Abstract:
The present invention relates to a method for preventing or treating cardiomyopathy due to energy failure in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a nucleic acid sequence of a gene that can restore energy failure. More particularly, the invention relates to a method for preventing or treating a cardiomyopathy associated with Friedreich ataxia in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.
METHODS AND PHARMACEUTICAL COMPOSITION FOR THE TREATMENT
AND THE PREVENTION OF CARDIOMYOPATHY DUE TO ENERGY FAILURE

FIELD OF THE INVENTION:

The present invention relates a method for preventing or treating cardiomyopathy due to energy failure in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a nucleic acid sequence of a gene that can restore energy failure.

More particularly, the invention relates to a method for preventing or treating a cardiomyopathy associated with Friedreich ataxia in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

BACKGROUND OF THE INVENTION:

Friedreich ataxia (FRDA), an autosomal progressive recessive neurodegenerative disorder associated with cardiomyopathy, is caused by reduced expression of the mitochondrial protein, frataxin [V. Campuzano et al, 1996 and V. Campuzano et al, 1997]. The cardiomyopathy associated with FRDA is hypertrophic. As the disease progresses, there is a natural transition from hypertrophy to dilation, with death of cardiomyocytes replaced by fibrotic tissue leading to systolic and diastolic dysfunction [R. M. Payne et al, 2012]. Impaired myocardial perfusion reserve index (MPRI) associated with microvascular dysfunction and fibrosis occurs even prior to the onset of overt cardiomyopathy. Consistent with impaired mitochondrial respiratory chain function that leads to energy deficit, phosphorus magnetic resonance spectroscopy shows reduced ATP production in patient heart, which strongly correlates with the degree of cardiac hypertrophy. Cardiac dysfunction, predisposing to congestive heart failure and supraventricular arrhythmias, is the primary mode of death in ~60% of patients with FRDA.

Although the function of frataxin is still under investigation, available evidences support a role as an activator of iron-sulfur (Fe-S) cluster biogenesis in mitochondria [C. L. Tsai et al, 2010 and Schmucker et al, 2012]. In particular, frataxin was recently shown to
control iron delivery for de novo Fe-S cluster biogenesis through activation of cysteine desulfurase activity [Colin et al, 2013].

Fe-S clusters are essential prosthetic groups for many proteins with a variety of functions and subcellular localizations. Frataxin deficiency leads to impairment of Fe-S cluster-containing proteins, altered cellular iron metabolism, mitochondrial dysfunction and increased sensitivity to oxidative stress. Most mitochondrial and biochemical defects identified in human patients have been recapitulated in mouse models of FRDA [H. Puccio et al, 2001 and Simon et al. et al, 2004], providing valuable models for testing potential therapeutic interventions. Particularly, the MCK conditional mouse model, with complete frataxin deletion in cardiac and skeletal muscle, recapitulates the cardiomyopathy observed in FRDA patients with a more rapidly progressive course [H. Puccio et al, 2001 and H. Seznec et al, 2004]. Furthermore, the MCK mouse demonstrated that hypertrophy and mitochondrial Fe-S cluster protein defects precede mitochondrial iron accumulation and increase sensitivity to oxidative stress.

To date, no treatment exists for stopping or slowing down the cardiomyopathy of FRDA. Current therapeutic approaches in clinical use or under evaluation are directed at alleviating symptoms and maximizing quality of life [R. B. Wilson 2012]. Thus, there is an important need for a novel therapeutic approach to treat cardiomyopathy associated with Friedreich ataxia.

SUMMARY OF THE INVENTION:

In the present invention, the therapeutic effect of an AVVrhLO vector carrying a human frataxin cDNA on the cardiac phenotype in a mammalian model of FRDA cardiomyopathy was investigated. The results showed that delivery of a vector encoding hFXN resulted in i) prevention of the development of disease symptoms in asymptomatic individuals and ii) reversal of disease symptoms in individuals who already exhibited cardiomyopathy, mitochondrial dysfunction and the biochemical impairment associated with frataxin deficiency. Of particular note is that the inventors showed that delivery of a vector encoding hFXN resulted in a rapid reversal of the mitochondrial abnormalities leading to arrest of the cardiac fibrosis, restoration of the cardiac contractile apparatus and complete restoration of cardiac function.

More generally, the inventors show that by restoring an essential mitochondrial function with the use of the nuclear-encoded FXN gene, and thereby increasing the energy
production of the mitochondria, the myocardium function can be restored and the interstitial cardiac fibrosis stopped. Considering that inefficient energy utilization and increased energy demand by the sarcomere have been suggested as a key consequence of many, if not all, hypertrophic cardiomyopathy associated mutations (Sweeney HL et al, 1998), they results demonstrate that the use of a gene that can restore energy failure may be useful for preventing or treating cardiomyopathy linked to energy failure.

Thus, the invention relates a method for preventing or treating cardiomyopathy due to energy failure in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a nucleic acid sequence of a gene that can restore energy failure.

More particularly, the invention relates to a method for preventing or treating a cardiomyopathy associated with Friedreich ataxia in a subject in need thereof, comprising administering to said subject of a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

DETAILED DESCRIPTION OF THE INVENTION:

Methods of the invention

A first object of the invention relates a method for preventing or treating cardiomyopathy due to energy failure in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a nucleic acid sequence of a gene that can restore energy failure.

As used herein the term "cardiomyopathy due to energy failure" denotes a deterioration of the function of the myocardium leading to heart failure, cardiac remodelling, long-term high blood pressure, heart valve problems, impaired calcium cycling sensitivity, disturbed biochemical stress sensing, altered energy homeostasis due but not limited to mitochondrial dysfunction and fibrosis.

In a particular embodiment, the cardiomyopathy due to energy failure may be a dilated cardiomyopathy, a hypertrophic cardiomyopathy, a restrictive cardiomyopathy or an ischemic cardiomyopathy.
In another particular embodiment, the cardiomyopathy due to energy failure may be a cardiomyopathy due to a deficiency of fatty oxidation, including but not limited to primary carnitine deficiency, LCHAD, translocase, VLCAD.

In another particular embodiment, the cardiomyopathy due to energy failure may be a cardiomyopathy associated with Friedreich ataxia.

As used herein, the term "a gene that can restore energy failure" denotes a nuclear or mitochondrial gene that can restore energy failure and/or mitochondrial dysfunction.

In a particular embodiment, the gene that can restore energy failure may be a nuclear gene encoding a subunit of pyruvate dehydrogenase complex, a nuclear or a mitochondrial gene coding for a subunit of Complex I, III, IV or V involved in the oxidative phosphorylation; a mitochondrial gene encoding transfer RNA, a gene involved in the biogenesis of mitochondria such as SIRT1, a gene involved in the fusion of mitochondria such as OPA1, a gene involved in the fission of mitochondria such as FIS1 or a gene involved in the oxidation of fatty acid such as the very long-chain specific acyl-CoA dehydrogenase.

In a particular embodiment, the gene that can restore energy failure is the frataxin (FXN) gene.

As used herein in its broadest meaning, the term "preventing" or "prevention" refers to preventing the disease or condition from occurring in a subject which has not yet been diagnosed as having it or which does not have any clinical symptoms.

As used herein, the term "treating" or "treatment", as used herein, means reversing, alleviating, or inhibiting the progress of the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition. A "therapeutically effective amount" is intended for a minimal amount of active agent which is necessary to impart therapeutic benefit to a subject. For example, a "therapeutically effective amount" to a patient is such an amount which induces, ameliorates, stabilises, slows down the progression or otherwise causes an improvement in the pathological symptoms, disease progression or physiological conditions associated with or resistance to succumbing to a disorder.

As used herein, the term "subject" denotes a mammal, such as a rodent, a feline, a canine, and a primate. Preferably a subject according to the invention is a human. In the context of the present invention, a "subject in need thereof" denotes a subject, preferably a human, with a cardiomyopathy due to energy failure and more particularly a subject with a
cardiomyopathy associated with Friedreich ataxia. Subject with a cardiomyopathy associated with Friedreich ataxia presents some cardiac symptoms which may be, but are not limited to, a decrease of ejection fraction, increase of ventricular mass or cardiac hypertrophy. Thus, the method of the invention will be very useful to treat subject with such disease (Friedreich ataxia) presenting such symptoms.

As used herein, the term "gene" refers to a polynucleotide containing at least one open reading frame that is capable of encoding a particular polypeptide or protein after being transcribed and translated.

As used herein, the terms "coding sequence", "a sequence which encodes a particular protein" or "encoding nucleic acid", denotes a nucleic acid sequence which is transcribed (in the case of DNA) and translated (in the case of mRNA) into a polypeptide in vitro or in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxy) terminus. A coding sequence can include, but is not limited to, cDNA from prokaryotic or eukaryotic mRNA, genomic DNA sequences from prokaryotic or eukaryotic DNA, and even synthetic DNA sequences.

In a particular embodiment, the invention relates to a method for preventing or treating a cardiomyopathy associated with Friedreich ataxia in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

In a particular embodiment, the invention relates to a method for treating a cardiomyopathy associated with Friedreich ataxia in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

In a particular embodiment, the invention relates to a method for reversing or stabilizing symptoms of cardiomyopathy associated with Friedreich ataxia in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

As used herein, the term "reversing symptoms of cardiomyopathy associated with Friedreich ataxia" denotes the restoration of cardiac function by, for example, improving ejection fraction and/or decreasing the ventricular mass in a subject in need thereof.
In a particular embodiment, the invention relates to a method for reversing the dysfunction of cardiac mitochondria associated with Friedreich ataxia in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

In a particular embodiment, the invention relates to a method for improving the cardiac mitochondria associated with Friedreich ataxia in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

In a particular embodiment, the invention relates to a method for restoring cardiac function in a subject suffering of a cardiomyopathy associated with Friedreich ataxia comprising administering to said subject of a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

In a particular embodiment, the invention relates to a method for improving cardiac function in a subject suffering of a cardiomyopathy associated with Friedreich ataxia comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

In a particular embodiment, the invention relates to a method for treating a cardiomyopathy associated with Friedreich ataxia in an asymptomatic or pre-symptomatic subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

In another particular embodiment, the invention relates to a method for treating a cardiomyopathy associated with Friedreich ataxia in a symptomatic subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

As used herein, the terms "asymptomatic" or "pre-symptomatic" denotes a subject with the disease (Friedreich ataxia) as defined by a genetic diagnosis (see for review Lynch DR et al, 2002) but with no clinical cardiac symptom.

As used herein, the terms symptomatic denotes a subject with the disease (Friedreich ataxia) as defined by a genetic diagnosis and with the presence of cardiac symptoms (cardiac hypertrophy, fibrosis, decreased myocardial perfusion reserve index, impaired cardiac or
skeletal muscle mitochondrial respiratory chain function, subclinical cardiomyopathy, supraventricular arrhythmias, heart failure, systolic left ventricular dysfunction, fatigue...).

The FXN gene encodes the protein frataxin. This frataxin is a protein localized to the mitochondrion. The frataxin is involved in assembly of iron-sulfur clusters by regulating iron entry and the activity of the cysteine desulfurase. A cDNA sequence for human FXN (transcript variant 1) is disclosed in Genbank Access Number NM_000144 or NG_008845 (SEQ ID NO:1). The amino acid sequence of human frataxin is shown in SEQ ID NO:2.

The sequence of the nucleic acid of the frataxin (cDNA) is (SEQ ID NO: 1):

```
agtctcctt ggtcagggg tctctgttgct actccgtgct tgccacaaag caggctctcc attttgtta aatgcaacga
tagtctaaag ctgggaagtt ctctcctgagg tctaacctct agctgctccc ccacagaagc cagcagcacc cagcagcacc ggcggaggac ggcgcgccac ccaggggctc ctggcagggggg ttgccacgtta cagcagcacc cagcagcacc ggcggaggac ggcgcgccac ccaggggctc ctggcagggg33
```
The sequence of the frataxin protein is (SEQ ID NO:2): MWTLGRRAVAGLLASPSPAQAQTLTRVPRPAELAPLCGRRGLRTDIDATCTPRRASS
In a particular embodiment, the invention provides a nucleic acid construct comprising sequence SEQ ID NO:1 or a variant thereof for treating cardiomyopathy associated with Friedreich ataxia.

The variants include, for instance, naturally-occurring variants due to allelic variations between individuals (e.g., polymorphisms), alternative splicing forms, in particular transcript variants 2 and 3 (accession numbers NM_001161706 and NM_181425), etc. The term variant also includes FXN gene sequences from other sources or organisms. Variants are preferably substantially homologous to SEQ ID NO:1, i.e., exhibit a nucleotide sequence identity of typically at least about 75%, preferably at least about 85%, more preferably at least about 90%, more preferably at least about 95%, 96%, 97%, 98%, or 99% with SEQ ID NO:1.

Variants of a FXN gene also include nucleic acid sequences, which hybridize to a sequence as defined above (or a complementary strand thereof) under stringent hybridization conditions. Typical stringent hybridisation conditions include temperatures above 30°C, preferably above 35°C, more preferably in excess of 42°C, and/or salinity of less than about 500 mM, preferably less than 200 mM. Hybridization conditions may be adjusted by the skilled person by modifying the temperature, salinity and/or the concentration of other reagents such as SDS, SSC, etc.

In a particular embodiment, the FXN-encoding nucleic acid is a fragment of the SEQ ID NO:1 which encodes for the amino acid sequence 81-210 of the SEQ ID NO:2 (named variant "81-210") or a variant thereof, "variant" having the meaning provided above with respect to nucleotide sequence identity and hybridization.

In a another particular embodiment, a sequence known as mitochondrion-targeting signal or mitochondrial targeting signal may be added to the FXN-encoding sequence or variant thereof, including, for example the FXN-encoding sequence "81-210". Sequences known as mitochondrion-targeting signal or mitochondrial targeting signal are referred to as MTS by the skilled person.

A MTS sequence can be identified within a protein or nucleic acid sequence by a person of ordinary skill in the art.

Most mitochondrion-targeting peptides consist of a N-terminal pre-sequence of about 15 to 100 residues, preferably of about 20 to 80 residues. They are enriched in arginine,
leucine, serine and alanine. Mitochondrial pre-sequences show a statistical bias of positively charged amino acid residues, provided mostly through arginine residues; very few sequences contain negatively charged amino acids. Mitochondrion-targeting peptides also share an ability to form an amphiphilic alpha-helix.

In another embodiment, the invention relates to a method for use in the prevention or treatment of diseases associated with frataxin deficiency in a subject in need therefore, comprising to said subject administering a therapeutically effective amount of a vector which comprises a nucleic acid encoding frataxin.

In another embodiment, the invention relates a method for use in the prevention or treatment of cardiomyopathy due but not limited to energy failure in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a nucleic acid sequence of a gene that can restore energy failure.

In another particular embodiment, the invention relates a method for use in the prevention or treatment of cardiomyopathy due but not limited to energy failure in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

The invention also relates to a vector which comprises a nucleic acid sequence of a gene that can restore energy failure for use in treatment or prevention of cardiomyopathy due to energy failure in a subject in need thereof.

In a particular embodiment, the invention relates to a vector which comprises a frataxin (FXN) encoding nucleic acid for use in the treatment or prevention of a cardiomyopathy associated with Friedreich ataxia in a subject in need thereof.

In a particular embodiment, the invention relates to a vector which comprises a frataxin (FXN) encoding nucleic acid for use in the treatment of a cardiomyopathy associated with Friedreich ataxia in a subject in need thereof.
In a particular embodiment, the invention relates to a vector which comprises a frataxin (FXN) encoding nucleic acid for reversing or stabilizing symptoms of cardiomyopathy associated with Friedreich ataxia in a subject in need thereof.

In a particular embodiment, the invention relates to a vector which comprises a frataxin (FXN) encoding nucleic acid for reversing the dysfunction of cardiac mitochondria associated with Friedreich ataxia in a subject in need thereof.

In a particular embodiment, the invention relates to a vector which comprises a frataxin (FXN) encoding nucleic acid for improving the cardiac mitochondria associated with Friedreich ataxia in a subject in need thereof.

In a particular embodiment, the invention relates to a vector which comprises a frataxin (FXN) encoding nucleic acid for restoring cardiac function in a subject suffering of a cardiomyopathy associated with Friedreich ataxia.

In a particular embodiment, the invention relates to a vector which comprises a frataxin (FXN) encoding nucleic acid for improving cardiac function in a subject suffering of a cardiomyopathy associated with Friedreich ataxia.

In a particular embodiment, the invention relates to a vector which comprises a frataxin (FXN) encoding nucleic acid for use in the treatment a cardiomyopathy associated with Friedreich ataxia in an asymptomatic or pre-symptomatic subject in need thereof.

In a particular embodiment, the invention relates to a vector which comprises a frataxin (FXN) encoding nucleic acid for use in the treatment a cardiomyopathy associated with Friedreich ataxia in a symptomatic subject in need thereof.

Non viral vectors

In a particular embodiment, the vector use according to the invention is a non viral vector. Typically, the non viral vector may be a plasmid which includes nucleic acid sequences encoding FXN gene, or variants thereof, as described above.

The viral vectors
Gene delivery viral vectors useful in the practice of the present invention can be constructed utilizing methodologies well known in the art of molecular biology. Typically, viral vectors carrying transgenes are assembled from polynucleotides encoding the transgene, suitable regulatory elements and elements necessary for production of viral proteins which mediate cell transduction.

The terms "Gene transfer" or "gene delivery" refer to methods or systems for reliably inserting foreign DNA into host cells. Such methods can result in transient expression of non integrated transferred DNA, extrachromosomal replication and expression of transferred repicons (e.g. episomes), or integration of transferred genetic material into the genomic DNA of host cells.

Examples of viral vector include but are not limited to adenoviral, retroviral, lentiviral, herpesvirus and adeno-associated virus (AAV) vectors.

Such recombinant viruses may be produced by techniques known in the art, such as by transfecting packaging cells or by transient transfection with helper plasmids or viruses. Typical examples of virus packaging cells include PA317 cells, PsiCRIP cells, GPe decide + cells, 293 cells, etc. Detailed protocols for producing such replication-defective recombinant viruses may be found for instance in WO95/14785, WO96/22378, US5828877, US6013516, US4861719, US5278056 and WO94/19478.

In one embodiment, adeno-associated viral (AAV) vectors are employed.

In other embodiments, the AAV vector is AAV1, AAV2, AAV3, AAV4, AA5, AAV6, AAV7, AAV8, AAV9, AAVrhlO or any other serotypes of AAV that can infect humans, monkeys or other species.

In an exemplary embodiment, the AAV vector is an AAVrhlO.

By an "AAV vector" is meant a vector derived from an adeno-associated virus serotype, including without limitation, AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV6, etc. AAV vectors can have one or more of the AAV wild-type genes deleted in whole or part, preferably the rep and/or cap genes, but retain functional flanking ITR sequences. Functional ITR sequences are necessary for the rescue, replication and packaging of the AAV virion.

Thus, an AAV vector is defined herein to include at least those sequences required in cis for replication and packaging (e.g., functional ITRs) of the virus. The ITRs need not be the wild-type nucleotide sequences, and may be altered, e.g. by the insertion, deletion or substitution of nucleotides, as long as the sequences provide for functional rescue, replication and packaging. AAV expression vectors are constructed using known techniques to at least provide as operatively linked components in the direction of transcription, control elements including a
transcriptional initiation region, the DNA of interest (i.e. the FXN gene) and a transcriptional termination region.

The control elements are selected to be functional in a mammalian cell. The resulting construct which contains the operatively linked components is bounded (5' and 3') with functional AAV ITR sequences. By "adeno-associated virus inverted terminal repeats " or "AAVTTRs" is meant the art-recognized regions found at each end of the AAV genome which function together in cis as origins of DNA replication and as packaging signals for the virus. AAV ITRs, together with the AAV rep coding region, provide for the efficient excision and rescue from, and integration of a nucleotide sequence interposed between two flanking ITRs into a mammalian cell genome. The nucleotide sequences of AAV ITR regions are known. See, e.g., Kotin, 1994; Berns, KI "Parvoviridae and their Replication" in Fundamental Virology, 2nd Edition, (B. N. Fields and D. M. Knipe, eds.) for the AAV-2 sequence. As used herein, an "AAV ITR" does not necessarily comprise the wild-type nucleotide sequence, but may be altered, e.g., by the insertion, deletion or substitution of nucleotides. Additionally, the AAV ITR may be derived from any of several AAV serotypes, including without limitation, AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, etc. Furthermore, 5' and 3' ITRs which flank a selected nucleotide sequence in an AAV vector need not necessarily be identical or derived from the same AAV serotype or isolate, so long as they function as intended, i.e., to allow for excision and rescue of the sequence of interest from a host cell genome or vector, and to allow integration of the heterologous sequence into the recipient cell genome when AAV Rep gene products are present in the cell. Additionally, AAV ITRs may be derived from any of several AAV serotypes, including without limitation, AAV-1, AAV-2, AAV-3, AAV-4, AAV 5, AAV-6, etc. Furthermore, 5' and 3' ITRs which flank a selected nucleotide sequence in an AAV expression vector need not necessarily be identical or derived from the same AAV serotype or isolate, so long as they function as intended, i.e., to allow for excision and rescue of the sequence of interest from a host cell genome or vector, and to allow integration of the DNA molecule into the recipient cell genome when AAV Rep gene products are present in the cell.

Particularly preferred are vectors derived from AAV serotypes having tropism for and high transduction efficiencies in cells of the mammalian myocardium, particularly cardiomyocytes and cardiomyocyte progenitors. A review and comparison of transduction efficiencies of different serotypes is provided in Cearley CN et al, 2008. In other non-limiting examples, preferred vectors include vectors derived from any serotypes like AAV1, AAV2,
AAV3, AAV4, AA5, AAV6, AAV7, AAV8, AAV9, or AAVrh10, which have also been shown to transduce cells of cardiomyocytes.

The selected nucleotide sequence is operably linked to control elements that direct the transcription or expression thereof in the subject in vivo. Such control elements can comprise control sequences normally associated with the selected gene.

Alternatively, heterologous control sequences can be employed. Useful heterologous control sequences generally include those derived from sequences encoding mammalian or viral genes. Examples include, but are not limited to, the phosphoglycerate kinase (PKG) promoter, CAG, MCK (muscle creatine kinase), the SV40 early promoter, mouse mammary tumor virus LTR promoter; adenovirus major late promoter (Ad MLP); a herpes simplex virus (HSV) promoter, a cytomegalovirus (CMV) promoter such as the CMV immediate early promoter region (CMVIE), rous sarcoma virus (RSV) promoter, synthetic promoters, hybrid promoters, and the like. The promoters can be of human origin or from other species, including from mice. In addition, sequences derived from nonviral genes, such as the murine metallothionein gene, will also find use herein. Such promoter sequences are commercially available from, e. g. Stratagene (San Diego, CA).

Examples of heterologous promoters include the CMV promoter.

Examples of inducible promoters include DNA responsive elements for ecdysone, tetracycline, hypoxia and aau5hm.

The AAV expression vector which harbors the DNA molecule of interest bounded by AAV ITRs, can be constructed by directly inserting the selected sequence(s) into an AAV genome which has had the major AAV open reading frames ("ORFs") excised therefrom. Other portions of the AAV genome can also be deleted, so long as a sufficient portion of the ITRs remain to allow for replication and packaging functions. Such constructs can be designed using techniques well known in the art. See, e. g. U. S. Patents Nos. 5,173, 414 and 5,139, 941; International Publications Nos. WO 92/01070 (published 23 January 1992) and WO 93/03769 (published 4 March 1993); Lebkowski et al, 1988; Vincent et al, 1990; Carter, 1992; Muzyczka, 1992; Kotin, 1994; Shelling and Smith, 1994; and Zhou et al, 1994. Alternatively, AAV ITRs can be excised from the viral genome or from an AAV vector containing the same and fused 5' and 3' of a selected nucleic acid construct that is present in another vector using standard ligation techniques. AAV vectors which contain ITRs have been described in, e. g. U. S. Patent no. 5,139, 941. In particular, several AAV vectors are described herein which are available from the American Type Culture Collection ("ATCC")
under Accession Numbers 53222, 53223, 53224, 53225, and 53226. Additionally, chimeric genes can be produced synthetically to include AAV ITR sequences arranged 5’ and 3’ of one or more selected nucleic acid sequences. Preferred codons for expression of the chimeric gene sequence in mammalian CNS cells can be used. The complete chimeric sequence is assembled from overlapping oligonucleotides prepared by standard methods. See, e.g., Edge, 1981; Nambair et al., 1984; Jay et al., 1984. In order to produce AAV virions, an AAV expression vector is introduced into a suitable host cell using known techniques, such as by transfection. A number of transfection techniques are generally known in the art. See, e.g., Graham et al., 1973; Sambrook et al. (1989) Molecular Cloning, a laboratory manual, Cold Spring Harbor Laboratories, New York, Davis et al. (1986) Basic Methods in Molecular Biology, Elsevier, and Chu et al., 1981. Particularly suitable transfection methods include calcium phosphate co-precipitation (Graham et al., 1973), direct microinjection into cultured cells (Capecchi, 1980), electroporation (Shigekawa et al., 1988), liposome mediated gene transfer (Mannino et al., 1988), lipid-mediated transduction (Feigner et al., 1987), and nucleic acid delivery using high-velocity microprojectiles (Klein et al., 1987).

For instance, a preferred viral vector, such as the AAVrh10, comprises, in addition to a FXN encoding nucleic acid sequence, the backbone of AAV vector with ITR derived from AAV-2, the promoter, such as the mouse PGK (phosphoglycerate kinase) gene or the cytomegalovirus/p-actin hybrid promoter (CAG) consisting of the enhancer from the cytomegalovirus immediate gene, the promoter, splice donor and intron from the chicken β-actin gene, the splice acceptor from rabbit β-globin, or any promoter such as PGK, CAG, MCK.

Delivery of the vectors

It is herein provided a method for treating cardiomyopathy due to energy failure in a subject, said method comprising:

(a) providing a vector as defined above, which comprises a nucleic acid sequence of a gene that can restore energy failure; and

(b) delivering the vector to the subject in need thereof and whereby the gene is expressed by the transduced cells at a therapeutically effective level.

In a particular embodiment, it is herein provided a method for treating cardiomyopathy associated with Friedreich ataxia in a subject, said method comprising:
(a) providing a vector as defined above, which comprises a FXN encoding nucleic acid; and

(b) delivering the vector to the subject in need thereof and whereby FXN is expressed by the transduced cells at a therapeutically effective level.

In a particular method, the vector is delivered directly into the myocardium by epicardiac injection followed by minithoracotomy, by intracoronary injection, by endomyocardic injection, by subepicardial or epicardial injection or other type of injection useful in the heart.

Additional routes of administration may also comprise local application of the vector under direct visualization, e.g., superficial cortical application, or other nonstereotactic application. The vector may be delivered intrathecally, in the ventricles or by intravenous injection.

The target cells of the vectors of the present invention are cells of the myocardium of a subject afflicted with a cardiomyopathy associated with Friedreich ataxia. Preferably the subject is a human being, adult or child.

However the invention encompasses delivering the vector to biological models of the disease. In that case, the biological model may be any mammal at any stage of development at the time of delivery, e.g., embryonic, fetal, infantile, juvenile or adult. Furthermore, the target myocardium cells may be essentially from any source, especially any cells derived from hiPS from FPvDA patients, nonhuman primates and mammals of the orders Rodenta (mice, rats, rabbit, hamsters), Carnivora (cats, dogs), and Arteriodactyla (cows, pigs, sheep, goats, horses) as well as any other non-human system (e. g. zebrafish model system).

The vectors used herein may be formulated in any suitable vehicle for delivery. For instance they may be placed into a pharmaceutically acceptable suspension, solution or emulsion. Suitable mediums include saline and liposomal preparations. More specifically, pharmaceutically acceptable carriers may include sterile aqueous of non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like.
Preservatives and other additives may also be present such as, for example, antimicrobials, antioxidants, chelating agents, and inert gases and the like.

A colloidal dispersion system may also be used for targeted gene delivery. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes.

The preferred doses and regimen may be determined by a physician, and depend on the age, sex, weight, of the subject, and the stage of the disease. As an example, for delivery of a nucleic acid sequence encoding an FXN polypeptide using a viral expression vector, each unit dosage of FXN polypeptide expressing vector may comprise 2.5 to 100 µl of a composition including a viral expression vector in a pharmaceutically acceptable fluid at a concentration ranging from 10^{11} to 10^{16} viral genome per ml for example.

The invention also relates to a vector which comprises a nucleic acid sequence of a gene that can restore energy failure for use in treatment or prevention cardiomyopathy due to energy failure in a subject wherein the vector is delivering the subject in need thereof and wherein the gene is expressed by the transduced cells at a therapeutically effective level.

In a particular embodiment, the invention relates to a vector which comprises a FXN encoding nucleic acid for use in treatment or prevention of cardiomyopathy associated with Friedreich ataxia in a subject wherein the vector is delivering the subject in need thereof and wherein FXN is expressed by the transduced cells at a therapeutically effective level.

In a particular embodiment, the invention relates to a vector which comprises a FXN encoding nucleic acid for reversing symptoms of cardiomyopathy associated with Friedreich ataxia in a subject in need thereof wherein the vector is delivering the subject in need thereof and wherein FXN is expressed by the transduced cells at a therapeutically effective level.

Pharmaceutical composition

A second object of the invention concerns a pharmaceutical composition for preventing or treating cardiomyopathy due to energy failure in a subject in need thereof, which comprises a therapeutically effective amount of a vector which comprises a nucleic acid sequence of a gene that can restore energy failure.
In a particular embodiment, the invention concerns a pharmaceutical composition for preventing or treating cardiomyopathy associated with Friedreich ataxia in a subject in need thereof, which comprises a therapeutically effective amount of a vector which comprises a FXN encoding nucleic acid.

By a "therapeutically effective amount" is meant a sufficient amount of the vector of the invention to treat a cardiomyopathy associated with Friedreich ataxia at a reasonable benefit/risk ratio applicable to any medical treatment.

It will be understood that the single dosage or the total daily dosage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed, the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific polypeptide employed; and like factors well known in the medical arts. For example, it is well within the skill of the art to start doses of the compound at levels lower than those required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved. However, the daily dosage of the products may be varied over a wide range per adult per day. The therapeutically effective amount of the vector according to the invention that should be administered, as well as the dosage for the treatment of a pathological condition with the number of viral or non-viral particles and/or pharmaceutical compositions of the invention, will depend on numerous factors, including the age and condition of the patient, the severity of the disturbance or disorder, the method and frequency of administration and the particular peptide to be used.

The presentation of the pharmaceutical compositions that contain the vector according to the invention may be in any form that is suitable for the selected mode of administration, for example, for intraventricular, intramyocardium, intracoronary or intravenous administration.

In the pharmaceutical compositions of the present invention for intramuscular, intravenous, intramyocardium, intracoronary or intraventricular administration, the active principle, alone or in combination with another active principle, can be administered in a unit
administration form, as a mixture with conventional pharmaceutical supports, to animals and human beings.

Preferably, the pharmaceutical compositions contain vehicles which are pharmaceutically acceptable for a formulation capable of being injected. These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.

Solutions comprising compounds of the invention as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The vector according to the invention can be formulated into a composition in a neutral or salt form. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.

The carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetables oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many
cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the active polypeptides in the required amount in the appropriate solvent with several of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but drug release capsules and the like can also be employed.

Multiple doses can also be administered.

In another embodiment, the invention relates to a pharmaceutical composition for treating or preventing diseases associated with frataxin deficiency in a subject in need therefore, comprising to said subject administering a therapeutically effective amount of a vector which comprises a nucleic acid encoding frataxin.

The invention will be further illustrated by the following figures and examples. However, these examples and figures should not be interpreted in any way as limiting the scope of the present invention.

FIGURES:

Figure 1. Administration of AAVrhlO.CAG-hXN vector at 3 weeks of age prevents the onset of cardiac failure and rescues survival in pre-symptomatic MCK mice at a dose of 5x10¹³ vg/kg. (A) Survival rates of wild-type (black solid line), treated (grey dotted line) and
untreated (black dotted line) MCK mice. n=9-10 for each group. (B) Relative quantification of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and sarcoplasmic reticulum Ca2+ ATPase (Serca2a) mRNA expressions in heart at 8 and 35 weeks for wild-type (white), treated (grey) and untreated (black) MCK mice; n=3-5 per group (*P<0.05; ***P<0.001). mRNA expression was normalized to 18S ribosomal RNA and is presented as a fold change relative to wild-type values. Data are represented as means ± SD.

Figure 2. Administration of AAVrh10.CAG-hXN vector, at a dose of 5x10^13 vg/kg, at 7 weeks of age in symptomatic MCK mice with severe cardiac failure reverses the cardiac contractile dysfunction, Fe-S cluster proteins, and cardiomyocyte and mitochondrial ultrastructure disorganization. (A) Longitudinal echocardiographic assessment of the left ventricle mass (LVM, left) and the shortening fraction (SF, right) for wild-type (black circles) mice, treated (light grey squares) and untreated (grey triangle) MCK mice. Data are represented as means ± SD. n=9-11 for each group. (B) Survival rates of wild-type mice (black solid line), treated (grey dotted line) and untreated (black dotted line) MCK mice. n=9-11 for each group. (C) Relative quantification of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and sarcoplasmic reticulum Ca2+ ATPase (Serca2a) mRNA expressions in heart at 8, 15 and 22 weeks for wild-type (white), treated (grey) and untreated (black) MCK mice; n=3-5 per group and per age (*P<0.05; **P<0.01; ns: statistically non-significant). mRNA expression was normalized to 18S ribosomal RNA and is presented as a fold change relative to wild-type values. Data are represented as means ± SD. (D) Biochemical measurements of combined cytosolic and mitochondrial aconitases (Aco) and succinate dehydrogenase (SDH, complex II) activities in heart from wild-type (white) mice, treated (grey) and untreated (black) MCK mice at 8, 15 and 22 weeks of age; n=3-6 per group and per age (**P<0.01). Isocitrate dehydrogenase (IDH) activity was used to normalize SDH and aconitase activities for total mitochondrial content.

Figure 3. Treatment of MCK mice at 5 weeks with 10 fold decreased dose of vector delays the onset of cardiac failure. (a-d) Echocardiographic assessment of the left ventricle shortening fraction (a), ejection fraction (b), cardiac output (c) and left ventricle mass reported to body weight (d) for MCK mice treated with a dose of 5x10^13 vg/kg (□, n=3) or 5x10^12 vg/kg (○, n=3), as well as for control wild-type (∗, n=4) and untreated MCK (O, n=10) mice. (e-g) Kinetic of individual echocardiographic assessment of left ventricular shortening fraction for MCK mice treated with 5x10^13 vg/kg (e) or 5x10^12 vg/kg (f and g).
Table 1: Echocardiographic parameters, percentage of SDH positive cardiomyocytes and vector genome copy per individual mice. Abbreviations: vg/kg, vector genome per kilogram; LV, left ventricle; SDH, Succinate dehydrogenase; N.D., not determined. Values are presented as mean of experimental replicate of individual measure.
<table>
<thead>
<tr>
<th>Dose of vector (vg/Kg)</th>
<th>Mice</th>
<th>Shortening Fraction (%)</th>
<th>Cardiac Output (mL/min)</th>
<th>LV Mass (10^-5)</th>
<th>Heart surface SDH positive (%)</th>
<th>Vector copies per diploid genome</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x10^13</td>
<td>1</td>
<td>35</td>
<td>100</td>
<td>192</td>
<td>89</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>32</td>
<td>100</td>
<td>219</td>
<td>77</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>20</td>
<td>97</td>
<td>265</td>
<td>82</td>
<td>11.5</td>
</tr>
<tr>
<td>2.5x10^13</td>
<td>1</td>
<td>31</td>
<td>67</td>
<td>198</td>
<td>85</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>25</td>
<td>91</td>
<td>278</td>
<td>79</td>
<td>7.9</td>
</tr>
<tr>
<td>1x10^13</td>
<td>1</td>
<td>28</td>
<td>52</td>
<td>239</td>
<td>53</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>30</td>
<td>80</td>
<td>213</td>
<td>55</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>33</td>
<td>116</td>
<td>210</td>
<td>88</td>
<td>3.6</td>
</tr>
<tr>
<td>5x10^12</td>
<td>1</td>
<td>17</td>
<td>28</td>
<td>410</td>
<td>44</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>21</td>
<td>39</td>
<td>454</td>
<td>48</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>33</td>
<td>85</td>
<td>223</td>
<td>58</td>
<td>0.7</td>
</tr>
<tr>
<td>WT mice</td>
<td>1</td>
<td>36</td>
<td>102</td>
<td>191</td>
<td>87</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>36</td>
<td>124</td>
<td>227</td>
<td>86</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>34</td>
<td>137</td>
<td>195</td>
<td>94</td>
<td>0.0</td>
</tr>
</tbody>
</table>
EXAMPLES:

Example 1:

Material & Methods

Adeno-associated viral vector construction and production

Human frataxin (hFXN) cDNA, including the mitochondrial targeting sequence, fused to a HA tag was subcloned in a pAAV2-CAG plasmid (Sondhi, Hackett et al. 2007) to produce pAAV2-CAG-hFXN that included the viral inverted terminal repeat (ITR) from AAV2; the cytomegalovirus/p-actin hybrid promoter, consisting of the enhancer from the cytomegalovirus immediate-early gene, the promoter, splice donor, and intron from the chicken β-actin gene, and the splice acceptor from rabbit β-globin. The AAVrh1O.CAG-hFXN-HA vector was produced as described earlier (Rabinowitz, Rolling et al. 2002) in the Vector Core at the University Hospital of Nantes (http://www.vectors.nantes.inserm.fr). The final titers of the two batches used were 5.4 x10^12 vg/ml and 2.15 x10^15 vg/ml, respectively.

Animal procedures

Mice with a specific deletion of Fxn gene in cardiac and skeletal muscle (MCK-Cre-FxnL3/L-) (MCK mice) in 100% C57BL/6J background were generated and genotyped as previously described (Puccio, Simon et al. 2001). Mice were maintained in a temperature and humidity controlled animal facility, with a 12 hours light/dark cycle and free access to water and a standard rodent chow (D03, SAFE, Villemoisson-sur-Orge, France). All animal procedures and experiments were approved by the local ethical committee for Animal Care and Use (Com’Eth 201 I-07), and were performed in accordance with the Guide for the Care and Use of Laboratory Animals (National Institutes of Health). For biodistribution studies, three weeks old wild-type mice were anesthetized by intraperitoneal injection of ketamine/xylazine (75/10 mg/kg) to allow intravenous administration by retro-orbital injection of AAVrh1O.CAG-FXN at a dose of 5x10^13 vg/kg, and sacrificed at 7 weeks of age (4 weeks post-injection). For gene therapy studies, three or seven weeks old MCK mice were anesthetized by intraperitoneal injection of ketamine/xylazine (75/10 mg/kg or 60/8 mg/kg,
respectively) to allow intravenous administration by retro-orbital injection of AAVrh10.CAG-FXN at a dose of 5x10^13 vg/kg. Untreated MCK and WT mice littermates were injected with equivalent volume of saline solution. Survival was evaluated daily and mice weight weekly. The mice cardiac function was evaluated under isoflurane anesthesia (1-2%) by echocardiography by an experimenter blinded to mice genotype and treatment regimen, as previously described (Seznec, Simon et al. 2004). Animals were killed by CO2 inhalation at 8, 15, 22 or 35 weeks, and tissues samples for biochemical and molecular analysis were immediately frozen in liquid nitrogen. For histological analysis, mice were anesthetized by intraperitoneal injection of ketamine/xylazine and perfused with cooled saline solution. For histological analysis of dorsal root ganglia, spinal cord and cardiac tissue was embedded in OCT Tissue Tek (Sakura Finetecchnical, Torrance, California) and snap-frozen in isopentane chilled in liquid nitrogen. Samples of skeletal muscles were directly snap-frozen in isopentane chilled in liquid nitrogen. For electron microscopy analysis, small samples from the middle of left ventricle and its apex were collected, then fixed and embedded in Epon as previously described (Puccio, Simon et al. 2001).

Histopathology, enzyme histochemistry and electron microscopy

For histochemical analysis, 10µm cryosections were stained either with hematoxylin and eosin (H&E), Sirius red and Fast green to label extracellular collagen, or DAB enhanced Perls to label iron (Fe^{3+}) deposits (Puccio, Simon et al. 2001).

Sirius red and fast green staining: Tissue sections were fixed with 10% paraformaldehyde in 0.1 M phosphate buffer (PBS), pH 7.4 for 10min and then incubated with a saturated solution of picric acid containing 0.1% Direct red 80 (Sigma) for 2 min, washed with 0.5% glacial acetic acid solution followed by deionized water, and subsequently incubated in 0.05% Fast Green solution for 5min, and then washed with 0.5% glacial acetic acid solution. Finally, sections were dehydrated in graded alcohols, cleared in Histosol Plus (Shandon) for 5 min and mounted using Pertex mounting medium (Histolab Products AB).

DAB-enhanced Perls iron staining: Tissue sections were fixed with 10% paraformaldehyde in 0.1 M phosphate buffer (PBS), pH 7.4 for 20min and incubated in Perls solution (1%HC1,1% Potassium Ferrocyanide) for 30min. Staining was enhanced by incubation in 0.025% 3'-3'-diaminobenzidine tetrahydrochloride (Sigma-Aldrich), 0.005% H_2O_2 in PBS buffer for 30 min, and then developed in the same buffer. Finally, sections were dehydrated in graded alcohols, cleared in Histosol Plus (Shandon) for 5 min and mounted using Pertex mounting medium (Histolab Products AB).
Enzyme histochemical analyses: Succinate dehydrogenase (SDH) and Cytochrome C Oxydase (COX) activities were performed on IOμm cryostat sections of tissues, as previously described (Puccio, Simon et al. 2001).

Electron microscopy analysis: Ultrathin sections (70 nm) of cardiac tissue were contrasted with uranyl acetate and lead citrate and examined with a Morgagni 268D electron microscope, as described previously (Puccio, Simon et al. 2001).

Immunofluorescence and image acquisition

Cardiac and spinal cord tissue cryosections were fixed in 4% PFA for 10min, washed and then permeabilized in methanol at -20°C for 20min. Sections were blocked and permeabilized at the same time with PBS, 1% NGS, 5% BSA, 0.3% Triton X-100 for 1h at room temperature (RT) and then washed in PBS, 0.2% Tween 1% BSA 1% NGS (PBS-TBN). Subsequently, tissues were incubated overnight (O/N) at 4°C with the rabbit polyclonal antibody against frataxin (FXN935)(1/250) diluted in PBS-TBN (Puccio, Simon et al. 2001). The Alexa fluor-594 goat anti-rabbit antibody (1/500) (Molecular Probes) was incubated for 2h at RT. Sections were stained with Hoechst and mounted using Aqua-Polymount mounting medium (Polysciences, Inc.). For co-immunolabelling of HA-tag and prohibitin, the tissue section were washed in PBS, 0.05% Tween and then blocked O/N at 4°C in M.O.M.™ Mouse Ig Blocking Reagent (Vector Laboratories). Section were then incubated O/N at 4°C with the mouse monoclonal antibody to HA tag (1/150) (Covence) diluted in M.O.M.™ diluent (Vector Laboratories). After washing, sections were incubated for 1h at RT with the goat anti-mouse antibody conjugated to Alexa Fluor-594nm (1/500) (Molecular Probes) diluted in M.O.M.™ diluent. Subsequently, sections were washed and blocked in PBS, 0.3% Triton, 2% NGS for lh30 at RT, washed and incubated for 2h at RT with the rabbit polyclonal antibody to prohibitin (1/150) (Abeam) diluted in PBS-BTN. The Alexa Fluor-488nm goat anti-rabbit antibody (1/500) (Molecular Probes) was incubated lh30 at RT with the goat anti-rabbit antibody conjugated to Alexa Fluor-488nm (Molecular Probes) diluted at 1/500 in PBS-BTN. Sections were stained with Hoechst and mounted using Aqua-Polymount mounting medium (Polysciences, Inc).

Confocal analysis was performed on a Leica TCS SP2 upright confocal microsystem with a Plan Apo CS (numerical aperture 1.4) 63 × objective. Observation of whole cardiac cryosections was performed on a Leica Z16 APO A microsystem fitted with a QuanteM-S12SC camera and combined with a 2x objective (39 mm working distance).
Quantitative real-time PCR Total

Total RNA was extracted from frozen heart pulverized with the Precellys24 homogeniser (Bertin Technologies) and using TRI Reagent (MRC) according to the manufacturer's protocol and was treated with DNAse I treatment (Roche Biosciences). cDNA was generated by reverse transcription using the Transcriptor Fist strand cDNA synthesis kit (Roche biosciences). Quantitative RT-PCR was performed using the SYBR Green I Master (Roche biosciences) and light Cycler 480 (Roche biosciences) with primers described in Supplementary Table S3. 18S ribosomal RNA was used as internal standard.

Enzyme activities

Tissues were immediately frozen in liquid nitrogen. The activities of the respiratory chain enzyme SDH (complex II), the citric acid cycle enzymes isocitrate dehydrogenase, and mitochondrial and cytosolic aconitases were determined as described (Puccio, Simon et al. 2001).

Immunoblot analysis

Extracts of tissues were frozen in liquid nitrogen, and then homogenized in lysis buffer containing Tris-HCl (280 mM, pH 6.8), 10% SDS, 50% glycerol. Total protein extract (10 µg or 50 µg) was analyzed on SDS-glycine polyacrylamide gels. Proteins were transferred to nitrocellulose membranes blocked with 5% non-fat milk and then incubated with the different primary antibodies, polyclonal anti-frataxin (R1250 purified sera IGBMC, 1/1,000), anti-HA (Covance, 1/500), anti-mitochondrial aconitase (R2377 purified sera IGBMC, 1/20,000), anti-Ndufs3 (Invitrogen, 1/4,000), anti-SDH (Invitrogen, 1/4,000), anti-Rieske (Abeam, 1/5,000), anti-lipoic acid (Calbiochem, 1/5,000), anti-GAPDH (Millipore, 1/10,000) and monoclonal anti-beta-tubulin (2A2, IGBMC 1/1,000). Secondary antibody (goat anti-rabbit or anti-mouse IgG, respectively) coupled to peroxidase was diluted at 1/5,000 and used for detection of the reaction with Supersignal Substrate Western blotting (Pierce), according to the manufacturer's instructions.

Statistical Analysis

All data are presented as mean ± standard deviation of the mean (SD). Statistical analysis was carried out using Statview software (SAS Institute Inc). For statistical comparison of three experimental groups, one-way ANOVA followed by Scheffe's post-hoc test was used. A value of P<0.05 was considered significant. For statistical comparison of two
experimental groups, the bilateral Student's t-test was used. P <0.05 was considered significant.

Quantitative PCR on genomic DNA

Genomic DNA was extracted from heart by using a phenol-chloroform method. AAVrh1O.CAG-FXN vector genome copy numbers were measured by quantitative PCR using the SYBR Green I Master (Roche Biosciences) and light Cycler 480 (Roche Biosciences). The vector genome copy number per cell (VGC) was evaluated as described (Piguet, Sondhi et al. 2012). The mouse genomic Adck3 sequence was used as internal control.

Results

Three week-old MCK mice that do not exhibit yet any clinical, echocardiographic nor biochemical signs of cardiac disease, received a single intravenous injection of AAVrh1O.CAG-hFXN at the dose of 5.4x1013 vg/kg (n=9). Serial echocardiographic measurements identified that the treatment efficiently prevented the development of the cardiac disease associated with frataxin deficiency. While untreated MCK mice developed a rapidly progressing left ventricle hypertrophy associated with a massive geometric remodeling characterized by increased left-ventricular diastolic diameter, the treated MCK mice were indistinguishable from wild-type (WT) littermate animals (data not shown). In parallel, systolic function evaluated by the left-ventricular shortening fraction (SF) and the cardiac output gradually decreased in untreated mice, while the treated MCK mice showed no sign of altered ventricular contractility (data not shown). The absence of echocardiographic phenotype in the treated MCK mice lead to normal growth (data not shown) and survival (35 weeks with no sign of disease), in contrast to untreated mice which die at 65±10 days (Fig. 1A). To assess the cellular and molecular state of the cardiomyocytes, treated MCK mice were sacrificed at 35 weeks of age i.e. more than triple lifespan of untreated mice. Consistent with the evolution towards heart failure, the expression of atrial natriuretic peptide (ANP) and the brain natriuretic peptide (BNP), two markers of pathology-induced stress program induced by hemodynamic overload was markedly increased in the heart from untreated mice at 8 weeks compared to WT (19 and 7 times, respectively, p<0.001) (Fig. IB). In contrast, no difference could be detected in the expression level of these two markers between the treated MCK mice and the WT littermates, supporting the absence of pathology-induced stress
programme due to hemodynamic overload (Fig. IB). Furthermore, while the expression of sarcoplasmic reticulum Ca2+ ATPase (Serca2a), a critical determinant of cardiac relaxation responsible for diastolic Ca2+ reuptake from cytosol was reduced in untreated mice (3.3 fold, p<0.01), treated MCK mice had normal Serca2a levels (Fig. 1C). Histological analysis confirmed a preserved overall heart organization in 35 week-old treated MCK mice, compared to the myocardial degeneration with cytoplasmic vacuolization in the necrotic cardiomyocytes observed in untreated mice at 8 weeks of age (data not shown). Furthermore, Sirius-red staining (data not shown) and collagen type I and III mRNA expression (data not shown) indicated the absence of myocardial post-necrotic fibrosis in treated animals, in comparison to the massive interstitial fibrosis present in untreated MCK mice at 8 weeks (data not shown).

Intravenous injection of AAVrh10-FXN led to robust viral transduction of the heart (20.85±6.3 vg/cell) and liver, but also of skeletal muscle and dorsal root ganglia (data not shown). Western blot analysis using an anti-FXN antibody, which equally detects human and mouse frataxins, demonstrated a significant overexpression (>10 fold) of AAVrh10-encoded frataxin compared to endogenous frataxin of WT mice (data not shown). Sustained expression of the AAVrh10-encoded frataxin was seen over 35 weeks (data not shown). Mitochondrial import and maturation of frataxin was complete and non-saturated, as only the cleaved mature form of human frataxin was detected (data not shown). Immunohistochemistry analysis using both anti-FXN and anti-HA antibodies showed a broad expression of human frataxin throughout the heart of the AAV treated MCK mice, with close to 100% of transduced cardiomyocytes in the LV, RV and septum, with some cardiomyocytes expressing higher levels (data not shown). Co-localization with prohibitin demonstrated the expected mitochondrial localization of human frataxin (data not shown).

In line with the essential function of frataxin in regulating cellular Fe-S cluster biogenesis, it is now commonly accepted that frataxin deficiency leads to a primary Fe-S cluster deficit followed by secondary mitochondrial iron accumulation. Indeed, while untreated MCK mice showed a strong deficit in the Fe-S mitochondrial aconitase (mAco) and succinate dehydrogenase (SDH) (41.3% and 79.8%, respectively) (data not shown), treated mice presented levels of activities similar to WT littermates. Consistent with the widespread expression of hFXN in the heart after AAVrh10-CAG-hFXN injection, colorimetric staining of SDH activity confirmed the correction of Fe-S biogenesis in over 95% of cardiomyocytes...
While a substantial decrease in the levels of all analysed mitochondrial Fe-S proteins, was detected in untreated mice, as a result of the instability of the respective Fe-S apo-proteins, treated mutants had levels equivalent to WT (data not shown). Similarly, expression of human frataxin prevented the decrease in activity of the Fe-S enzyme lipoic acid synthase, indirectly demonstrated by normal levels of lipoic acid bound a-ketoglutarate dehydrogenase (KGDH) and pyruvate dehydrogenase (PDH) in treated animals in comparison to untreated animals (data not shown). Consistent with the absence of Fe-S cluster deficit, no cellular iron accumulation was observed in the cardiac tissue of treated mice (data not shown). Furthermore, we did not detect any sign of cellular iron homeostasis perturbation in treated animals (data not shown). Finally, electron microscopy analysis demonstrated a normal sarcomere organization of the cardiomyocytes and mitochondria ultrastructure in treated mice. Untreated animals showed sparse atrophied myofibrils and massive mitochondrial proliferation with abnormal collapsed or swollen cristae and iron accumulation (data not shown). All together, these data indicate that human frataxin gene transfer using AAVrhlO in pre-symptomatic MCK mice prevented the development of the mitochondrial FRDA cardiomyopathy at the molecular, cellular and physiological level.

While preventing the onset of the cardiomyopathy is an important step, at a clinical point of view it appears crucial to determine the therapeutic potential of this gene therapy approach when cardiac dysfunction is already present. Mutant MCK mice were intravenously injected with AAVrhl 0-CAG-hFXN at the dose of 5.4x10^13 vg/kg (n=9) at 7 weeks, when the ventricular remodeling and left ventricular systolic dysfunction are established, with a major decrease in cardiac output (60±9% versus control values), attesting of cardiac failure. One week after injection at 8 weeks of age, the LV function was already significantly improved, with a 49±5% ejection fraction and a decrease in LV hypertrophy and dilation in the treated mutant mice, whereas untreated animals presented typical signs of heart failure (Fig. 2A). Echocardiographic parameters regarding cardiac function progressively improved to reach WT values at 11-12 weeks of age, demonstrating a complete recovery of the ventricular systolic function and anatomy. The survival of the mice was significantly prolonged until at least 18 weeks of age (Fig. 2B). In accordance with the rapid reversion observed by echocardiography, human FXN was already strongly expressed one week after injection in heart of treated mutant mice and sustained over 22 weeks, with a mitochondrial localization (data not shown). Similarly, the pathology-induced stress program induced by hemodynamic overload, reflected by the expression of ANP and BNP, was significantly decreased one week
after injection (8 weeks) in treated mice (Fig. 2C). By 22 weeks, the expression level of ANP and BNP of treated MCK mice was close to the expression level of WT animals, suggesting a normalization of the hemodynamic load. Furthermore, the expression of Serca2a progressively increased in treated mice between 8 and 22 weeks, indicating that diastolic Ca2+ transport was likely restored (Fig. 2C). The reversal and correction of the cardiac phenotype correlated with a progressive increased in Fe-S proteins activities, mAco and SDH, in levels of the Fe-S proteins Ndufs3, SDH, Rieske, as well as in the lipoic acid bound PDH and KGDH (Fig. 2D). At 22 weeks, some rare patches with low SDH activity were detected in the cardiac tissue of treated mice (data not shown), corresponding to fibrotic scar probably already present at the time of treated. Interestingly, collagen staining and expression (type I and III) showed that interstitial cardiac fibrosis stopped one week post injection (data not shown). Strikingly, a rapid correction of the ultrastructure of the cardiac muscle was also observed one week after injection, with normal sarcomere organization and with a massive decrease in mitochondria (data not shown). In correlation with a still incomplete recovery of the biochemical phenotype one week after treatment, the mitochondria in the treated animals showed some signs of pathology, with the presence of some swollen mitochondria presenting parallel stacks of cristae membranes (data not shown). However, by 22 weeks, sarcomeres and mitochondria organizations completely recovered with no sign of pathological change. All together, these data indicate that AAVrhlO.CAG-hFXN treatment in symptomatic MCK mice resulted in a rapid clinical, echocardiographic and biochemical improvement with a complete correction of the FRDA cardiomyopathy.

Conclusion

Our data demonstrates that AAVrhlO-mediated transfer of hFXN gene in the myocardium of a mouse model of severe FRDA cardiomyopathy not only prevents the onset of the disease for a sustained period, but also can reverse heart failure and cardiac remodelling. The correction is extremely rapid and efficient, with a striking reversal of the mitochondrial abnormalities and biochemical Fe-S proteins deficit one week after treatment. Despite the severity of cardiac insufficiency at the time of treatment, the cardiac recovery is rapidly progressive, reaching normality within 4-5 weeks of treatment.

Indeed, the correction of mitochondrial dysfunction in the mouse was associated with a progressive increase of sarcoplasmic reticulum Ca2+-ATPase (Serca2a) gene expression involved in sarcoplasmic reticulum calcium uptake from cytosol. Interestingly, decrease in the expression and activity of Serca2a has been identified in cardiomyocytes from failing human
hearts. A rapid correction of the ultrastructure of the cardiac muscle was also observed and the interstitial cardiac fibrosis was stopped one week after treatment, preventing the dilation and massive remodelling of the cardiac tissue. Fibrosis is an early manifestation of FRDA cardiomyopathy and its importance in organ pathology and dysfunction is relevant to a wide variety of diseases, including heart diseases.

In conclusion, delivery of a vector encoding hFXN in a mammalian model of FRDA cardiomyopathy resulted in i) prevention of the development of disease symptoms in asymptomatic individuals and ii) reversal of disease symptoms in individuals who already exhibited cardiomyopathy, biochemical Fe-S cluster impairment, mitochondrial dysfunction and interstitial cardiac fibrosis.

Thus, the use of a gene that can restore energy failure may be useful for the treatment and the prevention of a cardiomyopathy due to energy failure (like the use of FXN gene in the case of cardiomyopathy associated with Friedreich ataxia as explained in the examples).

Example 2: Determination of the minimal dose of AAVrh1O.CAG-FXN vector injected inducing a detectable level of cardiac transgene expression

Material & Methods

The dose-response evaluation was conducted in 5 weeks-old MCK mice with early-stage systolic dysfunction using the same experimental design as described above. All animal procedures and experiments were approved by the local ethical committee for Animal Care and Use (Com'Eth 2012-016). Briefly, mice were anesthetized and then injected retro-orbitaly with 100µL of AAVrh1O.CAG-FXN vector solution diluted in saline solution, for a final injected-dose of 5x10^13, 2.5x10^13, 1x10^13 and 5x10^12 vg/kg, respectively (Table 1). Age matched WT mice were injected with 100µL of saline solution, as control. Survival, growth and cardiac function were evaluated weekly up to 12 weeks of age (Fig. 1). All mice were sacrificed at 12 weeks of age. Heart was sampled and dissected transversally in order to snap freeze a small transversal section of 1-2mm thick from the middle of the left-ventricle and to process separately the apex and the middle-to-base of the heart which were embedded in OCT Tissue Tek and snap-frozen in isopentane chilled in liquid nitrogen. The OCT-included heart samples were cut alternatively at 5 and 100µm from the apex to the base of the heart. H&E staining as well as SDH and COX activities were performed on 5µm heart sections, at the level of the apex, middle and base of the left ventricle. Imaging of whole heart sections was performed at high magnification with the Hamamatsu NanoZoomer 2.0 slide scanner and
analysis were performed using ImageJ following the color threshold method. RNA and DNA were extracted from 100µm thick cryosection following the trizol-based protocol as described above. The apex, middle and base of the left-ventricle were analyzed separately. Vector copy per diploid genome and relative expression of transgene were quantified as described above.

Results

The dose of 5x10^13 vg/kg used in the original study allows transduction of near 100% of the cardiomyocytes, a transduction efficiency that will very unlikely be achieved in humans. Therefore, to determine the lower therapeutic threshold that is required to rescue the cardiomyopathy associated with frataxin deficiency in the MCK mice, a dose-response study was performed. MCK mice with early stage systolic dysfunction were intravenously injected with AAVrhLO-CAG-hFXN at a dose of 5x10^13, 2.5x10^13, 1x10^13, and 5x10^12 vg/kg (n=2-3 per dose), respectively, at 5-weeks of age. Serial echocardiographic measurements were performed weekly up to 12 weeks of age. Although some variability was observed, MCK mice injected at the highest doses (5x10^13, 2.5x10^13 and 1x10^13 vg/kg) did not show any hemodynamic nor morphological anomaly up to 12 weeks of age (Fig. la-d, Table 1), demonstrating efficient correction of the early stage systolic dysfunction and prevention of cardiac failure onset associated with FXN deficiency. At the lower dose, 5x10^12 vg/kg, while the hemodynamic and morphological measurements are stable and consistent with a correction of the early stage systolic dysfunction and prevention of cardiac failure onset up to 10 weeks of age, a systolic dysfunction (Fig. 1 a-b) accompanied by a left ventricular remodeling (Fig. Id) was observed starting 10 weeks of age leading to a rapid declined of the cardiac output (Fig. lc).

All animals in each dose tested were sacrificed at 12 weeks of age to determine the transduction efficiency by measuring the vector genome copy per diploid genome and the percentage of corrected cardiomyocytes by SDH staining (Table 1). While variability was observed in the number of vector genome copy per cell, in particular at lower doses, we find a correlation between the vector genome copy, the percentage of SDH positive cells (which correlates very well with the percentage of frataxin expressing cells) and cardiac function (Table 1). Together, these results suggest that at 5 weeks of age, the therapeutic threshold appears to be around 2-3 vg/cell, with 50-60% of SDH positive cardiomyocytes.

Example 3: Efficient transduction of monkey and pig cardiomyocytes after intramyocardial injection of AAVrhLO vector
Material & Methods

AAVrh1O-CAG-GFP vector was administered using an identical cardiac surgery procedure in monkey and pig. Following general anesthesia, a median sternotomy was performed. The AAVrh1O-CAG-GFP vector was administered directly to the myocardium of the left ventricle as subepicardial injections. In monkey, 9 subepicardial injections were performed, with 3 subepicardial injections 0.5 cm apart in 3 spots (1.66x10^10 vg of vector per injection, 40 μl/spot). The total dose of injected vector per spot was 5x10^10 vg. In pig, 18 subepicardial injections were performed with 3 subepicardial injections in 6 different spots (3 vector injections per spot). In one spot, 3 vector injections were made 0.5 cm apart (as in monkey) and 1.66x10^10 vg (as in monkey) of vector diluted in 40 μl of PBS was injected at each site. In the 5 other spots, vector injection was made 1 cm apart with 8.3x10^10 vg/injection in 3 spots and 1.25x10^11 vg/injection in 2 spots. The total dose of injected vector per spot was therefore 5x10^10 vg (1 spot), 2.5x10^11 vg (3 spots) and 3.75x10^11 vg (2 spots). The cardiac surgery procedure and vector injection were associated with no adverse event, even minimal. In pig, cardiac echography performed 10 days after vector injection was normal, showing no changes in respect to cardiac parameters observed immediately prior to cardiac surgery.

Monkey and pig were euthanized 3 weeks after vector injection. The left ventricle was dissected from the remaining part of the heart and trimmed in 4 (monkey) or 10 (pig) separate pieces along antero-longitudinal axis. Each piece of left ventricle was then cut in 20 mm-thick slices and one out of two slices were processed for directed visualization of GFP expression under fluorescence microscopy. The other slices were processed for DNA extraction to measure vector copy number. Percentage of GFP-positive cardiomyocytes was assessed using an in-house software. Vector copy number was assessed using quantitative PCR with primers targeting the ITR2 of AAVrh1O-CAG-GFP vector and the endogenous albumin gene. Vector copy number was assessed using the cycle (Ct) threshold to detect albumin or ITR2 sequences. At autopsy, there was no macroscopic lesion of left ventricle in monkey and pig. In monkey, there was a mild inflammatory reaction in the myocardium around 2 injection sites in which GFP expression was observed. There was no inflammatory reaction in the myocardium of vector-injected pig.

Results
Intravenous injection of AAVrhlO-CAG-hFXN vector will likely not be feasible in FRDA patients because it would require the injection of a very high dose of vector that could result in significant adverse events, mostly related to an immune reaction against the AAVrhlO capsid in the periphery. Direct intra-myocardial injection of gene therapy vector through subepicardial injections following mini-thoracotomy has proven to be safe over an average of nearly 12-year follow-up period (Rosengart TK et al, Hum Gene Ther, 2:203-208, 2013). The transduction efficacy of AAV of a given serotype in a given tissue can be species specific. At last efficacy of hFXN gene transfer in cardiomyocytes must be evaluated in a large animal whose heart size is similar to human. To answer to these important pre-clinical steps towards a gene therapy trial in patients with FRDA cardiomyopathy, AAVrhlO vector expressing the reporter green fluorescent protein (GFP) under the control of CAG promoter was injected directly into the myocardium of one monkey (Macaca fascicularis) and one pig. Monkey is the best animal model to anticipate that the observed transduction efficacy of an AAV vector of a given serotype in a given tissue will be similar in human patients. Two-three year-old pigs of 20-30 kg have a size of the heart, in particular of the left ventricle, which is similar to humans.

AAVrhlO-CAG-GFP vector was directly delivered in the myocardium of a monkey through epicardial injections. Three separate spots of myocardium were injected with 3 vector injections per spot. At a non-optimized dose of 5x10^10 vector genome (vg) per spot, GFP expression was observed in 60% of cardiomyocytes (data not shown). The expression of GFP was similar in the 3 spots. The mean volume in each spot in which GFP was expressed was 200 mm^3. The mean vector copy number/cell was 1.2.

AAVrhlO-CAG-GFP vector was then directly delivered in the myocardium of a pig through epicardial injections. Six separate spots of myocardium were injected with 3 vector injections per spot. The spots were injected with different doses of vector: 5x10^10 vg (spot#1), 2.5x10^11 vg (spots# 2, 3 and 4) and 3.75x10^11 vg (spots# 5 and 6). GFP expression was observed in 10% of cardiomyocytes in spot#1 whereas GFP expression was observed in 50 to 95% of cardiomyocytes in spots#2, 3 and 4. Injection of higher dose of AAVrhlO-CAG-GFP vector in spots#5 and 6 did not result in significant better transduction of cardiomyocytes. The mean volume in spots#2 to 6 in which GFP was expressed was 330 mm^3. The mean vector copy number/cell in spots #2 to 4 was 1.8.

Altogether, these results demonstrate that cardiomyocytes of monkey and pig are very well transduced by AAVrhlO vector following the direct administration of the vector to the myocardium. Results obtained in monkey indicates that 30 injections of higher dose of
AAVrhrlO vector should be sufficient to transduce > 50% of cardiomyocytes of the left ventricle in human. Thirty epicardial viral vector injections following mini-thoracotomy has proven to be feasible (1-hour surgical procedure) and safe in humans (Rosengart TK et al, Hum Gene Ther, 2 :203-208, 2013). Results of transduction efficacy with AAVrhrlO in pig cardiomyocytes indicates that this porcine animal model will be suitable to evaluate the total dose of AAVrhrlO-CAG-hFXN vector that it will be needed to inject in the left ventricle myocardium of FRDA patients to express frataxin in > 50% of their cardiomyocytes.

REFERENCES:

Throughout this application, various references, including United States patents and patent applications, describe the state of the art to which this invention pertains. The disclosures of these references are hereby incorporated by reference in entirety into the present disclosure.

C. L. Tsai, D. P. Barondeau, Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry 49, 9132 (Nov 2, 2010).

V. Campuzano et al, Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6, 1771 (Oct, 1997).
CLAIMS:

1. A method for preventing or treating cardiomyopathy due to energy failure in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a nucleic acid sequence of a gene that can restore energy failure.

2. The method according to claim 1 wherein the cardiomyopathy due to energy failure is a cardiomyopathy associated with Friedreich ataxia and the gene that can restore energy failure is the frataxin (FXN) encoding nucleic acid.

3. The method according to claim 1, wherein said FXN encoding nucleic acid encodes for the amino acid sequence SEQ ID NO:2.

4. The method according to claim 1 wherein the vector of claim comprises the nucleic acid sequence SEQ ID NO:1.

5. The method according to claim 1 wherein the vector is selected from the group consisting of adenovirus, retrovirus, herpesvirus and Adeno-Associated Virus (AAV) vectors.

6. The method according to claim 5 wherein the vector is an AAV vector.

7. The method according to claim 6 wherein the AAV vector is an AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh10 vector or any AAV derived vector.

8. The method according to claim 7 wherein the AAV vector is an AAVrh10 vector.

9. The method according to claim 1 wherein the vector is administered intracoronary or directly into the myocardium of the subject.

10. The method according to claim 1 wherein the vector is administered by intravenous injection.

11. A pharmaceutical composition for preventing or treating cardiomyopathy due to energy failure in a subject in need thereof, comprising a therapeutically effective
amount of a vector which comprises a nucleic acid sequence of a gene that can restore energy failure.

12. A pharmaceutical composition according to claim 11 wherein the cardiomyopathy due to energy failure is a cardiomyopathy associated with Friedreich ataxia and the gene that can restore energy failure is the frataxin (FXN) encoding nucleic acid.

13. A method for reversing symptoms of cardiomyopathy associated with Friedreich ataxia in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a vector which comprises a frataxin (FXN) encoding nucleic acid.

14. A vector which comprises a nucleic acid sequence of a gene that can restore energy failure for use in treatment or prevention of cardiomyopathy due to energy failure in a subject in need thereof.

15. A vector according to claim 14 wherein the vector comprises a frataxin (FXN) encoding nucleic acid.

16. A vector according to claims 14 or 15 wherein the cardiomyopathy is a cardiomyopathy associated with Friedreich ataxia.

17. A vector according to claims 14 to 16 wherein the vector is an AAVrhlO vector.

18. A vector which comprises a frataxin (FXN) encoding nucleic acid for reversing symptoms of cardiomyopathy associated with Friedreich ataxia in a subject in need thereof.

19. A vector which comprises a frataxin (FXN) encoding nucleic acid for use in the treatment of a cardiomyopathy associated with Friedreich ataxia in a symptomatic subject in need thereof.

20. A vector according to claim 19 wherein the vector is an AAVrhlO vector.
Figure 1 B
Figure 2 B
Figure 2 C
Figure 2 D
Figure 3 A, B, C and D
1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application and necessary to the claimed invention, the international search was carried out on the basis of:
 a. (means)
 - [X] on paper
 - [] in electronic form
 b. (time)
 - [X] in the international application as filed
 - [] together with the international application in electronic form
 - [] subsequently to this Authority for the purpose of search

2. [] In addition, in the case that more than one version or copy of a sequence listing and/or table relating thereto has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.

3. Additional comments:
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K48/00 C07K14/47

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K C07K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, BIOSIS, Sequence Search

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) on which the document is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search: 4 April 2014

Date of mailing of the international search report: 15/04/2014

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer:

Schulz, Regine
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>M. MEL0NI ET AL: "Nerve Growth Factor Gene Therapy Us ing Adeno-Associ ated Viral Vectors Prevents Cardi myopathy i n Type 1 Di abet i c Mi ce", DIABETES, vol. 61, no. 1, 20 December 2011 (2011-12-20), pages 229-240, XP055112137, US ISSN: 0012-1797, DOI: 10.2337/dbi11-1270</td>
<td>1,5-7, 9-11, 14</td>
</tr>
<tr>
<td>X</td>
<td>HICKS MARTIN J ET AL: "AAV-Di rected Persi stent Expressi on of a Gene Encodi ng Anti -Ni coti ne Anti body for Smoki ng Cessati on", SCI ENCE TRANSLATION MEDICINE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCI ENCE, US, vol. 4, no. 140, 1 June 2012 (2012-06-01), pages 230-236, XP009168758, ISSN: 1946-6234, DOI: 10.1126/scitranslmed.3003611</td>
<td>1,5-8, 10, 11, 14, 17</td>
</tr>
<tr>
<td>X</td>
<td>US 2001/029040 AI (TOY0-OKA TERUHI KO [JP]) 1,5-7, 11 October 2001 (2001-10-11) 11, 14 example s 1-6</td>
<td>1-6</td>
</tr>
<tr>
<td>X</td>
<td>Wo 00/15821 AI (UNIV CALIFORNIA [US]) 1,5-7, 23 March 2000 (2000-03-23) 11, 14 page 04, l i ne 18 - l i ne 29; exampl es 1-3</td>
<td>1,5-7, 11, 14</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>YANXIONG MAO ET AL: "Persi stent Suppression of Ocular Neovascularization with Intravital Administration of AAVrh.10 Coding for Bevacizumab", HUMAN GENE THERAPY, vol. 22, no. 12, 1 December 2011 (2011-12-01), pages 1525-1535, XP055112153, ISSN: 1043-0342, DOI: 10.1089/hum.2011.090 page 1525 - page 1526; figure 1 page 1526, left-hand column, paragraph but last page 1531 - page 1533</td>
<td>8, 17</td>
</tr>
<tr>
<td>A</td>
<td>DOLAN SONDHI ET AL: "Enhanced Survival of the LINCL Mouse Following CLN2 Gene Transfer Using the rh.10 Rh esus Macaque-derived Adeno-associated Virus Vector", MOLECULAR THERAPY, vol. 15, no. 3, 19 December 2006 (2006-12-19), pages 481-491, XP055084809, ISSN: 1525-0016, DOI: 10.1038/sj.mt.6300049 page 481 - page 489, left-hand column; figures 1, 3</td>
<td>8, 17</td>
</tr>
<tr>
<td>A</td>
<td>WO 2012/174452 Al (SHI RE HUMAN GENETIC THERAPIES [US]; KEEFE DENNIS [US]; HEARTLEIN MICHA) 20 December 2012 (2012-12-20) paragraph [0004] - paragraph [0019]; claims 39-44</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (April 2008)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2001029040 AI</td>
<td>11-10-2001</td>
<td>JP 4520569 B2</td>
<td>04-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001231557 A</td>
<td>28-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001029040 AI</td>
<td>11-10-2001</td>
</tr>
<tr>
<td></td>
<td>20-12-2012</td>
<td>Wo 0015821 AI</td>
<td>23-03-2000</td>
</tr>
<tr>
<td></td>
<td>20-12-2012</td>
<td>Wo 0015821 AI</td>
<td>23-03-2000</td>
</tr>
<tr>
<td></td>
<td>20-12-2012</td>
<td>Wo 0015821 AI</td>
<td>23-03-2000</td>
</tr>
</tbody>
</table>