3,98 (t, 2H) ; 4,83 (q, 1H) ; 7,08 (d, 4H) ; 7,31 (m, 6H) ; 7,46 (m, 4H).

RMN 107
RMN 1H: (DMSO d$_6$, 250 MHz) : 1,30 (d, 3H) ; 4,32 (q, 1H) ; 4,84 (d, 1H) ; 4,94 (s, 2H) ; 5,21 (d, 1H) ; 6,98 (t, 4H) ; 7,17 (m, 1H) ; 7,32 (m, 9H).

RMN 109
RMN 1H: (DMSO d$_6$, 300 MHz) : 1,37 (d, 3H) ; 4,18 (dd, 1H) ; 4,39 (q, 1H) ; 4,59 (dd, 1H) ; 4,90 (s, 2H) ; 5,27 (dd, 2H) ; 5,81 (m, 1H) ; 6,97 (m, 4H) ; 7,11 (t, 1H) ; 7,36 (m, 4H).

RMN 117
RMN 1H: (CDCl$_3$, 250 MHz) : 0,9 (dd, 6H) ; 1,83 (m, 3H) ; 4,66 (q, 1H) ; 7,09 (m, 4H) ; 7,12 (t, 1H) ; 7,38 (m, 6H) ; 7,50 (m, 3H).

RMN 135
RMN 1H: (CDCl$_3$, 250 MHz) : 1,43 (d, 3H) ; 1,96 (m, 2H) ; 2,67 (t, 1H) ; 3,63 (q, 2H) ; 4,10 (t, 2H) ; 4,43 (q, 1H) ; 7,07 (m, 4H) ; 7,18 (t, 1H) ; 7,29 (m, 2H) ; 7,38 (m, 2H).

Les composés de formule (I) selon l’invention ont été soumis à des tests pharmacologiques afin d’évaluer leur potentiel à diminuer le taux de glycémie dans le sang.

30 Protocole expérimental

Les études in vivo ont été réalisées chez des souris C57BL/KsJ-db/db mâles en provenance du CERJ (Route des Chênes Secs- BP 5 - 53940 Le Genest St Isle – France).
Les animaux sont hébergés dans des cages munies d’un couvercle filtrant et ont libre accès à une nourriture standard irradiée ainsi qu’à de l’eau de boisson filtrée. Tout le matériel utilisé (cages, biberons, pipettes et copeaux) est stérilisé par autoclavage, irradiation ou trempage dans un désinfectant. La température de la pièce est maintenue à 23 ± 2 °C. Le cycle de lumière et d’obscurité est de 12 h.

Pendant la période d’acclimatation, chaque animal est marqué à l’aide d’une puce électronique, dont l’implantation est effectuée sous anesthésie par inhalation d’un mélange CO₂/O₂.

Des groupes de 8 à 10 souris sont constitués et les traitements débutent alors que les animaux sont âgés de 9 à 11 semaines. Les produits sont mis en suspension dans de la gomme arabique à 3% et administrés aux animaux à l’aide d’une canule de gavage, pendant 10 jours à raison de deux administrations par jour, ainsi que le matin du onzième jour. Les produits sont testés à des doses inférieures à 200 mg/kg, généralement 10 mg/kg. Les animaux du groupe contrôle reçoivent le véhicule d’administration uniquement.

Un prélèvement sanguin est effectué avant traitement, puis quatre heures après la dernière administration du produit. Les animaux sont anesthésiés par inhalation d’un mélange CO₂/O₂, le sang est prélevé au niveau du sinus rétro-orbitaire, recueilli dans un tube sec et maintenu au froid. Le sérum est séparé par centrifugation à 2800 g (15 minutes, 4°C) dans l’heure suivant le prélèvement. Les échantillons sont conservés à −20°C jusqu’à l’analyse.

Les taux sériques de glucose et de triglycérides sont déterminés sur analyseur Konélab 30, à l’aide de kits Konélab. Les animaux dont la glycémie avant traitement était inférieure à 3 g/l sont systématiquement exclus de l’étude.

Pour chaque groupe, les taux moyens de glucose et de triglycérides après traitement sont calculés et les résultats sont exprimés en pourcentage de variation de ces moyennes par rapport au groupe contrôle, après vérification de l’homogénéité des moyennes avant traitement.

Les expérimentations effectuées sur les composés décrits dans l’invention montrent de façon générale des baisses très sensibles de la glycémie et de la triglycéridémie, avec des valeurs allant jusqu’à −60% pour la glycémie et −60% pour
les triglycérides. On a observé également que le traitement avec les composés selon l'invention s'accompagnait d'une modification favorable des paramètres lipidiques.

Les composés selon l'invention peuvent être utilisés en tant que principe actif d'un médicament destiné au traitement du diabète chez les mammifères et, plus particulièrement, chez l'homme. Ils peuvent être utilisés pour lutter contre les hypertriglycéridémies et les maladies provoquées par un excès de triglycérides dans le sang, telles que par exemple l'athérosclérose.

D'une façon plus générale, ils peuvent être utiles pour la prévention ou le traitement des maladies associées à une hyperglycémie ou une hypertriglycéridémie telles que par exemple le diabète de type II, l'hypertension, les dyslipidémies, les maladies cardiovasculaires, et l'obésité ; ils sont également utiles pour le traitement des maladies dues à des complications microvasculaires ou macrovasculaires chez le diabétique, notamment au niveau du système rénal ou du système nerveux central, lesdites complications étant généralement associées au syndrome métabolique X. Les composés selon l'invention sont également utiles pour traiter l'ischémie cérébrale ou l'accident vasculaire cérébral.

Des compositions pharmaceutiques incorporant les composés selon l'invention peuvent être formulées notamment par association de ces composés avec des excipients non toxiques habituels selon des procédés bien connus de l'homme du métier, de préférence de façon à obtenir des médicaments administrables par voie orale, par exemple des gélules ou des comprimés. De façon pratique, en cas d'administration du composé par voie orale, la posologie quotidienne chez l'homme sera de préférence comprise entre 5 et 500 mg. Bien que les formulations sous forme de gélules ou de comprimés soient préférées pour des raisons de confort du patient, les composés selon l'invention peuvent également être prescrits sous d'autres formes galéniques, par exemple si le patient n'accepte pas ou n'est pas en état d'accepter les formulations orales solides ou si le traitement nécessite une biodisponibilité très rapide du principe actif. On pourra ainsi présenter le médicament sous forme de sirop buvable, ou sous forme injectable, de préférence sous-cutanée ou intramusculaire.
REVENDICATIONS

1. Composé dérivé de la 2-thiohydantoïne, caractérisé en ce qu’il est choisi parmi :

a) les composés de formule

\[
\begin{array}{c}
\text{N} \\
\text{S} \\
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3 \\
\text{R}_4 \\
\text{O}
\end{array}
\]

dans laquelle

• \(R_1 \) et \(R_2 \), indépendamment l’un de l’autre représentent
 - un groupe alkyle en C\(_1\)-C\(_5\),
 - un groupe alcènyle en C\(_3\)-C\(_4\),
 - un groupe hydroxyalkyle en C\(_2\)-C\(_3\),
 - un groupe alcoxyalkyle en C\(_3\)-C\(_5\),
 - un groupe CH\(_2\)-COOCH\(_3\),
 - un groupe N,N-dialkylaminoalkyle,
 - un groupe

\[
\begin{array}{c}
\text{N} \\
\text{Y}
\end{array}
\]

\(m \) représente 2 ou 3, et

\(Y \) représente O ou N-CH\(_3\),

- un groupe dibenzofurane,
- un groupe (CH\(_2\))\(_p\)-Ar, dans lequel

\(p \) représente 0 ou 1, et

- Ar représente un noyau aromatique phényle ou pyridinyle, non substitué ou substitué par un ou plusieurs atomes ou groupes d’atomes choisis parmi les halogènes, les groupes alkyl en C\(_1\)-C\(_4\), hydroxy, nitro, alcoxy en C\(_1\)-C\(_3\), méthylène dioxy, ester, trifluorométhyl, trifluorométhoxy, cyano, morpholinyle ou le groupe

\[
\begin{array}{c}
\text{N} \\
\text{Y}
\end{array}
\]

\(m \) représente 2 ou 3, et

\(Y \) représente O ou N-CH\(_3\),

- un groupe dibenzofurane,
- un groupe (CH\(_2\))\(_p\)-Ar, dans lequel

\(p \) représente 0 ou 1, et

- Ar représente un noyau aromatique phényle ou pyridinyle, non substitué ou substitué par un ou plusieurs atomes ou groupes d’atomes choisis parmi les halogènes, les groupes alkyl en C\(_1\)-C\(_4\), hydroxy, nitro, alcoxy en C\(_1\)-C\(_3\), méthylène dioxy, ester, trifluorométhyl, trifluorométhoxy, cyano, morpholinyle ou le groupe
dans lequel
- A représente O ou S,
- X représente C ou N et,
- \(R_5 \) représente un atome d’hydrogène, un atome d’halogène, un groupe N,N-dialkylation, un groupe alcoxy en C_1-C_3, ou un groupe hydroxy libre ou estérisé par un aminoacide,
- \(R_3 \) représente un atome d’hydrogène, un atome d’halogène, un groupe alkyle en C_1-C_4, un groupe alcoxy en C_1-C_4, un groupe hydroxy, un groupe phényle ou un groupe benzyle,
- \(R_4 \) représente un atome d’hydrogène, un atome d’halogène ou un groupe alkyle en C_1-C_4,

avec la condition que l’un au moins des substituants \(R_1 \) et \(R_2 \) comprenne dans sa structure 2 noyaux aromatiques choisis parmi les groupes phényle ou pyridinyle, ou représente le groupe dibenzofuranyle et

b) les sels d’addition des composés de formule (I) avec un acide non toxique lorsque lesdits composés de formule (I) comprennent une fonction salifiable basique.

2. Composé selon la revendication 1, caractérisé en ce qu’il est choisi parmi :
- a) les composés de formule :

\[
\begin{align*}
\text{dans laquelle :} \\
\text{- } R_1 \text{ représente} \\
\text{ - un groupe alcényle en C}_3\text{-C}_4, \\
\text{ - un groupe dibenzofuranyle,} \\
\text{ - un groupe (CH}_2\text{)}_n\text{-Ar dans lequel} +
\end{align*}
\]

\[
\text{(I)}
\]
n représente 0 ou 1, et
Ar représente un noyau aromatique phényle ou pyridinyle, non substitué ou substitué par un ou plusieurs des atomes ou groupes d’atomes choisis parmi : les halogènes, les groupes alkyle en C₁-C₄, nitro, alcoxy en C₁-C₃, alcoxyalkyle en C₃-C₄, ou le groupe

\[\text{A} \text{---} \text{X} \text{---} \text{R₅} \]

dans lequel
A représente O ou S,
X représente C ou N et,
R₅ représente un atome d’hydrogène, un atome d’halogène, un groupe N,N-di(C₁-C₃)alkylamino, un groupe alcoxy en C₁-C₃, ou un groupe hydroxy libre ou estérifié par un aminooacide,

- R₂ représente
 - un groupe alkyle en C₁-C₅,
 - un groupe alcènyle en C₃-C₄,
 - un groupe hydroxyalkyle en C₂-C₃,
 - un groupe alcoxyalkyle en C₃-C₅,
 - un groupe CH₂-COOCH₃,
 - un groupe N,N-di(C₁-C₃)alkylamino(C₁-C₃)alkyl,
- un groupe

\[(\text{CH₃})ₙ \text{---} \text{N} \text{---} \text{Y} \]
dans lequel m représente 2 ou 3, et
Y représente O ou N-CH₃,

- un groupe (CH₂)p-Ar, dans lequel
 p représente 0 ou 1, et

Ar représente un noyau aromatique phényle ou pyridinyle, non substitué ou substitué par un ou plusieurs atomes ou groupes d’atomes choisi(s) parmi les halogènes, les groupes alkyl en C₁-C₄, hydroxy, nitro, alcoxy en C₁-C₃.
méthylènedioxy, ester, trifluorométhyl, trifluorométhoxy, cyano, morpholinyle ou le groupe

\[\text{---B---} \]

dans lequel

5 B représente O ou S ;

- \(R_3 \) représente un atome d’hydrogène, un atome d’halogène, un groupe alkyle en C\(_{1-4}\), un groupe alcoxy en C\(_{1-4}\), un groupe hydroxy, un groupe phényle ou un groupe benzyle,

- \(R_4 \) représente un atome d’hydrogène, un atome d’halogène ou un groupe alkyle en C\(_{1-4}\),

avec la condition que l’un au moins des substituants \(R_1 \) et \(R_2 \) comprenne dans sa structure 2 noyaux aromatiques choisis parmi les groupes phényle ou pyridinyle ou que \(R_1 \) représente le groupe dibenzofuranyle.

3. Composé selon l’une des revendications 1 ou 2, caractérisé en ce que l’un des radicaux \(R_1 \) ou \(R_2 \) représente le groupe phénolylphényle ou phénylthiophényle, les radicaux \(R_3 \) et \(R_4 \) et l’autre radical \(R_1 \) ou \(R_2 \) sont tels que définis dans l’une des revendications 1 ou 2.

4. Composé de formule (I) selon la revendication 1, caractérisé en ce que \(R_3 \) représente un groupe méthyle et \(R_4 \) représente un atome d’hydrogène ou un groupe méthyle.

5. Procédé de préparation d’un composé de formule (I) selon l’une quelconque des revendications 1 à 4, caractérisé en ce qu’il comprend les étapes consistant à :

a) faire réagir un acide de formule

\[\text{H} \]
\[\text{N} \]
\[\text{C} \]
\[\text{COOH} \]

(II)

dans laquelle \(R_1 \) et \(R_4 \) sont tels que définis précédemment dans la revendication 1 et \(R_3 \) représente H, alkyle en C\(_{1-4}\), phényle ou benzyle,

avec un isothiocyanate de formule (III),
dans laquelle R_2 représente un groupe tel que défini précédemment dans la revendication 1, dans un solvant, à une température comprise entre 20°C et la température d'ébullition du solvant, en présence d'une base aprotique et pendant 1 à 20 heures, pour obtenir le composé de formule (I)

\[
\begin{aligned}
R_3 & \quad R_4 \\
S & \quad \text{(I)}
\end{aligned}
\]

dans laquelle R_1, R_2, R_3 et R_4 conservent la même signification que dans les produits de départ

b) si nécessaire, lorsque le composé de formule (I) obtenu ci-dessus comporte une fonction salifiable basique, telle que par exemple une amine, faire réagir ledit composé avec un acide minéral ou organique, dans un solvant anhydre, pour obtenir le sel du composé de formule (I).

6. Procédé de préparation d'un composé de formule (I) selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il consiste à :

a) faire réagir un ester de formule (IV)

\[
\begin{aligned}
H & \quad \text{(IV)}
\end{aligned}
\]
dans laquelle R_1 et R_4 sont tels que définis dans la revendication 1, R_3 représente H, alkyle en C$_1$-C$_4$, phényle ou benzyle et R représente un groupe alkyle en C$_1$-C$_4$, préférentiellement un groupe méthyle, éthyle ou isopropyle, avec un isothiocyanate de formule (III),

\[
\begin{aligned}
R_2 & \quad \text{(III)}
\end{aligned}
\]
la réaction étant conduite dans un solvant, en présence d’un acide faible, à une température comprise entre 80 °C et la température d’ébullition du solvant, pendant 0,5 à 5 heures, pour obtenir le composé de formule (I)

\[\text{(I)} \]

dans laquelle

R₁, R₂, R₃ et R₄ conservent la même signification que dans les composés de départ ;

b) si nécessaire, dans le cas où le composé de formule (I) comprend une fonction salifiable basique, faire réagir ledit composé avec un acide pour obtenir le sel correspondant.

7. Composition pharmaceutique, caractérisée en ce qu’elle contient, en association avec au moins un excipient physiologiquement acceptable, au moins un composé de formule (I) selon l’une quelconque des revendications 1 à 4.

8. Composé de formule (I) ou l’un de ses sels d’addition avec un acide pharmaceutiquement acceptable selon l’une quelconque des revendication 1 ou 2 en tant que substance pharmacologiquement active.

9. Utilisation d’un composé de formule (I) ou d’un de ses sels d’addition avec un acide pharmaceutiquement selon l’une quelconque des revendications 1 à 4 pour la préparation d’un médicament destiné au traitement du diabète et des maladies dues à une hyperglycémie.

10. Utilisation d’un composé de formule (I) ou d’un de ses sels d’addition avec un acide pharmaceutiquement selon l’une quelconque des revendications 1 à 4 pour la préparation d’un médicament destiné au traitement des hypertriglycéridémies et des dyslipidémies.

11. Utilisation d’un composé de formule (I) ou d’un de ses sels d’addition avec un acide pharmaceutiquement selon l’une quelconque des revendications 1 à 4 pour la préparation d’un médicament destiné au traitement de l’obésité.
12. Utilisation d'un composé de formule (I) ou d'un de ses sels d'addition avec un acide pharmaceutiquement acceptable selon l'une quelconque des revendications 1 à 4 pour la préparation d'un médicament destiné au traitement des accidents vasculaires cérébraux.
DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>D,A</td>
<td>EP 0 721 944 B (SUNTORY LTD) 17 janvier 2001 (2001-01-17) * page 7, ligne 3 - ligne 4; revendications 1,4 *</td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 01 16122 A (MAXIA PHARMACEUTICALS INC) 8 mars 2001 (2001-03-08) * page 43 - page 45; revendications 1,31-33 *</td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 0 002 259 A (WELLCOME FOUND) 13 juin 1979 (1979-06-13) * page 11, ligne 7 - ligne 12; revendication 1 *</td>
<td>1-12</td>
<td></td>
</tr>
</tbody>
</table>

Date d'achèvement de la recherche: 16 avril 2003
Examinateur: Schuemacher, A

CATÉGORIE DES DOCUMENTS CITÉS

- X: particulièrement pertinent à lui seul
- Y: particulièrement pertinent en combinaison avec un autre document de la même catégorie
- A: arrière-plan technologique
- O: divulgation non-écrite
- P: document intercalaire

- T: théorie ou principe à la base de l'invention
- E: document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a pas été publié qu'à cette date de dépôt ou qu'à une date ultérieure.
- D: cité dans la demande
- U: cité pour d'autres raisons
- &: membre de la même famille, document correspondant
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82