20147176363 A1 |1 0000 10 100 O O 0 0 00

<

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/176363 Al

30 October 2014 (30.10.2014) WIPOIPCT

(51) International Patent Classification: (74) Agents: MEYER, Sheldon, R. et al.; MEYER IP LAW
GOG6F 9/50 (2006.01) GROUP, A Professional Corporation, 410 Pacific Avenue,

(21) International Application Number: San Francisco, CA 94133 (US).

PCT/US2014/035187 (81) Designated States (unless otherwise indicated, for every

. . kind of national protection available). AE, AG, AL, AM,

(22) International Filing Date: . AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
23 April 2014 (23.04.2014) BZ, CA. CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(25) Filing Language: Enghsh DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
61/816,610 26 April 2013 (26.04.2013) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
61/816,623 26 April 2013 (26.04.2013) US SC, SD, SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
13/912,086 6 June 2013 (06.06.2013) Us IN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
13/912,098 6 June 2013 (06.06.2013) Us ZW.

(71) Applicant: ORACLE INTERNATIONAL CORPORA- (84) Designated States (unless otherwise indicated, for every
TION [US/US]; 500 Oracle Parkway, M/S 50p7, Redwood kind of regional protection available): ARIPO (BW, GH,
Shores, CA 94065 (US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(72) Inventors: DE LAVARENE, Jean; 18 Rue Aristide Bri- TM), Buropean (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
and, F-92300 Levallois-Petret (FR). ZHOU, Tong; 1570 EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Bangs Avenue, Merrick, NY 11566 (US). SURBER, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK, SM,
Douglas; 192 Hall Drive, Orinda, CA 94563 (US). TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
FELTS, Stephen; 3 Cedar Gate Road, Denville, NJ 07834 KM, ML, MR, NE, SN, TD, TG).

(US). MERRILL, David; 3242 South Court, Palo Alto, Published:

CA 94306 (US).

with international search report (Art. 21(3))

(54) Title: SUPPORT FOR CLOUD-BASED MULTI-TENANT ENVIRONMENTS USING CONNECTION LABELING

Tenant Application
{Tenant A
(Blug)

172

Tenant Application]
/Tenant B
{Green)

174

Tenant Application:
{TenantC
(Red)

176

FIGURE 7

getConnection (Red)

Connection Pool Logic 104
: Costs 140 \ Application Server /
) Database Environment
: {e.g.. Fusion Applications
: environment)
)

J

1
i
i
i 100
L

—

Connections-in-Use 108

i

6

Database
102

[/b 118 Green”]

i
|

1 [ECTi6 (Blue)

1

|

|

1

[i
1 PF 122 Green I
1 { % I
1 V4)
1 G124 (Green)] 1
1 1
1 : 1
1)
1 1
I |

N 126 (Blue)

(57) Abstract: A system and method for connection labeling for use with connection pools, including support for cloud-based multi-
tenant environments using connection labeling. In accordance with an embodiment, the system comprises a connection pool, includ -
ing a plurality of connection objects which provide connections that software applications can use to make requests to access the
database, wherein each of the connections can be labeled according to the configuration of particular applications; and a connection
pool logic that identifies connections labeled as high-cost connections, and controls the creation or repurposing of high-cost connec -
tions to serve requests from the multiple tenants or tenant applications. In accordance with an embodiment, the system comprises a
connection pool logic that identifies connections labeled as high-cost connections, and avoids using those high-cost connections to
serve requests when the total number of connections is below a particular threshold value.

10

15

20

25

30

35

40

WO 2014/176363 PCT/US2014/035187

SUPPORT FOR CLOUD-BASED MULTI-TENANT ENVIRONMENTS
USING CONNECTION LABELING

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone
of the patent document or the patent disclosure, as it appears
in the Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

Claim of Priority:

[0001] This application claims the benefit of priority to U.S. Provisional Patent
Application titled “SYSTEM AND METHOD FOR CONNECTION LABELING FOR USE WITH
CONNECTION POOLS” (Attorney Docket No. ORACL-05448US0Q), Application No.
61/816,610, filed April 26, 2013; U.S. Patent Application titled “SYSTEM AND METHOD FOR
CONNECTION LABELING FOR USE WITH CONNECTION POOLS” (Attorney Docket No.
ORACL-05448US1), Application No. 13/912,086, filed June 6, 2013; U.S. Provisional Patent
Application titled “SUPPORT FOR CLOUD-BASED MULTI-TENANT ENVIRONMENTS
USING CONNECTION LABELING” (Attorney Docket No. ORACL-05449US0), Application
No. 61/816,623, filed April 26, 2013; and U.S. Patent Application titled “SUPPORT FOR
CLOUD-BASED MULTI-TENANT ENVIRONMENTS USING CONNECTION LABELING”
(Attorney Docket No. ORACL-05449US1), Application No. 13/912,098, filed June 6, 2013;

each of which above applications are herein incorporated by reference.

Field of Invention:

[0002] Embodiments of the invention are generally related to connection pools, and
are particularly related to a system and method for connection labeling for use with
connection pools, including support for cloud-based multi-tenant environments using

connection labeling.

Background:
[0003] Generally described, a connection pool is a cache of database connection

objects. The connection objects represent physical database connections that can be used
by a software application to connect to a database. At runtime, an application can request a
connection from the pool. If the pool contains a connection that can satisfy the request, it
returns the connection to the application. If no connections are found, a new connection can
be created and returned to the application. The application uses the connection to access
the database to perform work, and then returns the connection to the pool. The connection

can then be made available for subsequent connection requests.

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

[0004] Creating connections can be costly both in terms of time and resources. For
example, tasks such as network communication, authentication, transaction enlistment, and
memory allocation all contribute to the amount of time and resources it takes to create a
connection object. Connection pools allow reuse of such connection objects, and reduce the
number of times that objects must be created.

[0005] One example of a connection pool is Oracle Universal Connection Pool
(UCP), which provides a connection pool for caching JDBC connections. Java applications
that are database-intensive can use the connection pool to improve performance utilization of
system resources. A UCP connection pool can use any JDBC driver to create physical
connections that are then maintained by the pool. The connection pool can be configured
with properties that are used to optimize pool behavior, based on the performance and

availability requirements of an application.

Summary:
[0006] In the context of a multi-tenant environment, such as a cloud environment, or

a Fusion Applications multi-tenant environment, connection types may be very complex, due
to the need to accommodate multiple tenants, and, e.g., to maintain security between each
different tenant's access to the database. These complex connections are considered high-
cost connections. Approaches to handling high-cost connections can be useful in improving
system performance, and/or the performance of applications operating within a cloud
environment.

[0007] In accordance with an embodiment, described herein is a system and method
for connection labeling for use with connection pools, including support for cloud-based multi-
tenant environments using connection labeling. In accordance with an embodiment, the
system comprises a connection pool, including a plurality of connection objects which
provide connections that software applications can use to make requests to access the
database, wherein each of the connections can be labeled according to the configuration of
particular applications; and a connection pool logic that identifies connections labeled as
high-cost connections, and controls the creation or repurposing of high-cost connections to
serve requests from the multiple tenants or tenant applications. In accordance with an
embodiment, the system comprises a connection pool logic that identifies connections
labeled as high-cost connections, and avoids using those high-cost connections to serve

requests when the total number of connections is below a particular threshold value.

Brief Description of the Figures:

[0008] Figure 1 illustrates a system for connection labeling for use with connection

pools, in accordance with an embodiment.

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

[0009] Figure 2 further illustrates a system for connection labeling for use with
connection pools, in accordance with an embodiment.

[0010] Figure 3 further illustrates a system for connection labeling for use with
connection pools, in accordance with an embodiment.

[0011] Figure 4 further illustrates a system for connection labeling for use with
connection pools, in accordance with an embodiment.

[0012] Figure 5 is a flowchart that illustrates a process of connection labeling for use
with connection pools, in accordance with an embodiment.

[0013] Figure 6 illustrates a system for connection labeling for use with connection
pools, including support for cloud-based multi-tenant environments using connection
labeling, in accordance with an embodiment.

[0014] Figure 7 further illustrates a system for connection labeling for use with
connection pools, including support for cloud-based multi-tenant environments using
connection labeling, in accordance with an embodiment.

[0015] Figure 8 is a flowchart that illustrates a process of connection labeling for use
with connection pools, including support for cloud-based multi-tenant environments using

connection labeling, in accordance with an embodiment.

Detailed Description:

[0016] In accordance with an embodiment, described herein is a system which
includes a connection pool, wherein the system can identify high-cost connections, and avoid
using those high-cost connections to serve requests when the total number of connections is
below a particular threshold value. In accordance with an embodiment, the system can be
used with, or provide support for a cloud-based or multi-tenant cloud environment that allows
access to a database via a connection pool.

[0017] In accordance with an embodiment, this allows the connection pool to use
new physical connections to serve connection requests from different applications, such as
from different tenant applications, without incurring a reinitialization overhead on other

connections (e.g., other tenant connections) that may be already pooled.

Connection Labeling

[0018] Figure 1 illustrates a system for connection labeling for use with connection
pools, in accordance with an embodiment. As shown in Figure 1, an application server /
database environment 100, such as a Fusion Applications environment, can include or
provide access to a database 102. As further shown in Figure 1, the system also includes a
connection pool logic 104, which controls 105 the creation and use of objects in a connection

pool 106, including connections that are currently in use 108, and connections that are idle

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

110.

[0019] Software applications 109 may initialize connections 111 retrieved from a
connection pool before using the connection. Examples of initialization include simple state
re-initializations that require method calls within the application code, or more complex
initializations including database operations that require round trips over a network. The cost
of these latter types of initialization may be significant.

[0020] Some connection pools, such as the Oracle Universal Connection Pool (UCP),
allow their connection pools to be configured using connection pool properties. The
properties have get and set methods that are available through a pool-enabled data source
instance. These methods are a convenient way to programmatically configure a pool. If no
pool properties are set, then a connection pool uses default property values.

[0021] Figure 2 further illustrates a system for connection labeling for use with
connection pools, in accordance with an embodiment.

[0022] In accordance with an embodiment, labeling connections allows an application
to attach arbitrary name/value pairs to a connection. The application can then request a
connection with a desired label from the connection pool. By associating particular labels
with particular connection states, an application can retrieve an already initialized connection
from the pool and avoid the time and cost of re-initialization. Connection labeling does not
impose any meaning on user-defined keys or values; the meaning of any user-defined keys
and values is defined solely by the application.

[0023] For example, as shown in Figure 2, the connection pool can include a plurality
of connections that are currently in use, here indicated as connections A 112 and B 114.
Each of the connections can be labeled. In the example shown in Figure 2, connection A
112 is labeled (Blue) and connection B 114 is labeled (Green). These labels/colors are
provided for purposes of illustration. In accordance with various embodiments, different
types of labels can be used to distinguish between different connection types.

[0024] As further shown in Figure 2, the connection pool can also include a plurality
of connections that are idle, here indicated as connections C 116, D 118, E 120, F 122, G
124 and N 126. Each of the idle connections can be similarly labeled, in this illustration as
(Blue) or (Green), and again these labels/colors are provided for purposes of illustration.
[0025] As further shown in Figure 2, in accordance with an embodiment, if a software
application 130 wishes to make a request on the database, using a particular type of
connection, for example a (Red) connection, it can make a getConnection(Red) request 132.
In response, the connection pool logic will either create a new (Red) connection, here
indicated as X 134 (Red); or repurpose an existing idle connection from (Blue or Green) to
(Red), here indicated as E 135 (Red).

[0026] Figure 3 further illustrates a system for connection labeling for use with

10

15

20

25

WO 2014/176363 PCT/US2014/035187

connection pools, in accordance with an embodiment.

[0027] In accordance with an embodiment, each software application can utilize a
cost function callback to provide configuration information 136 that defines, for that
application, costs associated with repurposing connections, and additional configuration
information such as high-cost connections and threshold values.

[0028] For example, a particular application may consider the cost of repurposing a
(Blue) connection to a (Red) connection to have a value of 50; and the cost of repurposing a
(Green) connection to a (Red) connection to have a value of 80; that a high-cost connection
has a value of 70; and that a reasonable threshold is 10. The meanings of these values are
similarly defined by the application, and the above are provided for purposes of illustration.
In accordance with various embodiments, different numeric or non-numeric values can be
used to distinguish between different connection costs.

[0029] In accordance with an embodiment, the connection pool logic iterates over
each connection available in the pool. For each connection, it calls a cost method. The result
of the cost method is an integer which represents an estimate of the cost required to
reconfigure the connection to the required state. The larger the value, the costlier it is to
reconfigure the connection.

[0030] In accordance with an embodiment, the configuration information 140
provided by the application 138 can be used by the connection pool logic in determining 141
whether to create or repurpose connections, particularly high-cost connections. For
example, in accordance with an embodiment, the system can perform a process similar to

that illustrated by the pseudocode below.

High-Cost: 70
Threshold: 10
getConnection (Red)
IF perfect match (Red)
THEN return it
ELSE find cheapest connection
IF cheapest connection’s cost < High-Cost
THEN repurpose this connection
ELSE IF sum connections < Threshold
THEN create new connection and apply label
ELSE sum conn 2= Threshold THEN repurpose cheapest

connection

[0030] Using the above illustration, in accordance with an embodiment, a particular

application may define High-Cost to be 70, and Threshold to be 10.

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

[0031] When the system receives a request for a particular connection type (e.g.,
Red), the connection pool logic first determines if there is a perfect/existing match (i.e., an
idle Red connection), and if so returns that connection for use by the application. Else, the
connection pool logic finds the cheapest connection that can be repurposed (to be a Red
connection). If the cost of the cheapest connection is less than High-Cost (70), then that
connection is repurposed. Else, if the total number of connections is less than Threshold
(10), then a new (Red) connection is created, labeled accordingly, and provided to the
application. Else, if the total number of connections is greater than or equal to Threshold,
then the cheapest connection is repurposed as a (Red) connection 142.

[0032] Figure 4 further illustrates a system for connection labeling for use with
connection pools, in accordance with an embodiment.

[0033] In accordance with an embodiment, when the total number of active and idle
connections is low, a request to use a high-cost connection of a particular type may result in
a new high-cost connection Y 144 (Red) being created, rather than an existing (potentially
also high-cost) connection begin repurposed. The new type connection can then be used for
subsequent requests of that type. Although the proposed approach may result in a high-cost
connection being created, rather than an existing (potentially also high-cost) connection
being repurposed, the approach can provide considerable performance improvements,
particularly in complex, e.g., multi-tenant cloud environments, which generally utilize high-
cost connections.

[0034] Figure 5 is a flowchart that illustrates a process of connection labeling for use
with connection pools, in accordance with an embodiment. As shown in Figure 5, in
accordance with an embodiment, at step 152, the system receives a request for a connection
to the database (e.g., getConnection (red)).

[0035] At step 154, the system determines whether there a perfect/existing
connection match (red). If there is an existing matching connection, then at step 156, the
existing (red) connection is retured. Otherwise, at step 158, the cheapest existing non-
matching connection (e.g., blue, green) is found.

[0036] At step 160, the system determines whether the cheapest non-matching
connection cost is less than a high-cost. If it is, then at step 162, the cheapest non-matching
connection is repurposed as a (red) connection.

[0037] At step 164, the system determines whether the sum of all connections is less
than a threshold. If it is, then at step 166, a new connection is created, and the appropriate
connection label (red) applied to the new connection. Otherwise, at step 168, if the sum of
all connections is greater than or equal to the threshold, then the cheapest connection is
repurposed as a (red) connection.

[0038] The above describes one approach to determining whether to create or

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

repurpose connections, particularly high-cost connections. In accordance with other
embodiments and implementations, other approaches can be used. Also, as described
above, the labels/colors are provided for purposes of illustration; in accordance with other
embodiments different types of labels can be used to distinguish between different

connection types.

Connection Labeling with Multi-Tenant Environments

[0039] In accordance with an embodiment, a system and method for connection
labeling for use with connection pools, can include support for cloud-based multi-tenant
environments using connection labeling. In accordance with an embodiment, this type of
environment can be considered an “Application as a Service” (AaaS) environment.

[0040] Figure 6 illustrates a system for connection labeling for use with connection
pools, including support for cloud-based multi-tenant environments using connection
labeling, in accordance with an embodiment. As shown in Figure 6, a multi-tenant cloud
environment can include an application server / database environment 100, such as a Fusion
Applications environment, that includes or provides access to a database 102, for use by
multiple tenants or tenant applications 172, 174, 176, in a cloud-based environment 170. As
further shown in Figure 6, the system also includes a connection pool logic 104, which
controls the creation of objects in a connection pool 106.

[0041] Software applications, which are accessed by tenants via the cloud 171, may
initialize connections 178 retrieved from a connection pool before using the connection. As
described above, examples of initialization include simple state re-initializations that require
method calls within the application code, or more complex initializations including database
operations that require round trips over a network, and the cost of these latter types of
initialization may be significant. As also described above, labeling connections allows an
application to attach arbitrary name/value pairs to a connection, and the application can then
request a connection with a desired label from the connection pool. By associating particular
labels with particular connection states, an application can retrieve an already initialized
connection from the pool and avoid the time and cost of re-initialization. Again, connection
labeling does not impose any meaning on user-defined keys or values; the meaning of any
user-defined keys and values is defined solely by the application.

[0042] For example, as shown in Figure 6, the connection pool can include a plurality
of connections that are currently in use 108, here indicated as connections A 112 and B 114;
and can also include a plurality of connections that are idle 110, here indicated as
connections C 116, D 118, E 120, F 122, G 124 and N 126. Each of the connections can be
similarly labeled, in this illustration as (Blue) or (Green), and again these labels/colors are

provided for purposes of illustration; in accordance with various embodiments different types

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

of labels can be used to distinguish between different connection types.

[0043] Figure 7 further illustrates a system for connection labeling for use with
connection pools, including support for cloud-based multi-tenant environments using
connection labeling, in accordance with an embodiment.

[0044] In accordance with an embodiment, if a software application 130 wishes to
make a request on the database, using a particular type of connection, for example a (Red)
connection, it can make a getConnection(Red) request 180. In response, the connection
pool logic will either create a new (Red) connection, or repurpose an existing idle connection
from (Blue or Green) to (Red).

[0045] In accordance with an embodiment, the connection pool includes support for
the application to use a configure () callback to specify a “SET CONTAINER” or to set a
container, to repurpose a particular connection from one tenant to another, which has the
effect of switching the tenant on a particular database connection.

[0046] In accordance with an embodiment, each software application can utilize a
cost function callback to provide configuration information 136 that defines, for that
application, costs associated with repurposing connections, and additional configuration
information such as high-cost connections and threshold values.

[0047] For example, a particular application may consider the cost of repurposing a
(Blue) connection to a (Red) connection to have a value of 50; and the cost of repurposing a
(Green) connection to a (Red) connection to have a value of 80; that a high-cost connection
has a value of 70; and that a reasonable threshold is 10. The meanings of these values are
similarly defined by the application, and the above are provided for purposes of illustration.
In accordance with various embodiments different numeric or non-numeric values can be
used to distinguish between different connection costs.

[0048] In accordance with an embodiment, the connection pool logic iterates over
each connection available in the pool. For each connection, it calls a cost method. The result
of the cost method is an integer which represents an estimate of the cost required to
reconfigure the connection to the required state. The larger the value, the costlier it is to
reconfigure the connection.

[0049] In accordance with an embodiment, the configuration information provided by
the application can be used by the connection pool logic in determining whether to create or
repurpose connections, particularly high-cost connections. For example, in accordance with
an embodiment, the system can perform a process similar to that illustrated above.

[0050] Using the above illustration, in accordance with an embodiment, a particular
application may define High-Cost to be 70, and Threshold to be 10. When the system
receives a request for a particular connection type (e.g., Red), the connection pool logic first

determines if there is a perfect/existing match (i.e., an idle Red connection), and if so returns

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

that connection for use by the application. Else, the connection pool logic finds the cheapest
connection that can be repurposed (to be a Red connection). If the cost of the cheapest
connection is less than High-Cost (70), then that connection is repurposed. Else, if the total
number of connections is less than Threshold (10), then a new (Red) connection is created,
here indicated as Z 184 (Red), labeled accordingly, and provided to the application. Else, if
the total number of connections is greater than or equal to Threshold, then the cheapest
connection is repurposed as a (Red) connection, here indicated as E 182 (Red).

[0051] In accordance with an embodiment, when the total number of active and idle
connections is low, a request to use a high-cost connection of a particular type may result in
a new high-cost connection being created, rather than an existing (potentially also high-cost)
connection begin repurposed. The new type connection can then be used for subsequent
requests of that type.

[0052] Although the proposed approach may result in a high-cost connection being
created, rather than an existing (potentially also high-cost) connection being repurposed, the
approach can provide considerable performance improvements, particularly in complex, e.g.,
multi-tenant cloud environments, which generally utilize high-cost connections.

[0053] For example, as shown in Figure 7, the system can be used by multiple
tenants or tenant applications in a cloud-based environment. In such a multi-tenant
environment, connection types may be very complex, due to the need to accommodate
multiple tenants, and, e.g., to maintain security between each different tenant’s access to the
database. Using the approach described herein, the performance of applications operating
within a cloud environment can be improved.

[0054] Figure 8 is a flowchart that illustrates a process of connection labeling for use
with connection pools, including support for cloud-based multi-tenant environments using
connection labeling, in accordance with an embodiment. As shown in Figure 8, in
accordance with an embodiment, at step 192, a multi-tenant cloud environment is provided,
that includes or provides access to a database, for use by multiple tenants or tenant
applications.

[0055] At step 194, a connection pool is provided, which provides connections that
software application can use to make requests to access the database, wherein connections
can be labeled according to the configuration of particular applications.

[0056] At step 196, a software application is configured to support connection
requests from the multiple tenants or tenant applications, together with connection labeling
and connection cost information.

[0057] At step 198, connections labeled as high-cost connections are identified, and
the system thereafter controls the creation or repurposing of high-cost connections to serve

requests from the multiple tenants or tenant applications

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

Example Implementations

[0058] Provided below are illustrative examples of how connection labeling can be
used with connection pools in an Oracle UCP environment, in accordance with various
embodiments. In accordance with other embodiments, functionality can be provided, e.g., for
use with WebLogic server connection pools, or other types of connection pools.

[0059] In Oracle UCP, Connection Labeling (CL) provides a mechanism to identify
High-Cost Connections. In accordance with an embodiment, CL must support at least a
discrete value; and may support a range of values. CL can provide a Reuse High-Cost
Connection Threshold configuration parameter (similar to minpoolsize, maxpoolsize). When
the lowest-cost available connection is a High-Cost Connection, the system can test the
current pool size against Reuse High-Cost Connection Threshold, and against minimum pool
size. If current < minimum or current < threshold, the system returns a new connection. Else
if (current >= threshold), the system returns the lowest-cost High-Cost Connection. When
there are no available connections, the current behavior holds (i.e., return a new connection,
subject to maximum pool size, and if >= maximum pool size, wait for a connection to be
available, subject to the timeout, etc.).

[0060] In accordance with an embodiment, the UCP Connection Labeling behavior
UCP's Connection Labeling feature supports the cost() method in a Connection Labeling
callback implementation, for any application to determine the cost of initializing and
reinitializing a connection in the pool. The pool supports flexible cost value range that can be
fully customized to application requirements. The pool uses the cost() value returned from
the callback to determine the best candidate connection to serve each connection request. It
always picks the connection with the lowest cost value. The lowest cost value being 0
indicates no reinitialization, while Integer. MAX_VALUE forces the pool to use a brand new
physical connection to serve the request. The pool distinguishes between connections with
applied labels and without labels. When Connection Labeling is activated, the pool always
checks connections in the pool with applied labels first, and only when it cannot find any
available labeled connection to serve the request, it attempts to find an available one from
the connections without labels. When this fails, it attempts to create a new physical
connection if the pool still has room to grow.

[0061] In accordance with various embodiments, variations on the above can include:
[0062] Add a new UCP pool property ConnectionLabelingHighCost (also available on
UCP data sources PoolxxxDataSource). When the set value is greater than 0, connections
with a cost value equal to or greater than the property value are considered "high-cost"
connections. The default value is Integer. MAX_VALUE. For example, if the property value

is set to 5, any connection whose calculated cost value from the labeling callback is equal to

10

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

or greater than 5 is considered a High-Cost connection.

[0063] Add a new UCP pool property HighCostConnectionReuseThreshold (also
available on UCP data sources PoolxxxDataSource). When the set value is greater than 0,
this specifies a threshold of the number of total connections in the pool beyond which
Connection Labeling is allowed to reuse High-Cost connections in the pool to serve a
request. Below this threshold, Connection Labeling either uses an available low-cost
connection, or creates a brand-new physical connection to serve a request. For example, if
the property value is set to 20, Connection Labeling reuses High-Cost connections when
there are no low-cost connections available and the total connections reach 20. The default
value for HighCostConnectionReuseThreshold is 0. A Connection Labeling callback must be
registered at the same time for this property to take effect. Valid Connection Labeling
callback registration continues to activate Connection Labeling. The pooling logic checks for
the new threshold after the cost-selection iteration, when the lowest cost result is equal to or
greater than ConnectionLabelingHighCost. The number of total connections at the moment
when this new threshold is checked should account for the number of active connection
creation requests (the pool already has code to extract this information). The checking must
account for both MinPoolSize and MaxPoolSize. Note that any labeled connection with cost
value Integer.MAX_VALUE will not be reused, even after the new threshold is reached. This
is consistent with existing connection labeling behavior when the new threshold and
ConnectionLabelingHighCost are not set.

[0064] In accordance with an embodiment, there is no requirement not to reuse
connections without labels (stateless) in the pool to serve connection requests with labels
(i.e., labeled requests). Once the HighCostConnectionReuseThreshold is reached and
Connection Labeling is activated, the pool still favors connections without labels (stateless)
over creating new physical connections.

[0065] In accordance with an embodiment, to support a special Connection Labeling
callback implementation, for any connection the application considers High-Cost, the cost()
method in such callback (1) simply returns Integer. MAX_VALUE for such connection, before
the pool size reaches the HighCostConnectionReuseThreshold, and (2) switches to return an
actual High-Cost value after the threshold is reached. This effectively prohibits existing UCP
code from reusing a High-Cost connection to serve a request, below the threshold. The

callback implementation can dynamically check the pool size against the threshold.

[0066] Embodiments of the present invention may be conveniently implemented
using one or more conventional general purpose or specialized digital computer, computing
device, machine, or microprocessor, including one or more processors, memory and/or

computer readable storage media programmed according to the teachings of the present

11

10

15

WO 2014/176363 PCT/US2014/035187

disclosure. Appropriate software coding can readily be prepared by skilled programmers
based on the teachings of the present disclosure, as will be apparent to those skilled in the
software art.

[0067] In some embodiments, the present invention includes a computer program
product which is a non-transitory storage medium or computer readable medium (media)
having instructions stored thereon/in which can be used to program a computer to perform
any of the processes of the present invention. Examples of the storage medium can include,
but is not limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs,
microdrive, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs,
VRAMs, flash memory devices, magnetic or optical cards, nanosystems (including molecular
memory ICs), or any type of media or device suitable for storing instructions and/or data.
[0068] The foregoing description of embodiments of the present invention has been
provided for the purposes of illustration and description. It is not intended to be exhaustive or
to limit the invention to the precise forms disclosed. Many modifications and variations will
be apparent to the practitioner skilled in the art. The embodiments were chosen and
described in order to best explain the principles of the invention and its practical application,
thereby enabling others skilled in the art to understand the invention for various embodiments

and with various modifications that are suited to the particular use contemplated.

12

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

Claim:

What is claimed is:

1. A system for connection labeling for use with connection pools, comprising:

a computer including a processor and a database;

a connection pool, including a plurality of connection objects which provide
connections that software applications can use to make requests to access the database,
wherein each of the connections can be labeled according to the configuration of particular
applications; and

a connection pool logic that identifies connections labeled as high-cost connections,
and controls one or more of the use, creation, or repurposing of high-cost connections to

serve requests from the software applications.

2. The system of claim 1, wherein the system is adapted for use by multiple tenants or
tenant applications in a multi-tenant cloud-based environment, and wherein each particular
one of the multiple tenants or tenant applications can be associated with a labeled
connection type, which connection type the particular applications use to connect to the

database for that particular tenant.

3. The system of any of claims 1-2, wherein the system is adapted for use by multiple
tenants or tenant applications in a multi-tenant cloud-based environment, and wherein the
connection pool includes support for the particular applications to use a configure callback to
specify or set a container, to repurpose a particular connection from one of the multiple
tenants or tenant applications to another of the multiple tenants or tenant application, which

has the effect of switching the tenant on a particular database connection.

4. The system of any of claims 1-3, wherein the connection pool logic performs a
process of
determining, for a received request, if there is an existing matching connection; and
if there is an existing matching connection, returning the existing matching
connection, otherwise
finding a cheapest non-matching connection and determining whether the
cheapest non-matching connection cost is less than a high-cost value, and if so
repurposing the cheapest non-matching connection for use with the request,
otherwise

if the sum of all connections is less than a threshold value, creating a

13

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

new connection for use with request, and returning the new connection, and
if the sum of all connections is greater than or equal to the threshold

value, repurposing the cheapest connection for use with the request.

5. The system of any of claims 1-4, wherein the connection pool logic identifies
connections labeled as high-cost connections, and avoids using those high-cost connections

to serve requests when the total number of connections is below a particular threshold value.

6. The system of any of claims 1-5, wherein the connection pool logic is configured such
that, when the total number of active and idle connections is low, a request to use a high-cost
connection of a particular type results in a new high-cost connection being created, rather

than an existing connection begin repurposed.

7. A method for connection labeling for use with connection pools, comprising:

providing, at a computer including a processor and a database, a multi-tenant cloud
environment that includes or provides access to the database, for use by multiple tenants or
tenant applications in a cloud-based environment;

providing a connection pool, including a plurality of connection objects which provide
connections that software applications can use to make requests to access the database,
wherein each of the connections can be labeled according to the configuration of particular
applications; and

using a connection pool logic that identifies connections labeled as high-cost
connections, and controls the creation or repurposing of high-cost connections to serve

requests from the multiple tenants or tenant applications.

8. The method of claim 7, wherein the method is adapted for use by multiple tenants or
tenant applications in a multi-tenant cloud-based environment, and wherein each particular
one of the multiple tenants or tenant applications can be associated with a labeled
connection type, which connection type the particular applications use to connect to the

database for that particular tenant.

9. The method of any of claims 7-8, wherein the method is adapted for use by multiple
tenants or tenant applications in a multi-tenant cloud-based environment, and wherein the
connection pool includes support for the particular applications to use a configure callback to
specify or set a container, to repurpose a particular connection from one of the multiple
tenants or tenant applications to another of the multiple tenants or tenant application, which

has the effect of switching the tenant on a particular database connection.

14

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

10. The method of any of claims 7-9, wherein the connection pool logic performs a
process of
determining, for a received request, if there is an existing matching connection; and
if there is an existing matching connection, returning the existing matching
connection, otherwise
finding a cheapest non-matching connection and determining whether the
cheapest non-matching connection cost is less than a high-cost value, and if so
repurposing the cheapest non-matching connection for use with the request,
otherwise
if the sum of all connections is less than a threshold value, creating a
new connection for use with request, and returning the new connection, and
if the sum of all connections is greater than or equal to the threshold

value, repurposing the cheapest connection for use with the request.

11. The method of any of claims 7-10, wherein the connection pool logic identifies
connections labeled as high-cost connections, and avoids using those high-cost connections

to serve requests when the total number of connections is below a particular threshold value.

12. The method of any of claims 7-11, wherein the connection pool logic is configured
such that, when the total number of active and idle connections is low, a request to use a
high-cost connection of a particular type results in a new high-cost connection being created,

rather than an existing connection begin repurposed.

13. A non-transitory computer readable medium, including instructions stored thereon
which when read and executed by one or more computers cause the one or more computers
to perform the method comprising:

providing, at a computer including a processor and a database, a multi-tenant cloud
environment that includes or provides access to the database, for use by multiple tenants or
tenant applications in a cloud-based environment;

providing a connection pool, including a plurality of connection objects which provide
connections that software applications can use to make requests to access the database,
wherein each of the connections can be labeled according to the configuration of particular
applications; and

using a connection pool logic that identifies connections labeled as high-cost
connections, and controls the creation or repurposing of high-cost connections to serve

requests from the multiple tenants or tenant applications.

15

10

15

20

25

30

35

WO 2014/176363 PCT/US2014/035187

14. The method of claim 13, wherein the method is adapted for use by multiple tenants or
tenant applications in a multi-tenant cloud-based environment, and wherein each particular
one of the multiple tenants or tenant applications can be associated with a labeled
connection type, which connection type the particular applications use to connect to the

database for that particular tenant.

15. The method of any of claims 13-14, wherein the method is adapted for use by
multiple tenants or tenant applications in a multi-tenant cloud-based environment, and
wherein the connection pool includes support for the particular applications to use a
configure callback to specify or set a container, to repurpose a particular connection from
one of the multiple tenants or tenant applications to another of the multiple tenants or tenant

application, which has the effect of switching the tenant on a particular database connection.

16. The method of any of claims 13-15, wherein the connection pool logic performs a
process of
determining, for a received request, if there is an existing matching connection; and
if there is an existing matching connection, returning the existing matching
connection, otherwise
finding a cheapest non-matching connection and determining whether the
cheapest non-matching connection cost is less than a high-cost value, and if so
repurposing the cheapest non-matching connection for use with the request,
otherwise
if the sum of all connections is less than a threshold value, creating a
new connection for use with request, and returning the new connection, and
if the sum of all connections is greater than or equal to the threshold

value, repurposing the cheapest connection for use with the request.

17. The method of any of claims 13-16, wherein the connection pool logic identifies
connections labeled as high-cost connections, and avoids using those high-cost connections

to serve requests when the total number of connections is below a particular threshold value.

18. The method of any of claims 13-17, wherein the connection pool logic is configured
such that, when the total number of active and idle connections is low, a request to use a
high-cost connection of a particular type results in a new high-cost connection being created,

rather than an existing connection begin repurposed.

16

PCT/US2014/035187

1/8

WO 2014/176363

L 34N9I14
".||||||||||||||||||||||||||_
I N “
! |
! |
“ o | !
! |
| 1]
I
! |
“ 3 I
I
! |
I a |
! |
| o |
I
“ 0}} SUORIBUUOD 3yp] !
zo. | | TTT77 7 N
aseqeleq — fm——---------
| . LEL
: I — —_
! I () uogosuu0)eb
> “ el
| v 601 Uoneolddy
| I
I g0} eSMN-ul-suondsuuon “
501 R Tt
90| [00d UORIBUUOD
00l
(juswuoJIAug
suonedlddy uoisn4 “6-8)
JUSLIUOJIAUT 8SEqeIRQ
/ Janas uonediddy
01 21607 004 uonoBUUDY

PCT/US2014/035187

WO 2014/176363

2/8

AN

¢0l)
aseqeje(<«

>

gol

901

(anig) 921 N:

[/ (Us019) 17} 97

/(useio) zz1 47/

(enig) 0z1

/7,
/ (usa19) 811 07/

(enig) 911 O:

0]] suolpsuuo) 3P|

/ (usai0) v11 87/

|00 UORY3UUOY

001
(JuswuolIAUL

suoneolddy uoisn4 “6:9)
JUSWUOJIAUT 8seqele(
| Janag uoneolddy

0] 21607 |004 UonIBUUOY)

a

¢ F4N9I4

el _
pay) uonosuuo))eh

0¢ |} uoneolddy

PCT/US2014/035187
3/8

WO 2014/176363

€ 34N9Id4

_lllllllllllllllllllllllllll—
|
_ (onig) 92k N=| |
|
. I
_ .
~ I
_ A/
|
I
! /(usa19) 721 47/ i
|
T pederl 3 e—f Gngloci 3]
|
/, I
i /(usai9) 811 07/ |
|
A~ _ onig) 91, 0-] |
|
I
“ 0} SUORIBUUOD 3P| ! 9el
cob | | T 77 4 |||||||||||||||||||| F————————q
oseqeleq [e ity | ()ambyuoo |
17l _ : | e zel 11 !
PlOYSaIy | MOjeq “ | (pay) uonosuuonyeb l (q !
> " ; (0 ‘wouy) 3s00 jut |
$I SUORIAUU0D L P(wam)p gl P _
JO JaquINU 8y UsyMm “ I id
sjsanbal anss 0} I ang) 1) v “ €} uonedljday
SUOIO2UU0O 1SOJ-YOH 9S(1-UI-SUOIBUUOY) |
Buisn pioAe pue Ajgusp| 1 - 80} SSN-UISUOKIBULO] |
901 004 UONI3UUOD
| "7 (01 ““Bro ‘omrea) :prouseius 9c|
001 | (0L ‘*bro ‘onrean) :3s0D-UYbTH |
ocmEco.__>c® | (08 ‘"b'o ‘ontea):pay<-ussio |
suoneolddy uoisn4 “68) _ (0G “*brs ‘ontea): (pod<-snTd “ |
JUSLLUOJIAUT 8SEqRIRq _ i+
] soniag voyeoddy e __ 00}
01 21607 004 uond8UUOD

PCT/US2014/035187

WO 2014/176363

4/8

AN

¢0l
aseqejeq

001
(luswuoAug

suonedlddy uoisn4 “6°3)
JuswUOIIAUT Bseqele(
/ 1oAI8S uoneolddy

Il
PIoYsaIy] mofeq
SI SUOROBUUOD
10 Jaquinu ayy usym
s1s9nba) SAISS 0)
SUOI}O9UU02 1S09)-YBIH
Buisn pioae pue Ajuap)

|
P
|
|
|
|
|
|
|
1

anig) 9z N

AR,

/ (usain) 7z 47/

(enig) 0z 3

7,
/ (usa19) 811 07/

anig) 911 9

“(paY) PPl A

AT

S(enig) ziL Y

80} 9SN-UI-SUONIBUUOY “

/ 901 004 uondsuuo)

\

LSttt ettt efa et et |

\-mv-

(0T

(oL *B°
AOMW \-@-
Aom \-@-

Sl

‘enTen) PTOUYSSIYL
‘snTes) :13s00-ybTH
‘enTean) i pesY<-UussIn
‘enten) : (paY<-anTd
Ov1 S1S0D |

01 21607 004 uonIaUL0Y

K

v 34N9I4

cel |
pay) uondsuuoNeh

9€l

P e e)

() aanbyuoo “

(01 ‘wouy) 1509 Ul “

==

0¢ | uoneolddy

8l

PCT/US2014/035187

WO 2014/176363

5/8

¢ 34n9aI4

89l ~—

uonNI3UUCI (Pal) B Se uoNI3uued 1sadesyd
oy esodindas uayj ‘ploysaiy] ayy 0] [enbd
J0 uey) Jo1ealb 1 SUOIDBUUOD (B JO WIS 3y} §|

91 ~—

UOI}O8UUOD MBU 8Y) 0}
(pal) [oqe| uonasuuod aeudoidde sy
£|dde pue ‘uoiosuuod MaU e sl

yy
ON

v9l

¢ploysaiyl

A

SOA

UON98UUOD (pal) B SE UOROBUUOD
1sadesyd ay) asodinday

——S9A

8} UBY) SS8| SUONIBUUOD
[[B JO NS 8y S|

ON
09}

¢1S00-UBIH 8y
UBL} $S2| 1502 UONO2UU0D
182deayo sy s

8G) ~—i

(uze4b ‘aniq “B'9)
uonodsuu09 Bulyorew-uou Bupsixs Jsadesayd sy pul4

981 ~—

uonoBUU0Y
(paJ) Bunsixe sy uINdy

yy
ON

11 N
¢(pau) yojew
uonosuuod Bunsixanosued
B 2I8Y} §|

S ~—

((pa1) uonosuuomab “Ha)
8SEqe)eep ol 0} UOJIBUUOD B 10j Jsenbal sAI80aY

PCT/US2014/035187

WO 2014/176363

6/8

AN

¢0l)
aseqeje(

>

001
(JuswuolIAUL

suoneolddy uoisn4 “6:9)
JUSWUOJIAUT 8seqele(
| Janag uoneolddy

(enig) 9z1 N

(usain) +Z1 9

/(u9919) 72l 47/

NN
N KN

(onTea) :oaogmmmg_w_
(enTeA) :150D-ybTH |
(SNTeA) : POY<-US3InH I
(suTea) : (peu<-onTd |
|

Ol S1800 |

01 21607 |004 UonI8UUOD

(

8.1
(anig) uonosuuoneb

uda.9) uonasuuoNeh

(pay) uonosuuonNeh

9 34N914

0¢) uoneolddy

V /7SS A

f il y Zll

 (ean) (enig)
Jlueus] / rdeus|/ 1 | Veusl/
‘uoneolddy jueus | fuoneoiddy jueus]{ [uoneonddy jueus) :
RS VPV IV IIII IS i :

0/ JUSWUOIIAUT P3SEg-PO[O!

PCT/US2014/035187

WO 2014/176363

7/8

AN

¢0l
aseqejeq

>

00l
(luswuouAud

suonedlddy uoisn4 “6-g)
JUSWIUOJIAUT BSEqeleq
/ JoAIBg uonealddy

Z(enig) 921 N

(pey) 281 3

(enTea) :oﬁocmmmcﬁ
(snTea) :3s0D-UbBTH
(snTea) (poyd<-ussin
(snTea) : (pasyd<-snTd

0yl $1S00 |

01 91607 1004 uonOBUUOD

(

L 34N914

9¢l
rETEsEssEss A
“ () ainByuoo !
08} . !
pay) uondsuL0 eb , (03 ‘wouy) 3800 jul !
0¢ uoneolddy
A A
IR OSSR V//7/77/7/77
9/l f il y zl)
(Poy) ¢ (ueasn) (enig)
- Olueus] / r deusl/ 1 | vieusl/
‘uoneslddy yueus | \co;mo__%,q eus|q4 fuoneoyddy jueusy:
... DI DIIIIIIP4 : :

04} JUSWILOJIAUT PASEQ-PNO[D)

PCT/US2014/035187

WO 2014/176363

8/8

8 34N9I4

86) ~—

suoneaidde jueua) 1o sjueus) s|diynw ay) wouj
SIS anbal 9AI9S 0} SUORIBUU0D }$09-ybIy Jo Buisodindal Jo uones.o
8] |0JJUCD PUE ‘SUOOBUUCD }S00-YBIY SE pajage| Suoioauuod Ayuap)

96 ~——

UONBLIOJUI 1SOD UOIR3UU0d pue buljege)
uondsuuod Yim Jayiebo) ‘suoneaidde yueus) Jo syueus) gidnnw
al wou) sysenbai uondauuod poddns o) uonedidde sremyjos ainbyuo))

A

V6l ~—

suoneoidde
Jenonied Jo uoneinbiyuod ay) 0) BuipJodoe PajaGe| 8¢ UBD SUOKIBUUDD
uIalaym ‘eseqelep ay) $sad2e 0) s)sanbal ayew 0] asn ued uonedidde
21BM)JOS JBL)) Suondsuuod apirold yoiym [ood uonosuuod e apinold

A

6}~

suonedldde jueus) Jo syueus) ajdnnw Ag 9sn 1o} ‘aSeEqRIEP B 0] SS800B
sapIn0Id JO SBPN[oUI Jey) JUSWUOIIAUS PNOJD JUBUS)-HINW B SPIACIH

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/035187

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

5 March 2009 (2009-03-05)
the whole document

SRIVASTAVA RAHUL [US])
13 July 2006 (2006-07-13)
the whole document

the whole document

X US 2009/064199 Al (BIDELIS SIGITAS [US] ET
AL BIGELIS SIGITAS [US] ET AL)

A WO 2006/073865 A2 (BEA SYSTEMS INC [US];

A WO 20127037163 AL (ORACLE INT CORP [US];
SOMOGYI ALEX [US]; REVANURU NARESH [US];
IRUDAYA) 22 March 2012 (2012-03-22)

1-18

1-18

1-18

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

29 July 2014

Date of mailing of the international search report

05/08/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Beyer, Steffen

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/035187
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A ANONYMOUS: "Database Connection Pool 1-18

Management",

RESEARCH DISCLOSURE, MASON PUBLICATIONS,
HAMPSHIRE, GB,
vol. 41, no. 416,

1 December 1998 (1998-12-01), XP002141842,
ISSN: 0374-4353

the whole document

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/035187
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2009064199 Al 05-03-2009 NONE
WO 2006073865 A2 13-07-2006 AU 2005323039 Al 13-07-2006
EP 1844395 A2 17-10-2007
JP 2008525916 A 17-07-2008
KR 20070110011 A 15-11-2007
WO 2006073865 A2 13-07-2006
WO 2012037163 Al 22-03-2012 CN 103124967 A 29-05-2013
EP 2616966 Al 24-07-2013
JP 2013541764 A 14-11-2013
US 2012066363 Al 15-03-2012
WO 2012037163 Al 22-03-2012

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - wo-search-report
	Page 27 - wo-search-report
	Page 28 - wo-search-report

