The present invention relates to a two-way envelope having a removable rear flap with an outgoing addressee portion and a front panel with an incoming addressee portion for the sending and returning of items, such as through the US mail, a method of its manufacture by web equipment, and methods of its use. The rear flap is attached to the top of the rear panel. It is sufficiently long that it covers the incoming addressee portion when folded over the front panel. It may have a fold allowing a lower portion of the rear flap to be folded under the rear flap exposing the outgoing and incoming addressee portions.
FIG. 5

Start ~110

Convey web material ~112

Apply a first barrier layer longitudinally on the first surface of the web in the front panel region. ~114

Apply a second barrier layer longitudinally on the first surface of the web in the rear flap region. ~115

Print a return address on the second surface of the web in the front panel region and in the rear flap. ~116

Apply first adhesive material longitudinally to a first surface of the web in a front flap region. ~118

Apply second adhesive material longitudinally to the first surface in a lower portion region of a rear flap region. ~119

Apply third adhesive material transversely to the first surface of the web at spaced transverse intervals in a front panel region. ~120

Longitudinally weaken the web between the rear flap region and the rear panel region. ~122

Longitudinally weaken the web in between the outgoing addressee portion and the second adhesive material. ~124

Longitudinally fold the web to form the front flap region. ~126

Longitudinally fold the web to form the front panel region. ~128

Longitudinally fold the web to form the lower portion region. ~130

Longitudinally fold the web so that the rear flap region is folded over the front flap region. ~132

Transversely cut the web to form an individual two-way envelope. ~136

End or continue with steps 114-136 ~138
Web of material

Produce envelope on web equipment

Computer image outgoing and incoming addressee data on envelope

Insert DVD into envelope

Send envelope
TWO-WAY MAILING ENVELOPE AND METHOD

TECHNICAL FIELD

[0001] The present invention relates to a two-way envelope that is particularly suitable for the sending and returning of items, such as through the postal service, such as the United States Postal Service, its manufacture, and methods of using the envelope. More particularly, the present invention relates to a two-way envelope having a removable rear flap with an outgoing address and a front panel with an incoming address.

BACKGROUND OF THE INVENTION

[0002] The rental of DVDs by mail is becoming increasingly popular. Typically, the rental company mails DVDs to a customer in a two-way envelope. After viewing the DVD, the customer returns the DVD in the two-way envelope. In order to reuse the two-way envelope, a renter may have to remove silicone strips from the envelope and complete several steps.

[0003] A need exists for a two-way envelope that can be economically made and that minimizes waste in production and use. A need exists for a two-way envelope that is easy to convert into a return envelope. A need exists for a simple method to send items and to receive returned items.

[0004] Upon receipt of a DVD from a customer, the DVD rental company typically sends the renter another DVD. To maximize the availability of DVDs and minimize customer wait times, DVD rental companies try to minimize the amount of time a DVD spends in transit. To that end, DVD rental companies may have many distribution centers and a given DVD may be mailed from one distribution center to consumers anywhere in the United States and returned to another distribution center. In addition, DVD rental companies may mail thousands of DVDs every day. Imaging addresses onto prior art adhesive labels and manually applying the adhesive labels onto envelopes is too labor-intensive. Incoming and outgoing addresses can also be imaged onto prior art envelopes, but this requires duplexing equipment or multiple imaging devices.

[0005] Thus, a need exists for an economical two-way envelope that can be handled by automated mailing equipment. A need exists for an economical method of sending items and resending the same or similar items to the initial sender or to another recipient.

[0006] The manufacture of standard two-way envelopes can be capital intensive from an equipment acquisition and operations standpoint and can produce a relatively large amount of waste. Consequently, a need exists for a two-way envelope that is manufactured economically, at a high rate of production and by a method that reduces or minimizes material waste and the requirement of expensive and special equipment and high production costs.

SUMMARY OF THE INVENTION

[0007] In accordance with one aspect of the present invention, a two-way envelope is provided that has a rear flap with an area for indicating the outgoing addressee on the flap’s outer surface. The rear flap is meant to fold over and be sufficiently long to cover an area for indicating the incoming addressee on the outer surface of the front panel of the envelope while the outgoing address is exposed. A lower portion of the rear flap can be folded under the rear flap exposing the area for indicating the incoming addressee. When so folded, the incoming addressee and outgoing addressee can be imaged in a single pass by a single imaging device. When a person wants to reuse the two-way envelope to return an item, the rear flap can be removed and the front flap, which is connected to the front panel, can be used to seal the envelope.

[0008] In accordance with another aspect of the invention, both flaps have pressure sensitive adhesive and two corresponding barrier coats. The barrier coats are located on an upper portion of the rear flap and on the inner surface of the front panel. The barrier coats engage the adhesive on the flaps to hold the flaps in position for easy handling, and they release the adhesive so that the flaps can be used to seal the two-way envelope of the present invention. A resealable pressure sensitive adhesive is preferably used for the rear flap.

[0009] In one embodiment, there is a line of weakness between the rear flap and the rear panel. The line of weakness facilitates the removal of the rear flap when returning an item.

[0010] In accordance with one aspect of the present invention, a two-way envelope is provided that has a rear flap with an area for indicating the outgoing addressee on the rear flap’s outer surface. The rear flap is meant to fold over and be sufficiently long to cover an area for indicating the incoming addressee on the outer surface of the front panel of the envelope while the outgoing addressee area is apparent. The rear flap is connected to the top edge of the rear panel along its top edge. Similarly, a front flap is connected to the top edge of the front panel. Both flaps have adhesive on their inner surface.

[0011] In one embodiment, the incoming address portion and the outgoing addressee portion are apparent when the rear flap is folded over the front panel and a lower portion of the rear flap is folded under the rear flap. This feature allows outgoing and incoming addresses to be imaged on the envelope in a single pass by a single imaging device, minimizing manual handling and minimizing capital investment in imaging equipment. There is also a barrier layer on the inner surface of the front panel and on the inner surface of the upper portion of the rear flap. The embodiment also has two lines of weakness, one between the rear panel and the rear flap and one between the outgoing addressee portion and the adhesive on the rear flap.

[0012] In another embodiment, the adhesive on the rear flap is a moisture sensitive adhesive. The envelope also has a line of weakness between the rear panel and the rear flap and a line of weakness between the outgoing addressee portion and the second adhesive.

[0013] Numerous advantages may be realized by the present invention. A two-way envelope in accordance with the invention includes all components that a recipient needs to respond to the sender, including a return envelope, which can include return postage. The two-way envelope of the present invention makes it easy and convenient for someone to send items and to receive returned items. In addition, the current envelope minimizes waste.

[0014] In accordance with the present invention, a method of making a two-way envelope is provided. In accordance
with the method of the invention, envelopes are made from a web of material. “Web” means an elongated strip of thin, flexible material (for example, paper), which may be obtained from a roll of paper or any suitable source, for example.

[0015] Preferably, the methods of the present invention are practiced using web handling and/or web printing equipment. Such equipment is well known in the web printing and web handling art and is used to perform various operations on a web or webs of material including, but not limited to, conveying, printing, folding, gluing and cutting, for example. The methods in accordance with the invention permit the entire envelope assembly to be made continuously during one production run set-up, rather than using less-efficient step-wise processes.

[0016] In accordance with one aspect of the invention, a method of making a two-way envelope of the type previously described is provided. The elements or steps of the methods of the invention generally do not require any particular order as will be known by one skilled in the art or unless otherwise specified. While the web material is conveyed, the web is longitudinally folded to form a front flap region. Then, the web is longitudinally folded to form a front panel region. Then, the web is longitudinally folded so that the rear flap region is folded over the front flap region. The folds are positioned so that the rear flap region covers an incoming addressee portion of the front panel region. Finally, the web is transversely cut to form an individual two-way envelope.

[0017] In accordance with another aspect of the invention, a method of sending an item and receiving a returned item is provided. First an item is placed into a two-way envelope. The envelope has a front panel having a top edge, an outer surface, and an incoming addressee portion on the outer surface; a rear panel having a top edge, the rear panel connected to the front panel by a fold; a front flap attached to the top edge of the front panel, the front flap having an inner surface and a first adhesive on the inner surface; and a rear flap having an outer surface, an outgoing addressee portion on the outer surface, an inner surface, and a second adhesive material on the inner surface. The rear flap is attached to the top edge of the rear panel, and the rear flap is sufficiently long so that when the rear flap is folded over the front panel, the rear flap covers the incoming addressee portion and the outgoing addressee portion is exposed. Next, the envelope is sent to a recipient. Sending is intended to have a broad meaning. For example, sending includes, but is not limited to, mailing or delivering via a private delivery service. Finally, a returned item is received from the recipient in the envelope.

[0018] In accordance with another aspect of the invention, a method of sending an item is provided. First, a two-way envelope as previously described is provided. An outgoing addressee and an incoming addressee are imaged onto the envelope; an item is inserted into the envelope. Finally, the envelope containing the item is sent.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 illustrates a front elevation view of a two-way envelope in accordance with the present invention folded for simultaneous imaging;

[0020] FIG. 2 illustrates a front elevation view of a DVD being inserted into the two-way envelope of FIG. 1 in order to send the DVD to a customer;

[0021] FIG. 3 illustrates a rear elevation view of a DVD being inserted into the two-way envelope of FIG. 1 in order to return the DVD;

[0022] FIG. 4 illustrates a schematic, transverse sectional view of the two-way envelope of FIG. 1;

[0023] FIG. 5 is a flow chart for a method of making a two-way envelope; and

[0024] FIG. 6 is a flow chart for a method of sending an item.

DETAILED DESCRIPTION OF THE INVENTION

Envelope

[0025] Referring to the Figures generally and in particular to FIGS. 1-4, where like reference numerals denote like elements, there is illustrated a two-way envelope 10 in accordance with the invention. “Two-way” refers to the fact that envelope 10 is intended to be sent to an outgoing addressee and to an incoming addressee. Generally, the incoming addressee is the person or company who sent envelope 10 to the outgoing addressee. However, the incoming addressee may be a third party.

[0026] Envelope 10 has a front panel 14f and a rear panel 14r, which are glued together on their sides to form a pocket. A fold 60 at the top of front panel 14f separates front flap 12f from front panel 14f. A line of weakness 34 at the top of rear panel 14r separates rear flap 12r from rear panel 14r. A fold 62 separates front panel 14f and rear panel 14r.

[0027] The rear flap 12r has two folds. First fold 66 allows rear flap 12r to fold over the top of front panel 14f. Second fold 64 defines a lower portion 18 of rear flap 12r. Lower portion 18 has a line of weakness 32 and adhesive layer 26r on its inner surface 16i. Adhesive layer 26r is preferably located near the bottom of lower portion 18 between bottom 61 and line of weakness 32. Lines of weakness 34 and 32 may be a line or row of perforations, a score line, or any other weakening along a line.

[0028] The front flap 12f is shown in FIG. 3 tucked under rear panel 14r. To facilitate the untucking of front flap 12f, the sides of front and rear panels 14f and 14r are not glued together where front panel 14f overlaps front flap 12f. As illustrated in FIG. 4, front flap 12f has adhesive layer 26f on its interior surface 20i.

[0029] Adhesive layers 26r and 26f may be made from any kind of adhesive, preferably a moisture- or pressure-sensitive adhesive, and most preferably a pressure-sensitive adhesive. Adhesive layers 26r and 26f may be continuous or discontinuous. Adhesive layer 26r is illustrated as a continuous strip in FIG. 2.

[0030] When a pressure-sensitive adhesive, as commonly known in the art, is used a silicone strip (not shown) may be used to cover the adhesive to prevent the adhesive from inadvertently adhering to another part of an envelope. Here, it is preferred to use a barrier layer to which pressure-sensitive adhesive will releasably adhere. A barrier layer 28 is located on inner surface 16i at approximately the same
distance from fold 64 as adhesive layer 26 is from fold 64. This configuration allows lower portion 18 to fold under upper portion 19 of rear flap 12r without adhesive layer 26r permanently adhering to upper portion 19.

[0031] A barrier layer 30 is located on inner surface 21 of front panel 14r at the same distance from fold 60 as adhesive layer 26r is from fold 60. This configuration allows front flap 12r to fold under rear panel 14r without adhesive layer 26r permanently adhering to front panel 14r. Barier layers 28 and 30 may be made of any material that adhesive layers 26r and 26r can relesamently adhere to or not adhere to at all. The barrier material can be silicone or a dark pigmented ink. Black, blue and red colored inks may be used. The dark pigmented inks are preferably applied using a standard commercial web offset heat-set printing process, although they may be applied in any manner as known in the art. Web offset heat-set type inks are suited for use as a barrier material and are available from Central Ink Corporation in West Chicago, Ill.

[0032] Barrier layers 28 and 30 may be continuous or discontinuous, but typically should oppose all or a substantial portion of adhesive layers 26r and 26r. For example, adhesive layer 26r could be a discontinuous layer of small discrete areas of a certain shape or shapes (such as dots or small circles, for example, or other small areas) and barrier layer 28 could be a continuous layer or could be a discontinuous layer corresponding to and in registry with the discontinuous nature of the adhesive layer. Barrier layers 28 and 30 should have dimensions larger than adhesive layers 26r and 26r to ensure complete overlap and registry of barrier layers 28 and 30 over adhesive layers 26r and 26r, respectively.

[0033] The rear flap 12r has an outgoing addressee portion 24 on outer surface 16r of its upper portion 19. Front panel 14r has an incoming addressee portion 22 on its outer surface 21o. Incoming addressee portion 22 is located below fold 64. The bottom of incoming addressee portion 22 is located at a distance from fold 64 no greater than distance between fold 64 and line of weakness 32. By configuring envelope 10 thusly, it is possible to fold rear flap 12r over front panel 14r and tuck lower portion 18 of rear flap 12r under rear flap 12r to simultaneously expose incoming and outgoing addressee portions 22 and 24, as illustrated in FIG. 1. This allows addressee portions 22 and 24 to be imaged in a single pass by a single imaging device. Imaging devices include, but are not limited to, laser printers, dot matrix printers, inkjet printers, and the imaging portions thereof.

[0034] Rear flap 12r and front panel 14r also have postage indicia 44 and 46, and return addressee portions 40 and 42, respectively. Postage indicia 44 and 46 may be printed or imaged on envelope 10 while envelope 10 is being made or before mailing. Alternately, postage indicia 44 and 46 may be postal stamps. Return addresses are preferably printed or imaged onto return addressee portions 40 and 42 while envelope 10 is being made or before mailing. The return addresses may be the same or different from the incoming and outgoing addressees.

[0035] Envelope 10 may further comprise advertising, logos, trade or service marks, etc. Instructions for opening and reusing envelope 10 are preferably located on the outside surface of rear panel 14r. An order form or other communication (not shown) may be printed on interior surface 16r of rear flap 12r, preferably between lines of weakness 32 and 34. In addition to carrying an item such as a DVD 70, envelope 10 may be used to carry other inserts such as promotional flyers or messages (not shown).

Method of Making the Envelope

[0036] Referring to FIG. 5, a method of making an envelope will be described. As will be understood by a person of skill in the art, the sequence of steps in the method can be varied. The method of making the envelope involves the use of web handling and printing equipment. Such equipment is highly efficient for making envelopes. In step 112, conveying of the web material begins. In steps 114 and 115, a first barrier layer is applied longitudinally on the first surface of the web in the front flap region and a second barrier layer is applied longitudinally in the rear flap region. Preferably, the barrier layer is a dark ink applied by printing. The first barrier layer is positioned so that it prevents the first adhesive material from sticking to the envelope and web when the front flap is folded against the front panel during production of the envelope. The second barrier layer is positioned so that it prevents the second adhesive material from sticking to the envelope and web when the lower portion is folded under the rear flap and during production of the envelope. Steps 114 and 115 are preferably omitted if a moisture sensitive adhesive is used rather than a pressure sensitive adhesive.

[0037] In step 116, return addresses are printed on the second surface of the web in the front panel region and in the rear flap region by any suitable method of printing, and preferably web printing. Next, first adhesive material is applied longitudinally to a first surface of the web in a front flap region (step 118) and second adhesive material is applied in a lower portion region of a rear flap region (step 119). Ordinaril, the first surface corresponds to the inner surface of the completed envelope. If moisture sensitive adhesive is used in the manufacture of the envelope, the ink and moisture adhesive is usually dried between steps 119 and 120. If moisture sensitive adhesive is not used, the ink is usually dried immediately before step 118.

[0038] In step 120, third adhesive material is applied transversely to the first surface of the web at spaced transverse intervals in a front panel region. Alternatively, the third adhesive material could be applied in a rear panel region. The third adhesive material is used to form the pocket of the envelope. Next, the web is weakened longitudinally between the rear flap region and the rear panel region (step 122) and in between an outgoing addressee portion of the rear flap and the second adhesive material (step 124). Step 124 is preferably omitted if a resealable pressure sensitive adhesive is used.

[0039] In step 126, the web is longitudinally folded to form the front flap region. In step 128, the web is longitudinally folded to form the front panel region. In step 130, the web is longitudinally folded to form the lower portion region. In step 132, the web is longitudinally folded so that the rear flap region is folded over the front flap region. The folds are so positioned that the rear flap region does not cover an incoming addressee portion of the front panel region, but would cover the incoming addressee portion if the lower portion region was not folded under the front panel region. If it is not necessary to be able to image incoming and outgoing addressees in a single pass by a single device then step 130 is preferably omitted.
Additional steps may optionally occur. The envelope may be addressed by applying an incoming pre-printed address label to the incoming addressee portion and an outgoing pre-printed address label to the outgoing addressee portion. The envelope may be addressed by imaging incoming and outgoing addresses in a single pass by a single imaging device. The imaging can be done by the web handling equipment or it can be performed by the initial user of the envelope with a laser printer. Alternatively, any suitable imaging device and method may be used. In addition, postal indicia may be printed on or applied manually to the envelope. Preferably, the postal indicia will be imaged together with the outgoing and incoming addresses. Each distribution center is likely to have its own postal indicia.

Method for Sending and Receiving Items

Envelope 10 can be used to economically send an item and receive an item. Preferably, outgoing and incoming addresses are imaged simultaneously or in a single pass onto outgoing and incoming addressee portions 22 or 24 by a single laser printer, ink jet printer, or other suitable imaging device if envelope 10 is configured as illustrated in FIG. 1. Rear flap 12r is unfolded and an item such as a DVD 70 is inserted into envelope 10 as shown in FIG. 2. The lower portion 18 or rear flap 12r is unfolded whereafter the rear flap 12r is folded over and envelope 10 sealed with adhesive layer 26r. Envelope 10 is mailed and delivered to the outgoing addressee.

The recipient opens envelope 10 by removing rear flap 12r by tearing it off at lines of weakness 32 and 34. The recipient can then remove DVD 70 and insert another or a different DVD (not shown) for return to the rental company as shown in FIG. 3. The recipient then unfolds front flap 12f and seals envelope 10 using adhesive layer 26f. The recipient then mails envelope 10. Finally, envelope 10 with the returned item is received by the incoming addressee.

Method for Sending Items

Referring to FIG. 6, envelopes of the invention are produced on web equipment. The web equipment may be located at an envelope manufacturer’s location and envelopes delivered to a distribution center of a DVD rental company, for instance. Alternatively, the web equipment may be located at the distribution centers of the DVD rental company, which reduces handling of envelopes.

Several methods exist for matching DVDs to an envelope and a renter. For example, when a DVD is returned to the rental company from a DVD renter, a worker opens the envelope, removes the DVD, and scans a unique identification (ID) code on the DVD, such as a bar code. The ID is then entered into a computer system having a database. The database contains addresses of subscribers and a list of DVDs that each subscriber wishes to rent. The database also contains the company’s inventory of DVDs and for each DVD indicates the location of the DVD. Based on the unique ID, the company can identify the DVD and the subscriber who returned the DVD.

In one embodiment, when the unique ID is entered into the computer system, the computer system identifies a subscriber to whom the DVD should be sent. The computer then causes a laser printer, or other imaging device, to image an outgoing addressee on the outgoing addressee portion of the envelope corresponding to the identified subscriber and an incoming addressee on the incoming addressee portion in a single pass. The incoming addressee is usually the distribution center located closest to the outgoing addressee. The DVD is placed into the envelope, the envelope is sealed by extending the lower portion of the rear flap and adhering the lower portion to the front panel, and the envelope is sent.

In a second embodiment, when the unique ID is entered into the computer system, the computer system identifies the subscriber who returned the DVD. The computer system then identifies a DVD to be sent to the subscriber. The computer system then sends instructions to the portion of the computer system located at an appropriate distribution center. At the appropriate distribution center, an outgoing addressee corresponding to the subscriber is imaged on the outgoing addressee portion of an envelope and an incoming addressee is imaged on the incoming addressee portion. The identified DVD is placed into the envelope, the envelope is sealed by extending the lower portion of the rear flap and adhering the lower portion to the front panel, and the envelope is sent.

The envelope may be optimized for a specific application. For example, if the envelope is to be manually stuffed it is advantageous that pressure sensitive adhesive be used. Preferably a resealable adhesive is used, in which case it is not necessary to have a line of weakness between the outgoing addressee portion and the adhesive on the rear flap. This envelope can have both addresses imaged in a single pass by a single imaging device.

The envelope is to be stuffed by a machine, it is advantageous that moisture sensitive adhesive be used and that the envelope have line of weakness between the outgoing addressee portion and the adhesive on the rear flap. It is also advantageous that rear flap not be folded over the front panel and the lower portion of the rear flap not be folded under the rear flap because it is difficult for machines to unfold. This envelope can have both addresses imaged in a single pass by two imaging devices. For purposes of this patent, a device that is capable of imaging on both sides of a sheet of a piece of paper is considered to be two imaging devices.

While the invention has been described with respect to certain preferred embodiments, as will be appreciated by those skilled in the art, it is to be understood that the invention is capable of numerous changes, modifications and rearrangements and such changes, modifications and rearrangements are intended to be covered by the following claims.

1. A two-way envelope comprising:
 a front panel having an outer surface and an incoming addressee portion on the outer surface;
 a rear panel connected to the front panel by a fold;
 a front flap attached to the front panel; and
 a rear flap having an outer surface and an outgoing addressee portion on the outer surface, the rear flap being attached to rear panel, and the rear flap being sufficiently long so that when the rear flap is folded over the front panel, the rear flap covers the incoming addressee portion and the outgoing addressee portion is exposed;
and when a lower portion of the rear flap is folded under the rear flap the outgoing addressee and incoming addressee portions are exposed for permitting imaging outgoing and incoming addressee information thereon in a single pass by a single imaging device.

2. The two-way envelope of claim 1 further comprising a resealable pressure sensitive adhesive on an inner surface of the lower portion of the rear flap.

3. The two-way envelope of claim 2 wherein the rear flap has an upper portion, and the envelope further comprising a barrier layer on the inner surface of the upper portion of the rear flap.

4. The two-way envelope of claim 1 wherein the front flap has an inner surface, and the envelope further comprising pressure sensitive adhesive on the inner surface of the front flap.

5. The two-way envelope of claim 4 wherein the front panel has an inner surface and the envelope further comprising a barrier layer on the inner surface of the front panel.

6. The two-way envelope of claim 1 further comprising a line of weakness between the rear panel and the rear flap.

7. A two-way envelope comprising:
 - a front panel having a top edge, an outer surface, and an incoming addressee portion on the outer surface;
 - a rear panel having a top edge, the rear panel connected to the front panel by a fold;
 - a front flap attached to the top edge of the front panel, the front flap having an inner surface and a first adhesive on the inner surface; and
 - a rear flap having an outer surface, an outgoing addressee portion on the outer surface, an inner surface, and a second adhesive on the inner surface, the rear flap being attached to the top edge of the rear panel, and the rear flap being sufficiently long so that when the rear flap is folded over the front panel, the rear flap covers the incoming addressee portion and the outgoing addressee portion is exposed.

8. The envelope of claim 7 further comprising a line of weakness between the rear panel and the rear flap.

9. The envelope of claim 8 wherein the front panel has an inner surface, the envelope further comprising a first barrier layer on the inner surface of the front panel.

10. The envelope of claim 9 wherein the rear flap has an inner surface and an upper portion and wherein the first adhesive is a resealable pressure sensitive adhesive, the envelope further comprising a second barrier layer on the inner surface of the upper portion of the rear flap.

11. The envelope of claim 10 wherein the incoming addressee portion and the outgoing addressee portion are exposed when the rear flap is folded over the front panel and when a lower portion of the rear flap is folded under the rear flap.

12. The envelope of claim 8 wherein the adhesive is a moisture-sensitive adhesive and the envelope further comprising a line of weakness between the outgoing addressee portion and the second adhesive.

13. A method for making a two-way envelope comprising:
 - conveying a web of material;
 - longitudinally folding the web to form a front flap region;
 - longitudinally folding the web to form a front panel region having an incoming addressee portion;
 - longitudinally folding the web so that a rear flap region is folded over the front flap region, the rear flap region having an outgoing addressee portion on the portion of the rear flap region folded over the front panel region and so that a lower portion of the rear flap region covers the incoming addressee portion;
 - applying a first adhesive material longitudinally to the front flap region of the web and applying a second adhesive material longitudinally in the lower portion region; and
 - transversely cutting the web to form an individual two-way envelope.

14. The method of claim 13 further comprising longitudinally weakening the web between a rear panel region and the rear flap region.

15. The method of claim 14 wherein the second adhesive material is a moisture sensitive adhesive and the method further comprising longitudinally weakening the web between the outgoing addressee portion and the second adhesive material.

16. The method of claim 14 further comprising applying an incoming pre-printed address label to the incoming addressee portion and an outgoing pre-printed address label to the outgoing addressee portion.

17. The method of claim 14 further comprising longitudinally folding the web to form the lower portion region of the rear flap region.

18. The method of claim 17 further comprising applying a second barrier layer longitudinally to the rear flap region of the web so that the second barrier material is in registry with the second adhesive material when the web is longitudinally folded over to form the lower portion region, wherein the second adhesive material is a resealable pressure sensitive adhesive.

19. The method of claim 18 further comprising imaging incoming and outgoing addresses in a single pass by a single imaging device.

20. A method of delivering an item and receiving a returned item comprising:
 - placing an item into a two-way envelope comprising:
 - a front panel having a top edge, an outer surface, and an incoming addressee portion on the outer surface;
 - a rear panel having a top edge, the rear panel connected to the front panel by a fold;
 - a front flap attached to the top edge of the front panel, the front flap having an inner surface and a first adhesive on the inner surface; and
 - a rear flap having an outer surface, an outgoing addressee portion on the outer surface, an inner
surface, and a second adhesive on the inner surface, the rear flap being attached to the top edge of the rear panel, and the rear flap being sufficiently long so that when the rear flap is folded over the front panel, the rear flap covers the incoming addressee portion and the outgoing addressee portion is exposed; sending the envelope to a recipient; and receiving a returned item from the recipient in the envelope.

21. A method of sending an item comprising:
providing an envelope of the type set forth in claim 1;
imaging an outgoing addressee and an incoming addressee on the envelope;
inserting an item into the envelope; and sending the envelope containing the item.

* * * * *