实用新型名称
一种人体可吸收的血管支架

摘要
本实用新型提供一种人体可吸收的血管支架，所述支架为经过表面合金化处理的铁支架，所述支架具有渗透深度可调节的复合扩散层，所述复合扩散层为渗碳层、渗镍、或渗碳氮共渗层。上述技术方案采用表面合金化技术，使支架具有渗透深度可调节的复合扩散层，从而提高了支架的强度，同时加快支架的腐蚀速度，缩短支架吸收周期。通过控制复合扩散层的分布、形状和深度，使屈服强度和延伸率可以在很大的范围内调节，以达到支架所需的强度和吸收周期。与现有技术的整体合金化相比，表面合金化处理后，支架可以在提高抗弯强度的同时保证支架结构的内部有足够的塑性，不会在支架被球囊撑开的时候断裂。
1. 一种人体可吸收的血管支架，所述支架呈与血管大小相应的管状，其特征在于：所述支架为经过表面合金化处理的铁支架，所述支架具有渗透深度可调节的复合扩散层，所述复合扩散层为渗碳层、渗氮层，或者碳氮共渗层，所述复合扩散层位于支架的内表面和外表面或者覆盖整个支架的壁厚。

2. 如权利要求1所述的人体可吸收的血管支架，其特征在于：所述支架包括“Z”形波部和“U”形连接杆部，所述“U”形连接杆部连接于相邻的所述“Z”形波部之间。

3. 如权利要求2所述的人体可吸收的血管支架，其特征在于：所述支架呈与血管相应的管状，所述“Z”形波部沿所述支架的周向首尾连接形成“Z”形波组，所述“U”形连接杆部连接于相邻的所述“Z”形波部之间形成“U”形连接杆组，所述“Z”形波组与“U”形连接杆组沿所述支架的轴向间隔设置。

4. 如权利要求2所述的人体可吸收的血管支架，其特征在于：所述“U”形连接杆部的两端分别连接于所述“Z”形波部的杆体中部。

5. 如权利要求1所述的人体可吸收的血管支架，其特征在于：所述支架的表面涂覆有由可降解载体和药物制成的载药涂层。

6. 如权利要求5所述的人体可吸收的血管支架，其特征在于：所述载药涂层的表面涂覆有用于控制药物释放速度和提高所述载药涂层表面的生物相容性的表面涂层。

7. 如权利要求6所述的人体可吸收的血管支架，其特征在于：所述表面涂层为亲水涂层或促进内皮生长的涂层。

8. 如权利要求1-7任一项所述的人体可吸收的血管支架，其特征在于：所述支架的壁厚为0.15～0.35mm。
一种人体可吸收的血管支架

技术领域
[0001] 本实用新型属于医疗器械领域，尤其涉及一种人体可吸收的血管支架。

背景技术
[0002] 冠状动脉粥样硬化性心脏病是导致人类死亡的重要原因之一。经皮冠状动脉腔内成形术是治疗冠状动脉粥样硬化性心脏病的主要手段。冠心病介入治疗始于1977年，经过近30年的不断发展、完善，已在设备和技术上不断改进与提高。该项技术创伤小，见效快，死亡率和并发症发生率极低，深受患者的好评。介入治疗学如今也逐渐成为继内科、外科之后的一门新兴学科。
[0003] 从最开始的球囊扩张治疗阶段到金属裸支架植入治疗阶段，到现在的药物洗脱金属支架广泛应用，再到正在研究的可降解支架介入治疗，相关技术在逐步发展。药物洗脱金属支架能够降低短期的血管再狭窄率，但是永久性植入金属的固有缺点，限制了药物洗脱支架的更广泛的应用，在血管塑型完成后，若不再进行手术取出来，金属支架将永久保留在体内，带来很多不利影响甚至后患无穷。病人必须长期或终身服用抗凝药物，不仅增加病人经济负担，还往往导致血管脆弱，甚至血管破裂。出现再狭窄时，不能二次植入支架，对后期血管再成形手术的不利。生物相容性的限制来自于支架与主体的相互作用，导致长期的内皮功能不全，内皮化延迟，血栓形成，永久性物理刺激，局部反应的慢性炎症，被植入血管和非植入血管运动行为不匹配，等等。金属支架的存在，使得病人不能进行一些必要的医学检查和治疗，如MRI、磁疗等。儿童成长阶段出现血管狭窄时，不能通过支架来进行血管塑型，因为金属支架会在植入后随着血管的生长而变为血流的阻碍物。

[0004] 一种情况下，人们寻求人体可吸收的材料，以期在任务完成后支架自行消失。可降解或可吸收支架是目前急需的一类支架，这种支架可以避免现有金属支架带来的潜在的长期的复杂性。尽管这个想法不是一个新的想法，在金属支架出现时，人们已经开始试验高分子可降解支架。但是在寻找生物相容性可降解材料上遇到了重重困难，虽有此类人体可吸收骨科材料和血管支架产品上市，但都没有很好的被市场认可。主要问题是高分子材料强度低而必须体积大，高分子降解导致的酸性环境导致严重的炎症反应等问题。往往可降解材料很难完全与血管壁的相容性，同时又避免导致比金属支架严重的炎症反应。另外还有一些理论上的限制，如我们还不清楚多厚的支架才能在植入后稳定存在一定时间；可降解支架的降解速度和机理不是很清楚；此外可降解材料的降解产物的短期/长期的局部腔内生物相容性和生理反应需要做定量的评价。

[0005] 理想的可降解植入材料应该能够提供更好的生理修复，局部血管的重建，短期的纵行和径向的显著作用，有生长和后期再血管成形的可能性。可降解植入材料要在随访时被MRI和IVUS检测到，且不能影响血管再成形术。最后可降解植入材料要能与药物或基因共同，使可降解支架达到治疗的效果。

[0006] 第一个可降解自扩张PLA支架是由Duke University的Stacks研制的。动物（狗）试验表明可降解自扩张PLA支架只有很小炎症反应。但是其他
的可降解聚合物(polyglycolic acid/poly(lactic acid), polycaprolactone, polyhydroxybutyratevalerate, polyorthoester, and polyethyleneoxide/polybutylene terephthalate)支架的动物(猪)实验后有很严重的炎症反应和血管细胞增生。这些反应可能是由材料本身,降解产物或是支架成型引起的。之后,PLA(321kDa,高分子量),Z字形支架(Igaki-Tamai)的动物实验后得到更小的炎症反应和血管细胞增生。但是有人对于这种支架缓慢的降解过程所引起的问题提出了疑问。最初的支架设计所导致的血管损伤有可能引起血栓,且支架的持续性的影响过程中可能会引起后期血管细胞增生。载药物的可降解支架也已经被开发和进行了动物实验。两种支架,包括ST638(激酶抑制剂)支架(Igaki-Tamai)和双螺螺旋PLA-紫杉醇支架,都能降低支架再狭窄率,但是炎症问题依然存在。一部分可降解聚合物支架已经商业化,包括有球囊扩张和自扩张支架(Aurion, everolimus涂层自扩张支架(Biosensors)和tyrosine-derived polycarbonate支架(Reva Medical)。尽管如此,可降解聚合物支架最突出的缺点是由于现有的机械性质决定的。聚合物不能保证与金属相类似的径向支撑力和小的回弹率。并且聚合物支架太硬,不能用在小的血管中。

【0007】Heublein最先进报告使用镁合金AE21作为可吸收金属支架的可行性,最后由Biotronik公司进行产业化。镁合金AE21主要成分是镁(97%),另外还含有2%铝和1%稀土金属(Ce,Pr,Nd)。镁合金AE21可以满足生物相容性,机械强度和降解速率的要求。动物(猪)试验显示很小的炎症反应,没有血栓形成。但是也观察到很明显的内膜细胞增生,第二代可吸收镁合金支架(Magic,Biotronik)含镁达90%以上,另外还含有锆,钇和稀土金属。由于铝对人体有毒,所以采用不含铝的镁合金制作支架。动物试验发现4周植有可吸收镁合金支架的血管腔直径(1.50mm)比植有普通裸支架的血管腔直径(1.26mm)大,在8周植有可吸收镁合金支架的血管腔直径是1.55mm,而植有普通裸支架的血管腔直径是1.09mm。内膜细胞增生降低很多,这可能是由于支架材料的原因。在可吸收镁合金支架没有发生机械性能上的改变之前,支架上已经完成了内皮化。第一个人体试验已经完成。世界各大研究中心的63位病人的临床实验表明,为期4个月的以MACE为主要终点随访结果达到预期的效果。没有发生死亡和血栓事件。Mg作为人体的营养元素,每天摄入量在300~400mg左右,Mg本身可以作为药剂防止血管再狭窄和促进新骨生成。以冠脉血管支架为例,其质量只有3~6mg。目前国际知名医疗器械公司,如CORDIS,BIOTRONIK等,都在研制镁合金支架。

【0008】主要问题是镁合金在人体内的腐蚀速度太快,限制了镁合金支架的应用。如Biotronik公司公布的临床资料表明,裸镁合金支架在血管内,不到2个月就消失,使得血管塌陷再狭窄。大家都在发展表面处理技术以延质腐蚀时间,使这类产品达到实用程度。

【0009】目前报道的生物材料表面改性方法主要是高分子涂层,通过高分子涂层隔绝镁合金与血液接触,使得镁合金的降解发生在高分子涂层降解之后,以延长镁合金在体内停留的时间。另外一种方法是对接合行表面处理,将微弧氧化过程作为可选工序,但所用工艺的目的是在表面形成铝的防腐涂层,但是由于Al为神经毒性元素,其引入会降低Mg合金产品的生物相容性。

【0010】镁合金因强度低,塑性差,且难加工等缺点导致镁合金很难获得支架要求高强度和高塑性。为获得高强度和高塑性的镁合金,常规的高压加工无法满足支架力学性能要
求，而超塑性成形加工工艺复杂也很难达到。

[0011] 铁是人体必需微量元素，是许多酶的重要组成成分。铁对人体的生理功能主要是参与肌肉内部氧的输送和组织呼吸过程。人体代谢每天需要 1～2mg 铁，但由于肌体对铁的吸收率低，每天需从食物中摄取 60～110mg 的铁才能满足需要。缺少铁，会引起缺铁性贫血。Peuser 是第一个考察可吸收金属支架在血管成形中的可行性和安全性的人。他研发的可吸收铁支架是按照已经商品化的永久支架（PUVA-AS 16）的设计，用激光雕刻纯铁（> 99.8%）而成。在 16 只 New Zealand 白兔上的动物试验表明在 6～18 个月的随访中没有发现血栓，也没有明显的炎症反应和血管细胞增生。器官检查没有发现任何的身体组织的毒性。尽管最初的动物试验表明可吸收铁支架是可以安全使用的，仍然需要有进一步的研究来验证。最近的报道表明，铁支架用于血管支架，生物相容性好，且铁离子有助于抑制平滑肌而促进内皮细胞的生长。铁合金制作的难度远小于 Mg 合金，不存在镁合金的强度低，塑性差，弹性模量低，难加工，吸收太快的问题。但是纯铁支腐蚀缓和，大大延长了异物在血管内停留的时间。现有的还有一种支架是一种高含碳量的铁碳合金可吸收支架，此支架经 DET 热处理后可提高屈服强度（800Mpa）和延伸率（20%），且腐蚀速度有明显增加。但是这样处理后的铁合金的延伸率仍然不够高，不能满足支架的使用要求。

实用新型内容

[0012] 本实用新型所要解决的技术问题是，提供一种人体可吸收的血管支架，能够加快支架的腐蚀速度，且具有良好的延伸率。

[0013] 为了解决上述技术问题，本实用新型实施例提供一种人体可吸收的血管支架，所述支架呈与血管大小相应的管状，所述支架为经过表面合金处理的铁支架，所述支架具有渗透深度可调节的复合扩散层，所述复合扩散层为渗碳层、渗氮层，或者碳氮共渗层，所述复合扩散层位于支架的内表面和外表面或者覆盖整个支架的壁厚。

[0014] 上述技术方案采用表面合金化技术，在铁支架上形成渗透深度可调节的复合扩散层，从而提高了支架的强度，同时加快支架的吸收速度，缩短支架吸收周期。支架表面合金化以后，具有不连续、弥散的复合扩散层，通过改变渗源、温度和时间，控制复合扩散层的分布、形状和厚度，使屈服强度和延伸率可以在很大的范围内调节，以达到支架所需的厚度和吸收周期。与现有技术的整体合金化相比，表面合金化处理后，支架可以在提高抗弯强度的同时保证支架结构的内部有足够的塑性，不会在支架被球囊撑开的时候断裂。

[0015] 附图说明

[0016] 图 1 是本实用新型实施例提供的一种人体可吸收的血管支架的结构示意图；

[0017] 图 2 是图 1 的展开示意图；

[0018] 图 3 是本实用新型实施例提供的支架沿径向整体渗透有复合扩散层的结构示意图；

[0019] 图 4 是本实用新型实施例提供的支架自表面沿径向部分渗透有复合扩散层的结构示意图。

[0020] 具体实施方式

[0021] 为了使本实用新型所要解决的技术问题、技术方案及有益效果更加清楚明白，以下结合附图及实施例，对本实用新型进行进一步详细说明。应当理解，此处所描述的具体实
施例仅仅用以解释本实用新型，并不用于限定本实用新型。

【0022】 请参阅图1至图4，本实用新型实施例提供一种人体可吸收的血管支架1，支架1为经过表面合金化处理的铁支架，该支架1具有渗透深度可调节的复合扩散层2。

【0023】 具体地，该复合扩散层2是铁支架1通过表面合金化处理得到的且渗透的深度可调节，经过表面合金化处理，铁支架1成为铁合金支架。铁支架1可以为纯铁或者铁质量比含量大于99.5%的二元或三元铁合金。

【0024】 通过改变渗透源、温度和时间，控制复合扩散层2的分布、形状和深度，该复合扩散层2可以自表面沿向部分渗透支架1，即仅限于支架1的内表面和外表面（如图4）。或者该复合扩散层2可以沿径向整体渗透支架，即覆盖整个支架1的壁厚（如图3）。因此，通过调节表面处理工艺参数，来控制渗入的深度，从而调节腐蚀速度。

【0025】 表面处理可以渗C、N或者C+N，复合扩散层2由C、N元素在Fe中的固溶体和Fe₃C、Fe₅C₃组成的不连续、弥散的复合扩散层组成。具体地，当支架1经过渗C处理后的复合扩散层2包含C在Fe中的固溶体和Fe₃C；当支架1经过渗N处理后的复合扩散层2包括N在Fe中的固溶体和Fe₃C₃；当支架1经过碳氮共渗处理后的复合扩散层2包含C和N在Fe中的固溶体、Fe₃C和Fe₅C₃。

【0026】 请再次参阅图1和图2，支架1呈与血管大小相适应的管状，其包括“Z”形波部11和“U”形连接杆部12，“U”形连接杆部12连接于相邻的“Z”形波部11之间，且首尾相连成管状体。“Z”形波部11具有良好的弯曲性和贴壁性，而“U”形连接杆部12可避免支架1扩张后的短缩，保证支架1完全支撑血管狭窄部位。临床上，支架可用于冠状动脉，外周血管。

根据植入病变血管的不同，支架1可设计不同的波形数量和尺寸。

【0027】 其中，“Z”形波部11沿支架1的周向首尾连接形成“Z”形波部10，“U”形连接杆部12连接于相邻的“Z”形波部11之间形成“U”形连接杆部20。

【0028】 “Z”形波部10与“U”形连接杆20组沿支架1的轴向间隔设置。这样，支架1通过“Z”形波部10与“U”形连接杆20组间隔排列，从而根据病变血管的不同，来相应地选择“Z”形波部10与“U”形连接杆20组的数量。

【0029】 本实施例中，支架采用纯度大于99.5%的冶炼用原材料纯铁管材，其化学成分符合GB/T9971-2004的要求，管材外径为1.6-4.0mm，壁厚为0.15-0.35mm。

【0030】 因此本实用新型实施例采用表面合金化技术，在铁支架上形成深度可调节的复合扩散层2，从而提高了支架1的强度，同时加快支架1的吸收速度，缩短支架1吸收周期。支架1表面合金化以后，具有不连续、弥散的复合扩散层2，通过改变渗透源、温度和时间，控制复合扩散层2的分布、形状和深度，使屈服强度和延伸率可以在很大的范围内调节，以达到支架1所需的高度和吸收周期。与现有技术的整体合金化相比，表面合金化处理后，支架1可以在提高抗弯强度的同时保证支架结构的内部有足够的塑性，不会在支架1被球囊撑开的时候断裂。

【0031】 本实用新型实施例中上述人体可吸收的血管支架1是这样的制造，在制造过程中包括如下步骤：

【0032】 (1) 支架成型；

【0033】 (2) 对所述支架进行清洗并预抛光；

【0034】 (3) 对所述支架进行表面合金化处理；
[0035] (4) 将表面处理后的所述支架进行精抛光。
[0036] 所述步骤 (1) 中的支架原材料为纯铁，或者铁质量比含量大于 99.5% 的二元或三元铁合金。
[0037] 具体地，步骤 (1) 中，设定激光切割机工作频率 (300-1000Hz)，工作电压 (200-300V)，脉冲宽度 (0.02-0.18us)，切割速度为 0.05-0.3inch/s。铁支架管材切割；管材切割中，要监视支架切割过程，控制氧气气压大于 3atm，空气压力大于 2.5atm，冷却水压大于 20-50psi (2.5 千克 /cm²)。
[0038] 步骤 (2) 中，切完后的支架进行预抛光处理，将该支架先用水进行超声波清洗，清洗时间为 1-3 分钟，接着用无水乙醇进行超声波清洗 5-30 分钟，接着用酸性溶液进行超声波清洗 1-3 分钟。将清洗后的支架装夹在电化学抛光设备上，在铁抛光液中抛光 1-5 分钟，抛光电压为 5-30 V。在电化学抛光期间间隔一定时间调转支架方向。
[0039] 步骤 (3) 中的表面合金化处理可采用离子渗处理，该离子渗处理为离子渗碳处理、离子渗氮处理，或者离子渗碳渗氮处理，或者离子渗碳和离子渗氮处理。虽然离子渗处理中还可以渗入其他的气体，只要能够使支架表面进行表面合金化处理后，加快了支架的腐蚀速度，提高了支架的延展率，均在本发明的保护范围内。
[0040] 离子渗碳处理中，将清洗并脱水的支架置于离子渗设备中，支架与电源的阴极相连，而炉壳与阳极连接。抽真空到 2-10Pa，开启偏压电压，使支架表面维持辉光放电，此时电压在 400-700V 之间，待放电稳定后，缓慢的通入含 C 气体，如 CH₄、C₂H₆、乙醇等，维持辉光放电并使支架温度升至 400-900 度，保持一定时间后断电，取出支架，进行下一个工序。可以通过温度和时间的调整来调整支架的强度和腐蚀性能。
[0041] 离子渗氮处理中，将清洗并脱水的支架置于离子渗设备中，支架与电源的阴极相连，而炉壳与阳极连接。抽真空到 2-10Pa，开启偏压电压，使支架表面维持辉光放电，此时电压在 400-700V 之间，待放电稳定后，缓慢的通入 H 和 N 的混合气体或氢，维持辉光放电并使支架温度升至 400-550 度，保持一定时间后断电，取出支架，进行下一个工序。可以通过温度和时间的调整来调整支架的强度和腐蚀性能。
[0042] 离子碳氮共渗处理中，将清洗并脱水的支架置于离子渗设备中，支架与电源的阴极相连，而炉壳与阳极连接。抽真空到 2-10Pa，开启偏压电压，使支架表面维持辉光放电，此时电压在 400-700V 之间，待放电稳定后，缓慢的通入 H 和 N、C 的混合气体，维持辉光放电并使支架温度升至 400-650 度，保持一定时间后断电，取出支架，进行下一个工序。可以通过温度和时间的调整来调整支架的强度和腐蚀性能。
[0043] 上述步骤 (3) 中的表面合金化处理还可以通过气体渗碳处理，或者气体渗氮处理，或者气体碳氮共渗处理。
[0044] 在可控气氛热处理炉中，放入支架，升温到合适的温度并通入不同的气体，实现支架表面气体 C、N 或 C+N，具体参数见下表 1。可以通过温度和时间的调整来调整支架的强度和腐蚀性能。
[0045] 表 1 不同气体渗方法的参数选择范围

<table>
<thead>
<tr>
<th>处理方法</th>
<th>渗 C</th>
<th>渗 N</th>
<th>渗 C+N</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度</td>
<td>600-900</td>
<td>500-570</td>
<td>500-620</td>
</tr>
</tbody>
</table>
处理方法 | 淬 C | 淬 N | 淬 C+N
--- | --- | --- | ---
气体 | 乙醇 + CO₂ | 氮 | 氮 + 乙醇

[0047] 在铁合金支架采用表面合金化技术提高支架的强度，同时加快支架的腐蚀速度，缩短支架吸收周期的方法。支架的表面合金化的关键在于在支架的表面形成由 Fe₃N, Fe₃C 组成的不连续、弥散的复合扩散层。通过优化表面处理工艺参数温度、气压和时间控制弥散相的分布、形状和厚度等，可达到支架所需的强度和吸收周期。表面合金化处理后的支架在屈服强度和延伸率可以在很大的范围内调节，使之符合支架的使用要求。与现有技术的整体合金化相比，表面合金化可以在提高抗弯强度的同时保证支架结构的内部有充足的塑性，不会在支架被球囊撑开的时候断裂。并且通过表面处理，加速了支架在血管中的腐蚀速度，通过表面工艺参数的调节，可控制浸入深度，调节腐蚀速度，保证血管塑型完成后尽快被人体吸收。

[0048] 步骤 (4) 中，经表面处理后的支架放入含有高氯酸的醇溶液，溶液温度冷却至 7℃～1℃，在阳极上施加电压 5～30V，时间为 1～3 分钟。然后，取出支架放入清水超声清洗 1～3 分钟后用酒精脱水。抛光后观察支架表面并测量支架杆的宽度，支架表面光洁度 Ra 可达到 0.1um 以下，抛光后的宽度为 80～120um。

[0049] 步骤 (4) 之后，还可以进行载药涂层处理。载药涂层主要是由可降解载体和药物制成。其中可降解载体可以包括聚乳酸、乳酸 - 乙醇酸共聚物、聚乙二醇 - 聚乳酸、磷酸胆碱、聚羟基丁酸酯、聚羟基丁酸酯 - 羟基戊酸酯共聚物、聚己内酯等聚酯类高分子材料。也可使用壳聚糖、改性壳聚糖、肝素、磷脂、胶原蛋白等生物材料。所有药物是抗发炎，抑制增殖或促进内皮爬覆的药物。这些药物包括西罗莫司 (sirolimus)、他克莫司 (tacrolimus)、依维莫司 (everolimus)、supralimus、zotarolimus、pimecolimus、micophenolic acid、ABT-578、biolimus、紫杉醇 (paclitaxel)、tyxane、QP2、CD34、dexamethasone、17-beta-estradiol、batimastat、actinomycin D、methotrexate、angiopeptin、tyrosine kinase inhibitors、vincristine、mitomycin、and cyclosporin 等。

[0050] 具体操作是：将药物和载体按照比例混合溶解在有机溶剂中，混合质量比例是 1：4 到 4：1（药物：载体）。所用有机溶剂有四氢呋喃，二氯甲烷，氯仿，甲醇，乙醇等。溶解后，在自制的喷涂设备上进行涂层。涂覆后的纯铁支架器械放入 50℃的烘箱中干燥。涂覆药物后的纯铁支架器械的表面致密，均匀，颜色一致，厚度约为 5 微米。

[0051] 支架载药涂层之上，可再进行表面涂层处理，表面涂层为亲水涂层或促进内皮生长的涂层。其主要是为起到控制药物释放速度和提高涂层表面的生物相容性。该涂层可以是壳聚糖，改性壳聚糖，肝素，磷脂，胶原蛋白等生物材料或提高支架表面的亲水性的高聚物。涂层制作方法可为喷涂，浸涂。

[0052] 支架产品还可进行环氧乙烷或辐射灭菌处理，产品应保存在惰性气体包装中或真空包装中，储存期为 3～24 月。

[0053] 支架原材料可以为纯铁或者铁质量比含量大于 99.5% 的二元或三元铁合金。纯铁支架具有更高的抗弯强度，可以采用更细的框架结构，所以具有通过更小直径或更弯曲的病变血管的能力。

[0054] 以上所述仅为本实用新型的较佳实施例而已，并不用以限制本实用新型，凡在本
实用新型的精神和原则之内所作的任何修改、等同替换和改进等，均应包含在本实用新型的保护范围之内。